

LEWCOS LEADS IN RADIO COMPONENTS

Every 1 art made by Lewcos is a speciality in the strictest sense of the term : the most advanced in design and most accurate in manufacture.

Stocks of Lewcos Components of every description are held by all first-class radic dealers.

Write to Radio Publicity, Dept. M, for descriptive leaflets of the components you require.

LEWCOS RADIO PRODUCTS FOR BETTER RECEPTION

9

MODERN WIRELESS

Q

November, 1932

Economy with Efficiency

At all Newsagents

and Bookstalls

A NEW A.B.C. OF MOTORING FOR AMATEUR AND EXPERT

To Be Completed in One Volume

4 PARTS Now on Sale—6d. Each.

ABOUT

Your motoring will cost you less if you study the pages of this new work, which aims at supplying everything the motorist needs to know for the efficient and economical maintenance and running of a car.

The MOTORING ENCYCLOPEDIA should prove of practical use not only to the owner-driver and the chauffeur, but to all who are interested in automobiles, motor cycles and motoring. It has been written throughout by experts, and is superbly illustrated with thousands of practical working diagrams, which are very easy to follow, and photographs of places of interest to the tourist.

The MOTORING ENCYCLOPEDIA will give you—

Simple instruction in the care and maintenance of almost every known make of car - new and old.

The most economical methods of repair.

Information on how to get the most out of petrol, tires, and the more perishable parts of motor machinery.

Assistance in the choice of a new or second-hand car from the full and clear descriptions of the leading modern types. Full notes on the principal accessories, instruments and well-tested "gadgets."

Legal information on almost every question that can arise with regard to the use of motor cars on the road and the responsibilities of ownership.

Practical hints on touring in all parts of the British Isles, including camping and caravanning.

You'll never be at a loss if you read The Motoring Encyclopedia.

Large Scale

ROAD MAPS of the BRITISH ISLES

COMPL

the time between it wanted to the test

The set of large-scale road maps printed in The MOTORING ENCYCLOPEDIA is the most up-to-date and practical yet produced. These maps, which embody the very latest data supplied by the Ministry of Transport, have been tested in every way over thousands of miles of actual motoring, and have been proved to be not only the handiest to follow, but the most reliable. There will be one map in each part.

Special Map Case Offer

The Editor of MOTORING ENCYCLOPEDIA is offering at cost price an attractive and serviceable map case in which the entire set of road maps can be carried for easy reference.

Whether you are a new motorist or "an old hand," you will find The MOTORING ENCYCLOPEDIA an invaluable aid to better motoring at cheaper cost. It is a wise economy to subscribe to this work, which may save you pounds in the course of a few months.

TO YOU THE COST OF A BETTER SET-MAY ONLY BE THE PRICE OF A FERRANTI TRANSFORMER

It is easy to spend many

pounds on a set giving

poorer quality of repro-

duction than you would

get from your own by

simply installing a

FerrantiTransformer.

Listen IN-critically to your

present set. Are the bass notes

really there? Do the high notes of the violin really sound like a violin or like a flute? The installation of a Ferranti Transformer is the most

A.F. TRANSFORMERS A.F.3 Ratio 1/3.5 25/-A.F.4 " 1/3.5 17/6 A.F.5 " 1/3.5 30/-A.F.6 " 1/7 30/-A.F.7 " 1/1.75 30/-

TYPE AF

PRIMARY

TRRA PATENT

* 117

economical way of effecting an improvement that will delight you. Ferranti Ltd., of Hollinwood, Lancashire, have been making transformers since 1882 and every engineer knows that no better transformers are obtainable the world

Every Ferranti Transformer is guaranteed to give a performance within 5% of the published curve, AND within 5% of every other Ferranti Transformer of the same type. Ferranti are the only transformers so guaranteed

A.F. TRANSFORMERS A.F.8 Ratio 1/3.5 11/6 A.F.10 .. 1/3 6/6

D., Head Office & Works, Hollinwood, LANCASHIRE LONDON: Bush House, Aldwych, W.C.2. FERRANTI LTC

"Glad I got a radio-gram..

. . . gives one such a range of choicebroadcasts from all over the place, or records according to fancy. I'm no highbrow-I just like what I like. But I want it done well. And this H.M.V. is a corker for reproduction, no mistake. Think I'll try it over on the table by the window, and hear how it sounds from there."

- the only 2 in 1 instrumentofitskind. All-Electric, Marconi Valves fitted as standard, 25 guineas.

NOW_ I'm longing to hear these new records

Marvellous Impersonations of Famous Film Stars-A Hollywood Party-Parts 1 and 2. Florence Desmond B4264, 2/6

Another Schnabel 'Beethoven' Triumph. Concerto No. 1 in C Major (C dur), Op. 15 (Beet-hoven). Artur Schnabel and The London Symphony Orchestra (Con-ducted by Dr. Malcolm Sarrent) DB1690 to DB1694, 6!- each

Album Series No. 156. Songs our Fathers sang. Old Timers, Selection – Old Music Hall Memories. Sydney Gustard

B4246, 2/6 Ambrose in the "hit" of the day. Underneath the arches-For you, just you. Ambrose and His Orchestra

Artur Schnabel (Photo, Otto Kurt Vogelsang, Berlin) B6222, 2/6

-and Ray Noble himself in a Sure-fire Winner. Watch the Navy-When the band goes marching by. Ray Noble and His New Mayfair Orchestra B6236, 2/6 Gracie's Latest and Greatest. He's dead, but he won't lie down – Looking on the bright side of life (From the Film: "Looking on the Bright Side"). Gracie Fields B4258, 2/6

A Rich Feast of Schubert. Schubertiana (Finck). (Fantasia on Melodies by Schubert). Tom Jones and His Orchestra C2454, 4/-

Two Simple Songs by Gigli. Canta pe'me—Marta. Beniamino Gigli DA1278, 4|-1,000 Bandsmen Playing !

Gracie Fields (Pholo, Mitchell, N.Y.)

Hear the wonder/ul records actually made at the Aldershot Tattoo, this year. C2437 and C2438, 4/- each Two Strauss Records for 8/-. " Der Rosenkavalier": Presentation

of the Silver Rose-Ochs' Waltz C2294, 4/-Breakfast Scene and Trio-Closing

Duet C2295, 41- Gigti (Photo, Del Cupole Vienna Philharmonic Orchestra (Conducted by Karl Alwin). Gigli (Photo, Del Cupolo, N.Y.)

"His Master's Voice"

True to Life --- Radio and Records ALL INSTRUMENTS OBTAINABLE BY HIRE PURCHASE The Gramophone Co., Ltd., London, W. I. Prices do not apply in the Irish Free State.

MODERN WIRELESS

Vol. XVIII. No. 71.

BRITAIN'S LEADING RADIO MAGAZINE.

NOVEMBER, 1932.

Our Free Book—The "Programme Prince "—A Shilling Blue-Print Given Away, Too !— The Post Office and the "War" on Pirates.

⁹HIS issue of MODERN WIRELESS may legitimately be described as a veritable encyclopædia of information for all radio enthusiasts. To begin with, we present to our readers a sixpenny book free-entitled "World-Wide Radio."

This book has been written with the idea of providing a permanent complement to the World's Programme section, which has proved so popular in MODERN WIRE-LESS. But, of course, a brief glance at the booklet will show that it is complete in itself and is, in fact, an invaluable handbook of reference.

Together with the first published details of the MODERN WIRELESS "Programme Prince" receiver, we also present a 1s. blue print free. Constructional details of this firstclass product of the MODERN WIRELESS Research Department are dealt with in a special section of this magazine.

Constructors will note that they have thus all available information of the receiver compactly and pictorially presented in the most pleasing editorial fashion. The 'Programme Prince'' is a receiver which is distinctly of the type simple to construct.

It is inexpensive and, plus the qualities of compactness and ease of operation, is a set which you will find will give first-rate performance.

Another constructional feature to which we would draw your attention deals with the building of a very efficient two-valve amplifier.

'Ware the Bogus Inspector

T is already reported that the Post Office offensive against wireless pirates which began a few days ago has been very successful and that over 100,000 new licences have been taken out in the London area.

According to a Post Office official, the G.P.O. detectives have the names and addresses of many pirates. Honest owners, said the official, have nothing to fear.

Many of them will, of course, be asked by officials to show their sets and their licences, as they are obliged to do by the Wireless Telegraph Act. Last year some people had their sets stolen by bogus officials, and I should like to emphasise that nobody should allow an inspector to enter his house or see his set unless he can produce a Pass Card from the P.M.G.

Problem of the Unpaid Licence

A s several correspondents to the "Daily Telegraph" and other papers point out, however, the most the

G.P.O.'s marvellous detective van apparatus can do is to point out the place where a set exists. Surely the G.P.O. are not claiming that the apparatus can detect whether the licence has been paid or not !

Certain it is that enquiry will have to be made at particular houses marked down on the G.P.O. detective list, and the odds are that the greater part of the working day of one of these detectives will be spent in haphazardly making enquiries on the off-chance of being lucky and picking up a pirate.

Of course, a good deal of this G.P.O. publicity is in the bogy linc, but nevertheless it is justified in view of the serious problem of the unpaid wireless licence. Nothing could be meaner than the attitude of those pirates who, either through carelessness or deliberate indifference, fail to pay their yearly 10s.

Making the Dealer Responsible?

IN fact, the whole problem of the wireless pirate is raised again in the question of how best to deal with

One suggestion made recently was that radio it. licences should be produced on demand, as motor licences.

Another suggestion made was that no wireless set should be sold unless the potential purchaser, on entering the wireless shop, can produce his licence; just as no potential purchaser of a revolver is supposed to be able to buy a weapon without first producing a Scotland Yard permit. But the problem boils down to this in the end : that the only way of being absolutely certain whether a wireless set is licensed or not is to start a house-to-house inspection; and, of course, such a method is impossible in practice. Thousands of inspectors would be required, and they would certainly be kept busy day in and day out for heavens knows how long.

One practical suggestion is that a tax should be levied on the sale of each valve. Of course, even this scheme has its drawbacks, but of all the proposals put forward to make certain that users of a wireless set pay a reasonable fee for the service, this strikes us as being one which has the germ of the most practical idea in it.

November, 1932

IN THE COMMENTATOR'S

13510N 26

0 260

An amusing account of the strange troubles of Outside Broadcast Commentators, described by our Special Correspondent.

THIS is the simple tale of a commentator's hut, looking like a large Tate sugar-box, which started life in the basement of Savoy Hill !

The Outside Broadcasts' commentators had made occasional complaints that they were not adequately housed while broadcasting, and that what they wanted was a commentator's hut which would not let in stray sounds and (just as important) the rain, and which would not demand a Hercules to move it about or shift it off the B.B.C. "O.B." van.

The First Hut Appears

After the usual Governmental period of thinking this over, and the transference of inter-departmental pink papers with reference numbers embracing most of the letters of the alphabet, the new commentator's hut started to come into being, and within a week or two it stood resplendent in the basement of Savoy Hill all ready to be rushed out on an Outside Broadcast job.

Rushed out it soon was. It was used for Rugger broadcasts, and similar things where the weather was not all that it might be.

Its pristine neatness vanished. The boards warped and let in stray sounds. The roof leaked and let in the rain. The glass window jammed, would not shut, and let in a draught.

Soon there were more pink inter-departmental forms flitting about in the B.B.C. engineering sanctums, and the need for a new and super-special kind of commentator's hut was impressed on the "brass-hats."

Now this new hut was *un fait accompli*. It was the product of a Savoy Hill engineer who was also a keen motorist, and it had a motor-car windscreen and sliding glass windows at the side of the hut very much like those of a saloon car.

OXFORD v. CAMBRIDGE

(Above) Mr. H. M. Abrahams, the old Blue, broadcasting a commentary on the Oxford v Cambridge relay races at Oxford. Note the swinging windows and the suspended microphone of this "old-type" hut.

The B.B.C. "O.B." van shown above is always ready to take the road when running commentaries are required. (Right) The launch "Magician," which is used by the commentators when they broadcast the Boat Race.

HUT 'GIVING A RUNNING COMMENTARY IS A HUNDRED PERCENT WHOLE TIME JOB"

The commentators have had trouble in keeping turned always towards the microphone. It is rather difficult when following a Rugger match not to turn the head while watching the flight of the ball, and this means that certain words are heard loudly while the commentator is facing the microphone, while others fade as he turns sideways.

Two Microphones Tried

At a Schneider Trophy race broadcast some time back they got over this trouble partly by having two microphones, one at each side of the commentator's window When looking straight forward, therefore, remarks were picked up equally by both "mikes," while as the commentator turned from side to side the volume of one microphone increased, while that of the other correspondingly decreased. It prevented fading, 'but was not ideal. Now they have a new idea. For the first time the microphones are put almost flat on the reading desk, and there are two of them. Little cork-faced desks held the announcer's plans and notes.

The microphones are slightly sunk. There is an arrangement, too, whereby they can be slung upon cables above the announcer's head if necessary.

Amplifier gear is never put in the commentator's hut, because giving a running commentary is a hundred per cent whole-time job. The engineers keep the portable three-valve amplifier which immediately follows the microphone within a few yards of the hut. This has a transformer-coupled arrangement feeding back to two pairs of headphones for the men giving the commentary.

As you know, one man is generally appointed to give the

SOUND-PROOFED WITH PADDING

The commentator's hut is quite a small affair, and is taken from place to place on an O.B. lorry. The inside of the hut is lined with felt to keep out all extraneous noises

actual running account of the match or race, while the other (often a member of the B.B.C. staff) backs him up

BROADCASTING THE NIGHTINGALE

This photograph shows E.B.C engineers, testing out the, apparatus used for broadcasting the nightingale from a Berkshire wood.

with technical details of the players' positions, and gives the leader the opportunity to introduce historical facts.

Inadvertent Advertising

The most difficult thing is for the first commentator to collow the second man hrough the 'phones' The result is that the commentators often work without 'phones, until a frantic signal comes through from one of the volume-control engineers telling them to put the 'phones' on again and hear how loudly they are "blasting."

There is an elaborate code of signals between the engineers and the men at the microphones, not only for technical reasons, but because the engineers often act as unofficial censors of the commentator's remarks.

At one Boat Race, for example, a keen commentator was trying to give listeners an idea of the amount of debris floating on the river and said : "Here is a —— gingerbeer bottle cork," the dash representing the name of a well-known maker of mineral waters.

That same commentator was unlucky enough to have had a gramophone record made of his remarks, and for several weeks he was plagued by hints of an advertising conspiracy !

O^F course, I cannot tell you how to cut out the noise of the studio "claque," as this is one of the things decreed good for us. But in the average set there are a good many incidental sounds whose origin does not lie at the transmitting end of the station being received.

Apart from those generated in the set, it must be remembered that a modern set is so sensitive that a lot of "mush" and "X's" can easily be picked up, and there are many other kinds of interference likely to cause trouble.

Using a Filter

As long as you have tuning circuits sufficiently selective for the power of the set and for modern conditions prevailing in the ether, you cannot do much more in this respect. Results should, however, be satisfactory, as with unselective sets the greatest background noise is due to the carrier of the neighbouring station or to the "swamp" effect of the local.

Having got this to our satisfaction, there is still the whistle caused by the heterodyning of the carriers of two adjacent stations. If you try to prevent this in the high-frequency stage by excessively sharp tuning, you will spoil the quality of stations such as the local, which is not generally interfered with.

In the circumstances the best thing to do is to use a "heterodyne" or "whistle" filter which can be connected in the L.F. stages when required, and is quite cheap to buy. "Scratch" filters, such as are used for eliminating scratch when reproducing gramophone records, will generally also be found suitable.

Watch for Corrosion

But don't put all noise down to outside interference, as crackles, buzzes, squeals, growls, grunts and hisses can all be internally introduced by the set.

By H. A. RAMPTON.

What can you hear on your set in the intervals of a programme? Nothing? Lucky man, because nothing spoils a good orchestra so much as a noisy background.

The aerial and earth should be examined for loose joints, especially those likely to have been weakened by the swaying of the wires. Suspicion should also fall on the flex leads to loud speaker and to batteries. It should be verified that the flexes are securely fixed to their respective plugs or terminals. Watch out for corrosion of the connections to the L.T. accumulator.

The aerial and earth wires should be removed from the receiver to find whether extraneous noises cease, and subsequent tests should be made with them disconnected.

Grid-bias and H.T. batteries often produce crackles, and the best plan is to renew them. If, however, the

INSIDE THE SET?

Very often what is supposed to be outside interference is caused by a bad joint somewhere inside the set, so make sure that all connections are mechanically and electrically sound.

420

H.T. battery is fairly new, matters may be partially remedied by connecting a condenser of about 2 mfd. between each positive tapping and the negative end.

Substituting Components

In the set itself the obvious thing to look for is bad connections and loose joints in components, excessive dust between the plates of the variable condenser, or broken wires in the tuning coils due to rough handling. Don't forget that if the coils are wired with cotton- or silk-covered wire the disconnection may not be visible.

A broken-down H.F. choke or L.F. transformer primary will give rise to similar symptoms. In the case of components, the easiest method of discovering the offender is that of substituting another component. The search may be narrowed down considerably by the simple process of eliminating each valve in turn. All you have to do is, starting at the aerial end, to withdraw the valves from their sockets.

A grid leak past its prime is a frequent offender in this respect. Continuous noises in an R.C. unit may be due to the coupling condenser having partially broken down.

Bad Contacts

Apart from the clicks caused by the switching on and off of house lights, bad contacts in the switches or in the house wiring (more often the switches) will cause noises. This is not only on mains sets; it is also very likely to occur on those that are battery driven, especially if they are fairly sensitive.

With a battery set you can find out if the mains are responsible by switching off at the main power switch.

But if you have a mains set the best thing is to try somebody else's set on your mains supply, or to try your own on theirs.

0

A special section for all listeners. It includes numerous practical hints and tips for maintaining a radio receiver in good order, and describes how time, trouble, and money can be saved in use and operation.

FOREWORD TITE a number of readers have written urging us to enlarge this section. Later on, if we continue to arouse the enthusiastic exensions, we may be able to do so. In the meantime, it is worth noting the meantime, it is worth noting the encantime, it is our hope that we mean age to crowd more actual infor-mation than is to be found in the whole of a megazine. The do, and if readers do not greatly benefit from each and every instal-time, then it won't be the fault of-the compilers of "Better Radio."

VALVES FOR YOUR SET

WW E are often asked if there is any technical objection against the mixing of makes of valves any one particular set. There is not. Arising out of this question is the further one as to specialise in types of valves. That is to say, although most of them have complete ranges for all purposes, are, for example, the S.G.'s of so-and-so outstanding productions, the mains types of pentode of this-or-that firm, to be preferred to all others, and so on ?

Peaks of Achievement

It is unfair to generalise in such a matter, but we can at least say that, on the whole, if there are peaks of achievement in the outputs of most of the valve factories, they are not so vastly higher (in quality) than the others of their respective families that the ordinary listener need worry about them

about them. If he confines his choice to the catalogue of one reputable maker he is not likely to miss much.

This practice, adhering to one brand, is to be commended. There is as yet only the beginnings of a stan-dardisation of type descriptions, and the enthusiast who rambles through the list specifications of the five hundred or so different varieties available is likely to be confused by similarities which are similaritles only of list classification. classification.

The assistant gave him a replace-ment, but we noted that the doubtful specimen was neatly tucked into its packing and laid suspiciously near a pile of others displayed for sale. We have often wondered whether it was tried on someone else without any attempt being made to check its efficiency ! On another occasion we cave a value

On another occasion we saw a valve

VITAL LINKS IN THE CHAIN

Types of valves which are to be found in modern sets.

Indeed, unless he is careful he may find himself in possession of quite unsuitable types.

The greatest argnment against the purchase of unbranded foreign valves is that they are seldom sold in sealed cartons.

We were once standing in a subur-

ban radio-cum-ironmongery shop when a customer returned a valve which he stated was a complete ⁶⁴ dud.¹⁷

dropped on to the floor. It was in its carton and the name thereon was one that is well known to the British public.

public. We can well imagine that a cus-tomer witnessing such an incident might have uneasy feelings about paying hard cash for a valve which might or might not have been simi-larly treated. There need be no cause for alarm.

7.

However careless shop assistants may be in cases, valve cattons are designed to aford some measure of protection as well as being mere coverings. We do not think any harm could be done to a modern valve by dropping it on to the floor in its carton. We have sent valves through the post without additional packing and they have survived the experience ! And do you remember that aero-

And do you remember that aero-plane stunt some time ago ? One of our leading manufacturers had a bunch of its valves thrown out of an

Most of them survived quite un-harmed. What better proof than that of the robustness of the modern valve, and the protection afforded by its carton, could be given ?

is impossible to obtain good

I is impossible to obtain good bass unless you employ adequate power. Far more power is used in developing bass response than is required for the high notes. This is why the smaller kinds of battery set usually sound thin and reedy as compared with the larger mains outfits. This, then, is an argument in favour of using a mains unit quite apart from the economy of the procedure. If the mains are available one should strive to build or buy a com-plete mains set as a matter of course, for big power then becomes fairly easy to obtain.

Restricted Output

Should there be no maths, the only thing to do is to make the most of batteries. As a generality it can be said that the listener should economise as far

as he can at every preceding point, so that the maximum current is avail-able for the power valve. Dry H.T. batteries have restricted

outputs, and it is not wise to make

November, 1932

A Radio Story in a Few Words and Six Pictures

them deliver more than their rated

them deliver more than their rated maxima. The H.T. current consumption of an S.G. valve can be reduced by pro-viding it with up to 1¼ volts of negative grid bias, and the effect of lowering its anode and screening voltages can be tried. But such things as this must be done carefully, or there will be economy only at the cost of efficiency.

THE WAY TO LOSE YOUR BASS!

You will not hear your set to its best advantage if you sit with your back to the loudspeaker and this is behind a lot of intervening furniture.

It must be remembered that cumulative effects are particularly prevalent in radio. And you can quite easily bring a fault into prominence by doing something which by itself could

doing something which by itself could in no way appreciably affect results. With modern battery valves the question of over-running the L.T. scarcely arises. Most battery valves only consume '1 amp., so that a three-valve set will not take more than 1 amp. from the L.T. accumu-lator.

hator. The main thing is to choose your L.T. accumulator so that the need for re-charging does not occur too

NOISES

THE six numbered illustrations which appear on this page illustrate the manner in which an expert would go about the solution of the particular problem illustrated. He first hears a crackling, "ziz-zing" noise breaking through and tending almost to drown the pro-gramme. But his first thought is not: "Now what's gone wrong with my set?"

It might have nothing to do with the set at all. Therefore, he tunes in another station in order to ascertain if the interference is general.

Transmission at Fault? If he had found that all the other

If ne had found that all the other programmes available were quite normal, then he would conclude that the transmission was at fault, and that there was nothing to be done about it except either grin and bear it or listen to another station.

However, in our "story" the noises are beard just as loudly when

WHAT A ROW !

ION NATIONAL

HUM

set

CUTTING OUT

the tuning is changed. So he takes the aerial off. The noises are still as loud, although the broadcasting has all but disappeared. He has now checked the above point and also derived the information that it isn't an aerial pick-up of some very broadly tuned interference. (Being an experienced radio man he knows that atmospheric disturbances are liable to cause all kinds of queer ether sounds.)

ether sounds.) So he now makes sure that

the mains conthe mains con-nection between his mains set and the power point is in good order. Perhaps he even bopes that the inter-ierence is a warning that it isn't for a faulty isn't, for a faulty mains connec-tion is not likely to be difficult to put right.

to be dimicult to put right. He tries the power plog to see that it is fit-ing furniture. He tries the power plog to see that it is fit-ing snugly and making good contact, as he doubtless has had experience of mains plugs being accidentially kicked or pulled loose from their sockets. Before he goes any further he will switch off and withdraw the plug. He is then free to check his connections and ascertain whether or not they are good and tight. Wire is apt to crystallise, get brittle and fracture aiter a time, and once one or two strands of a flexible lead break off, the connection is almost certainly going to loosen.

on, the connection is almost certainly going to loosen. Sparking and arcing may follow. This would cause noises. Having examined the lead at the plug end, our expert listener will quickly inspect it at the other end,

TRY AERIAL OFF

REGIONAL, TOO!

although it is rarely that trouble is experienced there. Then he will replace the plug and with on arrive switch on again.

" Bridged Earth "

The reason why he next removes the earth lead is to make sure that there isn't what is sometimes called a "bridged earth." This is caused by a leakage from the mains through some part of the set to the natural earth, i.e. a water-pipe or buried earth connection if such is used.

In passing it should be noted that a slight "bridged earth" will do no harm. It is very frequently encoun-tered, and evinces itself in the form of a bum rather than as a crackle. Many sets which are otherwise rather noisy cau be made quite silent if no ordinary earth is used. Seldom are the reception results affected, especially in the case of D.C. sets, because the mains themselves will act as an earth. Our expert eventually discovers that the interference is caused by a faulty electric light switch. There is an arcing due to a faulty contact.

an arcing due to a faulty contact. The moral of this "story" is that a mains set is in effect a part of the domestic supply system and that

TRY EARTH OFF

MAINS PLUG RIGHT?

anlts in this may affect it considerably.

Battery Sets Some of the troubles experienced are difficult to deal with. Switch clicks, for instance, Many listeners may have been puzzled and annoyed by these particularly if they are flat-dwellare dwellers

and are easy to instal. But what about a battery set which suddenly starts to hum badly ?

hum badly ? In most cases it will be found that this is due to a broken or faulty grid circuit. You can look first at the grid-bias bat-exhausted grid-bias battery or a bad G.B. connec-tion will tend to send up the resis-tance of the appropriate grid circuit until it is in effect "open" and broken.

422

broken.

A mains unit may give perfectly satisfactory service on one set and yet "hum" severely with another.

IT'S THAT SWITCH CAUSING THE **TROUBLE!**

An ordinary wall switch for the lights is sparking.

Long loudspeaker leads should always be avoided: Sometimes, however, the choke or transformer happens to be of the "uncased" type, with its windings and core exposed. If this is the case a cure may generally be affected by tightening up the nuts on the bolts which hold the laminations of the core together. together

Occasional Hum

Occasional Hum With D.C. mains it is sometimes noticed that there is a tendency for hum to increase at various odd times. Very often, listening after mid-night or on Sunday mornings is ac-companied by more hum than is experienced at normal times. This is generally due to the gener-ating station supplying the low de-mand of the moment by means of an auxiliary generator which does not give a very "smooth" output.

I many instances there is no technical advantage in using ebonite for the panel of a re-ceiver. Wood is a good substitute, and is cleaper and easier to handle. But it should be good plywood or warping may cause trouble. Plywood aced with wainut or mahogany which can be sandpapered and pol-ished, is the best material from the polnt of view of appearance. It used to be considered necessary always to bake and then shellac the wood used for a wireless set panel.

IT EQUALS EBONITE

A successful home-built set which uses a wooden panel. Wood is every bit as good as ebonite for the majority of receivers.

The idea was that the baking would drive out all the moisture present, and the shellae prevent any further moisture getting in. It was said that if this were not done the moisture would cause leakages.

Another Instalment of "Better Radio" Next Month

As a further precaution ebonite bushes were advised. But modern sets are designed so that as much as possible of that part of it which comes into contact, or even close proximity, with the panel is at "carth potential." And when this is done it wouldn't matter what panel material was used so long as it were a fairly good insu-lator, and wood certainly is that.

It is curious that nincty per cent of the people who try to bring switch contacts closer together go quite the wrong way about it. But when is it necessary to do such a thing? Well, sometimes it must be apparent to the least tech-nically minded of listeners that a switch is giving trouble. And, unfor-tunately, switches often do that. Perhaps it is the on-off switch. When it is pulled out to switch the set on there is a grating, the set goes for a moment and then stops.

THE RIGHT WAY

How to bring switch contacts closer together.

It can be kept working when the switch is held in a certain way, but even then only for fractions of a second. The odds are that the switch is faulty. Examining it reveals the fact that the contacts between the plunger and a kind of spring only just touch. Most people will try to rectify this by pushing the contact spring down

USING PLIERS

Your switch may not be exactly like this, but the principle will apply just as strongly.

towards the plunger. But the result is probably that the gap is widened ! The right way to go about the job is to bend the spring down a trifle as close as possible to the point of anchoring. But don't try to bend it merely by applying pressure with the fingers. fingers

Adjusting Contacts

Adjusting Contacts Some object, such as a small screw-driver, should be pushed beneath the spring close to its anchorage end. And if this object is pressed up at the same time as the end of the spring is gently pressed down, any degree of bending at the right place will be possible.

when it is desired to bring two

spring or lead contacts into closer proximity with each other, a small pair of flat-nosed pliers should be used, although the above scheme can be applied if care is taken that only the one spring is bent at a time. We do not advise readers to attempt to adjust multi-contact, switches or switches used in mains power circuits if they are not per-fectly certain of their mechanical ability.

ability

Self-Cleaning

Self-Cleaning Radio-gram switches are frequent sources of trouble—or used to be. Sometimes the radio programme will break through while records are being played because the radio-gram switch is of the high-capacity type. In many circuits It is desirable that the radio-gram switch should have a very low capacity indeed, or it he-comes necessary to throw the set out of tune every time it is switched over to records.

conies necessary to throw the set out of tune overy time it is switched over to records. There would be much less switch trouble if all switches were of the snap type and all had self-eleaning contacts. The latter is most impor-tant. The contacts are self-eleaning if they tend to rub as the switch is operated. If they merely press to-zether, there is no chance of oxida-tion or dust being rubbed away. But the rubbing need only be fairly slight. If it is just visible, then it will probably be sufficient. The switch actually does com-plete the circuit. Many of the push-pull types are excellent from the point of view of possessing rubbing contacts. Often, though, the final "on" position is unsatisfactory. But this can generally be remedied by bending the contacts, in the manner already deseribed.

DIAGRAM DEVELOPMENTS

I T is interesting to note that there have been relatively few changes in diagram technique since the beginning of broadcasting. And most of the changes which have taken place are on account of totally new com-ponentia ponents.

ponents. If a receiver not using any of them were designed, its theoretical circuit would be no different in general form from similar ones of ten years ago. But the receiver which did not use one or other of the new devices would receive but a cold welcome from modern constructors ! An interesting illustration on this page shows the majority of the new

New radio devices and the symbols that are used to denote them in theoretical diagrams. 423

components and their theoretical symbols. Probably the most revolu-tionary from a practical view point are the valves having additional grids, for the 8.G. in particular has swept the ordinary H.F. valve into obscurity.

WW HEX mounting components on a metal baseboard there are several important things to remember. In the first place, great

the coil and the metal as shown in the first of our sketches. Wood is an insulator, but it does not prevent a magnetic field from being radiated by a coil. In audition to a loss of efficiency the metal will affect the tuning range of the coil if it is brought right into its magnetic field. field

Simple Bracket

It should be endeavoured to raise the coil at least two inches from the metal. This can be done by using long, thin screws and ebonic tubing. This is not an ideal method, but greatly preferable to having the coil close to the metal.

FIXING BASEBOARD FITMENTS

care must be taken that no short-circuiting occurs. Some valve holders have their terminals passing right through to the base and projecting slightly. If the bottom of these terminals were all to touch the metal baseboard the H.T. and L.T. would both be shorted. In other valve holders the sockets are pushed below the baseline when a valve is inserted, and this is equally dangerous when a metal baseboard is used.

is used.

Avoiding Shorts

There are two ways of countering this. A sub-baseboard of wood can be made. This is merely a plece of wood screwed to the baseboard. The valve holder is then screwed down to the wood

valve holder is then screwed down to the wood. Alternatively, a piece of stout brown paper can be cut and this interposed between the two. But brown paper will not suffice if there are scriously projecting ter-minals, for it is quickly cut through. Another metal baseboard point to watch is to see that coils are not brought too close to it. That is, if they are unscreened colls. It is not sufficient merely to place a piece of § In. or § In. wood between

THE END OF THE PROGRAMME

It would be better to use a screened coil, in which case it could be mounted directly on to the baseboard. Sometimes it is desired to mount small panel components, such as-solid-dielectric condensers, on the bucchered

solid-dielectric condensers, on un-baseboard. This can easily be done if a simple right-angled bracket of stout alumi-nium or brass is made. If the com-ponent has a rather stiff action it may be necessary to have a wider base for the bracket, so that an additional screw can be driven in at a point an inch or so to the side of the others. This will make the bracket rigid against rocking movements and side-ways pressure.

By the way, of the baseboard when the botter to screw upwards from the botter to screw upwards from the botter of the baseboard when fixing sub-baseboards and wooden fitments.

Don't switch your set off the moment the announcer has said his "Good-night, every-body, goo-od-night." Sometines piquant little conversations are to be heard between engineers, or a whis-pered remark in the studio may come through. More rarely still a sudden announce-ment is made.

Hearing America

<text><text><text><text><text>

The neat appearance of the cabinet is largely due to the fact that the controls are placed at the side.

T is surprising the results that can be achieved with a two-valve set of the detector and L.F. type when a reasonably efficient outdoor aerial is available.

A set of this class will bring in, in addition to the two locals, at least half-a-dozen other stations at quite good strength on the speaker, but it is unfair to expect it to give the results of a powerful S.G. receiver, or to "Tour Europe" on a relatively inefficient indoor aerial.

Reaction Must Be Smooth

A "two" is largely dependent upon the use of reaction for its longdistance properties, and it is essential that the reaction control should be smooth. Another factor that is of considerable assistance in obtaining loudspeaker power with a minimum number of valves is the pentode, which owing to its high magnification makes it equivalent to one and a half ordinary valves.

In the MODERN WIRELESS test department we handle large numbers of sets, and we are thus able to tell immediately whether the particular receiver on test at any given time comes up to the standards we set for that class of circuit.

No Wave-Change Switch

Our recent tests with the Lissenola two-valve battery-operated receiver, which retails at 4 guineas complete, revealed a design in which an excellent selectivity-volume compromise had been effected. The circuit itself is quite straightforward, but it owes much of its efficiency to the proportioning of the coil windings, and the position of the tapping point.

The aerial input passes through a fixed condenser on to a tapping on the grid winding, and instead of employing a wave-change switch the makers have provided two neat little sockets on the side of the cabinet, into which a plug can be inserted according to whether medium or longwave stations are desired.

On the side of the cabinet also are the tuning and reaction controls, together with the on-off switch.

The reaction is progressively smooth and the detector valve needs a voltage of approximately 80 for the best results.

The detector stage is followed by a transformer-coupled pentode output, the well-known Lissen P.T.225 being used in this position.

Easily Separated

Using our standard outdoor aerial test in Tallis House, we were able to tune in the Brookmans "twins" at a volume adequate for normal domestic purposes, and these two transmissions could be separated with ease. Although one does not expect

(Continued on page 519.)

424

s a result of a fortnight's hectic work on a receiver for 5-metre experiments, I have been trying out many circuits that I would otherwise have "passed over." One or two of them were mere at-

One or two of them were mere attempts to be "funny" on my part, some were developed from wellknown transmitting circuits, and the remainder were just a matter of ordinary commonsense.

Two of them in particular have behaved so excellently that I have put them both into commission for ordinary short-wave work with very good results.

It Looks Queer

That shown in Fig. 1 comes direct from the transmitting circuit known both as the "Balanced Colpitt's" and the "Hoffman" circuit: Although it looks queer when drawn "right way up," it may be redrawn as in Fig. 2, when it appears in the guise of a very pretty "bridge."

During some recent researches into reception on five metres our short-wave expert had occasion to experiment with some unusual circuits. Some of these have proved useful for ordinary shortwaves and details of them are passed on for the benefit of shortwave enthusiasts.

The grid leak, it will be seen, is in. series with the grid coil, the grid condenser being dispensed with altogether. C_1 and C_2 together represent the tuning condenser, which is of the series-gap type, the spindle being connected to the filament and earth.

As a matter of fact, this connection does not seem to be essential, and if it is left out there is really no necessity to use a series-gap condenser.

Study Fig. 2 carefully and reflect on the beautiful symmetry of the circuit. It is, by the way, a good exercise to draw other well-known circuits in this way and see what they look like.

 C_3 is the reaction condenser, but it may be a fixed condenser of 0001 if reaction is controlled by a variable resistance in series with the H.T. In either case, the chief beauty of the circuit is the remarkable constancy of reaction. "Acrial deadspots" were the only things that made it necessary to touch the reaction control at all, even for 5-metre work.

Back from the Panel

Before leaving this circuit it should be mentioned that unless a series-gap type or some other double condenser is used it will be necessary to mount it back from the panel, as the spindle will not be at earth potential and tuning will present considerable difficulty.

I am at present making a receiver using this circuit for ordinary shortwave work (18 to 60 metres), and,

In and Out of Oscillation 100,000 Times Per Second

judging by the preliminary experiments with the set in the "lash-up" stage, great things may be expected from it.

Rather More Exciting

Fig. 3 shows a circuit of a rather more exciting character. Push-pull detection has always been a fad of mine, although I have never got myself to admit that it has been worth while until I struck this particular circuit a little while ago. It is, I believe, a modified form of a Telefunken transmitting circuit.

If you study it carefully you will see that the grid coil is connected between the two grids, and split in the centre. Here the variable condenser is inserted for series tuning. This principle of using a relatively large variable condenser in series with the valve capacities is admirable for 5-metre work, although I expect one would have to use parallel tuning for the longer waves.

Series tuning, naturally, allows one to use a very large coil, and the favourable L/C ratio obtained makes for high efficiency.

Reaction is obtained by coupling the plate of each valve across to the grid of the other one through fixed condensers. It is controlled in this circuit by a variable resistance in series with the 'phones'; and both are by-passed by a fixed condenser.

It Might Not Pay

For 5-metre work the slight extra complications introduced by the pushpull arrangement are certainly worth while, judging from results; but for anything higher than 10 metres I rather doubt whether it would pay.

Reaction could, of course, be controlled by making the condensers C_8 and C_4 variable; but this would make the layout rather intricate and introduce a lot of variables into the circuit.

The great craze when 5-metre work was first taken up in this country was the super-regenerative receiver.

The trouble with this on the "longer short waves" was that the ratio between the "supering" frequency and the frequency of the required signal limited the amount of amplification possible.

A "super" working at a frequency of 100 or 150 kc. seems to be suitable; it is very easy indeed to arrange and to operate, and amplification is tremendous. But five metres corresponds to a frequency of 60,000 kc., and that is a different tale.

I have a sneaking feeling myself that the noise that one receives with this type of circuit may make it impossible to find really weak stations that might be heard all right with an ordinary two-valver; but for telephony and fairly strong stations, the "super" certainly is very good.

Stuck in My Mind

A rather far-fetched explanation that I once heard has stuck in my mind ever since, and I will retail it for the benefit of "M.W." readers who are new to the theory of superregenerators.

We all know (or should know) that it is impossible to operate an ordinary reacting detector at its most sensitive point. However smooth our reaction control may be, we go from the state of oscillation to the state of

SHORT WAVES VERSUS

second, we should increase the sensitivity of our receiver enormously.

Heath Robinsonish!

Since the electric motor method has a suggestion of Mr. Heath Robinson about it, we arrange another valve to oscillate at, say, 100 kc., and we feed this oscillating current in series with the H.T. supply in such a way that our receiver actually does go in and out of oscillation 100,000 times per second.

The requirements for doing this are simply an extra valve, two largish coils, and a fixed condenser across one of them. This is just wired in the main receiver so that its anode coil is in series with the H.T. supply; and when the receiver is adjusted to be just on the point of oscillation, the "super" valve will increase and decrease the H.T. supply to the detector in such a way that it is jerked rapidly in and out of oscillation.

Fig. 4 shows the circuit arrange-HUNGARIAN CRIMINALS 3

The short-wave installation employed by the Royal Hungarian Police. On the left is the control panel, and on the right the actual transmitter, while between the two panels can be seen the high-tension switch

non-oscillation somewhat abruptly. "Ploppy" receivers fairly leap over the gap; still better ones traverse it far too quickly to be operated right on the most sensitive point.

Now if we could arrange an electric motor to "waggle" our reaction control just over that spot, so that we were crossing and recrossing that point several thousand times per

126

ment of such a receiver. It will be seen that the standard detector circuit remains absolutely unaltered except for the insertion, in series with the H.T. su pply, of the anode coil of the "super" valve.

Since work is still going ahead with these and other circuits, there may be some interesting news of a more practical nature at a later date.

MODERN WIRELESS

E ASY operation is as important as efficiency of design in the construction of a radio receiver. Many a perfectly good set has been spoiled by being difficult to work, since the excellent properties possessed by the receiver have not been fully used.

Naturally, the ease or otherwise of handling a set depends to a large extent upon the particular person operating it. An expert who has been more or less continuously working radio receivers will be able to get the last ounce out of intricate sets that defy the skill of the ordinary listener beyond measure.

Simplicity in design as well as in mere construction was kept in the forefront when the circuit and layout of the "Programme Prince" were discussed. The result is that it is one of the simplest sets imaginable, both from the constructional and the operating points of view.

Not Complicated

Two dials for tuning, conveniently placed with reaction control between, constitute the real "controls," while the wave-change and "on-off." switches complete the panel components. Not complicated, is it ?

And yet the set is capable of pulling in a remarkable number of programmes, and could well be called the "Programme Puller" as an apt alternative name.

The appearance of the panel, too, is pleasing, while in these days of light pockets the economy of running will be appreciated by homeconstructors. The set takes a matter of 10 to 12 milliamps., or less, dependent upon the type of valves.

The combination of real simplicity and true efficiency has been carried out very successfully in the "Programme Prince' circuit, which makes it an ideal design for all users, whether they are expert tuners or quite new to radio.

M.W. 'ProgrammePrinc

Circuit Details Discussed

LMOST ever since broadcasting really got under way in this country the three-valve receiver has maintained a definite lead in the race for popularity among listeners.

In the old days the three valves were grouped in a detector and two low-frequency amplifier circuit, but since the coming of the screened-grid valve the disposition of the circuit has changed, and nowadays we have almost invariably one S.G. followed by detector and high-magnification low-frequency stages.

Astonishing Clarity

This type of circuit. thanks to the high efficiency of modern valves, will do practically all that can possibly be required in average reception. Whether of battery or mains type, the three-valver will enable a large number of programmes to be pulled in at good loudspeaker strength, and with a clarity that is astonishing.

Adjustable Condenser

In the particular circuit employed in the "Programme Prince" everything has been made as simple as possible; there is no ganged tuning to match, and no complicated selectivity device to adjust. Two plain tuned circuits, with the aerial coupled to the first through an adjustable condenser, are used; the second circuit being of the plain shunt-fed, tunedanode type, with the tuning condenser at earth potential to obviate hand capacity effects.

Selectivity is adjusted by means of the series aerial condenser, and enables a progressively variable adjustment to be made. Alternatively this condenser can be cut right out THE MAIN F E A T U R E S of this fine set

Selectivity

A particularly easy control of selectivity is provided by means of a clip contact and series aerial condenser.

Screening

There is no special or auxiliary screening, the "canned" coils providing all that is necessary for complete circuit separation.

Control

The set is unusually easy to operate, being fitted with slow-motion tuning dials and accessibly placed reaction.

Construction

The whole operation should take but a few hours as there is no soldering required, all the connections being taken either to terminals or to screws and washers fitted to the baseboard. S.G. Stage

Leaky-Grid Detector

Shunt-Fed Transformer-Coupled L.F.

of circuit, and the aerial taken direct to the coil, in which state of affairs the maximum strength of reception will be achieved with the minimum of selectivity.

No Core Saturation

The detector operates on the usual leaky-grid method, and is coupled to the output valve by means of a shunt-fed transformer. This is made up in unit form with resistances and condenser incorporated with the transformer in one container, the particular model utilised being known as a Transfeeda.

This unit enables a particularly good low-frequency characteristic to be obtained, and completely obviates any possibility of core saturation in the transformer, even if the user of the set decides to employ a large power valve and a mains unit.

The Transfeeda provides an alternative tap so that the component can be matched to the detector valve with some accuracy.

The Canned Coil

It will be noted from the theoretical diagram, as well as the blue-print, that there is no screen between the anode and grid circuits of the screened-grid valve. Till recently it has been our practice to fit a vertical screen between the two sections and to pass the S.G. valve through this screen. The coming of the canned coil, however, made this procedure unnecessary as a rule, and it will be seen that in this set it has been omitted.

Separate high-tension voltage taps are provided for the screen of the S.G. valve, and for the detector, while the output valve and the anode of the screened-grid valve are taken to the same tap on the H.T. battery.

4.'9

BEFORE building any receiver it is only natural to ask what it will do. Will

it get foreign stations, or is it only useful for the reception of the local transmissions ?

Upon the answer depends whether the receiver will be built by any particular person, for most of us have fairly clear views as to what we want to receive on the radio, and how loud we want to get it.

It is, however, difficult to explain exactly what any particular set will or will not do, because so much depends on the local conditions in which the receiver is to be used, and upon the skill or otherwise of the operator.

Handling the Receiver

We have said earlier that the "Programme Prince" is not a difficult set to operate, and that it has been designed with ease of handling as one of its chief characteristics. Therefore, the skill or otherwise of the operator will not make so much difference as it might do, though naturally some sort of skill or familiarity with radio set operation is essential before the most can be got out of even the simplest of sets.

PRINCELY PERFORMANCE

How to handle the set in order to get the best out of it will be explained later, and it is not for us now to discuss the operation of the receiver. We are concerned with the results that anyone who has mastered the simple operating details can achieve, provided that he has fairly average local conditions under which to work.

Normally the set should be capable of picking up at least twenty stations on the medium-wave broadcast band, and a matter of four or five on the long waves. These will vary considerably with local conditions, for the long waves are often tricky customers to receive.

After dark a surprising number of medium-wave transmissions should be tuned in, from Fécamp up to, say, Brussels at the other end of the tuning scale.

It will depend to a certain extent upon the distance the set is from one of the powerful British transmitters, for in order to get free of these it is usually necessary to reduce the capacity of the series aerial condenser to lowish limits.

A Dual Rôle

This has the effect of increasing the selectivity to a large extent, but at the same time it inevitably decreases the normal sensitivity of the receiver. We say normal because the sensitivity can be made up again to a great degree by the judicious use of reaction, and this procedure (cutting down the aerial capacity and increasing the reaction) is one of the easiest methods of

obtaining selectivity and sensitivity without introducing complicated eircuits:

The very increase of reaction causes the tuning of the grid circuit of the detector to be sharpened up, and therefore carries out a dual role ---of increasing sensitivity and selectivity at the same time.

Most of the Stations

The set as built in its original form gets in most of the stations on the medium band, and the whole lot on the long waves.

Naturally, the strength of the reception will to some extent depend on the sensitivity of the loudspeaker, for some speakers are very insensitive and others are remarkably sensitive. All our tests with the set have been carried out with a moving-coil speaker of the permanent-magnet type and of moderate sensitivity.

With this speaker in use the set has collected most of the European stations that are worth hearing, and a great many others that are never worth getting because of the everlasting heterodyne that spoils their programmes.

This heterodyne can be reduced by increasing selectivity, and increasing reaction, but it cannot be removed entirely except by a properly tuned filter.

It is a state of our modern broadcast conditions that is an ever-present reproach on the poor radio spirit that exists between the nations.

Regardless of Confusion

All are struggling to be heard, and if one can drown his neighbour for some time (till that neighbour increases power and drowns him), then he is happy, regardless of the confusion in the ether that is being caused.

In average hands, however, the "Programme Prince" will provide radio entertainment for many hours per day if required, for if the British stations are not on it is pretty certain that some foreigner or other will be available.

.....

THAT'S A LONG WAY OFF! You will find the set tends to enlarge your geographical knowledge, for the range of reception is enormous, and the simplicity of handling ensures a good bag at almost any time.

MODERN WIRELESS

ALL STANDARD COMPONENTS

The answer to the question "What is in it?" can be put quite simply and with perfect truth—" nothing much." The set is so easy to build that there are very few components required. The list contains everything neces-sary, but perhaps it is as well to discuss one or two of the parts separately. The condensers are quite normal

separately. The condensers are quite normal '0005-ntid. condensers, with slow-motion drives. These latter are separate in the case of the set shown here, but they may equally well be incorporated in the design of the component. component.

Maximum Amplification

The coils are of the auto-coupled input variety, the aerial input being retained as indicated by the designers, and the anode input in the second coil being taken direct to the top of the coil. This gives the maximum amplification.

A small pre-set condenser is used in series with the aerial input lead so that the selectivity of the first tuned circuit can be made reasonably high. The cans of the coils are not earthed to the windings when the

<text><text><text><text>

Scissor Shorts

In this case the decoupling is not necessary, and so this was not made use of. Another point is that the usual array of terminals at

1 type G.G.C. and 1 type G.G.R. (Goltone).

2-megohm resistance (Graham Farls Ohmite, Dubilier, Liesen, Ready Radio).

of

be stated. Take the case of the Transfeeda. This is not in itself so different from all other ideas that there is no possible alternative or substitute. There are others, but their terminal disposition and the labelling make it difficult to carry out the wiring as shown on the blue print without altering the layout to some extent. to some extent.

Minor Alteration

Minor Alteration The same applies to coils in many sets, and we would always advise set builders to keep as closely to the list of parts actually used in the original set, unless they are certain that they will be able to make any minor alteration that may be re-quired by the substitution of another make or type. In most cases the various makes of components - chokes, valve-

nost cases the various makes components --- chokes, valve-holders, condensers, switches, transformers, and so on----in closely enough to each other to

Farish

details of this part of the constitution is usual. In the first place, the arrial should be as clear from shieldings, telegraph and the probably do year well, should be as the should be as the

Good, Stranded Wire

Aerial wire corrosion is a frequent cause of trouble, as it often happens that one of the strands corrodes through, and the efficiency of the system is severely impaired. Keep an eye on your aerial and renew the wire every now and then

wire every now and then. Good, stranded wire should be used, or some proprietory article such as Superial, which makes an excellent

Superial, which makes an excellent antenna. In the case of the indoor aerial, good, insulated wire should be used, the same type being suitable; but here it is essential that the wire does not run for any great distance close to the walls of the house, and it is usually advisable_to have a long (or

AND RECOMMENDED MAKES

¹ 0001-mid. condenser (Dubilier 670, Telsen, Igranic, T.C.C., Graham Farish, Formo).
 ¹ 0003 (T.C.C., Lissen, Telsen, Ready Radio, Graham Farish, Dubilier, Ferranti).

2 H.F. chokes (Sovereign, Lissen, Tunewell, Lewcos, Ready Radio, Telsen, Wearite, R.I., Slektun, Varley, Bulgin, Peto-Scott).

FIXED CONDENSERS

H.F. CHOKES

MISCELLANEOUS

ALL ABOUT THE PARTS

RESISTANCES

SWITCHES

PANEL 14 in. × 7 in. (Goltone, Becol, Permeol, Peto-Scott, Wearite, etc.).

BASEBOARD 14 in. × 10 in.

CABINET

- For 14 in. \times 7 in. panel and 14 in. \times 10 in. baseboard (Camco, Ready Radio, Osborn, Peto-Scott, Gilbert, etc.).
- VARIABLE CONDENSERS
 2 .0005-mfd. tuning condensers (J.B., Cyldon, Utility, Lotus, Polar).
 2 slow-motion dials (Ready Radio, Ormond, Igranic Indigraph).
- 1

·0003- to ·00035-mid. dif-ferential reaction con-denser (Graham Farish, Telsen, Lotus, J.B., Ready Radio, Peto-Scott). 1 ·0001 max. compression con-denser (Sovereign, Polar, Formo, Telsen).

coils are sent out from the factory, and so the connection to earth must be made when the set is built. The smaller components are quite usual; there are two fixed conden-sers, three valve holders, and two ter-minal strips carrying two terminals each.

sers, three vilve holders, and two ter-minal strips carrying two terminals each. There are also two H.F. chokes, but here there is a difference in them. The first one, to which is connected the anode feed of the screened-grid valve, must be of good and efficient make. The other choke is used for reaction purposes, and is situated in the anode circuit of the detector. In this case a smaller component can be used, and there is not the same great need of low self-capacity and high inductance as in the case of the other choke. Obviously another big choke could be used in this position, but the small type of choke should not be substituted in the place of the screened-grid choke. Shunt-Fed

Shunt-Fed

Probably the most interesting component in the "Programme Prince" is the Transfeeda, which takes the place of the usual trans-

the back of the set has been omitted and a battery cord takes their place for the connection to H.T. and L.T.

for the connection to H.T. and L.T. batterics. This obviates the possibility of leads falling off (as they do if the terminal is not tightened properly) or being shorted, which not infrequently happens if somebody goes and puts a pair of scissors or a metal pencil on them.

them. And now we are going to bring up the old, old probleu; that of alternative makes. In our list of components you will see after the first-named make (which is that used in the original set and the photographs) several other makes in certain instances, or no other makes, as the case may be.

Using Alternatives

These alternatives give an idea of These alternatives give an idea of these makes of components that can be substituted for these used in the original receiver. They do not necessarily constitute all of these alternatives, but give just a good idea of what other things can be used. In some cases it is difficult to decide what her or not an alternative should whether or not an alternative should

allow of the substitution being carried out without any notable alteration to the design. It is in the case of coils and such things as special units like the Transfeeda that trouble may

the Transfeeda that trouble may occur. This trouble is usually caused through misunderstanding the in-terior arrangements of the parts con-cerned, rather than through any serious alteration in the layout of the set, for often the different numbering of coils will throw the constructor out comunicated. completely.

Inferior Systems

Inferior Systems So keep to the specified parts as far as you can and you will not go far wrong. Although it should, properly, come moder the heading of "accessory," it is not out of place here to discuss another very important part of the set installation; namely, the earth and aerial equipment. Far too many perfectly good receivers are spoiled because they are asked to operate on inferior aerial-earth systems, and it is with the bayeet of emphasising this that we have decided to go more into the

as long as possible), straight lead rather than one that is doubled back on itself or runs round corners. More often neglected than the aerial is the earth. It seems to be the gen-eral rule that once an earth (whether it be a water-pipe connection or a direct lead to the ground) has been made, there it is for good and all. That is quite a fallacy, and the earth should be overhauled even more frequently than the aerial.

Keeping it Damp

Keeping it Damp Antomatic earth damping is an ideal that has been a mere ideal till lately, when the Graham Farish Filt system was introduced, solving in a very neat manner the problem of keeping the earth moist. The Filt device percolates moisture through the inclusion in it of a hygroscopic substance, and while this is in operation it keeps the earth for some distance round the device really moist and conductive. After a time it is advisable to get a new Filt and replace the old one, but as this costs, but half a crown or so, and each one lasts a considerable time, it is money well spent.

 15 in.
 1 six-way battery cord (Gol-tone, Lewcos, Bulgin).
 4 terminals (Belling & Lee, Igranic, Bulgin, Clix, Igranic, Eelex). 2 wander-plugs (Belling & Lec).

4-pin valve holders (Lissen, Telsen, W.B., Lotus, Bulgin, Benjamin, Ready Radio).

431

2

3 2-point push-pull type switches (Bulgin, Ready Radio, Lissen, Telsen, Tunewell, Goltone, Wearite, Keystone, Ormond). L.F. COUPLING UNIT 1 Transfeeda (Benjamin).

VALVE HOLDERS 1 5-pin S.G. valve holder (W.B., Lissen).

MODERN WIRELESS

ISSEMBLING the PROGRAMME PRINCF" making sure that the parts are in the correct location. If alternative components are employed. it will not be possible to use the blue-print as a template, and' you will have to follow it as closely as possible, making

THE assembly of the receiver is not a difficult matter, especially as a full-size blue print is provided with this copy of "M.W." It shows every lead clearly, and the baseboard layout can be copied exactly by using the print as a template.

Tackling the Panel

The first part to tackle is the panel, which should be drilled in accordance with the separate diagram in these pages, and the necessary components mounted on it. Then the panel should be put aside while the baseboard is got ready. This consists in mounting the two terminal strips as shown and tacking the foil down on the H.F. end.

This foil should be 5 inches wide and no more, so that it acts also as a guide to the positioning of the second coil, which it will be seen is situated just off the left-hand edge of the foil.

Having done this, the panel can be mounted on the baseboard, it being carefully held against the baseboard while the hole positions for the screws are made and again when the screws are driven home. It helps if this can be done with the baseboard on a table with somebody holding it so that it does not slip, while the constructor screws in the three fixing screws with the panel vertical against the baseboard.

Correct Location

With the panel in position, the components on the baseboard should be mounted, care being taken that they are situated as shown on the blue-print. As we said before, it is a good plan to use the blue-print as a template, pricking the positions of the components' screws through the print, and thus

sure that such important parts as the coil units and the S.G. valve holder, the S.G. choke and the accompanying 0001-mfd.

condenser are placed as shown.

The S.G. valve holder is a horizontal-mounting one for a purpose, for probably you have wondered why this type was used seeing that no vertical screen is employed. The reason is that it is desirable to keep the leads in the H.F. side of the set as short as can be, and by mounting the valve on its side we get the anode terminal close up against the H.F. choke that is to be connected to it.

Only an Inch or So

From this choke we go by a condenser to the grid condenser, which itself is connected to the coil by a very short lead, and the other side of the grid condenser is taken to the grid of the detector valve by another lead a mere inch or so in length. Thus it will be seen that the leads round that critical section of the set are really short and, as a

The construction is both easy and interesting, while the very high efficiency obtained makes the finished set a delight to handle.

plate leads of the receiver are short, switch should run along the metal a feature that is most important foil at that end of the receiver.

matter of fact, all the grid and desirable that those from the first

FORE AND AFT THE "PRINCE'S" PANEL

In the diagram above you see the controls of the "Programme Prince" while all the dimensions necessary for positioning them are indicated. The photograph shows clearly how the panel components appear when viewed from the back of the set.

and which plays a big part in assuring the stability of the set.

It is advisable to do the connections to the three switches on the panel first, before the connections from the variable condensers are made These switch leads can conveniently be kept low down on the baseboard though it is not they do not touch it. The leads

After these switches have been wired up the filament connections of the valve holders should be done. and then the grid and plate leads of the three valve holders can be tackled.

These leads are all kept reasonably low on the baseboard, though to the variable condensers and the reaction condenser can be done next, and they should be taken as direct as possible.

Care should be taken that the connections to the coils clear the slits in the cans, or the insulating covering of the wire may be cut through when the lids are replaced, with disastrous results. Incidentally, do not omit to place the metal base discs under the two coils when they are being screwed on to the baseboard.

For Your Guidance

It will be noted that the reaction condenser, which is of the differential type, has its fixed vane terminals marked on the diagram F_1 and F_2 , respectively. These markings will not be found on the condenser itself unless it be of Igranic make, but they are used so as to enable the reader to compare the theoretical and practical diagrams.

There are one or two unusual points that should be cleared up. These are the connections to screws in the baseboard. It will be noted that in two places on the foilcovered section of the base and in two places in the bare section there are leads screwed down to the wood.

In the first cases the connection is expressly for the purpose of connecting the circuit to the metal foil and thence to earth, while in the second pair the use is to anchor or extend a wire.

In All Cases

The method is the same in all The wires concerned are cases. looped and then a screw is passed through the loop, a washer placed on top and the screw driven home into the board. In the case of the non-foil-covered section the two leads concerned are flexible leads of the battery connector cord, and it is desired in each case either to anchor the leads or to extend them by adding a length of ordinary rubber-covered flex.

Note also the lead marked "to top of anode coil can," and that marked " to top of aerial coil can.' These are leads which are required to connect together the tops of the cans for earthing purposes; the cans not being provided with any other means of earthing than the terminals that are used for securing the lids of the cans.

MODERN WIRELESS

MONG the accessories of a receiver we usually count the loudspeaker, valves, H.T. and L.T. batteries, or mains unit, and the grid-bias supply, and in many cases the choice of these important parts has to be carried out with some care.

In the case of the "Programme Prince," picking the accessories is particularly easy. The valves are chosen from the list provided on this page, and the loudspeakers are also given.

Double Capacity

As regards batteries, it is important to remember that the capacity required for the H.T. will depend upon the output valve used.

We advise the "small" valve and a double-capacity battery of 120–150 volts, unless a mains unit is considered, and then a larger output valve, with greater power possibilities, can be used.

The valve list is given with output valves suitable for battery operation, and alternative types for mains units are mentioned in the text. Though a mains unit can be used to work the "battery" valve, a battery should not be used if the "mains" valve is employed.

In choosing mains H.T. supply it

RECOMMENDED MAKES

- Loudspeaker. Lissen, Blue Spot, Marconiphone, Celestion, Baker's Selhurst, R. & A. Epoch, H.M.V., B.T.-H., Ormond, W.B., Lanchester, Clarke's Atlas, Igranic.
- Batteries. H.T.: 120 to 150 volts. NOTE: This should be of ample size to deal with the requirements of the valves chosen. (Pertrix, Lissen, Magnet, Ediswan, Ever Ready, Marconiphone.) G.B. battery: See above list.
- Accumulator. 2 volts. Oldham, Ediswan, Pertrix, Lissen, G.E.C., Exide.
- Mains Unit (to give 20.52 milliampsat 120 volts). Clarke's Atlas, Heayberd, Ekco, Tunewell, R.I., Regentone (see text).

Aerial and Earth Equipment. Electron "Superial"; Graham Farish "Filt" earthing device.

The finished set presents a handsome appearance.

VALVES FOR THE "PROGRAMME PRINCE."				
Make	H.F. Stage	Detector	Output Stage. For use with batteries	
Mullard Cossor Mazda Marconi Osram Tungsram Lissen Six-Sixty Eta	P.M.12 220S.G. S.G.215 S.22 S.22 S.210 S.G.215 215 S.G. B.Y.6	P.M.1H.L. 210H.L. H.L.2 H.L.2 H.L.2 H.210 H.L.210 210H.L. B.Y.1814	P.M.2A. 220P.A. P.220 L.P.2 L.P.2 P.220 P.220 220P.A. B.W.1304	
The S.G. valve chosen should preferably be of the metallised type.				

is essential to remember that you require a mains unit with three H.T. taps. One must be suitable for the S.G. of the screened-grid valve, another for the detector, and the third is the maximum output of the mains unit.

Detector Tap

In the first case a voltage preferably adjustable between 60 and 75 is required, while for the detector a tap having about 75 to 100 volts is advisable.

As regards the valves advised for mains unit working, the following somewhat larger counterparts of the output valves listed in the table above can be used. They are not too big, so that quite an ordinary size of mains unit can be used; one with an output of 20-25 milliamps. will cover any of the valves given herein.

Here, then, are the valves :

Mullard P.M.202, Cossor 230X.P., Mazda P.220A., Marconi and Osram P.2, Tungsram S.P.230, Lissen P.X.240, Six-Sixty 240S.P., Eta B.W.303.

All about getting your share of alternative programmes.

WHEN the "Programme Prince" has been completed, the batteries must be connected, aerial and earth joined up, the loudspeaker and valves positioned, and we are ready for action.

The H.T. voltages should be as follow. The full volt-

age of the battery or mains unit on H.T.3, about 70 volts on H.T.1 and from 60 to 100 volts on H.T.2. This latter will have to be adjusted to that voltage. which provides the best reaction. control and the best sensitivity.

All Out

All the switches are pulled out for reception on the medium waveband, and the lefthand and centre ones are pushed in for the long waves. The other switch is, of course, the "on-off" switch.

The first thing to do is to screw the knob of the pre-set condenser about half-way down, and then, with the set switched on, rotate the tuning dials in search of the local station. SELF-SCREENED UNIT SIMPLICITY

dials in search of stage, enables external screens to be dispensed with and greatly simplifies the construction the local station. of the "Programme Prince."

(It is assumed that the S.G. value is in V_1 socket, the detector in V_2 , and the other value in V_3).

The local station should not be difficult to find, always provided it is on, and then the set can be tested for selectivity. The adjustment required to get this properly in the best proportion will depend on the distance of the set from the powerful transmissions of Great Britain and the Continent.

Use the Reaction

All that can be done is to test the receiver carefully, keeping the two tuning dials in step fairly closely as search is made from one station after another, and using reaction whenever it is necessary to increase the strength of a transmission.

Possibly you can do with the input increased somewhat; if so, screw the pre-set control down still farther; but more probably it will be necessary

to increase the selectivity, especially when listening near the local transmissions or on the long waves. This is done by unscrewing the control on the pre-set condenser, when it will be found that the tuning becomes progressively sharper as the knob is turned in an anti-clockwise

direction.

The Best

Ally It must not be forgotten that the reaction control is one of the best allies we have in getting selec-

allies we have in getting selectivity and free use should be made of it in this receiver. For instance, suppose we have a distant station that is being interfered with by some other on an adjacent wave-length. The best thing to do is to increase the selectivity by means of the pre-set condenser till we feel that we cannot do so any more without losing the distant station, and then to increase reaction to bring up the strength and at the same time to increase still further the selectivity.

TURNS THAT MATTER

Don't try to screw the knob of a pre-set condenser down hard after it becomes tight, or you may burst out the bottom of the condenser. On the contrary, fixing screws for speaker units (right) cannot be too tight to prevent rattle.

There are times when a screwdriver should be used with a bit of "pcp' behind it, and there are also times when restraint must be exercised in its application. Two typical instances are illustrated in this quartette of practical tips.

> FIX IT RIGHT AWAY

If the bulb of a valve comes loose in the base. Seccotine will secure it before the internal wires are broken. To avoid noise see that condenser pigtails are quite O.K. and do not make unwanted contacts when in action.

If you fancy yourself as an amateur wood-worker now is your chance! Here are full details of a very useful and handsome cabinet. By S. W. CAPPER.

THE cabinet which is built upon the baseboard of a set has valuable advantages over the ready-made " slip-in " case so often specified and used. It is cheaper, lighter and more compact; the sides can be used for mounting components or drilled for wave-change rods. It can be just the right size, and, finally. it gives the home-constructor more pride of possession.

The cabinet is made as follows :

The panel, wood or ebonite, and sides are screwed to the baseboard. Also, the panel is longer than the baseboard, the ends fitting into vertical grooves in each side, making brackets unnecessary. The lid rests on the sides and is held by concealed screws.

Cutting the Wood

This is the most important part of the construction. Of course, the height of the case depends on the height of the set.

Both sides should protrude from the panel, and the lid, which should protrude from the sides, more so.

Here are some useful measurements :

Length of panel=length of baseboard $+\frac{1}{2}$ in.

- Breadth of sides=breadth of baseboard-3 in.
- Length of lid=length of baseboard+ 2 in.

baseboard $+1\frac{1}{4}$ in.

If the panel is wood it should be three-ply; the lid and sides should be 1 in. or 5 in. thick, preferably of oak. The baseboard, being the backbone of the case. must be at least $\frac{1}{2}$ in. thick, and flat. Don't use a hard wood here.

Fixing the Sides

After cutting the wood, screw on the panel and saw rectangular grooves in the side-pieces 1 in. deep

Grooves in the sides of the cabinet to take the panel are easily arranged for, and result in a very neat finish as well as making the job a strong one.

and about $\frac{1}{k}$ in. wide, the width being a little greater than the thickness of the panel, so that the backs of the sides are flush with the back of the baseboard.

See that the baseboard is on a level surface and then screw on the sides. Probably the panel wll not slide into the grooves. This may be so for three reasons. The grooves may not be wide or deep enough and they may have been cut like a U or Cures are obvious.

A Removable Back

To secure the lid a smooth roundheaded screw (the head's diameter might be $\frac{3}{16}$ in.) is driven into the top of each side of the case until a $\frac{1}{4}$ in. of the screw is left visible. Drill

the lid 1 in. deep and large enough to clear the screw heads, so that the lid rests centrally, its back level with the backs of the sides and baseboard.

If a back is required to keep out dust, make it out of three-ply. Its length should equal the length of the baseboard plus twice the thickness of a side-piece, and it must be the same height as the panel; but make allowance for terminal strips.

Screw the back loosely to each side; one screw each is enough. Now mark points on it $\frac{3}{16}$ in. below these screws and drill these points out until they will clear the screw heads. File away the wood between the holes. The back can now be lifted up and out and replaced vice versa.

Staining and Polishing

Dismantle the case and stain and polish the sides, lid, back and, if necessary, the panel. The stain must not contain varnish. Beeswax and turpentine make the best polish, but there are many excellent furniture creams on the market for those who prefer a ready-made preparation.

Here is an idea for fixing a dustproof back which has the advantage of facilitating removal for inspection.

.....

MODERN WIRELESS

One of the great advantages of the diode One of the great advantages of the diode detector is the way it separates the H.F. completely from the L.F. side of the set. Keeping H.F. out of the low-frequency side of a super-het. is one of the difficulties facing the designer of these receivers. The application of diodes to super-hets. should do much to overcome the difficulty.

O NE of the greatest troubles that beset the designer of the super-heterodyne re-reciver is the transference of high-frequency impulses into the low-irequency impulses into the low-irequency detector, though the "second" detector, though the first "detector" is really a mixer valve) is supposed to remove the H.F. and merely let the L.F. component of the received energy pass into the audio side of the receiver, for further amplification, and for conversion by the loud-speaker into sound.

Amplifies as Well

Amplifies as Well Unfortunately, the average triode "detector" valve is an amplifier as well as a rectifier, and it does pass a comparatively large per-centage of high-frequency energy into the following audio stages of the set. H.F. chokes and by-pass systems will do a great deal to remove this, but they often do so at the cost of quality, the result being that the loss of high notes in the reproduction is even greater than that normally caused by the actual system of super-heterodyn-ing.

The problem is no easy one to solve by ordinary methods, but there is a scheme that can be used with great success, and which we shall shortly deal with more rully. I refer to the diode rectifier, which is much more efficient than the ordinary triode detector, and which offers greater ease in the eutting out of unwanted high-irequencies. As far as we know, the diode has not been applied to this type of circuit before, certainly not in the realm of the home-con-structor, and we hope very shortly to place before you a design that will not only include this method of rectification, but will also be the very last word in super-hets.

Efficient Rectification

A great deal of the distortion experienced in super-liets, that are not working as they should is due to the presence of high-frequency impulses in the low-frequency side of the set, and is due to inefficient rectification. Further distortion is also caused by overloading of the detector, whether it be operated on the leaky-grid or anode-bend principle.

on the leaky-grid or anoue-orna-principle. The diode rectifier changes all this and allows of efficient rectifica-tion, whils the overloading possible in the triode cannot take place, provided satisfactory L.F. valves are employed after the diode. In fact, the set can be so arranged

that there is a definite limit to the strength of input that is rectified and amplified, any in crease above this limit merely having the effect of overblassing the L.F. valve and automatically stopping the operation of the L.F. side of the set.

Avoiding Overloading

Avoiding Overloading This limit can be arranged to coincide with the fully-loaded point of the output valve, so that the set ceases to function as that valve starts to be overloaded. Alternatively, such limiting can be self-checking takes place, and the overloading of the output valve can take place on exceptionally powerful impulses in the same way as it does in ordinary receivers, there being the one difference, of ourso—that there is no distortion caued by incomplete rectification caued by incomplete metre that dide rectifier needs one more valve

THE MAGIC CIRCLE

We have recently applied the diode principle to "straight" receivers with great success, and those who have tried them will have noticed the high degree of quality which has characterised the reproduction. The diode super will constitute another advance in the design of super-hets., and will, we feel, do a great deal to improve both quality and selectivity of this most interesting ype of adio receiver. The diode has not been given a real trial in home-constructors' sets, and it will be, interesting to hear from readers—who build re-ceivers with this type of rectifier —how they get on.

The first first first of the second s

The two valve holders in the circle are for the L.F. valves in the "M.W." "diodion." The "upper" one immediately follows the diode valve, and carries out the preliminary amplification normally done by the detector. done

語

SA

Different Circuit

In the super to which we parti-cularly refer the diode is used in a slightly different circuit from that usually employed. In most cases the resistance between the diode anode choke and earth is taken also to the grid and filament of the following L.F. valve, but in this receiver, which you will be able to examine fully next month, another arrangement is used. This is to take the grid of the following valve to a tap ion the resistance, so that not only is

the full voltage not tapped across on to the grid, but the section of the resistance that is between the choke and the grid of the low-fre-quency valve acts as a grid stopper, still further preventing any stray H.F. from entering the low-fre-quency side of the set. This scheme onerates accordingly.

quency side of the set. This scheme operates exceedingly well, for it allows the diode to be well loaded before anfficient energy is passed on to the low-frequency section to cause overloading there. We have said that the diode itself cannot be overloaded in normal circumstances, and it is therefore a good scheme in such a set where there is plenty to play with in the way of input to reduce the output of the diode by a definite ratio, and thus reduce the possibilities of overloading on the low-frequency side. side.

Spread Eliminated

Spread Eliminated The sharpness of the super-het. Is undoubtedly increased by the use of the two-electrode rectifier, for in the particular model which' we are presenting next month the local station, on a full-sized aerial, comes in and disappears in one degree of the oscillator tuning dial. This is no small feat, for the ten-dency to spread is usually very marked even in super-hets, and with band-pass tuning; several degrees being covered in some instances.

with band-pass tuning; several degrees being covered in some instances. We do not claim all this selectivity as due to the use of the diode, however, as some must inevitably be due to the band-pass and intermediate coils used, and to the design of the oscillator coupler. But you will see for yourselves what type of dircuit is employed when the full details appear. And talking about next month, we might take this opportunity of announcing another unusual receiver that is in preparation as a companion for the diode super. It covers a particularly wide band of wavelengths, and is of quite unique design, and of an unusually high degree of sensitivity and selectivity.

Two Good Sets

True Good Sets In fact, the "M.W." sets for the ordinary in both design and the ordinary in the ordinary of the the ordinary of a special group of a special group of a special the ordinary of a special group of a special group of a special group of the ordinary of a special group of a special group of a special group of the ordinary of a special group of a sp

than it would to give the same volume with a triode detector, but this is not really a disadvantage, as practically any valve can be used for rectification, and as the plate is not employed (the grid being used as the anode) and no H.T. is applied to it. there is no extra drain on the H.T. battery. Absence of a grid leak across the diode input circuit allows the last intermediate H.F. transformer to operate in its most efficient condition, practically free from damping, and thus the fullest amplification can be obtained.

Radio and record reproduction are so closely bound up nowadays that one can almost look upon the electrical playing of gramophone records as a branch of radio reception, and here are some timely hints towards better results.

THE radio-strainophone has un-doubtedly not only come to stay, but is rapidly increas-ing in popularity : finding its way into an ever-increasing number of homes. And, to my mind, this side of radio is just as inscinnting as that which is strictly concerned with the reception and reproduction of programmes conveyed over the ether. The experimenter with a radio-

The reception and reproduction of programmes conveyed over the ether. The experimenter with a radio-formorphone has additional scope on both the radio and record can try not only to improve his provide the radio and record to a try not only to improve his provide the radio and record testing of the set are possible. He are try not only to improve his provide the radio and record testing of the set are possible. He are try not only to improve his provide the radio and record testing of the set are possible. He are try not only to improve his provide the try of the set are provide the try of the set are provide the set are possible. He are try over and one and all sorts of the one is the fact that he can be that does not so easily occur and thus have a definite one that does not so easily occur that does not so easily occur that does not so easily occur the try over and the home con-try of the try of the set records in a stall collection of test records francophones should make a proof of having half a dozen or so. These should include such items as brass bands, prove contains recordings on the the or the set of added value if the open contains record of value should be and the tome contains recording and the thous broadcast artistes and and sho the home tero due to the set on the order as the set of the try order the tord of the top of the try order to the top of the top of the try order to the top of the

Notes on Needles

The needle is the prime mover in the case of record reproduction, and as such should be treated with a certain amount of care. Never The case of record reproduction and as such should be treated with a certain amount of care. Never put your trust in unknown makes; they may be very good, or, like some I was trying a short time ago, they may be very good, or, like steel needles were, almost without exception, blunt, and a blunt needle will play havoc with the record. Try all sorts of needles; don't stick to one sort. But always carry out the directions on the needle box, and when you are requested to change after every side do so. This direction is given for a tech-nical reason, and not merely to increase the sales of the needles. Tungstyle needles should not be used with blind faith that you

will get 150 playings with each one. You probably will get more like 30 before the point is too far gone to be of any real use. Always treat the needles gently, as the points are comparatively easily damaged, and a bent point means a spoiled record.

HAVING A LOOK AT THE WORKS

One of the extensive range of H.M.V. radio-grams with the motor-board removed to enable the interior design to be inspected.

An Important Point

An Important Point I wonder how many sets using adaptors or attached pick-ups, as distinct from complete radio-grans, are spoll to wing to the omission of a volume control across the pick-up? It is a fact that, with the exception of about one or two pick-ups, an input volume control is an essential part of the outfit. Most pick-ups are connected in the grid circuits of the detectors, and on loud pas-suges of the records will overload these valves.

last for many playings if the needles are properly chosen and changed, and if the disc is kept clean; always assuming that the tracking of the pick-up is correct.

Keep Them Clean

Preventing Peaking

Nothing can be more annoying at times than a pick-up that peaks on a certain frequency, causing harsh-ness on the top notes and distortion at most disconcerting moments. Alas, such a state of alfairs is too counmon; and yet, without going

into technical details, such a fault can be easily mitigated if not cured. The proper way would be to design a tone corrector that will remove the peaks and leave the rest of the frequency curve un-altered, or to use a tone corrector of the continuously adjustable type to that the result that is desired can be obtained by aural adjustment. Simpler, however, is to connect a resistance across the pick-up windings, a resistance that will a the top end and so suppress the peaks to a great degree. The value of the context degree. The value of the resistance will vary with the make of pick-up, but a usual value is about 20,000 ohms, or even less, according to the amount of sup-pression required.

Storing Records

Storing Records If you want to store records with-out any dancer of warping they must be kept upright, standing on their edges in stiff covers to prevent them getting scratched. The books sold for records are a snare, for they are rarely kept properly. Too often they are piled up in heaps, and this causes terrible warping after a time. Book-stored records must be kept edge up, or the very construction of the books, with their stiff backs and sagging leaves, will tend to cause very bad warping. warping.

Warping can be reduced by care-ful warping of a record and placing between heavy flat plates, but as a rule this is not particularly success-

On the Level

It is most important that the turntable of a radio-gramophone, or of an acoustic gramophone, for that matter, be level. A sloping surface will tend to weat the record very badly in many cases, and in only one direction may a slope be tolerated.

badly in many cases, and in only one direction may a slope be colerated. When a record is being played the walls of the grooves push the needle of the pick-up, moving the whole. mass of the pick-up and tone-arm towards the centre of the disc. This entails steady wear on the needle of the grooves, and it can readily be seen how this wear is increased if the movement has to be slightly uphil. This up-hill effect will be present if the turntable is sloping back; the instrument being not level on the slight sloping forward is not so bad, as the helps the record to bush the ick-up across, though vaccessive slope this way will year. The turntable should be level, and pains to get this so should be taken if long life for your records is to be enjoyed Housing the Radio-Gramo-

Housing the Radio-Gramophone

Housing the Radio-Gramo-phone The question of housing a radio-gram receiver, or, rather, one that has been built with provision for a pick-up and not as a complete radio-gramophone, is a problem that is continually cropping up. It is easy enough to place the set in an ordinary cabinet, and to run trailing leads from it to the pick-up and gramophone motor somewhere else in the room, but this practice is not always very satisfactory. It causes trouble due to the long pick-up leads, and the whole affair is not a particularly tidy or efficient arrangement. It is far better to place the whole outfit under one roof as it were, with the set underneath the motor-board of the gramophone, and if desired the loudspeaker underneath the set. There are plenty of suitable cabinets for the purpose on the market, with slzes to suit the standard panels used in home set-construction ; but one of the most useful that we have seen lately is the new Adaptogram cabinet marketed by Messrs. Peto-Scott, and containing a motor and pick-up ready for use.

MODERN WIRELESS

To look at a modern radio-gram is inclined to give one the impression that the electrical reproduction of records is somewhat of a complicated operation. Actually this is far from the truth of the matter.

The complicated appearance comes largely from the radio side of the radio-gram, and the fact that a certain amount of the apparatus to be seen is for the purpose of providing power from the mains. Apart from

the accessories such as pickup, loudspeaker and batteries, the amplifier for record work can be one of the simplest pieces of electrical apparatus.

Just take a look at the amplifier illustrated on this page; no one would have any doubts about tackling its construction. And yet, quite apart from being able to give fine quality record results, it is suitable for following a detector valve of a radio set to enable the received results to work a loudspeaker.

Radio or Record?

It is thus a dual instrument for those who require a simple but first-classamplifier, and it can be run from batteries or mains H.T. unit.

For those who like to have an electrical gramophonequite separate from their radio receiver, and for those who wish to convert an existing console type gramophone into an electrically-operated one, it is ideal. Its size is such that it can be fitted away in If you build this small amplifier you can have all the advantages of electrically reproduced records, and at the same time you will provide yourself with an amplifier that can follow after any delector to give loudspeaker results.

quite a small space, but at the same time it is a simple matter to provide it with a cabinet so that it could be used alongside an existing receiver.

FROM A WHISPER TO A ROAR

console type gramophone into an electrically-operated one, it is ideal. Its size is such that it can be fitted away in

A volume control is incorporated in the design, and this is arranged before the first valve so that there is no need for any overloading to take place inside the amplifier, either where the first or the second valve is concerned. This control is so arranged that it is operative whether the amplifier is being used after an existing receiver or for pick-up work.

If you look at the circuit diagram

you will see that there are separate input terminals for radio and for record. The reason for this is as follows.

Decoupling

In a set with no L.F. valves there will not be any decoupling in the anode circuit of the detector valve. But when low-frequency stages are added this becomes very desirable, although it is not wanted in the case of pick-up work.

For this reason it is incorporated in the design in such a way that it is only effective when the radio input terminals are connected up. The terminal which is marked "To 'phone terminal of receiver" will go to the plate of the last valve, and the 50,000-ohm resistance will take the place of the telephones, and in conjunction with the ·1-mfd. condenser forms a resistancecapacity coupling between the first valve of the amplifier and the detector valve in the set.

The 20,000-ohm resistance that is wired in series with the 50,000-ohm one acts as the decoupling resistance in conjunction with the 2-mfd. fixed resistance. In the case of radio the 4-megohm potentiometer acts as the grid leak for the valve.

Another feature of the amplifier which ensures low-frequency stability, and therefore aids in the attaining of and another 2-mfd. fixed condenser.

Complete battery connections are provided for when the amplifier is used by itself. When it is used as a radio amplifier the H.T. negative connection is not needed; indeed, it is important that it should not be connected up, as the same batteries should be used for both amplifier and radio set, and the connection of H.T.-

LINES THAT LEAD TO POWERFUL REPRODUCTION

really good quality, is the decoupling that is provided in the anode circuit of the first amplifier valve. It consists of a 10,000-ohm resistance might lead to a serious short-circuit. The correct thing to do when using the amplifier with radio set is to ignore the H.T. negative plug completely. Don't imagine that the amplifier is capable of handling only small power because of its small size. The volume that it will give is dependent upon the output valve that is used with it, and the output valve that you use is dependent upon the amount of high-tension that you can supply. You will realise in consequence that where a mains unit is available that greater power can be obtained because of the unlimited, or nearly so, amount of high-tensiou that can be supplied.

A Stand-By

Where batteries have to be employed there is one great advantage in having a small amplifier like this incorporated in your console type gramophone cabinet. In most cases it enables the acoustic side to be left entirely untouched, so that should your batteries let you down at a critical time you will not be lost for a means of reproduction. But it's pretty certain that you will not feel very pleased with the acoustic results after getting used to the electrical reproduction !

CONSTRUCTIONAL HINTS

THE construction, as already indicated, is particularly simple and straightforward. So much so is this the case that there is no doubt that many will tackle this amplifier as their first constructional item, and for this reason very full instructions for the job are given.

First of all. cut the baseboard and end pieces of ebonite to size. There is no need for the dimensions to be mentioned, because they can be obtained by means of the scale on the wiring diagram.

Measuring Out

For instance, by using this scale you will find that the terminal strips are equal to two divisions on it—that is, they are two inches. So you measure them out as two inches with a proper size ruler on the ebonite. Measure these strips to the dotted line and not to the full line which represents the top of the baseboard, the distance between dotted and full lines being the thickness of the baseboard.

The next job is to mark the

positions of the holes that you need to drill in the end-pieces. Any sharp metal point will do for the job.

When you have marked the points to be drilled, make a small dent to prevent the drill from wandering when you start making the hole—a centre-punch being the official instrument to employ.

Mounting the Components

Don't forget a couple of small holes have to be made in either end-piece to attach the strips to the baseboard. They should be made a distance equal to half the thickness of the baseboard up from the bottom of the ebonite.

Two of the holes will require to be fairly large, about $\frac{5}{16}$ in. They are Then screw down the transformer, still keeping the valve in position. Note that the transformer is pretty close up to the valve holder, and also that it is nearer to one long edge of the baseboard than to the other.

On the one side of the transformer, the side nearer the edge of the baseboard, there is a 2-mfd. condenser by itself, while on the other there is a resistance as well as a fixed condenser. See that you get the condenser on this side well up to the edge of the baseboard, so that there is ample room for the resistance.

Resistances With Pigtails

This leaves you with two more parts only to screw down, the other tempted to hurry this. It is naturally essential that there shall not bee a single mistake in it, and it is also very desirable that each terminal screw shall be really tight or you may have trouble in the future from loose connections.

Use Pliers

It does not matter what kind of wire you connect up with so long as it is insulated and fairly stiff. Number 18-gauge tinned-copper wire, insulated with lengths of systoflex, is as good as any.

Finger-tight connections are not good enough; use pliers for screwing up all the nuts and terminal screws, and you will not be bothered with

THE SORT OF THING YOU CAN "KNOCK UP IN AN EVENING"

Owing to the comparatively few components and to the fact that H.F. is not being dealt with, the layout and wiring present no difficulties, and the actual work of assembly is easy and enjoyable.

those that take the volume control and switch.

Having reached this stage we are well on our way, for the next step is to start mounting the components. Put the six terminals, potentiometer and switch on the ebonite end-pieces, and then screw these to the baseboard.

Then come the baseboard components. First of all mount the V_2 valve holder, putting a valve in it to ensure that there will be plenty of clearance between the switch and the valve after the holder is screwed down. valve holder and the ·1-mfd. condenser. The three resistances are not anchored to the baseboard in any way, their connecting leads being sufficient to hold them in place.

- They should be of the types that have either a pigtail at the ends or terminals. Both types are to be seen in the photographs. The advantage of the terminal type is that no soldering is necessary with them, as it is with those with pigtails.

Avoiding Future Trouble

The next and final part of the construction is wiring. Don't be cracklings when the amplifier is put into use. There are less than two dozen stiff-wire connections to be made, so the whole wiring up will not take you long.

If you use fixed resistances with pigtail connections, you will find that in one or two cases these pigtails can be joined up direct to the terminals on other components. This is one small point in favour of the use of pigtail resistances over terminal type, but, after all, it is entirely a matter of personal choice.

Now for the flexible leads. There are five of these in all, but one of

The circuit is quite straightforward, but nevertheless has several notable features. There is decoupling for the first L.F. valve, and also decoupling for the detector when the amplifier is used after a radio set. The volume control is always operative.

them is divided into what is really three leads by the G.B. positive and L.T. negative points of connection.

It is impossible to state any particular lengths for these flex leads, as it all depends upon the positions and distance away from the amplifier of the batteries. The best scheme is to measure them with the amplifier and the batteries all in the places where they are finally to be used.

A Last Word

The wires for connection to the accumulator should be provided with spade tags and all the others with ordinary battery plugs, except perhaps in the case of those for H.T. when a mains unit that has terminals for output is to be utilised.

And with that we have written the last word about the construction, and come to what is perhaps more interesting to many-trying out.

TO RUN YOUR AMPLIFIER

- ck-up. Marconiphone, H.M.V., Bulgin, Radiophone, Bowyer-Lowe, Pick-up.
- Celestion, Igranic. Loudspeaker. Baker's Selhurst, Lan-chester, B.T.-H., R. & A., Marconi-phone, W.B., Celestion, Epoch, Atlas.
- Batteries. H.T.: 120-150 volts (see text). (Pertrix, Ediswan, Magnet, Ever-Ready, Siemen's, Lissen.) G.B.: To suit valves. (Ever-Ready, etc.) L.T.: 2-volt. (Lissen, Oldham,
- Ever-Ready, Pertrix.)

AMPLIFIER THE IN USE

E have already indicated roughly the main points about connecting up the amplifier, according to whether it is to be used for pick-up or radio work. A word or two about battery voltages will not come amiss, however.

Grid bias -1 supplies the first valve in the amplifier, which should be of the L. or L.F. type, and will need about 3 volts G.B. You can try the -1 plug in $1\frac{1}{2}$ volts negative and also 41 volts negative while the amplifier is working, to see whether results seem better.

USE	THESE VA	LVES
Mullard Mazda	First 	Second P.M.2A. P.220
Cossor Marconi Osram	210L.F. L.210	220P.A. L.P.2 L.P.2
Tungsran Lissen Eta	L.Q.210 L.210 B.Y.1210	P.220 P.220 B.W.604
Sixty-Six	ty 210L.F	. 220P.A.

But never move the G.B.-2 plug while the amplifier is switched on. It is not good for the power valve.

The grid-bias voltage to apply to 2 depends entirely upon the particular power valve you choose, and upon the high-tension voltage applied to it. But it should be quite clear from the instructions issued with the valve what bias you should apply with the H.T. you have available.

Economical Working

The high-tension voltage, by the way, should be as high as you can manage, so long as it does not exceed the maximum recommended for the power valve in question. It will not matter if the permissible maximum for the preceding value is not so great, because the 10,000-ohm decoupling resistance reduces the H.T. voltage applied to the first valve in the amplifier.

For economical working from small H.T. batteries it is necessary to keep to a small output valve. Any of those listed in the special valve table would be quite O.K.

YOU'LL GET AMPLE POWER FROM THIS AMPLIFIER

Though small in size and particularly easy to make, you can get ample power from this amplifier-and it will not be at the expense of quality.
But while these give adequate volume for an ordinary size room, they are not suitable for very big outputs. When these are desired, a larger valve must be employed and super-capacity batteries or mains unit. The latter is most strongly to be advised if you have mains available.

A Switching Reminder

You will find a special list of the accessories needed when the amplifier is for pick-up work only. You will naturally appreciate that they will not be needed, except perhaps the pick-up and loudspeaker, when the amplifier is to be used with an existing receiver which already has suitable H.T. and L.T. supplies.

There is one little warning that we must give, and it may seem to be rather unnecessary, but since it concerns the switching off of the amplifier when not in use, it is worth mentioning, since it is just possible it will save your batteries being run down while doing no useful work.

You may be so used to operating the on-off switch of the receiver only,

TYPES AND MAKES OF ALL THE COMPONENTS VALVE HOLDERS 2 4-pin (W.B., Benjamin, To Clix, Ready Radio, Bulgin). Sovereign, Lissen, Tunewell, Radiophone, Ready Radio, Bulgin). Telsen. Lotus. L.F. TRANSFORMER FIXED CONDENSERS 2 9-mfd. (Igranic, Telsen, T.C.C., Ferrantı, Dublier, Lissen). 1 1-mfd. (Dublier non-inductive). L.F. transformer (Lotus type 3, Lissen, R.I., Telsen, Ferranti, Varley, Slektun, Tunewell, Ready Radio, Sovereign). SWITCH RESISTANCES 1 on-off toggle (Bulgin). 50,000-ohm, with holder if required (Graham Farish, Dubilier, Igranic, Ferranti, MISCELLANEOUS Lissen).

1 20,000-ohm (Dubilier 1-watt, etc.). 1 10,000-ohm (Dubilier 1-watt, etc.).

VOLUME CONTROL 1 1-meg. potentiometer (Varley, Igranic,

that the amplifier's L.T. switch might get overlooked, and it is this which you must guard against. Even when the amplifier is in use for pickup work only, the switch may get overlooked by those who are used to the acoustic type of gramophone only.

Adjusting Volume

Lastly, when working on radio, you find reaction is necessary to bring up the volume of a distant station to the desired strength, always make sure the volume control on the amplifier is set for maximum

ISCELLANEOUS 6 terminals (Belling-Lee, Igranic, Bulgin). 1 baseboard, 8 in. \times 5 in. \times 3 in. 2 terminal strips, 5 in. \times 2 in. Flex, 18 gauge wire and sleeving. 5 wander plugs and 2 spade terminals (Bulgin, etc.).

loudness. It would be a pity to have to push reaction to its limit to get a station in well when amplification is being cut down the whole time by the amplifier's input control.

It may be of interest to note that the amplifier can follow a crystal set. The connections are as follows.

Connect one 'phone terminal of the set to the pick-up terminal farthest from volume control. The other pick-up terminal then goes to one side of a 1-mfd. condenser, the other side of which is connected to the remaining set 'phone terminal

It is a difficult matter to remove the enamel insulation from extremely fine wires by ordinary methods, but a thimble of certain chemicals heated up will do the trick in a really satisfactory manner.

Removing Insulation From Fine Wires

B ELIEVE the word of one who has tried it—it is the very dickens of a job to remove the enamel insulation from very fine wire without injuring the wire at the same time.

I have tried the sandpaper method, as recommended by some people. But when you rub fine enamel-insulated wire with even the finest sandpaper, employing the very gentlest of

SUITS HEAVY GAUGES

This insulation remover is ideal for ordinary gauges of wire when the idea illustrated at the top of this page is unnecessary.

movements, you generally find that you have managed to rub the wire away as well as the insulation !

The accompanying illustration shows a really satisfactory method of removing enamel insulation from fine wires.

Take an old thimble, and provide it with a holder in the shape of a length of stout wire tightly bound round it.

Now fill the thimble-crucible with caustic-lye, made by putting a lump of caustic soda about the size of a pea into the thimble and by filling up three-quarters full with water. Boil up the contents of the thimble over a gas-flame or a spirit lamp, and then, having twisted the end of the fine wire whose insulation it is desired to remove into a little spiral or helix, dip the spiral of wire into the hot caustic lye and allow it to remain immersed for a few seconds.

Repeat the operation two or three times, and then thoroughly wash the end of the fine wire with pure water.

Result—a clean and enamel-free end of the wire, and one which wilf not have been abraded or weakened with rubbing or scratching, as is usually the case.

A Workroom Adjunct

The simple device here illustrated will remove enamel, cotton or silk insulation from a wire easily, and without causing any damage to the wire. It is a very useful adjunct to the workroom equipment, and in use it will well repay the small amount of time expended in making it.

Obtain two flat blocks of wood, each about $2\frac{1}{2}$ or 3 in. square. Hinge these together and provide some sort of a knob for the upper wooden block.

Now cover the opposing faces of this wooden "sandwich" with goodgrade sandpaper. The best way of effecting this is to cut the pieces of sandpaper somewhat bigger than the wooden blocks, and to turn down the sandpaper over the edges, securing it in position by means of brassheaded pins, as illustrated.

Wire, thick or thin, placed between the sandpaper surfaces and gently pulled, will come away, leaving most of its insulation behind it.

The sandpapers will, of course, require renewing at intervals, but

with average use they will last a long time before they require changing.

An Improvised Terminal Clip

Sometimes you may wish to connect a wire to your aerial down-lead, to your earth lead, or to some other wire, and yet you may have run out of the orthodox connecting-clips for the purpose.

Fish out a large-sized "pushthrough" terminal from your workbox, place it in a vice and, using a fine saw, cut a V notch in the face of the terminal, the notch to penetrate about two-thirds of the way through the terminal.

QUICK CONNECTOR

How a large "telephone-type" terminal can be used for making temporary connections to heavy gauge wire such as is often used for aerial leads.

The Series Condenser

H. N. (Wolverhampton),-" I recently inserted a series condenser in my aerial lead to improve selectivity. but I find that although the tuning is considerably sharper, the volume has decreased, with the result that I am now unable to receive distant programmes at a strength worth listening to. How can I regain the volume I had previously ? *

The answer to your question, H. N., is that you cannot get your volume back unless you are prepared to sacrifice selectivity. Your set is one without high-frequency amplification, and you are compelled to rely solely upon what your aerial picks up for your volume.

The effect of the series condenser is virtually the same as decreasing the coupling between the aerial and detector grid circuit, and in consequence there is a smaller transfer of energy from one circuit to the other.

Your best plan is to build a set with a good tuned S.G. stage. This will provide you with the selectivity you require, plus the range and volume you had previously.

Listeners do not always appreciate that volume and selectivity only go hand in hand when there are sufficient tuned high-frequency stages.

It is impossible to sharpen the tuning of a simple detector and L.F. receiver without some loss of volume.

Aerials in Flats

M. K. Kensington).-"I am at present living in a flat and one of my problems is to get a reasonably efficient aerial and earth. I am compelled to use a very long earth lead, together with an indoor aerial round the picture railing. On trying out this arrangement in conjunction with a three-valver I noticed that the

aerial made no apparent difference to the results, but I was able to bring in numerous stations at quite decent strength on the earth lead alone. Is this usual or does it indicate that something is wrong?"

You are up against a problem that many others in addition to yourself have to contend with. The difficulty is the long earth lead. Yours probably wanders about all over the house

TECHNICAL QUERIES DEPARTMENT TO A CONTRACT OF THE STATE Are Yon in Trouble With Your Set? The MODERN WIRELESS Technical Queries Department is in a position to give an unrivalled service. The aim of the de-partment is to furnish really helpful advice in connection with any radio problem, theoretical or practical. Fill details, including the revised scale of charges, can be obtained direct from the Technical Queries Department, MODERN WIRELESS, Fleetway House, Farlingdon Street, London, E.C.4. A posteard will do. On receipt of this all the necessary literature will be sent to you, free and post free, immediately. This applica-tion will place you under no obligation whatever. Every reader of MODERN WIRELESS should have these details by him. An application form is included which will enable you to ask your questions of with the minimum of delay. Having this form you will know exactly what inder to solve your problem. London Readers, Please Note : Inquiries House or Tallis House.

if you are using a water-pipe or the earthed conduit of the lighting system

Of course, what happens is that the earth lead picks up energy in exactly the same manner as an aerial, and therefore your earth is a perfectly good aerial.

Flat-dwellers like yourself will often find that it pays to join the earth lead to the aerial terminal and to have the earth terminal blank. Try it and see what kind of results you obtain.

Boxing the Speaker

A. C. (Lewisham), -" I recently purchased a moving-coil loudspeaker which I used for some time on a wooden baffle with highly satisfactory results.

I then decided to build the set and loudspeaker into a cabinet, but much to my disappointment I found that the effect on speech and music was to 'mussle' it, the announcer's voice sounding booming and unnatural. What can I do to improve matters?"

This " boxey " effect is by no means unusual, but it can be minimised by care in the construction of the cabinet and the arrangement of the speaker.

You will appreciate that if you were to place your head in a box and speak, your voice would lose its crispness and naturalness owing to reflection and resonances from the sides and back of the box.

This also applies in the case of a loudspeaker, and the methods of minimising it are these:

(a) Use a large cabinet, and see that it is constructed from thick wood. It must be solid.

(b) Do not have a back on the cabinet. If you wish to keep the dust out, make up a framework and cover it with muslin or some other gauzy material.

There is a scheme used by the B.B.C. which entails lining the inside of the cabinet with slag wool, but it is rather difficult for the average constructor to carry out successfully.

BACK NUMBERS OF "M.W." Readers desiring copies of past issues of "Modern Wireless" may obtain them, price 1s. 3d., post free, from our Back Number Dept., Bear Alley, Farringdon Street, London, E.C.4. ------

November, 1932

The Telsen Screened Coil

THIS is one of the most notable of this season's new components. It comprises a dual-wave coil unit complete with switch and effectively thorough screening. The screening extends to the underneath of the unit, and is so efficient that even when close-mounted in pairs there is no coupling trouble.

The switch is operated by a spindle which passes through and projects

EFFICIENT SHIELDING

A feature of the Telsen coil is its effectively thorough shielding.

behind the component and enables ganging easily to be carried out.

We have tested numbers of these Telsen coils' and in all cases perfectly satisfactory results were given. Good selectivity, without undue power loss, and an absence of "break through," contribute to an excellent performance.

And in that the coil is also well made and inexpensive its popularity is assured.

A Westinghouse Rectifier

The Westinghouse range of H.T. metal rectifiers is most comprehensive,

and there are numerous models available for constructors, and there are no practical limitations as to output.

At the one end of the scale is the popular H.T.5, which provides 20 milliamperes at 120 volts, and at the other, the H.T.11, which has an output of no less than 150 milliamperes at 400 volts (120 milliamperes at 500 volts).

Obviously such a rectifier is capable of undertaking the most arduous of duties, and could be extended to its limits only by the most ambitious of amplifiers.

But it is of direct interest to all constructors in that it exemplifies the completeness of metal rectification, and illustrates that it has none of those power restrictions that many appeared at one time to debit against it.

Nowadays Westinghouse rectifiers figure in the majority of commercial mains sets and units, and that fact speaks for itself.

successful when the average constructor applies patience and care to it.

The difficulty is to obtain and wire up coils and condensers which will match all round the dial. Many times amateurs possessing ganged sets must have felt uneasy as to their adjustments, and itched to tinker with the trimming.

This is not necessary with the J.B. ganged condenser illustrated, for the trimming of one section can be done, while searching for stations, as a form of vernier control which is remarkably effective. Thus the operator has the comforting assurance that he has two-condenser maximum efficiency to hand, with the advantages of the simplicity of ganging if

FOR CONSTRUCTORS

A high-power H.T. metal rectifier — the Westinghouse H.T.11.

he desires to ignore the "vernier" and refer only to the tuning knob. (The accessible trimmer is actually controlled by a knob mounted concentrically with this.)

The J.B. ganged condenser does not, however, rely only on this handy feature for its appeal, as it is a first-

TRIMMING FROM THE FRONT PANEL

We have had the H.T.11 unit under observation, and it has given consistently good performances in varying conditions of service.

J.B. Ganged Condenser

Perfect trimming in a ganged condenser is only possible given expert skill and ideal conditions. However, the operation is moderately

The trimming of one section of this J.B. gang is controlled by a knob concentrically arranged in front of the main tuning control.

This month we deal with Telsen, Westinghouse, J.B., "Davenset," G.E.C., Ready Radio and "Utility" products.

class component regarded purely as a modern, shielded, ganged condenser. It is built solidly, but has a pleasing design, and the movement is smooth.

For A.C. Mains

We have had the opportunity of testing a "Davenset" mains transformer made by Messrs. Partridge, Wilson and Co. It is their No. 12 model, and provides for an output of 300 volts for H.T. at 60 milliamperes, and a 3-ampere filament current.

It is a most substantially constructed component, designed in accordance with the best of modern engineering practices.

There is a core of ample dimensions tightly compacted, and its insulation resistances are of an unusually high order.

We consider it to be above the average in every respect.

An Attractive Accessory

The moving-coil loudspeaker principle will develop into a fetish if traders and constructors do not endeavour to consider loudspeakers impartially in the first instance, and resist the temptation to pre-judge them by the principles employed in their design.

The G.E.C. "Magnetic" loudspeaker does not claim to be a movingcoil instrument, but it is none the less descrving of the keenest consideration for that.

THE "DAVENSET" TRANSFORMER

A high-quality mains component made by Partridge, Wilson and Co.

It is built into a tastefully moulded bakelite cabinet, greatly superior in appearance to those cheap wooden affairs, and its interior will bear the most critical examination, for the G.E.C. maintains a very high standard of workmanship in out-of-sight details as well as in exteriors which catch the eye.

And the " Magnetic " gives a clean, peakless response which we believe will

TASTEFUL DESIGN

This G.E.C. loudspeaker is built into a fine moulded bakelite cabinet.

appeal to many discriminating enthusiasts as superior to the "muddier" reproduction of some moving-coils.

NewReadyRadioComponent

Messrs. Ready Radio have now entered the market as component manufacturers on a large scale. And they have the advantage that, through their extensive experience in serving the needs of home constructors by supplying kits, they know what is wanted.

Their "Microlog" condenser is one tangible proof of this. It is a "soliddielectric" variable condenser sold at a competitive price, but with new features making it succeed, where many others tended to fail, as a serious alternative to "air" types.

There are hard brass moving vanes, and a new dielectric is employed which is very superior in electrical qualities to the somewhat shoddy material frequently met with in components of this kind.

A Ready Radio "Microlog " condenser.

Indeed, the losses are such that the "Microlog" is by no means barred from tuning circuits, although its main applications are, we presume, for reaction, aerial selectivity and similar purposes.

Development in Dials

The "Utility" straight-line dial manufactured by Messrs. Wilkins and Wright introduces a variation from conventional practice that ought to appeal to constructors.

Instead of the scale being engraved round the edge of a disc or on a drum, it is arranged horizontally in a straight line. A pointer moves laterally as with adjustments of the smoothly operating knob.

This is a very convenient form of construction, for the whole scale, and the position of the pointer relative to it, can be seen at a glance.

Many new ideas fail when judged on the scores of cost or usefulness (or both), but this "Utility" dial does not, and we predict considerable popularity for it.

A STRAIGHT SCALE

The new "Utility " straight-line dial.

R

MODERN WIRELESS

THE "EKCO" M23 A.C. RECEIVER

A review of a compact yet powerful all-mains threevalver, incorporating a moving-coil loudspeaker and single-knob tuning.

By an "M.W." **TEC**HN**ICIA**N.

O^{NE} invariably associates the, name of Ekco with mains equipment. The mains units manufactured by this firm are in use in many thousands of homes in this country, and are giving trouble-free service on every type of set, ranging from a simple "two" to a seven-valve super.

Highly Effective Circuit

Hence, on taking over one of the new Ekco M23 receivers our first thoughts were that if the set was up to the standard of the other products of the Company, then it must be good. And the M23 is good.

The circuit comprises an S.G. valve, detector and pentode, and the set is designed for A.C. mains having voltages from 200-250. A simple mains-voltage adjustment panel is situated at the back of the set, so that the operation of changing over from one voltage to another is only a matter of a moment.

That the circuit is highly efficient is proved by the results we obtained in our tests. Using our large outdoor aerial, we found that the spread of the London Regional amounted to no more than 10 metres, and the National spread was even less, namely, only 5 metres. In the case of the London Regional no sign of that station could be heard when the tuning was 15 metres "off tune." This was on an aerial known to be inselective, and situated in London.

Excellent Volume

The range of the set is also good. For instance, we were able to pick up the Midland Regional at fair strength in broad daylight, using only a small indoor aerial. On the outside aerial, also in daylight, such stations as Northern Regional, Brussels, Radio-Paris and Eiffel Tower could be received at excellent volume on the speaker, which, by the way, is of the moving-coil variety.

Incidentally, in connection with the speaker, it is interesting to note

TECHNICAL SPECIFICATION Number of Valves. Three. Circuit. S.G., detector and pentode. Special Features. Single-knob tuning with illuminated dial calibrated in wavelengths, moving-coil loudspeaker, Westinghouse metal rectifier, connections for gramophone pick-up and additional speaker. Cabinet. Consolette. Price. 17 guineas: Makers. E. K. Cole & Co., Ltd., "Ekeo" Works, Southend-on-Sea.

that the designers have compensated for the small baffling effect of the bakelite cabinet, so that on radio the set gives a pleasing round, even tone.

A Wise Move

As far as the gramophone side of the set is concerned, it is left to the pick-up user to compensate externally if he so desires. This is a wise move, for it is impossible to compensate for every eventuality in the choice of a pick-up, and the owner can very well insert a tone-control device when he fits the volume control across his pick-up on the instrument.

On gramophone the volume is fully adequate for any domestic purpose, and this applies equally on radio.

For the benefit of those listeners

who are unable to erect an ordinary aerial, a mains aerial is provided, but it should be remembered that the normal type of aerial gives better results, and should be used wherever possible.

We have said nothing about the appearance of the set, but, as the photograph shows, the cabinet is most striking and consists of a very artistic walnut bakelite moulding with an illuminated wavelength indicator and four controls on the front; these are the tuning control, volume and selectivity control, reaction, and wave-change switch.

Lucid Instructions

The "on-off" control is on the side of the receiver, so that only the essential operating controls are on the front.

A noteworthy feature about the range of receivers produced by E. K. Cole & Company is the extremely lucid and detailed instructions sent in book form with each receiver. The instruction books tell the listener all that he can possibly want to know about the operation, and the sketches and charts make the installation of the set as simple as it possibly can be.

In fact, this Ekco receiver at 17 guineas is a thoroughly sound proposition, and one which potential purchasers of mains sets will be well advised to consider.

COMPACT AND EFFICIENT

The skilful planning of the layout is a feature of this receiver and nothing has been sacrificed for efficiency. The mains transformer, with its sockets for voltage adjustment, may be seen on the extreme right.

MODERN WIRELESS

" The World's Programmes "

November, 1932

POLICE RADIO IN PARIS

Some views of the Sureté Générale's newest venture.

France plans a great new network of radio stations to aid the police in combating crime, and the headquarters and nucleus of the scheme is now completed and working in Paris. The photograph in the circle is a general view of the control panel, with the transmitter in the background.

In the larger photograph above, the powerful transmitter is shown in greater detail with an engineer adjusting one of the controls.

Above you can see one of the tall aerial masts which tower above the "Scotland Yard" of Paris as a constant warning to criminals that the police are on the alert.

2/4

-

*

Simultaneous reception on several wavelengths is possible with the apparatus shown in the photograph on the right. Notice the super-heterodyne, with frame aerial, which is used for long-distance reception. The operator in the white coat is tabulating reports from provincial stations.

and a constant

452

In front of the bank of apparatus lined off by the safety chain is the usual white-panel control desk with indicator lights, relay buttons and four high-tension peak volt-meters for the incoming H.T. cir-mite.

neters for the incoming H.T. cir-cuits. In the ante-room of the trans-mitter hall, as I have said, is the amplifier mack which deals with the incoming studio lines from the lofty studio way back in Buda-pest itself. A telephone line has been taken over from the postal officials, and is tone corrected.

Reports Wanted

Reports Wanted Unfortunately, I did not have time to see the studio. The leading light at the programme head-quarters is Herr Ernst Shots, who arranges the programmes, an-nounces and carries out the general administrative work of the station. He is anxious to get reports from British listeners, and if you have anything worth sending in as a reception log then send it to Radio Budapest, Budapest, Hungary. It was Herr Shots who arranged

It was Herr Shots who arranged

LAST March I described for "M.W." readers a visit to the Ljubljana station. The engineers who built it also built Budapest, and there is a striking resemblance between the two sta-tions who was we incide a the based

tions when you get stert the two sta-tions when you get inside, although from the outside there is all the difference in the world. The Budapest building is striking, looking like a large electric power station and being built of bright-coloured brick topped with grey tiles.

Rocking Masts

The station is a few miles out of Budapest itself in fairly open country. There are probably not more than a hundred people living within the direct electrical shadow of the aerial, so that is spite of Budapest's 1855 kilowatts not many listeners suffer a wire-out

of the aerial, so that is spite of Budapest's 185 kilowatts not many listeners suffer a wipe-out. The aerial, a single wire with a long T lead-in, is on pillar masts of the "rocking" variety. Rocking masts are those which stand on a comparatively small pivoting point and are held up solely by guy wires. The advantage of this is that in open country, such as that around the Budapest station, and where there is a fair ground which at times, the masts can sway and are much safer than are rigid masts built like, say, the Biffel Tower. The masts at Budapest have a little ladder going up to a gallery is around the actual base of the mast before it begins to taper of down to the pivoting point. From the gallery a very danger-ous looking ladder runs up to the top.

top.

Limited Funds

I climbed up to the gallery and looked down on the station build-ing. Up above the ladder leading to the top towered dizzily, and I refused a pressing invitation to get a view of the surrounding country-cide from the tor

a view of the surrounding country-side from the top. . In vain did they persuade me that at the top, too, was a second gallery with a safe rail! My twenty-foot-high gallery seemed erazy enough. We then climbed crazy enough. down !

orally cholgin. We then childred down ! The guy wires come down to big concrete blocks, and although these are each about two yards square, they are, I was told, four or five times beneath the ground as they are on top. These take the whole strain of the masts, you see. A little wooden post at the right of the building is the electrical anchorage point for the lead-in but the mechanical strain is taken by a preliminary set of guy wires which are insulated by a chain of porcelain rods from the cable which runs up to the join point of the aerial. aerial

Heard Budapest lately? Well, what do you know about it? It has a wavelength of 550 metres and a power of 18'5 kws. yes. It has a pleasant musical-box interval signal—yes. Anything else? Why not accompany our Special Correspondent on a private tour of Hungary's popular broadcaster? There's plenty to interest you at Budapest.

Considering the limited broad-casting funds in Hungary, the Budapest station is very well fitted out. An imposing portico above which is the station emblem, is the entrance to the office section of the building.

Safety First!

This is a low, one-storey block, the transmitting panels and recti-fiers being in the two halls, one on each side of the offices. The trans-mitter is on the left-hand side, and

each side of the offices. The trans-mitter is on the left-hand side, and the control room, where also is the amplifier rack for the land-lines, leads out of it. The transmitter, although re-sembling that of Ljubljana, is larger, and the control desk is of a more modern type. At Ljubl-jana each water-cooled valve stands on top of its own coil of pipes carrying the cooling water, but here at Budapest there is not quite the same danger of being electrocuted by stray H.T. leads ! A safety chain is put along the front of all the high-voltage apparatus, and the tuning coils, each on a separate stand, have remote controls with slow-motion gearing, about four feet away from the coils themselves. Without unhooking thes safety chain the control engi-neer can tune all the H.F. circuits of the last two power amplifiers. The first stage of the transmitter is in a separate rack and does not need frequent attention, nor are the voltages here of a high order.

There are not many voltmeters. Most of the meters are high-fre-quency jobs showing the actual H.F. current flowing in the anode and

A WAVELENGTH WHICH NEVER VARIES

The wavelength-checking station at Brussels has no need to complain of Radio Budapest. The control engineer justly prides himself that the maximum error over a month's working is only o.8 ! So if you tune to 550 metres you'll be sure to find Budapest there, too !

coupled circuits of the power stage. The final high-tension meters are stood up on tall poles as at Ljubi-jana, and where, as is the case with two of them, a series high-frequency choke is needed so this the meter reads pure D.C., the choke is supported in mid-air on

It was Herr Shots who arranged that announcements should be frequently made in Maghyar, German and French, and that is why Bulapeat's call is a long one. First comes the Maghyar announce-ment: Hallo; Itt Radio Budapest, then the German Hier Budapest, and finally the French Voice le poste radiophonique Budapest, Hongrie ! **PLEASE KEEP OFF THE GRASS!**

A stout safety chain runs around all the high-voltage apparatus at Budapest to prevent the casual visitor from being electrocuted by stray H.T. leads ! Incidentally, the tuning coils have remote controls so that the engineer can deal with them without having to unhook the chain.

the copper tubing which forms the

wiring. The room has a gay appearance, the tall, church-like window's admit-ting a flood of light and the colour scheme being distinctly jazzy. All round the top of the coloured border on the wall is a wavy decoration including symbolic representation of aerials, tuning colls and earths, all in line t

Tone Corrected

Time Corrected Through a little window at the top right-hand corner of the east wall comes the lead-in, an outsize in porcelain insultators keep-ing the lead-in rod away from the wall. There is an earthing device just on the inside of the wall so that by pulling a long rod coming down within his reach the control man can disconnect the aerial.

The quaint musical call-sign, also used as an interval signal, is made by a kind of musical box in which studs on a rotating drum set reeds in vibration. This gives a phrase of nine notes in harmony. The control man at Budapest is proud of the station's constancy on its allotted frequency of 545 kilo-cycles. The average error is only 0.5, and the maximum, over a month's working, 0.8. At the moment Budapest has a clear channel in the other, its nearest companions in wavelength being Sundsvall and, just above it, the Augsburg Kaiserlautern relays. In the control room at Budapest is a U.I.R. wavemeter. Tests are made mearly every morning and are checked up with the official curve published by the U.I.R. Technical Committee's laboratory.

- PLYMOUTH. Fears that the relay station at Plymouth will be closed when the West Regional opens have been allayed by the an-nouncement that the relay is likely to be retained.
- RADIO LL. The shortwave relay of this 370-metre station goes out on 61 metres.
- COPENHAGEN. The midnight chimes, heard in the interval between dance music items, come from the Town Hall.
- THE WEST REGIONAL. Something like a record in mast construction was made in crecting the second of the lattice masts of Watchet. its 500 ft. of height being completed in 20 working days.
- ON 830 METRES. Precise modulation test signals of 1,000 cycles are to be transmitted by the N.P.L. (National Physical Laboratory) station on 830 metres.
- LUXEMBOURG. During tests this "propaganda" station announces itself as "Ici Radio Luxembourg émission expérimental."
- WELLINGTON. The N.Z. State Broadcasting Board has recommended that the Wellington, Auckland, Christchurch and Dunedin stations should have their powers doubled.
- PARIS. The invalids of the city are greatly interested in the medical talks from Radio L L, in which diseases and treatments are discussed in detail.
- U.S.S.R. Soldiers of the Soviet have been ordered to listen to the radio programmes for at least one hour daily.

FROM HERE, THERE AND EVERYWHERE

Flashes from all over the world about broadcasting stations and their doings.

- **DPENHAGEN.** During the autumn manœuvres loud-speaker "sergeant-majors" COPENHAGEN. shouted orders at the troops. On the march, the same source provided the musical accompaniment.
- MOYDRUM. The new Dublin station at Moydrum, near Athlone, employs a T-type aerial suspended on two masts about 300 ft. high.
- FÉCAMP. A new controlroom has been installed by the popular Radio Normandie station.

equalled only by Warsaw and Prague.

- MADRID. The Radio España station works on 424.3 metres until 7 p.m., at which hour Union Radio takes over.
- A report WASHINGTON. recently issued states that during one month fifteen persons were caught committing crimes, in one American city, through the wireless-equipped cruising patrols.

YOUR FRIEND ABROAF Why not send him "Modern Wireless" every month

to keep him in touch with all the latest radio news and developments? Post his name and address with 17s. to the Subscription Department, Amalgamated Press, Ltd., The Fleetway House, Farringdon Street, E.C.4, and "M.W." will be sent every month for a year.

- makers have now to fix on each set a notice re licence, warning "pirates " that they are liable to three months imprisonment or a £10 fine.
- POSTE PARISIEN. The recitals of "electric organ' music (oscillating valves) are well worth tuning for, and have recently been given at about 10.45 p.m. 米
- LEIPZIG. This is to be the most powerful of Germany's new regionals, the power rating being 120 kw.—
- MONTREAL. Canadian set- HILVERSUM. The new equipment now in use includes an improved 20-kw. transmitter, with crystal control of wavelength.

The mast used is 465 ft. high. It is made of steel, and stands on a porcelain base.

- BUDAPEST. The Budapest No. 2 station, on 210 metres, usually commences its programme at 7.30 p.m.
- RADIO VITUS. This Paris station, on 312 metres, has a short-wave relay on 43.75 metres.

MILAN. The Italian Alpine Club has been successfully experimenting with radio links between Alpine refuge huts.

SIZIANO. This is the site of the new Milan station, due on the air by the time these lines are in print.

- Its power is 50 kw., and the wavelength allotted is 331.4 metres.
- BARI. This station, the tenth of Italy's regionals, was built in Chelmsford by the Marconi Company.
- **REYKJAVIK.** This Icelandic station, which was not too easily received last year, is now being picked up on 1,200 metres with quite simple two-valve apparatus.

SHANGHAI. The new beam station capable of telephony, ordered by the Chinese Government from the Marconi Co. is to cost £40,000.

- ATHLONE. The power of Dublin's new station at Athlone is 60 kw., but this can be doubled if the need arises.
- EMPIRE STATE BUILDING. This New York skyscraper is equipped with a 6-metre television transmitter which works daily.

PAREDE. This is the name of the new Portuguese station workng on 431 metres.

S IMPLY wonderful, aren't they, these stations on the medium wavelengths? Night after night they come up trumps, and there always seems to be something of special interest when one investigates the evening entertainments.

Most people find Fécamp, on 223 metres, the lowest wavelength worth watching, but in case you have any dial space below his reading and are curious as to how low your set tunes on the medium waves, it is worth mentioning that there is at the time of writing an easy way of finding 210 metres. Owing to the Regional re-shuffle in Scotland, Aberdeen, on 214-3 metres. now comes immediately above Newcastle on 211-3 metres—two National programmes separated by just a couple of degrees or so.

There is no other case of this kind on the air, so if you have a sensitive and sharp-tuning set, and you are not very certain of what the lower wavelengths are on this waveband, there is now an exceptional chance of determining where 211.3 and 214.3 metres come in.

Magnificent Programmes

Owing to the way in which many stations are packed on common wavelengths near the bottom of the dial there are far too many heterodynes there to be healthy, but there are nights on which magnificent programmes may be obtained in this sector. And Trieste—even though eight different programmes share the wavelength above his—is always a possible; anyway, in the southern counties.

A little above the London National we have Turin and Heilsberg, on 273.7 and 276.5 metres respectively. Both have been wonderful, with the palm going to Heilsberg because of his superior reliability over the last few weeks.

Hilversum, on 296.1, has been putting up a fine showing during the past month. And, incidentally, he really is Hilversum now, and not Huizen, as was the case before October.

BETWEEN 200 AND 550 METRES The medium waves never fail to provide a

feast of good entertainment night after night. Here you can read all the latest information about medium. wave conditions.

Despite the fact that reduced power is used in the daytime, he is often quite a good programme in the afternoon, and at night, of course, he reaches out far and well.

One of the best programme clusters on the dial is round 325 metres. This is Breslau's wavelength, and on 322 there is Goteborg, while on 328.2 we have "Poste Parisien."

The new Breslau, about which there seemed a little doubt at first. has now blossomed out into a winner. In fact, I think he beats his stable companion. "Poste Parisien," on most nights, though his power is equal and his distance 740-odd against 200-odd miles. The new Breslau, in fact, is an acquisition.

First-class Stations

Another hot-spot is the neighbourhood of the Scottish Regional (Hamburg and Paris Radio L L below it, and Lwow and Toulouse just above, all being noteworthy). Just above the Midland Regional, Suisse Romande has been making 403 metres a warm place, and Katowice, on 408 metres, has glowed there with wonderful consistency. Dublin, too, seems to have found where they keep the ginger, his strength showing remarkable gain.

Still working up the dial, we must mention Stockholm and Rome (436 and 441 metres respectively). the former being as easy to get as Motala, his long-wave relay, which is saving a lot for Stockholm.

Between this point and the North Regional there are at least two other first-class stations, for located on 459 we have Schweizerischer Landessender, and on 473 metres is Langenberg.

Clear and Powerful

These two are often confused because both speak in German. But while Langenberg is a true dyed-in-thewool German, his companion with the long title is a Swiss. And his mountain air seems to do him no end of good, for he is always clear and powerful.

One easy way of telling them apart is to remember that whereas Langenberg thinks nothing of midnight or after, his friend What's-his-name, on 459 metres, likes to turn off the carrier-wave round about 10 p.m.

Breslau is quite up to date in every department, but the engineers take quite a special pride in their control desk and amplifier rack, which we show you in the left-hand picture. Above is the entrance to the transmitting hall.

100

456

German l'steners and engineers are proud of their new high-powered transmitters at Leipzig and Breslau—not only because they are the biggest stations in the country, but because they represent a complete departure in technical design. Our own correspondent in Germany here gives listeners to "The World's Programmes" a full description of the new stations. a full description of

HE new high-power station at in aerial), is due to start by the stead of having a horizontal wire new type was just 1.2! time this is in print.

just transmitters like the large number dotted over Germany and Europe. They incorporate totally different ideas as regards design and wave, but the total inductance and construction. We are wont to compare the advance of receiver design from Olympia to Olympia, but little is ever said of transmitter design.

A Mast with a Halo

I will first deal with the new Breslau station. It is situated exactly 15 than 280 metres, so a special induckilometres to the south of Breslau as tance had to be affixed to the top of the crow flies. The small village near the aerial to save building the tower which the transmitter stands goes 40 metres higher. The whole thing by the name of Grothsürben. The looks like a tower with a halo round it. station, however, will continue to be known as Breslau.

A special cable runs from the studios in Breslau to the trunk prevent fading close to the transexchange, and from there to the mitter, i.e. to increase the service cedure is employed, using two copper transmitter. This cable is exactly radius. This has been an entire tubes running along just above the 25 km. in length. It contains eight success. At 2 km. distance of the ground. They do not go straight out to single lines, each wire being 1.2 mm. station field strength was found to the aerial, and thus are 265 metres in diameter.

Breslau is remarkable for one using an ordinary aerial. At a disstrung between two masts one quarter These two new stations are not of the wavelength in length, a vertical wire is used just slightly longer than half the wavelength. That is to say, the wire is not actually over half the capacity of the aerial accommodate just half the wave.

> The aerial wire is suspended in the centre of a wooden tower exactly 140 metres in length. This is the highest tower entirely of wood in the whole world. Breslau's wavelength is larger

Curing Fading

The action of this new aerial is to be 26 per cent greater than when long.

Breslau has taken up regular thing-the new type of aerial. Dr. tance of 80 kilometres fading was service, and the Leipzig Böhm, of the Telefunken firm, is from 1 to 30 with the normal aerial, station, Germany's biggest (120 kw. responsible for this new aerial. In whereas maximum fading with the

Service Area Doubled

The advantages of the new aerial were actually most apparent at a distance of 160 km. Normal aerial gave field strength fluctuations of from 1 to 50 owing to fading. New type aerial only gave 1 to 3, with a maximum value of only 1 to 12.

These figures prove that the new type of aerial has actually increased the service radius of the direct ray by exactly 100 per cent. The measurements and tests were carried out after dark, so that full fading effects could be expected.

The aerial mast is 200 metres distant from the transmitter building, which was erected by the Breslau section of the German Post Office. Instead of the old type of overhead feeder line, the new method of pro-

A TALL STORY!

The transmitter proper differs from the usual Telefunken stations. The first four stages have been united in one case, whereas the remaining stages are all open, as is the custom with that firm.

New Cooling System

The transmitter is crystal driven, which keeps the waves steady to 5 cycles of 923,000 cycles, which represent the present Breslau wave. The modulation is brought in in the fifth stage, and two further stages, one using 20 kw. valves, and the seventh, using 150 kw. valves, bring the power up to the required 60 kw. in aerial unmodulated carrier-wave. Modulation of 70 per cent is applied.

The cooling system of the valves has one novel feature. Instead of the old rubber tubing used for the cooling water, porcelain "corkscrews" have been made use of.

The new Breslau aerial does not prevent good distance reception, as probably most listeners in Britain will already have ascertained.

Germany's giant, the highestpowered station in Germany, has been built by Lorenz. The station stands at Pegau Wiederau, 18 km. to the south-south-west of the centre of the town of Leipzig. The river Elster flows past quite near to the site.

Frequency Doubling

Leipzig, although producing exactly double the power of Breslau, also has only seven stages. The crystal drive produces the double wavelength to prevent reaction of the last stages on the first very sensitive ones. Later the frequency is doubled, bringing the wave down to its proper value.

Leipzig operates on the wave formerly used by the Frankfurt-am-

Sir,—Being a regular reader of your "M.W." magazine, in which I find much to interest, I would like to add my experience on my two-valve "Sterling" anodion, which, by the way, has been over six years my boon companion.

Short Waves

l regularly pick up KFI, Los Angeles, California. I had never tried for such a distance, thinking it impossible, but a friend of mine asked me to try, and what an astonishment I got.

My many radio friends are surprised at the efficiency of this two-valver. I am also very enthusiastic on short

Breslau boasts the highest wooden transmitting mast in the world. Here it is— 140 metres (or a matter of 460 feet) in height and containing a special Telefunken anti-fading aerial suspended in the centre. You will also be interested in the additional inductance at the top of the mast.

THE WORLD'S PROGRAMMES IN NEW ZEALAND "British sets are best," says a reader who records his remarkable results.

waves, and many very happy hours are spent searching the air.

Zeesen is my best station. Rome, Russia, Bandoeng, and many American stations, also come through quite nicely.

Good Volume

I am sorry to say that G 5 S W is the weakest of the lot, but I see that a Main station. The wave is 390 metres. Leipzig uses the usual type of aerial pending the definite results of the tests carried out by Lorenz with a new type of six-fold aerial, which would have the same action as the Telefunken single-wire vertical half-wave aerial used at Breslau.

Precautions Against Breakdown

After the frequency being doubled in stage three and further amplified in stage four, the modulation is applied in stage five. The modulated H.F. is brought up to 1 kw. in this stage. The two last stages bring the power up to the required 120 kw. in aerial unmodulated carrier.

The amplification factor of stage six is 20, and of stage seven just six. In the last stage two 150-kw. valves, each weighing 35 kilogrammes, are used. Another two valves provide an adequate standby in case of breakdowns on one or other of the two in service.

In Leipzig, again, porcelain "tubing" is used instead of the older type of rubber tube. A cooling tower is provided to cool the water, though actually a double system is used both in Leipzig and in Breslau; the cooling water coming into contact with the anodes of the valves remains in a closed system of piping, these pipes being cooled from outside with other water, which then trickles down the cooling tower.

New Stations

Frankfurt, with 17 kw. in aerial, another Lorenz station opened at the same time as Leipzig and Munich, will follow shortly with a mere 60 kw.; 60-kw. stations have also been ordered for Berlin and Hamburg.

change will be taking place in the distant future.

P C J, who is off the air at present, is received here in good volume early mornings and late afternoons.

My set, complete with speaker, valves, eliminator and battery, is entirely British.

British is Best

There is a feeling here that Britain cannot compete with America in wireless sets, but I beg to differ and never lose an opportunity in saying so. Best wishes.

Yours sincerely, T. P. SEWELL. Christchurch, New Zealand. " The World's Programmes"

MODERN WIRELESS

"I CAN get dozens and dozens of foreigners on my set. It's as casy as shelling peas!" Yes, and I'll bet that in nine cases out of ten they sound like shelling peas—into a tin basin !

As often as not, the man who, talks like that zips round the dials, pausing for only a second or two at each statiou, and identifying them each station, and identifying them entirely by means of their positions in relation to other broadcasters. That's not real long-distance recep-tion; it's playing at it. Anyone can do it! Why, it can even be done with a set that is oscillating the whole time !

Distance Spanning

Distance Spanning Wat exactly does getting a station mean? Would you say you and "got" the local if it came in wipossible to tell whether a brass bard or a symphony orchestra was of the anonneer? Of course you would not. You would say the set of the anonneer? Of course you would not. You would say the set of the anonneer? Of course you would not. You would say the set of the anonneer? Of course you would not. You would say the set of the anonneer? Of course you would not. You would say the more working properly. The why put this interpretation of getting foreigners "? It is net working the set of the set of those nasty, whistly, squeaky to those nasty to th distance-spanning properties.

Choosing Stations

What you should aim at, at first, what you should aim at, at mst, is getting, say, a dozen stations as well and as consistently as you can. Some on the medium and some on the long, although naturally not so many on the long as on the lower band. Before we go any forther you

Before we go any farther you will want to know how I propose that you should choose the stations "to be operated on." Well, here

"to be operated on." Well, here goes! To start with, I cannot mention any names. That's because no two listeners work under the same con-ditions. A station that comes in well in one place may be drowned by the local in another, or a station that is always good in your district may fade like anything in someone else's neighbourhood.

Get Comfortable

There's no end to the ways in which local conditions effect recep-tion. You must pick and choose for yourself.

PROVIDING **ALTERNATIVE** PROGRAMMES

There's not very much fun in getting foreigners unless their programmes are clear enough to be enjoyed. Why not make your foreign listening a real alternative to the "local"? This article tells you how you can get anything up to a dozen stations on the speaker at a moment's notice-and all worth hearing, too. Isn't that what real "DX" work should be?

Right. Having decided that we can "get on with the washing," get comfortable in front of your set and switch on. Now proceed to tune slowly—mark that, slowly— upwards from the bottom of the dials and make a note of the set-tings for stations that are picked up easily and clearly.

Half the Fun

You can use reaction, but don't push it to the extreme. That should not be necessary for your alterna-tive programmes from the Conti-nent: at the same time, don't imagine you should get many stations without a spot of knob twiddling. That's half the fun of long-distance work.

with those already made. You will soon begin to know which stations give a good account of themselves really consistently, and these are the transmitters on which to con-contrate. centrate.

centrate. You must log their dial readings very accurately, so that you will always be able to turn to them again at a moment's notice, and will always be able to put a station worth listening to on the speaker. That alone will get you a name as a real DX-man !

A Proved Asset

But there is much more that you can do, having chosen your stations. (It must be mentioned here that the list will no doubt vary slightly

Carl Orff, the music teacher of the Berlin studio, certainly has original ideas. This—would you believe it?—is a broadcast music lesson from Konigs Wusterhausen, with Carl Orff and his assistants squatting round the microphone. Original, certainly—but what would Sir Walford Davies think about it ?

Ignore stations that have a heterodyne whistle on top of them, even if they are powerful, and don't waste any time on those which form in with awful quality and with fading. They are no good at all for providing an alternative programme. And, naturally, a station that fannot he separated from a background of some other broadcaster is not worth wasting time on. As a matter of fact, even with a set up many sheets of paper.

Comparing Lists

The idea now is to repeat this careful search on quite a number of nights and at various times, com-paring the lists obtained each night

from month to month, due to station alterations and the time of

station alterations and the time of the year.) My first suggestion may cause many experts metaphorically to splutter in their anxiety to get out all their objections to it. For all that I am going to put it forward, because to a small degree at least it can always be carried out, and because I have proved it time and time again to be a great asset to quick tuning in.

Calibrating Reaction

Put a dial on your reaction con-denser so that you can log the setting of the reaction condenser for each of your star stations when they are correctly and fully tuned in. It will have to be altered a

slight bit perhaps, but not so much as you might think. After all, the real DX man will keep his detector H.T. (and all the other H.T.'s for that matter) up to their optimum value, and what if you do have to change the detector valve? Doesn't everyone expect to re-calibrate a set if the valve in the rectifier position is changed? The next point concerns selec-tivity. On most sets there is some way in which selectivity can be varied. It may be by means of taps on one of the tuned coils, or by a series condenser in the avrial lead, or by some other means.

or by some other means.

The Best Setting

The Best Setting For general work it is usual to set such an adjustment to the position which gives the best all-round results, but for special work like we are considering this does not necessarily apply. Stations near to the local (in wavelength that is) will need greater schectivity from the receiver than those which are farther away and which are well separated from other powerful foreigners. So you want to find the best setting for each of the special stations of all the variable selec-tivity factors. And don't forget to note them down, or you will take "hours" tuning from one station to another, which is just what you want to avoid if the stations are to be used as real alternatives.

Remarkable Difference

Remarkable Difference Yet another point concerns the provide that you are using. The bigger a power valve is—that is to say, the more grid volts you can apply to it—the smaller is the mag-interior that you will obtain from the last stage (assuming valves of equal efficiency, of course). Since you will not, in many cases where the same power from the dis-tent stations as from the locals, you may quite easily be able to the distions as from the locals, you may quite easily be able to the distions as from the locals, you may quite easily be able to the distions as from the locals, you may quite easily be able to the distions as from the locals, you may quite easily be able to the distingtion of the lighting the distingtion of the lighting and the distingtion of a super-power valve for a modern steep-slope small-you may the first be inclined to. If the distingtion of a super-power valve the able difference to the results the distingtion of the older ones the distingtion of the older ones

obtainable on foreign stations. I think I have written enough to show you the idea in getting some worth - listening - to foreign pro-

so set to work right away on your "daily dozen." A. S. C.

" The World's Programmes "

November, 1932

MOSCOW. The Soviet Government now seems to be determined to change its policy of non-co-operation with other broadcasting authorities, and lines for relaying Polish programmes from Leningrad and Moscow are now being installed.

POSTE PARISIEN. An ingenious broadcast from this station is a gramophone record giving different types of interference caused by electrical machinery. It enables unlucky listeners to recognise the type of interference they are up against.

ARANJUEZ. The Aranjuez short-wave station at Madrid (30.4 metres) employs a power of 20 kilowatts.

DIVIS HILL. This is the sita, four miles inland from Belfast, on which the B.B.C. will erect the new Belfast Regional station.

HUDIKSVALL. This Swedish relay station is working provisionally on 226 metres.

LEIPZIG. The engineers erecting the 150-kw. station at Leipzig have found that all sorts of snags occur when such high power is employed, and the opening of the station was unavoidably postponed again and again.

HILVERSUM. The Dutch words "Wel te rusten,"

STATION INFORMATION

The very latest authentic information about "Le P'tit Quinquin "—Leipzig's Silent Night—Newcastle's Distinction—The Gong at Istanbul—Parisien Physical Jerks— A Swedish Relay, etc., etc.

often heard from Hilversum, are equivalent to "Sleep well."

LILLE. The quaint little air played on a musical box with which Lille P.T.T. closes on 2654 metres is a local tune known as "Le P'tit Quinquin."

RADIO-PARIS. The physical jerks programme now commences at 6.45 a.m.

BEROMUNSTER. The interval signal of the Beromunster (Schweizerischer Landessender) station is a repetition of two notes (striking clock).

RIGA. The power of the Riga station which works on 525 metres is to be increased from 15 to 50 kilowatts Its wavelength also is likely to be changed to a higher one.

G Y B. This Admiralty station, situated at Cleethorpes, now broadcasts a Naval Standard Exercise in Morse on Mondays, Wednesdays and Fridays at 10.30 p.m. on a wavelength of 4,444 metres.

BELFAST. It is hoped that the new Regional station for Belfast will be working before the end of next year. It will not be a "twin" like the other Regionals. KAUNAS. The power of this station is to be increased shortly. It occupies Europe's longest wavelength-1,935 metres.

ISTANBUL. The Constantinople station—i.e. Stamboul, or Istanbul—has for its interval signal a gong struck at the rate of 77 times a minute.

REYKJAVIK. A woman announcer is employed at this (Icelandic) station. She closes down with the words "Goda Nott" (Good-night).

TESSIN. The new Swiss station that is being erected near Tessin will make all its announcements in Italian.

BRESLAU. The Breslau programme is linked with Gleiwitz, and the "Goodnight" takes the form of "Breslau and Gleiwitz wish you a very good night. Do not forget to earth your (outdoor) aerials. Ladies and Gentlemen, good-night"

In German this is: "Breslau und Gleiwitz wuenschen Ihnen eine recht gute nacht. Vergessen sie aber nicht ihre hoch und aussenantennen zu erden. Meine Damen and Heren, Gute Nacht."

KALUNDBORG. Work on Kalundborg's new station is being pushed ahead rapidly in the hope of getting on the air by the end of the year. The wavelength will be 1,153 metres.

FRANKFURT. The word "Sudwestfunk," often used as an introductory announcement by Frankfurt, means "South-West Radio."

NEWCASTLE. Newcastle now has the distinction of holding the lowest of the B.B.C. medium wavelengths. It works on 211.3 metres, exactly three metres below Aberdeen.

OSLO. This station usually gives its main time signal at 7 p m., or, failing that, at 8 p.m.

*

AMERICAN **ANNOUNCEMENTS**

Particulars of the varied languages used by broadcasting stations in North and South America, which will make your short-wave listening easier and more interesting.

WHEN anyone speaks of "receiving America" we invariably think of the tongue used as being British, or, perhaps I should-say, American. And when we search for American stations we are far too inclined to listen only to stations employing our language and to ignore all others others

others. During 1932 conditions have been such that Argentine, Brazilian, Mexican, Cuban and other Latin-American stations have come in extremely well and have doubtless been passed over by many distance enthusiasts as being merely "late Spanhards." For this reason it is very much to the enthusiast's advantage to know something of the languages em-ployed by the various countries and stations of America.

Mexican Revenue

<text><text><text><text><text><text><text><text>

metres

A Curious History

A Control of Miscory X E D is a station with a history, for it belongs to a gentleman who originally owned a United States transmitter. Owing to the material broadcast the Federal Radio Com-mission refused to renew his licence, and so this gentleman left his studios in the United States, at EI Paso; Texas, and obtained permission to erect a high-powered transmitter just across the border, in Mexico. X E D is the outcome. I need hardly mention that this station employs both the British and Spanish languages. There other Mexican stations their employing two languages for announcements are X E J and X E Q, at Cindad Juares, which employ 300- and 399-metre wave-lengths; and X E P, Nuevo Larcdo, which works upon 214-2 metres. X E D is a station with a history

The most powerful of these trans-mitters is X E Q, which operates with a power of 1,000 watts. X E P comes next with a power of 200 watts, and finally we have X E J with a power of 100 watts. X E P is relayed by two short-wave transmitters, the most noted being X 26 A, which operates upon 30.4 metres.

Spanish-Announcing U.S. Stations

Stations Stations Although the southern states of the U.S., ti sobvious to the traveller and the radio enthusiast that they still have a strong element of Mexico In them. Many of the radio stations in the southern states announce in Eng-lish and Spanish, whilst several employ the latter language only. Contrary to the opinion held by many, Canada does not employ the English language alone for an-nouncements from its stations. At St. Hyacinthe we have C N R M (and the "plantom" stations C K A C and C H Y C), employing the French as well as the English language. C N R M enploys a power of 5,000 watts. upon 410-7 metres, and is well heard. Perhaps I should explain that heard.

neard. Perhaps I should explain that when I refer to "phantom" sta-tions I refer to stations that exist in calls alone, and are not repre-sented by a transmitter.

" Phantom " Radio

The reason for this somewhat peculiar state of affairs is that several firms employ the same transmitter, but different studios and call letters. The call letters under which the transmitter is licensed are the call letters of the station, and the remainder are "phantom" calls, and they are very misleading.

"phantom" calls, and they are "phantom" calls, and they are very misleading. On 340 metres there are two Canadian stations (of low power) that also employ the French as well as the English language for an-nouncements. These are CH R G and C N R Q (and "phantom" station C N R V) at Quebec. C H R C has a power of 100 watts and C N R Q-C N R V of 50 watts. Another low-powered transmitter making announcements in the two languages is C K CI at Quebec. This station employs the ex-tremely low power of 22:5 watts upon 480 metres.

Haiti's Broadcaster

Hait has one broadcast station that resembles Toulouse in being a wavelength wanderer. However, whereas Toulouse has improved, the Hait station, H H K, Port au

The language employed by this station is French, and a power of 1,000 watts is employed upon the wavelength of 325 metres, or thereabouts.

Many other Latin-American stations announce in English as well as Spanish, but in almost all instances only upon important occasions. L. W. O.

. A SHARED WAVELENGTH

The transmitter house and aerial masts of the Spanish station at Valencia. It works with 1.5 kilowatts and shares its wavelength of 267.6 metres with its compatriot, Oviedo.

HAND-CAPACITY" is one of the chief causes of fail "H AND-CAPACITY" is one of the chief causes of failure wave work. If you can't cure it by any of the usual methods, all of which have been frequently detailed in "M.W." then use extension handles on your variable condensers and bring the dials ont to a "failse panel" three or four inches in front of your proper panel. This should seldom be necessary with any up-to-date set, partieu-larly if the modern practice of covering the underside of the base-board with copper foil is adhered to.

board will copper foil is andered to. About aerials, it is as well to mention that results on the short waves are often just as good with a small indoor aerial as with a large affair strung up outside. The reason for this is partly that one can use tighter coupling with a small aerial, and make up for loss in strength in that way. Particularly if you live with your set in an upstairs room, it is worth your while to try a length of wire diagonally across the room, about a hool telow the ceiling.

You should find it possible with a good three-valver to receive American stations on the speaker yood. With a "two" it is unwise to hope for much in the way of oudspeaker work, although it can be done. For information regarding "con-ditions" prevailing, new stations the old-stagers, watch "On the Short Waves" each month. Under that heading I do my best to fore-cast, month by month, the state of the short-wave ether.

It Can Be Done

It Can Be Done Make up your mind not to admit that you are beaten if your first trial is not a success. If can be done—thousands of readers like yourself are doing it—and the little extra difficulty just serves to make it more interesting. Reception conditions should be have had a very bad spell, the general level of reception should now be on the up-grade once more. W.L.S.

November, 1932

THE steady conquest of shorter and shorter wavelengths by the amateur transmitters is

the amateur transmitters is a well-known piece of radio history. Incidentally, the great activity at the present time among the amateurs on the 5-metre band leads

the present time among the amateurs on the 5-metre band leads us to believe that the downward novement in not yet finished. The most striking fact that has come to light as a result of the whole movement is, of course, that the short waves vary almost unbelievably in their behaviour as one goes steadily down from 100 metres. The amateur trans-nitters are allowed to use five bands in "harmonic relation." centring roughly round 34, 42, 21, 10'5 and 5'25 metres. In between these regions we have the Washington - allotted broadcast bands in the neighbourhoods of 49, 31, 25, 19, 16 and 14 metres. Since these comparatively narrow bands, eleven in number, exhibit eleven completely different tests of characteristics, it will be seen that the study of "short waves" becomes a complicated matter

Before Broadcasting

Before Broadcasting Let us consider very briefly the differences that can be noted between these various wave-bands. In 1922, just before broadcasting commenced, the great majority of auateur transmitters were using the 150-200-metre band. Commu-nication was easy and reliable up to about 300 miles, but for a long period nothing very much in excess of this was covered. In 1923, however, improved receiving and

period notting very much in rexcess of this was covered. In 1923, 'however, improved receiving and transmitting gear made possible, on: this band, the first two-way work across the Atlantic. At about the same time the Americans had found that the "useless" band in the region of 100 metres that had been allotted to them exhibited greater poten-rialities for long-distance work. than the 150-200-metre band. Accordingly the amateurs moved down to 100 metres, where two-way transatlantic work became a commonplace. On this band, too, the first reception oi New Zealand took place, and also the first two-way work with Australasia. **Thousands of Miles**

Thousands of Miles

In spite of bad conditions, similar work is still possible on the 80-metre band to-day-100 metres not being available for amateur work.

amateur work. Broadly speaking, the character-istics of the 80-metre band are that work up to 500 miles is easy by darkness and possible by day-light, and that suitable choice of time and season makes possible the covering of distances of the order of 5,000 and even 10,000 miles without any great difficulty.

For "local" work the band is useful continuously from a distance of 50 miles up to 200 miles, although between 10 and 50 miles there is liable to be a "dead" area. The next band to be explored— in 1925 and 1926—was the 45-metre band, sufficiently -similar to the present 42-metre band to be considered as identical.

Transatlantic Work

Transallantic Work The changes noticed when this band first came into general use vere these: local work was less reliable, the "dead" area extend-ing from 10 miles up to 150 or 200 miles; transatlantic work was very much easier, and lower powers could be employed; and two-way work with the Antipodes ceased to be a rarity. In many ways the 42-metre band is still the best for DX work, and in the winter senson all parts of the world may be received in this country without any great diff-

country without any great difficulty. In the late evenings North and

culty. In the late evenings North and South America are heard; in the carly mornings and late afternoons the Antipodes and sometimes the Far East are in evidence: while the few hours before and after non seem to be of little use except tor comparatively local work. By 1927 the next "downward step " was well under way, and the amateurs of this country had discovered that the 21-metre band the anateurs of this country had discovered that the 21-metre band the anateurs of this country had discovered that the 21-metre band with Australia and New Zealand. The local ".skip," as one yould have expected, was lengthened signal, fading out after ten miles or so, was not received again up to adstance of 600 or 1,000 miles in disting "Distances

" Skip " Distances

"Skip" Distances This "skip" depends greatly not openeral conditions-believed to follow the eleven-year sunspot type result that for certain periods the year it is so great that the crasmitted signals do not appear. "Brobably the truth of the matter is that at hose particular periods transmitted from this country are fofted down into ectain parts of the world where no receivers statt. This seems more than probable when one looks at a globe

the odd way in which short waves behave on the various bands from 100 metres downwards.

Arroug bands from a and observes the large areas of uponiated land area. As one might expect, the "p28-9) shows an exaggerated protection of the characteristics of p28-9) shows an exaggerated protection of the characteristics of p28-9) shows an exaggerated protection of the characteristics of p28-9) shows an exaggerated protection of the characteristics of the 21-metre band. In 1929 and protection of the characteristics of the 21-metre band, in the "p28-9) shows an exaggerated protection of the characteristics of the 21-metre band. In 1929 and protection of the characteristics of the characteristics of "fround-wave" signals has been found-"fround-wave" signals has been found-"fround-wave" signals has been found-"fround-wave" signals has been to the characteristics of the characteristics of

Five Metres

Five Metres The 5-metre wave band is the latest "discovery," but no long-distance contacts whatever have been made, as yet, on this wave. The ground wave is readily absorbed, and work over nore than five miles appears to be impossible unless the transmitter is situated on high ground. Experiments with a transmitter out recently fir - America. have resulted in the estab-ils hing o l contact over distances of 115 miles, and

115 miles, and probably this record will have been have been broken by the time this ar-ticle appears in print. Experiments carried out by the writer with a portable receiver in a car indicate that several curious effects take place on this band. When the receiver is tuned to a fixed transmitter it is frequently found that in a given spot signals are strong, while a "roll" of five or six yards with the car brings one into a completely dead spot. into a completely dead spot

Striking Effects

This effect appears to be present,

This effect appears to be present, to a lesser degree, with waves of 21 and even 42 metres; but on the 5-metre band it is so marked that the results appear incredible unless one has carrled out the experiment oneself. It is a fact, as one would expect, that the "broadcast" bands exhibit the characteristics that one would predict from them, hav-ing studled the behaviour of the amateur bands. Thus the 49-metre wave is probably the most reliable for transatlantic work, although the 25-metre and 19-metre waves are productive of stronger (though less reliable) signals. The 31-metre

productive of stronger (though less reliable) signals. The 31-metre wave is the best for signals from the Antipodes; and the shorter bands are the best for summer and. daylight working. Of the probable behaviour of the new 7-metre band it is hardly possible to hazard a guess at the moment. It appears that the original suggestion 'that it will be purely 'local' and productive of very productive of very strong and reliable signals over signals over short distances is likely to be quite correct.

463

" The World's Programmes"

It is a far cry from England to Java, the island in the Indian Archipelago. large So universal, however, is the appeal of radio in the modern world that even in the tropical regions we find broadcasting in full swing.

I F you glance at the map for a moment you will notice a trio of large islands in the Indian Ocean forming, roughly, the shape of a triangle. They are Borneo, Sumatra and Java. Java is the smallest of theso islands. Nevertheless, as things go, it is a very rich and prosperous country, and in many directions it is well in advance of its sur-rounding islands. This to the credit of the Dutch colonists that radio has been able to develop to so great an extent in the Dutch East Indies.

Multitude of Amateurs

Multitude of Amateurs There are seven or eight official wireless stations in Java alone, besides a minor multitude of anateur transmitters. Naturally, the majority of the official stations, which have been erected by the Dutch Government postal authorities, are used solely for official purposes. One of these stations, however, runs a broad-casting service three times a week as a sort of side-line for the benefit of the white inhabitants of the island. island

Radio is popular in Java—as popular as it is in this country. You cannot traverse any portion of the civilised territory without coming across aerials, either of the receiving or of the transmitting variety.

Most of the radio transmissions in Java are carried out on short waves.

waves. Some of the stations transmit telegraphy only. Others confine themselves to telephony, whilst others, again, indulge in the amenities of both 1 Most of them are empowered to operate upon one of two wavelengths.

Beam Reflector

<text><text><text><text><text>

Too Hot for Talks

On Wednesdays, Fridays and Saturdays, between 13.00 and 16.00 G.M.T. it becomes a broadcaster pure and simple

The programme material which it serves up to surrounding listeners

varies. Normally, it is made up of concert and news items, weather reports and occusional informative talks. But they don't overdo the talks in Java; the climate is too hot for that ! Thus it is that light entertain-

throughout the greater portion of the year, the majority of the Bandoeng radio laboratory's radio investigations are concerned with the practical problems of short-wave working, and also with those concerning the efficiency of atmo-spheric-climinating instruments and circuits.

A Fine Station

The Bandoeng radio laboratory utilises the services of three transmitters. Two of these

transmitters. Two of three broadcast telephony on 17.4 metres, and the third has a choice of 19.4 and 30.2 metres for telegraphy only. Putting aside broadcasting ac-tivities, however, the Dutch authorities in Java can boast of a very fine high-power station at Walabar. This station employs the arc system of transmitting, and its function is to establish continual communication with the Dutch Government officials in Holland. The arc transmitters at Malabar

Holland. The arc transmitters at Malabar —there are two of them—develop 200 and 2,400 kw. respectively. The Poulsen arc is used. In one of the transmitters a Telefunken

WHERE TESTS ARE MADE

A corner of the radio research laboratories at Bandoeng, where Dutch engineers are engaged upon solving the problems not of Javanese transmitting stations, but of radio technique in general. Short-wave working and atmospheric-eliminating apparatus are chiefly dealt with.

apparatus are c ment, served up as daintily as possible, forms the main food of the broadcasting microphone at Bandoeng. Actually, the station is located in the Government buildings at Bandoeng. It is replete with a very confortable, if not over-luxurious, studio, a control-room and a transmitting-room. The transmitter sends an S-amp. current into its aerial. It is fed with double-rectified A.C. at, approximately, 12,000 volts, 500 cycles, which power is derived from the Dutch Government generating establishment at Bandoeng. Radio Laboratoru

Radio Laboratory

Radio Laboratory At Bandeeng, too, is located the butch Government radio labora-tory, an institution which is of nuch importance, and which is due in very large measure to the energies and activities of the late energies and activities of the late pr. C. J. d. Groot, a Dutch radio pioneer, engineer and enthusiast. The radio laboratory at Bandeeng not only deals with the problems of the various radio stations throughout the island of Java, but it is also actively engaged upon radio research itself.

Atmospherics

This research is both of a pure and an applied nature. It is not surprising, however, for us to learn that in a land given over to atmospheric disturbances of a more or less severe character

H.F. alternator is employed. This alternator system is a great favourite with the Dutch. A similar Telefunken alternator is in use at the Tjililin station.

The official long-distance re-ceiving station of the Dutch East Indies is situated at Rantja-Ekek, a tiny village which is merely a collection of hutments, and which I am sure you will not find on any

I am sure you will not find on any map. Whilst the Rantja-Ekck station receives principally transmissions from Holland, it can be used as a receiver for any other station. The Rantja-Ekck station cannot transmit, but it is in telephonic communication with every trans-mitting station in Java.

SHORT NOTES on the SHORT WAVES b *****

The popular Tuesday alternoon concerts from Bandoeng, Java, have been discon-tinued indefinitely, owing to 6'the bad times," according to a letter from the station director.

The two Canadian stations, VE9JR and VE9CL, both at Winnipeg, used to be well received in this country, but closed down for a long time. By the time this note appears they will be in regular operation again on 25.6 metres and 48.85 metres respectively.

The Bowmanville station, V E 9 G W, now works on 25'4 metres and 49'22 metres simul-taneously, with a power of half a kilowatt.

The "smallest broadcasting sta-tion in the world"—little T14 N R H, Costa Rica—is now working on 19°9 metres as well as 31 metres. This station, though rated only at 7½ watts, has been heard in this country several times, and should be easier to find on 19°9 metres than the higher wave. We have also beard that an increase in power is contemplated. power is contemplated.

El Prado, Ecuador, has shifted from 39.8 metres to a new setting on about 45.3.

Several telephony stations are working from Cairo to England apparently as a preliminary to the establishment of a regular 'phone service. SUV, SUW, SUX and SUC have been heard on various wavelengths between 40 and 25 metres.

POWER FOR TJILILIN

The Telefunken high-frequency alternator system is a great favourite with the Dutch. The alternator and switchboard which you see here are employed at the Tjililin station which transmits on two wavelengths, 26'2 and 40'2 metres.

"The World's Programmes"

MODERN WIRELESS

ON LONG WAVES

A FEW weeks ago it was being said that all sorts of exciting things were going to happen on long waves, including the full-dress appearance of the much-talked-of Luxembourg station. Test transmissions on low power from Luxembourg on about 1,200 metres had shown that work was well advanced there, and it was confidently predicted that at any moment one might hear the new transmitter in full blast.

On 1,200 Metres

For these reasons many readers gave, as I did, special attention to the stations over 1,000 metres. And no doubt the majority got sick and tired of the 1,200 metre dial-reading, for Luxembourg delayed his appearance —except possibly as a feeble test programme. And even Reykjavik, said to have been coming over well on the same wavelength, failed to score on my aerial.

Nevertheless, there was plenty of interest on the long waves, and time spent in tuning over them was well repaid.

My surprise station was Leningrad, who works on 1,000 metres. As you probably know, this is one of the worst wavelengths—if not the very worst—allocated to broadcasting. It is adjacent to the wavelengths of those never-stop sinners, the directionfinding or "beacon" stations round our coasts, and there is no more annoying jamming known than the twenty-four-hours-a-day reiterations of these stations.

Leningrad Again

But Leningrad has developed such a punch that on many occasions he emerged quite head and shoulders from the medley of Morse around him. Unfortunately, his programmes are almost always talks, in Russian; and anything less pleasant than a Russian talk, completely swamped in Morse, is impossible to imagine !

No one could stand it long, but I confess to frequent visits to that part of the dial just to confirm Leningrad's quite remarkable strength.

If, as is stated, the Soviet Governments come into line with the rest of Europe and co-operate as regards wavelength positions, this will be a station worth watching.

Oslo and Kalundborg

A little higher up the dial was Oslo. And his strength, on many occasions, has been simply gigantic. On several evenings Daventry, Radio-Paris and Oslo stood right out above all other stations, which is "going some" for Oslo considering his 720 miles away aerial !

Kalundborg, just above him, although good was generally compelled to take a back seat, which is against all my experience of these two stations.

Near the middle of the dial Moscow Trades Union was good, and Motala was usually a lot better, while Warsaw and Eiffel Tower were both good companions. Warsaw is not as strong as last year, I fancy, and when "Eiffel" was on at the same time it did not generally pay to bother with the Pole.

Radio-Paris, on 1,725 meeres, has

behaved like a gentleman. Always

urbane, punctual, and efficient, he is

undoubtedly one of the South of

England listeners' brightest stars.

And Konigs-Wusterhausen, just below

him on 1,635 metres, is a no-account station by comparison.

Heard Huizen? Right at the top of the dial is our old friend Huizen, on the 1,875-metre mark, and this is another programme which seems to have less vigour than at the corresponding period of the calendar last year. Incidentally, henow really is Huizen, announced as such, until the end of the year, when the Hilversum announcements will go out from Huizen again.

The chief blot on the long-wave landscape at the moment seems to be Morse, and the extremely good, easy-to-get programmes often suffer from the dash-dot merchants, or from the heterodynes which they originate. Some of the French stations seem to almost tear the air, while our own GF's are no soothing syrup when one is settling to enjoy a programme that can be pierced by their penetrative patter ! But on the whole the long waves have been splendid. D.X.

465

Pictures from Paris of A CLOCK THAT SPEAKS THE TIME

9 8

In England, it you want to know the time you ask a policeman, or ring up your telephone exchange and ask the operator. Paris has gone one better, and the job will be done mechanically by this fiercelooking apparatus. The inventor, M. Nimier (seen above with his assistant), says it's quite easy—when you know how!

The system used is similar to that of some talking films. A record has been made announcing, in speech, each hour, each minute, and each period of ten seconds. When this record is synchronised with the master clock, any telephone subscriber calling the number of the Paris Observatoire gets a spoken record of the exact time.

The first three pictures give you a general view of the apparatus at the Observatoire, showing the master clock together with the synchronising motor and gears The piece of apparatus on the right—which looks rather like an outsize tuning coil—is the drum on which are cut the sound tracks. The three black boxes, surmounted by miniature "towers," are the amplifiers with their valves.

THE WARDEN OF THE WAVELENGTHS

Pictures and Paragraphs about the European Check Station at Brussels which watches the wavelengths of all stations.

Thermostatically - controlled wavemeters are used to ensure

wavelength accuracy in the Brussels Checking Station.

The wavemeters have to be kept at a standard temperature to ensure constancy of calibration. A drop in

temperature causes the ther-

In the circle, Raymond Braillard, President of the Union International de Radiodiffusion's delegation to the Madrid Conference. The tome he is studying contains 1,600 pages of suggestions for the Madrid Conference to consider!

34 34 A

Above is M. Braillard's secretary, filing correspondence from the "naughty" stations who wobble from their allotted wavelengths.

ste ste

Two of the staff of the Brussels Check Station are noting and adjusting wavelength measurements in the illustration on the right. Note the special switchboard for controlling the various circuits and meters.

D URING the last few months I have received American medium-wave stations at poor to moderate strength, despite the fact that summer was with us. This led me to expect an exceed-ingly good winter in this con-nection, and we certainly seem to be heading in that direction, for although winter is barely a month old, American stations are combing in at excellent strength almost nightly.

A Newcomer

I should perhaps mention that for all the American reception mentioned this month. I used a newcomer to my receivers. This is a chassis-constructed mains receiver, and it employs oue screened-grid H.F. stage followed by detector and one transformer-coupled L.F. stage.

Poor Signals

I am extremely pleased by the fact that K D K A comes in well, for it is situated above 300 metres and, as readers will doubless remember, stations above that wavelength have provided com-paratively poor signals during the last couple of years. The fact that K D K A came in well leads one to think that it is probable that

WHAT THE DISTANT STATIONS ARE DOING

The latest notes on reception conditions compiled after a month of listening to the stations of the world.

stations above 300 metres will come in as well as those below that wavelength during the coming

Winter. Ou one occasion I tuned in well On one occasion I tuned in well over twenty stations, and verifiel, by calls, many of them. Amongst these were: W T A Q, Ean Claire, Wisc.; W J A S, Pittsburg, Pa.; W C A U, Philadelphia, Pa.; W H A M, Rochester, N.Y.; W PG, Atlantic City; W T I C, Hartford, Conn.; W C F L, Chicago, III.; W C S H, Portland, Maine; W I O D, Miami Beach, Florida; and W R U F, Gainsville, Florida.

Moderate Haul

Although not so well represented as the United States, South America provided a moderate haul, for I received four Argentine Republic stations, besides several unrecognised Latin-American sta-tions tions.

I have to admit that this was a " star", night, for on this occasion I received several American stations during daylight at the receiving end.

during daylight at the receiving end.. By 5.45 a.m. on this occasion I had tuncd-in numerous stations and "settled" upon a particularly powerful signal. At 6 a.m. I was informed by the American an-nouncer that I had been listening to the Pavilion Royal dance orches-tra, under the direction of Tony Clines, from WP G, Atlantic City. This station then closed down with a profound "Good-night, every-obdy" from the announcer. There were still three American stations audible at good 'phone staten, despite the fact, that it was now quite light, and, tuning h-

one of these, which I fancy was W I O D, Miami Beach, I listened to dance music until 7.5 a.m. It is quite a common occurrence to receive American stations upon the short waves fluring daylight, but it is seldom (indeed, I have never heard of it) one hears of medium-wave American stations-being received under similar con-ditions. However, as I have experienced similar reception on a number of occasions since the occasion just related, I have come to the conclusion that many reports of similar reception would have been made but for the fact that, American stations presuming to be received only during darkness, listeners have not "tried" for them during daylight.

Europe Affected

As would be expected, the im-provement of conditions upon the medium waveband had effected European stations considerably. Many stations unheard for a considerable time have been heard to trend strength bedde wave

Anny stations thineard for a considerable time have been heard at good strength, besides many which have not been heard before. France has provided a host of alfernative programmes and sta-tions, and, although the purity is lacking in many instances, volume is nost decidedly not. Amongst the French stations I have received during October are Grenoble; Lyons P.T.T. and Radio-Lyon; Paris P.T.T. and Radio-Lyon; Paris P.T.T. and Radio-Lyon; Paris P.T.T. and Superieur, Radio LL, Radio Vins; Marseilles P.T.T.; Bordeaux P.T.T and Sud-Ouest; Montpellieur; Rennes P.T.T.; Nimes and Strasbourg P.T.T. From the

above list, which will provide readers with a useful list of stations that are coming in well, it is obvious that I have not mentioned the higher-powered Frenck stations, such as. Radio Toulouse, Poste Parizien, etc.

Best Signals?

As the evening wears on so, do more and more stations make their appearance from the west, one of the best being W-8 X K, Pittsburg. After midnight, numerous Ameri-can stations commence broadcast-ing and so add more alternative programmes to the selection already audible. Those stations providing

audible. Those stations providing the best signals around this time are : W-8 X A L, Cincinnati; W-3 X A L, Boundbrook; W-9 X F. Chicago, and V E-9 D R. Drum-mondville.

Closed Down

Closed Doien Several changes have recently taken place amongst the Amërican short-wave broadcasting stations. Firstly, the well-known New York station, W-2 X E, has closed down indefinitely, a great loss to listeners. Secondly, I X AZ, Springfield, has increased its power to 1,000 watts, and is now on regular schedule (12.30 p.m. to 4 p.m., daily). L. W. O.

Short-Wave Gossip

Gossip By the time you read these paragraphs, Radio-Nations, the new transmitter of the League of Nations at Geneva, will be "well away." At the time of writing, the wavelength used is 40°3 metres, and signals are not very strong in England, doubtless because the programmes are not intended for Furropean reception at present. I hear, however, that a separate wavelength and aerial system for European broadcasts will be put into use later on. The best DX broadcast stations at the time of writing seem to be W 3 X A L (49°18 metres), and Rio de Janeiro (P RX A) on 31°5 metres. The latter is con-sistently better than any of the North Americans, with the possible good days.

good days.

Most Reliable

Most kernore The 49-metre group are easily the most reliable, and one can be sure of finding most of them at some sort of strength practically any night after 11 p.m. The same cannot be said of the 32- or 19-metre groups, which are tremen-dously strong on good days and completely absent on bad ones! The total number of active broadcasting stations between 70 and 13 metres, is now over 100. Short waves are coming into their own at last. W. L. S.

Conditions in Winter

Winter The time has arrived for our three-monthly survey of conditions to appear once may sound, we must talk about short waves and winter. Winter is usually the best season of the year for the short-wave enthusiast, not only on account of the dropping-off of outdoor acti-vities, but hecause conditions are usually pretty good from November to exter, or even later. Reference To my famous log. which has been faithfully kept since 1922, and is, by the way pecoming quite a fait-sized one by now, shows that the general evel of winter conditions has alyasy been well above that for

The Best Times

The following conditions gener-ally hold good for the reception of various parts of the world. The times given are, the, best, times, not by any means the only times at which the countries or conti-nents mentioned may be heard.

Below 30 metres :

Australia and New Zealand: 06.00-00.00, and, in the New Year, also 14.00-16.00. Asla: 12.00-16.00 (Far East), and 11.00-23.00 (Near East). Africa: 16.00-20.00 (South

Now that the winter is really upon us we may expect snow any day now !--our short-wave expert deals with winter reception conditions and offers some items of interest concerning the short-wave stations.

Africa), and all day (North Africa). South America : 21.00 onwards. North America : Variable, but generally 14.00 onwards. Fade-out varies between 22.00 aud 18.00, according to the hours of darkness.

Above 30 metres .

Australia and New Zealand : 05.00-08.00 and sometimes 17.00-21:00

21:00. Asia: 14.00-20.00. Africa: 19.00 onwards (South Africa), and 14.00 onwards (North

Africa) South America :- Somewhat rare at any time, but 23.00 onwards most

at any time, but 23.00 onwards most favourable. North America: 22.00 onwards. Times are, of course, in G.M.T., and apply alike to annateur, trans-missions and short-wave broadcast, although in the "above 30 metres" section the hest thinks are naturally rather later for the 49-metre group of tatiane thou for the 39 metre group. Tatalons than for the 49-metre group of stations than for the 32-metre group. I am going to keep a careful check on short-wave broadcast this winter, and will see how near to the truth this list has been. Perhaps some of my readers will do the sanie.

THE OSRAM "THIRTY-THREE"

A handsomely finished, easy-tobuild set for the home-construcior. Built up and tested

By an "M.W." Technician.

THE managing-director, chairman, junior clerk or whoever it was who first realised that it would be a profitable as well as an acceptable gesture to include complete sets of components for home constructors in the range of commercially-built radio receivers thoroughly deserved the increased salary which he was undoubtedly given.

There is a great deal of satisfaction in knowing that your receiver is of the most recent design and will give just the results which you demand. But there is also another and no less pleasing satisfaction in the knowledge that you have built such a receiver with your own hands.

Years of Research

The General Electric Company is one of those firms which has had the foresight to realise that, by giving the benefit of years of research work to the home-constructor, the reputable manufacturer fulfils the needs of the man with a slender purse without sacrificing anything of his own reputation.

Which explains why advent of the annual addition to the Osram Music Magnet range is awaited as eagerly

INSIDE FACTS

What the "Thirty-Three" looks like inside. A sturdy affair, isn't it? The performance is like that, too—strong and reliable.

The fine-looking bakelite cabinet which is a feature of the Music Magnet.

by radio enthusiasts as is the latest Morris design by the motorist, or the Irish Sweepstake by the gambler.

Highest Marks

The "Thirty-Three "Music Magnet has probably been commented upon more for its external appearance and its working performance than for its design.

But while the *gourmet* may consider that the proof of the pudding is in the eating, the *chef* must be chiefly concerned with the simplicity of the recipe.

Therefore, the highest marks must be given to the General Electric Company not so much for having produced an excellent receiver, as for the easy and pleasant task which they have set the constructor.

There is not in existence to-day a construction chart more carefully thought out and sensibly prepared than that which accompanies the Music Magnet. Were all the advertisements of this receiver to be blazoned with the slogan "It is Impossible to Go Wrong," there is no one who would have a word of adverse criticism to offer.

Popular Circuit

But the real charm of this chart lies in the fact that it does not abuse the intelligence of the man with commonsense, yet it leaves nothing to chance.

The "Thirty-Three" Music Magnet is priced at nine guineas. It employs a variation on that most popular screened-grid, detector and power output arrangement which the majority of medium-priced receivers delight in.

The screened-grid H.F. amplifier is there, of course. And a second screened-grid Osram valve is used for detection, provision being made in the grid circuit for the addition if desired of a gramophone pick-up.

The output stage is transformercoupled to a power triode of the usual type. This gives sufficient undistorted output to operate, at good strength, the loudspeaker included with the kit.

ALL ADOUT THE SET
ALL ADOUT THE SET
Number of Valves. Three.
Circuit. S.G. H.F. stage ; S.G. detector ;
Power output.
Features. One-knob tuning, separate
trimmers for medium and long waves,
magnetic loudspeaker with floating
cone, connections for gramophone
pick-up.
Cabinet. One-piece monIded bakelite-
walnut graining.
Price. 9 guineas (with valves).
Makers. General Electric Co., Ltd.,
Magnet House, Kingsway, W.C.

One Knob Tuning

Of the four controls, three are on the front of the cabinet, the "on-off" switch being placed at the back of the metal chassis. There is only one tuning knob controlling the two ganged condensers, and of the other controls one deals with the wavechanging and the other is the reactionvolume control.

The Music Magnet was tested in London under conditions bad enough to constitute a real test of merit. Tuning is delightfully easy and the selectivity is such that all the British and continental broadcasting stations which one would expect to receive are obtainable at good strength.

Excellent Investment

While the "Thirty-Three" Music Magnet should delight the man who likes to "play about" with his set for distant programmes, it is eminently suitable for the enthusiast who wants several alternative programmes of real entertainment value.

Whichever way you look at it—an excellent investment.

T HE awakening of general interest in short-wave radio is apparent on all sides, thanks largely to the fact that the Empire broadcasting station really is under way and promises to be one of the

This month "M.W.'s" shortvave expert deals with a number of topics of absorbing interest to short-wave listeners and all wireless enthusiasts. You can read this article with enjoyable appreciation even if you do not tisten on the higher frequencies. W.L.S. is himself so wholeheartedly enthusiastic about the "ultra-shorts" that he cannot fail to afford enjoyment to those who read his articles on the subject.

best short-wave stations in the world. I receive my fair share of radio journals from foreign and Colonial parts, and the latter especially are "all hot and bothered" at the prospect of hearing some real programmes from the Old Country at last.

Whether there is any real justification for it or not, most of them have been treating G 5 S W as a huge joke, since in most parts his signals do not seem to have been comparable with those from other European shortwave stations. When the real Empire station starts up, however, they are all hoping to be able to say how proud they are of the British station.

The "Ultra-Shorts"

Marconi's success in transmitting over a distance of 170 miles with a wavelength of 57 centimetres points to developments in this direction by the amateurs of the world. One of the amateur bands is in the neighbourhood of this wavelength, and up to now very little has been done. The limiting factor has been that the waves are believed to travel only in straight lines, so that the curvature of the earth has limited the distance that can be covered to something very small indeed.

Marchese Marconi appears to have surmounted the difficulty somehow, and "QST," the A.R.R.L. journal, says: "If it is true, just let us amateurs have a whack at it for about six months--"

Madrid and the Future

The other big thing for short-wave folk is, of course, Madrid. The general allocation and restriction of short waves to the various sections clamouring for their use is a vastly important matter, and we are sure to see some changes. Personally, I rather expect to find the short-wave broadcast bands widened or increased in number.

THE LATEST IN "PORTABLES" FROM GERMANY

A mobile short-wave transmitter recently shown at the Berlin Radio Exhibition. Although this outfit was developed by the German Post Office authorities, readers will no doubt recall that our own B.B.C. originally employed a "wireless perambulator" to transmit one of the early outside broadcasts from the London Zoo.

But that is only my own private opinion. 1 have no "inside knowledge," and neither has anyone else that is not actually in Madrid !

The present short-wave broadcast bands are, considering the limitations

of short waves, quite wide enough. One doesn't often hear two short-wave stations heterodyning, for instance. There are, however, more stations arriving on the air every month, and one can see the distinct possibility of an interference problem arising in about a year's time if some alterations are not made.

Active Stations

As a concrete example, the Empire station is going to transmit in the 49-metre and 32-metre bands. Listen on the former after 11 p.m., or the latter during the early evening, and you will find quite a goodly crop of stations on the air.

There are, as a matter of fact, just about a level hundred active broadcast stations between 70 metres and 12 metres; not bad going when one realises that in less than eight years the short waves have been developed from a completely unknown quantity to a very important branch of radio.

l cannot see, at the moment, that there is much left to do in the way of development of transmitters or receivers. As I have often said, anyone can make a shortwave receiver that is "louder" than the previous one. Unfortunately, "loudness" still seems to be the standard by which they are judged, and it is absolutely wrong.

Loudspeaker Results

The receiver that is wanted is that one that will receive stations that are known to be " on the air," but which have not yet been heard here. There are plenty of them, and our receivers are quite sensitive enough to find them if it were not for the eternal problem of background noise. I am convinced that this latter is going to be the limiting factor to the usefulness of short waves during the next few years.

The position, as I see it, is this: That, at the moment, a large, supersensitive short-wave receiver will give *excellent* results on the better-known, more-powerful stations, whereas a small receiver—even a single detector valve—will be infinitely more useful for finding the really weak stations that are submerged in the background noise of the ether.

FOR ROAD AND AIR TRAVELLERS

The Automobile Association now serves the needs of both motorists and aviators, and has established this wireless station for the dissemination of weather reports to its flying members.

When we find that we want a large receiver for powerful stations and a small one for weak stations, surely it is time to get down to it and kill this background business as far as we can.

I am still looked upon as a crank (but a lucky crank) for my views upon single-valvers and the results I " somehow manage to get " with my own, but I am spending many hours on developing a larger receiver that will give real loudspeaker results without the introduction of more mush.

The lines I am working on at the moment are these. I am using an untuned screened-grid stage with the filament voltage cut down; this gives no amplification, but certainly causes no loss, and makes the set infinitely nicer to handle. The detector is the part of the set that does all the work, and is as " hot " as I can make it bytesting it out all on its own.

Increased "Mush"

The L.F. side uses resistancecoupling only, with the very best quality resistances and condensers I can get hold of, and carefully chosen valves. So low is the background level on the preliminary model that I don't think I have lost anything over the

" single."

With transformer coupling, however, I can demonstrate to anyone who is interested that a signal that is very. very weak on one valve disappears completely when the transformer-coupled stage is added, just because the signal goes up by some 400 per cent, while the mush goes up to the tune of 600 or even 700 per cent. Under these conditions the signal is just "submerged," on going back to the singlevalver it is found again without any trouble.

"Band-Spreading

Here is an idea that is well worth trying out by those who are interested only in short-wave broadcasting. Note where each of the broadcast bands comes on your tuning condenser. Probably, in an average case, with the "middle-size" coil in use, the 32-metre band will be down near the bottom, and the 49-metre band either at the middle of the dial or somewhere near the top. The idea is to arrange so

that a separate coil is used for each band, the band itself being arranged to come right at the bottom end of the tuning scale. Take your "30 to 50" coil, for instance, and put on one or two more turns so that the lowest of the 32-metre broadcasters is right at the very zero end of your tuning scale.

More Turns

Now make another coil, on similar lines but with more turns, so that the 49-metre band can be brought right down to the bottom end. Do the same with the 25-metre and, perhaps, the

19-metre bands, until you find that each well-known group of stations occupies only a few degrees right at the bottom of the dial.

Next step—either pull your condenser to pieces and remove several plates, or insert a very small fixed condenser in series with it, so that each band spreads out and occupies most of the dial.

All the foregoing, for the benefit of the less expert, is a long-winded way of telling you to use a very small tuning condenser and to cut your coils exactly to the broadcast bands. The above is the easiest way I can think of for achieving that object.

Eliminating Morse

Now consider the advantages. First, tuning is childishly simple. Secondly, signal strength should be greatly improved, since you are using the highest practicable ratio of inductance to capacity—always worth while. Thirdly, you can demonstrate your set to friends without being told that "these short waves are all Morse." With luck you won't have any Morse stations in evidence at all.

Someone ought to produce a commercial short-wave set on these lines.

When one considers that the 32- and 49-metre bands are infinitely farther apart than the two broadcast bands (250-550 and 900-2,000 metres), ithardly seems logical to attempt to

A SHIP-TO-SHORE INSTALLATION

A modern coastal wireless station for communicating with ships at sea. It is a 3-kw, installation and was built by the Marconi Wireless Telegraph Co, for a new Greek station near Athens.

cover them on one swing of a condenser.

A broadcast receiver with a similar tuning range to that of the average short-waver—5,000 kc. or more on one coil—would tune from 60 metres it was first formed in the days when it was a distinction to own the most elementary kind of radio (sorry, "wireless"!) apparatus. It has always been a body catering for the more advanced experimenter, and,

AN AID TO INTERNATIONAL POLICE CO-OPERATION

A special short-wave receiver installed at police headquarters in Berlin. The set is permanently tuned to a Hungarian transmitter, so messages can, therefore, be sent without any delay from one country to the other, and thus ensure the apprehension of criminals attempting to escape across the border.

to 300,000 metres on a single coil. Just imagine picking out the two broadcast bands on *that*.

A Short-Wave Club

I have come to the conclusion that we need a Short-Wave Club in this country. I mean an organisation for the benefit of short-wave listeners who treat the whole business as a pastime rather than a scientific pursuit. The

Radio Society of Great Britain, by a kind of mutual consent, settled down into a Trans-Society, mitters' just as the National Radio Societies of several other countries have done, and there now seems to be a crying need for some sort of club for the less advanced people.

It was quite natural, I suppose, for the R.S.G.B. to develop into a society for the transmitter, since naturally, when radio became universal, the advanced spirits took up transmission, which is the most difficult part of the game.

If anyone has any ideas about the formation of a society or club for short-wave enthusiasts only, I wish they would get into touch with me, via MODERN WIRELESS. I am thinking, of course, of a real

I am thinking, of course, of a real society that can hold meetings, rather than one that holds its members together only through the post or by means of a published journal.

Sir,—Thank you for such a fine set as the "Diodion," it is ultra-selective, as you claim. London stations cut out within one degree; very good for my particular district. A friend also was surprised at it, although he possesses a well-boosted set. Wishing you success in your future publications.

Yours truly, P. A. GILBERT. Upper Clapton, E.5.

The chief function of the value is that of amplification, and the two N-diagrams given this month will be found useful in exhibiting the relation of mutual conductance to the various grid-volts and anode-current changes when a value is operated with fixed anode potential.

Those readers of MODERN WIRE-LESS who have been following this series will remember that in the issues of July and August last we considered—in a very general way—some aspects of the ordinary triode valve. It was shown then that the process of amplification is more concerned with the variations in the voltages and currents in the valve than with the mean or average values, though, of course, these average values must be approximately correct if the valve is to work properly.

Correct Working Voltages

Naturally, each valve has its own particular working values of voltage and current, and these are usually specified by the makers. What we have to do in designing a receiver is to ensure as far as possible that the prescribed voltages will, in fact, be effective at the points where they are required.

It will not do, for example, to arrange a stage of resistance amplification using a valve for which the anode voltage specified is 100, and expect to get results when the H.T. battery employed has exactly 100 volts. The reason, of course, is that the anode is not connected directly to the positive terminal of the H.T. supply, but indirectly by means of the coupling resistance. The anode current accordingly must pass through this resistance in its progress round the circuit, thereby setting up a "potential drop" across it.

Controlling Electrons

This will effectively lower the working voltage on the anode in some cases so much so as to put the valve entirely out of action. The obvious remedy is to use an H.T. supply large enough to ensure that the correct working voltage is applied to the anode, despite the inevitable "drop" which takes place in the anode resistance.

Most wireless "fans" at this time of day know that the function of the "grid" in a radio valve is to control the rate of flow of the electrons (or current) in their passage from the filament to the anode. The explanation of its action is simple. The electrons—those small particles of

WILLIAM ANDREW BARCLAY, M.A. The Editor deeply regrets to announce the end of this series of articles this month owing to the death of the author, William Andrew Barclay, M.A., late Lieut., R.G.A. His knowledge of computative principles was profound, but unknown to us his articles had been written under serious disabilities resulting from active service in France. Despite this handicap his gift of exposition had made them one of the most widely appreciated features of radio journalism.

negative electricity—boil up and evaporate from the hot filament very much like the steam from a kettle. Being negatively charged, they are immediately attracted by the positive anode, and this is why the anode must be kept at a positive potential.

But, being electrons, and all of one pattern, so to speak, they quarrel en route. Like charges, as we know, repel each other, and the electrons prove their unsociability by making it as difficult as possible for those that follow to leave the neighbourhood of the filament.

Where the Grid Comes In

In this way the passage of current is obstructed—and here is where the grid comes in. If the grid is made to assume a small positive potential, this will form a new source of attraction for the negative particles, overcoming their

natural quarrelsomeness to a certain extent, and expediting the flow of current. Indeed, some of the electrons will actually go to the grid, thus causing "grid current" to flow.

On the other hand, by making the grid slightly negative, we can damp down the electron flow to any desired extent; a large negative potential will cause the electronic current to cease entirely. Although the filament continues to "boil up" the

Anode Potential Under Working Conditions

electrons, none-or very few indeed ---can get away.

The actual amount of current flowing in the valve (or electron stream) thus depends primarily upon the attractive forces of the grid and the anode, which is merely another way of referring to the voltages at these two points. We have seen in previous instalments that quite a small voltage change at the grid will have the same effect on the current passing as a much greater voltage change on the anode, and this important property of the valve is made use of in amplifying radio signals. Such signals are applied as small voltage variations to the grid, which is thus sometimes called the "control grid " in order to distinguish it in some valves from the "screen grid," which has quite different functions.

Not Easy to Compare

It is thus of importance to know precisely how much change in the current flow will result from a given amount of voltage variation on the control grid. Unfortunately, it is not easy to compare different valves in this respect, since even as regards a single valve the current change resulting from a given grid voltage change is by no means a constant quantity, but depends upon working conditions. A little reflection will show that when the grid is made sufficiently negative, a small change in the actual potential value will have little or no effect upon the very small anode current flowing under such conditions. On the other hand, in the neighbourhood of zero grid potential (i.e. when the grid and filament have approximately the same potential), a similar small change in the grid voltage may result in quite a considerable change in the rate of electron flow in the valve. (In all this, of course, we are assuming that the anode is held at a suitable positive potential.)

A Variable Quantity

The amount of this ratio between the change of current flow and the change of grid voltage causing it is termed, somewhat clumsily, the "mutual conductance" of the valve, and is measured, naturally, in "milliamps. change per grid volts change," or simply "milliamps. per volt." As we have just seen, the mutual conductance of any valve is a variable quantity, and its actual amount will alter with the potential conditions on the grid and anode. For this reason manufacturers often quote values of mutual conductance taken under socalled "standard conditions." Thus we may find the mutual conductance of a valve quoted as "2 milliamps. per be very different from those indicated by the mutual conductance figure. The reason for the discrepancy will be found if we look carefully at the anode voltage value under working conditions. In giving a figure for mutual conductance, the makers assume that the anode potential is kept at a certain

N-DIAGRAM

By laying a ruler across the scales at any two of the factors which are known, the third factor can be determined at a glance.

volt" taken under the standard conditions of, say, zero grid volts and 100 positive anode volts. This means, of course, that when the grid and anode have approximately these voltage values, a change of 1 volt on the grid will cause a change of 2 milliamps. in the current flow.

When, however, the valve is connected up as a working amplifier, the actual changes in anode current may fixed amount, which is usually specified. Very often, however, the mean anode potential differs considerably from this prescribed amount, and hence the quoted value of mutual conductance will not be attained. Furthermore, under normal working conditions the anode potential is not fixed as we have assumed above. It, too, varies with the signals received ; and this, again, prevents the "ideal"

Some Practical Points for the Student of Valves

mutual conductance value from being realised.

Nevertheless, despite these disadvantages, the idea of mutual conductance is of great help in studying the performance of valves. In comparing one valve with another it is only fair to do so under similar conanode of the valve is connected through a milliammeter, M, directly to the positive terminal of the H.T. supply. Since a good milliammeter has negligible resistance, there is no load at all in the anode circuit, and thus the anode is held at the fixed positive potential as required. Any

This N-diagram is used like the one on the preceding page, but refers to valves passing up to 50 milliamps. of anode current.

ditions of operation, and thus the mutual conductance figure, obtained under "standard conditions" for each valve, provides quite a good basis of comparison.

Negligible Resistance

To estimate the mutual conductance of a valve it may be connected up as in Fig. 1. It will be seen that the change in the voltage, V, applied to the grid is immediately reflected in a change of anode current through the milliammeter.

The two N-diagrams given this month will be found useful in exhibiting the relation of mutual conductance to the various grid volts and anode current changes possible when a valve is operated with fixed anode potential. Let us take the circuit of Fig. 1 as an example. If it is found that a change of 43 volt on the grid causes a change of 56 milliamp, we simply connect these values on the external scales of Fig. 2. The mutual conductance of the valve is then easily read off on the diagonal scale as 1.3 millamp. per volt.

Somewhat Modified

The diagram of Fig. 3 is designed for valves of large current-passing capacity, such as output valves. Suppose, for instance, that we have an output valve whose mutual conductance is 2.5 milliamps. per volt, and that we desire to know the grid signal input necessary to cause a variation in anode current of 45 milliamps. Applying a straight-edge on Fig. 3 to these values we read the required grid volts variation as 18 volts. We must, however, be careful to remember that the assumed absence of a load means that this result would be modified somewhat in practice.

Wireless Annual was on sale, I was more than mildly interested. This publication contains over two hundred pages, full of just the information that every person interested in radio wants to know. There are nearly thirty articles covering every phase of radio reception, even to the inclusion of Television.

Invaluable Details

There are constructional articles, hints on obtaining better reception, information about batteries, and many other sections. There is also a very useful list of "The World's Best Short-Wave Stations," and some invaluable details of the normal broadcasters in Europe that operate on the medium and long wavebands.

This list of stations is made all the more useful by the inclusion of a special Radio Map of Europe, with all the main stations marked.

The price of the Annual is one shilling (or one shilling and fourpence post free), and it is thoroughly recommended.

Mobile Recorders—Fun at Monte Carlo– "Jack" Makes a Record. By "TONE-ARM."

Few people, I think, have any idea of the tremendous trouble that is taken by the gramophone recording engineers to "fix" artistes on their discs. Mobile recording outfits are always at work, and in some cases artistes are followed all over the country, and even the Continent, in order that their voices or instruments shall be recorded.

An Amusing Story

In connection with this there is an amusing story concerning the way in which Jack Hulbert recorded the two " hits " from " Jack's the Boy " —" The Flies Crawl Up the Window " and " I Want to Cling to Ivy."

A few weeks ago H.M.V. sent a recording unit over to Monte Carlo to make some records by Ambrose and his Orchestra, who were playing at the new Beach Casino. When Mr. W. L. Streeton, H.M.V.'s recording manager, was visiting the bathing-pool at Monte Carlo he recognised the rakish angle of a cap on the head of a sunbather.

Temporary Studio

Further investigation confirmed that its wearer was Cicely Courtneidge, whose husband, Jack Hulbert, "His Master's Voice" he had been trying to locate for the past month in order that he might make records of the songs he sings in "Jack's the Boy." When he learnt that Jack was bathing, he rushed him out of the water, bundled him into Ambrose's car, and took him to the Metropole Hotel, the foyer of which had been temporarily converted into a recording studio.

A band, hastily gathered from the musicians at the local casinos, learnt the accompaniments to "The Flies Crawl Up the Window," and "I Want to Cling to Ivy " after Jack had improvised them on a piano. The spectators in the hotel were much amused to see Jack Hulbert record the hits from his latest film clad only in a bathing costume.

It is interesting to note that until these recordings were carried out Monaco was the only country in the world in which gramophone records had not been recorded, and that, owing to the great heat of the Riviera sun, the wax recording blanks had to be kept in an ice refrigerator instead of the hot cupboard in which they are stored in England to ensure that they are at the correct temperature for recording.

I have been testing one of the many

synchronous gramophone motors that have appeared on the market during the last eighteen months or so. It was not the first I had tried by any means, but it was one of the most interesting in its design, and I thought I would give it a good test:

The results go to prove what a very useful motor the synchronous. type is, with certain limits. These limits vary with the design of the motor, but the fact is that the power of this particular model is a little on the conservative side, so that should it have to rotate a very heavily modulated record, or one that is rather badly worn (a state of events that should never be if records are kept properly, for one nearly always gets sick of them before they reach the terribly worn state), it is inclined to slow down, with disastrous results to the reproduction.

No Gearing

Obviously the synchronous motor has little energy stored up in the form of fast rotation and gearing, i.e. in inertia, as it revolves at the correct speed all the time, and except for the pull of the magnets on the phonic wheel it has no stand-by energy from which it can draw when confronted with a bit of extra stiff work.

In most cases the pull is adequate, and the motor will steadily revolve at 78 revolutions per minute till further orders; but if you are thinking of buying one of this type of motor, make sure that you have it thoroughly tested before completing the purchase.

TELLING THE WORLD ON TOUR

The attractive display arranged by Lotus for the radio convoy which recently toured part of England in connection with the Northern National Radio Exhibition. 478

ADCASTING DIARY Our Own Broadcasting Correspondent keeps a

Regional Music

BOUT the time of the financial crisis last year the B.B.C. completed the demobilisation of the last of its fully constituted Regional orchestras, replacing them by nonettes, which were to play only the music adapted to their capacity. Incidentally, the introduction of nonettes was an idea originated by Captain Eckersley as far back as 1925, it being his opinion that the best music reproduction for broadcasting came from the smaller combinations of instruments.

In the year in which the nonettes have replaced the orchestra at the Regional centres there has been a chance to test the public view of the matter. There is evidence of cleavage of opinion, but I would say that most listeners regret the disappearance of the Regional orchestras, and it would not surprise me to see them restored at the beginning of 1934.

A Newspaper Man for the Board?

It seems pretty well established that there will be at least one, and possibly two, changes in the personnel of the B.B.C. Board before the end of the year.

Well-informed students of broadcasting are anxious that an experienced newspaper man should be one of the new Governors. It would be necessary, of course, for him to be free of newspaper responsibility. This limitation would appear to handicap the candidature of Sir Robert Donald, who is now actively engaged in journalism.

Amongst those Fleet Street personalities who have retired, but are still able to work, are Lord Burnham and Mr. R. D. Blumenfeld, both of whom, it is believed, might be induced to accept Governorships of the B.B.C. It is believed that Lady Snowden will be persuaded to continue on the Board.

B.B.C. and the Salt Union

The decision of the B.B.C. to move Daventry to Droitwich has brought in its train at least one unique problem. The site regarded as the best happened to be on land in which the Salt Union has acquired perpetual rights to bore for saline products.

Thus the B.B.C. had to cover itself as against the

rights of the Salt Union. But this was not all. Even if the Salt Union could be "squared" so far as the B.B.C. property is concerned, there remains the further problem that the proximity of salt boring operations might create subsidence with corresponding serious danger to the transmitter. There has been a good deal of

critical eye on the affairs of the B.B.C., and each month, for the benefit of listeners, comments frankly and impartially on the policies and personalities controlling British broadcasting.

delicate negotiation, but I understand that an agreement has been reached and the work begun.

North Wales and Watchet

Tests, official and unofficial, have revealed the hard truth that the new West Regional station at Watchet will not provide an adequate signal in North Wales. This is a great disappointment.

It means that North Wales will have to rely for the bulk of its broadcasting on Daventry 5 X X and Moorside Edge. Fortunately, however, the transfer of Daventry to Droitwich, and the simultaneous substantial increase in the power and efficiency of the new 5 X X, will greatly improve the service from those aerials to North Wales.

HEARD AT HEADQUARTERS

This modernistic interior shows what is known as "Press Listening Hall No. 1" at Broadcasting House, and as its name implies it is where the B.B.C. welcomes its critics of the Press to hear the programmes at first hand

Candid Comments on Radio Topics of To-day

OME fooling of the Fairies at his birth

ND it was so! With crystals he began :

ISDAINING childish diodes, on he went To valves employing the third element.

And loads the last straw on the camel's back.

His Eiffel time-sigs. made his earphones burn.

Sam laughed, and hooked up just another stage. Then, when nine valves pleased The Fraternity, Sam laughed again—and built a Super Three !

While others pulled in Poldhu he got Brest, And said he did it—" as a simple test."

Hence, when to wireless he turned aside,

Men looked to see the Science glorified.

Superlative Sam

By JESTER.

Made Sam the most conceited soul on earth. He sees in all his fellow-men have wrought,

Only an ill-done deed, a task ill-taught. He gilds the lily, paints the darkness black,

Nor were such crystals since the Dawn of Man ! Nothing but lion's-whiskers, used he on His Super-Platinated Hertzikon.

From wondrous windings, tapped at each half turn,

When valves were soft, Sam's were as hard as brick And took two hundred volts to do the trick.

When eight-tube super-hets: were all the rage,

Also, certain recent experiments in the alignment of the aerials of Moorside Edge have given it a wider reach in the mountainous areas of the West. Taking these two facts together, there is some mitigation of the disappointment with Watchet. Then there is a further point, that North Wales culturally has very little in common with South Wales, which will continue to dominate the Welsh part of the West Regional programme.

I understand, indeed, that the genuine North Welshman has the same contempt for the Cardiff Welshman as the genuine Highlander has for the Glaswegian. Thus, if the new Daventry and Moorside Edge between them can somehow put on a fair proportion of programmes acceptable in North Wales, this will go a long way to solving the Welsh problem of the B.B.C.

Filling the Gap

Some time, ago I heard that the B.B.C. was considering bringing back the piano interlude to fill up programme gaps, long or short. I hear that the proposal has been debated at great length and in the end turned down'

On the other hand, the decision to keep something on the air between three and four in the afternoon, a period usually empty, is a definite step in the right direction. The B.B.C. should realise that in the long run it will have to keep something on the air from early morning until

midnight, not only because of foreign competition and comparison, but also because of the importance of helping the trade from the demonstration end.

I do not advocate the rather monotonous slickness of the American practice, but I think we are in danger of being over-casual.

The Real Birthday of the B.B.C.

The B.B.C. has lavished much money and attention

on the special programmes of the Birthday Week, beginning Sunday, November 13th. From what I know of the plans, it will be the best balanced and most distinguished programme effort of the decade, the end of which it celebrates.

But, curiously enough, the real birthday of the B.B.C. is not in that week at all. The real birthday is the day on which the first General Manager began to draw his

pay.

That, of course, was Mr. J. C. W. Reith, now Sir John, who went on the pay roll on December 20th, 1922, although he did not begin work in the office until December 28th. I dare say he was working outside. I hope it is true that Sir John is to receive a further honour in the New Year's list.

Political

Broadcasting

In justifying the broadcasts of retiring Ministers and the replies of the Government recently, the B.B.C. advanced the plea that it was being guided by parliamentary precedent. It is the custom in the House of Commons to invite retiring Ministers to give personal explanations, and for the Government to reply in the same personal way, avoiding larger issues or the intervention of the Opposition.

It might be a good idea, and there is much to be said for it, that the B.B.C. makes it a regular rule to observe

parliamentary precedent of this description. It would put an end to a good deal of the difficulty which has been encountered in the past in trying to get the various Party Whips to agree to any scheme of political broadcasting.

Of course, the fact that Mr. Whitley, the present Chairman of the B.B.C., is an ex-Speaker of the Commons is very fortunate for the B.B.C. in applying under him any such idea.

WIFT ran he through the gamut of The Game. (One-valve DX ; D.F. with six-inch frame !) Always a step ahead of better men Who stayed to smoke and play each round again. Short-circuited his erstwhile eager zest,

His Joules, once so kinetic, came to rest. His mind's H.T. dropped to a milli-volt; Sam, Alexander-like, had shot his bolt!

HEREAFTER, to escape from the potage, He introduced the vogue of camouflage. We made our sets to look like household gear— A clock, tallboy or lacquered chiffonier. Our Sam, too clever for such tricks as these, Built his receivers in the living trees. But Nature beat him ! Balmy in both lobes,

He now pots bulbs-to propagate pentodes !

IGRANIC tuning devices—like all Igranic components are built to the highest standards of efficiency and precision, as this new Dual-wave Coil exemplifies. These screened coils, with self-contained wave-change switch, have been designed to give maximum efficiency on the medium- and long-wave bands, covering a range of 200-500 metres and 1,000-2,000 metres when tuned with a .0005-mfd. variable condenser. A notable feature is the wave-change switch spindle, which protrudes on either side of the coil base, enabling any number of these coils to be ganged and operated by one movement. These coils are eminently suitable either for aerial tuning, with or without reaction, or intervalve coupling to S.G. or H.F. valves. PRICE 12/6

Write to-day for fully illustrated Catalogue No. J.1204 of complete new range of Igranic Quality Components. Igranic Electric Co., Ltd., 149, Queen Victoria Street, London, E.C.4.

SEND FOR THE 1932

SINGLE VARIABLE CONDENSER

Supplied in capacities .0003 mfd. and .0005 mfd. Designed on the mid-log law principle to ensure a better and more equal separation of frequencies over the tuning scale. One-hole fixing, ‡ in. diameter spindle. PRICE, .0003 mfd., 5/3 .0005 mfd., 5/6

SLOW MOTION DRUM DIAL A new illuminated drum drive of novel and simple design. Friction-driving mechanism ensures positive action and eliminates backlash. PRICE 8/6

CATALOGU

481

Child I Starting

CVS-18

AKING SIMPLE SUREMEN Fig. 2, the readings being converted

N testing out a set the other day I had occasion to connect a low-reading voltmeter across the filament switch, and found that it registered 0.4 volt. I wonder how many readers could tell me what that indicated ?

Had I coupled the meter directly across the valve filaments I would have found the reading down to 1.6 volts, instead of 2-the voltage of the accumulator. In other words, there was a "drop" of 0.4 volt in the switch as a result of bad contact, and the performance of the set suffered badly in consequence. Thus we can represent the switch as a resistance R, as shown in Fig. 1 (a) and (c); in (b) the full 2 volts exist across the three filaments.

A Well-Known Principle

This "drop test" is used very often in electrical work to detect faulty contacts or connections. It depends on the well-known Ohm's Law principle-that a resistance always absorbs volts when we send a current through it. That is, if the current is C amperes, and the resistance R ohms, the drop $V = C \times$

R in (a) and (c) represents the lost voltage across the defective switch referred to above.

There is any amount of interest to be had from measuring instruments, and this article shows how extremely useful they can be in improving reception.

By HANDEL REES.

R volts. If R is of much magnitude (i.e. if we have a "high resistance" connection or contact), a low-reading voltmeter will at once indicate this drop, as in the example just given.

Since $V = C \times R$, it follows at once that R = V/C and C = V/R; so that, knowing any two of these quantities, we can easily find the For example, to find the other.

CHECKING THE VOLTAGE

This shows how a grid-bias battery and a resistance can be connected to a milliam-meter for measuring the D.C. resistance of a choke or transformer coil.

resistance of a valve filament taking a current of 0.1 ampere at 2 volts, we have: R = V/C = 2/0.1 = 20ohms. Again, suppose we connected a 50,000-ohm potentiometer resistance across an H.T. supply at 200 volts, the current will be \hat{V}/\hat{R} , or 200/50,000 = .004 ampere, i.e. 4 milliamps.

Safeguarding the Meter

Now let us see what can be done with these simple relations. You want to use the expression R = V/Cto find the D.C. resistance of, say, a choke or transformer coil. If we apply a known voltage and measure the current we have all the data required. An ordinary grid-bias battery will serve to give us quite a range of voltages, while the current can be measured by putting a milliammeter in circuit, as shown in 482

to amperes by dividing by 1,000.

But we must take care not to apply a voltage that will knock the meter needle right over the scale. A resistance R should be included in the instrument circuit, of sufficient value to limit the current to the maximum scale range whatever the value of the resistance to be measured. Again, the value of R can be decided by Ohm's Law. Thus if the maximum

The range of voltage that can be measured depends on the resistance used-in this case 100,000 ohms.

scale reading is 10 m.a., then for a testing voltage of 1.5, R must be 1.5/01 = 150 ohms. This will protect the instrument against damage when measuring low resistances, and, when necessary, the voltage can afterwards be carefully increased in steps of 1.5 volts at a time.

Measuring Resistance

The value of R must, of course, be subtracted from the final result. For instance, if the reading obtained with a particular coil to be measured is, say, 3 m.a. (.003 amp.), the total resistance is 1.5 volts $\div 003 = 500$ ohms; but since this includes R, the actual resistance of the coil is -150 = 350 ohms. 500

(Continued on page 515.)

THE REGULATION CURVE

When a regulation curve is supplied by the makers of a mains unit, the current flowing shows the actual voltage obtained. For 10 milliamps. this curve shows that the voltage obtained is just over 120.

ONE of the most promising features of the anateur radio movement is this continued striving for better and still better reproduction.

Perfect realism may be an unattainable ideal, but while you feel that your reception can be still further improved, then you are on the right track for results worth having.

In designing a high-quality receiver one of the most uncertain factors is the detector stage, which can easily upset the whole performance. However excellent your L.F. amplifier, and however carefully your output valve may be matched to the speaker, your efforts will have been in vain if the detector cannot deliver the goods in the form of an undistorted L.F. signal.

The usual grid detector, properly handled, undoubtedly gives excellent results under certain conditions, but its high sensitivity is outweighed by its limitations. It easily overloads, producing unwanted harmonics, and heavily damps the input tuning circuit, while it cannot rectify a weak signal without distortion. The ideal detector should be sensitive, impossible to overload, and have negligible input damping.

Power Grid Detection.

Some interest has been shown in the so-called power grid detector, which is claimed to be a better rectifier for high-quality reception. As this requires very high H.T. voltage, with a consequent large anode current, it is anything hus economical.

There is also the difficulty of arranging a suitable L.F. coupling in view of the large anode current. The power grid detector is also not particularly sensitive, and smooth reaction control is not often easily obtained.

Modified S.G. Detector

Another angle from which we can approach the problem is to specify

"What an avoid row ?" That is the last criticism one would like to get of a set, because so much thought and experimenting goes to obtain quality. But too often, the L.F. and H.F. stages come in for all the attention, the detector being overlooked. Some good circuits for quality detectors are covered in this survey of the subject.

By J. ENGLISH.

a reasonable H.F. input and a distortionless detector giving considerable L.F. amplification. From practical experience I can say that the only suitable detector scheme meeting these requirements is the R.C. coupled S.G. used as an anode detector.

This arrangement is a very close approach to the ideal detector for normal H.F. inputs; giving a considerable undistorted L.F. output. Reproduction is audibly clearer and more natural than that resulting when a grid detector is used, partly 483 due to the excellent rectification characteristic and partly to the absence of the iron-cored L.F. transformer.

Compared with the grid detector the input damping is marvellously small, so that you get adequate selectivity without elaborate tuning circuits. In addition the S.G. detector is economy itself, anode and screen currents being extremely low, while a super H.T. voltage is not necessary.

I have lately modified the original S.G. detector (see Fig. 1, and the article in the May number of MODERN WIRELESS), obtaining a further improvement in high-quality reproduction.

This has been achieved by using lower resistance values in the anode circuit and by more careful adjustment of screen volts. When this is done we get a very nearly perfect rectification characteristic for an anode-bend detector, the static curve obtained with one S.G. being shown in Fig. 1.

Realistic Reproduction

Notice its sharp bottom bend, which means efficient rectification and how little curved is the rising part, which means almost ideal reproduction.

If the valve is biased somewhere about 2½ volts negative, it can accept without overloading quite an appreciable H.F. input, as much as you can get without an H.F. stage. When followed by a low-impedance output valve (no intermediate L.F. stage is necessary) there is no noticeable frequency distortion, so that reproduction is exceptionally realistic, and at the high volume level necessary for adequate musical balance.

With some S.G. valves you may get better results with a slightly different resistance for R_3 . Your particular S.G. may like a lower or even a higher screen voltage than it will get with a screen resistance of 2 megohms.

Distortionless Rectifier

A very useful component here is a low-capacity resistance variable between 0 and 3 or 5 megohms, as apart from enabling you to get the right value of R_3 for any valve, it acts very nicely as a volume control when resistance is reduced. Increasing R_3 above the optimum value reduces volume, but may introduce a little distortion at lower volume levels.

Now there is another type of detector, the diode, which is particularly suitable for high-quality receivers. Using only the grid and filament of the valve, we have a oneway conductor, like the crystal detector, which cannot be overloaded, and which is as near to the distortionless rectifier as we can get at present.

Economical Scheme

The snag about the diode, the first of all valve detectors, as we used to know it, was its insensitivity and its heavy damping of the input tuning circuit. This is no longer true now that we have available better valves and improved circuit design. In fact, there are several good reasons for making more use of diode detectors where realistic reproduction is the first consideration.

The grid detector itself is nothing more than a diode rectifier and an L.F. amplifier combined in one valve, and thus can never be better than a

In this particular diode detector the L.F. fluctuating voltages are produced across the grid-leak R. compromise. Separate the two, however, and you can have the nearly perfect rectifier, the diode, plus a high-mag. distortion-free L.F. stage, neither upsetting the proper working of the other, as happens in the grid detector. through the grid leak R, across which are developed corresponding L.F. voltage fluctuations, which are then available for amplification by following valves in the normal way. Notice that the grid condenser C prevents the rectified L.F. current from short-

HOW A STEEP BEND CAN BE OBTAINED

By the use of the resistance values shown and careful adjustment of screening-grid volts, a steep bend in the characteristic curve is obtained. This steep bend is very desirable for anode-bend detection.

A combination of this type which I find particularly attractive is a diode and resistance-coupled S.G. This certainly provides greater volume and far superior reproduction than the best grid detector.

VITAL COMPONENTS ALL

The detector stage of a set is very important, and every component is vital, and care should be taken to get their values right.

It is also not an uneconomical scheme, the only H.T. current consumed is that taken by the S.G. valve, never more than a milliamp. or so, while almost any valve can be used as the diode.

Ingenious Method

The diode functions because as grid current only flows when the grid is made positive, the positive halfcycles of the H.F. signal produce a grid current which fluctuates exactly in sympathy with the L.F. modulations borne by the carrier-wave.

In the particular diode circuit of Fig. 2a, this grid current passes circuiting to filament negative through the tuning coil.

One of the most ingenious and effective methods of coupling the diode to the following L.F. valve is the parallel direct coupling due to H. L. Kirke. Here, as in Fig. 2b, the diode grid is connected, via an H.F. filter, direct to the grid of the L.F. valve.

Provision for Reaction

The carrier-wave itself, when rectified, produces a steady current flow through R, and this develops just the right auto-bias for the L.F. valve for any L.F. input within its capacity.

As the H.F. input to the detector is no longer limited by the length of the straight portion of the anode current characteristic, as in the grid detector, you will appreciate that the diode can handle all the H.F. input you can give it without overloading.

To return to the diode and S.G. combination in Fig. 3, a simple tuner is used with provision for reaction in the usual way. Even without reaction, selectivity is ample for

INGENIOUS COUPLING

What may be termed the parallel direct method of coupling is used here. It is a development due to H. L. Kirke.

For the Critical Ear – TONE-TRUE RADIO

A.C. & D.C. MODELS f(0.00)OR 50⁴ DOWN BATTERY MODEL (without batteries) f(0.00) f(0.00)f(0.

MOVING COIL SPEAKER, ONE-KNOB TUNING, PICK-UP AND EXTRA SPEAKER SOCKETS. MAINS AERIAL IN A.C. AND D.C. MODELS. PENTODE VALVE IN BATTERY MODEL. The TWO-VALVE SET WITH THE "THREE-VALVE PERFORMANCE"....

DON'T mistake the "ATLAS TWO" for just another set. It's different! A real musical instrument, so clear and so true that the living personality of the artist is actually re-created in your own home.

Range and selectivity, too, mark as spectacular an advance as the truth of tone. You have never heard or handled such an amazing two-valve set.

"Popular Wireless " reports : " Results gratifying in the extreme ... extraordinarily good performance." "Amateur Wireless " says : " Exceptional clarity ... enough power to justify indoor aerial.

The secret lies in the meticulous matching of components and the specially designed moving coil speaker.

Test the marvellous "ATLAS TWO" for yourself. Ask your dealer for a demonstration to-day and post coupon for full specifications.

"ATLAS" PERMANENT MAG-NET MOVING COIL SPEAKERS Sensitive and true response throughout the musical range. With input transformer to match triode and pentode valves. Chassis 42/- or complete in walnut cabinet £3 10s. Either type for 10/- down.

H. CLARKE & CO. (M/CR.) LTD. PATRICROFT - MANCHESTER London Office : Bush House, W.C.2

POST NOW!

TLAS TWO

MESSRS. H. CLARKE & CO. (M/cr.) LTD. George Street, Patricroft, Manchester. Please send full details of the revolutionary "ATLAS TWO" and "ATLAS" M.C. Speakers.

ADDRESS

34/11

S

Φ

An Invaluable Book for THE HOME CONSTRUCTOR

Every conceivable aspect of Radio is compreheasively dealt with in the Complete Handbook of PRACTICAL RADIO.

There are articles on the Simplicity of Modern Home Radio, Famous Mødern Circuits, Short-Wave Favourites, "The Power They Use" (concerning Radio Stations), etc., etc.

There are pages of advice for those who are thinking about getting a set and exhaustive instructions on putting in a set.

There are hints on modernising old receivers, on tracing trouble, on finding Stations . . .

There are pages of constructional details and complete and lucid explanations of the whole principle of radio.

So much that will be absolutely invaluable to you, whether you are a radio fan or just one of those who like to "listen-in." Here are just a few of the Contents:

"What Set Do You Want?" **Erecting an Aerial Choosing Your Louds**peaker **Your Valves Hints on Super-Hets.** The Radio-Gramophone How to Build a Simple Receiver **Television** Developments **How Your** Set Works Searching for Stations Separating the Programmes **Foreign Broadcasters Radio Distances** How to Make an Adapter for Short Waves **Short Wave Favourites Tracing Trouble** etc., etc., etc.,

All this, and much more, for Sixpence-in the

Complete Handbook of

November, 1932

Using an S.G. L.F. with R.C. Coupling

entirely effective separation of two "locals" on a normal aerial.

Key components are the grid condenser C_1 , which must be smaller than 0001 mfd.; the diode grid leak R_1 , which should not exceed 1 megohm;

"DIODION" USED DIODE DETECTION

The "Diodion," which was fully described in the September number of "Modern Wireless," employed a diode detector arranged on the lines of the Kirke scheme.

and the H.F. choke and by-pass condenser C_2 .

This choke must be a really good one of low self-capacity, and it often pays to use two chokes in series here. The stray capacity to earth of all components associated with the diode grid should also, be kept as small as possible.

As regards the S.G. amplifier itself, this differs only from the S.G. detector of Fig. 1 in the absence of the gridbias battery and a lower value for the screen resistor R_2 .

Using a Pentode

Here again a variable component is the quickest way of finding the right resistance for an S.G. that does not take kindly to the resistance network of Fig. 3.

In performance, both volume and quality are very satisfying, the former being rather better than that provided by the straight S.G. detector of Fig. 1. The degree of selectivity obtainable is certainly far better than that of the normal grid detector under similar conditions.

Although the sensitivity of the combination is high, it is not quite the circuit one would use for receiving foreign stations, where its advantages as a high-quality reproducer are to some extent lost.

During my experiments with this circuit I noticed that considerable reaction was required for full sensitivity. In fact, with the reaction

control at zero, the loudspeaker output was likewise zero! The addition of capacity across diode anode and filament. improved matters, but, curiously enough, disconnecting the anode entirely gave me just as much volume as before!

For local station work I myself dispense with reaction, as it adds nothing worth while either to volume or selectivity. With a small indoor aerial, some fifteen miles from the London transmitters, I find tuning with the simple circuit of

Fig. 3 (minus reaction) amply selective to separate both programmes, while going full out the output power is more than sufficient for the average size room.

There are, of course, several modifications of Fig. 3, either of which may be more suitable to your needs than this particular arrangement. For instance, an ordinary L.F. valve, preferably R.C. coupled, can be used in the place of the S.G., this change being more suitable where you can get a large H.F. input.

Another extremely economical yet powerful circuit for similar conditions is obtained by coupling the diode direct to a pentode. This idea has much to recommend it, as, properly arranged, such a receiver will give you superlative results provided you get the right output coupling between pentode and speaker.

Something Worth While

Again, if you use mains valves in any of these circuits you can be sure of achieving something really worth while both as regards clarity and balance of reproduction and wealth of volume.

Barbaran Barbar

ֈֈ֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎

Konigswusterhausen usually broadcasts a concert of light music for breakfast-tinic centertainment, commencing at 5 a.m. (Does he ?)

The Swiss regional station at Beromunster, which works on 479 metres under the name of "Schweizerischer Landessender," welcomes reports of reception. They should be addressed to Dr. Walter Gerber, Schweizerischer Landessender, Beromunster, Switzerland.

A THREE-VALVER FOR HIGH-QUALITY REPRODUCTION

The first valve works on the diode principle, but its anode is employed to enable reaction to be utilised. Following this detector is an S.G. L.F. stage resistance-coupled to the output valve.

Murderesses of Vaudeville !—Personality for Programmes—About that Human Touch—Deported into Television.

Telling Him What's Watt!

HOEVER would have thought that good, kind Mr. Watt, who provides for the listeners' lighter mood and produces those gay "Songs from the Shows," would have had the British Army up in arms against him?

Unfortunately for the Productions Department, a certain military gentleman by the name of Cannot who has tender memories of the days when music-halls were music-halls and legs were legs, accuses our friends Anona Winn and Garda Hall of "murdering" the reminiscences of the Gaiety.

Though it is impossible to conceive of these charming ladies murdering

anything, it is sad to realise that you cannot please everybody any of the time.

Up to now no critic has invaded John Watt's preserves with unkind words. We can appreciate his efforts to brighten the programmes, even if Cannot cannot (sorry !).

About That Vaudeville

That big improvement you've noticed in the

vaudeville programmes during October has been Lance Sieveking instilling "personality" into them. Or perhaps you haven't noticed it—perhaps the crooners and comedians and the mimics and the ventriloquists have all seemed pretty much the same as usual? Too bad !

*

Seriously, though, isn't it time something was done to improve vaudeville? As things are, a number of ill-assorted "turns" are strung together anyhow, with no thought for balance or correct mixing. Only the other day two "impressionists" were included in the same hour.

If Lance Sieveking really can do something to give the vaudeville programmes a complete personality, to make them a complete *table d'hôte* meal instead of a number of snacks at a sandwich counter, then he will

THE THEATRE ORCHESTRA

have proved that he is good for other things besides producing "highbrow" monstrosities to terrify the ordinary, sane listener.

And why not copy an idea from the North, announce all the "turns" at the beginning of the programme and let it go, non-stop? It's worth a trial, anyway.

All This Sunday Business

Now that the B.B.C. has succeeded in providing far better Sunday programmes than those which are given from France by British advertisers, I hope it will not rest on its laurels.

There are other programmes from Radio-Paris besides those organised by film companies and Sunday news-

papers, and those who listen to them must realise how they are exactly suited to the spirit of the one day in the week when almost all of us can listen during the afternoon and early evening.

* * *

A programme of contemporary music by French composers was recently sandwiched between a "film fans' hour" and a "tea-time variety." All the

"Our congratulations this month go to the B.B.C. Theatre Orchestra for all the entertainment they have given us in the past and for all we expect in the future." 488

music was light without being of the dance variety; marches, waltzes, and intermezzos were all represented.

November, 1932

BY FERRANTI THE SUPER-HET THAT HAS

"Practically the last word in receiver design"

ENGLISH MECHANICS

"Considering its quality a remarkably low-priced set."

THE TIMES

To confirm the opinion of the experts, only one thing is necessary—you must hear the Ferranti 7-Valve Super-Heterodyne yourself, in your own home. Prove by actual test how Ferranti have attained the sharp selectivity and freedom from interference which modern conditions demand. Compare it point for point, and your own judgment will convince you that the Ferranti is the greatest of all the Super-Hets.

For 200/250 volts A.C. supplies having frequencies between 40 and 100 cycles.

The design incorporates the most modern features, including INITIAL H.F. AMPLIFICATION; preventing interference with other sets, VARIABLE MU VALVES, providing the best form of volume control; GANGED CONDENSERS, giving one knob tuning; BAND PASS COUPLING, ensuring high selectivity without loss of high notes; MOVING COIL SPEAKER, for high quality reproduction; TONE CONTROL, to provide sharp or mellow tone at will; ILLUMINATED WAYELENGTH SCALE, giving instant station identification; AUTOMATIC MAINS AERIAL DEVICE, enabling the Receiver to be moved easily from room to room and used wherever an A.C. light or power socket is available; and provision is made for GRAMOPHONE PICK-UP.

Ask your dealer for illustrated literature or write to FERRANTI LTD., HOLLINWOOD, LANCS. or BUSH HOUSE, LONDON, W.C.2

"Selectivity is marvellous"

ASTONISHED

THE CRITICS

WIRELESS MAGAZINE

STANDARD MODEL As illustrated with illuminated wavelength indicator - 22 GUINEAS.

STATION DIAL MODEL with illuminated Station Dial-23 GUINEAS.

CLOCK MODEL incorporating Ferranti Electric Clock and illuminated Station Dial—for time controlled frequencies only. —25 GUINEAS

HIRE PURCHASE TERMS AVAILABLE.

ERRANTI 7-VALVE SUPER-HET

B.I. ENAMEL COVERED WIRES

B.I. Enamelled wires are unequalled for the field windings of small motors, measuring instruments, radio transformers, and other pieces of electrical apparatus where space is all - important. They are produced throughout in our own works, from the raw material to the finished wire, and every phase of manufacture is under the strictest control as regards quality of material and accuracy of gauge. B.I. Enamelled Wire is unexcelled for its high insulation. dielectric strength. flexibility of enamel, and general dependability. We regularly manufacture Enamelled wire as fine as '002" dia.

BRITISH INSULATED CABLES

PRESCOT-LANCS

Makers of B.I. Cables Telephone No.: PRESCOT 6571. London Office: Surrey House, Embankment, W.C.2 Telephone No.: Temple Bar 4793, 4, 5 & 6.

The above curve shows the increased amplification of high notes which can be obtained. The Rectatone can, of course, be used after any detector valve, suitable adjustment of the compensating resistance producing the above characteristics.

- 1. Has a rising response curve from 1,000 to 4,500 cycles.
- 2. Balances any form of sound reproduction.
- 3. Restores a weakened treble to its correct value.
- Gives a variable compensation and therefore complete control of tone-correction.
- 5. Gives the required tonecorrection without an extra L.F. stage.
- 6. Becomes at will and instantly a normal straight-line transformer.

The ideal L.F. coupling for selective sets. Particularly useful where the same L.F. amplifier is used for radio and gramophone reproduction

> 15/-Ratio 7:1.

The degree of compensation is variable and may be suited to the particular tuned circuits in use or employed to correct deficiencies due to the loudspeaker or to the acoustics of the room.

Write for the "BOOK of the RECTATONE" FREE and POST FREE

Advert. of Oliver Pall Control Ltd., 103, Kingsway, London, W.C.: Plane : Holbern 5303

A New Home for the Contortionist

I suggest that the B.B.C. devotes an afternoon session every Sunday to the works of British composers, such as Percy Grainger, Victor Helv-Hutchinson, Charles Ancliffe, and the hundred and one other writers of light music.

Hiking Through Europe

Mr. Charles Siepmann is certainly doing his best to make the Talks, for which he is responsible, one of the most entertaining parts of the programmes. I would rather hear a noisy dance band than a bad talk, but I prefer a good talk to much of the other so-called entertainment.

It certainly is a bright idea to send Vernon Bartlett hiking through Europe for our benefit; those "Consider Your Verdict" discussions are good fun (so much so that we probably don't realise in what good stead the experience may stand us one day !) -;

In the Programmes.

ANONA WINN

Although an all-British star, Anona Winn was born and bred in Sydney, Australia, and only came to England five years ago. After playing in musical comedy with George Graves and José Collins, she gave an audition at Savoy Hill in 1929. Since then she has broadcast 130 times—an average of nearly four appearances a month ! She spends her spare time "doubling" for talkie stars who can't sing (this accounts for a lot of things !). "I once visited Cardiff for a very special concert," says Anona Winn, " and found two microphones in the Although an all-British star, Anona

and the new critics are well up to standard.

With memories of James Agate, E. M. Forster, George Allison, Dr. John Baker, M. Stephan and A. J. Alan (why not?), who can hold his hand to his heart and say that "talks on the wireless are as dull as ditch-water "

The Public School Spirit

"What has become of the Human Touch ? " asks our old friend " Phile-mon " in the " Radio Times." That is what we should all like to know.

In the good old days-doesn't that make the listeners of 1922 feel greyhaired and rheumaticky ?-we took mechanical breakdowns, unforeseen intervals and general mistakes in

announcing or stage-management as part of the day's work and enjoyed the delightful speeches of apology and explanation which followed.

Now, when an announcer makes a mistake (did you hear "Weather will be westerly" in the news the other day ?), or becomes informal for an instant, we make such a song and dance about it.

Still, there remains a little of the " public school spirit " in the B.B.C. Witness the schoolmasterly warning that the Post Office "mystery" vans were setting out and that those naughty " pirates " who owned up at once would escape a thrashing.

New Use For Television

Those cheerful chatterers, the "Broadcasters" of the "Radio Times," continue to devote much of

their weekly space to eulogies on Television as practised by the B.B.C. Pal the Sea Lion, Mary the Ape, and Micky Mouse-like shadowgrams have been some of the features of recent programmes, so future artistes will be in good company.

We venture to hope that in television may be found a place for all those incongruous items which are now mixed up with the vaudeville programmes.

Conjurers, jugglers, ventriloquists, girls who accompany their own singing on violins, delightful fellows who like to stand on their heads when playing the saxophone-all these might well be deported into studio BB, where their merits, lost on the "blind"

listener, would be sure to meet with appreciation.

Incidentally, the ventriloquist in the vaudeville programme seems to have been superseded by the mimic. There has been a plethora of these gentlemen lately-some good, some bad, and all exactly the same as regards material.

Verb. sap.-or, at any rate, to the director of vaudeville !

Our Thanks Are Due

While we listen to all the new and old stars in the programmes, do we ever spare a thought for the hardworking men who, unnoticed and unsung, make our entertainment go with a swing ?

The Big Six, for example, who announce the same programmes day after day and manage to keep cheerful about it all.

Or, more especially, the B.B.C.

studio. I sang my first song and half the second into the one indicated before the announcer found it was 'dead.' Still singing, I was pushed across the studio to the other micro-phone—and was then faded out as my time was up. So the 'special concert ' came over to listeners as half a song ! ''

Anona Winn doesn't approve of studio audiences, as they tend to make a singer mix microphone technique with stage technique—with consequent disaster.

Her greatest success has been in John Watt's "Songs from the Shows," and she is appearing again in the new series now running.

Theatre Orchestra, so ably directed by S. Kneale Kelley and Leslie Woodgate, whose work in numberless vaudeville hours has often been the best item of all.

So our congratulations go to the B.B.C. Theatre Orchestra for all the entertainment they have given us in the past and for all we expect in the future !

A Spidery Tailpiece

I must spare a word of praise for Mr. Parker, who spoke last month on Spiders.

With commendable restraint he refrained from telling the story of the man from Aberdeen who had a craving for Yo-Yo and practised with a spider. P. C.

EROBURGH'S BROADCASTING HOUSE

AST week, finding the full-time Regional programme transmissions from Falkirk in full swing, I walked down from Princes Gardens to Queen Street, in Edinburgh, and called in at the Scottish Broadcasting House.

While Edinburgh was only a relay station and boasted of a 0.3-kw. relay transmitter they could not make full use of the three big studios in Edinburgh, and for a time there was severe criticism of the transference of the studio headquarters from Glasgow to the capital.

Urgently Needed

Now Falkirk relies on Edinburgh for roughly 50 per cent of its Scottish Regional programmes; and as the new Westerglen transmitter is as big as Brookmans Park and Slaithwaite, the new studios are urgently needed.

The three Edinburgh studios provide part of the Scottish programmes, and the studios in the new (or, rather, rebuilt) Glasgow centre provide the other part.

Patriotic Pride

I wanted to see how the Scottish studios compared with those in London, for, as a Scottish listener, I cannot help feeling a certain amount of patriotic pride in the way Mr. Cleghorn Thomson is keeping pace with his friends in the South.

Queen Street, I should explain, runs parallel with Princes Street, and is in a wonderfully central part of the city. There is no difficulty about With the coming of Scotland's Regional, Edinburgh has put her Broadcasting House in order, as explained here by Our Special Correspondent.

artistes getting to the studios. The Broadcasting House is the old Queen's Hall, at the east end of Queen Street. It looks like a large, grey city house, but it has been entirely redecorated inside.

Typically B.B.C.

Directly I entered I felt that I was visiting London again.

Everything

was so typically B.B.C. The entrance hall had been redecorated and was light oak. A commissionaire interviewed me at the reception box on the left, but straight through down the hall I could see artistes busy in the anteroom of the main studio.

I remember the Queen's Hall before the B.B.C. took it over, and often went to concerts there. I asked the B.B.C. official whom I met how they had altered it for broadcasting, and he invited me to come through and see for myself.

What a change! No wonder that since being back in Edinburgh I have heard some fine, resonant musical broadcasts. The main studio is, I should think, practically ideal.

The concert hall used to be rather cheerless and conventional. Now it is almost entirely covered with gay fabric. They have retained the stage and fitted up lights in the wings and on battens above, so that the artistes can be kept happy with gay lighting effects.

Just as Useful

The ante-room, which I saw before entering the studio down the end of the hall, has been actually built into the hall, so that it cuts off a little of the space. That does not matter, as the floor area of the No. 1 studio is amply large enough for big orchestras; and our chief studio is really as useful

WAITING IN COMFORT

This is one end of the main studio, with a glimpse of the very comfortable waiting-room as well.

Adut. of The General Electric Co. Ltd., Magnet House, Kingsway, London, W.C.2

A watch is worked by its mainspring, which keeps all the wheels going, while the escape inent prevents them from mov-ing too fast.

You can prove that the whole of a candle is not alight by holding a sheet of paper in the flame. The unburnt part of the flame leaves the paper white.

Work would be easy on the Moon, for we could all carry six times as much as we do now.

Why does the salt sprinkled on this whirling top fly off? It is hurled off by centrifugal force.

A few of the thousands of things that are explained in THE WORLD OF WONDER Marvels of Machinery Wonders of Animal Life Wonders of Plant Life Chemical Experiments How We Smell How We Smell How We Taste How We Taste Mysteries of the Moon How We Taste Mysteries of the Moon Simple Experiments wi Simple Candles with Simple Experiments wi Candles Candes How Earthquakes are Gaused Ww Volcances Erupt The Mystery of the Wayes Why Kites Fly Why Kites of the Stars Secrets of the Stars Different Kinds of Roots Different Mysteries of Balance Mysteries of Balance Upucal Husions Mysteries of Balance Life in Ages Past The weekly parts of THE WORLD OF the weekly parts of the worker or WONDER can be bound up at home wonder can be bound up at nome simply and neatly as they are issued, by simply and nearly as they are 155ued, by means of a special Solf-Binder which is uncaus or a special och-putter y offered to subscribers at a very low cost. complete set of parts can be bound in the ordinary way when the work is complete.

The greatest book of popular science and general knowledge ever published. Written in simple language, illustrated with the most remarkable collection of explanatory drawings, photographs and pictures ever brought together.

PART 1

On Sale Thurs., Nov. 3rd

No intelligent child who glances inside Part I of this unique work will be able to resist its fascination. There are long articles and short articles, paragraphs, pictures and diagrams in profusion. Things to make at home, experiments which can be done with just the ordinary things of everyday life and without spending a penny.

It explains the why and wherefore of such familiar phenomena as the thunderstorm, the rainbow, the daily tides at the seaside, the regular succession of day and night, the procession of the seasons, and a thousand other things that are known to all but understood by few.

It explains how man has tamed the powers of nature, and how the many marvellous machines which he has invented are made to work. It shows the marvels of the plant and animal world; the wonders of geography and geology are explained in new and striking ways. The illustrations are wonderful. The collection of carefully worked-out diagrams and explanatory drawings, many of them full pages or double pages, is absolutely unique.

Complete in

ONE Volume

MODERN WIRELESS

November, 1932

as the London Broadcasting House concert hall, although not so long.

The general colour impression is of deep gold. They told me that behind the thick fabric were layers of felt, and that the roof, too. had been acoustically treated.

I like the high-domed effect. This studio seems higher than any in London.

We went out of the entrance hall again and up to the first floor. Through a little door we went to one of the galleries, which have been fitted up with chairs of the cinema variety for an audience. There is no need to have the studio audience on the same floor level as the artistes.

Specially Woven

Perhaps you remember the small meeting hall in the Queen's Hall. This is now called the No. 2 studio. It is panelled with material which has been specially woven for the B.B.C. by the Edinburgh weavers. This room reminded me of one of the old Edinburgh studios. It used to be hung with gay floral curtains; than before. Damask-patterned green and silver fabric adds an artistic touch to it.

It is used for radio plays; and in the corner I saw the door of the silence cabinet where the producer stands with the green light indicator switches to hand.

Heraldic Shields

The No. 3 studio is used only for talks, and it is just like a little library. A reading desk, a small bookcase, and a cabinet gramophone add to the effect.

The window is heavily curtained, and I noticed that a B.B.C. heraldic shield is worked on each curtain !

At the Edinburgh Broadcasting House there are all the latest ideas in broadcasting, the latest type of control apparatus, and an echo-room. The echo-room is in the basement, and the entire top floor of the Queen's Hall is devoted to the engineers. Here is a "control" room in more than one sense.

I was shown that from the windows of this top floor there was a

AS COMFORTABLE AS A DENTIST'S!

The B.B.C. certainly provides nice, cosy waiting-rooms, but all the comfort in the world does not stop that sinking feeling as a speaker waits before facing the microphone

and even the marble fireplace was draped with a curtain, as there was not time to have the fireplace removed entirely. Cosy chairs were upholstered in cloth to match the studio hangings. It was all very cosy until the programme had been going on for half the evening, and then it got unbearably hot.

An Artistic Touch

The new No. 2 studio is a pleasant change, although it is a little smaller

glorious view across the Forth to the shores of Fife.

Just Like London

The actual apparatus in the control section is just like that at Manchester and London.

The engineers have not only to deal with the Edinburgh programmes, but the programmes coming from Glasgow are also controlled at this point before going along the land-lines to Westerglen. MONG the many important inventions of the last twenty or thirty years two have particularly appealed to the man-in-thestreet—wireless and the motor car.

There is always something new to be learnt about motoring, just, as there is about wireless, and if the motorist, whether he be an ownerdriver or a chauffeur-mechanic, is to be throughly efficient and ready for every emergency he must have the necessary technical information ready at hand.

Concise and Handy

A new work, entitled "The Motoring Encyclopedia," which is to be issued weekly in about thirty sixpenny parts, gives all the latest information about motors and motoring in a concise and handy form, and is an absolutely indispensable work for all who drive a car, whether their own or somebody else's.

The information is given in alphabetical form, so that whatever may be required can be turned up in an instant, and the various articles are not only clearly written by experts of many years' experience, but they are illustrated by the latest photographs and by hundreds of specially prepared explanatory drawings.

The word "encyclopedia" means "all-round education," and this book is indeed an all-round education in motors and motoring. No matter what one may want it can be found explained here in the most lucid manner.

The Legal Aspect

While the book is primarily a handbook of motor mechanics, its scope is much wider than that, for it deals with touring and camping and caravanning, and the legal aspect of motoring. A set of large-scale roadmaps presented with the encyclopedia enables any place to be located instantly, and the nearest or the most interesting route to it discovered.

"The Motoring Encyclopedia" is absolutely indispensable to the motorist. It is the standard work of its kind. The demand for it will undoubtedly be enormous, and that makes it imperative that those who wish to have it should secure the first weekly parts at once from their newsagent.

MODERN WIRELESS

November, 1932

AT, YOUR SERVICE

OUR TRADE COMMISSIONER

The Northern Radio Show

HAVE just returned from the Northern National Radio Exhibition at Manchester, which is a northern edition of the annual show at Olympia. There was naturally much of interest to be seen on the many-coloured stands in the City Hall.

As a show the Northern Exhibition was an undoubted success, but I cannot help feeling that still more visitors would have come along if the price of admission had not been so high. Usually the entrance has cost about one shilling—it was lower than that once upon a time, I believe—with an increase to 1s. 6d. on Saturdays.

This year a flat rate of 1s. 6d. was charged, and in these days of economic trouble it was too much, especially as there were in the hall none of the "side shows" that characterised the London Exhibition.

"Side Shows" Outside

The "side shows" took place in convenient halls in various comparatively adjacent parts of the city; there was Marconiphone Magic at the Albert Hall, and Ekco's fine show at the Paramount Theatre, some distance away from the City Hall.

In such circumstances the entrance fee should have been less, and the attendance would have been more. However, those who went had some most attractive stands to look at, and the colour schemes allowed at Manchester gave the show a very much brighter appearance than that which pertains at Olympia.

An Ingenious Clock

Ferranti must be congratulated on their ingenuity in turning disadvantage to advantage. Many of the stands had large pillars at the corners or in the inside of the design, and several different ideas were carried out in the way of disguising these pillars, and of decorating them. Some trade news and views that are of interest to readers, whether or not they are connected with the

radio industry. Members of the trade are invited to send items of interest, or pholographs, to be included under this heading.

Mr. J. Baggs, of Ferranti, took a look at his particularly ugly pillar, and at once decided not only to decorate it but to turn it to some real use. So he had constructed a fourface electric super grandfather clock, which supplied the correct time to pretty well the whole of the show. Congratulations !

Mr. Macnamara Ill

We regretted to hear of the illness of Mr. A. W. Macnamara, the vital force behind Telsen Electric, and trust that by the time this appears in print he will have left the nursing home to which he had to go shortly after the London Radio Exhibition

New H.S.W. Set

Messrs. Hustler, Simpson & Webb have brought out a further example of a cheap and efficient radio receiver in the form of the "Aerodyne Mains S.G. Three," which sells for 15 guineas. Both it and the more expensive all-mains three-valver have been attracting a great deal of atten-

By the way, the same firm has

"BROADCASTING" THE VOICE OF BIG BEN

Adjusting the giant searchlight speaker which broadcasts Big Ben from the roof of the Marconiphone headquarters in Tottenham Court Road, London. During the day Big Ben's quarter-hourly chimes can be heard over a large area, the speaker being switched off at night.

printed a new edition of the famous "True Road to Radio." It is a completely overhauled version of the first edition, and contains new photographs and much fresh matter. At 5s. this book is excellent value, and I am informed that it is being used at one of the well-known radio colleges as a standard text-book. tion, both among the trade and the public.

Record, Radio and Reality

The achievement of realistic reproduction in a radio receiver or a radio-gramophone is the aim of all set manufacturers and home-constructors. The difficulty in judging **EVERYTHING**

outer and the state of the stat

5 HL Z

9.E.

ELECTRICAL

MANANA CANADART MARANANA

DSRAM 2-VALVES WIT

OMAN

The filament with the highest electron emission efficiency of any Battery valve filament in the world.

A CHOICE OF TWO HIGH EFFICIENCY DETECTOR VALVES

OSRAM H2

The High Amplification Detector for most Sensitive Reception in (Det.-L.F.) Battery Sets.

> Amplification Factor 35 Impedance 35,000 ohms. Mutual Conductance 1.0 m.a./v. Price 7/-

OSRAM HL2

The non-microphonic high Slope Detector for Quality Reproduction in 2-volt Battery Sets.

Amplification Factor 27 Impedance 18,000 ohms. Mutual Conductance 1.5 m.a./v. Price 7/-

OUALITY

COST

Precision in Construction means Reliability in Performance.

The OSRAM Automatic "Cushion-Springing" for damping out microphonics.

NOTE -

For full technical information WRITE for OSRAM Wireless Guide Post free on request.

Adut. of The General Electric Co., Ltd., Magnet House, Kingsway, London, W.C.2.

MADEIN

ENGLAND SOLD BY ALL WIRELESS DEALERS

WITHOUT

EXTRA

EXTRA

FOR

Changing Over the Power Supply

the finished article usually lies in the fact that though record and radio can be compared fairly easily, the final and most important test against the real thing is not so simply arranged.

Comparing Three R's

During the London and Manchester Radio Exhibitions, however, the general public have been given an opportunity by one of the wellknown manufacturers, Messrs. E. K. Cole, Ltd., of comparing very closely the three R's.

In the case of the latter show the Paramount cinema theatre was used.

Erected on the stage was a model broadcasting studio, which was completely sound-proof and fitted with a double glass front. and the performance finished via the microphone and the loudspeaker of the radio-gramophone.

After this the artiste left the studio and repeated his or her turn on the stage. Listeners were thus able actually to compare the natural voice with its reproduction by means of gramophone and radio, and to observe how slight was the difference.

Sensational Demonstration

The artistes taking part in person in this rather sensational demonstration at the Paramount were the famous record and radio stars, Miss Elsie Carlisle and Flotsam and Jetsam.

In this connection it is of special interest to note that Mr. K. D. Rogers and Mr. G. T. Kelsey, of the

THERE'S NO FAKE ABOUT IT

In order to prove that the famous "Ekco" direct comparison's demonstrations now being given all over the country were genuine, and that no "fake" apparatus is used, Messrs. K. D. Rogers and G. T. Kelsey, of the "Modern Wireless" Technical Staff, were asked to examine the apparatus used. In this photograph they are seen with Flotsam and Jetsam and Mr. Barry Kay (Sales Promotion Manager of E. K. Cole, Ltd.) on the stage of the Paramount Theatre, Manchester.

The demonstration commenced with a record being played on a standard model Ekco radio-gramophone (Model R.G.25), and midway through this record a change-over was made to the microphone in the broadcasting studio. The artiste performing then picked up the melody "M.W." Research and Technical Staff, were asked by Messrs. Ekco to examine the radio-gramophone used during the tests to satisfy themselves that there was no fake permitted, and that the whole show was perfectly genuine. The photograph shows the two members of our staff examining the apparatus at the Paramount Theatre, Manchester.

Broadcasting Bertini's Band

During a short stay at Manchester, I managed to run over to Blackpool and see Bertini's famous dance-band at work in the Tower ballroom. This band and the Empress ballroom band are relayed from the Tower, Winter Gardens or Palace, not only by radio as in the case of the former, but by loudspeakers to the crowds assembled in the various large ballrooms, cafés, lounges, fairground and circus.

This is done by a series of seven powerful 40-watt (undistorted output) amplifiers, made by B.T.-H. Co., and the result is exceptionally fine.

From D.C. to A.C.

Owing to the extension of the Grid system throughout the country, a considerable number of supply companies have changed their supply to the standard voltage and frequency, and D.C. areas are in many cases being switched over to A.C., and one of the greatest bugbears in such change-over work lies in the difficulty experienced with radio apparatus.

In D.C. areas many thousands of owners of wireless receiving sets employ the mains for their source of energy, and the conversion of such sets to operate from A.C. mains is a problem which has been distracting these set owners as well as the supply companies.

The D.C. mains radio apparatus at present adopted in such areas falls into two classes :

(a) Receivers of the battery-built type which are deriving their lowtension supply from an L.T. accumulator, but their high-tension supply from the mains by means of an H.T. eliminator.

(b) The "all-mains" type of set which may, or may not, incorporate a loudspeaker and a gramophone motor.

There are thousands of sets under class (a) working in conjunction with many types of eliminators. These have various voltage tappings and various degrees of smoothing.

The supply company engaged in carrying out a change-over from D.C. to A.C. recognises that it is called upon to ensure that a consumer's apparatus (Continued on page 518.)

MODERN WIRELESS

MODERN WIRELESS

BROADCAST

BRCOADCAST S OME very humorous discs have emanated from the Crystallate Granophone Co. this worth, when comedians as Sandy Powell, Bobbie Comber, Julian Rose being responsible for records that have some really good fun on them. For instance, the first named takes us through some asylum. He is evidently the head official at this particular institution, and as such he comes up against some very awkward and humorous situations. Sandy Among the Loonies is a record (805.) Bobie Comber provides a completed inter-

situations. Sandy Among the Loonles is a Pedora you should hear, it is an excellent bob's worth. (895.) Bobbic Comber provides a couple of funny songs on 806, There's Another Trumpet Playing in the Sky and Oh, It's All the Same to Me ; you will like the latter especially. Third among our list of comedians is the inimitable Julian Rose, whose Hebrew characterisations are famous on record and radio. This time he is concerned with Becky Ginsberg's Wedding, a radio favourite which he here delivers most excellently, and Levinsky's Jubilee, another Hebrew story that will set you roaring. It did ne. (898). Six best-sellers is the official description of record No. 901, a selection of dance number hits sung by Mellow and Rich; while a novelty disc of merit is that by Morritz and Moreno, playing Ah ! Sweet Mystery of Life and For You Alone on such unconventional instruments as the saw, strokviol and accordeon. (903.) I have forgotten another fine contedy charac-terisation that will appeal to a great many people. It is A North Country Lad at the Lord Mayor's Show, and is particularly toplcal, for in a few days after this appears in print we in London will be seeing this annual pageant again. (899.) The Rhythm Rascals are again at it in the realm of dance music on the small Broadcasts, and Bidgood's Symphonic Dance Band and The Blue Mountaincers entertain us on the Super Twelves. Singin 'Sam is sure to be popular on 3426, where the sings Roll Along Kentucky Moon and In a Shanty in Old Shanty Town ; while The Three Ginx are as entertainting as ever in Happy-Go-uncky You and They All Start Whistling Mary. (3217).

(3247

(3247.) Of the serious items on the large Broadcast records I am particularly attracted by Frank Titterton on 3240, singing the Flower Song from "Carmen" and Lend Me Your Aid; and Robert Easton, whose fine bass voice comes out well in Boys of the Old Brigade and Boots. (3241.) Lunch-time listeners will welcome the Commo-dore Orchestra on 3243 and 3244, which portray this popular combination exceedingly well.

COLUMBIA

The coming of the winter months is always the the comme of the winter monors is always the signal for even more activity among the recording companies than is noticed during the summer, and this month there is a veritable galaxy of talent to draw from in the Columbia lists. A notable recording is the Berlioz Carnaval Romain Overture by the Halle Orchestra, on LX172, a recording that captures all the dignity of that finest of orchestras

Recording that captures all the dight of that finest of orchestras. Also the Don Cossack Choir have returned on DX374, where they sing Gretchanhoff's Respon-sory II and In the Forest. This is a very welcome record, for the Dou Cossack Choir is completely on its own plane and the recording is phenomenal in the new. in its way.

in its way. No organist is complete without a "storm." in his repertoire, and Quentin Maclean, the popular cinema organist, has recorded his version of a tempest at sea. From Maclean we expect some-thing different in the way of "storms," and here we certainly get it, for in his Storm Fantasia he has deverly worked in a story, with effects, by means of linking up different well-known melodies. The story opens with "Anchor's Weighed," then

"Three Fishers Went Salling"; they are caught in the teeth of a hurrleane and bells toll the warn-ing "Asleep in the Deep." Sonorous pedal notes usher in "Rocked in the Cradle of the Deep," which Maclean skillully blends with the "Fingal's Cave," and "Flying Dutchman "Overtures. The storm is now at its height; great thunderclaps elash with lashing sea and howling wind, while, like a guiding hand, is heard distant strains of "Eternal Father." An excellent organ recording. (DB909.)

like a guiding hand, is heard distant strains of "Eternal Father." An excellent organ recording. (DB909.) It is hard to imagine Harry Dearth in songs more suited to his breezy style than Wine and Water and Why Shouldn't 1? Both of which comprise his latest Columbia disc. The first is G. K. Chesterton, the author's, fanious poem set to music, and it is strong stuff with a bite in it; there is a positive joy in his rip-roaring impression of old Noah. The enchanting gaiety of waitzes from old Vienna has been delightfully captured in the record by Albert Sandler and his Orchestra announced by Columbia for October issue. One side of this record gives us Amoretten Tanz-perhaps the best known of Gung'l's many waitzes, the other, Bien Aimés. Valse, by his contemporary, Waldtenfel, who was almost as prolific a composer of this form of dance music as Strauss, the Waltz King. (DB910.) The thousands who have wished for a recording of Kipling's great Recessional ("Lext We Forget") will find their desire well gratified by a new record

A brief selection from some of the records re-leased during the month. Only a few are discussed, but they are representative of the many brought out by the various gramophone record companies.

<text><text><text><text><text><text>

in the Bournemouth Pavilion—and on the fourth side is Tschaikowsky's Chanson Friste. (DB905-06.)

H.M.V.

With the re-introduction of winter-time our thoughts instinctively turn to the fireside and the long winter evenings, and a selection of discs from the new H.M.V. list will provide an excellent foundation for entertainment during the coming months.

nonntation for entertainment during the coming months.
The chief work in the H.M.V. supplement this month is Beethoven's First Concerto in C Major, played by Arthur Schnabel and the London Symphony Orchestra. (DB1690-94.) This is the second concerto to be recorded by Schnabel, and is simpler in conception than the "Emperor," which was released two months ago. The recording is outstanding, even for H.M.V., the perfection of balance between the soloist and orchestra and the tone of the pianoforte being finely captured. Four microphones were employed when the work was recorded, and this fact no doubt contributes to this achievement. The Concerto takes nine sides, and on the tenth is the first recording to be made generally available of Schnabel as a soloist —playing Becthoveu's Fur Elise.
Anoher new record by the London Symphony Orchestra is the Suite in G of Bach. (C2273.) Arranged by Fugene Goosens. It undoubtedly gains by the fact that the conductor is also the arranger.
If you like the "Blue Danube"—and who does

gains by the fact that the characteristic arranger. If you like the "Blue Danube"—and who does not?—you will want the record of Ochs Waitz, from "Rosenkavaticr." This is on one side of the two records of Strauss's opera played by the Vienna Philharmonic Orchestra. (C2294-5.) The "hall-tone" of the recording is particularly pleas-ing

Vienna Philharmonic Orchestra. (C2294-5.) The "hall-tone" of the recording is particularly pleas-ing. A fine Instrumental disc this month is by the boy prodigy, Ychudi Menuhin. He displays flawless technique in Paganiul's difficult La Campanella, and once again reveals himself as a master of masters. It is coupled with the lovely Song of the Bride (DB1638), from Rimsky-Korsakov's opera, "The Tar's Bride." An interesting planoforte recording shows our old favourite Mark Hambourg as a composer. Although he has recorded for twenty-six years, Volkslied (B4261) is the first record in which he has figured as composer and artiste. He backs it with Rubinstein's arrangement of the Turkish Pairol. The latest new H.M.V. orchestral record is a medley of airs of Schubert played by Tom Jones and his Orchestra, and called Schubertifan. (C2454.) You cannot fail to be familiar with the too name them all. This disc was recorded at East-bourne, the H.M.V. mobile van being used for the grand thotel, so familiar to broadcast listeners, are clearly distinguishable. De of the most popular red-label artisters---forginal form. This melody has recently been played as a rumba, but sung in Spanish by this world famous tenor it sets a new standard. On the reverse is Canta per me (DA1278), a Neapolitan used.or.

the reverse is Ganta pe' me (DA1278), a Neapolitan love song which Gigli renders with passionate abandon. It is rare for a colcured woman singer to achieve distinction, but this has been accomplished by Marion Anderson, whose new record of two Negro spirituals, one of which is Tranping (B4253), shows her as the female Paul Robeson. The outstanding light record from this month's issue is, in my option, A Hollywood Party, a recording of a popular broadcast item (B4264), in which all film fans will be interested. Janet Gaynor introduces first herself, and then presents many of America's famous film stars, including Zazu Pitts, Greta Garbo, Tallulah Bankhead, Marlene Dietrich, Marie Dressler, and Gracie Fields-on a visit to the film centre. It is difficult to believe that you are not at Janet Gaynor's party, but on top of that one has to realise that the voices are not those of the artistes themselves, but imitations of them by Florence Desmond.

<text><text><text><text>

Mr. G. V. Dowding, AssociateI.E.E., Technica: Editor of several well-known wireless publications.

Why YOU should fit a **FILT**

Efficient earthing is vital to good reception. Without it you cannot obtain the power, purity or volume of which your set is capable.

FILT is the most efficient scientific earthing system ever invented. As soon as the copper receptacle is buried, the wonderful chemical it contains begins to spread through the soil, making a permanent highly conductive area to a depth of several feet, ensuring perfect earthing in any climate.

Get a FILT to-day. It may put right faults that you thought could only be remedied by expensive new valves or parts.

Another Expert who praises **FILT**

POPULAR WIRELESS (Wreily) MODERN WIRELESS (Minelik) THE WIRELESS DONSTRUCTOR (Minelik) F.W. BLUE PRINT3 BEST WAY" WIRELESS BOOKS

TALLIS HOUSE, TALLIS STREET, E.C. 4.

12th October 1932.

Messrs. Graham Farish Ltd., Masons Hill, Bromley,

Dear Sirs,

I congratulate you on ingeniously recruiting a sound chemical principle to the cause of better home radio. I have tested "Filt" and obtained striking confirmation of its effectiveness. I measured the earth resistance at actually able to see, by meter indication, the increased efficiency that resulted as its strongly hygroscopic powers came into action. able to conclude that these powers' are retained. Listeners who instal "Filt," and it is remarkably easy to do so, will render their sets a good service, for an efficient earth is in truth the very foundation of good radio reception.

C. V. Dorsding

Technical Editor.

ORNUM

515

S

GVD/MC.

MODERN WIRELESS

November, 1932

M Y DEAR OLD CORPORATION, —As this mode of address may sound, in these days, somewhat like the beginning of a slimmer's valediction to the abnormal convexity of his waistcoat, I will change it to "My Dear Old Woman of Portland Place," which is indeed conferring greatness upon you, inasmuch as you may now consider yourself to be halfsister to the Old Lady of Threadneedle Street.

I have much to say to you, and as I am led to understand that any letter from a "listener" which is pertinent enough to stagger the departmental mind is flung to the lion-cubs of "The Radio Times," to make "fill-ups," I prefer to be cheeky on my own side

DEAR OLD CORPORATION

"-half-sister to the Old Lady of Threadneedle Street."

of the fence, assured that my remarks will be printed unexpurgated and free from italicised back-chat by your loyal minions.

I take it for granted that as, with the exception of the engineers, accountants, and a few other specialists (mostly in the musical line), you are all more or less beginners—I can't properly say "amateurs," because you are wage-slaves like me, but that

An Open Letter to the B.B.C.

is what I mean—you will not develop any spots on your dignity if I offer you candour instead of candy.

Probably much of my criticism will be non-constructive, but why should it not? It is your job to construct, reconstruct, or demolish according as Providence sends you enlightenment.

Great Organisation

My word, aren't you on velvet, though? The income of an Indian prince, the power of a Mussolini, a monopoly to play with, a demand for your services which the economic blizzard has failed to contract, the Government behind you, a Charter in front of you as comprehensive as the Statutes of a modern industrial Merger, and a skin as impervious as that of a crocodile; only explosive bullets—

Somehow or other, We, your virtual creators and actual sustainers, have no hold on the master-string whereby we could have made you pipe and dance to our own tune.

This great organisation which we have brought into existence has, like Frankenstein's synthetic monster, become a master and a menace to us. We could, of course, pull the straw and sawdust out of you, leaving you a mere deflated bag, but I do not think we shall do that; we shall, as usual, compromise. As a people we have an infinite capacity for tolerance of bores of all kinds.

A Close Eye-Witness

What a lark it is that I am writing to an impersonal Corporation! No feelings to be hurt. Years ago, when I was employed by an organisation much larger and very much more useful and important than the B.B.C., I used to blush and feel quite unhappy if I received a letter of complaint.

I would sneak up to my pallet at night, wondering wherein I had failed. One day an older and wiser man said to me: "Lord, don't bother about that; it's addressed to the company! Who

502

the dickens do you think you are ? The President ? "

I understand now—you can't harrow the feelings of the Port of London Authority or the Metropolitan Water Board or the B.B.C. They are entrenched in brass, discarnate, inorganic. But they each have an "Achilles' heel "—the Revenue.

Thus emboldened, I begin. You, my dear old female, have got this broadcasting idea all wrong. It's not your fault entirely, because you inherited it. With the exception of, I think, one member of your staff, I was a closer eye-witness of the birth of British broadcasting than any one of you.

Bearding the P.M.G.

It was copied from America, and I read the report of the man who came back from America and told his employers what was being done there. I remember the day when the leading radio manufacturers bearded the cleanshaven Postmaster-General in his den and came away with broadcasting in their pockets.

"The income of an Indian Prince."

I remember, too, asking someone: "Who has got the job of running this new doings?" and the reply: "A chap called-----" I thought at the time that it was spelt "Wreath," for I had never heard of him. And now, here we are in a palatial pile which was too small for us before we moved into it, and we have a private bath, November, 1932

MODERN WIRELESS

Before you build any "Modern Wireless" Set, or any other set, send tor this book, No. or, and have it by you. It contains a wealth of information on really up-tothe-minute components. Coils, resistances, chokes, mains transformers, volume controls -indeed, every need of the constructor is covered. Get your copy now-and use the components made by the specialist-WEARITE.

AND REMEMBER - A GOOD EARTH ALWAYS ... THE WEARITE TUBE

750.

Telephone :

The R. & A. Challenger P.M. Moving Coil Reproducer is a 'quality' instrument in every sense of the word.

Design, materials, workmanship, finish and performance-each bears the hall mark of excellence. For this reason the Challenger has forged its way to the front rank of moving coil reproducers, and is the accepted standard which others are by judged.

Ask your dealer to demonstrate the Challenger and you will realise that it is the Reproducer to satisfy your most critical demands.

HAVE YOU SEEN THE WEARITE STICK-ON SHE NEW WEARITE STICK-ON SLECTIVITY CONTROL AERIAL LEAD-IN ? Fits any window. PRICE 1/- complete No tools-no holes. (with Aerial block, 1/6) Suits any set. Suits any set.

COMPONET WRIGHT & WEAIR ., LTD., HIGH ROAD, TOTTENHAM, N.17 Tottenham 3847/8----3015 WEARITE COMPOSING O 1472

35/including 3-ratio Ferranti Transformer.

Reproducers & Amplifiers Ltd., Wolverhampton

A BETTER ACCUMULATOR-**BASED ON A NEW PRINCIPLE**

Type E.L.S.7 60 a/h capacity Price 12/6

Type E.L.M.4 45 a/h capacity Price 8 -

Type E.L.9 80 a/h capacity Price 2/3

yet you pay no more for it

" Balanced capacity "- an entirely new development In accumulator design-is the outcome of three years' ceaseless research in the Ediswan laboratories. Briefly it means that positive and negative elements are in accurate electrical balance making very rapid charge and very slow discharge rates equally practicable without damage to the elements. Careful tests show that the new Ediswan accumulator outlasts every other accumulator of similar capacity.

Outside as well as inside, the new Ediswan accumulator is a tribute to the quality of Ediswan workmanship. The glass containers are British made with moulded ebonite lids, screwed vents, non-corrodible and noninterchangeable connectors and a carrier which fits beneath a moulded projection of the glass container. In the E.L.S. types a "grease-cup" on pillar prevents "acid-creep" . . . See them at your radio dealer's.

"Let Us Come Down to Brass Tacks"

and a Latin inscription on the wall to remind Macaulay's classic New Zealander that we were the first Director-General of the B.B.C.

When I say that you have got the wrong notion about broadcasting I refer to your obvious selection and adaptation of Lincoln's famous dictum, for it is evident that you believe that "you can't please all of the people all of the time or some of the people all of the time," and so you have flirted with the idea of pleasing all of the people by pleasing some of them some of the time and others at other times. (I hope that you can follow this.) The result is that your programmes are as vari-coloured as your petticoat.

Ten Bob's Worth

How far you have strayed from the original idea ! That idea was entertainment, and if the old B.B. Company had announced publicly that it conceived its mission to be to give the public not what the public wanted, but what the company believed the public ought to have, why, the company would have just gone and got itself " broke."

But as for you, my charming old beldame, if ever a tail wagged a dog, you're it! I tremble to think what the programmes would be like had the

THE SPOKEN WORD

"-neglect what he can dig out of books."

Press and the people not set up a continuous scream, and kept you on the rails, more or less.

Headed by the austere "son of the Lanse" from the land of Jno. Knox; governed by a Board which would be much more at home if guiding the destinies of Borstal; pestered by cranks of all varieties from musical monomaniacs to prematurely bearded young men who would rather talk "art" and "produce" plays than work; the victim of educational faddists and governmental imagination; the soft nest for unemployed sons of the nobility and aristocracy; bless you, you are a wonderful ten bobs' worth, in spite of all that.

You have been lucky in your engineers. The record of British broadcasting engineers is a triumph of engineering; their epitaph may well be: "We put over what they put out—in spite of what they put out." The microphones are lucky in that they are not sentient creatures !

Popular Taste

Let us come down to brass tacks. I don't believe that there is one licence-holder who invested in a radio receiver because he wanted to be uplifted or educated.

No serious student would neglect what he can dig out of books, for the "talks" which you organise. Those "talks" are interesting because of the personality of the talker, or uninteresting because the speakers cannot "talk."

G. B. Shaw, one of the most loathsome figures which ever appeared in English print in England amongst Englishmen, could make a "talk" on "The Function of Alumina in Portland Cement" interesting—because of his personality. Dean Inge, who never learned how to speak English, would, on the other hand, sicken a pack of Liverpool dock-rats, even if he spoke on "Beer, beer, and more of it."

In a word, my revered ancient female, you are driving listeners to the Continent because you will not follow the policy of those great students of human nature, the Harmsworths, who gauged the level of British popular taste to the last millimetre.

Songs With Choruses

Perhaps it is deplorable, but the popular taste is below high-water level. That is why you have had to boom vaudeville and dance bands. *Hoi polloi* does not want your Bach cantatas, your expositions of the Gold Standard, and the Life of the Lobster, your Epilogues, and your literary gossip.

It wants meat, mostly raw. It wants songs, but songs with choruses and, perhaps, a touch of Rabelais. It wants dance music, the Bacchanalian rather than Mr. Morris's.

We refuse to be bookish, Chelseaish, prigs when we have only one life to live here. Come down to us; we burn the midnight oil and "outwatch the Bear," when we are grinding for our examinations; we become doctors, lawyers, engineers, surveyors, actuaries, chemists, and architects. When we push aside the books and switch on the radio we want a relief—not another course of text-book stuff.

"GIVING HIS VIEWS"

"Some of your 'uncles' are too beefy."

Do you understand ? We are not mere unlettered peasants; we are the doers of this world, and we do not depend upon odd radio speakers for our instruction.

I beg to inform you that from the point of view of most of us the National programme is hopeless from 6 p.m. till 8 p.m. Thereafter we may be lucky—unless the National of one night is repeated in the Regional of the next.

One More Word

This so-called alternative programme business is a wash-out—a swindle, I might say. "If you don't have it on Monday you've got to have it on Tuesday, b'gosh."

But there—I'm sick of complaining about your programmes—they are just the deplorable results of an attempt to compromise with Everyman.

"Get thee to a nunnery," and put a real human being in charge of your programmes.

One more word. Some of your "uncles" are too beefy. They should be fined down. Probably some of your health and diet experts could fetch them down to a more Ghandilike level.

They boom at us; one in particular sounds as though he were a heavyweight boxer giving his views on the weather, unconscious of the pronunciation expert. Mute him, there's a dear old soul.

Yours,

I F the year 1932 ever goes down to posterity as a period that made history, one of the reasons will be that during its progression radio critics began to fill up space in the national newspapers, to tell readers what was wrong with last night's programmes and what there is to be heard this evening.

I don't propose in this article to talk about these gentry. What I do propose to talk about are those other radio critics, surely the most popular of wireless speakers, because the most informative; those charming ladies and gentlemen who, on various days at about seven in the evening, look at the world and all its activities and tell us what's what and why.

Lurk in the Shadows

These people have been neglected long enough, in my opinion. Variety artistes and dance-band men get all the limelight of publicity, but the critics lurk in the shadows. I, with customary aplomb, proceeded to track them down in order

track them down in order to hand on the necessary information to readers of MODERN WIRELESS.

Ernest Newman, authority on Music, came first on my list.

Rather like the conventional Mr. Punch in appearance, he has the

necessary sense of humour to make one believe there is also a resemblance to that risible gentleman in his nature ; but he can be serious on occasion. And the mere fact of having bcen a broadcast critic does not prevent him from criticising broadcasting—and ourselves.

"Listeners are fond of music," he said to me, "but they don't think enough about it. Wireless has offered them a wide enjoyment of music, so wide indeed that within a few years they will have heard the worst and the best of the music that has been written from the fifteenth century down to the latest modern composition.

Too Easy

"They enjoy Beethoven, I know, but isn't it a rather non-cultural enjoyment? Most listeners simply don't bother about the real secrets of music; they take the standpoint that they can enjoy the honey without knowing anything about the bee or the hive.

"They need to take a more intellectual interest in music, in my opinion. And there I am up against it, because broadcasting and the gramophone are tending to make listening to music too easy a thing !"

Resolving never again to listen and read at the same time, I bowed myself out.

Harold A. Albert obtains criticisms of broadcasting from the men and women who have themselves criticised over the radio—with here and there a description of their methods that will interest all readers.

> I next tackled James Agate. This gentleman, a true wireless veteran, who has been talking on "Plays and the Theatre" from Savoy Hill since 1925, looks pugnacious and is. No, he wasn't going to tell me anything at all.

He considered broadcasting not nearly highbrow enough. Dance music should never be relayed before 11 p.m., by which hour people's brains had presumably sunk to their feet.

He could tell an indifferent play in the first act and a bad actor in two minutes. That principle could out both ways, because good plays were also recognisable at sight, as well as good actors. I gathered that he had been a weaver in a cotton mill, a shopkeeper, and a participant in the first broadcast Mass Telepathy Experiment.

After these two encounters, I quivered at the thought of facing those three literary experts, Desmond MacCarthy, Violet Sackville-West, and Clemence Dane.

Selection by Liking

So I resolved to be content with Miss Clemence Dane. I asked her, first, how she managed to select books for criticism and, secondly, how she managed to criticise any at all.

"I always have on my hands about ten times as many books as I can

possibly criticise in the time given," she replied, "and so the wise course seems to me to govern one's selection by liking.

"I read new books for interest, to ascertain what the contemporary world is thinking; and old books for pleasure, to compare the

modernity of the present with that of the past.

Actual Achievement

"It seems to me that criticism must be a compromise between personal liking and general standards. Whether I like a book or not, I always try to judge it not only on its author's actual achievement, but

also on his intention. If a man is writing about women, I try not to say 'Yes, it's interesting, but I wish he had written about men.'"

Then came film critics Cedric Belfrage and Francis Birrell. The B.B.C. has experimented with multitudinous film experts, and not a few people picked almost at random out of ordinary life, but these two seem to be more or less permanent fixtures.

Mr. Birrell, being of the academic type, hates public addresses, but finds the privacy of broadcasting ideal. And he is a listener, too.

No Rotten Eggs

" I approve entirely of the B.B.C. programmes and, though I should like to hear Italian tenors more often, I realise my taste is not the taste of most people. I like broadcast debates, too, and consider it does people good to have to listen to things they dislike without being able to throw rotten eggs at the speaker."

Thank you, Mr. Birrell. Mr. Belfrage ? producers I mean especially those who supply the money for films) the better.

"Otherwise radio, which is bacoming a more and more formidable power in entertainment, will cause our cinemas to close down."

And so I arrived on the doorstep of Mr. Vernon Bartlett, who, since his *metier* lies in the world of international affairs, is the most important critic of them all—and the most popular.

Deservedly so, if his personality is any criterion.

²⁴ Broadcasting ?" he flashed out. "Yes, one of the most important things in the world. It is linking up the ends of the earth and making them as familiar as the gardens of our next-door neighbours by ridding us of the barrier of language.

Abolishing War

"It is abolishing international distrust and therefore war. At the same time it is causing me to distrust myself, for if my final aim wasn't literature, instead of politics, I'm afraid I should get horribly swollen-headed correspondent, like myself, was also loafing very near but not exactly under the clock ! "

It seemed my pilgrimage was finished—and then it struck me that Christopher Stone, the gramophone expert, might also be termed a critic, for he enables us to taste the latest records as the literary critic enables us to savour the latest books.

Thousands of Records

A sort of route-march followed, to a little room high up in Soho Square, where the glasses over the eyes of this tubby, cheerful radio favourite scintillate at thousands of records. I whisper the name of radio.

"Radio? The cheapest, most varied and most easy of home entertainers! But give me the gramophone with the right entertainment for every mood and moment of the day. Mark my words, record-broadcasting in this country is still in its early stages.

Only Stop - Gaps

" If there were nothing to be considered but the taste of the public,

Some Famous Critics

of Microphone Subjects

Well, he's been to Hollywood, and become famous and successful.

"I believe in the cinema as a potent force," he declares, " and as an artistic one. But the cinema has the whole world as a subject, and taking the cream of our cinema brains and cooping them up in studios is sheer idiocy.

More Than a Craze

"The film is a new art form, something more than a mere craze. The sooner producers realise this (and by through the flattering letters people lavish upon me.

"It is the insulting ones that enable me to keep a sense of proportion. One correspondent was so unpleasant, in fact, that I promised to meet him under the clock of a certain railway station and, if he was not bigger than I, to knock him down.

"On the suggested day I stood very near, but not exactly under the clock, and, since nobody was there, eventually went away. But possibly my records might form the principal programmes instead of forming stopgaps between more important items as is the case to-day. Now my ninevalve, super-het., all-electric, automatic-record-changing and stopping gramophone——"

Thank you, Mr. Stone !

So my tour finished in Soho Square. As a result I shall listen with a greater understanding in the future to those men and women who have the responsibility of telling us what we ought to think !

507

London Showrooms : 23, GOLDEN SQ., PICCADILLY CIRCUS, W.1

November, 1932

TROUBLE TRACKING

HIS month I want to say a few words about valve overloading —I am reminded of this by some tests I carried out a few days ago.

Most of the valve makers are now supplying highly efficient power valves which have a steep slope, give a whole heap of magnification, and need mighty little grid bias. Now, these valves are undoubtedly efficient, but in practice they need careful treatment if the best results are to be obtained.

For instance, I was trying out a three-valver with one L.F. stage, and the usual tuned H.F. There was a pre-detector volume control, since the S.G. valve was a variable-mu. The output valve required $7\frac{1}{2}$ volts grid bias at 120 volts H.T., and I endeavoured to work a small P.M. moving-coil speaker with this combination.

Valve Overloading

The results on the distant stations were excellent, because it was here that the high magnification of the valve was shown to its best advantage, but on the local there was a different story; the problem there was to adjust the input to the valve so that

DON'T FORGET THIS!

If your set incorporates a "ganged" condenser always see that the small trimmers are properly adjusted, otherwise the circuits will not be in tune. This adjustment should preferably be carried out on a weak station.

there was no overloading on the "peak" passages. I found this to be a task needing some considerable skill, and it took me about half an hour before I could find a position on the volume control that would give me a reasonable sort of volume without the usual "dither " and roughness indicating valve overloading.

Margin of Safety

This just shows that with one of these steep-slope valves one has to be extremely careful to adjust the input to the grid of the last valve to a nicety, and I am afraid that many of the

complaints that I hear of concerning rough reproduction are solely due to the fact that the sets in question have no volume control, or alternately these controls are not adjusted correctly.

As a matter of fact, in order to obtain a margin of safety without the need for such a critical adjustment on the pre-detector control, I substituted for the steep-slope valve a superpower taking about 12 volts grid bias at 120 H.T. This I found gave me the output I wanted without appreciable overloading.

Pre-Detector Control

While on this subject of volume controlling I would again like to stress a point which I have mentioned in previous articles, and that is the importance of adjusting the volume prior to detection. The variable-mu valve provides us with a convenient means of doing this, with little or no complication, and those who have an ordinary S.G. valve can easily fit a pre-detector control by joining a potentiometer, having a resistance of about 20,000 ohms, across the aerial circuit, joining the aerial lead to the slider.

The reason I am stressing this matter is because in sets of the battery-operated type, particularly those in which an ordinary grid-leak rectifier is used at an anode voltage of something in the neighbourhood of 60, much of the distortion which occurs on loud passages is due entirely to detector overloading.

Poor Selectivity

In fact, if the set is used within a few miles from one of the powerful Regional transmitters, the S.G. valve will be called upon to handle more energy than it is capable of dealing with. Trouble will creep in here, and more especially poor selectivity is liable to be the result of this superabundance of energy. The predetector type of control obviates this, although, of course, its advantages are not so marked in those cases where the listeners are some considerable distance from a powerful transmission.

Predicting the Future

Those who have mains receivers, and to whom H.T. is not a commodity which must be cutdown to a minimum, actual detector overloading is not so much a matter to be guarded against, because a mains design normally makes use of a power grid detector stage, which will handle a comparatively large input without distortion.

Even so, I think it safe to predict that the pre-detector volume control will eventually oust the type of control that has held sway for many years, namely, the potentiometer across the secondary of a transformer, or as a grid leak in an R.C. amplifying stage.

I am now referring only to those sets which have an S.G. stage, and not to the simpler types, such as a det. and L.F. or detector and 2 L.F. November, 1932

MODERN WIRELESS

An easy-to-build, compact, inexpensive and powerful S.G. THREE RECEIVER capable of receiving both long and medium wave stations in great numbers at impressive loudspeaker strength.

FOR Why trust to unproved GRID LEAKS?

WHEN

in the past you may have been tempted into buying Grid Leaks and Resistances of unproved efficiency by the prospect of saving a copper or two. But with the arrival of Dubilier Grid Leaks and Re-sistances you need never again imperil the performance of your set with com-ponents of unproved merit. For the Dubilier Grid Leak costs only 1/*. The famous Dubilier one watt Metallized Resistances sell at the same price. Both are unmatched in performance and their dependability has been proved alike by technicians and public.

Use only Dubilier Grid Leaks and Resistances in your Set. You will never find better.

S OMEHOW an indirectly-heated valve seems much more complicated than one of the battery-operated variety. But this is only because we are more used to the latter. In actual fact the indirectlyheated valve is technically simpler and should, therefore, be the more readily understandable.

Denuded Terminals

Fitting these values is really simplicity itself. First of all you disconnect the wires joining the filament terminals of each value holder, and also the wires from the L.T. battery.

Having done this, you may find that there are still one or two wires going to the filament terminals of each valve holder. These must be transferred to the cathode terminals (centre-pin connection) of each valve holder. All you have to do now is to re-wire the denuded filament terminals with twisted flex of a fairly stout gauge, which is taken to the 4-volt tapping on the power unit, and to connect all the cathode terminals together. That is all.

Detector Connections

You will note that the return leads of all circuits now go to the cathode. The point that may puzzle you is that this also applies to the detector, which, when you used battery valves, had its grid leak connected to the positive end of the filament, and therefore got a positive bias. This is quite correct as, owing to the different conditions prevailing in an indirectlyheated valve, grid current begins to flow at a more negative value of bias, and the valve therefore works exceedingly well with no—or to be more correct, zero—bias. Automatic bias is easily arranged. You must find out from the maker's pamphlet what current the valve passes at the H.T. voltage you propose to use. You then divide this figure into bias wanted multiplied by 1,000. That's simple enough. The answer is, of course, the resistance required in ohms, and all you have to do is to choose the nearest value commercially available.

If you wish to use a spaghetti, remember that these are often wound with very fine wire. It is consequently

necessary to see that the spaghetti chosen is capable of handling the H.T. current passed by the valve. This latter figure you have already found out.

The method of using automatic bias is particularly useful in cases where the set is sometimes used with a gramophone pick-up, as the resistance can be included in the detector circuit so that, when shorted, the detector gets zero bias and rectifies.

Fitting Bias Resistances

On the movement of a switch the short-circuit is removed, the valve gets two or three volts negative according to type, and the pick-up is thrown across the circuit all ready for use.

This is how an automatic bias resistance is fitted. All connections to the cathode terminal of the valve holder of the valve in question are removed and connected to one end of the bias resistance. The other end of this resistance is taken to the cathodeterminal instead.

Curing Instability

Do not forget that if you are troubled by instability it may be due to the improved characteristics of the valves. This is a case where better decoupling is called for. You will find that if you have used H.T. batteries before you now have considerably more voltage at your disposal. The simplest method, therefore, of increasing decoupling is to replace the decoupling resistances with others of higher value.

An output filter will also help, and, personally, I would advise everyone using mains drive to use one, as there are many other advantages of doing so.

Delayed Action

By the way, the colour of the cathode-cum-filament combination during operation is a rather reddishorange, so don't be alarmed when the valve lights up. There is also a rather bright spot right at the top. These valves take between six and twelve seconds to begin operating, and to one not in the know the sudden blare from the loudspeaker if the set has been left tuned is rather alarming.

There is a lot more that could be written about the indirectly-heated valve, but there is no reason why you should experience the slightest trouble. If you want to change over to mains, now is the time to do it. Valve prices are down, and if you buy new H.T. batteries now they will deteriorate whether you use them or not.

MODERN WIRELESS

Whatever fault develops in any radio set, it cannot long elude the vigilance of an "Allin-One" Radiometer. Simply connect each component in turn to the "All-in-One" Radiometer and instantly the sensitive finger of the wonderful instrument points where the trouble lies.

With the aid of this everreliable trouble-tracker you can keep your set in 100% condition at all times.

Get an "All-in-One" Radiometer to-day and become the master of your radio. Ask to see it at any radio dealer's or electrician's. If in any difficulty,

write direct to :-PIFCO Ltd., High Street MANCHESTER: Standard Model" All-in-one" Radiometer for Bat-tery Sets only, **12/6** here. Price

De Luxe Model for Battery Sets, Electric Receivers, and Mains Units. Price £2.2.0

24

1882-1932

There is fifty years' experience behind every Ferranti Mains Transformer

Where else can such experience be found?

Available for 200/250 volts 40/100 cycle Voltage supplies. regulation 5% from full to 1 load. Insulation Resistance not less than 200

megohms. Pressure Tested at 2,000 volts A.C. Non-Hygroscopic Insulation-does not absorb moisture. Earth shield between windings.

Arrangement of windings reduces external magnetic field (which produces hum) to minimum. Liberal rating giving temperature rise far below that dangerous to insulation. Rigorously tested under actual load conditions.

- TYPE EV 4.—For use with the full-wave Rectifying Valve, Marconi-Osram type U to, Mullard type DW 2, or Cossor type 506 BU, to give a D.C. output when smoothed of 250 volts 60 25/-milliamps. Price 25/-
- TYPE EV 5. For use with the full-wave Rectifying Valve, Marconi-Osram type U 12, Mullard type DW 3, or Cossor 442 BU, to give a D.C. output when smoothed of 200 volts 115 milliamps. 27/6 Price 27/6
- TYPE SV 4.—H.T. and L.T. Trans-former. For use with U 10 or DW 2 valve. Output 240 volts 35 milliamps, 4 volts 2 amp. for Rectifier, 4 volts 2 amps. for In-directly-Heated Valves, and 6 volts 4 amp. for Output 27/6 Valve. Price 27/6
- TYPE SV 10.—For use with large Power Amplifiers using U 14 Rectifier. Output: H.T., 400 volts 120 milliamps; L.T., 4 volts 2-5 amps. for Rectificr, 5-25 volts 1-6 amps. for 2 LS 5a's, and 4 volts 3 amps. for Indirectly-Heated Valves. Price 90. Price 90/.
- TYPE SV 13.—For use with the full-wave Rectifying Valve, Marconi or Osram type U 12, to give a D.C. H.T. output of 330 volts 120 milliamps, 4 volts 24 amps. for filament of Rectifier, 4 volts 6 amps. for Indirectly-Heated Valves. Two 4 volt 1 amp. wind-ings for two separately hiased PX4, Push-Pull Output **87/6** Valves.

Write for leaflet W.522/1, which gives full details of all models

- TYPE SV 14.—For use with two full-wave Rectifying Valves, Marconi or Osram type U 14, to give a D.C. H.T. output of 440 volts 160 milliamps, one winding giving 4 volts 5 amps. for fila-ments of two Rectifiers, one winding giving 4 volts 6 amps. for Indirectly-Heated Valves. Two 4 volt 2 amp. windings for feeding the filaments of two Push-Pull separately biassed PX25 or PP5/400 Output **98/6** Valves.
- Valves. **TYPE SV 84.**—H.T. and L.T. Transformer. For use with U iz Valve. Output: 250 volts 70 milliamps, 4 volts 2 5 amps. for Rectifier, 4 volts 5 amps. A.C., and 4 volts i amp. A.C. L.T. windings, centre tapped. **36**/-Price **36**/-
- TYPE EM 3.—For use with West-inghouse Metal Rectifiers, types H.T. 5 or H.T. 7, to give various D.C. outputs up to 200 volts 28 milliamps according to 22/6 tbe Rectifier used. Price
- TYPE EM 6.—For use with West-inghouse H.T. 8 Metal Rectifiers, D.C. output 250 volts 60 milliamps. Price 22/6
- TYPE SM 2.—For use with West-inghouse Rectifiers types H.T. 5 and H.T. 7. Gives same H.T. outputs as EM 3, and also pro-vides 4 volts 6 amps. A.C. 26/-Price
- TYPE SM 34.—For use with West-inghouse Rectifier type H.T. 8. Gives same H.T. outputs as EM6, and also provides 4 volts 5 amps. and 4 volts 1 amp. A.C. 30/-Price
- Types SM 2, SM 34, and SV 84 Mains Transformers are specially suit-able for use in connection with Super-Heterodyne Receivers.

MODERN WIRELESS

Limited Liability

Listeners should remember that financial loss on approved apparatus due to the change-over must be borne by the Electric Supply Company. This condition is invariably imposed upon all Electric Supply Companies, who are subject to the Acts of Parliament mentioned above, although there is a clause which limits the extent of the supply company's liabilities.

Notice to Consumer

This clause deals with the giving of notice of the supply company's intention to change the current supply, in order that the company may be relieved of liability with regard to any apparatus which may be installed after the serving of the notice regarding the change of supply and before the actual change of the supply. The listener should note, however, that no such notice may be served upon the consumer less than one month and not more than six months before any change in supply is put into operation.

P.O. and Pirates

According to the "Daily Telegraph," since the Post Office detective vans (Continued on page 514.)

A.C. and D.C.

RADIO NOTES and NFWS of the MONTH

GOOD many MODERN WIRELESS readers have probably been irritated in the past—and are likely to be irritated again in the future—by the change-over in electric light supply in various districts from D.C. to A.C. There is no doubt that this changing of electric supply causes a deal of trouble, expense, and annoyance; but this is chiefly because the householder concerned is ignorant of his rights.

Controlling Commission

Now, the Electricity Commission is a body which exists for controlling such changes and, under power granted by the Electricity Supply Acts of 1882–1908, is able to stipulate than an electric supply company wishing to make a change from, say, D.C. to A.C. current supply, must

The Deuce!

Supposing you have built yourself a very nice D.C. electric gramophone, or a D.C. radio-gramophone, and after a few months' enjoyment of the instrument you are informed (or even perhaps you are not informed) that your D.C. will, on a certain date, be changed to A.C. In the writer's case this happened not so long ago, and he was not informed of the impending change. Consequently, one day when the power was switched over to A.C. there was the deuce to pay !

MATCH D TO WITHIN 2 of 1% + HALF A MICRO-MICROFARAD

A rigid chassis that is all one piece-not merely a framework bolted together. A one-piece chassis so strong that there can never be the slightest distortion in use this is the chassis of the J. B. NUGANG.

Trimmers to each stage inside the chassis are operated by external starwheels. Vanes wide spaced and of heavy gauge. Special rotor bearings ensure permanent accuracy and give remarkably free movement. Capacity 0005

Supplied semi-screened as illustrated or fully screened with lid.

Capacity without trimmers: Minimum 20 m.m.f. Maximum 520 m.m.f. Capacity of trimmers: 70 m.m.f.

NUGANG

Semi-screened		Fully Screened	
2-gang	14/-	2-gang	16/-
3-gang	2.1/-	3-gang	23/6
4-gang	28/-	4-gang	31/-

INSTRUMENTS

Advertisement of Jackson Bros., 72, St. Thomas' Street, London, S.E.1.

PRECISION

Telephone : Hop 1837.

DON'T GAMBLE WITH SALES

There can be no certainty of success for the sales of a product unless backed by sound, consistent advertising. Don't gamble with sales. Advertising facilitates distribution and ensures sustained demand.

Issued by the Institute of Incorporated Practitioners in Advertising in conjunction with the Federations of Master Process Engravers and Master Printers, etc.

Barbon State <td

began their hunt for London's radio pirates on October 11th, more than 100,000 new wireless licences have been taken out at post-offices in the metropolis. At the time of going to press the campaign is still being ferociously waged, and it is quite likely that many hundreds of thousands of still recalcitrant pirates will be caught in the net before the end of the month.

Telephone Talk

The Assistant General Secretary of the Union of Post Office Workers recently took umbrage on behalf of telephone exchange girls at a satirical and somewhat inane sketch broadcast by the B.B.C. Part of the dialogue parodied telephone girls' conversation in a way which suggested that they had very slight acquaintance with the proper pronunciation of the King's English.

Too Sensitive ?

Nevertheless, all the bother which was aroused seems to indicate that telephone girls lack a sense of humour themselves, for what would happen if every politician got annoyed because of the cartoons of Low and Poy? There is no doubt that the B.B.C sketch was an exaggerated parody, and as such was reasonably good fun, and certainly not intended to give any offence.

The joke is that all these little bust-ups in the papers provide the B.B.C. with first-rate publicity !

Lady Snowden

There have been many rumours lately about Lady Snowden, for her term of office as a Governor of the B.B.C. expires on the last day of this year. There are lots of reports floating about as to who will take Lady Snowdon's place, but, as a matter of fact, everything points to the possibility that she will be re-elected to the Board.

It is certainly to be hoped so, for she is undoubtedly the most hard-working member of the Board, and it is difficult to think of any other woman to-day who could more successfully fill her position.

Governors' Duties

It is worth while remembering here that the Governors of the B.B.C. receive £700 a year, and although the present members of the Board are fairly active in their interest in the welfare of the B.B.C., there is no doubt the B.B.C.'s Charter is curiously vague on the subject of the Governors' duties.

becoming bankrupt or of unsound mind. Well, we know one or two potential lunatics whom we should very much like to be transferred to the B.B.C. Board.

Salary Facts

Just to remind you, the Chairman of the B.B.C. gets £3,000 a year, the Vice-Chairman £1,000, and the three other Governors are the only members of the B.B.C. who have their salaries fixed by the Government, i.e. £700 a year. The Director-General, Sir John Reith, was appointed by the Postmaster-General, but any subsequent Director-General would have

NEWS IN THE MAKING

Representatives of leading radio firms recently visited Allied House, the Manchester headquarters of Allied Newspapers, Ltd., and are here seen in the telegraph department receiving a message from the London office of the "Evening Chronicle" and "Daily Dispatch."

Now, can you make head or tail of that?

What They Can't Do

There are several conditions attached to the Governors' work, and here are one or two things which they can't do:

Raise their own salaries.

Become bankrupt or of unsound mind.

Absent themselves from the meetings of the Corporation continuously for six months without the consent of the Corporation.

And so on, and so on.

Would It Stop Them?

Judging by the way the Charter is worded, if you become a member of the B.B.C. Board, by some magic influence you are prevented from to be appointed by the Governors in solemn conclave.

A Sunset Globe

A wonderful illuminated globe which shows the time and the sunset in any part of the earth all the year round, and which is covered with painted pictures showing scenes of exploration, of animals, of great events, of earthquakes, etc., is a unique present which was given to Sir John Reith by the President of the National Broadcasting Company of America.

It occupies a place of honour in Sir John's room at Broadcasting House, and ic probably one of the most unique presents of its kind in the world.

I understand that Sir John spends many hours—from time to time examining this fascinating gadget. ֍֎֍֍֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎

Next, suppose we require to use this milliammeter as a voltmeter. If we make its resistance 1,000 ohms it will show approximately 1 milliamp. for every volt across its terminals, since $1 \div 1,000 = \cdot 001$ amp. That is, we can use it as a *direct reading* voltmeter for any voltage within its scale range in milliamps., e.g. our 0-10 m.a. instrument becomes a voltmeter reading 0-10 volts. But we can also increase the scale range in any way desired by making the resistance higher and multiplying the readings by convenient factors.

Multiplied Readings

Thus making the resistance 10,000 ohms the instrument will read 1 m.a. for every 10 volts and 10 milliamps. for 100 volts. Evidently the voltage in this case corresponds to the scale reading *multiplied by* 10, the range being 0-100 volts. Lastly, by making the resistance 100,000 ohms we again multiply the readings by 10; 1 milliamp. now being equivalent to 100 volts across the terminals. (Fig. 3.)

Eliminator Voltages

With such a high-resistance instrument it would be possible to measure with fair accuracy the voltage across some of the output tappings of a mains unit. I do not say that the results would be anything like correct for detector and similar tappings where we already have very high resistances in circuit, but they would be quite good enough for, say, the power stage.

Since, however, eliminator voltages fall with the load, a voltmeter reading is no certain indication what the anode voltages might be for particular valves and grid-bias values.

Total Resistances

A far better method would be to measure the plate current in each stage and compare it with the specified values for the grid bias used. If a "voltage regulation" curve of the eliminator is available, the voltage corresponding to any given current can afterwards be readily obtained, as shown in Fig. 4. for a current of 10 m.a.

To ascertain the *total* resistance of a voltmeter, you multiply the "ohms per volt" figure, quoted by the maker, by the *maximum* scale reading.

ROB YOUR SET OF THE H.T. IT DESERVES

When you throw away an old H.T. Battery, you throw away voltage you cannot use. You are wasting money.

The Lively 'O' H.T. Accumulator stops waste—definitely! From the moment it is charged, up to the time it needs recharging, it is full of power-giving life—full of powerful energy—full of punch! No self-discharge —no leakage—its "Air-Spaced" cells are leakage.proof. The Lively 'O' H.T. Accumulator gives you constant voltage. Smooth, silent current—power that never varies. Isn't that the kind of H.T. supply you've always wanted? Your dealer stocks the Lively 'O' H.T. Accumulator.

Oldham & Son Lid., Denton, Manchester. Estd. 1865, and at London, Glasgow, Belfast & Dublin

MODERN WIRELISS

YOUR Picture Paper.

\$

՟֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎ RECENT RECORD RELEASES -continued from page 500

(A)

aged 103, who is conveniently named Septimus Brown. I strongly advise you to hear it. On the other side is the theme-soug of the film, a lively number called Looking on the Bright Side of

other side is the theme-song of the film, a lively number called Looking on the Bright Side of Life. Gracie displays her unique talent in After To-Night We Say Good-Bye, and I Hate You (B4260), and You're More Than All the World To Me (B4259), the latter being backed with 'Appy 'Ampstead, which is not from the film. In this last one she effectively exchanges her Lancashire accent for Cockney, and the atmosphere of the song is fully obtained with the authentic recording of a fair organ and crown hofses. " Jack's the Boy" is reckoned one of the funni-est British films that has ever been made, and Jack Hulbert's record of his two songs in the film, The Flies Grawled Up the Window and I Want to Cling to Iry (B4263), is equally anusing. It was made impromptu at Monte Carlo whilst Jack was in a bathing costume. His "scloolboy" French at the beginning of the first song is reminiscent of some of his most popular broadcasts. Another light vocal record is worth mentioning —that of the well-known cabaret and revue star, Frances Day, singing Ooh ! That Kiss. (B4266.)

Happy-Go-Lucky You, Broken-Hearted Me and Masquerade, by the same band. Another two outstanding tunes which will be very popular, and this is one of the best records which Syd Lipton and his Grosvenor House Band have recorded. (6188.)

When the Band Goes Marching By and Watch the Navy. Reginald Dixon (Wirlitzer organ), recorded at The Tower, Blackpool. Reginald Dixon is now recording exclusively for Zonophone,

Dixon is now recording exclusively for 2010 pandr, and this record is a typical example of his playing which is so popular with listeners-in. (6189.) The Poacher's Son (Parts 1 and 2). A very clever and amusing ventriloquist record by Johnson Clark of a broadcast turn I enjoyed recently. (6191.)

Likely to be big " Hits "

Moonlight on the River and We Just Couldn't Say Good-bye. Sam Rrowne has made an excellent record of these two numbers, which are likely to be anongst the biggest "hits" of the season. The instrumental accompaniment is particularly attractive. (6192.)

Post Horn Polka and The Warrior, by Harry Mortimer with Foden's Baud. A record of out-standing merit. The playing of Harry Mortimer is a fine piece of recording and the record should appeal to all tastes. (6198.)

appear to all tastes. (6198.) My Girl's Fine and Dandy and H'lo Baby, by Max and Harry Nesbitt. These great Non-Stop Variety stars have made two light and lutimorous numbers. The initiation of a baby crying in "My Girl's Fine and Dandy" (6199) is a fascinat-ing piece of artistry. Let's have more of these two, please.

K. D. R.

THE DECEMBER ISSUE OF MODERN WIRELESS" WILL BE A SPECIAL CHRISTMAS NUMBER

Packed with seasonable fare, as well as all the usual brilliant features, including a big WORLD'S PROGRAMMES Supplement.

NO INCREASE IN PRICE 1/-**ON ALL BOOKSTALLS DECEMBER 1st.**

The rumba-like accoupaniment by an unnamed orchestra—Ray Noble's (?)—is very intriguing. There is a large batch of H.M.V. dance records, Ambrose and his Band contribute three, compris-ing five fox-trots and a waltz; the latter, called Masquerade (B4231), being the most tuneful and excellent for dancing. This number and Wrap Your Arms Around Me with Nothing But a Lie (B4232) have not the conventional "At the May Fair Hotel" on the labels, for they were recorded at Monte Carlo, where the band has been playing at the Beach Casino.

Zylophone Hornpipc and Applause

Ray Noble excels hiuself in two comedy records: Watch the Navy, a nautical one-step complete with zylophone, hornpipe and applituse, which was provided by four hundred gramophone dealers who were up in London for the Radio Exhibition and were in the studio when the record was made, and When the Sand Goes Marching By, when the same body impersonated a cheering crowd crowd

crowd. Finally we have four American ones recorded by seven of U.S.A.'s leading bands. Each has its own distinctive features—Gene Kardo's Band uses two pinnos in The Roses Are Red and I Can't Believe It's You (C6227); Gus Arnheim and Ruby Newman have vocal trios in their arrangements of You've Got Me in the Palm of Your Hand (B6022) and HI Could Call You Sweetheart (B6234): whilst Leo Reisman introduces some pollshed violin playing into You Gave Me Everything But Love.

Ted Black's interpretation of We Were Only Walking in the Moonlight is likely to be regarded as the authentic one of this number, which is becoming a hit on this side of the Atlantic. I like them all.

ZONOPHONE

Here are the records I have specially picked out from the Zonophone list. A Great Big Bunch of You and Marta are two popular numbers excellently played by Syd Lipton and his Grosvenor House Band. By the way, "Marta" is one of the big "hits" of the season. (6181.)

の気のなら CUTTING OUT THE 8 3 48 48 48 68 **BIAS BATTERY** 88 By H. A. RAMPTON.

"ir and forget" is a very bad slogan to apply to a bias battery. Yet unless one goes' to the trouble of taking regular voltage measurements of G.B. and H.T., it is one that many of us unconsciously adopt.

A bias battery does not have to supply current, only a voltage, and therefore it does not run down. It deteriorates, and thus the voltage falls, but not very quickly.

A Method to Try

A battery, then, is not an idyllic method of providing a bias voltage on the grid of an output valve. There is another way, and a very good way. On mains sets it is quite common, but until the last year or so it has been impracticable with battery-

(Continued on page 517.)
November, 1932

නිද්යා හා අවු ඇත. අත අත අත අත අත අත අත අත අත අත

MODERN WIRELESS

CUTTING OUT THE	19 19 19 19 19 19 19 19 19 19 19 19 19 1
BIAS BATTERY	19 19 19
Continued from page 516	89 89
ֈ֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎	in the second

operated sets. I refer to "automatic " or "free" G.B.

If your output valve needs less than 10 volts bias, or if you have an H.T. voltage higher than 120 volts available, this is a method you should certainly try.

Resistance and Condenser

The scheme is this. You have first to get a resistance (of the spaghetti type if you like) and a condenser of at least 1 mfd. Connect the resistance in the lead that goes to the negative socket of the H.T. battery.

The connections of the condenser are simpler still, since one end is connected to one end of the resistance, and the other end is connected to the opposite side of the resistance.

There is one more connection. The grid-bias negative plug must be taken to the negative H.T. plug. The original G.B. positive plug is no longer wanted, and may, with the bias battery, be removed from the set.

Since valves vary, sets vary, and circuits vary, the value of the resistance will depend on your own particular receiver. It is purely a ques-tion of how much H.T. current your set takes. If you know, or have a milliammeter-a reliable one-the deed is done. If the last valve is a pentode you must count in the screen current as well as the anode current. The current taken by all the other valves must be added on, and if your set is a normal one, you won't go far wrong if you reckon 2 milliamps. for each valve, whether H.F. or L.F. or detector.

-And a Bit Over

Thus an S.G., det., pentode might give you 2 plus 2, plus, shall we say, 8 milliamps. for the pentode and another 2 for the screen. That's 14 milliamps. total.

How much bias? Let us say 6 volts. In every case this bias figure must be multiplied by 1,000; in this case resulting in 6,000.

What we do now is to divide this by the total H.T. current previously found; 14 into 6;000 ? Comes out at 428 and a bit over. Well, this 428 is the figure we want, and we choose the nearest value of resistance available, which happens to be 500 ohms.

Here are some tests with various well - known types of wander plugs. Starting from a small socket, each plug was was pushed into progressively larger sockets until no contact was made, the force needed to remove the plug from each size of socket being measured in ounces.

In each case the "Bowspring" showed itself the better plug. plug. Here is an example.

Socket diameter.	Grip of Bowspring	f Grip of typical "split-pin" Plug.	
.127″	65 oz.	20 oz.	
.133″	36 oz.	2 oz.	
.134″	28 oz.	No contact	

The "Bowspring" continued to make contact until a socket size of just over .144" was reached.

The "Bowspring" gives strong pressure over a far wider range of diameters than any plug we have so far tested.

Adot. of BELLING & LEE, Ltd., Cambridge Arterial Road, Enfield, Middlesex

Short Wate Specialists. • "The Eddystone Short Wave Manual" includes the Eddystone Short Wave Manual" includes the eddystone Short wave receivers, a 1-valve super-het, s.W. converter, a 1-valve S.W. adapter, a dynatron and heterodyne wavemeter, and a 7-metre utra S.W. converter, A 1-valve S.W. adapter, advanter and heterodyne wavemeter, and a 7-metre utra S.W. converter, A 1-valve S.W. adapter, wave tuning, S.W. condensers, trouble locating, etc. List and cost, of parts given in detail for each set. Market Splendid book. STRATTON & Co. Ltd. (E B & D & S & G & VE & STRESS DEMONS Service Depot MAAN DUAL MAAN DUAL MAAN DUAL

Strong spring and wide self-adjustment. Side entry, with Belling - Lee patent grip for flex. 12 in-dications and 6 plain colours.

Here are but a few of the benevolent services of the British Legion for distressed Ex-Service men and their dependants :

£3,594,348 spent in relieving distress (3,568 voluntary benevolent committees) 2.166 families assisted to emigrate.

£75,000 spent in Housing Scheme for disabled.

£163,443 advanced to finance employment schemes.

Sanatorium and Training Settlement maintained for tuberculous ex-service men (total population 700).

Thousands of men placed in employment annually.

270 disabled men permanently employed making popples.

16,909 men set up in business.

£75,800 granted to St. Dunstan's to help blinded men.

1932 is a very difficult year for the men who served 1914-18, so PLEASE PAY VERY GENEROUSLY for your Poppy on REMEMBRANCE DAY-NOVEMBER 11th, and if possible, send a donation to Capt. W. G. Willcox, M.B.E., Organising Secretary, Earl Haig's (British Legion) Appeal Fund, 26, Eccleston Square, London, S.W.1.

FOR FIVE VALVE RECEIVERS A.C.

Heayberd MW.1 Mains Unit is especially suitable for A.C. Receivers of from 3 to 5 valves. The components are carefully chosen and matched to give perfect, noiseless power. Units are housed in neat metal cases, finished in bronze. Incor-porating Heayberd Mains Transformer, Double Chokes, 16 mf. Block Condensers and Westinghouse Metal Rectifier. Safety fuse can be inserted or removed without removing the metal case. Control panel recessed in top of unit.

HEAYBERD MW.1 MAINS UNIT ALTERNATIVE OUTPUTS: 50 ma. at 200 v. or 30 ma. at 150 v. TAPPINGS: 40/120 v. Var. S.G., 175 v. and 200 v. fixed. L.T. 4 v. 5 amps. supply for A.C. Valves. PRICE 127/6 COMPLETE Guaranteed Three Years without breakdown.

This model, and many others, is fully described in the new Heayberd Handbook. Also details of Mains Transformers, etc.

AT YOUR SERVICE -continued from page 498

E B

works as efficiently after the changeover has taken place as it did before. At the same time the supply company realises that it would be inadvisable and uneconomical to alter the consumer's apparatus in any way.

To meet the special circumstances, the General Electric Co., Ltd., has given close study to all the factors involved, and has solved the problem by developing units which will allow existing receiving apparatus to be continued with satisfactory results.

A Conversion Unit

The company came to the conclusion that owing to the wide variety of eliminators that are employed, it would be impracticable to replace these by alternatives of the A.C. mains type, and that it would be considerably more economical to substitute a unit which would give the equivalent of the original D.C. supply.

Accordingly Gecophone the BC1534 A.C. to D.C. Conversion Unit has been designed specifically for such a purpose. This unit is capable of giving an output up to 30 m.a. of smooth D.C. supply, eminently suitable for feeding existing D.C. eliminators and in general giving more silent operation than was originally obtained with the D.C. mains supply.

It is constructed on standard eliminator lines, an Osram U.10 valve being employed as a rectifier. The primary of the mains transformer is arranged to accommodate 200-250 volts, and the D.C. output is controlled by tappings on the H.T. secondary of the transformer feeding the anodes on the rectifier valve.

The unit is housed in a black crystalline enamel container, is neat in appearance, and complies in all respects with I.E.E. Regulations.

Delay Action Switch

In class (b) it is usually extremely difficult to re-wire an instrument for operation on A.C. mains, and it is once again more economical to employ a unit which will generate a supply equivalent to the original.

For this purpose the BC1533 A.C. to D.C. Conversion Unit has been designed. It is capable of giving an output up to 350 m.a. smooth D.C. supply, and of running radio receivers consuming up to 75 watts.

This, in general, covers all sets

employing ¹-amp. valves, such as the Osram indirectly-heated series, and the output is adequately smoothed. The circuit employs two Osram GU1 rectifiers, and is suitable for 230 volts 50 cycles input. A special delay action switch is incorporated which prevents the rectifiers being loaded before they attain full working temperature.

The two units referred to cover the vast majority of radio requirements.

New H.M.V. Appointment

I was very pleased to hear of the announcement that followed the resignation of Mr. Allin Green, of the Gramophone Company, namely, that the company has appointed Mr. Richard Arbib as Manager of the Press Department as from October 1st, 1932

When H.M.V. entered the straight radio field last year Mr. Arbib, who had been in the service of the company for some years, took over the technical side of their press activities, and has been responsible for the dissemination of technical news since then. And no more live wire in that regard could we wish to see.

He will now combine this work with his new duties, and will be pleased to give every possible assistance to the press in providing reliable and authoritative news of the Gramophone Company's activities in the radio, grainophone, and record fields.

I wish him luck in his added activities, and am sure no man could be found better capable of filling the post

999999 **MODERN MANUFAC-TURING METHODS** A Visit to Hayes

ow highly-specialised and successful the methods of the upto-date radio manufacturer have become is not generally realised. But some very interesting facts and relative figures were recently disclosed by the English manager of The Gramophone Co., Ltd.---Mr. Richard Haigh-when introducing H.M.V. policies and products for the 1932-33 season.

At their extensive factories at Hayes, Middlesex, the company generate more electricity per day than is used in a town the size of Reading. Four thousand large trees are felled yearly for the cabinets alone.

A medium-priced radio-gram, composed of about 2,500 separate parts, (Continued on page 519.)

MODERN WIRELESS

November, 1932

MODERN MANUFAC-TURING METHODS --continued from page 518

requires 120 working hours to manufacture. And it takes months of intensive training to enable specially picked girls and women to acquire the fine operational skill required for the winding of pick-up coils and similar delicate manipulations.

The company spends about £50 in training every worker before she is able to produce a satisfactory coil. And then perhaps Mr. Cupid calls and she leaves to be married, so it is necessary to have a surplus of trained girls to make up for such deficiences !

Every step in the production of radio receivers and radiograms at Hayes is controlled scientifically, from the fundamental design to the finished product. And how great the success of these methods has been will be apparent to those who carefully study the present extensive range of H.M.V. models.

to bring in stations other than the two locals on a two-valve set *in daylight* we decided to try for the Northern Regional programme.

To our surprise the Northern Regional came through "first time," but naturally the volume was not very great. The announcer's words were intelligible, and another stage of amplification would have brought this transmission up to good listening strength.

On Long Waves

On the long waves, Daventry was tuned in at satisfactory volume, and after dark this little receiver should be capable of "putting" half-adozen or so of the more powerful Continentals on to the built-in speaker.

Incidentally, the speaker is of the moving-iron type, and is adjustable for sensitivity from the front of the cabinet.

The set is sent out complete with two valves—an H.L.210 and P.T.225, 120-volt H.T. battery, 4½ volt gridbias battery, two-volt accumulator, and the necessary wander plugs and leads.

 Phoppy Reaction—Stopping Hum

 Pentode Points, etc., etc.

A thick wrapper of paper should always be padded round a threaded rod before an attempt is made to hold this in a vice.

Dubilier's are now marketing a resistance for fitting to the sparking plug of a car to reduce interference from this source.

Ploppy reaction on a short-wave set will often disappear if the detector's H.T. is readjusted carefully.

Correct grid-leak value is of great importance to smooth reaction results on the short waves. Remember that a different leak, even though it may be marked exactly like the one at present in the set, may effect reaction control improvement.

One of the oft-forgotten cures for threshold howl is to connect a high resistance, say quarter or half a megohm, across the secondary of the L.F. transformer. A grid leak will do admirably for the purpose.

One of the commonest causes of hand-capacity on short waves is a bad earth connection.

If your earth lead is unavoidably long you may find it an advantage to dispense with an earth connection altogether when working on the short waves.

Covering the underside of the baseboard with copper foil is one of the best methods of assuring easy handling of a short-wave receiver.

When very fine tuning is specially necessary, as on the ultra-short wavelengths, there is much to be said for fitting the dial with a "three-hair" tuning-indicator. It consists of two equally-spaced hair lines, parallel with the main "hair-line" but a little in front of or behind this, enabling the operator to align his eye correctly.

To reduce the likelihood of hum being introduced into the set, all mains gear, such as rectifier and smoothing circuits, should be spaced well away from the radio section of a mains receiver.

(Continued. on page 520.)

MODERN WIRELESS

RECEPTION WRINKLES
 —continued from page 519
 た始条条出始始始合約約約約約約約約約約約約約

When a mains periode is used it should preferably not be placed in very close proximity to the output transformer or choke.

Owing to its high magnification, the pentode is unsuitable for use after two L.F. stages. Overloading is bound to result.

Pentode users will generally do well to use an impedance-equaliser across the output choke or output transformer primary. It may consist of an ·01-mfd. fixed condenser in series with a 25,000-ohm variable resistance.

֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎

THE B.B.C. IN PICTURES A New Book Reviewed

Some weeks ago the wireless correspondent of a daily newspaper announced that the B.B.C. was prepared to arrange conducted tours for those listeners who wanted to see Broadcasting House.

Since B.B.C. officials had no knowledge of this announcement, they were rather disturbed by the overwhelming number of applications which resulted. As a result, however, the edict went forth from Portland Place that, for the present at any rate, no tours of Broadcasting House could possibly be undertaken.

The disappointment of listeners will be somewhat lessened by the publication of an extremely interesting and very well designed book under the title of "Broadcasting House."*

About thirty pages of letterpress tell the reader all he will want to know about the design, the equipment, the lighting, the ventilation, and the hundred and one other details of London's home of broadcasting, and the rest of the book—some 100 pages—is given over to copious illustrations.

There are photographs of the studios, offices, and control-rooms; coloured prints of the more important designs; and most pleasant plans of each floor.

Acknowledgements are made, in a special appendix, to everyone who

Order your "M.W." for

NEXT MONTH

It will be the

One Shilling. Out December 1st

was in any way connected with the building; and not the least instructive part of the book is a table giving the dimensions, acoustic properties, and reverberation times of every studio.

The reader will find "Broadcasting House" a worthy addition to his bookshelves. What is more, he will feel that he now knows everything that there is to be known about one of the most modern and utilitarian buildings in the world.

P. C.

*("Broadcasting House," published by the British Broadcasting Corporation. 5s.)

FOR some months now we have been carying out tests on both the life and characteristics of the new Standard Micro-Mesh valves. Three of these have been undergoing the examination, and all have come through with flying colours

The valves concerned are the indirectly-heated A.C. types H.L.A.I, P.A.I, and the rectifier R.I. They have the following characteristics, which we found varied very slightly from specimen to specimen; in fact, the standardisation of the valves is excellent.

The H.L.A.1 has an impedance of 10,000 ohms and an amplification factor of 80. This gives a mutual conductance of 8, an exceedingly high value, making the value an excellent detector or first amplifier.

On test in a receiver this valve, T transformer coupled to the P.A.1, gave ample volume for all purposes, considerable volume-controlling being necessary on powerful transmissions. The P.A.1 has an impedance of 1,050 ohms, with a mutual conductance of 12, a truly astonishing figure.

This implies that the valve has to have but a small input for it to be fully loaded on the grid, and the amplification factor of the valve ensures a large power output. The anode current is round about 40 milliamps., and the grid bias 11 to 15 negative at 200 volts anode potential.

The third valve, the rectifier R.1. delivers 250 volts double-wave rectified, and is fitted with a 4-volt heater, taking a current of 1 amp. Like the other two valves, it is of the indirectlyheated variety, and will deliver a smooth output of some 60 milliamps. These valves make a very fine trio.

	PACE	PAGE
INDEN TO ADVEDTICEDO	General Electric Co Ltd 493, 497	Reproducers & Amplifiers, Ltd 503
INDEX ID ADVERIISERS	Gramophone Co., Ltd	Stratton & Co. (Eddystone)
PAGE	Henyberd, F. C., & Co	Taylor, M
Belling & Lee, Ltd	Institute of Incorporated Practitioners in	Varley Products
British Bluo Spot Co., Ltd Cover til British Insulated Cables, Ltd 490 Burne-Jones & Co., Ltd	Advertising	Ward & Goldstone, Ltd. 499 Westinghouse Brake & Saxby Signal Co.,
Carrington Manufacturing Co., Ltd. 507 Clarke, H. & Co. (M/er.), Ltd. 485 Colvern, Ltd. 509	Jackson Bros. 512 Lectro Linx, Ltd. 516 London Elec. Wire Co. & Smiths, Ltd. Cover ii	Ltd. 413 Wilkins & Wright, Ltd. (Utility). 507 Wright & Weaire, Ltd. 508 "Wonders of the World". 494
Dubilier Condenser Co. (1925), I.td	Motoring Encyclopedia 414	
Edison Swan Electric Co., Ltd. Cover iv, 503 Electradix Radios	Oldham & Son, Ltd. 515 Peto-Scott Co., Ltd. 519 Pickett Bros. (Cabinets) 526	All communications concerning advertising to "Modern Wireless" must be made in John H. Lile, Ltd., 4, Ludgate Circus, London, E C 4. Telephone: Citra 7201
Ferrauti, Ltd	Pitco, Ltd	

Printed and published by the Amalgamated Press, Ltd., Fleetway House. Farringdon Street, London, E.C.4, on the 1st of each mouth. Address for Advertisements: John H. Lile, Ltd., 4, Ludgate Circus, E.C.4. Telephone: City 7261. Registered for transmission by Canadian Magazine Post. Subscription rates: Inland and Abroad. 17/- per annum; 8/6 for six months. Sole Agents for Australia and New Zealand: Messrs. Gordon & Gotch, Ltd.; and for South Africa: Central News Agency. Ltd.—November, 1932.

SCRAP YOUR OLD SPEAKER and get

NOW that it's getting dark early and the fireside seems the cosiest place, listening-in begins to take up a larger share of your interests.

Make sure that you are getting the best from the wireless programmes. Your old speaker has probably earned a rest. Its voice has lost its purity : it stutters and stumbles. Retire it from active service and get a modern Blue Spot.

Blue Spot 100U (or in oak cabinet 100D) will make a vast difference to your pleasure. Its performance is equal to all but the dearest moving-coil speakers. It reproduces the whole musical range with fidelity and clarity. It can be used with battery or main sets – quite small ones—because it is sensitive even to small inputs. And it can be used with normal or Pentode valves without the addition of a matching transformer. No speaker at any thing round about the same price can compare with 100U for quality and performance. Don't, therefore, take chances with "cheap" moving-coil speakers. Write for Catalogue No. M.W.22.U.

BLUE SPOT RECEIVERS Don't neglect to get full particulars about the Blue Spot Battery Four Valve and the Blue Spot All-Mains Five Valve (A.C.). These are the most modern sets in Europe. Catalogue M.W.22.R is free on request.

-there's nothing to touch them for LASTING Quality

cabine

mounted

BRITISH

THE BRITCH BLUE SPOT COMPANY LTD BLUE SPOT HOUSE -94/96 ROSOMAN STREET - ROSEBERY AVENUE - LONDON - E CI Distributors for Northern Ireland Sortland and Wales - H. C. RAWSON (Sheffield and London)

Distributo:s for Northern Ireland, Scotland and Wales: H. C. RAWSON (Sheffield and London), Ltd., 100, London Road, Sheffield; 22, St. Mary's Parsonage, Manchester; 44-46, High Bridge, Newcastle; 37, 38, 39, Clyde Place, Glasgow.

BUY A MODERN BLUE SPOT SPEAKER and get the full value of the programmes

FACTS YOU SHOULD KNOW . ABOUT THE MAZDA RANGE OF **POWER OUTPUT VALVES** LOOK

FOR "EDDY" IN YOUR DEALER'S WINDOW

A good receiver, whether battery or mains operated, can be made or marred by the powers valve. Each type of Mazda Power valve has been designed to give its most efficient performance under specific conditions. Here is a guide to the selection of the correct Mazda Mains Power Valve for your particular purpose.

THE AC/P_a low consumption power value for operating balanced armature speakers. It is sensitive to comparatively small inputs, and will give good results on anode voltages as low as 150,# THE AC/P1 will handle a bigger signal input and will satisfattorily operate a moving coil speaker. It requires 200 volts H.T. THE PP5/400 is a heavy power output valve capable of fully. loading a large moving coll speaker. The anode current at 400 parts Is 60m/a with 30 volts bias.

For Battery operated receivers there are the following :

\$220 and P220A, both capable of giving ample volume with a reasonable input. The former valve is particularly recommended when economy of anode current is a consideration.

Full details of these and other useful Mazda types will be found in the Mazda catalogue, sent FREE on request.

Mazda valves are fitted by all the leading receiver manufacturers. All good radio dealers stock them.

The amazing

"The British Thomson-Houston Co. Ltd., London and Rugby.

