THE No.1 MAGAZINE FOR ELECTRONICS TECHNOLOGY & COMPUTER PROJECTS


SEPTEMBER 2002

£2.85

FREEBIRD Model glider flight control

EPE MORSE READER Interprets Morse code VINYL TO CD PREAMP **Transfer those** old records

II PLUS

OWCODE REVIEW **Program PICs with flowcharts**

GAS MASKS RUSSIAN, new and boxed, NATO filter, £39

CCTV SYSTEM. Low cost, outdoor, IR illumination, complete with cables and p.s.u. Just £22.99. Ref CCTVCAM3. LOW COST NIGHT VISION system. Russian handheld complete with infra-red illuminator, 100m range. Runs on 2 AA batteries, just

COBRA NIGHT VISION equipment also stocked, more info of

web site at www.cobra-optics.co.uk.
ELECTRIC SCOOTERS 18kph, 24V motor, 6 hour charge time,
22kg weight, max load 90kg, running time up to 1 hour, range
15km, 8-5A motor, 24V, direct drive. Our Price £229.95. Ref

VOICE CHANGERS Hold one of these units over your pho

VOICE CHANGERS Hold one of these units over your phone mouthpiece and you can adjust your voice using the controls on the unit. Battery operated, £15. Ref CC3.
LIGHTWEIGHT DOME TENTS, 120cm x 210cm, £8. Ref TENTA.
EMMINENCE LOUDSPEAKERS 12in. dia., 50W nom. 100W peak, 16 ohm impedance. Pack of 4 just £19,95. Ref SPEAK39.
PIR SECURITY SWITCHES These brand new swivel mounting PIR units will switch up to 2 kilowatts. Adjustable sensitivity, light level and time delay (9 seconds to 10 minutes), 15m detection range, mains operated, waterproof, £5,99 Ref PIR1PACK or a pack of 5 for £22,95 Ref PIR5PACK or 10 for £39,95 Ref

12V 12Ah SEALED LEAD-ACID BATTERIES, 100mm x 150mm

SEALED LEAD-ACID CHARGER AND FLOAT CHARGER Complete unit will charge 12V lead acids and maintain them with an automatic trickle charge. Charger on its own is £15 Ref LAC or charger and a 12V 12Ah battery (all fully cased) is £25 Ref ACB.

AERIAL PHOTOGRAPHY KIT. This rocket comes with a built-in cameral It flies up to 500 leet (150m), turns over and takes an aerial photograph of the ground below. The rocket then returns with its film via its parachute. Takes 110 film. Supplied with everything including a launch pad and 3 motors (no film), £29.98 Ref Ass.

a launch pad and 3 motors (no film). £29.96 Her Astro.

BUILD YOUR OWN WINDFARM FROM SCRAP, New publication gives step-by-step guide to building wind generators and propel-lors. Armed with this publication and a good local scrapyard could make you self-sufficient in electricity! \$12. Ref LOTB!

make you self-sufficient in electricity! £12. Ref LOT81.

MAGNETIC CREDIT CARD READERS, £9.95. Cased with fly-leads, designed to read standard credit cards! Complete with control electronics p.c.b. and manual covering everything you could want to know about what's hidden in that magnetic strip on your card! Just £9.95 Ref BAR31.

card! Just £9.95 Ref BAR31.

77 KILO LIFT MAGNET. These Samarium magnets measure
57mm x 20mm and have a threaded hole (5/16th UNF) in the centre and a magnetic strength of 2-2 gauss. We have tested these on
a steel beam running through the offices and found that they will
take more than 170lb. (77kg) in weight before being pulled off.
Supplied with keeper. £19.95 ea. Ref MAG77.

Supplied with keeper £19.95 ea Ref MAG77.
HYDROGEN FUEL CELL PLANS. Loads of information on hydrogen storage and production Practical plans to build hydrogen fuel cell (good workshop facilities required). £8 set. Ref FCP1.
STIRLING ENGINE PLANS. Interesting information pack covering all aspects of Stirling engines, pictures of home made engines made from an aerosol can running on a candle! £12 STIR2.
12V OPERATED SMOKE BOMBS. Type 3 is a 12V trigger and 3 smoke cannisters, each cannister will full a room in a very short space of time! £14.99. Ref SB3. Type 2 is 20 smaller cannisters (suitable for mock equipment fires etc.) and 1 trigger module for £29. Ref SB2. Type 1 is a 12V trigger and 20 large cannisters, £49. Ref SB3.

BRAND NEW NATO ISSUE RADIATION DETECTORS, SALE ICE JUST £69.95. Current NATO issue standard emergency vices unit. Used by most of the world's military personnel. New I boxed. Normal retail price £400. Bull's bargain price just

INFRA-RED REMOTE CONTROL WATCHES, £16.99.

VIBRATING WATCHES, vibrate when your phone rings. £16.99 PULSE WATCHES, display your pulse, £16.99.

Www.quemex.co.uk
STEPPER MOTORS. Brand new stepper motors, 4mm fixing
holes with 47-14mm fixing centres, 20mm shaft, 6-35mm dameter,
5V/phase, 0-7A/phase, 1-8 deg, step (200 step), Body 56mm x
36mm_£14_99 each, Rel STEP6, pack of 4 for £49_95.
BASIC GUIDETO LOCKPICKING. New publication gives you an

unsight! £6, Ref LPK.

NEW HIGH POWER MINI BUG, With a range of up to 800 metres and 3 days use from a PP3 this is our top selling bug! Less than 1in. square and a 10m voice pick-up range. £28. Ref LOT102. IR LAMP KIT. Suitable for CCTV cameras. enables the camera to be used in total darkness! £6. Ref EF138. INFRA-RED POWERBEAM. Handheld battery powered lamp, 4in. reflector, gives out powerful pure infra-red light! Perfect for CCTV use, nichisiohis, etc. £29. Ref PB1.

YOUR HOME COULD BE SELF-SUFFICIENT IN ELECTRICITY.

YOUR HOME COULD BE SELF-SUFFICIENT IN YOUR HOME COULD BE SELF-SUFFICIENT IN COMPREHENSIVE plans with loads of into on designing systems, panels, control electronics etc. £7. Ref PV1.

200 WATT INVERTERS, plugs straight into your car cigarette lighter socket and is fitted with a 13A socket so you can run your mains operated devices from your car battery. £49.95. Ref SS66.

THE TRUTH MACHINE. Tells if someone is lying by micro tremore their voice, battery operated, works in general conversation and e, battery operated, works in genera ne and TV as well! £42.49. Rel TD3.

on the 'phone and TV as well' £42 49. Ref TD3. INFRA-RED FILM. 6in. square piece of flexible infra-red film that will only allow IR light through. Perfect for converting ordinary torches, lights, headilights etc. to infra-red output using only standard light bilbs. Easily cut to shape, 6in. square. £15. Ref IRF2 at 12. Square for £29.95. Ref IRF2 A. SMOKE ALABMS. MADE ALABMS. AND EXECUTED TO STANDARD AND ALABMS.

a 12in. square for £29.95. Ref IRF2A.

SMOKE ALARMS, Mains powered, made by the famous Gent company, easy fit next to light fittings, power point. Pack of 5 £15. Ref S\$23, pack of 12 £24. Ref S\$24.

CCTV CAMERAS FROM £25. Check out our web site at www.cctvstuff.co.uk and www.home-cctv.co.uk.

14 WATT SOLAR PANELS. Amorphous Silicon panel fitted in an anodised aluminium frame. Panel measures 3ft, by 1ft, with 3m leads for easy connection. 3ft, x 1ft, solar panel £79. Ref MAG45. Unframed 4 pack, 8-9W (3ft x 1ft, 199. Ref SOLX. 35 watts of solar power for just £99. 4 panels, each one 3ft, x 1ft, and producing 8W min., 13V. Pack of four £99. Ref SOLX.

AIR RIFLES FROM LESS THAN £40, CROSSBOWS, WIDE RANGE OF BB GUNS, AMMO, TARGETS, PISTOLS, REPLICA GUNS, UZI MACHINE GUN REPLICAS (BB), REPEATERS, LASER SIGHTS, ELECTRIC BB, GAS BB

www.airpistol.co.uk

INKJET CARTRIDGES FROM JUST £3 AT www.officebits.co.uk

POWERSAFE DEEP CYCLE BATTERIES

6V 100AH NOW ONLY £19 EACH

NEW 12V 12in, SQUARE SOLAR PANEL, Kevlar backed, 3 watt

NEW UNIVERSAL SOLAR CHARGER. Charge: AAAs, AAs, Cs

12V SOLAR POWER WATER PUMP. Perfect for many 12V d.c.

12V SOLAR POWER WATER PUMP. Perfect for many 12V 0.c. uses, from solar fountains to hydroponics! Small and compact yet powerful, works direct from our 10W solar panel in bright sun. Max HD: 17ft, max flow = 8 Lpm, 1-5A. Ref AC88. £18.99.

SOLAR MOTORS. Tiny motors which run quite happily on vo.tages from 3V-12V d.c. Works on our 6V amorphous 6in panels and you can run them from the sun! 32mm dia, 20mm thick, £1.50 each.

MAMOD STEAM ENGINES and a full range of spare parts. Check

out www.mamodspares.co.uk.
SUPER WIDEBAND RADAR DETECTOR. Whistler 1630. Detects both radar and laser, X, K and KA bands, speed cameras and all known speed detection systems, 360 degree coverage, from and rear waveguides, 1-1 in. x 2-7 in. x 4-6 in., fits on visor or dash, new low price £99, Ref WH1630. Other models available at

www.radargun.co.uk.
BUG DETECTORS. A new detector at a sensible price! Detects gs hidden in rooms, computers etc., between 1-200://Hz, ljustable sensitivity, 9V PP3 battery required. £29.95. Ref

GIANT WEATHER BALLOONS made by Totex, we blew one up to 7ft. diameter then it popped due to stones on the ground! £13.99.

BARNET CROSSBOWS. We stock the entire range of crossbows.

check out our web site at www.xbows.co.uk.

HOT AIR BALLOON KITS. Everything you need to build a 1-7m
high, 4-5m in circum, hot air balloon, launch over a small burner or

healer, £12.49, Rel HAT.
CROKES RADIOMETER, Fascinating glass bulb contains blades river around by the sun, £9.99, Rel SC120B, GIANT TV OR PC VIEWING SCREEN. Turn your TV finto a supersize screen, converts small screens into a super size 26in, £26.99.

Ref SVGA2.

RADIOSONDES. Made by Valsala, unused, they measure pressure, temperature and humidity. Model RS80, good stripper at £15,

sure, temperature and humidity, Model RS80, good stripper at £15, Ref SONDE.

Ref SONDE.

AIR WIND POWER MODULE. Produces nearly 400 watts of power from the wind, 1-14m blade, 12V d.c. output, 3 year warranty, butti-in battery regulator, £594, Ref AIR1.

WORMERIES. The ideal solution for your kitchen waste! Supplied complete with worms, Turn your rubbish into liquid 'eed! Two sizes available, small (ideal for 1-2 people), £25 45, Ref WN2, and a large one (ideal for 4 or more), £42-44, Ref WM1.

COMPLETE WIRELESS CCTV SYSTEM, Includes monitor, camera, up to 100m range, audio and video, UK legal, complete with infra-red lights £169, Ref WMS333.

PELTIER MODULES, 56W, 40mm x 40mm, 16V, sealed edges, new and boxed. Supplied with 18-page Peltier design manual reaturing dircuit designs, design information etc. 1 module and manual is £29,99, Ref PELT2. The manual on its own is £4, Ref PELT3.

DC MOTOR, 12V d.c., general purpose model motor, 70mm x 50mm, 12V d.c., permanent magnet, 4mm x 25mm shaft. £6, Ref GPM1, pack of 10 is just £40, Ref GPM2.

180R.P.M. MAINS MOTOR. Induction type, 90mm x 70mm, 50mm 5mm shaft, 124 continuous rating, thermal protected. £22, Ref MGM1.

SOUD-STATE RELAYS, P.C.B. mountion these relays require 3V.

MGM1
SOLID-STATE RELAYS, P.C.B. mounting, these relays require 3V to 32V d.c. to operate but will switch up to 3A a.c. mains. Pack of 4 £5, Ref SPEC13
2V RELAYS, 2 x 2 c/o 16A contacts p.c.b. mount (will fit Vero), tray of 25 relays for just £9.95, Ref SPEC1, VENNER TIME CONTROUS. Designed to be wired in permanently they will switch up to 16A 240V a.c. motorised with dial and pins. New and boxed. £15, Ref VTS.

GYROSCOPES. We still sell original 1917 design, hours of fun for all the family, complete with stand, string, box and info. £6, Ref FP70.

INNOVATIONS. We also sell a wide range of innovative products

for the home, these are at www.seemans.com.
INVERTERS. Convert 12V d.c. into 240V mains (modified sine wave), 300 watt (150 watt continuous), £59,95, Ref VER3, 600 watt model (330 watt continuous), £79,95, Ref VER4,
10 watt "SILICON SOLAR PANEL, 10 year life, waterproof, 365mm x 365mm x 26mm, 14V, 10W, 1.8kg, framed. £84,99, Ref

STICKY LABELS. Small address labels etc. are very useful a can be ordered online at www.stickon.co.uk.
2-WAY MIRROR KIT, Contains enough material to make

500mm x 2200mm mirror (excl. glass), full instructions, £19.95.

Net WF001. 22 AIR RIFLE. Under lever type, powerful Chinese training rifle, £38.26, Ref A1047. 500 pellets, £2.68, Ref A1091. 22 AIR RIFLE STANDARD TYPE. Chinese training rifle, on legal limit for air rifles, £29,75, Ref A1040. Pellets £2.68, Ref A1091.

BULL ELECTRICAL

UNIT D, HENFIELD BUSINESS PARK, HENFIELD, SUSSEX BN5 9SL TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS £5.50 P&P (UK) PLUS VAT 24 HOUR SERVICE £7.50 (UK) PLUS VAT OVERSEAS ORDERS AT COST PLUS £3.50 (ACCESS/VISA/SWITCH ACCEPTED)

'phone: 01273 491490 Fax 491813 Sales@bullnet.co.uk

SHUT THE BOX. Check out www.bullybeef.co.uk for a range of

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sell) the manuals as much as you like! £14. Ref EP74.

ANICS CO2 GAS POWERED PISTOL. Russian handheld pistol wered by Sparklets CO2 cylinders (give approx. 70 shots). fires see BB. Pistol £58.22, Ref AGA101, tub of 1,500 BB shot £5.10, of A1015, pack of 5 CO2 cartridges £3.50. Ref GAS5.

Ref A1015, pack of 5 CO2 cartridges £3.50, Ref GAS5. 33 KILO LIFT MAGNET. Neodynium, 32mm diameter with a fixing boll on the back for easy mounting. Each magnet will lift 33 kilos, 4 magnets bolted to a plate will lift an incredible 132 kilos! £15. Ref MAG33A. Pack of 4 just £39. Ref MAG33A. Pack of 1 just £39. Ref MAG33A. Pack of 8 plate will lift an incredible 132 kilos! £15. Ref MAG33A. Pack of 4 just £39. Ref MAG33AD. Back of 5 plate in rifle. £84.15. Ref BSAMET 500 Lazapell pellets £5. Ref

1313 TE1A TRACTION ENGINE. Attractive working model of traditional steam engine. £91. Ref 1313.

MAMOD STEAM ROADSTER (white), magnificent working steam

el car £121 Ref 1319.

MAMOD STEAM WAGON. Working model steam wagon finished in blue. £130. Ref 1318. Brown version (with barrels), £122, Ref

POCKET SPY MONOCULAR, Clever folding monocular with 8 x 21 magnification, made by Helios, with case, £14.99, Ref MONOC. CCTV SYSTEMS, £24.99. Complete with camera, 20 metres of cable, p.s.u. and info, simple connection to scart, £24.99. Ref

FM BROADCAST BAND HIGH POWER TRANSMITTERS can be

TONER CARTRIDGES FOR COPIERS AND PRINTERS can be bought online at www.nationaltoners.co.uk.
VELOSOLEX. Traditional French style two-stroke moped (engine

er front wheels), black only. £695, Ref VELO. Delivered direct in box, you need to fit the pedals etc. then register it with your local

HYDROPONIC GROWING SYSTEMS. Complete, everything you need apart from plants and light, contains grow tank, nutrients, pump, tester etc. GT205 710mm x 390mm, NFT system, £31.45, Ref GT205. GT424 1070mm x 500mm. NFT system, £58.65. Ref

ELECTRIC BIKES, £679, Viking, built-in indicators, radio, lights. 13mph, 5 hour charge, Shimano gears, up to 50 mile range, horn, 26in, wheels, suspension, no licence needed, key operated, £679.

NEBULISER, WATER ATOMISER. Ultrasonic module that you atomises the water into a very fine mist, many m special effects to scientific, £69, Ref NEB6.

applications from special effects to scientific Xes. Net NEO.

PORTABLE X-RAY MACHINE PLANS. Easy to construct plans on a simple and cheap way to build a home X-ray machine!
Effective device, X-ray sealed assemblies, can be used for experimental purposes. Not a toy or for minors! £6/set, Ref F/XP1

TELEKINETIC ENHANCER PLANS. Mystify and amaze your friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special girmnicks yet produces positive motion and effect. Excellent for science projects, magic shows, part demonstrations or serious research and development of this strange and amazing psychic phenomenon, £4/set. Ref F/TKE1.

ELECTRONIC HYPNOSIS PLANS & DATA. This data shows sev eral ways to put subjects under your control. Included is a full vol-ume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only, by those experienced in its use. £15/set, Ref F/EH2.

GRAVITY GENERATOR PLANS. This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect. You can actually build a small mock spaceship out of simple materials and without any visible means cause it to levitate. £10/set, Ref

TESLA COIL/LIGHTNING DISPLAY GLOBE PLANS. Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', St Elmo's fire, corona, excellent science project or conversation piece. £5/set, Ref F/BTC1/LG5.

COPPER VAPOUR LASER PLANS. Produces 100mW of visible

green light. High coherency and spectral quality similar to argon green light. High contently and spectral quality shillar to arguint laser but easier and less costly to build, yet far more efficient. This particular design was developed at the Atomic Energy Commission of NEGEV in Israel. £10/set, Rel F/CVL1.
VOICE SCRAMBLER PLANS. Miniature solid-state system turns speech sound into indecipherable noise that cannot be under-

stood without a second matching unit. Use on telephone to prevent

Stood without a section maching unit. Use in temphone to prevent third party listening and bugging. £6/set. Ref F/VS9.

PULSED TY JOKER PLANS. Little handheld device utilises pulse techniques that will completely disrupt TV picture and sound! Works on FM too! Discretion advised. £8/set. Ref F/TJ5. BODYHEAT TELESCOPE PLANS, Highly directional long

range device uses recent technology to detect the presence of fiving bodies, warm and hot spots, heat leaks etc. Intended for security, law enforcement, research and development etc. Excellent security device or very interesting science project. £8/set. Ref F/BHT1.

BURNING, CUTTING CO2 LASER PLANS. Projects an invisible beam of heat capable of burning and melting materials over a con-siderable distance. This laser is one of the most efficient, converting 10% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials, but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground etc. Burning and etching wood, cutting, plastics, textiles etc. £12/set, Ref

MICRO SCALES. Measure 1g to 120g, 1g resolution, 80mm x 110mm, 3 AAA batteries required, £49.94. Ref SCALEB. ALTERNATIVE ENERGY CD, packed with hundreds of alternative

energy related articles, plans and information etc. £14.50. Ref

WIRELESS DRIVEWAY ALARMS, Detect someone entering your driveway, 400ft, range, no wring, will protect any entrance, built-in PIR detector. £24.99. Ref DWA.

NICKEL PLATING KITS, £55, Ref NIK39A.

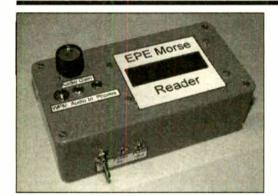
GOODIE PACKS, 10kg packs of clearance items, mainly suitable for the electronics enthusiast! Ref 10KGP.

WHEELCHAIR MOTORS. Left and right hand, new and second-hand, 100s in stock. New ones £99 each, secondhand £59, returns £19.95. Geared, 24V, complete with electric brake.

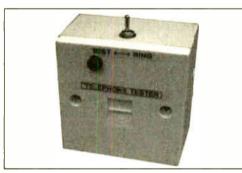
www.bulinet.co.uk

ISSN 0262 3617

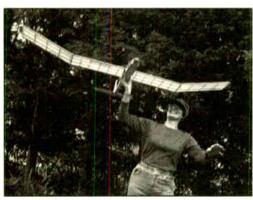
PROJECTS ... THEORY ... NEWS ... COMMENTS ... POPULAR FEATURES ...


VOL. 31. No. 9 SEPTEMBER 2002

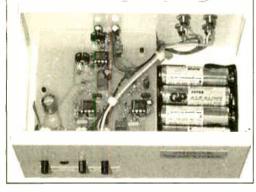
Cover illustration by jgr22


INCORPORATING ELECTRONICS TODAY INTERNATIONAL

www.epemag.wimborne.co.uk EPE Online: www.epemag.com


Projects and Circuits

FREEBIRD GLIDER CONTROL by Mike Boyden An automatic flight attitude control system for your free-flight model glider	636
PORTABLE TELEPHONE TESTER by Alan Paton A useful tool for testing those bargain boot sale phones before you buy!	648
EPE MORSE CODE READER by John Becker Multi-function Morse code translation and learning aid; standalone plus optional PC interface	656
VINYL TO CD PREAMPLIFIER by Terry de Vaux-Balbirnie Copy your old records to CD, and perhaps enhance their quality in the process!	665
INGENUITY UNLIMITED hosted by Alan Winstanley Switch Mode Fan Regulator; 555 Astable	679



Series and Features

CIRCUIT SURGERY by Alan Winstanley and Ian Bell Back to Darlington; Soldering tips, types and fumes	646
NEW TECHNOLOGY UPDATE by Ian Poole Quantum mechanics and Heisenberg's Uncertainty Principle could impact on the architecture of future computers	652
PRACTICALY SPEAKING by Robert Penfold A practical look at project construction while you are still a novice	674
NET WORK - THE INTERNET PAGE surfed by Alan Winstanley Frantic about FTP?; Broadband Thermometer; LeechGet your Files	680
FLOWCODE FOR PICmicro plus PIC DEVELOPMENT BOARD by Terry de Vaux-Balbirnie Reviewing two PIC programming aids now available via our CD-ROMs pa	681 ges
LOGIC GATE INVERTER OSCILLATORS - Part 1 by George Hylton A compendium of practical oscillator circuits for creative experimenters	684

Regulars and Services

	-
NEWS – Barry Fox highlights technology's leading edge Plus everyday news from the world of electronics	643
SHOPTALK with David Barrington, The <i>essential</i> guide to component buying for <i>EPE</i> projects	651
BACK ISSUES Did you miss these? Many now on CD-ROM!	663
READOUT John Becker addresses general points arising	671
CD-ROMS FOR ELECTRONICS A wide range of CD-ROMs for hobbyists, students and engineers	676
DIRECT BOOK SERVICE A wide range of technical books available by mail order	688
PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE PCBs for EPE projects. Plus EPE project software	691
ELECTRONICS MANUALS	802

© Wimborne Publishing Ltd 2002. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

ADVERTISERS INDEX 696

Essential reference works for hobbyists, students and service engineers

Our October 2002 issue will be published on Thursday, 12 September 2002. See page 627 for details

Readers Services • Editorial and Advertisement Departments 635

625

EDITORIAL

Visit our website www.distel.co.uk

THE ORIGINAL SURPLUS WONDERLAND!

THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS

Surplus always wanted for cash!

BIGE

GIANT 10" 7-SEGMENT DISPLAYS

A bulk purchase enables us to bring to you these GIANT 7-eignment digital displays at a now affordable price!! The 10" character size gives exceptional readability at long distances and enables a host of applications including, score boards, digital clocks, countrars, event timers etc. As the units are a simple electromechanical device and operate from 12V DC, simple switching via switches, relays. PC or PC may be used to control single or multiple digits. Units feature integral 'Zero Power' memory which greatly simplifies

integral 'Zero Power' memory which greatly simplifies design. For an excellent DIY practical article, see the May issue of 'Everyday Practical Electronica' magazine, ideal School / College construction project. Supplied in good RIFE condition, complete with data sheet.

Less than 30% of makers price! Only £29.95(B) or 4 / £99.00(D) Order PH26

THE AMAZING TELEBOX

TV SOUND & **VIDEO TUNER**

Converts your colour monitor into a QUALITY COLOUR TVII

Converts your colour monitor into a QUALITY COLOUR TVII The TELEBOX is an attractive fully cased mains powered unit, containing all electronics reacy to plug into a host of video monitors or AV equipment which are fitted with a composite video or SCART input. The composite video ourself will also plug directly into most video recorders, allowing reception of TV channels not normally receivable or most television receivers" (TELE-DOX MB). Push button controls on the front panel allow reception of 8 fully tuneable off air UHF colour television channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Ideal for desktop computer video systems & PIP (picture in picture) setups. For complete competibility – even the monitors without sound – an integral 4 vest audio amplifier and low level Hi Fi audio output are provided as standard. Brand new – fully guaranteed.

TELEBOX ST for composite video input type monitors
TELEBOX STL as ST but fitted with integral speaker
TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner
For overseas PAL versions state 5.5 or 6 mHz sound specification.
For cable / hyperband signal reception Telebox MB should be connected to a cable type service. Shipping on all Telebox's, code (B)

State of the art PAL (UK spec) UMF TV tuner module with composite 1V pp video & NiCAM hi fi stereo sound outputs. Micro electronics all on one small PCB only 73 x 160 x 52 mm enable full funing control via a eimple 3 wire link to an IBM pc type computer. Supplied complete with simple working program and documentation. Requires +12V & +5V DC to operate. BRAND NEW - Order as MY00. Only £39.95 code (8) See www.distel.co.uk/data_my00.htm for picture + full details

HARD DISK DRIVES 21/2" - 14

**TOSHIBA MK1002MAV 1.1Gb laptop(12.5 mm H) New £59.95
**TOSHIBA MK4313MAT 4.3Gb laptop(12.7 mm H) New £195.00
**TOSHIBA MK4313MAT 4.3Gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK4849MAV 6.1Gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 18.6b laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 18.6b laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 18.6b laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 18.6b laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 18.6b laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1814GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**TOSHIBA MK1914GAV 19.9 gb laptop (12.7 mm H) New £195.00
**

MITSUBISHI FA3448ETKL 14* Ind. spec SVGA monitors FARNELL 0-80V DC @ 50 Amps, bench Power Supplies FARNELL AP3080 0-30V DC @ 80 Amps, bench Suppy KINGSHILL CZ403V 1-50V @ DC 200 Amps - NEW 1kW to 400 kW - 400 Hz 3 phase power sources - ex stock IBM 8230 Type 1. Token ring base unit driver Wayne Kerr RA200 Audio frequency response analyser INFODEC 1U, 24 port, RJ45 network patchpanels. #TH93 3COM 18670 12 Port Ethernet hub - RJ45 connectors #LD97 3COM 18671 24 Port Ethernet hub - RJ45 connectors WIDS 3COM 18670 12 Port Ethernet hub - RJ45 connectors NEW IBM 53F5801 Token Ring ICS 20 port lobe modules IBM MAU Token ring distribution panel 8228-23-5050N AIM 501 Low distortion Oscillator 9Hz to 330Khz, IEEE I/O ALLGON 8380.11805-1880 MHz hybrid power combiners Trend DSA 274 Data Analyser with G703(ZM) 64 I/O Marconl 6310 Programmable 2 to 22 GHz sweep generator HP1850B Logic Analyser

TEST EQUIPMENT & SPECIAL INTEREST ITEMS

IC's -TRANSISTORS - DIODES

DBSOLETE - SHORT SUPPLY - BUL 10.000,000 items EX STOCK For MAJOR BAVING

or see web site www.diste

COMPUTER MONITOR SPECIALS

Legacy products High spec genuine multysync. ČGA, EGA, VGA, SVGÁ

CGA, EGA, VGA, SVGA

ni FA3418ETKL 14" SVGA Multisyric colour monitor with fine
0.28 dot pitch tube and resolution of 1024 x 788. A variety of inputs allows connection to a nost of computers
including IBM PCs in CGA, EGA, VGA & 8VGA
modes, BBC, COMMODORE (including Amiga 1200),
ARCHMIEDES and APPLE. Many features: Eiched
faceplate, text switching and LOW RADIATION MPR
specification. Full guaranteed, in EXCELLENT little
used condition. Till & Swivel Bease £A.75

VGA cable for IBM PC included. Only £129 (E) Ord

Generic LOW COST SVGA Monitors We choose the make, which includes Compaq, Mitsubishi, IBM, etc. Supplied ready to run with all cables, Standard RTB 90 day guarantee.

14 £59.00

15" £69.00

17 £79.00

Supplied in good used condition, Shipping code (D)

VIDEO MONITORS

PHILIPS HCS36 (same style as CM8833) attractively styled 14" colour monitor with both HGB and standard composite 15.626 Khz video Inputs via SCART socket and separate phono jacks. Integral audio power arms and separate phono jacks. Will connect direct to Amiga and Atari BBC computers, ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button stc. Good used condition: fully leated - guaranteed Only £99.00 (E) Dimensions: W14" x H124" x 15%" D. PHILIPS HCS31 Ultra compand 9" colour video monitor with stem-

PHILLIPS HC831 Ultra compact 9" colour video monitor with standard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen burns). In attractive square black plastic case measuring W10" x H10" x 13½" D. 240 V AC malhs powered.

Only £79.00 (D) Only £79.00 (D)

INDUSTRIAL COMPUTERS

Tiny shoebox sized industrial 40 Mhz 385 PC system measuring only (mm) 286 w X 88 h X 272 d. Ideal for dedicated control applications running DOS, Linux or even Windows I Steel case contains 85 to 285 V AC 50 / 60 hz 70 Watt PSU, a 3 stot ISA passive backplane and a Rocky 318 (PC104) standard, single board computer with 8 MByte NON VOLATILE solid state Disk Or Chip! RAMDISK, System comprises: Rocky 318 (PC104) SBC ISA card with 40MHz ALI 386SX CPU, 72 pin SIMM slot with 16 Mbyte SIMM, AMI BIOS, battery backed up real time clock, 2 x 9 pin D 16550 serial ports. EPP/ECP printer port, mini DIN keyboard connector, floppy port, IDE port for hard drives up to 528 MByte capacity, watchdog timer and PC/104 bus socket. The 8 MByte solid state 'disk on a chip' has its own BIOS, and can be fidiaked, formatted & booted. Supplied BRAND NEW fully tested and guaranteed. For full data see featured frem on website. Order as QG38

HP6030A 0-200V DC @ 17 Amps bench power supply 1980 Intel SBC 488/125C08 Enhanced Multibus (MSA) New Nikon HFX-11 (Ephiphol) exposure control unit 1980 PMB518 pro. TV signal generator 1980 PMB518 pro. TV signal generator 1980 PMB118 PMB518 pro. TV signal generator 1980 PMB518 PMB518

Stemens K4400 64Kb to 140Mb demux arranyee.
Perkin Elmer 299B Infrared spectrophotometer
Perkin Elmer 697 Infrared spectrophotometer
VG Electronics 1035 TELETEXT Decoding Margin Meter
VG Electronics 1035 TELETE

LightBand 60 output high spec 2u rack mount Video VDA Sekonic SD 150H 18 channel digital Hybrid chart recorder

100's of applications inc: firewall, routers, robotics etc

Only £99.00 (D)

£2950 £500

£1996

\$5650

£990 £POA £650

£326 £2900

19" RACK CABINETS

Europe's Largest Stocks of quality rack cabinets, enclosures and accessories. Over 1000 Racks from stock

This month's special 33 / 42 / 47 U - High Quality Ali steel Rack Cabinets

All steel Rack Cabinets

Made by Eurocraft Enclosures Lid to the highest possible spec, rack features all steel construction with removable side, front and back doors. Front and back doors are hinged for easy scoses and all lockable with five secure 5 lever barrel locks. The front door is constructed of double walled steel with a 'designer style' smoked acrylic front panel to enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack features fully slotted reinforced vertical fixing members to take the heaviest of 19" rack equipment. The two movable vertical fixing struts (extras evallable) are prepunched for standard 'cage nuts'. A mains distribution panel internally mounted to the bottom rear, provides 8 x IEC 3 pin Euro sockets and 1 x 13 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched stility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. some grey available – CALL – Can be supplied in many other configurations.

42U

33U Order as BC44
External dimensions
mm=1625H x 635D x
603 W. (64" H x 25"
D x 2334" W) Only

£245

Order as DT20
External dimensions
mm=2019H x 635D x
603 W. (79.5" H x 25"
D x 23%" W) Only

£345

Order as RV36
External dimensions
mm=2019H x 635D x
603 W. (88" H x 25"
D x 23%" W)
Only £410

BIG E

Call for shipping quotation

COLOUR CCD CAMERAS

Undoubtedly a miracle of modern technology & our special buying power! A quality product featuring a fully cased COLOUR CCD camera at a give away price! Unit features full autolight sensing for use in low light & high light applications. A 10 mm fixed focus wide angle lens gives excellent focus wide angle lens gives excellent focus and reacolution from close up to long range. The composite video output will connect to any composite monitor or TV (via SCART socket) and most video recorders. Unit runs from 12V DC so ideal for security & portable applications where mains power not available.

Overall dimensions 66 mm wide x 117 deep x 43 high, Supplied BRAND NEW & fully guaranteed with user data, 100s of applications including Security, Home Video, Web TV, Web Cams etc, etc.

ONLY £79.00 or 2 for £149.00 (8)

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 and licence - OEM packaged. ONLY £89.00 (a)

ENCARTA 95 - CDROM, Not the latest - but at this price | £7.95
DOS 5.0 on 3½" disks with concise books c/w OBasic.
Windows for Workgroups 3.11+ Dos 5.22 on 3.5" disks
Windows 95 CDROM (nolly - No Leence Wordperfect 5 for DOS supplied on 3½" disks with man_all £24,95

shipping charges for software is code B

SOLID STATE LASERS

Visible red, 870nm laser diode assembly. Unit runs from 5 V DC at approx 50 mA. Orginally made for continuous use in industrial barcode scanners, the laser is mounted in a removable solid adminishment of the functions as a heatsink and rigid optical mount. Dims o block are 50 w x 50 d x 15 h mm, integral features include over temperature shutdown, current control, laser OK ouput, and gated TDN / OFF. Many uses for experimental optics, comms & lightshows etc. Supplied complete with data sheet.

ONLY £24.95 (A) Order as TD91

DC POWER SUPPLIES

Virtually every type of power supply you can imagine. Over 10,000 Power Supplies Ex Stock - Call or see our web site.

RELAYS - 200,000 FROM STOCK

Save EEE's by choosing your next relay from our Massive Stocks covering types such as Military, Octal, Cracle, Hermetically Sealed, Continental, Contactors, Time Delay, Reed, Mercury Wested, Solid State, Printed Circuit Mounting etc., CALL or see our web site www.distel.co.uk for more information. Many obsolete types from stock. Save EEE's

ALL MAIL TO Dept PE, 29 / 35 Osborne Rd Thornton Heath Surrey CR7 8PD Open Mon - Fri 9.00 - 5:30

£1550

£3750

AO93

£7900 £650 £750

£750 £1800 £POA £3750 £4500 £1499 £2200 £945

26 26

LightBand 60 output nign spec 2u rack mount video VIA's Sekonic SD 150H 18 channel digital Hybrid chart recorder B&K 2633 Microphone pre amp Taylor Hobson Tallysurf amplifier / recorder ADC \$8200 Carbon dioxide gas detector / monitor BBC AM20/3 PPM Meter (Emest Turner) + drive electronics ANRITSU 96584 Optical Do-2.52/0/ waveform monitor ANRITSU 11 pirce optic characteristic test set RAS FTDZ Dual sound unit RAS SBUF-E1 Vision modulator WILTRON 6630B 12.4 / 20GHz RF sweep generator TEK 2445 530 Mhz 300 MHz oscilloscope rack mount TEK TDS350 400Mhz digital realtime + disk drive, FFT etc TEK TDS3524 500Mhz digital realtime + colour display etc HP3685A Opt 907 20Hz to 40 Mhz spectrum analyser PHILIPS PW1730/10 60KV XRAY generator & accessories VARIACS - Large range from stock - call or see our webs CLAUDE LYONS 100A 240/415V 3 phase auto. voit, regs 18 Million Items On Line Now! Secure ordering, Pictures, Information www.distel.co.uk email = admin@distel.co.uk

ALL REPORTER 0208 653 3333 FAX 0208 653 8888

All prices for UK Mainland, UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools, Universities and Local Authorities - minimum account order £50. Cheques over £100 are subject to 7 working days clearance. Carriage charges (A)=£3.50, (B)=£3.50, (C)=£10, (D)=£10, (D)=£10,

NEXT MONTH

FREE 16-PAGE SUPPLEMENT

COLLECTING AND RESTORING VINTAGE RADIOS

Learn all about this fascinating aspect of electronics. It's a growing interest around the world.

DIGITAL I.C. TESTER

During project construction, many hobbyists must have wondered if the reason their masterpiece wasn't working was due to a faulty i.c., or if the i.c. they've just removed from an old board actually works. The project described here provides a simple way to quickly test the operation of most TTL and CMOS digital logic i.c.s.

A PIC16F877-20 microcontroller is used as the core of the circuit and is interfaced to a PC-compatible computer via an RS232 serial connection. Defined logic levels are applied to the inputs of the device under test and the results generated on the output pins are compared against those that are expected. The PC software has been written in Visual Basic 6 and should run on any Microsoft 32-bit operating system, including Windows 98, ME, NT, 2000 and XP. It is supplied with profiles for a selection of common TTL and CMOS devices and other device profiles can be added.

EPE BOUNTY METAL DETECTOR

An entirely new induction balance design providing an inexpensive, easy-to-build locator with a good depth of penetration. It will find a 25mm diameter coin at up to 240mm depth. Induction balance detectors can distinguish between ferrous and non-ferrous metals and this design is capable, to a large extent, of rejecting iron and also tin foil. The circuit uses just two i.c.s plus a couple of dozen other components.

PIC-POCKET BATTLESHIPS

The game of Battleships is normally played by two players with pencil and paper. Its aim is for each opponent to sink the other's fleet before their own is sunk. The variant of the game described here provides the excitement of the sea chase for just one player, who pits his wits against a PIC microcontroller as the other opponent. The position of the enemy (set by the PIC program!) is unknown and there are five merchant ships to be protected, whose positions are shown on a 5 x 7 l.e.d. matrix display.

Some ideas for PIC-programming experts to enhance the basic game are discussed in the article.

NO ONE DOES IT BETTER

DON'T MISS AN
ISSUE – PLACE YOUR
ORDER NOW!

Demand is bound to be high

OCTOBER 2002 ISSUE ON SALE THURSDAY, SEPTEMBER 12

QUASAR ELECTRONICS LIMITED

TEL: 0871 717 7168

FAX: 07092 203496

Control of the Contro

FE MAIL ORDER CHES

PROJECT KITS

Our electronic kits are supplied complete with all components, high quality PCBs (NOT cheap Tripad strip boardi) and detailed assembly/operating instructions

● 2 x 25W CAR BOOSTER AMPLIFIER Connects to the output of an existing car stereo cassette player, CD player or radio. Heatsinke provided. PCB 76x75mm, 1046KT, £24.9

 3-CHANNEL WIRELESS LIGHT MODULATOR 3-CHANNEL WIRELESS LIGHT MODULATOR No electrical connection with amplifier. Light modulation achieved via a sensitive electret microphone. Separate sensitivity control per channel. Power handing 400W/channel. PCB 64x112mm. Mains powered. Box provided. 6014KT £24.95
 12 RUNNING LIGHT EFFECT Exotting 12 LED

● 12 RUNNING LIGHT EFFECT Exciting 12 LED light effect ideal for parties, discos, shop-windows & eye-catching signs. PCB design allows replacement of LEDs with 220V bulbs by inserting 3 TRIACs. Adjustable rotation speed & direction. PCB 54x112mm. 1028KT £15.95; BOX (for mains operation) 2028KZ £5.00

© DISCO STROSE LIGHT Probably the most exciting of all light effects. Very bright strobe tube. Adjustable strobe frequency; 1-60Hz. Mains powered. PCB: 80x68mm. Box provided. 6037KT £28.95

● ANIMAL SOUNDS Cat, dog, chicken & cow, ideal for kids farmyard toys & schools, \$Q10M £8.95 ■ 3 1/2 DIGHT LEB PANEL METER Use for basic voltage/current displays or customise to measure temperature, light, weight, movement, sound levels, etc. with appropriate sensors (not supplied). Various input circuit designs provided, 3061 KT 13.98

£13.95
■ IR REMOTE TOGQLE SWITCH Use any TV/VCR remote control unit to switch onboard 12V/1A relay or/off. 3068KT £10.95
■ SPEED CONTROLLER for any common DC motor up to 100V/5A. Pulse width modulation gives maximum torque at all speeds. 5-15VDC. Box provided. 3067KT £12.95

\$12.95

3 x 8 CHANNEL IR RELAY BOARD Control eight 12V/1A
relays by Infra Red (IR) remute control over a 20m range in
sunlight. 8 relays turn on only, the other 2 loggle or/off, 3 operation ranges determined by Jumpers. Transmitter case & all
components provided. Receiver PCB 76x89mm. 3072KT

SURVEILLANCE

ROOM SURVEILLANCE

MITX - MINIATURE 3V TRANSMITTER Easy to build & guar-■ MINISTRUME BY I HANSMITTER Easy to build 8 guar anteed to transmit 300m ● 3V. Long bettery life, 3-5V operation Only 45x18mm, 8 3007KT 28.96 A83007 £11.86

Umy 40x16mm, 8 3007RT 58,56 A33007 ET1.56
MRTX - MINIATURE 9V TRANSMITTER Our best selling bug.
Super sensitive, high power - 500m range @ 5V (over 1km with
18V supply and better seriel), 45x19mm, 3018RT 27.96 A83018

HPTX - HIGH POWER TRANSMITTER High performance, 2 stage transmitter gives greater stability & higher quality reception. 1000m range 6-12V DC operation. Size 70x15mm. 3032KT £9.95

A 83032 P16 96 ■ MMTX - MICRO-MINIATURE DV TRANSMITTER The utilmat ■ mail x michO-minitations by HAASSMITTER The olimitate bug for its size, performance and price Just 18x25mm. 500m range ● 9% Good stability. 8-18V operation. 3061KT 58.95 A83061 £14.96 ● VTX - VOICE ACTIVATED TRANSMITTER Operates only

when sounds detected Low standby current Variable trigger sensitivity 500m range. Pesting drout supplied for maximum RF out-put. Civid's wich. BV operation. Only 63x36mm. 3028KT £12.96 A\$3022 £24.96

MARO-WIRED BUG/TWO STATION INTERCOM Each station has its own amplifier, speaker and mic. Can be set up as aither a hard-wired bug or two-station intercom. 10m x 2-core cable supn 3021KT £16.96 (kit form only

priets 9* Operation Late 11 to 13 to 15 to 16 to 16 to 17 to 17

TELEPHONE SURVEILLA

MTTX - MINIATURE TELEPHONE TRANSMITTER Attaches anywhere to phone line. Transmits only when phone is used! Tune-in your radio and hear both parties. 300m range. Uses line as aerial a power source. 20x45mm. 3016XT 28.36

recorder (not supplied). Operates recorders with 1.5-12V battery systems. Powered from line. 50x33mm, 20x3KT £9.95 A\$3033

riscotter (that supposed).

systeme. Powered from line. 50x3mm, 3033KT EE:so: Assessee

16.88

● TPA - TELEPHONE PICK-UP AMPLIPIER/WIRELESS

PHONE BUD Place pick-up out on the phone line or near phone earpiece and hear both sides of the conversation, 3056KT £11.95

A\$3066 £20.96

HIGH POWER TRANSMITTERS

1 WATT FM TRANSMITTER Easy to construct. Delivers a crisp, clear signal. Two-stage circust. NR includes microphone and requires a simple open dipole serial. 8-30VDC, PC8 42x45mm, 100WT 8/12.66

70

Ö

n

Ø

Ó

1

Ø

O

(1)

O

11

M

4 WATT FM TRANSMITTER Comprises three RF ● 4 WATT FM TRANSMITTER Comprises three RF stages and an audio preampifier stage. Plezoelectro microphone supplied or you can use a separate preampifier circuit. Antenna can be an open dippole or Ground Plane. Ideal project for those who wish to get started in the fascinating world of FM broadcasting and want a good basic circuit to experiment with. 12-18-VDC. PCB 44x146mm. 1028KT. £22.95 AB1028 £24.95
9-16 WATT FM TRANSMITTER (PRE-ABSEMBLED & TESTED) Four transistor based stages with Philips BLY 88 in final stage. 16 Watts RF power on the air. 86-108MHz. Accepts open dipole, Ground Plane, £18, J, or YAGI amierinas. 12-18-VDC. PCB 70x220mm. SWS meter needed for alignment. 1021KT £199.95
■ SIMILAR TO ABOVE BUT 28W Output. 1021KT £109.85

FEATURE PRODUCT

COMPUTER TEMPERATURE DATA LOGGER

COMPUTER TEMPERATURE DATA LOGGER
PC serial port controlled 4-channel temperature
meter (either dag C or F). Requires no external
power, Allows continuous temperature data logging of
up to four temperature sensors located 200m+ from
motherboard/PC. Ideal use for old 386/486 computmotherboard/PC. Ideal use for old 386/486 computers. Users can tailor input data stream to suit their purpose (dump it to a spreadsheet or write your own BASIC programs using the INPUT command to grab the readings), PCB just 38mm x 38mm, Sensors connect via four 3-pin headers, 4 header cables supplied but only one D\$18520 sensor.

Kit software available free from our website. ORDERING: 3145KT £23.95 (kit form);

AS3145 £29.95 (assembled); Additional DS18S20 sensors £4.95 each

SOUND EFFECTS GENERATOR Easy to build.

● SOUND EFFECTS GENERATOR Easy to build. Create an almost infinite variety of interesting/unsus-al sound effects from birds chirping to sirens. 9VDC. PCB 54x85mm. 1045KT £6.95 ● ROBOT VOICE EFFECT Make your voice sound similar to a robot or Darlek. Great fun for discos, school plays, theatre productions, radio stations & playing jokes on your friends when answering the phone! PCB 42x71mm. 1131KT £8.95

£8.95

● AUDIO TO LIGHT MODULATOR Controls Intensi ty of one or more lights in response to an audio input.
Sate, modern opto-coupler design, Mains voltage experience required, 3012KT 58.95

• MUBIC BOX Activated by light, Plays 8 Christmas songs and 8 other tunes, 3104KT 27.95

• 20 SECOND VOICE RECORDER Uses non-

voiatile memory - no battery backup needed. Record/replay messages over & over, Playback as required to greet customers etc. Volume control & built-in mic. 6VDC. PCB 50x73mm.

bult-in mic. 6VDC. PCB 50x73mm. 3131KT 212.96 • TRAIN SOUNDS 4 selectable sounds : whistle blowing, level crossing bell, 'clickety-clack' & 4 in sequence. SQ01M £8.95

THE EXPERTS IN RARE & UNUSUAL INFORMATION!

Full details of all X-FACTOR PUBLICATIONS can be found in our catalogue. N.B. Minimum order charge for reports and plane is 05.00 PLUS normal P&P.

SUPER-EAR LISTENING DEVICE Complete plans to

build your own parabolic dish microphone. Listen to distant volces and sounds through open windows and even waitel Made from readity available parts: R002 £3.80

Made from readily available parts R002 23.80

£ LOCKS - How they work and how to plot them. This fact filled report will teach you more about looks and the art of lock picking than many books we have seen at 4 lines the price Racked with information and fillustrations, R006 23.80

£ RADIO & TV JOKER PLAMS

We show you how to build three different circuits for disrupting TV picture and sound plus FM raciol May upset your neighbours & the suthorities! DISCRETION REQUIRED R017 23.80

● INFINITY TRANSMITTER PLANS Complete plane for building the famous Infinity Transmitter, Once installed on the building the famous Infility Transmitter, Once installed on the target phone, device acts like a room bug Just call the target phone & activate the unit to hear all room sounds. Great for

home/office security! R019 £3.50

THE ETHER BOX CALL INTERCEPTOR PLANS Grabs

letephone calls out of thin air! No need to wire-in a phone bug. Simply place this device near the phone lines to hear the conversations taking place1 RO25 52,00 C CASH CREATOR BUSINESS REPORTS Need ideas for

The country of the co

FACTOR PUBLICATIONS

PC CONTROLLED RELAY BOARD

Convert any 286 upward PC into a dedicated auto-matic controller to independently turn on/off up to matic controller to independantly turn ofform up to eight lights, motors & other devices around the home, office, laboratory or factory. Each relay output is capable of switching 250VAC/4A. A suite of DOS and Windows control programs are provided to-gether with all components (except box and PC cable), 12VDC, PCB 70x200mm, 3074KT £31.98

■ 2 CHANNEL OFF RELAT SWITCH CONTAINS the seme transmitter/receiver pair as 30A15 below pius the components and PCB to control two 240VAC/10A relays (also supplied). Utra bright LEDs used to indicate relay status. 3082XT 227.95 ■ TRANSMITTER RECEIVER PAIR 2-button keylob

style 300-375MMz Tx with 30m range. Receiver encoder module with metched decoder IC. Components muet be built into a circuit like kit 3082 above. 30A15 £14.95

PIC 16C71 FDUR SERVO MOTOR DRIVER Simultaneously control up to 4 serve motors. Software & all components (except serves/control pots) supplied. 8VDC, PCB 50x70mm, 2102KT £15.95

 UNIPOLAR STEPPER MOTOR DRIVER for any 5/6/8 lead motor. Fast/slow & single step rates. Direction control & on/off switch, Wave, 2-phase & half-wave step modes. 4 LED indicators. PCB 50x65mm.3109KT £14.95

PC CONTROLLED STEPPER MOTOR DRIVER Control two unipolar stepper motors (3A max, each) via PC printer port. Wave, 2-phase & half-wave step modes. Software accepts 4 digital inputs from exter nai switches & will single step motors. PCB fits in D-ehell case provided. 3113KT £17.95 • 12-BiT PC DATA ACQUISITION/CONTROL UNIT

Similar to kit 3093 above but uses a 12 bit Analogue to-Digital Converter (ADC) with internal analog to-Digital Converter (ADC) with internal analogue multiplexor. Reads 8 single ended channels or 4 differential inputs or a mixture of both. Analogue inputs read 0-4V. Four TTL/CMOS compatible digital input/outputs. ADC conversion time <10uS. Software (C, QB & Win), extended D shell case & all components (except sensors & cable) provided. 3118KT €82.95

● LIQUID LEVEL SENSOR/RAIN ALARM WII Indicate fluid levels or simply the presence of fluid. Relay output to control a pump to add/remove water when it reaches a certain level. 1000KT 5:36

AM RADIO KIT 1 Tuned Radio Frequency front-

end, single chip AM radio IC & 2 stages of audio amplification. All components inc. speaker provid-ad. PCB 32x102mm, 3063KT £10.98

 DRILL SPEED CONTROLLER Adjust the speed of your electric drilt according to the job at hand Suitable for 240V AC mains powered drills up to

700W power, PCB: 48mm x 85mm. Box provided. 6074KT #17 05

● 3 INPUT MONO MIXER Independent level control for each input and separate bass/treble controls. Input sensitivity: 240mV, 18V DC, PCB: 60mm x 185mm 1052KT £18.95

MEGATIVE POSITIVE ION GENERATOR Standard Cockcroft-Walton multiplier circuit, Mains

obtage experience required, 3057KT £10.95

■ LED DICE Classic intro to electronics & circuit analysis, 7 LED's simulate dice roll, alow down & land on a number at random, 555 IC circuit, 3003KT £9.95

 STAIRWAY TO HEAVEN Tests hand-sye co-ordination. Press switch when green segment of LED lights to climb the stairway - miss & start again! Good intro to several basic circuits, 3005KT £9.95 ● ROULETTE LED 'Ball' spins round the wheel

down & drops into a slot. 10 LED's. Good intro dOS decade counters & Op-Amps. 3006KT £10.95 **■ 12V XENON TUBE FLASHER TRANSFORMER**

■ 124 AERON 10BE FLASHEN 1 INASPONMEN steps up a12V supply to flash a 25mm Xenon tube. Adjustable flash rate, 3183KT €13,98 ■ LED FLASHER 1.5 ultra bright red LED's flash in

Selectable patterns, 3037MKT £5.95

LED FLASHER 2 Similar to above but flash in sequence or randomly, ideal for model railways, 3052MKT £5.95

INTRODUCTION TO PIC PROGRAMMING Learn programming from scratch. Programming hardware, a P18F84 chip and a two-part, practical,

hands-on tutorial series are provided, 3081KT €21.95 **● SERIAL PIC PROGRAMMER for all 8/18/28/40** pin DIP serial programmed PICs. Shareware soft-ware supplied limited to programming 256 bytes (registration costs £14.95). 3096KT £10.95 ATMEL 89CX081 PROGRAMMER Simple-to-

use yet powerful programmer for the Atmel 89C1051, 89C2051 & 89C4051 uC's. Programmer does NOT require special software other than a terminal emulator program (built into Windows). Can be used with ANY computer/operating system. 3121KT £24.95

● 3V/1-5V TO 9V BATTERY CONVERTER Replace expensive 9V batteries with economic 1.5V batteries. IC based circuit steps up 1 or 2 'AA' batteries to give 9V/18mA, 3035KT £8.95

STABILISED POWER SUPPLY 3-30V/2.5A

Ideal for hobbyist & professional laboratory, Very ideal for hobbyist a professional laboratory. Very reliable & versatile design at an extremely reasonable price. Short circuit protection. Variable DC voltages (3-30V). Rated output 2.5 Amps. Large heatsink supplied, You just supply a 24VAC/3A transformer. PCB 55x112mm. Mains operation.

@ STABILISED POWER SUPPLY 2-30V/84 As kit 1007 above but rated at 5Amp. Requires a 24VAC/5A trensformer, 1096KT £27,95.

MOTORBIKE ALARM Uses a reliable vibration

sensor (adjustable sensitivity) to detect movement of the bike to trigger the alarm & ewitch the output relay to which a siren, bikes horn, indicators or other warning device can be attached. Auto-reset. 6-12VDC, PCB 67x64mm. 1011KT 211,95 Box 2011BY 27 00

CAR ALARM SYSTEM Protect your car from theft, Features vibration sensor, courtesy/boot light thert. Features vioration sensor, courtesy/boot light voltage drop sensor and bonnet/boot earth exitch sensor. Entry/exit delays, auto-reset and adjustable alarm duration. 6-12V DC. PCB: 47mm x 55mm 1019KT 21.95 Box 2019BX £8.00

● PIEZO BCREAMER 110dB of ear plercing noise.

Fits in box with 2 x 35mm plezo elements built into their own resonant cavity. Use as an alarm siren or just for funi 6-9VDC. 3016KT £10.95 COMBINATION LOCK Versatile electronic lock

comprising main circuit & separate keypad for remote opening of look. Relay supplied, 3029KT ● ULTRASONIC MOVEMENT DETECTOR Crystal

locked detector frequency for stability 8 reliability, PCB 75x40mm houses all components, 4-7m range, Adjustable sensitivity. Output will drive external relay/circuits, 9VDC, 3049KT £13.95

PIR DETECTOR MODULE 3-lead assembled unit just 25:35mm as used in commercial burglar alarm systems. 3075KT 25:95
 INPRARED SECURITY SEAM When the invisible

IR beam is broken a relay is tripped that can be used to sound a bell or alarm, 25 metre range, Mains rated relays provided, 12VDC operation, 2130KT

● SQUARE WAVE OSCILLATOR Generates equare waves at 6 preset frequencies in factors of 10 from 1Hz-100KHz. Visual output indicator, 8-16VDC. Box provided, 3111KT £8,95

O PC DRIVEN POCKET SAMPLER/DATA LOG-GER Analogue voltage sampler records voltages up to 2V or 20V over periods from milli-seconds to months. Can also be used as a simple digital scope to examine audio & other signals up to about 5KHz. Software & D-shell case provided. 2112KT £18.96

● 20 MHz FUNCTION GENERATOR Square, trianguiar and sine waveform up to 20MHz over 3 ranges using 'coarse' and 'fine' frequency adjustment controls. Adjustable output from 0-2V p-p. A TTL output is also provided for connection to a frequency meter. Uses MAX038 IC. Plastic case with printed front/rear panels & all components provided, 7-12VAC, 3101KT £89,95

BARGAIN BUYII

30-in-Oi **Electronic Projects Lab**

Great introduction to electronics, Ideal for the budding electronics expert Build a redio, burglar alarm, water detector, morse code practice circuit, simple computer circuits, and much more! NO soldering, tools or previous electronics knowledge required. Circuits can be built and unassembled repeatedly. Comprehensive 68-page manual with explanations, schematics and assembly diagrams. Suitable for age 10+. Excellent for

and assembly diagrams. Suitable for age 10+. Excellent for schools, Requires 2 x AA batteries.

Order Code EPL030 ONLY 214.95 (phone for bulk discounts).

130, 300 and 500-in-ONE also available.

WEB: http://www.QuasarElectronics.com email: epesales@QuasarElectronics.com

Secure Online Ordering Facilities
Full Kit Listing, Descriptions & Photos
Kit Documentation & Software Download

Number

For

Enhanced 'PICALL' ISP PIC Programmer

Kit will program virtually ALL 8 to 40 pin* serial and parallel programmed PIC micro-controllers. Connects to PC parallel port.

controllers. Connects to PC parallel port. Supplied with fully functional preregistered PICALL DOS and WINDOWS AVR software packages, all components and high quality DSPTH board. Also programs certain ATMEL AVR, SCENIX SX and EEPOM 24C devices. New devices can be added to the software as they are released. Blank chip auto detect feature for superfast bulk programming. Hardware now supports ISP programming. *A 40 pin wide ZIF socket is required to program 0-3in. devices (Order Code AZIF40 © £15.00).

3144KT	Enhanced PICALL ISP PIC Programmer	259.95
AS3144	Assembled Enhanced 'PICALL' ISP PIC Programmer	€64.95
A83144ZIF	Assembled Enhanced 'PICALL' ISP PIC Progremmer c/w ZIF socket	£79.95

ATMEL AVR Programmer

000

Electronics

T

(

Powerful programmer for Atmel AT90Sxxxx (AVR) micro controller famlly. All fuse and lock bits are programmable. Connects to serial port. Can be used with ANY computer and operating system. Two LEDs to indicate programming status. Supports 20-pin DIP AT90S1200 & AT90S2313 and 40-pin

DIP AT90S4414 & AT90S8515 devices. NO special software required - uses any terminal emulator program (built into Windows). The programmer is supported by BASCOM-AVR Basic Compiler software (see website for details).

3122KT	ATMEL AVR Programmer	€24.95
AS3122	Assembled 3122	£34.95

Atmel 89Cx051 and 89xxx programmers also available,

PC Data Acquisition & Control Unit

With this kit you can use a PC parallel port as a real world Interface. Unit can be connected to a mixture of analogue and digital inputs from pressure, temperature, movement, sound, light intensity, weight sensors, etc. (not supplied) to sensing switch and relay states. It can then process the input data and

use the information to control up to 11 physical devices such as motors, sirens, other relays, servo motors & two-stepper motors.

FEATURES:

8 Digital Outputs: Open collector, 500mA, 33V max.

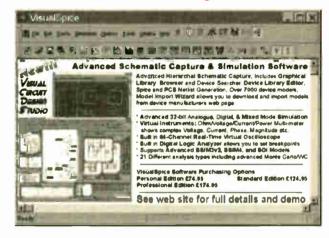
- 16 Digital Inputs: 20V max. Protection 1K in series, 5-1V Zener to

 11 Analogue Inputs: 0-5V, 10 bit (5mV/step.)
 1 Analogue Output: 0-2-5V or 0-10V. 8 bit (20mV/step.)
 All components provided including a plastic case (140mm x 110mm x 35mm) with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo) with screen printed front & rear panels supplied. Softwa e utilities & programming examples supplied.

0-3-4		
3093KT	PC Deta Acquisition & Control Unit	299.95
A83093	Assembled 3093	£124.95

See opposite page for ordering Information on these kits

ABC Mini 'Hotchip' Board



Currently learning about microcontrollers? Need to do something more than flash a LED or sound a buzzer? The ABC Mini 'Hotchip' Board is based on Atmel's AVR 8535 RISC technology and will interest both the beginner and expert alike. Beginners will find that they can write and test a simple program, using the BASIC programming language, within an hour or two of connecting it up.

Experts will like the power and flexibility of the ATMEL microcontroller, as well as the ease with which the little Hot Chip board can be "designed-in" to a project. The ABC Mini Board 'Starter Pack' includes just about everything you need to get up and experimenting right away. On the hardware side, there's a pre-assembled micro controller PC board with both parallel and serial cables for connection to your PC. Windows software included on CD-ROM features an Assembler, BASIC compiler and in-system programmer The pre-assembled boards only are also available separately.

7. 200	CONTRACTOR	5 minutes
ABCMINISP	ABC MINI Starter Peck	€64.95
ABCMINIB	ABC MINI Board Only	£39.95

Advanced 32-bit Schematic Capture and Simulation Visual Design Studio

Serial Port Isolated I/O Controller

Kit provides eight relay outputs capable of switching 4 amps at mains voltages and four optically isolated digital inputs. Can be used in a variety of control and sensing applications including load switching, external switch input sensing, contact closure

and external voltage sensing. Programmed via a computer serial port, it is compatible with ANY computer & operating system. After programming, PC can be disconnected. Serial cable can be up to 35m long, allowing 'remote' control. User can easily write batch file programs to control the kit using simple text commands. NO special software required — uses any terminal emulator program (built into Windows). All components provided including a plastic case with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo).

CONTRACTOR OF THE PARTY OF THE	(Ambierta)	
3108KT	Serial Port Isoleted I/O Controller Kit	€54.95
AS3108	Assembled Serial Port Isolated I/O Controller	€64.95

IS THIS THE ENERGY BOOST YOUR CAREER NEEDS? If you're an electronics enthusiast, ICS can provide you with the Please tick year course spark of inspiration needed to help you earn more money, of interest improve your skills or even start your own business. Electrical Contracting & Installation We've a great range of courses to choose from. You can study Postcode Electrical Engineering whenever and wherever you like, at a pace that suits you best to gain the qualification you want. You'll even have the back-up of C&G Basic Electronic \oplus Email student services, and access to a personal tutor, and best of all, Engineering you can start straight away! Date of Birth C&G Basic Machanical From time to time, we permit other carefi to write to you about products and ser-not to hear from such organisations plea Give your earning potential a boost by calling free on the Engineering number below, or by returning this coupon now. Motorcycle & ATV Repair THE WORLD'S NO. 1 TV & Videa Servicing 500 581 Radio & Hi-Fi Servicing Dept. ZEEVT1G2 Refrigeration, Heating & Air Conditioning Freepost 882, Clydeway Skypark, 8 Elliot Place, Glasgow, G3 88R, Tel. Eire: 1800 620 490. Extn. 1082 (Lines are open 8.30am-8pm Mon-Fri)

BARDWELL LTD (Est. 1948) Assid capacitors 1nF to 1µF Assid disc ceramic capacitors Assid Skaf Preeds (sm, stand, cernel) Assid Pricels (sm, stand, cernel) Assid control (sm, stand, cernel) Assid control (sm, stand, cernel) Ministric stade switches (spice) Assid cauth-futno setches multi-basid Signal Diodes 1N4148 Rectifier Diodes 1N400 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 .£1.00 80 200 50 50 50 80 10 8 20 8 30 10 40 20 10 10 10 300 **DIGITAL** Rectifier Diodes 1N4007 W01 Bridge Rectifiers 555 Timer I C s 741 Op Amps TEST METER 555 Timer I C s 741 Op Ampe Dodes 400mW Assorted Zener Dodes 400mW Assorted Zener Dodes 400mW Assorted Zener Dosplays 5mm Lad.s. red, green or yellow 5mm I ed. s. red, green feet green 5ct 221. Transators 5ct 221. Transators 5ct 221. Transators 5ct 241. Transators 5ct 242. Transators 5ct 243. Transators 5ct 243. Transators 5ct 243. Transators Built-in transistor test socket Ministure slide switches splop Assid, push-bution switches, multi-bank, multi-pole Assid, of sockets up to 40 way TV coax plugs, plass, TV coax plugs, plass, TV coax plugs, plass, Assid, LFT and cottag) Any one value WW 5% of resistors range 1R to 10M 7812 Vottage Repulsators Assid resistors, NWY-NW, mostly on tapes and diode test position. DC volts 200mV to 1000V. AC volts 200V to 750V. DC current 200mA to 10A. Resistance 200 onms to 2000K ohms. £5.99 incl. VAT 288 Abbeydale Road, Sheffleld S7 1FL Phone: 0114 255 2886 ★ Fax: 0114 255 5039 e-mail: sales@bardwells.co.uk ★ Web: www.bardwells.co.uk SEE OUR WEB PAGES FOR Prices Include VAT.Postage £1.65 MORE COMPONENTS AND 2N3904 Transistors 1nf 50V wkg Axial Capacitors 4N7 50V wkg Axial Capacitors Asstd Capacitors electrolytic-Asstd Radial Electrolytics, 4-7-2200µF 44p stamp for lists or di-SPECIAL OFFERS POs. Cheques and Credit Cards accepted £1.00 £1.00 www.bardwells.co.uk

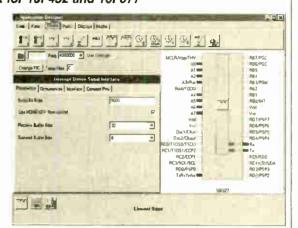
www.stewart-of-reading.co.uk
Callers welcome 9am-5.30pm Monday to Friday (other times by arrangement)

GOULD OS300

JUST IN	
H.P. 60638 DC Electronic Load, 3-240V/0-10A, 250W	POA
M 9 869124 PSH 0.20V/0.24	PAGG
M.R. 96312A PSU, 0-20V/0-2A M.R. 96311B PSU, 0-15V/0-3A M.R. 96309D PSU Dubl, 0-15, 0-3A/0-12, 0-1-5A	£400
N.P. 893119 P3U, U-13Y/U-3A	2400
PLP, 863090 PSU 0081, 0-15, 0-3/40-12, 0-1-5A	E/80
H.P. 66328 PSU, 0-20V/0-5A	1.000
M B (ACH BMT BARRA CAME A), done	C400 E450
M.P. PAPPA DAMA SIL Acres	1400/1400
FLUME 48 DAMA dual dession	12/0
PEURE 40 DWM Qual Gapley	
RETINUET 2010 DWW 771 DQL	1.80Q
G-20V O-4A H-PJAGULENT 34401A DMM 61v digit H-PJAGULENT 34401A DMM 61v digit H-PJAGULENT 34401A DMM 61v digit KETHLEY 2010 DMM 71v digit KETHLEY 2010 DMM 71v digit KETHLEY 617 Programmable Electrometer H-PJASSB Millichmrenier RACAL Counter type 190° 2 6GHz H-P, Counter type 190° 2 6GHz H-P, Counter type 1913 1A 3GHz H-PJAGULET 3131A 50Hz H-PJAGULET 3131A 50Hz H-PJAGULET 3131A 50Hz	£1200
PLP, 43308 MINORITEMENT	£1800
PAGAL Counter type 1999 2 ogriz .	. 1.300
H.P. Counter type 53131A 3GHZ	1,800
	00013/0003
SONY/TEKTRONIX AFG320 Arbitary Func Gen	. £1250
SONY/TEKTRONIX AFG320 Arbitary Func Gen H.P. 8804A Syn Function Gen, DC-600kHz	E1000/E1260
BLACK STAR JUPITOR 2010 Func. Gen. 0-2Hz-2M	12 with
frequency counter	£140
H.P. 8116A Pulse Generator, 1mH-50MHz	£1950
H.P. 8657B Syn Sig. Gen, 0-1-2080MHz	. £2500
CO-AXIAL SWITCH, 1-5GHz	240
IEEE CABLES	£10
SPECTRUM ANALYS	
H.P 88618 50Hz-6-5GHz H.P 8600A 50Hz-2-9GHz synthessed H.P. 8694E 9kHz-2-9GHz H.P. 8591E 1MHz-1-8GHz, 75 Ohm	26500
H.P 8580A 50Hz-2-9GHz synthesized	
H.P. 8594E 9kHz-2-9GHz	£4500/£5000
H.P. 8591E 1MHz-1-8GHz, 75 Ohm	£3500
H.P. 863A with 8859A 100kHz-21GHz H.P. 8688B with Main Frame, 100kHz-1500MHz H.P. 3886A 20Hz-40MHz	£2250
H.P. 8656B with Main Frame, 100kHz-1500MHz	£1250
H.P. 3586A 20Hz-40MHz	£3000
H.R. 3580A 5Hz-50kHz	0003
H.R. 3580A 5Hz-50kHz . ADVANTEST R4131B 10kHz-3-5GHz	£3500
EATON/AILTECH 787 0-001-22GHz	£1500
MARCONI 2382 100Hz-400MHz, Not resolution	E2000
MARCON 2382 100Hz-400MHz, high resolution MARCON 2370 30Hz-110MHz H.R. 182 with 8557 10KHz-350MHz	from £500
M R 182 with 8557 106Hz-350MHz	2500
H.P. 141T SYSTEMS	6000
8663 16H2-110MH2	.from £500
8583 1kHz-110MHz	. from £750
8555 10MU+ 160U+	from £1000
8555 10MHz-18GHz	ES00
H.P. 8443 Tracking Gen/Counter, 110MHz	
H.P. 8444 OPT 059	6750
B&K 2033R Signal Analyser	£750
H.P. 5372A Frequency & Time Interval Analyser	1700
H.P. 8372A Prequency & Time Interval Analyser H.P. 8754A Network Analyser, 4MHz-1300MHz	12250
	11250
PLP. 9734A THEWORK ANALYSIST, 9MITZ-1300MITZ	22222
H.P. 3867A Network Analyser, 5Hz-200MHz	£3000
H.P. \$867A Network Analyser, 5Hz-200MHz H.P. \$3310A Mod Domain Analyser Ool 001/003	£3000 £8000
H.P. 3567A Network Analyser, 5Hz-200MHz H.P. 53310A Mod Domein Analyser Opt 001/003	£3000

Used Equipment – GUARANTEED. Manuals supplied
This is a VERY SMALL SAMPLE OF STOCK, SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units £16. VAT to be added to Total of Goods and Carriage

New from FED - 18 Flash series support and chips


18F452 now supported in our C Compiler, WIZ-C, WIZ-ASM Development board and programmer WIZ-C Compiler Including support for 18F452 and 16F877

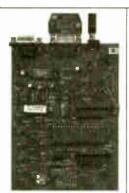
What is the WIZ-C Rapid Application Environment?

- Our PIC C compiler including a new front end
- An application designer for the FED PIC C Compiler
- Drag a software component onto your design & set up the parameters using check boxes, drop down boxes and edit boxes (see shot right)
- Connect the component to the PIC pins using the mouse
- Select your own C function to be triggered when events occur (e.g. Byte received, timer overflow etc.)
- Generate the base application automatically and then add your own functional code in C or assembler
- Simulate, Trace at up to 10x the speed of MPLAB
- Supports 14/16 bit core PICS
- 16F87x, 16C55x, 16C6x, 16F8x, 16C7xx, 18Cxx, 18Fxx etc.
- C Compiler designed to ANSI C Standards

Professional Version Enhancements to our C Compiler and WIZ-C Rapid Application Environment

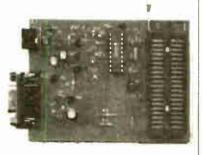
- Manage and simulate multiple projects together
- Connect PIC pins across projects to allow simulated devices to communicate
- Handle assembler and C projects
- View and inspect variables in native C format
- Inspect all local variables and their values in native C format
- Maintain a history within simulation to back track and determine the past leading up to an event

Prices


WIZ - C Standard - £70.00,
Professional £100.00. Upgrade for
existing WIZ-C owners £30.00
PIC C Compiler Standard - £60.00,
Professional £90.00. Upgrade for
existing Compiler owners £30.00
Other upgrade options are
available together with reduced
price bundled packages - see
our web site for details

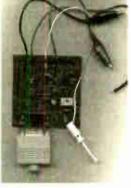
Other products supporting 18F452 and 16F877

Development Board


- Handles 40 pin PIC devices including 18F452 and 16F877
- Includes on board Programmer no separate programmer required
- 4 LED's on board, Analogue on trimpot,
 2 duplex serial ports
- 1A 5V regulator
- 20MHz crystal
- Interfaces for LCD, hex keypad, 32 I/O pins on IDC connectors
- Will run FED PIC BASIC (included on CD)
- I2C EEPROM socket

Price – £45.00 Built and Tested. 16F877-20P £6.00, 18F452 £8.00, CD with BASIC & Programmer Applications £5.00

PIC Programmer Including 18Cxxx and 18F8xxx


Handles serially programmed PIC devices in a 40 pin multi-width ZIF socket. 16C55X, 16C6X, 116F62x, 6C7X. 16C8x, 12C50x, 12C67x, 16C72X, PIC14000, 16F87X, 18Cxxx, 18Fxxx etc

Also In-Circuit programming. Operates on PC serial port.

Price: £45/Kit £50/Built & Tested

In Circuit Debugger In Circuit Debugging is a technique where a

monitor program runs on the PIC in the application circuit. The ICD board connects to the PIC and to the PC. From any of our applications it is then possible to set breakpoints on the PIC, run code, single step, examine registers on the real device and change their values. The ICD makes debugging real time applications faster, easier and more accurate than simulation tools available for the PIC.

Only £30.00, requires a copy of WIZASM, WIZ-C or our C Compiler applications. Operates with 16F87x to emulate most 14 bit core chips, 18F support coming soon!

PIC Chips

PIC 16F877-20P, £6.00, 2CMHz, 384 bytes RAM, 8K Wrd ROM PIC 18F452, 40MHz, £8.00 1500 bytes RAM, 16K Wrd ROM, New 18 series architecture with flat memory address space, 3 timers, 2 Capture compare registers, various serial interfaces, Parallel peripheral interface, 32 general purpose I/O pins, Flash reprogrammable in circuit. Supported by all our tools and the free Microchio development system - MPLAB

Other products

FED also supply development systems for PIC and AVR in assembler and C. Please see our web site for further details.

Forest Electronic Developments 01590-681511 (Voice/Fax)
12 Buldowne Walk, Sway,LYMINGTON, HAMPSHIRE, S041 6DU.
Email - info@fored.co.uk, or sales@fored.co.uk

Web Site - http://www.fored.co.uk

Prices - UK/Europe, please add VAT at 17.5%. Add £3.00 for P&P and handling to each order. Cheques/POs payable to Forest Electronic Developments, phone with credit card or Switch details, or use our secure web site for online ordering with credit card.

EE241 135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST Tel 01283 565435 Fax 546932

http://www.magenta2000.co.uk

E-mail: sales@magenta2000.co.uk

VISA

MAIL ORDER ONLY • CALLERS BY APPOINTMENT

EPE MICROCONTROLLER P.I. TREASURE HUNTER

The latest MAGENTA DESIGN - highly stable & sehsitive - with I.C. control of all timing functions and advanced pulse separation techniques.

 High stability drift cancelling Easy to build

& use No ground effect, works in seawater

 Detects gold. silver, ferrous & non-ferrous metals

 Efficient quartz controlled microcontroller pulse generation. · Full kit with headphones & all

hardware£63.95 **KIT 847**

PORTABLE ULTRASONIC PEST SCARER

A powerful 23kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum output without any special setting up.

KIT 842.....£22.56

DEVELOPMENT 68000 TRAINING KIT

- NEW PCB DESIGN
- 8MHz 68000 16-BIT BUS MANUAL AND SOFTWARE
- 2 SERIAL PORTS PIT AND I/O PORT OPTIONS
- 12C PORT OPTIONS

KIT 621

£99.95

ON BOARD **5V REGULATOR** • PSU £6.99 • SERIAL LEAD £3.99

Stepping Motors

MD38...Mini 48 step...£8.65 MD35...Std 48 step...£9.99 MD200...200 step...£12.99

MD24...Large 200 step...£22.95


PIC PIPE DESCALER

 SIMPLE TO BUILD
 HIGH POWER OUTPUT
 AUDIO & VISUAL MONITORING FREQUENCY

An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve lathering ability by altering the way salts in the water behave.

Kit includes case, P.C.B., coupling coil and all components.
High coil current ensures maximum effect. L.E.D. monitor.

KIT 868 £22.95

Plug-in power supply £4.99

Set of

4 spare

26.50

PIC WATER DESCALER

MICRO PEST CARER

Our latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pets/ pests away from newly sown areas, play areas, etc. uses power source from 9 to 24 volts.

RANDOM PULSES

HIGH POWER
 DUAL OPTION

KIT + SLAVE UNIT.....£32.50

WINDICATOR

A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit £5.99 extra.

KIT 856.....£28.00

DUAL OUTPUT TENS UNIT

As featured in March '97 issue.

electrodes Magenta have prepared a FULL KIT for this. excellent new project. All components, PCB, hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.

KIT 866. . Full kit including four electrodes £32.90

1000V & 500V INSULATION TESTER

Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms.

Kit includes wound coil, cut-out case, meter scale, PCB & ALL components.

KIT 848.....£32.95

TEACH-IN

Full set of top quality NEW components for this educational series. All parts as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in experiments, as listed in introduction to Part 1.

*Batteries and tools not included.

TEACH-IN 2000 -

KIT 879 £44.95 MULTIMETER £14.45

SPACEWRITER

An innovative and exciting project. Wave the wand through the air and your message appears. Programmable to hold any message up to 16 digits long. Comes pre-loaded with "MERRY XMAS". Kit includes PCB, all components & tube plus instructions for message loading.

KIT 849£16.99

12V EPROM ERASER

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12V supply (400mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact

KIT 790 £29.90

SUPER BAT DETECTOR

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE 20kHz-140kHz NEW DESIGN WITH 40kHz MIC.

A new circuit using a 'full-bridge' audio amplifier i.c., Internal speaker, and headphone/tape socket. The latest sensitive transducer, and 'double balanced mixer give a stable, high perfor-mance superheterodyne design.

KIT 861 £24.99

ALSO AVAILABLE Built & Tested... £39.99

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2-5A

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency, Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment. of equipment.

Kit No. 845 £64.95

EPE PROJECT PICS

Programmed PICs for all* EPE Projects 16C84/18F84/16C71 All £5.90 each PIC16F877 now in stock £10 Inc. VAT & postage

ULTRASONIC PEST SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

KIT INCLUDES ALL

COMPONENTS, PCB & CASE EFFICIENT 100V
TRANSDUCER OUTPUT COMPLETELY INAUDIBLE TO HUMANS

 UP TO 4 METRES RANGE LOW CURRENT DRAIN

(*some projects are copyright) KIT 812.....£15.00

SIMPLE PIC PROGRAMMER

INCREDIBLE LOW PRICE! Kit 857 £12.99

INCLUDES 1-PIC16F84 CHIP SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PC BOARD & INSTRUCTIONS

Power Supply £3.99

EXTRA CHIPS: PIC 16F84 £4.84

Based on February '96 EPE. Magenta designed PCB and kit. PCB with 'Reset' switch, Program switch, 5V regulator and test L.E.D.s, and connection points for access to all A and B port pins.

16C84 DISPLAY DRIVER

INCLUDES 1-PIC16E84 WITH DEMO PROGRAM SOFTWARE DISK, PCB. **INSTRUCTIONS AND 16-CHARAC-**TER 2-LINE

LCD DISPLAY

Kit 860 £19.99

Power Supply £3.99

FULL PROGRAM SOURCE CODE SUPPLIED - DEVELO YOUR OWN APPLICATION

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE × 16-character display, data, all components, and software to include in your own programs Ideal development base for meters, terminals, calculators, counters, timers - Just waiting for your application

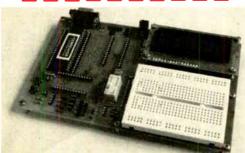
PIC 16F84 MAINS POWER 4-CHANNEL **CONTROLLER & LIGHT CHASER**

WITH PROGRAMMED 16F84 AND DISK WITH

- SOURCE CODE IN MPASM ZERO VOLT SWITCHING MULTIPLE CHASE PATTERNS OPTO ISOLATED
- 5 AMP OUTPUTS 12 KEYPAD CONTROL
- SPEED/DIMMING POT. HARD-FIRED TRIACS

Kit 855 £39.95

Now features full 4-channel chaser software on DISK and pre-programmed PIC16F84 chip. Easily re-programmed for your own applica-tions. Software source code is fully 'commented' so that it can be followed easily.


LOTS OF OTHER APPLICATIONS

8-CHANNEL DATA LOGGER

As featured in Aug./Sept. '99 EPE. Full kit with Magenta redesigned PCB – LCD fits directly on board. Use as Data Logger or as a test bed for many other 16F877 projects. Kit includes programmed chip, 8 EEPROMs, PCB, case and all components.

KIT 877 £49.95 inc. 8 × 256K EEPROMS

ICEBREAKER 000000000

PIC Real Time In-Circuit Emulator

- Icebreaker uses PIC16F877 in circuit debugger
- Links to Standard PC Serial Port (lead supplied)
 Windows[™] (95) Software included
- (95+) Software included

Tel: 01283 565435

- Works with MPASM and MPLAB Microchip software
- 16 x 2 L.C.D., Breadboard, Relay, I/O devices and patch leads supplied

As featured in March '00 EPE. Ideal for beginners AND advanced users Programs can be written, assembled, downloaded into the microcontroller and run at full speed (up to 20MHz), or one step at a time.

Full emutation means that all I/O ports respond exactly and immediately, reading and driving external hardware.

Features include: Reset; Halt on external pulse; Set Breakpoint; Examine and Change registers, EEPROM and program memory; Load program, Single Step with display of Status, W register, Program counter, and user selected "Watch Window' registers.

KIT 900 . . . £34.99

POWER SUPPLY £3.99 STEPPING MOTOR £5.99

Fax: 01283 546932

EPE PIC TOOLKIT 3

- THE LATEST TOOLKIT BOARD 8, 18, 28 AND 40-PIN CHIPS
- MAGENTA DESIGNED P.C.B. WITH COMPONENT LAYOUT AND EXTRAS
- L.C.D., BREADBOARD AND PIC CHIP INCLUDED
- ALL TOP QUALITY COMPONENTS AND SOFTWARE SUPPLIED

KIT 880 ... £34.99 with 16F84 ... £39.99 with 16F877

PIC TOOLKIT V2

- SUPER UPGRADE FROM V1 18, 28 AND 40-PIN CHIPS
- READ, WRITE, ASSEMBLE & DISASSEMBLE PICS
- SIMPLE POWER SUPPLY OPTIONS 5V-20V
- ALL SWITCHING UNDER SOFTWARE CONTROL
- MAGENTA DESIGNED PCB HAS TERMINAL PINS AND
- OSCILLATOR CONNECTIONS FOR ALL CHIPS INCLUDES SOFTWARE AND PIC CHIP

KIT 878 . . . £22.99 with 16F84 . . . £29.99 with 16F877

EPE PIC Tutorial

At last! A Real, Practical, Hands-On Series

- Learn Programming from scratch using PIC16F84
- Start by lighting l.e.d.s and do 30 tutorials to Sound Generation, Data Display, and a Security Svstem.
- PIC TUTOR Board with Switches, I.e.d.s, and on board programmer

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.

KIT 870 £27.95, Built & Tested £42.95 Optional: Power Supply - £3.99, ZIF Socket - £9.99 LCD Display £7.99 LED Display £6.99 Reprints Mar/Apr/May 98 - £3.00 set 3

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES

- WINDOWS® SOFTWARE
 PIC16C6X, 7X, AND 8X
 USES ANY PC PARALLEL PORT
 USES STANDARD MICROCHIP HEX FILES
 OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED-PIN SOCKETS FOR 18, 28, AND 40 PIN ICs

SEND FOR DETAILED INFORMATION - A SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.

Kit 862

£29.99

Power Supply £3.99

DISASSEMBLER SOFTWARE

£11.75

PIC STEPPING MOTOR DRIVER

INCLUDES PCB, PIC16F84 WITH DEMO PROGRAM SOFTWARE DISC, INSTRUCTIONS AND MOTOR.

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor – up to 24V and 1A. Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

All prices include VAT. Add £3.00 p&p. Next day £6.99

E-mail: sales@magenta2000.co.uk

Red Line Plug
Block Line Plug
Yellow Line Plug
Red Line Socket
Block Line Socket
Yellow Line Socket
White Line Socket
White Line Socket
Red Chossis Socket
Block Chossis Socket
Block Chossis Socket
Red Chossis Socket
Red Chossis Socket
Red Line Plug
Socket
Socket
Socket
Red Line Plug
Socket
Socket
Socket
Socket
Red Line Plug
Socket
Socke 4

200 3 Pin Line Plug 3 Pin Line Socket 3 Pin Cho-sis Plug 3 Pin Cho-sis Plug 3 Pin Cha-sis Socket Neutrik Line Plug Neutrik Line Socket Neutrik Chossis Plug Neutrik Chossis Socket

Jones Harrison

DIL Headers

Push Switches Miniature Round
250mA 125V 28 x 10mm
7mm Ø Mounting Hole
Non Lotching Push to Make
Black, Red, Yellow, Green,
Blue or White
Non Lotching Push to Breok
Block PTB
5tandard Square
1A 250V
39 x 15MM
12mm Ø Mounting Hole

RF Connectors

for

~

SOLO

Rocker Switches Miniature Colours Red, Block, Green, Blue, White or Yellow 2mm Solder Plugs £0.18 2mm Chossis Sockets £0.28 4mm Plugs - Solder 4mm Plugs - Solder 4mm Stockable Plugs £0.40 4mm Shrouded Plugs £0.40 4mm Chossis Sockets £0.24 4mm Binding Posts 33mm Crocodile Clips £0.10 Power Connectors DC Low Voltage

DC Plug 0.71D 2.35OD £0.47 DC Plug 1.31D 3.4OD £0.32 DC Plug 1.71D 4.0OD £0.47 DC Plug 1.71D 4.75OD £0.47 DC Plug 2.71D 5.0OD £0.25 DC Plug 2.51D 5.0OD £0.24 DC Plug 2.51D 5.0OD £0.24 DC Plug 3.50C 6.3OD £0.46 DC Line \$

8 Pin Line Plug P551 £3.58 8 Pin Chossis Skt P552 £1.08 Toggle Switches Toggle Switches

Testers / Patch Boxes
Mini Testers / Patch Boxes
Mini Tester / LEDs C4.72
Check Tester 18 LEDs 66.32
Enhonced+ Switches £15.18
25D Patch Box M-F £2.64
Anti-Slotic Wrist Strop£4.76
RS232 Surge Protector £5.20
13A Surge Protector £5.20
13A Surge Protector £10.00
4 Gong Surge Block £10.50
Leads & Cables

1.5m Printer Lead £2.55
2m BD Printer Lead £2.56

To story successive su

1.5m Printer Leod
2m BD Printer Leod
5m BD Printer Leod
5m BD Printer Leod
5m BD Printer Leod
6m BD Printer Leod
6m BD Printer Leod
6m BD Printer Leod
6m BD Printer Leo
6m BD Printer Leo
6m L 36Mole to 25Mole 10 36Mole 22.60 Internal Leads
Floppy Cable A/B Hord Disk 2xIDE 23.88 Power 54.2 x 5/4 21.50 Powe

Boxes & Cases Mony more sizes ovoilable

General Purpose Plastic
75 x 56 x 25mm
75 x 51 x 22mm
111 x 57 x 22mm
79 x 61 x 40mm
110 x 76 x 41mm
118 x 98 x 45mm
150 x 100 x 60mm
150 x 80 x 50mm
22.72 150 x 80 x 50mm Diocast Aluminium 50 x 50 x 31mm 100 x 50 x 25mm 112 x 62 x 31mm 120 x 65 x 40mm 150 x 80 x 50mm 121 x 95 x 61mm

1A 250V 39 x 15MM 12mm Ø Mounting Hole Non Lotching Push to Moke Block, Red, Blue or White £0.60 Latching -push On push Off Black, Red, Blue or White £0.65 Wire & Cable Ribbon Cable Rocker Switches
Miniature

13 x 19mm Mounting Hole
SPST 4A 250V £0.57
SPST 6A Red Neon £1.65
SPST 3A Red LED £1.65
SPST 3A Red LED £1.65
SPST 3A Red Neon £1.10
DPST 4A 250V £0.75
DPST 4A 250V £0.75
DPST 3A Creen Neon £1.32
Standard
10(SP),22(DP) x 30mm
Mounting Hole
SPST 10A 250V £0.60
SPST 10A 250V £0.75
SPST 15A Red Neon £0.75
SPST 15A Red Neon £0.75
SPST 15A Red Neon £1.25
DPST 10A 250V £0.75
SPST 15A Red Neon £1.80
DPST 4D A 250V £0.75
SPST 15A Red Neon £1.80
DPST 4D A 250V £0.90
DPST 15A Red Neon £1.80
DPST 4D A 250V £0.90
DPST 15A Red Neon £1.25
DPST Green Neon £1.25 Ribbon Cable
Price per 305mm (1ft)
10 Woy Grey Ribbon
16 Woy Grey Ribbon
20 Woy Grey Ribbon
26 Woy Grey Ribbon
34 Woy Grey Ribbon
40 Woy Grey Ribbon
50 Woy Grey Ribbon
60 Way Grey Ribbon
Enamelled Copper
Per 50a (20z) Reel

60 Way Grey Ribbon Enammeiled Copper V Per 50g (20z) Reel 500g reels ovoiloble 14 SWG Enomelled 16 SWG Enomelled 20 SWG Enomelled 20 SWG Enomelled 22 SWG Enomelled 24 SWG Enomelled 28 SWG Enomelled 33 SWG Enomelled 33 SWG Enomelled 34 SWG Enomelled 34 SWG Enomelled 36 SWG Enomelled 36 SWG Enomelled 37 SWG Enomelled 38 SWG Enomelled 38 SWG Enomelled 38 SWG Enomelled 38 SWG Enomelled 39 SWG Enomelled 40 SWG Enomelled 40 SWG Enomelled 50 SWG Enome DPDT 10A 250V £0.90

Relays
PCB Mounting
1A 24Vdc DPDT 5V £1.38
1A 24Vdc DPDT 12V £0.35
3A 110V SPDT 6V £0.72
5A 110V SPDT 12V £0.72
5A 110V SPDT 12V £0.72
5A 110V SPDT 12V £0.73
5A 110V SPDT 12V £0.73
5A 110V DPDT 6V £0.93
5A 240V DPDT 12V £1.50
10A 240V SPDT 12V £1.44
10A 240V SPDT 12V £1.44
10A 240V SPDT 12V £1.44 Computer Accessories Adaptors

9M Gender Chonger £1.73
9F Gender Chonger £1.73
25M Gender Chonger £2.43
9 Mole - 25 Femole £1.73
9F Femole £1.73
9M - 6 Mini Din Mole £2.48
9Mole - 25 Mole £1.73
9M - 6 Mini Din Femole £2.23
5M Din - 6F Mini Din £1.73
5F Din - 6M Mini Din £1.73
Testers / Patch Boxes
Mini Tester 7 LEDs £4.72

32 768KHz **HC-49/U Case** 1 8432MHZ 2.0MHZ 2.4576MHz £1.08 £1.46 £0.84 £0.51 3.2768MHz

3.579545MHz 3.6864MHz 4.0MHz 4.194304MHz 4.4933619MHz 4.9152MHz 6.0MHz 6.144MHz 7.3728MHz 8.0MHz 8.0MHz 11.0MHz 11.0MHz 11.0592MHz 12.0MHz 12.0MHz 14.7456MHz 16.0MHz 16.0MHz £0.41 £0.41 £0.41 £0.41 £0.41 £0.41 £0.41 £0.41 £0.39 £0.39 £0.38 £0.40 £0.41 £0.41 £0.41 £0.41 £0.41

20.0MHz £0.42 £2.67 £3.50 £4.18 £4.18 £4.65 £7.06 Details on our web site

Details on our we Opto Electronics LEDS full-steads on Web. 3mm White 900mcd 20.11 3mm Red Led 20.12 3mm Green Led 20.12 3mm Blue 60mcd 20.49 3mm Blue 60mcd 20.49 3mm Blue 60mcd 20.49 3mm Blue 60mcd 20.50 3mm Blue 50mcd 40mcd 20.50 3mm Blue 60mcd 20.50 3mm Green Led 20.50 3mm Green Led 20.50 3mm Felow Led 20.50 3mm Blue 80mcd 20.10 3mm Blue 80

\$\begin{align*}
\text{C2.13} \text{C0.07} \text{C0.07} \text{C0.09} \text{C0.09} \text{C0.78} \text{C0.78} \text{C0.65} \text{C0.247} \text{C0.08} \text{C0.08} \text{C0.78} \text{C0.78} \text{C0.78} \text{C0.78} \text{C0.78} \text{C0.37} \text{C0.37} \text{C0.37} \text{C0.37} \text{C0.15} \ mm Yellow nm Bi-Colour Led mm Tri-Colour Led Segment Displays .56 Red C Cothode £0.65 66 Red C.Anode £0.65 4 C.Cothode £0.65

Tinned Copper Wire
Per S0g (2oz) Reel
500g reels ovoiloble
14 SWG Tinned
16 SWG Tinned
18 SWG Tinned
18 SWG Tinned
20 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
24 SWG Tinned
24 SWG Tinned
25 SWG Tinned
26 SWG Tinned
26 SWG Tinned
27 SWG Tinned
28 SWG Tinned
29 SWG Tinned
20 SWG Tinned
20 SWG Tinned
21 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
23 SWG Tinned
25 SWG Tinned
26 SWG Tinned
27 SWG Tinned
28 SWG Tinned
29 SWG Tinned
20 SWG Tinned
21 SWG Tinned
21 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
23 SWG Tinned
25 SWG Tinned
26 SWG Tinned
27 SWG Tinned
28 SWG Tinned
29 SWG Tinned
20 SWG Tinned
21 SWG Tinned
21 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
21 SWG Tinned
22 SWG Tinned
22 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
22 SWG Tinned
22 SWG Tinned
21 SWG Tinned
22 SWG Tinned
22 SWG Tinned
23 SWG Tinned
24 SWG Tinned
25 SWG Tinned
26 SWG Tinned
26 SWG Tinned
27 SWG Tinned
28 SWG Tinned
29 SWG Tinned
21 SWG Tinned
22 SWG Tinned
21 SWG Tinned
22 SWG Tinned
23 SWG Tinned
24 SWG Tin

Technical Books & CD ROMS

Doto Toble & Equivolent chorts from FCA Chorocteristics, pin outs, equivolents & selector tobles for semiconductors. Demo version of the CD ROMS & full detoils of the complete ronge are ovoilable from our web site.

Semiconductors Equivalents & Reference
Covering: Transistors, Diodes, Thyristors, Triocs & ICs.
These reference books series covers more than 115,000
types with more than 200,000 equivolent types. Each type
is provided with information as to device family, shortform description and the salient electrical doto, olong with
the dimensioned aulline drawing and pin assignments.
Split into two paper volumes or available on one CDROM.

E14.34
ISBN 3881090339, 1184 Pages, 14th Update 2002
Vrt volume 1 N.,60 000...µ Device Codes
ISBN 3881090355, 720 Pages, 13th Update 2002
These books are zero vol roled, corriage
for one OR both £3.50+vot

14 Woy DIL 16 Woy DIL 24 Woy DIL 40 Woy DIL Tel: 0191 2514363 Fax: 0191 2522296 Email: sales@esr.co.uk http://www.esr.co.uk

THE MO. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY & COMPUTER PROJECTS

VOL. 31 No. 9 SEPTEMBER 2002

Editorial Offices:
EVERYDAY PRACTICAL ELECTRONICS EDITORIAL WIMBORNE PUBLISHING LTD., 408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND

Phone: (01202) 873872. Fax: (01202) 874562.

Email: enquiries@epemag.wimborne.co.uk

Web Site: http://www.epemag.wimborne.co.uk

EPE Online www.epemag.com

EPE Online Shop: www.epemag.wimborne.co.uk/shopdoor.htm

See notes on Readers' Technical Enquirles below – we regret lengthy technical enquiries cannot be answered over the telephone

Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS ADVERTISEMENTS
MILL LODGE, MILL LANE
THORPE-LE-SOKEN, ESSEX CO16 0ED

Phone/Fax: (01255) 861161

MYSTERIES OF THE PAST

Next month we delve into the mysteries of the past. A hobby that has become established over the last decade is that of collecting old radios, communications equipment, test gear etc. There is now a well-established vintage radio trade in the UK and around the world, an interest catered for by our sister publication Radio Bygones, which is the leading British publication for vintage radio enthusiasts.

In a special 16-page supplement Free with next month's EPE we will take a look at what is available, what and how to buy, restoration and suppliers. It is fascinating to restore equipment from 50 years ago and then use it. Of course, all the old radios can still be used and most of the test equipment likewise. The technology is rather different from that of today so, for many readers, it will mean learning about valves, but, of course, these are still used by most of us everyday in the rather specialised form of the cathode ray tube, which was actually invented in 1859!

Whilst the technology is certainly very different, most of the parts are still readily available and many of them have changed very little over the last 50-odd years. What has changed is the style of cases etc., but a couple of manufacturers are now recreating radios in the style of 60s sets, namely Bush and Roberts Radio. So there must be something to be said for the designs of yesteryear.

EPE has published the occasional valve project, and a number of guitarists and hi-fi enthusiasts still believe the valve sound is the best. Certainly collecting and restoring valve hi-fi equipment is also booming in the UK.

NVCF

For anyone interested in old radios, communications equipment, record players, juke boxes, telephones, hi-fi etc., then a visit to the NEC on September 15th will be worthwhile. The National Vintage Communications Fair is held on that day and hundreds of companies take stands to sell everything from valves and components through vintage radios, TVs, telephones and hi-fi up to juke boxes and even telephone boxes. It is well worth a visit and Radio Bygones will be there selling back issues, books, data CD-ROMs etc.

If you are interested in this facet of electronics, then why not go along and see what it is all about.

AVAILABILITY

AVAILABILITY
Copies of EPE are available on subscription anywhere in the world (see below), from all UK newsagents (distributed by COMAG) and from the following electronic component retailers: Omni Electrosics and Yebo Electronics (S. Africa). EPE can also be purchased from retail magazine outlets around the world. An Internet on-line version can be purchased and downloaded for just \$9.99(US – approx £7.70) per year available from www.epemag.com

SUBSCRIPTIONS

Subscriptions for delivery direct to any address in the UK: 6 months £15, 12 months £28.50, two years £52; Overseas: 6 months £18 standard air service or £27 express airmail, 12 months £34.50 standard air service or £52 express airmail, 24 months £64 standard air

or £52 express airmail, 24 months £64 standard air service or £99 express airmail.

Online subscriptions, for downloading the magazine via the Internet, \$9.99(US – approx £7.70) for one year available from www.epemag.com.

Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subs. Dept., Wimborne Publishing Ltd. 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 873572. Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at: http://www.epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept Ma::terCard, Arnex, Diners Club, Switch or Visa. (For past issues see the Back Issues page.)

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price £5.95 plus £3.50 p&p (for overseas readers the postage is £6.00 to everywhere except Australia and Papua New Guinea which cost £10.50). Normally sent within seven days but please allow 28 days for delivery - more for overseas

Payment in £ sterling only please. Visa, Amex, Diners Club, Switch and MasterCard accepted. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure serve via our UK web site. Overseas customers – your cred-it card will be charged by the card provider in your local currency at the existing exchange rate.

Editor: MIKE KENWARD

Deputy Editor: DAVID BARRINGTON Technical Editor: JOHN BECKER Business Manager: DAVID J. LEAVER Subscriptions: MARILYN GOLDBERG Administration: FAY KENWARD Editorial/Admin: (01202) 873872

Advertisement Manager:

PETER J. MEW, Frinton (01255) 861161

Advertisement Copy Controller: PETER SHERIDAN, (01202) 873872 On-Line Editor: ALAN WINSTANLEY EPE Online (Internet version) Editors: CLIVE (MAX) MAXFIELD and ALVIN BROWN

READERS' TECHNICAL ENQUIRIES

E-mail: techdept@epemag.wimborne.co.uk We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons. All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or **kits** for building the projects featured, these can be supplied by advertisers (see *Shoptalk*). We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are *bona fide*, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture.

TRANSMITTERS/BUGS/TELEPHONE **EQUIPMENT**

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws

An automatic flight attitude control system suitable for free flight model gliders

N order to amuse his young nephew last summer, the author made a number of model gliders, which were taken to the top of a local hill and then launched. The models were made from balsa wood and were not powered in any way, except by gravity.

Several designs showed some promise, but maintaining level flight with any consistency was a problem. Promising designs were shelved because after 20 metres they showed signs of losing stability, preferring to roll over or stall with the occasional "crump" of deforming balsa wood.

FLIGHT TIMES

As their glides were observed, it seemed apparent that it must be possible to incorporate an automated flight control system, to give the designs at least a fighting chance. Following a number of prototypes, this article describes how to make and install into a model glider a low cost microcontrolled stabilisation system that

helps model gliders to fly a little more straight and level.

Glider flight times have been increased from an average of five to six seconds to over 15 seconds – the limitation now being that the author's local hill is just not big enough! The real power of Freebird is that the flight correction algorithm can be modified by reprogramming the PIC16F84A microcontroller, which handles the attitude detection and flight correction, all in real time.

FLIGHT PATH

To encourage budding aeronautical engineers (young and old) to take up this mid-summer madness, an overview of aircraft flight dynamics and some practical flying information has also been included. The design has been kept simple, using low cost and readily available components. For inexperienced model makers, a glider can be purchased.

During development, a portable computer was used in conjunction with the

EPE Toolkit Mk3 (Oct/Nov '01), to provide full "in-the-field" tuning of the software, but this is not essential.

FLIGHT THEORY

A full analysis of how aircraft fly is a complicated subject and cannot be fully detailed here. Further reading on the subject of aerodynamics is given at the end of this article.

In summary, for a fixed wing aircraft to fly, it must be made to move forward. The wings are designed to convert part of the falling motion into a forward motion. As the wings move forward they produce lift, which acts against the weight of the glider, effectively making it "lighter". The "lighter" glider in turn requires less forward speed so it settles into stable forward flight:

The forces acting on a glider in stable flight are shown in Fig.1. The main forces are:

- Lift force generated by the wings (upwards)
- Weight of the glider and control electronics (downwards)
- Drag or retardation force as the glider tries to move through the air (backwards)
- Propulsive force which for gliders is supplied by gravity (forwards).

In stable flight, the lift force is just less than the weight force, (i.e. the model slowly descends) and the thrust force is greater than the drag force (i.e. the model moves slowly forward).

The objective of glider designers is to maximise the distance moved forward by the glider and minimise the vertical distance it falls. This is known as the optimal glide-slope (refer to Fig.2) and Freebird is aiming to keep the glider within these operating parameters at all times.

Incidentally, this is also a guide to the slope of a good hill to launch from, as the glider should be able to continually "fall", yet maintain a constant height from the

So by the addition of wings, the simple falling object is turned into a gliding object. The next problem to solve is how to control the motion of the aircraft in three-dimensional space.

FLIGHT CONTROL

Aircraft travelling in space can move in the following ways (see Fig.3.):

- Pitch a rotation about an axis that passes through the wings - looks like a raising or lowering of the nose. To correct alterations in pitch, the elevators located on the tail surfaces are adjusted in unison (i.e. both elevators up or both down).
- Roll a rotation through the centre line
 of the fuselage looks like one wing
 rises, whilst the other falls. To correct
 alterations in roll, the ailerons located
 on the wings are adjusted in opposition
 (i.e. one aileron moves up, whilst the
 other moves down).
- Yaw a rotation about an axis perpendicular to the fuselage. To correct alterations in yaw, the rudder located on the tail is adjusted.

When in flight, all sorts of forces act on the aircraft, so that at a given instant any combination of these motions may be evident – it really is a wonder that a hand thrown model glider flies any distance at all! So, the idea behind Freebird is to correct these motions before they become too extreme and result in the aircraft crashing.

- A computational system that detects attitude alterations and determines the correction necessary to restore normal flight.
- A servo system, that can move aircraft control surfaces as directed by the attitude computer.

Usually, computations are based upon "generic" information that forms the basis of an in-flight mathematical model for that particular type of aircraft. Also, specific information is added that relates to that flight i.e. aircraft weight and local weather conditions.

Freebird does not carry out any mathematical computations, but outputs a predefined value of servo correction from look-up tables. Commercial detection systems make use of sophisticated detectors, including detectors sensitive to acceleration, which results in more refined control.

Although Freebird does not offer the sophistication of commercial systems, it does incorporate all of the elements detailed above.

correction for this motion is derived from the measurements taken from the pitch and roll sensors.

To assist the setting up procedure, light emitting diodes (l.e.d.s), D1 to D4, are included in series with the tilt switch, and are turned on when the respective switch closes. This corresponds to about 10 degrees of tilt.

Switches S5 to S8 are slide switches within a 4-way dual-in-line (d.i.l.) module. They allow different software routines or modes to be selected, as discussed presently, thereby altering the correction characteristics of Freebird.

The software can be changed without the removal of the PIC from the unit, by means of "in-circuit" programming socket, SK1. Note that this does not correspond to the pin arrangements used by John Becker in his numerous *EPE* projects.

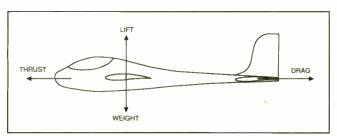


Fig.1. Forces acting on a glider in stable flight.

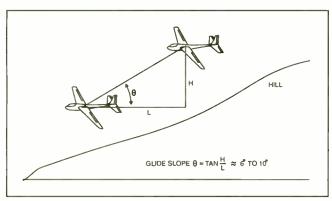


Fig.2. Optimum glide-slope. Objective is to maximise distance moved forward and minimise the vertical distance it falls.

RUDDER CORRECTS YAW CHANGES AILERONS CORRECT ROLL CHANGES ROLL ROLL

Fig.3. Aircraft attitude and surfaces used to control movement. These help stabilise against the forces of pitch, roll and yaw.

FREEBIRD DESIGN

The design for Freebird was loosely based upon commercial aircraft autopilot systems. Auto-pilots allow pilots to relax by flying the aircraft without any human intervention and are normally used in the mid-section of long flights where airspace is not crowded and there is less need for the aircrew to laboriously maintain a fixed heading and level flight.

Any autopilot requires the following systems to be present:

• An attitude detection system.

CIRCUIT DESCRIPTION

The complete circuit diagram for Freebird is shown in Fig.4. The heart of the system is the PIC16F84A microcontroller, running at 20MHz, as set by crystal X1. Tilt switches sense changes in pitch (S1, S2) and roll (S3, S4). They are arranged in the same plane, but offset with each other at 90 degrees (see Fig.5).

When perfectly level, the switches are arranged to be off, which gives a degree of "dead band" and helps to reduce the sensitivity of the detection system. There is no sensor present to detect yaw and the

FEEDBACK COMPUTATION

The software assembly listing contains a full description of the PIC's program operation and other details, so just a short summary is given here. The PIC undertakes the following tasks:

- 1. Reads the mode switch and executes the appropriate software module
- 2. Detects pitch or roll tilt, by means of the tilt switches (active low)
- 3. Determines the appropriate servo(s) to move and by how much
- 4. Determines if yaw correction is required based upon roll and pitch

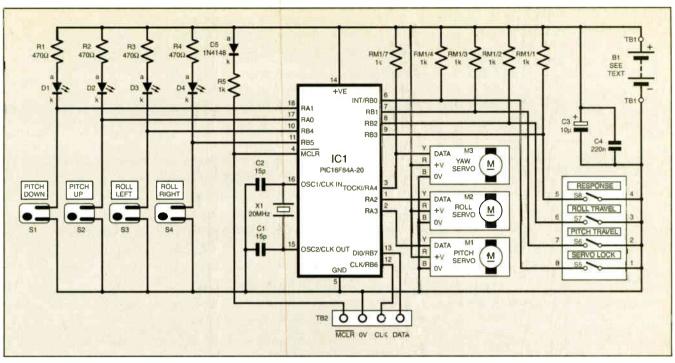
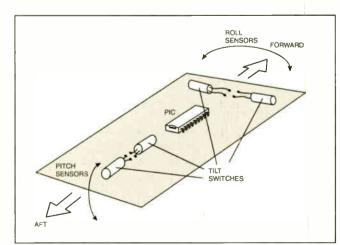


Fig.4. Complete circuit diagram for the Freebird Glider Control.

5. Outputs corrective commands to the roll, pitch and yaw servos


The main activities are carried out in (1) to (4) and are arranged to loop endlessly. The servo output module is called by a timer interrupt every 18ms and this ensures that the servos receive their control information, irrespective of other activities going on at the time.

The main loop senses which, if any, of the tilt switches are active. The combination of tilt switch closures is used to enter look-up tables which define the appropriate degree of servo correction necessary. These values are placed into

servo position register stores in readiness for output when the servo interrupt is executed.

The following modes are available in the software, and are selected by switches S5 to S8:

S5 Servo Lock	S6 Servo Travel Pitch	S7 Servo Travel Roll	S8 Response
On enabled	full	full	fast
Off disabled	half	half	slow

Servo Lock, switch S5: When enabled, all servos are locked in their current positions. This helps with alignment (say, checking zero, maximum up or down elevator deflection on the aircraft). It also allows the initial checking of l.e.d.s to be carried out in comparative quiet without the servos moving.

Servo Travel Pitch, switch S6: the travel of the pitch servo can be increased or decreased. When enabled, the servo rotation is ±60 degrees. When disabled the travel in each direction is halved, i.e. about ±30 degrees.

Servo Travel Roll, switch S7: as Pitch switch S6, but with respect to the roll servo.

Response, switch S8: when enabled (slow), the rate of travel of the servo movement is approximately one second from +60 degrees to 0 degrees. This sluggish response is better for flying on still, hot

summer days, or with larger gliders. When disabled (fast), the movement is speeded up to 0.5 seconds. This setting is useful in gusty conditions where the glider must respond rapidly in order to maintain stability.

Any mixture of the above functions can be selected.

Fig.5. Attitude detection using tilt switches. Pitch S1/S2 and roll S3/S4 are arranged in the same plane, but offset at 90° from each group

COMPONENTS Resistors R1 to R4 470Ω (4 off) **R5** 1k RM₁ 1k 8-way commoned s.i.l. resistor page module All except RM1 0.25W 5% carbon film or better. Capacitors 15p (or 10p) ceramic (2 off) C1, C2 10μ radial elect. 16V C3 C4 220n ceramic Semiconductors D1, D4 sub-min green l.e.d. (2 off) D2. D3 sub-min red l.e.d. (2 off) 1N4148 signal diode **D5** IC1 PIC16F84A-20 preprogrammed microcontroller (see text) Miscellaneous M1 to M3 Servo motor (see text) (3 off) Tilt switch (non-mercury S1 to S4 type) (4 off) S5 to S8 4-way d.i.l. on-off slide switch module TB₁ 2-way pin connector, male, or 1mm terminal pins **TB2** 4-way pin connector, male. or 1mm terminal pins X1 20MHz crystal Printed circuit board, available from the EPE PCB Service, code 367; battery pack (see text); connecting wire; solder

excl. servos & batts.

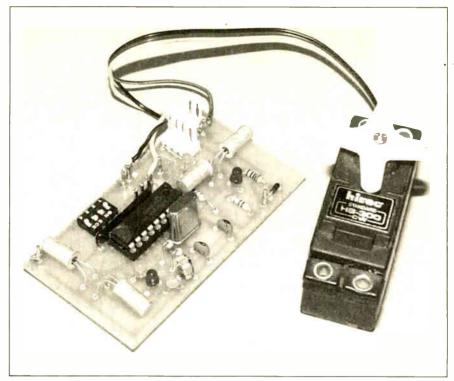
Approx. Cost

Guidance Only

POWER SUPPLY

A supply of between about 5V and 6V is required to power the PIC and servos. Power consumption peaks at around 430mA with all three servos in motion. but normal steady state consumption is around 45mA. To keep costs down, dry cells can be used although rechargeable cells such as Nickel Cadmium do help to reduce costs in the long run.

The most important consideration here is weight. Use of four AA-size batteries is acceptable, weighing about 170 grams, and supplying about 1.5V each (total 6V). The balance of the glider is important and the battery pack will play an important part in the eventual setting up.


SERVOS

Model radio control servos are used to control the aircraft as these are purpose built, lightweight, available at modest prices and are designed to be installed into model aircraft. Radio control servos require a position instruction every 18ms and the PIC's interrupt routine is set to output this information, irrespective of what other tasks are being executed. The servo position instruction comprises a 1ms start pulse followed by a command pulse varying between zero and 1ms.

The servos are 3-wire units. The positive lead connects to the power supply positive line, the earth connects to battery negative, and the data line to the appropriate PIC output.

An analysis was not considered necessary with regard to the vulnerability of each system to the overall stability (and therefore safety) of the control system as it would be used in a hobbyist setting and not for commercial use.

However, an airbrake could be added should the glider remain airborne for too long. Readers knowledgeable in PIC program writing could easily modify the software to drive another servo to control

Completed printed circuit board connected to a single servo motor. Note the four attitude tilt switches.

it. A timer of up to 14 minutes duration could be created by counting the 18ms interrupts by means of a 16-bit counter.

CONSTRUCTION

The printed circuit board (p.c.b.) assembly and track layout details are shown in Fig.6. This board is available from the *EPE PCB Service*, code 367. Assemble in your own preferred order, noting the direction of the diodes and capacitor C3. Use a socket for the PIC.

Identify the common lead (it has a spot alongside) on the s.i.l. resistor module and position it as shown. Note that p.c.b. holes have not been provided for the unused resistors in the module. The unrequired leads should be folded back to allow the module to slot into the p.c.b.

Install the tilt switches with plenty of curvature in the leads – this will make later adjustments easier.

Make sure the d.i.l. switch is soldered in correctly (i.e. the switch should be closed when at the top of the bank, and off at the bottom).

After you have fully checked the correctness of your soldering and assembly, and confirmed that the power supply is correctly working, insert the preprogrammed

PIC into its socket, ensuring its correct orientation. If you have your own PIC programming facility, such as the *EPE Toolkit MK3/TK3* programmer, the PIC could be programmed *in situ*. See this month's *Shoptalk* page for details of obtaining the software and preprogrammed PICs.

Note that the programming pinouts of the TB1 connector do not correspond to the "standard" John Becker arrangement.

Do not connect the servos to the p.c.b. until after the following initial setting up.

SETTING UP

Place the assembled p.c.b. on a flat table and ensure that switch S5 (Servo Lock) is selected to disabled (i.e. all servos unlocked). Physically adjust the vertical angle of the tilt switches until all the l.e.d.s are just out. Raise the free end of the bent over tilt switch to turn it on earlier, lower to turn it off later.

To check the Pitch setting, raise the rear of the board by approximately 10mm until tilt switch S1 and l.e.d. D1 just turn on. Return

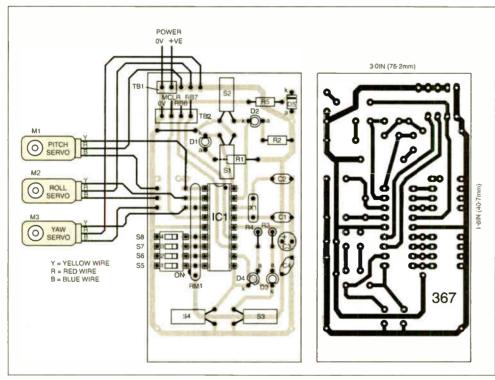


Fig.6. Freebird printed circuit board component layout, wiring details to servo motors and full-size copper foil underside master pattern.

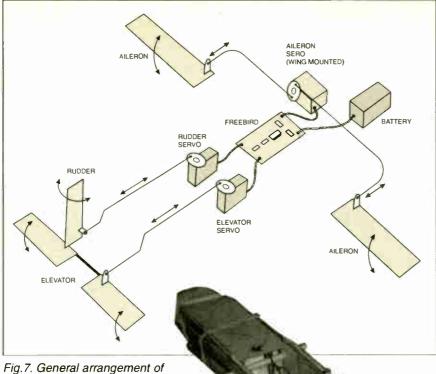


Fig.7. General arrangement of servos within the glider.

the board to horizontal and then raise its front by about 10mm, to check switch S2 and l.e.d. D2.

To check the Roll setting, lift the left edge of the board (i.e. bank to the right) and check tilt switch S4 until l.e.d. D4 just lights. Repeat for left banking.

Connect up the yaw servo. Check that this servo responds to right and left roll. Then connect up the Pitch and Roll servos (omit the roll servo if desired – see later). Mark each servo with labels stating "Elevator" (pitch, RA2), "Aileron" (roll, RA3) and "Rudder" (yaw, RA4). Check that all of the mode slide switches (S5 to S8) operate correctly.

Freebird is now ready for installation into a glider.

WINGS AND THINGS

More experienced model makers may wish to build their own glider specifically for the job. For those new to flying "free flight" model gliders, purchasing a partially completed model is recommended, which only requires minor additions for completion.

For the novice, the subject of model gliders and how to fly them is quite extensive, but with a little patience, an enquiring mind and a will to "tinker", there is no reason why a reasonably good glider, with adequate flight characteristics cannot be built. Joining a club will be of great benefit to the novice.

With the prototype installation, using a NiCad battery pack and three servos, the weights were as follows:

Battery pack 150gms
Freebird p.c.b. 30gms
Servos 150gms (total)

Adding a little for linkages, nuts and bolts, the total payload weight was about 350gms. The servos used for initial tests were far heavier than necessary and were later replaced with "micro servos", reducing the weight by 80gms.

The glider requires to not only lift itself, but also the payload, plus a little for luck. It all gets a little complicated now and you are best advised to ask your local model hobby store to recommend a glider. Tell them you need something suitable for a novice to build, the payload will be 350gms, with a low wing loading.

For good stability, look to acquire a glider with a "double dihedral" wing.

Fix the wings to the fuselage using several large overlapping rubber bands. This helps to absorb the shock when landing on a wing, which is a common event, although it is reduced as Freebird becomes more "tuned".

ON BALANCE

The model must balance correctly in the pitch and roll axes. The balance point for pitch should be one-quarter to one-third of the width of the wing back from the leading edge. Position batteries or a dummy weight to obtain this balance point.

Check that the model balances also in the roll axis, by supporting each end of the fuse-lage centre line with pins. Check to see which direction the glider rolls. Use PVC tape or some coats of dope (model paint) on one wing as counterweights to correct as much as possible, although perfect balance in this axis is not really possible.

Note that Freebird is not sophisticated enough to enable a poorly constructed and set-up glider to fly, but it will extend the flight of a reasonably well set-up glider.

When selecting a glider, remember to check that the wings are detachable and that all the various parts will go through a

car door. Access to the p.c.b. will be necessary to allow different software modules to be selected via the d.i.l. switch. This normally will require the wings to be taken off. If you intend to carry out "in the field" programming, check that a small hole can be made in the fuselage for the programming connector.

The first objective should be to obtain a good understanding of a free flight glider by making a series of flights with the glider loaded up with equivalent weight of batteries and servos. Learn how to note the weather conditions, how to check the balance, and how to launch.

Finally, learn how to note each flight and the correction(s) (make only one at a time) necessary to slowly improve the flight time. Breakages and how to fix them on the hills will become second nature!

INSTALLATION

The flight of the glider is corrected by means of a moving rudder, ailerons and elevators in exactly the same way that full size aircraft are controlled, see Fig.7. The servos connect to the control surfaces by means of thin "push rods" or Bowden cable – most good model shops will stock such items.

The direction of travel of the servos is important to note, but more on that later. With the battery installed in the nose of the glider, the servos are all mounted in the fuselage, usually somewhere under the wing so that the glider balances, when held by the wing tips.

The aileron servo is mounted in the wing and this can be a little tricky for those new to model glider construction. The servo linkages should be arranged to deflect each aileron in the opposite direction (i.e. left up, right down), but they should both return to neutral. To ease this problem, it is possible to fly

Positioning of the circuit board, servos and battery (nose cone) in the fuselage sections.

Freebird using only two servos (elevator and rudder) although correction of roll is not as effective.

Each control surface will require a different degree of movement to adjust the flight of the glider, but a surprisingly small change can have a significant effect. Normally, the control surface needs to only move about 10 degrees above or below the horizontal to have an effect on flight attitude.

The surface area of the control and the speed of flight also have an impact upon the amount of travel necessary. Make use of the servo lock mode to view the travel distances and check the neutral point of each surface is exactly in the centre of travel. Add small offsets in the lookup tables to correct minor errors, or adjust the travel at

the servo arm. Also, most servo arms can be removed and repositioned to extend the range of convenient positions.

SERVO TRAVEL

Note the direction of travel of each servo and check that the movement will alter the control surface in the correct direction. If the direction of travel is incorrect, swap to the other side of the servo control arm, or rotate the servo 180 degrees in the aircraft, or change the linkage to the control surface. Ensure that all of the movements are correct, before installing the servos, as making changes after installation in the glider is difficult and time wasting.

Ensure that some adjustment can be made to the servo travel (normally done with a small brass threaded screw connected to the servo drive disc, again available from model shops). If a PIC programmer is available then simply adjust the zero point in the "look-up" table.

Position the battery unit into the front of the glider. The glider should balance when held by the wing one-third of the way from the leading edge – check this and adjust the battery pack as necessary. Locate the battery pack with balsa wood and sponge to act as a shock absorber.

Connect up push rods or cables to the control surfaces. Install the p.c.b. (tilt switch S2 points aft (tail)) in the fuselage, under the wings and on the floor of the glider. Check that access to the programming socket is clear. Check that with the wings level and the fuselage level all l.e.d.s are off – readjust as necessary. If the servos are moving all the time, then they can be locked using slide switch S5.

Locate and bolt the p.c.b. into the glider and use a hot-melt gun to finally fix the tilt switches onto the PCB. It may be necessary to hot-glue any connectors, as the author has sometimes found them disconnected after forceful landings.

SOFTWARE TECHNICALITIES

The software is written with simplicity and the expectation is that it will prompt experimentation, modification and improvement.

The core of the software is centred around the PIC TMR0 timer. This is set to interrupt the mainline every 13ms thus ensuring that the servos are serviced with their control pulses irrespective of the other things going on. The interrupt code outputs to each servo a 1ms start pulse followed a command pulse of between 1ms and 2ms duration.

When the program is not executing an interrupt, it is constrained to constantly execute the mainline loop. The mainline undertakes three tasks:

- read mode switches and execute the appropriate software module
- 2. read tilt switches
- calculate required position of all servos and load the demand variable, in readiness for the interrupt to output it.

Three variables define servo demand:

servop - pitch servo position

servor - roll servo position

servoy - yaw servo position

Flight correction table for Pitch:

Flight Attitude	Sensor values	corrective	elevator
	DI UI	servop value	degrees
Level flight	1 1	125	0
10 deg pitch down	1 0	187	10 up elevator
10 deg pitch up	0 1	62	5 down elevator
Inverted flight	0 0	n/a	n/a

	Flight correction table for Roll:			
Flight Attitude	Sensor	Values	Corrective	Aileron
	L1	R1	servop value	degrees
Level flight	1	1	125	0
10° roll left	1	0	1 <mark>87</mark>	5 right aileron
10° roll right	0	1	62	-5 left aileron
Inverted flight	0	0	n/a	0 n/a

Flight correction table for Yaw:

	0					
Flight Attitude	Se	ensc	r Va	alues	Corrective	Rudder
	LI	D1	R1	Ul	servoy value	degrees
level flight	1	1	1	1	125	0 centre
10° roll left, only	0	1	1	1	187	15 right
10° roll right, only	1	1	0	1	62	-15 left
10° roll left, pitch down	0	0	1	1	250	30 right
10° roll right, pitch down	1	0	0	1	0	-30 left
10° roll left, pitch up	0	1	1	0	187	15 right
10° roll right, pitch up	1	1	0	0	12	-15 left
Inverted flight	0	0	0	0	125	0 centre
Error	1	1	0	0	125	0
Error	0	0	1	1	1 <mark>25</mark>	0

A servo position is determined by the value placed in any of the variables above. Five positions for the pitch servo are given below. The current servo position is held in the variable servpc and is used where a slower rate of movement has been selected.

Servop (decimal)	Servo degrees
0	-30°
65	-15
125	0
187	+15
250	+30

The rate of travel of the servos can be adjusted by means of the mode switch. The demand position is subtracted from the current position to give an error value and the servo is instructed to move in the direction so as to reduce the error to zero.

Freebird can operate a fourth (auxiliary) servo. This could be used to operate air brakes, after a period of time for example. As said earlier, one way to devise a timer could be to use the 18ms interrupt to increment a 16-bit counter. This would give timed periods in excess of 15 minutes.

It is possible for Freebird to detect inverted flight, but correction of this extreme situation has not been implemented.

New and experimental code can be programmed into the PIC either at home, or on the hillside and then tried out. The mode switches can be reprogrammed for this task if required.

The attitude sensors are defined as:

Pitch:

U1 forward sensor (senses 10° pitch up)

D1 aft sensor (senses 10° pitch down)

Roll:

R1 right sensor (senses 10° roll left) left sensor (senses 10° roll right)

Yaw:

not present (computed response)

FLYING

Take care when selecting the launch site. Avoid crowded areas and places where the glider might stray into traffic. Make sure that access to the site has been approved and preferably fly with a club. The following list of equipment that can be put into a rucksack may be useful for the independent flyer.

Notepad and pen

Small selection of Balsa and glue

Tissue paper, dope, cleaner and brush (for covering holes in the tissue covering)

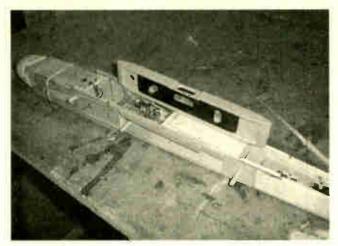
Selection of trimming weights (nuts and bolts)

Spare set of batteries

Pliers, screwdriver

Rubber-bands

PVC Duct Tape


Sunglasses, blanket, sandwiches, flask of coffee!

Choose a sight with a 180 degree unobstructed field of view (i.e. no trees, styles or fences etc) combined with a good slope of about 30 or 40 per cent. For initial glide testing, try to find a field with long grass—this makes a good cushion.

For the first flight, unlock the servos and set pitch and roll to maximum travel and response rate to fast. Tilt the glider and check that each control surface moves in the correct direction. Recheck the glider balance, under the wing tips.

Launch the glider into wind whenever possible. Try to avoid gusty conditions at first. Do not launch the glider upwards – this will result in a stall. What the glider initially requires is airspeed, so launch the glider horizontally. It will initially drop quickly until airspeed is gained and then it will then slow down and settle into stable flight.

As soon as possible note what the glider does. If it pitches up and stalls, set a little more down elevator. Take your time in between flights – think about what happened. Trace the flight path with your hand to reinforce the complexities in your mind

Using a spirit level to check fuselage "balance".

Using several coats of dope (model paint) to counterbalance wings.

- what needs to be corrected? It can be several motions combined - try correcting one motion or problem at a time. Check the balance every time the glider is prepared for a launch.

FLIGHT PLAN

Note that flying gliders that have pronounced flight duration requires fliers to give extra consideration to safety. Keep models to a wing span of less then 90cm. Avoid flying near roads where car drivers might be distracted or in crowded parks. If you find a field, gain permission from the farmer or owner – these are small considerations and adhering to them will enable gliders to be enjoyed by everyone.

Try to join your local model flying club, where you will find a wealth of experience and talented people, added to the fact you should be covered by a club flying insurance policy. Under no circumstances should Freebird be used in power models of any sort.

Be aware that bad landings and various forms of breakages are a natural part of experimenting with free flying models and these should be seen as an inevitable part of investigating flying machines, rather than a major catastrophe. Patch them up and get them back into the air.

If you think that seeing your model with a broken wing on the first flight might tempt you to jump off the hill in despair, then this pastime is not for you.

The best of luck to those of you that

might be tempted to build Freebird and venture out onto the hills this summer.

References

Basic Aeronautics for Modellers, Alasdair Sutherland, Traplet Publications ISBN 0 9510589 4 0

Designing Model Aircraft, Peter Miller, Traplet Publications ISBN 0 9510589 6 7

British Model Flying Association: www.BMFA.com – all sorts of information about clubs etc.

Radio Controlled Soaring: www. Rcsoaring.com – gliders, gear, events.

Traplet Publications: www.Traplet.com – Quiet Flight gliding and electric flight magazines, designing and building aircraft.

SQUIRES MODEL & CRAFT TOOLS ANTEX SOLDERING STATIONS ANTEX 660TC ANTEX 690SD

- * Temperature control range 65 450°C`
- * Thumb wheel potentiometer control
- * 50 Watt Iron Included (25W Optional Extra)
- * Wide range of spare bits (0.5mm 6.0mm
- * Temperature control range 65 450°C
- * Digital readout temperature control
- * 50 Watt static dissapative iron included
- * Wide range of spare bits (0.5mm 6.0mm)

Normal Price £114.95 - Now £89.95 Post Free to UK addresses.

Normal Price £169.95 - Now £129.95 Post Free to UK addresses.

Post, Telephone or Fax your orders to:-

Squires, 100 London Road, Bognor Regis, West Sussex, PO21 1DD Tel 01243 842424 Fax 01243 842525

OUR 600 PAGE POST FREE MAIL ORDER CATALOGUE IS AVAILABLE FREE OF CHARGE TO ADDRESS IN THE UK - OVERSEAS CATALOGUE FREE, POSTAGE CHARGED AT COST TO CREDIT CARD

Shop Open 9 - 5.30 Monday - Friday, 9- 5 Saturday

News . .

A roundup of the latest Everyday

News from the world of

electronics

SQUEEZING THE VIEWER

Barry Fox reports on how many World Cup fans felt squeezed out of the picture.

SCREEN Digest estimates that one in three large screen TV sets now bought in major European markets has a 16.9 widescreen. Dealers who saw the World Cup as a nice way to sell more sets were shocked to find the broadcasts were in 4:3 only. So were viewers who expected to see the full spread of the pitch.

Some fans were seeing short fat players because widescreen sets will often automatically stretch ordinary 4:3 pictures to fill a 16:9 screen. The broadcasters are still passing the buck and say only that they hope for better pictures next time in 2006.

The Dixons group had to pull a page from its web site which promised customers they would "see more of the world cup action on a widescreen television". "Mercifully," says a spokeswoman, "we hadn't put out a press release". Said a spokeswoman for the commercial ITV network: "We've had lots of calls from viewers wanting widescreen. It's a shame. It's a pity. But that's the way it is. We wanted to show the matches in widescreen but there's only one feed. And it's the same for ITV and the BBC".

Offside Passing?

The BBC had a prepared statement which claimed only 4:3 pictures are available from the satellite links, and blamed FIFA. FIFA pointed the finger at Host Broadcast Services, the Swiss-based company formed in 1999 to send World Cup pictures round the world. "It is not correct to say that the format of the TV production of FIFA WC 2002 is only 4:3", assured Francis Tellier, CEO of HBS "although it is correct to say that this is the format of the main HBS production. The choice to broadcast 4:3, not 16:9, has

been made by the broadcast partners, not FIFA or HBS".

HBS was using two completely separate camera teams. One was shooting all 64 matches with 4:3 pictures, in the 525 line NTSC format used for everyday broadcasting in Japan and Korea: the other camera crews were covering only 48 matches and using widescreen cameras in the 1125 line high definition system used for some satellite services in the Far East. Although it is technically possible to convert the 1125 line pictures to 525 line NTSC, and to 625 line PAL for Europe and Australia, no country in the world was doing this.

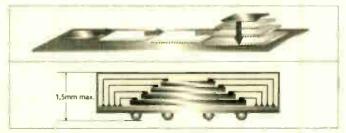

Out of Touch

The two camera teams were working completely separately so the pictures and views they provided were quite different and needed different commentaries. Also the widescreen pictures were not being shot with "protection" to ensure that vital action across the pitch is kept in the middle of the widescreen pictures. So a vital kick at the side of a 16:9 screen would have been lost off the edges of an ordinary 4:3 TV set.

Moreover, the widescreen teams did not have the exotic slow motion equipment used for instant replay on the 4:3 feeds. Also, it costs local broadcasters more to bring in both sets of pictures by satellite and give viewers a choice. As a result only Japan and Korea bought the widescreen feed

Engineers inside the BBC have privately admitted to inadequate forward planning and accept they should do better next time. Pressure from viewers will count. Francis Tellier says HBS will re-think its policy for FIFA WC 2006 Germany "in light of the opinion of our broadcasters".

Meterman's Offer



TO QUOTE their press release, "Meterman digital multimeters and test tools were designed for use in design, evaluation, installation, production, service and troubleshooting of electronic and electrical equipment and systems."

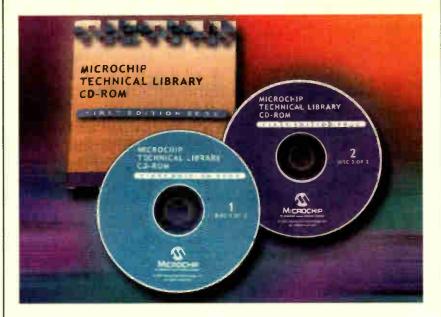
Meterman are currently offering a money-saving compact kit for electronic technicians and engineers for a limited period. Comprising a Meterman Digital Multimeter/Component Tester and a 4-way screwdriver, the two products provide a convenient troubleshooting kit for many electronic applications (what, no hammer?!).

The 27XT-P meter/tester offers 11 functions, a 2000 count, data hold/max hold and auto power-off features, fused current input and 0.5% basic accuracy. With category II safety compliance, it measures a.c./d.c. voltage and current, frequency, capacitance and inductance, resistance, continuity, and has a diode test facility. It also tests for TTL or CMOS logic. The heavy-duty screwdriver has 2 x Philips and 2 x flat-headed removable bits. The kit is available at the special price of £72 until the end of November this year. For more information about the full range of Meterman test tools and where they can be purchased, visit www.Meterman.co.uk, email: info@meter mantesttools.com

CHIP STACKING

NOT content with miniaturising the features that fill a given chip area, Sharp have taken the idea vertically as well as horizontally. Their latest development effectively stacks four chips on top of each other, all in the same package.

Sharp point out that "integration in the third dimension", i.e. vertically, offers substantial technical advantages: various chips from different production processes can be combined to provide a system solution within one casing, without having to change the shape factor. For more information browse www.sharpsme.com.


FML Bargains List

WHEN looking for bargain components, don't forget to include FML Electronics on your list – we've just received their latest double-sided sheet of bargain offers, covering batteries through to transformers, and they obviously have many competitive prices. Their 2003 catalogue is said to be "available shortly" and you only need to send an s.a.e. if you want a copy.

For more information contact FML Electronics, Dept. EPE, The Business Centre, Bridge Street, Bedale, N. Yorks DL8 2AD. Tel: 01677 425840.

Email: bargains.fml@breathemail.net.

MICROCHIP CD-ROM

MICROCHIP Technology. manufacturers of the PIC microcontrollers that we feature so frequently in our constructional designs, have released their Technical Library CD-ROM 2002. It comprises two CDs that feature a snapshot of Microchip's newly designed website and are viewable with an HTML browser.

Disk one itemises data for the full Microchip product range, disk two contains the full-line of Microchip's application notes and related source code, development tools and utilities

EPE gave away the 2001 set of Microchip CDs as a front cover free gift with the October 2001 issue. However, even if you already have that information, it is still worthwhile asking Microchip for their latest CD set.

For more information on obtaining this CD-ROM set, browse www.microchip.com.

TIPPING POMONA

TWO new retractable test tip probes have been introduced by Pomona Electronics. They are designed specifically to test and measure electronic components in tight spaces with limited access, and feature a hardened stainless steel tip that penetrates conformal coatings, painting and oxidation.

The tip can extend up to 7.7cm, is fully insulated and has 1.2 metre leads that fit most meters, including Fluke, Meterman, Agilent, Amprobe and Greenlee.

For information on Pomona's test accessories, or to order a copy of their catalogue, contact Pomona Electronics Europe, Dept. EPE, PO Box 1186, 5602 BD Eindhoven, Netherlands, or visit www.pomona.com.

TELE-JUMP

DIGITAL photographers, Barry Fox tells us, can now instantly jump closer to their subject, without moving an inch, and without any loss of picture quality. Panasonic's Tele-Jump exploits the fact that the CCD image sensor in a modern camcorder is designed for capturing still pictures on a memory card, as well as moving pictures on tape. The sensor has a matrix of 1024×768 pixels which gives the clarity needed for stills. This is too much for movie tape, so the image must be electronically downgraded to 720×576 pixels for moving pictures.

Pushing the new Tele-Jump button uses only the central area of the sensor, 720×576 pixels in size, without any downgrading. So a head and shoulders shot instantly zooms to a face-only picture.

GAME ON AT THE BARBICAN

By Barry Fox

YOU have until September 15th to get on down to the Barbican Gallery in London and – provided you can find your way to, from and around the appallingly badly signposted Barbican area maze – enjoy Game On: The Culture and History of Video Games. Admission is £11, Concessions £8. Children 5-15 years £5, Under fives free.

The organisers advise advance booking, with timed tickets; it is easy to see why. They have brought together an astonishing collection of original games hardware and are giving visitors the chance to play on it. In all there are 150 arcade and home game consoles, and although gamers are asked to limit play to 15 minutes, the whole point of the exhibition will be lost if visitor numbers are not restricted.

It's hard to believe that computer game history dawned only forty years ago, when Steve Russell at MIT used paper tape to make a DEC PDP-1 play Spacewar. The real revolution began in 1971 with arcade games Computer Space and Atari's Pong. The first home console, the Philips Magnavox Odyssey, went on sale in 1972. Space Invaders arrived in 1978 and Pacman in 1980, followed by a deluge of old favourites Atari, Sinclair, from Commodore, Nintendo and Sega, with Donkey Kong and Sonic the Hedgehog.

All are up and running at the Barbican, some with original consoles, sometimes with ruggedised controls, and a few on large screen projectors. There's a look at the violence of *Grand Theft Audio* and the theory behind strategy games like *Sim City*. Sections on sound, storyboard scripting and hand-held portables lead on to a look at the future with *Liquid Fire*, a game that uses motion sensors to track a player's hand and body movements.

The organisers are going to have their work cut out keeping all the hardware working, but most visitors seem to be treating the equipment with reverence. Even people (like me) who cannot get excited about video and computer games, this is a superb exhibition. And it reminded me of an oddity which I must now try and unearth from my attic; a very early handheld tennis game from Japan that used a clockwork drive to flip little lights on spring wires across a translucent screen.

HANDS OFF!

"The stork has landed!" states a press release from Urathon, continuing: "Urathon are pleased to announce the arrival of the Car Baby — one cute baby that won't tug at your purse strings, and you will love it for ever with hardly a gurgle and certainly never a scream".

Whatever your feelings about such expressions, Car Baby converts your mobile phone into a hands-free set with no wires and no earpiece. It is compatible with all makes of mobile, with no conversion kit, clipping over your mobile and sending the caller's voice to your car's radio and speaker. Conference calls are said to be easy, as the unit picks up the voices of everyone in the car.

Car Baby costs £24.95, including VAT, and is available from Urathon Europe Ltd., Dept. EPE, Thane House, Hilmarton, Wilts SN11 8SB. Tel: 01249 760581. Fax: 01249 760547. Email: sales@urathon.com.

`For Batteries, PCBs and Electronics'

Send for leaflet Today

Tel: 01254 830761 Fax: 01254 830408 Email: sales@magtrix.co.uk Website: www.magtrix.co.uk

BS2-IC

BS2-SX

BS2E+IC

BS2P/24

BS2P/40

Parallax BASIC Stamps - still the easy way to get your project up and running!

Serial Alphanumeric and Graphic Displays, Mini-Terminals and Bezel kits

www.milinst.com

3-Axis Machine

Six-Legged Walkers

Robotic Arms

Bipeds

Robotic models for both the beginner and the advanced hobbyist

Servo Drivers

Motor Drivers

On-Screen Displays

DMX Protocol

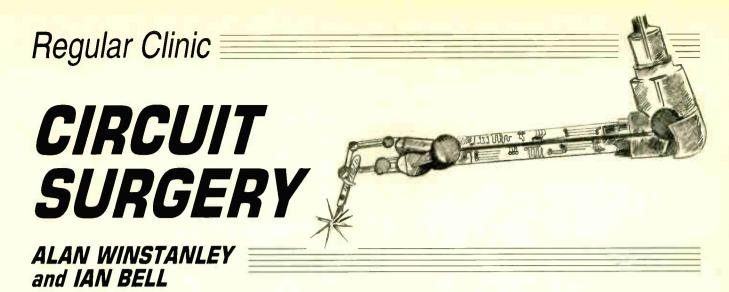
U/Sound Ranging

Animatronics and Specialist Interface-Control Modules

Quadravox MP3 & Speech Systems

SensoryInc
Voice Recognition

Parallax
Ubicom Tool Kits


Tech-Tools
PIC & Rom Emulators

BASICMicro
PIC BASIC Compilers

Development Tools

Milford Instruments Limited Tel 01977 683665, Fax 01977 681465, sales@milinst.com

Our team of monthly surgeons revisit Darlington transistors and the Sziklai connection, plus a roundup from our postbag on the topic of soldering.

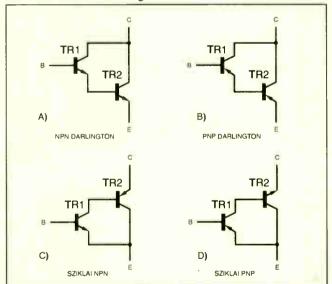
Back to Darlington

In the June 2002 issue of Circuit Surgery we briefly described the Darlington transistor and similar configurations, which use two transistors to obtain a transistor action with higher gain and/or input impedance than is available from a single device.

Perhaps we were a little too brief, as reader *Ron Harrison* pointed out in an email to us. The second configuration in Fig.3 in that article (page 439) is a compound *pnp* transistor and illustrated a variation of the Darlington theme that was not actually described in the text, which may have been a little misleading.

To make matters worse the labelling of the effective emitter and collector connections was incorrect in that figure! The emitter and collector labels should be transposed in the right-hand configuration given.

To help overcome any confusion, in Fig.1 this month we show both *npn* and *pnp* versions (a) and (b) respectively, of both the Darlington, and the other less well known compound transistor configurations (c) and (d).


Sziklai Pair

We will take a more detailed look at this latter transistor pair, as readers may be less

familiar with it than the Darlington pair. One of the main features of this alternative compound transistor which is known as a Sziklai pair or Complementary Feedback Pair (CFP) – is that it only requires a single V_{BE} voltage to turn on, unlike the Darlington which has an effective V_{BE} equal to two V_{BE} drops.

Therefore, the Sziklai has the advantage of being able to be "plugged in" in place of a single transistor, and the lower effective V_{BE} does not compromise its use in low voltage circuits (an important concern in modern chip design). The CFP also has lower output resistance than the Darlington, about one tenth of the value when used in a common-emitter-style configuration under the same quiescent conditions.

The CFP is typically biased using a resistor as shown in Fig.2, where R1 is selected so that most of the current in TR1 flows through R1 rather than the base of TR2. This means that the quiescent current in TR1 is well defined and does not depend on the gain of TR2 and its collector current. The collector current of TR1, I_{C1}, is approximately V_{BE}/R1 if we assume that

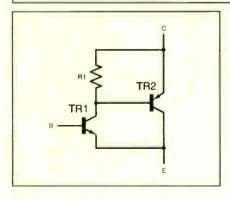
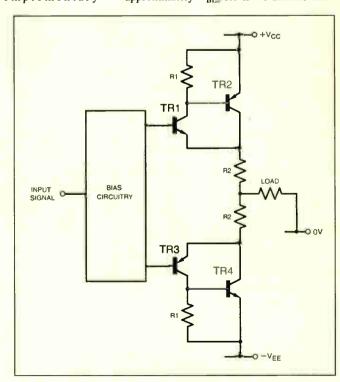



Fig.1 (above). Darlington and Sziklai Pairs (or CFP).

Fig.2 (left). CFP with bias resistor.

Fig.3 (right). CFP used in power amplifier output stage.

Everyday Practical Electronics, September 2002

TR2 has a high enough gain for I_{B2} to be significantly smaller than I_{C1} .

Typically we want TR1 to have a quiescent current about one tenth of that of TR2 so, given this assumption, and given that we probably choose I_{C2} as a key design parameter, we get

 $R1 = 10V_{BE2}/I_{2}$

where as usual V_{BE2} would typically be between 0.6V and 0.7V.

CFP Amp

A typical use of the CFP is in audio power amplifier output stages where it delivers better (at least according to its proponents) performance in terms of thermal stability and large signal non-linearity due to the feedback effects within the transistors pairs (hence the CFP name), although these effects are reduced at high frequencies.

In Fig.3 we show the schematic of a typical power amplifier output stage based on the CFP in which the transistor pairs are used in the same way as a standard pushpull emitter follower output stage. The pair TR1-TR2 handles the positive half of the signal, and the pair TR3-TR4 handles the negative half. The bias circuit ensures that the transistors switch on for the correct part of the signal waveform (for example to prevent crossover distortion).

The pnp Sziklai pair has played a role in integrated circuit design for a long time, particularly in essentially npn processes that allowed fabrication of good npn transistors, but which only provided low gain pnps. The compound transistor provides a means of obtaining a high-gain pnp in these technologies.

You may be interested to know that the use of enhanced transistors built from more than one transistor does not stop at the configurations discussed here. For example, in 1990 Bult and Geelen published a design of an op.amp built using high performance "Super-MOS" transistors. The Super-MOS is a circuit which is built from no less than 12 ordinary MOS transistors, but behaves like a very high gain MOSFET which is also "self biasing" and therefore easy to use. *IMB*.

Soldering Tips

One of the joys of hosting the world's most popular Internet guide on soldering (www.epemag.wimborne.co.uk/solder faq.htm) is the great diversity of questions that arrive by email. Soldering is of course not confined to electronics - many other materials are soldered as well, from brass Tiffany lamps to the refrigeration piping of a cooler being restored in a Greyhound bus! A lot of time is spent behind the scenes at Circuit Surgery trying to help correspondents all around the world with their soldering techniques, and here are a few recent items from the EPE mailbag as you'll read, we may not always know the answer but we will try to give some

I am working on the Scottish Parliament building using 0.5mm Low Lustre Stainless Steel Longstrip sheeting and I have to solder some joints. I would like to know the life expectancy of soldering and I wonder if you could advise or point me in the right direction where I can get information on this. TM by email.

I checked for suitable solder on www.multicore.com. Multicore suggest a Tin-Silver solder (Sn/Ag 96.5/3.5) only, together with an inorganic acid flux or solder paste e.g. AC10 would be suitable for use with stainless steel. Electronics solder has built-in flux to help it flow, but in other industries, a separate flux paste is applied. Never should you need to apply acid flux when soldering electronic components!

What I'm not sure about is the longevity of the soldering in this application. If it's external then it is likely to be affected by pollution (acid rain, caustic cleaners etc.), also any mechanical flexing will cause

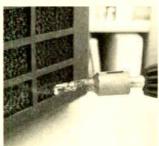
fatigue to the soldering. The expansion of metal in heat might give rise to this. I know that dissimilar metals in contact with salts will give rise to corrosion, and I know that different grades of stainless steel will be adversely affected by this. Contrary to popular belief, stainless steel can be attacked by chemicals and there are different grades of available

counter this problem. If it is indoors then the material is likely to last for decades but if your work has to brave the Scottish weather then I'm not sure.

I suggest you start by contacting CIBSE, the Chartered Institution of Building Engineers http://www.cibse.org who may be able to point you to a specialist or consultant or another organisation. ARW.

Defense de fumer

I read your online soldering guide and I have a question which I really hope you can answer. You said that solder contains about 60% lead, well I'm using "High-Tech Radioshack Rosin-Core Solder" and I had an incident with it when I was working with it for five hours straight and I got REALLY sick, I had to be taken to the hospital and was out of commission for a week. Now when I solder, I use a 3M respirator designed for painting, I don't really know it that blocks the fumes though, do you know anything about this? GZ by email.


You are totally right to take any sensible precautions, though wearing a respirator is not something I've seen in this application, as it would be too unwieldy. There are different types of filter cartridges available for use against e.g. organic vapors or solvents, and solvent-proof filters and suitable masks are available from larger DIY stores.

You may be very sensitive to the fumes given off by the smoking flux. In the UK and the USA there are very strict regulations on exposure to chemicals and fumes in the workplace. A manufacturer's materials safety data sheet (MSDS) offers guidance in relation to the safe use of their products. At home though, hobbyist constructors work under no such restrictions

and will blithely work into the night, inhaling solder fumes, dealing with ferric chloride etchant, handling lead-tin solder and generally having a great time in the process!

One item I always suggest for anyone keenly interested in electronics, is a bench-top solder extractor to duct irritating fumes away from the eyes and nose (see photos). They contain an activated charcoal filter to neutralise the fumes. Without doubt, fumes from melting rosin-filled solder can be highly irritating, and I know of some engineers who are sensitive to this form of irritation, perhaps having formed an allergy. One correspondent uses an old cylinder vacuum cleaner with a long hose that suck fumes away from the bench. ARW.

A benchtop fume extractor contains a fan which draws the fumes through a charcoal filter and away from the work area. They have a "range" of about 12 inches or so.

The best solder wire

I have visited your web site and found it very interesting. There is lot of info regarding soldering, a very nice site. I want to know which type of solder wire is good for professional use. I mean 60/40 type, eutectic 63/37 or NO CLEAN type. Please advise me the best solder wire. Arif Deshmukh by email.

It depends on what you're trying to solder. "Best" depends on the criteria – cost? reliability? efficiency? A good place for advice is www.multicore.com who make a wide range of solder wire which is sold through all the major distributors. Personally I use 60/40 tin/lead for all my hand soldering. Some engineers use silver solder or "Smart Wire" for the best possible finish by hand.

The combination of metals used in the alloy also affects the price. You can buy 60/40 or 40/60 tin/lead, the latter being somewhat cheaper. A quick look on the London Metal Exchange at today's prices reveals why: lead costs \$454 per tonne but tin costs ten times more at \$4,425 per tonne. Copper costs \$1,606 per tonne if anyone's interested (no circuit should be without some).

Coming to an electronics workbench near you sooner rather than later, is the prospect of lead-free solder, which may well become compulsory in due course for environmental reasons (it already is, in the plumbing industry). It typically contains 99.7% tin and 0.3% copper and weight for weight it is double the price of 60/40 solder. I have had very mixed reports about the use of lead-free solder in electronics, and it's a topic I will be covering in the future. Feedback on this from readers would be welcomed. ARW

Constructional Project

PORTABLE TELEPHONE TESTER

ALAN PATON

Make the right call with this low-cost, easy-to-use, telephone checker

They can be second-hand, new or surplus stock and since they do not have a guarantee there is always a risk when buying them that they may be faulty. Until now there has been no easy way to perform a basic test on a telephone where a working telephone line is not at hand.

However, the Portable Telephone Tester described here will check the basic functions of a telephone without using a telephone line, and it is easily portable. It can, if you wish, even be used in the middle of a field (car boot sale) or anywhere where you are likely to find a telephone for sale.

RALLYING CALL

The occasion that really prompted the design of this tester happened when visiting a radio rally. One of the stalls at the

"meet" had about a dozen boxes on it, each containing quite an unusual type of telephone. They were priced at £5 each and they appeared to be a real bargain – *IF* they were working! The stallholder said that they were all OK, but then they always do!

The purchase of two or three was contemplated, but the author could not justify taking a chance on what could turn out to be a box of scrap metal. Because of this only a single phone was bought.

It turned out to be an excellent telephone which has been in constant use to this day. It was this incident that made the author realise just how useful a portable telephone tester would be.

Considerations to be taken into account when designing a telephone tester are that telephones usually work at higher voltages than are generally available with portable equipment. In addition, the ringing current required is a low

frequency (approximately 20Hz) high voltage alternating current.

The Portable Telephone Tester uses just one 9V (PP3 type) battery which has been found to be sufficient for testing speech paths and pulse tones. The a.c. ringing current is derived from a two-transistor multivibrator driving a "reverse connected" mains transformer. The whole tester fits into an ordinary electrical pattress mounting box.

CIRCUIT DESCRIPTION

The full circuit diagram for the Portable Telephone Tester is shown in Fig.1. When the function switch S1 is set to the Test position, power is applied to the telephone Line socket SK1, contacts 2 and 5. This will initially light the l.e.d. D1 indicating that the battery supply is present. The l.e.d. is a high brightness type since the tester will sometimes be used in daylight.

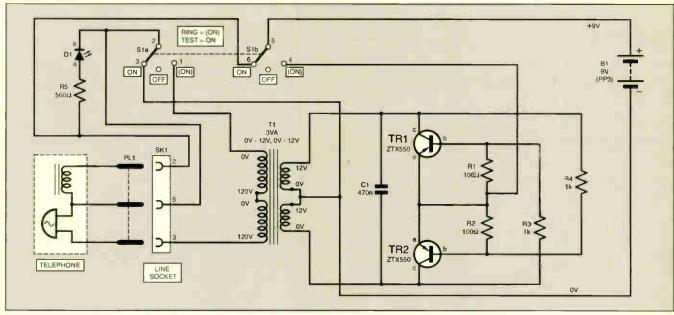


Fig.1. Complete circuit diagram for the Portable Telephone Tester.

The battery will also provide power for the telephone, when plugged in, and enables a number of tests to be carried out. These are set out in the separate "Using the Tester" panel.

When switch S1 is held in the biased Ring position, the multivibrator circuit, made up of transistors TR1, TR2 and associated components, is powered up generating a high voltage alternating current (a.c.) at the output of the "reverse wired" transformer T1. This is the ringing current which is applied across the Line socket contacts 3 and 5 to ring the "test" telephone bell or sounder depending on the type of phone being tested.

Being the "biased" position, releasing the switch actuator toggle/dolly will automatically cause it to spring back to the centre-off position, cutting the supply and terminating the ringing.

POWER CALL

When the tester is switched to Test it will consume 12mA to light l.e.d. D1. With a telephone plugged in and the receiver lifted this rises to 35mA to 45mA approximately, depending on telephone type. When switched to Ring the current drawn is 150mA approx., although this will typically be for only 1 or 2 seconds.

The a.c. voltage measured at contacts 3 and 5 of the Line socket SK1 (i.e. the output of the transformer T1) will be about

118V a.c. off load, when using a DVM switched to the a.c. range. With a telephone plugged in, the measured voltage will be around 78V a.c. this will vary slightly depending on the phone used. Take care not to touch this high voltage. The frequency measured should be about 22Hz.

CONSTRUCTION

Most of the components for the Portable Telephone Tester are mounted on a small piece of stripboard, size 30 holes \times 12 strips. The topside component layout and details of breaks required in the underside copper tracks are shown in Fig.2. This board accommodates all of the components except the power indicator l.e.d./resistor (R5) and the battery. The l.e.d. and resistor are mounted direct-

ly on the Line socket panel.

Commence construction by inserting and soldering in position the six link wires; these can be made up from discarded resistor leads. This should be followed by the p.c.b. mounting transformer as the pin terminations are located beneath it. The specified transformer has pin spacing of 0.2in. which should provide an exact fit on the stripboard.

Next, the resistors (except, of course, R5) and capacitor should be soldered in position on the board. The last components

TEST --- RING TELEPHONE TESTER

to be soldered in place are the two transistors and care should be taken to check that they are the right way round (see Fig.2) before introducing the hot soldering iron to their leads.

Finally, multi-coloured stranded leads of about 150mm in length should be attached to each end of the circuit board as indicated in Fig.2. This should also include the battery clip leads. This completes the circuit board construction and, for the moment, it should be put to one

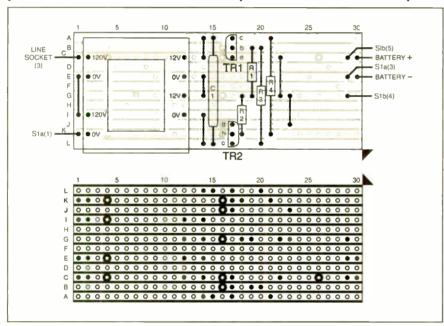
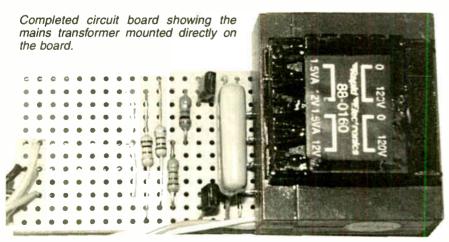
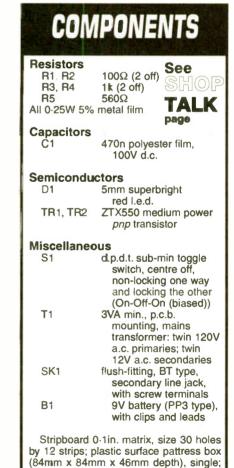




Fig.2. Portable Telephone Tester stripboard topside component layout and details of breaks required in the underside copper tracks.

Everyday Practical Electronics, September 2002

5mm l.e.d. recessed mounting clip; multistrand connecting wire; solder pins;

solder etc

Approx. Cost Guidance Only side on the workbench ready for final wiring up later.

BOXING -UP

We now need to turn our attention to the electrical surface mounting box, which, together with the Line socket, forms the "case" for the Tester unit. Sometimes called a 1-Gang Pattress Box, it must be the deep type (46mm approx.); any shallower and there will be no room for the transformer.

To enable the stripboard to fit into the box any excess plastic moulding inside, which looks as though it will be in the way, will have to be removed. Different makes have different shapes of internal plastic but it is necessary to make each of the sides, without the screw mountings, reasonably flat on the inside.

Probably the best tool for cutting out any protrusions would be an art knife or sharp chisel. However, the author used a small one inch diameter grinding wheel on an electric drill. The only problem with this method is that it does create a dust problem.

Once space has been made for the circuit board we need to drill a 6mm dia. hole for the test switch S1. This is located in the top side-wall as indicated in Fig.3.

We also need to drill a 8mm dia. hole for the l.e.d. mounting clip in the telephone line socket. The suggested position and drilling details for the l.e.d. is also shown in Fig.3. The top half of the p.c.b.

USING THE TELEPHONE TESTER

It is worth testing your own telephone at home first to familiarise yourself with the tester before taking it out to a radio rally or car boot sale.

ACTION

- 1. Switch to TEST no phone connected
- 2. Plug in telephone after checking that receiver is on rest
- 3. L.E.D. remains bright. Lift handset and blow into microphone.

RESULT

L.E.D. lights (battery indicator)

If l.e.d. goes out or very dim this suggests short circuit on telephone

You should hear your own "blow" in the receiver speaker. This simple test shows that the microphone and receiver are working

Note: If no "blow" is heard when testing unknown telephones try moving the handset and telephone cords while continuing to blow into microphone. The cords sometimes have intermittent faults that will show up in this test.

4. Press each of the keys on the keypad while listening to the receiver

Various tones should be heard in the receiver. This confirms that the keypad is working.

Note: If no tones occur or a "clicking noise" is heard, check that switch on the base of phone is switched to tone (sometimes marked P and T for Pulse and Tone). Old telephones may only produce "pulses" and are not suitable for use with tone only systems, although they should be OK on the BT network.

5. Replace handset and switch to RING

Bell or sounder should ring

If not – check switch marked On-Off or Hi-Lo on base of phone and repeat test. Try the high and low rings to confirm that they both work.

If it passes all of the above tests you should have a healthy telephone.

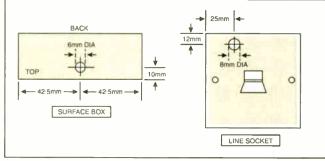
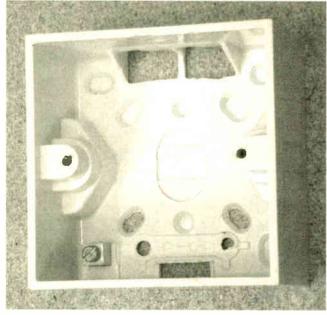
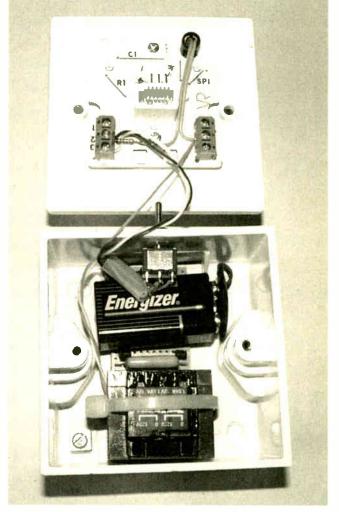




Fig.3. Suggested positioning and drilling details for the test switch (left) and (right) power indicator i.e.d.

The deep pattress electrical surface mounting wall box after the necessary internal plastic obstructions have been removed.

Layout for components in the two-halves of the case. Note that the cable-tie around the transformer secures the circuit board to the bottom of the surface box.

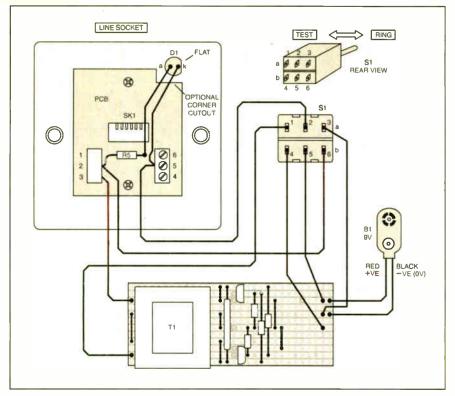


Fig. 4. Interwiring from the circuit board, line socket and the test switch. The switch is viewed from the rear as it appears when mounted in the box.

(printed circuit board) in the specified extension type socket is not used, so a small piece can be cut off one corner to make room for the l.e.d. and its leads, without affecting the functioning of the socket.

ASSEMBLY AND WIRING

When the preparations of the box and line socket have been completed, we can now proceed with the final assembly and wiring up. At this stage it is a good idea to mount the circuit board and biased function switch S1 into the pattress box. In the prototype, the circuit board is held in position by looping a cable tie over the boardmounted transformer and passing it through two holes in the bottom of the box, see photographs.

Before we take the "loose" ends of the leads from the board and wire them to switch S1 and the Line socket screw terminals, the l.e.d. D1 and resistor R5 need to be connected up. The full wiring details are shown in Fig.4.

When wiring the switch make sure that it has the correct orientation; biased action to the right when viewed from the top of the box (see photographs). The wires to the switch can be taken through a length (20mm approx.) of sleeving (heatshrink will do) to keep wiring tidy. When all the wiring has been completed and the "power" l.e.d. and battery connected up, the line socket and the pattress box can be screwed together.

If the finished unit, together with a known working phone, passes all the checks outlined in the accompanying Test Panel, you now have a "take-it-anywhere" Portable Telephone Tester for your next trip to the local car boot sale or Radio Rally.

SHOP THE TALK with David Barrington

Freebird Glider Control

Apart from the model glider, the servo motors are the next most expensive item required for the Freebird Glider Control project. The author obtained his from Maplin (您 0870 264 6000 or www.maplin.co.uk) together with custom servo leads and plugs and sockets. We understand that the servo motor is a bit big and heavy and it might be a good idea to investigate your local model snop to see if they have something smaller and lighter.

If you wish to use the Maplin servos, you should quote order code FS35Q and codes GZ87U (lead), GZ93B (skt) and GZ94C (plug). Good gliders can be found at www.hobbystores.com.

The author used mercury tilt switches in his glider, but as mercury is such a dangerous and toxic substance, we recommend that they are replaced with non-mercury types. A suitable alternative, "non-mercury", hermetically sealed tilt switch is listed by the above company and can be ordered by quoting code DP50E.

For those readers unable to program their own PICs, a ready-programmed PIC16F84A-20 (20MHz) microcontroller can be purchased from Magenta Electronics (201283 565435 or www.magenta2000. co.uk) for the inclusive price of £5.90 each (overseas add £1 p&p). The software is available on a 3-5in. PC-compatible disk (EPE Disk 5) from the EPE Editorial Office for the sum of £3 each (UK), to cover admin costs (for overseas charges see page 691). It is also available Free from the EPE ftp site: ftp://ftp.epemag.wimborne.co.uk/pub/PICs/Freebird.

The Freebird printed circuit board is available from the EPE PCB Service, code 367 (see page 691).

EPE Morse Code Reader

There should not be any problems finding a suitable two-line 16-character per line alphanumeric l.c.d. module for the EPE Morse Code Reader as connection details are included for the two "standard" formats. The one used in the author's model came from Magenta Electronics (\$\frac{1283}{2000}\$ \$\frac{565435}{2000}\$ or \text{www.magenta2000.co.uk}\$) and is competitively priced.

For those readers unable to program their own PICs, a ready-programmed PIC16F84-4 (4MHz) microcontroller can be purchased from Magenta Electronics (see above) for the inclusive price of £5.90 each (overseas add £1 p&p).

The software is available on a 3-5in. PC-compatible disk (EPE Disk 5) from the EPE Editorial Office for the sum of £3 each (UK), to cover admin costs (for overseas charges see page 691). It is also available for

FREE download from the EPE ftp site, which is most easily accessed via the click-link option at the top of the home page when you enter the main web site at www.epemag.wimborne.co.uk. On entry to the ftp site take the path pub/PICs/Morse, downloading all files within the latter folder.

If problems arise trying to find a local source for a suitable subminiature omni-directional electret microphone, both Rapid Electronics (% 01206 751166 or www.rapidelectronics.co.uk), code 35-019 and Maplin (% 0870 264 6000 or www.maplin.co.uk), code FS43W, can supply. Take care, they are tricky to solder leads to their pads.

The Morse printed circuit board is obtainable from the *EPE PCB Service*, code 368 (see page 691).

Portable Telephone Tester

The electrical pattress or surface mounting box, which makes up one half of the Portable Telephone Tester case, should be available from any good electrical store. However, it must be the deep type (46mm deep or more) if it is to house the transformer and allow the line socket to close on the mounting box. The one in the model came from Maplin (全 0870 264 6000 or www.maplin.co.uk), code ZB40T.

They also supplied the BT type, flush-fitting, telephone secondary line socket (with screw terminals). This should be ordered as code FJ34M. The two-pole sub-miniature centre-off, biased non-locking one way and locking the other, switch used in the prototype also came from the above-mentioned source, code FH06G.

The 3VA miniature, p.c.b. mounting, mains transformer with twin 120V a.c. primaries and twin 12V a.c. at 0.12A secondaries was purchased from Rapid Electronics (& 01206 751166 or www.rapidelectronics. co.uk), code 88-0160. If any readers experience difficulties sourcing the medium power ZTX550 60V pnp transistor, it is also stocked by them, code 81-0212, and by ESR Electronic Components (& 0191 251 4363 or http://www.esr.co.uk).

One final comment, take care not to touch the "high voltage" pins of the transformer when the circuit board is powered up.

Vinyl To CD Preamplifier

Only a couple of items may cause concern when purchasing components for the Vinyl To CD Preamplifier project. The interlocking, springloaded, pushbutton switch which mounts directly on the printed circuit board (p.c.b.) came from Farnell (28 0113 263 6311 or www.farnell.com), code 733-155.

The p.c.b. must be housed in an all-metal case to provide some protection against hum pick-up. If you wish to use the same case as the author, it appears to be from the Maplin aluminium instrument case range and is the Blue 212 version, code XY43W.

The printed circuit board is available from the *EPE PCB Service*, code 368 (see page 691).

New Technology Update

Is this the next quantum leap in computing technology? asks lan Poole

OOKING to the future there appears to be no less change on the horizon as new methods and technologies are required to keep pace with the increasing requirements being placed upon computing technology. Current technologies will be able to meet the demands for the near future, but new and more revolutionary ideas are being investigated for the longer term.

Not all of the technologies being investigated will come to fruition, but one exciting development that shows a lot of promise is associated with ion trapping.

Here the interaction between light and matter on an atomic scale is used as the basic principle of operation. By adopting this approach revolutionary new developments can be made, providing the possibility for major advances.

Over the years a number of institutions have carried out work in this area. This has now been brought together and a proposal made for a quantum computer. Whilst the computer itself has not been built and one will not be available for many years, the basic building blocks are now being tried and tested. Researchers from the National Institute of Standards (NIST), Massachusetts Institute of Technology (MIT) and the University of Michigan have been working together and they have recently reported their findings in Nature.

Basic Concept

Current computers operate using binary numbers and use two states, namely "on" or binary 1 and "off" or binary 0 to represent numbers. A quantum computer makes use of the properties of quantum mechanical systems rather than transistors. Here the everyday principles we all know and accept seem not to hold and many new and unusual properties seem to be present. Those who have studied quantum mechanics and know of laws such as Heisenburg's Uncertainty Principle may

Using Quantum Mechanical principles it is found that atomic particles can exist in several states simultaneously. This is based on what is known as the superposition principle that indicates that a quantum mechanical system such as an atom can exist in several energy states or spin directions until it is actually measured.

Bursts of light can flip the bits in various ways, independently changing various values and creating a logic gate that enables calculations to proceed down many different paths at the same time. When a calculation is complete it can be

extracted and measured again using light pulses.

This means that they can be used to manipulate many times more information than would be possible with a traditional computer, leading to a major leap on the processing power of such a machine when compared to what is possible today. Ideas for such computers could include performing virtually real simulations on the world's weather or many other applications requiring huge amounts of processing power.

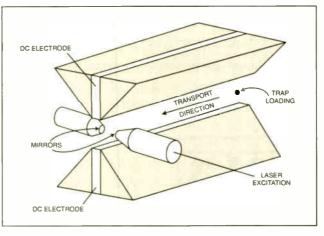


Fig.1. A form of ion trap

ion trap

The basic building block of the computer would be an ion trap. These traps are places where ions can be stored, observed and manipulated. Whilst the possibility exists of manipulating large numbers of ions in each trap, this currently presents immense technical difficulties. Nevertheless it is feasible to use tens of ions in each trap.

The Quantum Computer or QC itself would be built from a number of traps and the research team called the architecture a "quantum charge coupled device" (QCCD). By changing the voltages on the ion traps a few ions can be confined in the trap or it is possible to shuttle ions from one trap to the next. It is possible to manipulate ions in any given trap, whilst moving them from one trap to the next enables communications. In this way it is possible to provide both memory and logical functions required in a computer.

Trapped ions storing quantum information are held in the memory region. To perform a logical function the relevant ions are moved into an interaction region. This is achieved by applying the correct voltages to the appropriate electrodes.

It is within the interaction region that the logical processes are carried out.

Here the ions are held close together to allow coupling. Laser light is then focussed on the region to drive the gates and once the action is complete the ions are moved ready to prepare for the next

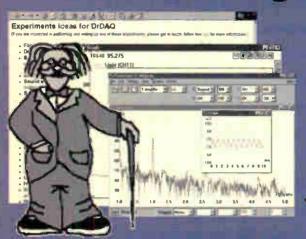
Realisation

A number of structures have been fabricated for the QCCD. This is relatively easy using current methods. Ion traps have been made by machining slits in alumina wafers

using lasers and then evaporating gold onto alumina to act as the electrodes. Although these traps are experimental, they have virtually the same dimensions that would be required for the QCCD computer. As an alternative technique other structures are being fabricated from heavily doped silicon, using micro-fabrication techniques.

The first ion traps have now been interconnected in what is a major step forwards in creating the computer. The traps used were very similar to those used when demonstrating the functionality of the individual ion traps and their separation is 1.2mm. Using the structure, quantum data bits or qubits have been successfully transferred with transport times as short as 50

microseconds being observed.


For successful operation the system has to be cooled. It is also found that the ions need to be cooled after they have been transported between the two traps. This is achieved by using what is known as sympathetic cooling where different types of ions to those that are transported are used. By confining both types of ion to the interaction region enables the cooling ions to act as a heat sink.

Future

This work is claimed to be the first presentation of a realistic architecture for quantum computation that is scalable to large numbers of qubits. Although many other organisations are working in similar fields, this proposal is built upon work that has already been tested experimentally, and it now appears that there is a straightforward path to increasing the scale of the individual items to build a complete computer.

Whilst the basic building blocks have been tested, there is still a major amount of work to be undertaken before these computers may be realised on a workable scale. This means that it will be many years before this new technology becomes established as a serious contender to the semiconductor based machines we currently use.

Measure pH, Voltage, Humidity, Sound & Light, on your PC!

✓ Very low cost

Built in sensors for light, sound (level and waveforms) and temperature

 Use DrDAQ to capture fast signals (eg sound waveforms)

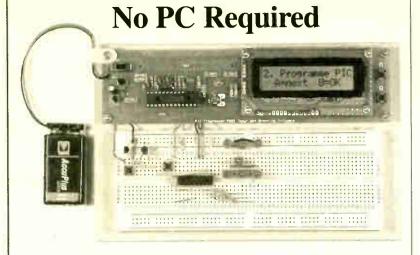
Outputs for control experiments

Supplied with both PicoScope
(oscilloscope) and PicoLog (data logging)
software

The DrDAQ is a low cost data logger from Pico Technology. It is supplied ready to use with all cables, software and example science experiments.

DrDAQ represents a breakthrough in data logging. Simply plug DrDAQ into any Windows PC, run the supplied software and you are ready to collect and display data. DrDAQ draws its power from the parallel port, so no batteries or power supplies are required.

As well as the built in sensors, DrDAQ has two sockets for external sensors. When a sensor is plugged in, the software detects it and automatically scales readings. For example, if a temperature sensor is plugged in, readings are displayed in °C. Details are provided to allow users to develop their own sensors.


To order the DrDAQ please choose one of the following options:

- i) Visit our web site and place an order over the Internet,
- ii) Place an order over the phone by ringing the number below, or,
- iii) Fill out the order form and either fax it, or post it back to Pico Technology.

DrD	AQ Order Forr	n:	
Quantity	Package	Price inc VAT	Total
	DrDAQ + Software	£69.32	
	DrDAQ + 2 Temp Sensors	£92.85	
	DrDAQ + 2 Temp, pH Electrode, Hunidity + Reed Switch Sensors	£175.08	
	Delivery	€4.11	£4.11
		Grand Total	£

Name					
Address					-
Post code					-
Phone					
Credit Card		Visa / N	fastercard / Sw	ritch / Amex	
Card Number		1935 - Li		(C.C.C.C.C.	
Expiry Date		1	Start Date &	or Issue No.	
Cheque with o	rder	ō			

Pico Technology Ltd, The Mill House, Cambridge Street, St Neots, Cambridgeshire. PE19 1QB Tel: 01480 396395, Fax: 01480 396296, E-mail: post@picotech.com, Web: www.drdaq.com

Electronics and Microcontrollers For Absolute Beginners

Now with our new beginners system you can learn about microcontrollers without needing to own a PC. 26 fascinating experiments teach the fundamentals of electronics. In the first 6 experiments we learn how to use resistors, capacitors, diodes, transistors and MOSFETs. Then we work through 20 experiments using a PIC microcontroller with progressively more complex circuits. The test microcontroller needs to be programmed with 21 different routines and all of these are contained within the microcontroller which is at the heart of the programmer module. The system requires no external data so a PC is not required.

Low cost PIC programmer module

- Book Electronics & Microcontrollers for Beginners
 Components for 26 experiments
- + PIC16F627 test PIC

Total price with programmer module supplied unr	made (P602) £55.00
Total price with programmer module supplied ma	de up (P601)£79.50
UK Postage and insurance	
(Europe postage & Insurance£12.00.	Rest of world £18.00)

Electronics & Microcontrollers for Beginners

This book introduces complete beginners to the world of modern electronics using the most natural way of learning. We start by learning about resistors, capacitors, diodes, light emitting diodes, transistors and MOSFETs in an easy practical way. We then wire the simplest possible microcontroller circuit which just switches an LED on and off. We single step through the programme to see exactly how the microcontrol er uses its output port to control the LED. We add a push button to the circuit and experiment with a time delay programme. We add two more LEDs and experiment with simulated traffic lights control. We use the microcontroller to generate sound. First a simple tone then more complex sound patterns.

The next task is to create a freezer thaw warning device with two different failure tones. We start by studying how a microcontroller can be used to monitor temperature using its internal comparator. Five experiments lead us to a comprehensive system which monitors two temperatures -5 and -14 degrees C, and uses the microcontroller's sleep mode to save power.

Finally we work thought the design cycle to create a realistic dice machine which uses 7 LEDs in place of the dots. For this mini project we create a circuit which enables the microcontroller to turn itself off after displaying the result for 30 seconds

Almost no theory is given yet you will learn an amazing amount of professional information. Just as a young child learns to speak correctly without being given formal grammar lessons.

Wiring, Writing and Stepping

Each experiment requires the reader to build and test a simple circuit on the plugboard using the supplied components Building the circuit is a very important part of this teaching system. For circuits which use the PIC16F627 microcontroller the test programme is written into it directly from data that is stored in the microcontroller on the programmer module. The test system allows the less complicated test programmes to be single stepped so that the operation of each stage can be studied. The instruction that is about to be processed is displayed on the liquid crystal display.

Unmade System £55.00

The unmade system (order code P602) is supplied as a kit. Before you can begin the experiments you will need to assemble and solder the programmer module and thermistor lead assembly. To do this you will need good soldering and PCB assembly skills (or know someone who has). Detailed wiring instructions and circuit diagram are included in the book. The unmade system also requires the links to be cut to size and stripped.

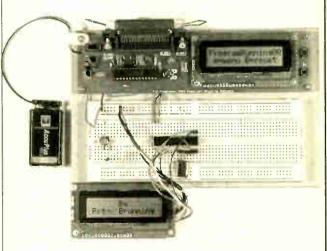
Made up System £79.50

The made up system (order code P601) is supplied with the programmer module assembled and tested, the thermistor lead assembled and water proofed, and with the links cut to size and stripped. The entire book can be worked through without needing a soldering iron.

Professional Users

Our low cost programmer uses the PICs in their low voltage programming mode which considerably simplifies the circuit. But this does mean that one less input/output line is available from the microcontroller. The Brunning Software universal mid range PIC programmer module does not have this limitation.

If you intend to delve deeply into PIC programming by all means begin with our low cost system to get the easiest start but we then recommend that you purchase our P401 'PIC Training and Development System' which includes our universal mid range PIC programmer module.

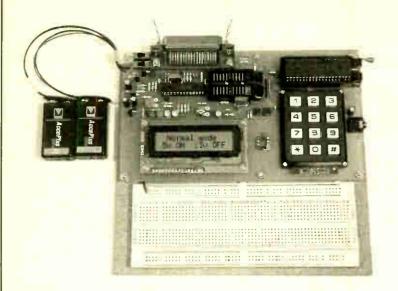

Tools required

To build the experimental circuits on the plugboard you will need small side cutters, small long nosed pliers and a digital multimeter. If you assemble the PCB you will also need a suitable soldering iron, wire strippers and a small amount of resin glue to waterproof the themistor connections.

Ordering Information

Telephone with Visa, Mastercard or Switch, or send cheque/PO for immediate despatch. The prices include VAT if applicable. Postage as shown must be added to all orders

Web site:- www.brunningsoftware.co.uk


Up Grading

The low cost programmer printed circuit board has provision for a connector to be added which allows it to be driven by a PC. We have several projects in their planning stages which expand this starter system. The bottom photograph shows a working upgraded system. More information will be available when the new projects are nearing completion.

Mail order address:

Brunning Software 138 The Street, Little Clacton, Clacton-on-sea, Essex, CO16 9LS. Tel 01255 862308

Learn About Microcontrollers

PIC Training & Development System

The best place to start learning about microcontrollers is the PIC16F84. This is easy to understand and very popular with construction projects. Then continue on using the more sophisticated PIC16F877 family.

The heart of our system is a real book which lies open on your desk while you use your computer to type in the programme and control the hardware. Start with four very simple programmes. Run the simulator to see how they work. Test them

with real hardware. Follow on with a little theory.....
Our complete PIC training and development system consists of our universal mid range PIC programmer, a 306 page book covering the PIC16F84, a 262 page book introducing the PIC16F877 family, and a suite of programmes to run on a PC. The module is an advanced design using a 28 pin PIC16F872 to handle the timing, programming and voltage switching requirements. The module has two ZIF sockets and an 8 pin socket which between them allow most mid range 8, 18, 28 and 40 pin PICs to be programmed. The plugboard is wired with a 5 volt supply. The software is an integrated system comprising a text editor, assembler disassembler, simulator and programming software. The programming is performed at normal 5 volts and then verified with plus and minus 10% applied to ensure that the device is programmed with a good margin and not poised on the edge of failure. Requires two PP3 batteries which are not supplied.

Universal mid range PIC programmer module + Book Experimenting with PIC Microcontrollers

+ Book Experimenting with the PIC16F877 (2nd edition)

+ Universal mid range PIC software suite + PIC16F84 and PIC16F872 test PICs. . . . UK Postage and insurance. (Europe postage & Insurance. £13.00. Rest of world. £24.00)

Experimenting with PIC Microcontrollers

This book introduces the PIC16F84 and PIC16C711, and is the easy way to get started for anyone who is new to PIC programming. We begin with pages assuming no starting knowledge except the ability to operate a PC. Then having gained some practical except the ability to operate a four simple experiments, the first of which is explained over ten and a half PC. Then having gained some practical experience we study the basic principles of PIC programming, learn about the 8 bit timer, how to drive the liquid crystal display, create a real time clock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven's Für Elise. Finally there are two projects to work through, using the PIC16F84 to create a sinewave generator and investigating the power taken by domestic appliances. In the space of 24 experiments, two projects and 56 exercises the book works through from absolute beginner to experienced engineer level.

Ordering Information

Telephone with Visa, Mastercard or Switch, or send cheque/PO for immediate despatch. All prices include VAT if applicable. Postage must be added to all orders. UK postage £2.50 per book, £1.00 per kit, maximum £7.50. Europe postage £3.50 per book, £1.50 per kit. Rest of World £6.50 per book. 2.50 per kit.

Web site:- www.brunningsoftware.co.uk

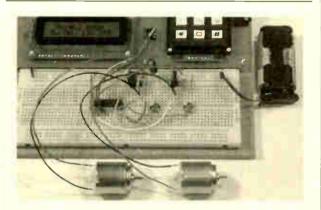
NEW 32 bit PC Assembler

Experimenting with PC Computers with its kit is the easiest way ever to learn assembly language programming. If you have enough intelligence to understand the English language and you can operate a PC computer then you have all the necessary background knowledge. Flashing LEDs, digital to analogue converters, simple oscilloscope, charging curves, temperature graphs and audio digitising. Kit now supplied with our 32 bit assembler with 84 page supplement detailing the new features and including 7 experiments PC to PIC communication. Flashing LEDs, writing to LCD and two way data using 3 wires from PC's parallel port to PIC16F84.

Book Experimenting with PCs	£21.50
Kit 1a 'made up' with software	£52.00
Kit 1u 'unmade' with software	€45.00

C & C++ for the PC

Experimenting with C & C++ Programmes teaches us to programme by using C to drive the simple hardware circuits built using the materials supplied in the kit. The circuits build up to a storage oscilloscope using relatively simple C techniques to construct a programme that is by no means simple. When approached in this way C is only marginally more difficult than BASIC and infinitely more powerful. C programmers are always in demand. Ideal for absolute beginners and experienced programmers.


Book Experimenting with C & C++	£24.99
Kit CP2a 'made up' with software	£32.51
Kit CP2u 'unmade' with software	£26.51
Kit CP2t 'top up' with software	£12.99

The Kits

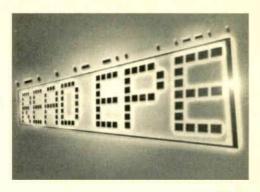
The assembler and C & C++ kits contain the prototyping board, lead assemblies, components and programming software to do all the experiments. The 'made up' kits are supplied ready to start. The 'top up' kit is for readers who have already purchased kit 1a or 1u. The kits do not include the book.

Hardware required

All systems in this advertisement assume you have a PC (386 or better) and a printer lead. The experiments require no soldering.

Experimenting with the PIC16F877

The second PIC book starts with the simplest of experiments to give us a basic understanding of the PIC16F877 family. Then we look at the 16 bit timer, efficient storage and display of text messages, simple frequency counter, use a keypad for numbers, letters and security codes, and examine the 10 bit A/D converter.


The 2nd edition has two new chapters. The PIC16F627 is introduced as a low cost PIC16F84. We use the PIC16F627 as a step up switching regulator, and to control the speed of a DC motor with maximum torque still available. Then we study how to use a PIC to switch mains power using an optoisolated triac driving a high current triac.

Mail order address:

Brunning Software 138 The Street, Little Clacton, Clacton-on-sea, Essex, CO16 9LS. Tel 01255 862308

Constructional Project

EPE MORSE CODE READER

JOHN BECKER

"View" the meaning of Morse-coded tones on the air-waves, and enhance your skills at keying your own coded messages.

ORSE is not dead! With modern communications systems abounding, it may seem so to the uninitiated, but in fact it is "alive and keying".

Whilst a cursory scan through the wavebands on a modern "normal" domestic radio receiver may reveal little in the way of Morse code transmission, this communications technique is still very much in use. Tuning in via a "communications receiver" or an older domestic receiver on the short wave (SW) bands will reveal Morse activity.

Furthermore, if you have internet access and do a search through www.google.com on such words as "Morse", "Morse code" and "Morse transmission", you will find literally thousands of sites devoted to the subject and its continuation in the modern world. It is, after all, an historically well-proven communications system, depending purely on switching electrical, audio or visual signals on and off at regular intervals.

Several printed publications which encourage the continued use of Morse as an "art form" also exist, of which Morsum Magnificat is one such in the UK.

CHALLENGING

Although the author once could claim that he knew Morse code, having been taught it (and qualified!) in the Combined Cadet Force (CCF) at school, he too had let his knowledge decline and become one of the "uninitiated". Until, that is, Editor Mike showed him an American radio publication, Worldradio, in which there was an advert for a small handheld Morse Code Reader, undoubtedly microcontrolled.

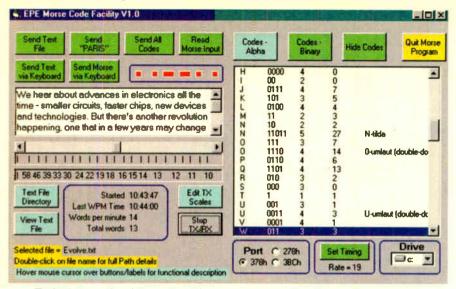
"Can you design one?" asked Mike. "Of course", replied the author, keen to sustain the myth that he can do *anything* with PIC microcontrollers!

In fact, he has designed several Morse decoders before. The last one being published in *Everyday Electronics* in Jan '87 (long before the merger with *Practical Electronics* to become *EPE*).

At that time PICs were probably not even a twinkle in the eye of any semiconductor manufacturer. They were certainly not reality. Consequently, the EE design was based on a hardware mark-space ratio detector which fed separate Morse dots, dashes and spaces via individual data lines

to a pre-PC computer (Commodore PET 32K). This compiled the incoming logic into a binary format, matched it against a lookup table and displayed the results on screen.

The design presented here is physically simpler, although the software is considerably more complex (that's not your problem, though, it was merely the author's! But where's the fun in designing if it's not a challenge?).


Details on obtaining the free software, and pre-programmed PICs are given at the end.

AWESOME MORSUM

There are three main aspects to this new design. It comprises:

- A handheld unit that can receive Morse code, via audio input (internal microphone) or direct signal connection, and translate it for display on an in-built liquid crystal (l.c.d.) alphanumeric screen. The received Morse signals are also available as pulses (0V/5V logic) for external use via a separate connection. Signals re-modulated at approximately lkHz can be output to high-impedance headphones. With a suitably connected Morse key, signals can be input manually.
- Using a PC computer, Windows-based software can input the signal being repeated from the handheld unit, convert and display the code on the PC monitor, and store the translation to disk for future examination as a text file.
- The PC software can additionally be used to output Morse code to the handheld unit, for display on its screen, or monitoring as an audio signal. There are several modes of code output from the PC: translation of a text file to Morse; direct keying of alphanumeric characters for immediate translation to Morse; use of the keyboard as a Morse key with the duration of keypresses simulating Morse dots and dashes.

Typical example of the main PC screen for the EPE Morse Code Reader.

Several other features are also included in the PC software, as will be described later.

The handheld unit can be used on its own. It is not necessary to use it with a computer.

Various aspects of the PC software can be used on their own, too, without the need for the handheld unit. In principle, Morse code signals at normal logic levels (0V to 5V pulses) can be directly input to the computer from other sources.

The system can be used as a learning aid by those who wish to expand their understanding of Morse. It will also satisfy the curiosity of those who just want to "eavesdrop" on what radio operators are saying to each other.

TRANSLATION REQUIREMENTS

International Morse code uses the dotdash combinations listed in Table 1. Conventionally, a dot is known as "DIT", and a dash as "DAH".

Whilst the rate of code transmission is up to the Morse operator, the relative duration of the DITs, DAHs and associated spaces has been established by international agreement:

- The DIT is the basic unit of length
- The DAH is equal in length to three DITs
- The space between the DITs and DAHs within a character (letter) is equal to one DIT
- The space between characters in a word is equal to three DITs
- The space between words is equal to seven DITs

These are the basic requirements that any human operator or translation software must observe.

The sending of Morse signals can take many forms, ranging from audio and adio transmission, modulation of light (e.g. Aldis lamps and torches), varying electrical pulse levels (e.g. sending to a computer), to bashing the water pipe if the sender is incarcerated at "Her Majesty's Pleasure"!

In audio and radio transmission, the technique is to turn the modulation of a carrier frequency (CW – continuous wave) on and

off at the required rate. In audio work, the received signal is already within the audio range of the listener. Radio signals must, of course, be demodulated to become an equivalently pulsed audio signal.

There are no set rules regarding the audio frequency of Morse signals, but they must, naturally, lie in the range most likely to be heard clearly, at about 1kHz, for example.

Automatic decoding equipment, therefore, must be able to accept Morse signals as a pulse-modulated frequency. It must also be able to recognise unmodulated pulse levels originating from a voltage simply being switched on and off.

The equipment must be capable of differentiating DITs from DAHs, and letter spaces from word spaces, irrespective of the rate at which the Morse signals are being received. Ideally, it should detect if the transmission rate changes and then readjust its DIT-DAH criteria.

The author's last Morse decoder had to be manually tuned so that the software

correctly recognised DIT-DAH ratios. The unit described now makes its own adjustment, typically within about eight to 16 keypresses (DITs and DAHs) being received.

Thus, all you need to do is place the unit near the loudspeaker of a radio receiver, or directly plug it into the coded signal source, and observe the unit displaying the received code as an intelligible text message.

The term "intelligible" is used loosely, of course. The unit won't translate from Swahili into English, for instance! It will simply show the letters being received. The advert mentioned earlier did actually state that its unit "instantly displays CW in English!" – a very clever device indeed if it really does that for the quoted \$79.95 US!

BINARY FORMAT

If you examine Morse codes as though DITs are logic 0 and DAHs are logic 1, a binary coded pattern will be seen. Converting from binary to decimal reveals a snag, however. There are some Morse codes that have one or more "leading" DITs, i.e. leading zeros. For example, take the letters E, I, S and H, which are Morse coded as DIT, DIT-DIT, DIT-DIT-DIT and DIT-DIT-DIT-DIT-DIT-DIT (the phrase Elephants In Straw Hats Ten Miles Off was that taught to the author to remember these four and their three DAH counterparts T, M, O – DAH, DAH-DAH, DAH-DAH-DAH!).

With each DIT as logic 0, the binary value of each of the first four letters converts to zero decimal. Not a helpful fact if regarding Morse codes as being true binary symbols.

The answer is to also take note of the number of keypresses (DITs or DAHs - call them binary bits) in a coded letter. Now each code can be allocated two decimal numbers, its length as well as its binary value. Separate lookup tables can now be used, each dedicated to a particular code length, and then to the binary value. Table 2 illustrates the idea.

Table 1. Morse codes and their reference formats used in the PC and PIC programs.

Symbol	Code	"Binary"	Count	Numb	er E F	•	0 0010	1	0
		001101	6	13	Ġ		110	3	2 6
		010010	6	18	H		0000	4	0
		011110	6	30	- ''		00	2	ő
		10110	5	22	j		0111	4	7
		- 101101	6	45	K		101	2	
		01010	5	10			0100	3	3
1		-110011	6	51	м	. –	11	7	5 4 3 2 7
_		100001	6	33	Ň		10	2 2 3	3
		010101	6	21	Ö		111	2	5
		10010	5	18	P		0110	4	6
)		11111	5	31			1101	4	13
		01111	5	15	ď		010	2	2
2		00111	5	7	Q R S T		000	3	ō
3		00011		3	7		1	1	1
í		00001	5	1	ΰ		001	3	4
5		00000	5	ó	V		0001	3 4	(
Š		10000	5	16	w		011	3	2
7		11000	5	24			1001	4	3 9
3		11100	5	28	\$		1011	4	11
		11110	5	30	7		1100	4	12
'		111000	6	56	Ž		01110	5	13
=		10001	5	17	Ä		0101	4	5
·		001100	6	12	Ch		1111	4	15
		01	6 2 4	1	X Y Z A A Ç E NOU		00100		4
ì		1000	4	8	តី		11011	5	27
<		1010	4	10 -	Ä		1110	4	14
A 3 0		100	3	4	ñ		0011	4	3
_		100	3	7	O		0011	7	3
		10101	5	21	"starting"				
	. –	01000	5	8	"wait"		These five	codec	not
	$\cdots -$	00010	5		"understood"				
	– . –	000101	6		"End of work"	r	ecognised	by the	PIC
	<mark></mark>	.00000000	8	Ō	"error"				

4-bits			3-bit	ts	2-bits				1-bit		
Bin	Dec	Char	Bin	Dec	Char	Bin	Dec	Char	Bin	Dec	Char
0000	0	Н	000	0	S	00	0	1	0	0	E
0001	1	V	001	1	U	01	1	Α	1	1	T
0010	2	F	010	2	R	10	2	N	none	e such	1

Table I shows the full range of allocated codes and equivalent conversion values used in the PIC software and the PC program.

It will be seen that some letters appear to be repeated but having different Morse codes, A, O and U, for example. This is because some languages (e.g. German) have letters that look similar to our "English" ones but have a double-dot above them (umlaut), e.g. Ä, Ö, Ü. Some letters also have "acute" and "tilde" signs as well, e.g. É and Ñ.

In this unit the codes for accented letters are recognised, but the translation is to the "standard" letter form.

Some Morse codes can have meanings that are specific phrases. For instance, DIT-DAH-DIT-DIT (01000) means "wait" and DAH-DIT-DAH-DAH-DIT (10110) means "starting". This unit's software ignores such expansions, although the optional PC interface software recognises some.

RECEPTION RATE

It will be obvious that the software must have a "base-timing" value against which it assesses DIT, DAH and space lengths. Such lengths depend on the sending operator's keying speed, which can vary considerably between operators. A novice might send at, say, only five words per minute (WPM). An experienced operator could even be sending at 50 WPM (about 25 WPM is a more typical rate).

The software assesses the sending rate by looking for the shorter pulses (the DITs). Initially, a temporary reference value is set to a high timing number, greater than the expected incoming pulse lengths. For a cycle covering the next 16 keypress pulses, each pulse timing length is compared with this reference. If it is less, the reference is set to the same value as the pulse.

The comparison is repeated for all 16 keypresses. It is then assumed that the reference value is that representing a DIT. The DAH and space values referred to earlier are then set in respect to this value. Again the reference value is set higher than the expected incoming pulse lengths and the cycle repeats.

Simultaneously with the reference value comparisons, each incoming keypress is compared against the current DIT, DAH and space lengths, and each code sequence compiled as an equivalent binary value and in relation to its bit count. During the letter spaces the equivalent character is found from the respective lookup table and displayed on screen. If a word space is found, a space character is also sent to the screen.

DIT length comparison, of course, is not fool-proof and noise or sporadic changes of operator keying rate may cause temporary misinterpretation of incoming codes, probably signified by a sequence of the letter T being seen. Usually, a recovery from such instances is made within 16 keypresses.

It was also found that when feeding the unit with computer-generated codes, slippage could still occasionally occur. This is due to the PC monitoring other aspects of its system even though it is also running the Morse program.

One PC in particular was excessively prone to this. It periodically decides that it wants to check all sorts of things on the hard drive and the floppies, thoroughly disrupting Visual Basic (and Quick-Basic) timings. The

reason cannot be found (the machine came to the author second-hand).

Visual Basic does not allow internal "interrupts" to be stopped. They can be stopped if a machine code program is being run, as the author used to do when using QB with an m/c sub-routine, but he has not yet found a way to integrate m/c (8086 assembly dialect) with VB. (Advice from anyone who does know would be appreciated!)

Using a PC as the Morse source, translation rates in excess of 50 WPM were achieved with the PIC unit.

CIRCUIT DIAGRAM

The complete circuit diagram for the EPE Morse Code Reader is shown in Fig.1. Not much to it! Basically, Morse signals are input, amplified, translated by a PIC16F84 microcontroller and displayed on the l.c.d. screen.

Microphone MIC1 is a miniature electret type which receives its power via resistor R1 and allows the unit to be placed near the speaker of a radio receiver to pick up Morse signals without any physical connection to it.

Socket SK1 enables direct connection to, say, a radio receiver's audio output socket, low level or line-level. The microphone is automatically disconnected in this instance.

Signals from the selected source are a.c. coupled to level control VR1 and fed to the amplification stage around IC1a. The gain is set at about 100 by resistors R2 and R5. The values of capacitors C2 and C4 respectively give a bit of bass and treble cut to the audio frequency being received, helping to reduce (although not totally

eliminate) false triggering by any out-of-band noise on the signal.

From ICla, the signal is a.c. coupled to the second amplification stage, around IClb. Here the gain is set at around 10 by resistors R6 and R7. Resistors R3 and R4 provide a midway bias level to both stages.

PANEL 1. ORIGINS

Samuel Finley Breese Morse was born in Charleston, Massachusetts in 1791. Studying to be a painter in the US and Europe, in 1832 he became intrigued by the telegraph, a system first built in 1774. At that time, telegraph machines required 26 separate wires, one for each letter of the alphabet (presumably numerals had to be spelt out, and punctuation ignored).

In 1833 a German 5-wire system was introduced, but Morse recognised that a 1-wire signalling system was possible, in which a series of long and short electrical pulses could be sent in a coded order relating not only to alphabet characters but to numerals and other symbols as well.

Now known as the "American" Morse Code, the original code additionally used embedded spaces as part of the coded characters. Thus dot-space-dot represented letter "O". There were even codes that used extra-long dashes, e.g. letter "L" and numeral "O".

As the code's popularity spread, it evolved to suit the needs of international users. All embedded letter spaces were eliminated and the standardised use of dots and dashes became the code now in use, the "International" (or "Continental") Morse Code. Letter "O", for instance, has now become dash-dash-dash. Several web sites quote both code formats.

The next stage extracts the Morse pulse "envelope" from the audio carrier signal. In the presence of pulses (DITs and DAHs), capacitor C6 is held charged via diode D1. When each pulse ceases, C6 discharges through preset VR2.

For as long as the voltage on the wiper of VR2 is above about 0.6V, transistor TR1 is turned on into full saturation, i.e. its collector voltage is at 0V. When each pulse ceases, the collector voltage returns high, to 5V (the power rail voltage).

Socket SK2 allows external (unmodulated) Morse pulses to be input in place of the audio signal (from a Morse key or computer, for example). Their amplitude should swing between 0V and greater than about 0.6V. The software automatically compensates for the signal inversion by TR1.

PIC PROCESSING

The output from TR1 is coupled to the Schmitt trigger input, RA4, of PIC microcontroller IC2. The software monitors the status of the input, from which information Morse pulse lengths are assessed.

The status of pin RA4 is copied by software (suitably re-inverted) to pin RA3. This allows demodulated pulses to be sent, via socket SK4, to other equipment, such as a PC which itself can decode signals into characters and display them on its screen. While developing the software, the author actually coupled two PCs to the PIC, one transmitting to it, the other receiving from it.

The pulsed signal from RA3 also drives an l.e.d., D3, via ballast resistor R13. This serves as an additional Morse code monitor. At lower transmission rates, the relative DIT and DAH lengths can be observed,

PANEL 2. COMMERCIAL MORSE DEMISE

The power and sophistication of modern communications systems, especially those via satellite, eventually eclipsed the need to use Morse code commercially and many radio stations worldwide have ceased Morse transmission and reception.

On January 1st 1999, the UK's 500kHz Coast Radio Station Service, for instance, ceased to maintain a distress watch and British Telecom MF Morse radio stations ceased all commercial Morse services. Other similar services also closed on the same day, some whose history goes back around a hundred years.

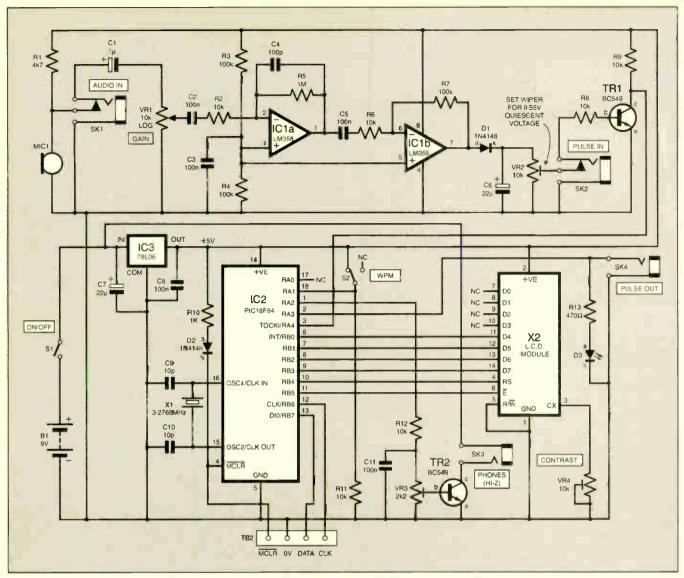


Fig. 1. Complete circuit diagram for the EPE Morse Code Reader.

and even used as a visual source of Morse code.

Provision has been made for received Morse signals to be repeated as re-modulated audio tones (at roughly 1-3kHz) via high impedance headphones, connected via socket SK3. This facility is included as part of the unit's "learning" aspect, so that code transmissions simulated by the computer can be listened to and so test the listener's ability to mentally decode them.

The tones are output from pin RA2, sent via level control VR3 to transistor TR2, to which the headphones can be connected via socket SK3. It is stressed that high-impedance headphones (e.g. at least 40 ohms) must be used. The use of low impedance 'phones or a loudspeaker will kill the transistor (which has a rating of about 100mA).

Capacitor C11 smooths some of the harshness of the audio square wave – no attempt has been made to provide a "musical" tone!

In fact, using the software to generate the tone while carrying out other activities does not allow a precise audio frequency. Whilst the dominant frequency is about 1.3kHz, other underlying tones are just noticeable.

If you would prefer to listen to "cleaner" tones and you have an existing audio

oscillator that can be keyed by voltage level changes, it could be driven via the pulse output at SK4.

MESSAGE DISPLAY

Visual display of the decoded Morse signals is via the 2-line 16-character (per line) alphanumeric l.c.d., X2. This is operated in standard 4-bit mode, with contrast setting performed by preset VR4.

Switch S2 causes the l.c.d. to show either two lines of message, or one line plus WPM data on the other.

In 2-line mode, the message is compiled on the lower line, the characters being placed consecutively from left to right across 16 "cells". On each 16th character the whole lower line is transferred to the top, the lower one cleared and message compilation starts again from the left. The message is not stored after being lost from the display.

In WPM mode, the WPM count is assessed every 60 seconds and output to the left of the upper line. The lower line shows the message as it progresses, with it being cleared after each 16 characters.

At the right of the upper line is displayed a sub-count of the words received since the last one-minute display occurred. It is updated after each batch of 16 characters has been received.

Typical I.c.d. screen in 2-line code display mode.

Typical !.c.d. screen showing WPM count on the top line.

OTHER ASPECTS

The PIC is run at 3.2768MHz, as set by crystal X1, and powered at +5V from regulator IC3. The unit itself may be powered, via IC3, at any d.c. voltage between about 7V and, say, 12V. Current consumption depends on the use of the headphones and their loudness. In quiescent mode consumption is about 7mA.

As usual with the author's PIC designs, provision for programming the PIC in situ has been made via connector TB2, whose connections, and those to the l.c.d., are in his "standard" order. PIC Toolkit Mk2 or Mk3 are suited to programming PICs in situ on board designs such as that used for this unit.

COMPONENTS

Resistors See 4k7 R2, R6, R8, R9, R11, TALK R₁₂ 10k (6 off) 100k (3 off) R3, R4, R7 R₅ 1M R10 1k **R13** 4700 All 0.25W 5% carbon film.

Potentiometers

VR1 10k rotary, log VR2, VR4 10k min. preset, round (2 off) VR3 2k2 min. preset, round

Capacitors

C1 μ radial elect. 16V C2, C3, C5,

C8, C11 100n ceramic, 5mm pitch (5 off)

C4 100p céramic, 5mm pitch 22µ radial elect. 16V (2 off)

C9, C10 10p ceramic, 5mm pitch (2 off)

Semiconductors

D1, D2 1N4148 signal diode red l.e.d.

TR1, TR2 BC549 *npn* general purpose small-signal

transistor
LM358 dual op.amp
PIC16F84-4

IC2 PIC16F84-4 microcontroller, preprogrammed,

see text 78L05 100mA +5V voltage regulator

Miscellaneous

IC1

MIC1 min. electret microphone insert

S1, S2 min. s.p.d.t. (or s.p.s.t.) toggle switch (2 off)

SK1 to SK4 3.5mm plastic jack socket

X1 3-2768MHz crystal
X2 2-line, 16-character (per line) alphanumeric
I.c.d. module

Printed circuit board, available from the *EPE PCB Service*, code 368; plastic case, 150mm x 80mm x 50mm; 8-pin d.i.l. socket; 18-pin d.i.l. socket; panel-mounting l.e.d. clip; knob for VR1; PP3 battery and clip; pin header strips and sockets for TB1 and TB2 (see text); p.c.b. mounting supports (4 off); connecting wire; solder, etc.

Approx. Cost
Guidance Only
excluding battery

CONSTRUCTION

Printed circuit board layout details for the EPE Morse Code Reader are shown in Fig.2, This board is available from the EPE PCB Service, code 368.

Use sockets for IC1 and IC2. Assemble in order of component size, preferably link wires first (noting that one lies under the socket for IC2).

Pin header strips were used in the prototype for connections to the TB1 and TB2 pins. Alternatively, 1mm terminal pins could be used.

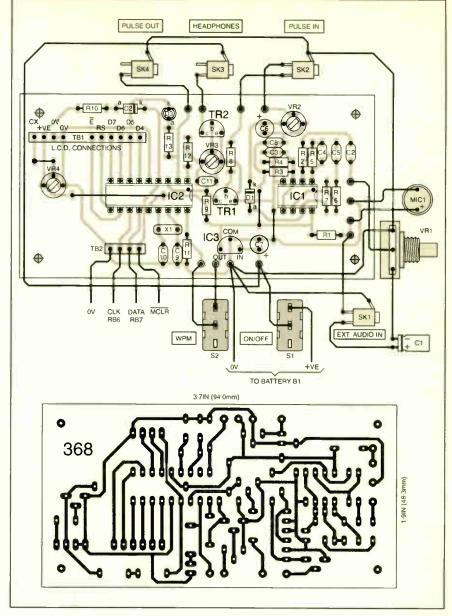


Fig.2. Component and full-size master track pattern layouts for the EPE Morse Code Reader.

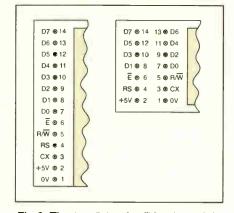


Fig.3. The two "standard" l.c.d. module pinout arrangements.

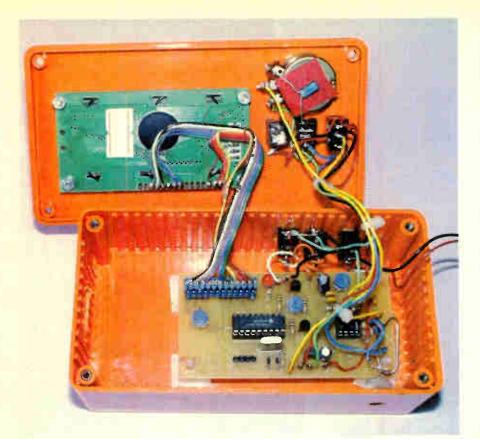
Before inserting IC1, IC2 or the l.c.d., check the correctness of your assembly and that +5V is present where indicated in the circuit diagram of Fig.1.

The unit was mounted in a plastic case, having cut a viewing slot to suit the l.c.d. screen, and holes drilled for switches, connectors, or direct external input/output wiring, etc.

A hole should also be drilled for the l.e.d. D3 (although this was not done with the prototype).

Sockets SK1 to SK4 should be *plastic* types (note that SK3 has its "common" terminal connected to the principal power line).

Typical pinout details for the l.c.d. module are shown in Fig.3.


COMPUTER INTERFACE

For learning purposes, the use of the PC-based Windows software for this design is ideal. Written in Visual Basic 6 (VB6) the software is completely standalone and does not require VB6 to be resident on your PC (but see later).

For output mode, the PC uses parallel port pin D0, and for input it uses pin ACK (see Fig.4).

Five Morse code output modes are available from the PC software:

- send text file in Morse
- send "Paris" as test word (reason given presently)
- send all characters for which a Morse code is known, either in alphanumeric or "binary" order

- Send characters directly keyed-in via keyboard
- Send Morse pulses in respect of duration of any keypress

The word *Paris* is that generally used to determine the words per minute rate (WPM) at which Morse code is transmitted. It supposedly represents the average DIT-DAHletterspace-wordspace ratio encountered in a typical message transmission.

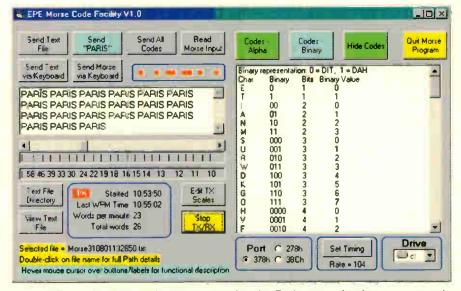
Clicking on the Send Paris button causes the software to repeatedly output this single word followed by a wordspace Clicking on Stop TX/RX ends this mode (as it does for any transmission or reception mode). During any transmission, the message being processed is displayed in the left hand panel.

WPM RATES

A slider below the message panel sets the WPM rate at which any transmission is sent. The actual rate for a given setting is likely to vary between different PCs (the scale values shown below the slider are those used by the author). A facility has been provided to "tune" the scales to the rate actually produced by your PC for a given slider setting. Transmission of "Paris" is the mode to use for this.

Fig.4. 25-way male D-type connector.

displaying timed counts in the box below the scales. The assessment is in relation to the number of DITs in the message multiplied by 1.2 (a factor quoted to the author by a Morse expert).

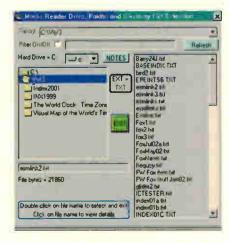

CODE SIMULATIONS

While browsing the web for Morse code info. it became apparent that learners of Morse can become tired of repeatedly listening to pre-recorded Morse test message tapes. The option to send any message you like has thus been included here.

It is intended that any Morse output from the PC is routed to the EPE Morse Code Reader unit. How it is then used is up to you. The most obvious use is to output an unfamiliar text file, listen to the Morse tones generated by the unit, and practice your decoding skills. The software is not linked to any audio interface installed on the PC.

To send a text file, click on Text File Directory to enter a typical Windows-style folder, path and file selector, through which any listed text file can be loaded for output as Morse code. Double-click on the file name chosen to select it and return to the main screen. The selected file name is confirmed at the bottom left of the screen. Only files having a .TXT extension can be accessed.

Then click on Send Test File to start transmission. Click Stop TX/RX to end it.


Above: Example of the main screen showing the Paris transmitted test message in the left hand text box and codes in "binary" order in the right hand panel.

Below: Typical example of the directory screen

Clicking on the button Edit TX Scales allows you to change scale legends via the keyboard. A Save TX Scales button is dis-

played while in this facility. Having changed the scales to your satisfaction, click this button to save the information to disk. It will be recalled next time you run the program.

Irrespective of the slider setting, the software makes a separate assessment of the WPM rate actually occurring,

The chosen file can also be viewed via the PC's Notepad text editor by clicking on View Text File.

The Directory screen is a cut down version of that used in the author's *Toolkit TK3* PIC programming software (Oct-Nov'01). More details about using this option can be viewed via the Directory screen's NOTES button (there are several suboptions discussed).

ALL CODES MODE

Clicking Send All Codes outputs standard Morse codes in alphanumeric or binary order, depending on whether the Codes-Alpha or Codes-Binary button has been clicked (confirmed by it showing blue instead of green). The full code set for each selection is displayed in the right hand subwindow (it can be scrolled up or down for viewing).

The codes displayed can be hidden should you wish to by clicking Hide Codes.

KEYED TRANSMISSION

Clicking either Send Text via Keyboard or Send Morse via Keyboard, appropriately activates one of those two modes. In the keyed Text mode you should not allow your keying rate to exceed the WPM rate set by the slider (although the normal Windows keyboard buffer will take up the "slack" for a while).

Use almost any key you like to send Morse highs and lows as DITs and DAHs (but Num Lock will probably need to be On in order to use the right hand numeric keypad). The rate of keying is up to you and is not affected by the WPM slider.

The author is much too way out of Morse keying practice (by many decades!) to know how successful the keyboard DIT-DAHing might be, but it seemed an option that was worth adding in case it might be of any use.

FIRST USE

When first loaded, the PC software detects whether or not the program has been run before on the machine in use. If it has not, a set of internal routines are initiated which, among other things (relating to clearing any personal directory and other records accidentally left in by the author!), establishes a nominal base value used during code transmission.

Such values will vary from PC to PC. The value can also be set via the Set Timing button should you wish, the resulting value being displayed below this button. Note that it is simply a "looping" value used by the software and not a timing value in terms of specific units of time.

The assessment takes a couple of seconds, and it is normal for the value to differ slightly each time the assessment is made (due to the PC's own interrupts as mentioned earlier).

PORT SETTING

The software does not assess for itself the printer port register that your computer has been set to use. This is typically register 378h (hex), but could be 278h or 3BCh. At the bottom right of the screen is a PORT box with radio buttons which select the register to be used.

To check which one is correct, first leave the setting at the default of 378h and start sending "Paris" to the Morse Reader unit and observe its l.c.d. screen. If nothing appears on the l.c.d. within a few seconds, click on 278h. Again wait a while. If still nothing appears, try 3BCh.

If there is still no success, re-check the unit and its connections to the PC.

The selected port register value is automatically stored to disk for recall next time the program is run.

RELOCATION

It is believed that the PC software is totally relocatable in terms of which drive or folder it is run from. Normally, it is likely that you will wish to run it from your C-drive. Alternative drive letters (including a partition) may be selected via the Drive option at the bottom right of the screen. This selection is also stored to disk for future recall.

Do not use a floppy or CD-drive from which to run the software. It is preferable to remain with the standard C-drive if possible.

ERROR TRAPPING

The PC software has been subjected to extensive "error-mode" checking and includes various error-trapping routines. If something unexpected occurs in an error-trapped routine, you will be advised so via a separate Error Message screen.

However, if something occurs for which the author has not provided an answer or interception, let him know via the Editorial office (not via the *Chat Zone* as he does not necessarily access this on a regular basis and your message might be missed).

PROGRAM EXIT

Finally, to exit the PC Morse software click on the Quit Morse Program button, which will fully close it. If you use the topright Windows X button, the program may only become "hidden", remaining active in the Desktop screen's lower toolbar.

It is worth exploring your Morse screen with the mouse cursor. There are various notes that appear when it hovers briefly over buttons and labels.

MORSE CODE DATA

Should you wish to add a new Morse code item to those known to the PC software (author!), you can do so by accessing file MorseCode.txt held in the main Morse folder. Double-click on the file to open it through Notepad. It can now be amended, and resaved as the same name and file type.

Do not edit the file via a wordprocessing program since this might add format codes which would affect the correct use of the file by the Morse software.

SOFTWARE

Software for the PIC unit and PC interface is available on 3.5-inch disk from the Editorial office (a small handling charge applies) or downloaded free from our ftp site. The latter is accessible via the top of the title page of the main *EPE* web site at **www.epemag.wimborne.co.uk**. Click on "FTP Site (downloads)", then in turn on PUB and PICS, in which page the files are in the folder named MORSE.

More details of both options are given on this month's *Shoptalk* page, plus information on obtaining pre-programmed PICs.

The PIC program (ASM) was written in TASM, although the run-time assembly is supplied both as a TASM OBJ file and an MPASM HEX file (the latter has configuration values embedded in it). Users of the TASM OBJ file should configure their PIC for crystal XT, WDT off, POR on.

Regarding the PC interface, if you have Visual Basic 6 already installed on your machine you only need to use files Morse.exe, INPOUT.DLL and Morse Code.txt. Copy them into a new folder named MORSE (or any other of your choosing).

If you do not have VB6, you need three other files, comdlg32.ocx, Mscomctl.ocx and Msvbvm60.dll, held on our 3.5-inch disk named Interface Disk 1, and in the Interface folder on the ftp site (they are also included with the *Toolkit TK3* software). These files must be copied into the same folder as the other three files.

EPE MORSE READER MORSE ISN'T DEAD

MORSE WEB SITES

There are too many web sites devoted to Morse code for them to be listed here. However, do as the author did (and mentioned earlier), search via www.google. com (an excellent search engine).

Those who wish to know more about becoming an amateur radio operator in the UK should contact the Radio Society of Great Britain (RSGB). They will also advise details of their Morse test transmissions, courses and exam requirements. RSGB, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE. Web: www.rsgb.org.

Books by our New Technology author, Ian Poole, also provide information about amateur radio. Browse lineone.net/~ian_poole/books.

Morsum Magnificat is a bi-monthly magazine that has been around since 1983 and "is for all Morse enthusiasts, amateur or professional, active or retired. It brings together material which would otherwise be lost to posterity, providing an invaluable source of interest, reference and record relating to the traditions and practice of Morse".

Information about MM can be obtained through Morsum Magnificat, The Poplars, Wistanswick, Market Drayton, Shropshire TF9 2BA. Tel: 01630 638306. Fax: 01630 638051. E-mail: zyg@MorseMag.com. Web: www.MorseMag.com. (It can also be found at www.morsemag.com.)

BACK ISSUES

THE MO. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY & COMPUTER PROJECTS

We can supply back issues of EPE by post, most issues from the past three years are available. An EPE index for the last five years is also available – see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photocopy of any one article (or one part of a series) can be purchased for the same price. Issues from Jan. 2002 onwards are also available to download from www.epemag.com.

YOU MISS THESE?

Photostats only

PROJECTS ● Carrcorder Mixer ● PIC Graphics L.C.D. Scope ● D.C. Motor Controller ● Intruder

Alarm Control Panel—Part 2.

FEATURES ● The Schmitt Trigger—Part 7 ● Interface ● Circuit Surgery ● Ingenuity Unlimited ● New Technology Update ● Net Work — The Internet Page

JUNE '01

PROJECTS • Hosepipe Controller • In-Circuit Ohmmeter • Dummy PIR Detector • Magfield

FEATURES • Controlling Jodrell Bank • PIC1687x Extended Memory Use • Practically Speaking • Ingenuity Unlimited • New Technology Update • Circuit Surgery • Net Work The Internet Page.

PROJECTS • Stereo/Surround Sound Amplifier PIC to Printer Interface • Perpetual Projects 1—Solar-Powered Power Supply and Voltage Regulator • MSF Signal Repeater and Indicator.

FEATURES • The World of PLCs • Ingenuity Unlimited • Circuit Surgery • New Technology Update • Net Work – The Internet Page.

AUG '01

PROJECTS ● Digitimer ● Lead-Acid Battery Charger ● Compact Shortwave Loop Aerial ● Perpetual Projects 2 – L.E.D. Flasher – Double

FEATURES ● Controlling Power Generation ● Ingenuity Unlimited ● Interface ● Circuit Surgery ● New Technology Update ● Net Work.

SEPT '01

PROJECTS • Water Monitor • L.E.D. Super PROJECTS ● Water Monitor ● L.E.D. Super Torches ● Synchronous Clock Driver ● Perpetual Projects 3 – Loop Burglar Alarm – Touch-Switch Door-Light – Solar-Powered Rain Alarm.

FEATURES ● Controlling Flight ● Ingenuity Unlimited ● Practically Speaking ● Circuit Surgery ● New Technology Update ● Net Work – The Internet Page

Internet Page.

OCT '01 Photostats only

PROJECTS ● PIC Toclkit Mk3 ● Camcorder Power Supply • 2-Valve SW Receiver • Perpetual Projects
4 – Gate Sentinel – Bird Scarer – In-Out Register. ■ Real Section
■ Rea

NOV '01

PROJECTS • Capacitance Meter • Pitch Switch • Lights Needed Alert ● Teach-In 2002 Power Supply.

FEATURES ● Teach-In 2002 – Part 1 ● Practically

Speaking ● Circuit Surgery ● New Technology

Update ● Ingenuity Unlimited ● Net Work – The

Internet Page ● Free 16-page Supplement – PIC

Toolkit TK3 For Windows.

DEC '01

PROJECTS ● Ghost Buster ● PIC Polywhatsit ● Twinkling Lights ● Mains Failure Alarm.
FEATURES ● Teach-In 2002 – Part 2 ● Marconi – The Father of Radio ● Interface ● Ingenuity Unlimited ● Circuit Surgery ● New Technology Update ● Net Work – The Internet Page ● 2001 Annual Index

JAN '02

PROJECTS ● PIC Magick Musick ● Time Delay Touch Switch ● Versatile Bench Power Supply ● Forever Flasher.

FEATURES ● Teach-In 2002 – Part 3 ● Practically Speaking ● Ingenuity Unlimited ● New Technology Update ● Circuit Surgery ● Net Work – The Internet

PROJECTS ● PIC Spectrum Analyser ● Guitar Practice Amp ● HT Power Supply ● Versatile

Current Monitor.

FEATURES • Teach-In 2002 - Part 4 • Ingenuity
Unlimited • Russian Space Shuttle Revisited •
Circuit Surgery • Interface • New Technology
Update • Net Work - The Internet Page.

MAR '02

PROJECTS • MK484 Shortwave Radio • PIC Virus Zapper ● RH Meter ● PIC Mini-Enigma.

FEATURES ● Teach-In 2002 — Part 5 ● Ingenuity
Unlimited ● Programming PIC Interrupts—1 ●
Circuit Surgery ● Practically Speaking ● New
Technology Update ● Net Work — The Internet

APR '02

PROJECTS • Electric Gultar Tuner • PIC
Controlled Intruder Alarm • Solar Charge and Go
• Manual Stepper Motor Controller
FEATURES • Teach-In 2002 – Part 6 • Interface
• Programming PIC Interrupts—2 • Circuit Surgery
• Ingenuity Unlimited • New Technology Update
• Net Work — The Internet Page • FREE Giant

Op.Amp Data Chart.

PROJECTS ● PIC Big-Digit Display ● Simple Audio Circuits - 1 ● Freezer Alarm ● Washing Ready Indicator

FEATURES ● Teach-In 2002 - Part 7 ● Ingenuity Unlimited ● Practically Speaking ● New Technology Update ● Circuit Surgery ● Net Work – The Internet

JUNE '02

PROJECTS ● Biopic Heartbeat Monitor ● Frequency Standard Generator ● Simple Audio Circuits – 2 ● World Lamp.
FEATURES ● Teach-In 2002 – Part 8 ● Interface ●

New Technology Update ● Circuit Surgery ● Ingenuity Unlimited ● Net Work - The Internet

JULY '02

PROJECTS • EPE StyloPIC • Infra-Red Autoswitch • Simple Audio Circuits - 3 • Rotary Combination Lock

FEATURES ● Teach-In 2002 – Part 9 ● Practically Speaking ● Using The PIC's PCLATH Command ● Ingenuity Unlimited ● Circuit Surgery ● New Technology Update ● Net Work-The Internet Page.

AUG '02

PROJECTS • PIC World Clock • Pickpocket Alarm Big-Ears Buggy ● Simple Audio Circuits – 4.
 FEATURES ● Teach-In 2002 – Part 10 ● Using Square Roots with PICs ● Ingenuity Unlimited ● Evolutionary Electronics ● Interface ● Circuit Surgery ● Net Work – The Internet Page.

BACK ISSUES ONLY £3.30 each inc. UK p&p. Overseas prices £3.80 each surface mail, £5.25 each airmail.

We can also supply issues from earlier years: 1998 (except Jan. to May, July, Nov., Dec.), 1999, 2000 (except Feb., July), 2001 (except May, Oct.). Where we do not have an issue a photocopy of any one article or one part of a series can be provided at the same price.

ORDER FORM - BACK ISSUES - PHOTOCOPIES- INDEXES
Send back issues dated
Send photocopies of (article title and issue date)
Send copies of last five years indexes (£3.30 for five inc. ρ&p – Overseas £3.80 surface, £5.25 airmail)
Name
Address
Tel:
I enclose cheque/P.O./bank draft to the value of £
Please charge my Visa/Mastercard/Amex/Diners Club/Switch £ Switch Issue No
Card No
SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562. E-mail: orders@epemag.wimborne.co.uk On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm
Payments must be in £ sterling – cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order,
Send a copy of this form, or order by letter if you do not wish to cut your issue.

STORE YOUR BACK ISSUES ON MINI CD-ROMS

A great way to buy *EPE* Back Issues – our mini CD-ROMs contain back issues from our *EPE Online* website plus bonus articles, all the relevant PIC software and web links. Note: no free gifts are included. All this for just £12.45 each including postage and packing.

VOL 1 CONTENTS

BACK ISSUES - November 1998 to June 1999 (all the projects, features, news, IUs etc. from all eight issues). Note: No advertisements are included. PIC PROJECT CODES - All the available codes for the PIC based projects published in these issues.

VOL 2 CONTENTS

BACK ISSUES – July 1999 to December 1999 (all the projects, features, news, I'Us, etc from all six issues). Note: No advertisements are included. PIC PROJECT CODES – All the available codes for the PIC-based projects published in these issues.

VOL 3 CONTENTS

BACK ISSUES – January 2000 to June 2000 (all the projects, features, news, IUs, etc. from all six issues). PIC PROJECT CODES – All the available codes for the PIC-based projects published in these issues.

VOL 4 CONTENTS

BACK ISSUES – July 2000 to Dec. 2000 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES – All the available codes for the programmable projects in these issues.

VOL 5 CONTENTS

BACK ISSUES – January 2001 to June 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES – All the available codes for the programmable projects in these issues, including those for Interface.

VOL 6 CONTENTS

BACK ISSUES – July 2001 to December 2001 (all the projects. features, news, IUs etc. from all six issues). PROJECT CODES – All the available codes for the programmable projects in these issues, including those for *Interface*.

EXTRA ARTICLES - ON ALL VOLUMES

BASIC SOLDERING GUIDE – Alan Winstanley's internationally acclaimed fully illustrated guide. UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components. HOW TO USE INTELLIGENT L.C.Ds, By Julyan llett – An utterly practical guide to interfacing and programming intelligent liquid crystal display modules. PhyzzyB COMPUTERS BONUS ARTICLE 1 – Signed and Unsigned Binary Numbers. By Clive "Max" Maxfield and Alvin Brown. PhyzzyB COMPUTERS BONUS ARTICLE 2 – Creating an Event Counter. By Clive "Max" Maxfield and Alvin Brown. INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph's book that explains computer graphics technology in an interesting and understandable way with full colour graphics.

EXTRA ARTICLE ON VOL 1 & 2

THE LIFE & WORKS OF KONRAD ZUSE – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

NOW AVAILABLE

£12.45 each including VAT

and p&p

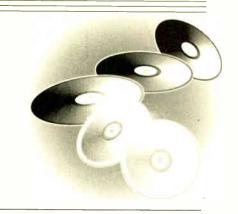
ea
abe
om

NOTE: These mini CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader (available free from the Internet —

www.adobe.com/acrobat)

Order on-line from www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA \$ prices)

or by phone, Fax, E-mail or Post


BACK ISSUES MINI CD-ROM ORDER FORM
Please send me (quantity) BACK ISSUES CD-ROM VOL 1
Please send me (quantity) BACK ISSUES CD-ROM VOL 2
Please send me (quantity) BACK ISSUES CD-ROM VOL 3
Please send me (quantity) BACK ISSUES CD-ROM VOL 4
Please send me (quantity) BACK ISSUES CD-ROM VOL 5
Please send me (quantity) BACK ISSUES CD-ROM VOL 6
Price £12.45 each – includes postage to anywhere in the world.
Name
Address
Post Code
☐ I enclose cheque/P.O./bank draft to the value of £
☐ Please charge my Visa/Mastercard/Amex/
£
Card No.
Expiry DateSwitch Issue No
SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd
408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. E-mail: orders@epemag.wimborne.co.uk
Payments must be by card or in £ Sterling – cheque or bank
draft drawn on a UK bank. Normally supplied within seven days of receipt of order.

Send a copy of this form, or order by letter if you do not wish to

cut your issue.

Constructional Project

VINYL TO CD PREAMPLIFIER

TERRY de VAUX-BALBIRNIE

Clean up those old records, dust down that turntable and let's get burning!

o YOU have a collection of old vinyl records? If so, you might wish to transfer them to CDs. By doing this, you will preserve their value because you will only need to play them once.

It may even be possible to enhance the sound by removing some of the background noise and clicks which are found on worn recordings. If you have a CD player in your car or own a portable unit, you will also be able to play your work "on the move".

SYSTEM REQUIREMENTS

To transfer a recording to CD, you need a computer with a Compact Disc writer installed. Many new machines, of course, already have one of these. If yours is not so equipped, you will find that fitting a CD "burner" module is inexpensive and straightforward.

You do not even need a particularly modern machine. A Pentium 133MHz PC may suffice but a new up-to-date machine will be much quicker (that is, produce a CD at the higher speeds allowed by the writer). Before purchasing any hardware, it is important to check compatibility with the supplier/manufacturer.

To record sound files on to the hard drive before transferring them to a CD will require quite a lot of spare capacity. If your drive is almost full, you will need to back up files in order to clear sufficient space. To record stereo tracks in 16-bit resolution at 44-1kHz (CD quality) you will need some 600MB for one hour of work and you could run into trouble if you do not have at least 800MB available.

METHODOLOGY

It is not a good idea to link the record deck to the computer sound card *direct* by plugging it into the microphone input. Some people have done this thinking, quite correctly, that a magnetic cartridge provides a low-level output comparable with that of a dynamic microphone. Although this may work, the results will be very disappointing. This is because no *equalisation* has been applied to the signal. It will be found that the

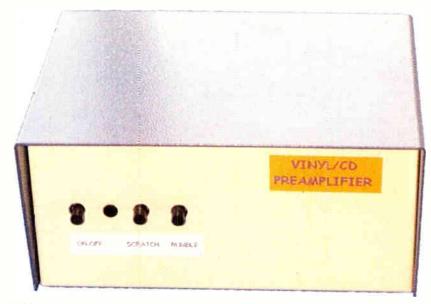
copy recording is deficient in bass (low frequencies) but have excessive treble (high frequency content). In other words, it will sound very "tinny". More will be said about equalisation presently.

A better method would be to use an existing hi-fi amplifier. The record deck would be plugged into its "Phono" input and a Line (high level) output obtained at the back (the one used for tape recording). This would be connected to the line input on the sound card using a piece of twinscreened wire fitted with the appropriate connectors. The phono connection would provide the necessary equalisation.

Unfortunately, many modern amplifiers make no provision for playing "old fashioned" vinyl discs. You may therefore find that it has no phono input. Even if you do have a suitable amplifier, it may need a long connecting lead to reach the computer station and this could result in hum pick-up and degraded performance.

OVERVIEW

The circuit described here is a small battery-operated stereo preamplifier which provides equalisation and boosts the output of a magnetic cartridge to line-level. There are also Scratch and Rumble filter push-button switches. These may be used to reduce the effects of surface clicks and low-frequency motor or turntable noise respectively.


As well as being useful for making CDs, the preamplifier will be found handy by enthusiasts who simply wish to play their vinyl records using a hi-fi amplifier that does not have a phono input. Some readers may even use it for tape or Mini Disc work or for making MP3 files to be sent over the Internet.

In operation, the circuit requires some 40mA and the four AA size cells housed internally will provide up to fifty hours of service. A front panel mounted l.e.d. indicator requires some 15mA so, if the user can be trusted to switch the unit off after use, the l.e.d. may be omitted. This would give a significant increase in battery life. For extended periods of use, a larger battery could be placed externally.

This unit must not be powered using a mains-derived low-voltage supply (such as a plug-in adaptor).

MORE EQUAL THAN OTHERS

Returning to the topic of equalisation, this must be applied if analogue recordings are to be reproduced with any degree of

fidelity. To understand why this is necessary, you need to know something about the recording process.

Imagine the sound has three "bands" comprising the *low*, *intermediate* and *high* frequency content. When the groove was cut in the master disc, the low frequency part was reduced in level (volume) while the high frequencies were increased. Only the intermediate band was left unchanged.

Leaving the low frequencies as they were in the original sound would have required more violent movements of the groove cutter (that is, heavier modulation). This would have produced a wider groove and a consequent reduction in available playing time. Also, the playing stylus might have difficulty following such a groove and it may tend to jump out. By reducing the level of the low-frequency sound, it is possible to obtain a uniform groove width and a longer playing time.

Equalisation is the process by which the high and low frequency content from the cartridge are restored to their original state and, in theory, should be an exact mirror of that used during recording. Note that by restoring the high frequencies, the surface noise present during playback (which is made up chiefly of high frequencies) is reduced. It thus provides a simple means of noise reduction.

MAINTAINING STANDARDS

Unfortunately, different equalisation standards have existed regarding the values of the cut-off frequencies defining the low, intermediate and high bands and also the degree of "cut" or "boost". The same circuit will therefore not provide perfect results with all records.

However, most vinyl discs produced since the 60s have followed the RIAA

(Recording Industry Association America) standard. practice, equaliser designed for this standard will also provide good results when applied to recordings using a different one (American Standard Record and British Microgroove format). It should also be suitable for 78s.

Practical equalisation circuits can range from the simple (which provide only a coarse correction) to the very

complex. This circuit lies somewhere near the middle of the range and provides good results without special adjustment.

The graph shown in Fig.1 illustrates the ideal (theoretical) RIAA equalisation compared with that provided by this circuit. Note that this is for illustration only and is not drawn to scale.

The section to the left-hand side labelled "A" provides a "roll-off" of frequencies below some 10Hz. This reduces the "rumble" that is transmitted from the motor or turntable bearing to the cartridge through the turntable. This is much more pronounced

with a cheap unit and without such a "cut" would be accentuated due to the low-frequency boost made during equalisation.

Before proceeding to construct this circuit, check that you have a good quality record deck available. This must be fitted with a *magnetic* cartridge (not a ceramic one). If you wish to transfer 78 r.p.m. records, make sure your turntable will operate at this speed (many are designed for 33/45 only) also that it is fitted with the correct type of stylus.

CIRCUIT DETAILS

The full circuit diagram for the Vinyl To CD Preamplifier is shown in Fig.2. This is built around three identical dual low-noise operational amplifiers (op.amps) – ICla/IClb, IC2a/IC2b and IC3a/IC3b.

Equalisation of left and right channels is centred around IC1 and IC2 respectively, while IC3 is a "straight" amplifier which boosts both channels to line level.

It is only necessary to describe the action of one channel (the left-hand one) since the other is the same. Note that the component numbering for the right-hand channel is prefixed with a "one hundred". Thus, R2 (left) corresponds with "R102" (right). Components which are common to both channels, the i.c.s, switches and input/output sockets are numbered as if they belonged to the left channel.

NON-INVERTING AMPLIFIER

The first section of the circuit is a non-inverting amplifier ICla. The signal obtained from the input cartridge (left-hand channel) at SK1 is applied to the non-inverting input, pin 3, via capacitor C2 (or C1 and C2 in parallel if Rumble switch S1a contacts are closed).

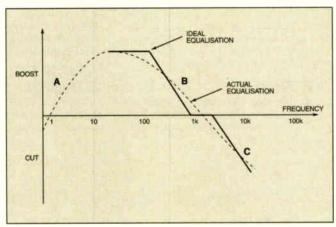


Fig.1. Equalisation graph (not to scale): a) roll-off; b) fall-off and c) high frequency filtering.

This, in conjunction with fixed resistor R3, determine the anti-rumble characteristics of the circuit (the roll-off below 10Hz labelled "A" in Fig. 1). Resistor R3 also sets the input impedance making it suitable for a standard magnetic cartridge.

Anti-rumble processing comes about because the impedance of capacitor C2 rises as the frequency falls. High frequency signals will then flow more easily through resistor R3 and hence through capacitor C3 (which has a relatively high value and therefore negligible impedance at these frequencies) to 0V.

It is, therefore, the higher-frequency signals which develop a greater voltage at ICla pin 3. In other words, the low frequencies tend to be filtered out.

With the Rumble switch contacts closed, the pair of capacitors C1 and C2 give the same effect as a single unit having a larger value. This decreases the overall impedance and the circuit rolls off at a lower frequency.

OPERATING CHARACTERISTICS

The output of ICla at pin 1 is connected to its inverting input (pin 2) through the parallel arrangement of resistor R5 and capacitor C4. This works in conjunction with resistor R4 to set the gain.

The other end of R4 is connected to the mid-point of a potential divider consisting of equal-value resistors R1 and R2. This sets a d.c. voltage nominally equal to one-half that of the supply – that is, 3V. This provides a "zero" reference so that the a.c. input signal will rise and fall with respect to it.

If the reference was a true 0V (the voltage of the 0V supply line), the negative half-cycles of the wave would not be amplified. This is because the output voltage cannot fall below 0V. As it is, the output signal will swing above and below the 3V level.

Ignoring the effect of capacitor C4 for the moment, the gain of this section is approximately eight times. However, with C4 in place, the impedance of the feedback loop will fall as the frequency rises. This reduces the gain at higher frequencies and provides the "fall-off" characteristic shown by Fig.1 section "B".

Section IC1b of the circuit is configured as a unity-gain amplifier (buffer). The signal from IC1a output, at pin 1, passes through resistor R7 (or R6 connected in parallel with it when Scratch switch contacts S2a are closed) to IC1b's non-inverting input at pin 5.

High frequency signals now flow more easily through capacitor C5 (due to its reduced impedance) and hence to a further "false zero" derived from the potential divider made up of resistors R8 and R9. The voltage appearing at IC1b pin 5 will therefore be less than with higher frequencies. The higher frequencies therefore tend to be filtered out (shown by section "C" in Fig.1).

SCRATCH MY BACK

With Scratch switch S2a contacts closed, resistors R6 and R7 are placed in parallel and provide near-RIAA high-frequency attenuation. With the switch contacts open, resistor R7 alone provides a more dramatic cut-off and provides the "scratch reduction" effect. These values may be experimented with or a "tone control" could be fitted to give a continuously variable effect. More will be said about this later.

The output from IC1b, pin 7, is now equalised but still at a low level. The next section, centred around IC3a, is an amplifier used in inverting mode. This boosts the signal by a large factor making it suitable to drive the line input of a sound card or external power amplifier.

Capacitor C7 allows the output signal from IC1b pin 7 to pass with little loss (due to its relatively low impedance at

VINYL TO CD PREAMPLIFIER

COMPONENTS

See

page

TALK

Resistors

R1, R101, R2, R102, R8, R108,

R9, R109 2k2 (8 off) R3, R103,

R4, R104 R10, R110, R11, R111 47k (8 off)

R5. R105.

R6, R106 330k (4 off) R7, R107 120k (2 off) R12, R112 15k (2 off) R13, R113 1M5 (2 off) R14 270Ω

All resistors 0.6W 1% metal film.

Potentiometers

VR1, VR101 1M min. enclosed carbon preset, vert. (2 off).

Capacitors

C1, C101 470n polyester film (2 off) C2, C102 330n polyester film (2 off) C3, C103,

C6, C106 22µ min. radial elect. 16V C8, C108 (6 off)

C4, C104 (8 0ff)
C4, C104 10n polyester film (2 off)
C5, C105 2n2 polyester film (2 off)
C7, C107 1\(\mu\) polyester film (2 off)
C9, C109 10pF ceramic (2 off)
C10, C110 (2 off)

C11 220µ min. radial elect. 16V

100

Semiconductors

D1 3mm red l.e.d. IC1 to IC3 NE5532AN dual lownoise op.amp (3 off)

Miscellaneous

S1 to S3 d.p.d.t. interlocking pushbutton switch – see text

(3 off)

B1 6V battery pack (4 x AA alkaline cells)

SK1 to SK4 phono socket, single hole, panel mounting (see text) (4 off)

Printed circuit board available from the EPE PCB Service, code 366; 8-pm d.i.l. i.c. socket (3 off); aluminium instrument case, size 150mm x 100mm x 75mm battery holder and connector; 3mm l.e.d. clip; screened cable; multistrand connecting wire; solder, etc.

Approx. Cost Guidance Only

£24 excl. batts. & case

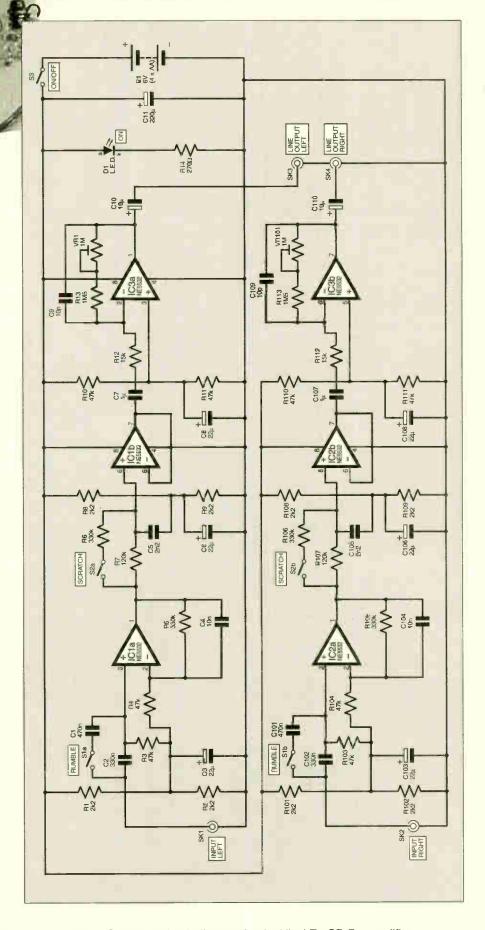


Fig.1. Complete circuit diagram for the Vinyl To CD Preamplifier.

audio frequencies) through resistor R12 and hence to IC3a inverting input at pin 2. Ignoring capacitor C9 for the moment, fixed resistor R13 connected in series with preset potentiometer VR1 provides negative feedback and, in conjunction with R12, sets the gain.

This will be some 170 times with VR1 set to its maximum value and 100 times at minimum. Preset VR1 will be adjusted at the end to provide a suitable output for the particular cartridge being used.

The value of resistor R13 could be increased to provide a greater gain if this is shown to be necessary at the testing stage. By adjusting preset VR1 in conjunction with its opposite number in the other channel (VR101), the circuit will also be "balanced" to provide equal outputs for both channels.

PROMOTING STABILITY

Returning to capacitor C9 which appears in IC3a feedback loop, its small value provides an extremely high impedance at audio frequencies. It therefore normally has negligible effect.

However, if radio-frequency signals happen to be picked up by the circuit, the impedance of C9 will be low. This will lower the impedance of the feedback loop and reduce the gain at these frequencies. This prevents instability.

The output signal finally passes from IC3a pin 1, via capacitor C10, to Line Oùtput socket, SK3 (Left channel).

CONSTRUCTION

Construction of the Vinyl To CD Preamplifier is based on a single-sided printed circuit board. This board is available from the *EPE PCB Service*, code 366. The topside component layout and actual size underside copper foil master pattern are shown in Fig.3.

Commence construction by drilling the three mounting holes as indicated. Solder the spring-loaded, pushbutton switches in position. If the specified type is not available, use toggle or slide units and hard-wire these to the appropriate points on the p.c.b. at the end of construction. Next, solder in position the three i.c. sockets.

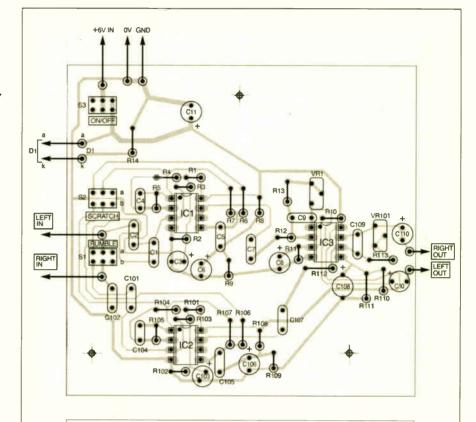
Follow with all resistors, preset potentiometers and capacitors – taking particular care over the polarity of the electrolytics. Solder the battery connector to the +6V and 0V points on the p.c.b., again, taking care over their polarity. Adjust presets VR1 and VR101 to approximately mid-track position to provide a medium degree of gain for each channel.

BOXING UP

Note that this circuit must be housed in a METAL box to provide adequate screening against hum pick-up.

Decide on a suitable layout for the internal components. Measure the positions of the switches and l.e.d. on the p.c.b. Mark these on the front panel of the box at the half-height level and drill them through. Mark and drill the p.c.b. mounting holes also those for the battery holder and the input and output sockets.

Cut plastic stand-off insulators to the correct length so that, when the p.c.b. is in position, the switch buttons will pass through their holes with a little clearance.


Secure the p.c.b. and make sure the switches operate freely.

Attach the battery holder and the input and output sockets. If these are of the specified type, you will need to scrape away the paint on the inside surface of the box to allow the outer ("sleeve") connections to make good metallic contact with the case.

Attach one of the solder tags supplied with the sockets under the fixing nut of one of them. This will be used to "earth" the "OV" wire leading from the circuit board.

If you are using sockets of the fully-insulated type rather than the specified pattern, the sleeve connection of *each* must be connected to the case (0V) using a separate solder tag.

Referring to Fig.4 and photographs, complete the internal wiring. Take care that left and right inputs and outputs maintain their identity during the wiring process (that is, they do not become interchanged). Set all switches to the "out" position, insert the batteries and attach the lid of the case.

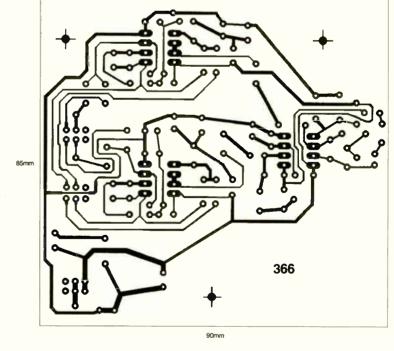


Fig.3. Printed circuit board component layout and full-size underside copper track master pattern for the Vinyl To CD Preamplifier.

TESTING

Unless the stylus on the record deck is known to have given very little service, renew it. Styli cost very little compared with that of your record collection. Also, a new stylus will give better results. If you are going to transfer 78s you must have the correct stylus fitted – do not use one made for 33s/45s.

It would be useful to have the turntable manual available to help make optimum stylus pressure and anti-skid adjustments. Sometimes a slightly greater pressure than normal will give better results. Although this wears the record more quickly it may be worthwhile since the record need only be played once.

For initial testing, connect the output of the preamplifier to the line input of a hi-fi amplifier using twin-screened cable fitted with the appropriate connectors. Do *not* connect it to the computer sound card at this stage.

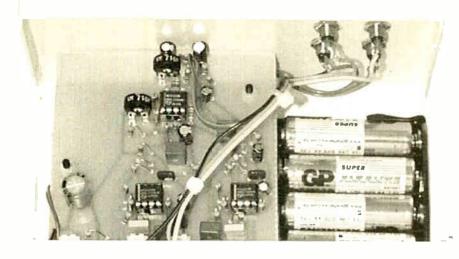
Connect the turntable to the preamplifier input sockets. If possible, use a valueless record to make initial tests. Turn the Volume control on the amplifier to minimum and switch on both units. Check that the front panel l.e.d. operates.

It may be found convenient to use headphones to monitor the sound. Start playing the record and gradually increase the amplifier's volume control. The music should be clearly heard. Compare the volume with that playing similar music from a commercial CD.

If the levels are not similar, adjust VR1 and VR101 so that they are. If one channel is quieter than the other, adjust presets VR1 or VR101 as appropriate to bring the weaker channel to the level of the stronger one. This procedure ensures that the output is at line level and balanced between the channels.

Check the effects of the Scratch and Rumble switches. The rumble effect is very subtle and may not be noticed. Note that, as described, pressing the switches *in* provides the anti-scratch and anti-rumble effects.

SUBJECT FOR EXPERIMENT


The frequency balance and anti-scratch effects could be altered by changing the value of resistors R6/R7 and R106/R107. By increasing the appropriate resistor values slightly, the high-frequency response will be "cut" and vice versa. Beware – small changes make a lot of difference!

An alternative method would be to replace resistors R7/R107 with a dual-ganged, panel-mounted, potentiometer (stereo). This would allow for continuous variation and switch S2 could then be ignored.

MAKING TRACKS

When setting up the equipment to make CDs, the turntable should not be placed on the same surface as the computer (otherwise you could introduce hum due to vibration being transferred to the cartridge from the computer). Check that the turntable is "true" using a spirit level.

Connect the preamplifier output to the line input of the PC sound card using twinscreened wire. Check that Left and Right channels are connected correctly.

Layout of components inside the metal case.

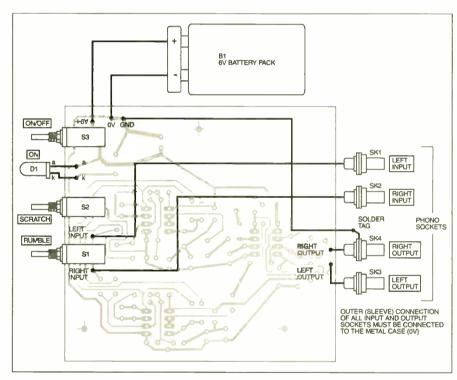


Fig.4. Interwiring details from the printed circuit board to the rear panel mounted input and output phono sockets.

Before making a recording, clean the surface of the disc using a proprietary antistatic cleaner. If it is very dirty, it will need special treatment to remove the debris which will have become deeply embedded in the groove. You could try playing it once or twice in an attempt to allow the stylus itself to remove the contamination.

STYLUS CHECKS

Check the stylus after every playing for any build-up of fluff and dirt. Leaving this will spoil the high-frequency response and also tend to cause the stylus to jump out of the groove. Use a proprietary stylus cleaning kit (a fine brush and cleaning fluid). Styluses are easily damaged so follow the instructions and work carefully.

MAKING A RECORDING

Refer to your CD recording software instructions to make optimum sound level settings and make some tests using the old record. For your final recordings, you will probably be able to observe the file oscilloscope-style. It is then possible to remove the heaviest clicks by highlighting and deleting them.

However, this must be done with great care. Some CD recording software allows for sophisticated restoration work to be undertaken. Automatic click suppression can be a problem because many sections of the intended waveform are click-like.

One final point – do not use the scratch filter unless the result sounds better. This is because it gives a markedly "dull" effect.

£2 BARGAIN PACKS

30A 600V BRIDGE RECTIFIER. Order Ref:

10 HOOK-UP LEADS. Assorted colours terminating with insulated crocodile clips each end, each lead length 36cm. Order Ref: 2P459.

PHILIPS STEPPER MOTOR. 12V 7.5 degrees. Order Ref: 2P457

32µF 250V A.C. CAPACITOR. Order Ref: 2P452. 4µF 440V A.C. CAPACITOR. Order Ref: 2P454. VERY POWERFUL MOTOR. Operates off 6, 9 or 12V D.C. 21/2in. long, 11/2in. diameter. Order Ref: 2P456

HIGH VOLTAGE STRIPPER. Contains many items for 10kV working. Order Ref: 2P388.

GALVANISED EQUIPMENT BOX. 150mm square

without lid, Order Ref: 2P391

4 r.p.m. GEARED MAINS MOTOR. 115V but supplied with mains adaptor. Order Ref: 2P393.
TWIN 50pF AIR-SPACED TUNING CAPACITOR,

the veins wide spaced so suitable for transmitting. Order Ref: 2P394.

20 R.P.M. GEARED MAINS MOTOR, 115V but supplied with mains adaptor. Order Ref: 2P396. 20µF 375V CAPACITOR. Aluminium cased. Order Ref: 2P406

9V-0V-9V MAINS TRANSFORMER, 25VA, upright mounting with fixings. Order Ref: 2P408.

COPPER CLAD BOARD. Size 15in. x 10in. 1/1sin. thick for making p.c.b.s etc. Order Ref: 2P409

20W TWEETER. 4in. x 4in. 8 ohm by Goodmans. Order Ref: 2P403

BATTERY CHARGER METER. 0A-3A. Order Ref:

W-SHAPED 30W FLUORESCENT. Philips, ideal name plate illluminator. Order Ref: 2P372.

FOR A LONG LIST OF £1 BARGAIN PACKS SEE AUGUST ISSUE OR **RING US FOR THE LIST**

DIMMER SWITCH. Standard size flush place state colour - red, yellow, green or blue. Order Ref:

TELEPHONE EXTENSION LEAD. 12m with plug end, socket ends, Order Ref; 2P338.

FIGURE-8 FLEX. Mains voltage, 50m. Order Ref:

INFRA-RED UNIT. As fitted TV receiver. Order L.C.D. CLOCK MODULE with details of other

uses, Order Ref: 2P307 AM/FM RADIO RECEIVER with speaker but not

cased. Order Ref: 2P308 2A MAINS FILTER AND PEAK SUPPRESSOR. Order Ref: 2P315

45A DP 250V SWITCH on 6in. x 3in. gold plate. Order Ref: 2P316.

SOLAR CELL. 3V 200mA, 5 of these in series would make you a 12V battery charger, £2 each. Order Ref: 2P374.

PERMANENT MAGNET SOLENOID. Opposite

action, core is released when voltage is applied. Order Ref: 2P327.

HEATER PAD. Not waterproof. Order Ref: 2P329. DISK DRIVE. Complete less stepper motor, has all the electronics to control stepper motor, Order Ref; 2P280

15V 320mA A.C. POWER SUPPLY. In case with 13A base, ideal for bell or chime controller. Order Ref: 2P281

POWERFUL MAINS MOTOR with 4in, spindle, Order Ref: 2P262

20M 80 OHM TV COAX. Order Ref: 2P270.

LOCTITE METAL ADHESIVE. Tube and some accessories. Order Ref: 2P215.

6-DIGIT COUNTER. Mains operated. Order Ref: 2P235

13A ADAPTORS. Take two 13A plugs, pack of 5, £2. Order Ref: 2P187.

3-CORE 5A PVC FLEX. 15m. Order Ref: 2P189. MAINS TRANSFORMER. 15V, 1A. Order Ref: 2P198

7-SEGMENT NEON DISPLAYS. Pack of 8. Order

MODERN TELEPHONE HANDSET, Ideal office extension, Order Ref: 2P94.

13A SWITCH SOCKET on satin chrome plate. Order Ref: 2P95

500 STAPLES. Hardened pin, suit burglar alarm or telephone wire. Order Ref: 2P99.

PAD SWITCH for under carpets, doormats etc. Order Ref: 2P119.

SELLING WELL BUT STILL AVAILABLE

IT IS A DIGITAL MUL-TITESTER, complete with backrest to stand it with backrest to stand it and hands-free test prod holder. This tester measures d.c. volts up to 1,000 and a.c. volts up to 750; d.c. current up to 10A and resistance up to 2 megs. Also tests transistors and diodes and has an internal buzzer for content of the standard product of the standard diodes and has an internal buzzer for continuity tests. | Comes

complete with test prods, battery and instructions. Price £6.99. Order Ref: 7P29

INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges: AC/DC volts, 3 megohms. The multimeter has four ranges: AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least-£50 each, yours for only £7.50 with leads, carrying case £2 extra. Order Ref: 7.5P4.

REPAIRABLE METERS. We have some of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, £3. Order Ref; 3P176. BT TELEPHONE EXTENSION WIRE. This is proper heavy

duty cable for running around the skirting board when you want to make a permanent extension. Four cores properly colour coded, 25m length only £1. Order Ref; 1067.

HEAVY DUTY POT. Rated at 25W, this is 20 ohm resistance so it could be just right for speed controlling a d.c. motor or device or to control the output of a high current. Price £1. Order Ref: 1/33.1.1.

Order Hel: 1/33L1.

ImA PANEL METER. Approximately 80mm x 55mm, front engraved 0-100. Price £1.50 each. Order Ref: 1/16R2.

D.C. MOTOR WITH GEARBOX. Size 60mm long, 30mm diameter. Very powerful, operates off any voltage between 6V and 24V D.C. Speed at 6V is 200 rpm, speed controller available. Special price £3 each. Order Ref: 3P108.

FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a Xenon tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price \$5. Order Petr 59267

MOST USEFUL POWER SUPPLY. Rated at 9V 1A, this plugs into a 13A socket, is really nicely boxed. £2. Order Ref: 2P733.

MOTOR SPEED CONTROLLER. These are suitable for D.C. MOTOR SPEEU CONTROLLER. These are suitable for D.C. motors for voltages up to 12V and any power up to 1/6h,p. They reduce the speed by intermittent full voltage pulses so there should be no loss of power. Made up and tested, £18. Order Ref: 20P39.

BALANCE ASSEMBLY KITS. Japanese made, when assembled ideal for chemical experiments, complete with

tweezers and 6 weights 0.5 to 5 grams. Price £2. Order Ref:

CYCLE LAMP BARGAIN. You can have 100 6V 0.2A MES bulbs for just £2.50 or 1,000 for £20. They are beautifully made, slightly larger than the standard 6.3V pilot bulb so they would be ideal for making displays for night lights and

SOLDERING IRON, super mains powered with long-life ceramic element, heavy duty 40W for the extra special job, complete with plated wire stand and 245mm lead, £3. Order

THIS MONTH IF YOUR ORDER IS £25 OR OVER YOU WILL GET A BRAND NEW 16 RANGE MULTITESTER FREE OF CHARGE.

RELAYS

We have thousands of relays of various sorts in stock, so if of various sorts in stock, so if you need anything special give us a ring. A few new ones that have just arrived are special in that they are plug-in and come complete with a special base which enables you to check voltages of connections of it without having to go underwithout having to go under-neath. We have 6 different

Prices include base
MINI POWER RELAYS. For p.c.b. mounting, size 28mm 25mm x 12mm, all have 16A changeover contacts for up to 250V. Four versions available, they all look the same but have

| 12V - Order Ref: FR17 | 24V - Order Ref: FR19 | 24V - Order Ref: FR19 | 24V - Order Ref: FR19 | 24V - Order Ref: FR20 | Price £1 each less 10% if ordered in quantities of 10, same

RECHARGEABLE NICAD BATTERIES. AA size, 25p pach, which is a real bargain considering many first charge as much as £2 each. These are in packs of 10, coupled together with an output lead so are a 12V unit but easily divideable into 2 × 6V or 10 × 1.2V. £2.50 per pack, 10 packs for £25 including carriage. Order Ref:

4 CIRCUIT 12V RELAY. Quite small, clear plastic enclosed

and with plug-in tags, £1. Order Ref: 205N.

NOT MUCH BIGGER THAN AN OXO CUBE. Another relay just arrived is extra small with a 12V coil and 6A changeover contacts. It is sealed so it can be mounted in any position or on a p.c.b. Price 75p each, 10 for £6 or 100 for £50. Order Ref: FR16.

Het: FR16.

1.5V-6V MOTOR WITH
GEARBOX. Motor is mounted
on the gearbox which has
interchangeable gears giving
a range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds, £7. Order Ref: 7P26.

£2 BARGAIN PACKS

24V STEREO POWER SUPPLY. Mullard. Order Ref:

UP TO 90 MIN 25A SWITCH. Clockwork. Order Ref: 2P90

POWERFUL MAINS MOTOR, 11/2 in. stack, double spindle. Order Ref: 2P55

SPEED CONTROL FOR MODELS. 6V-12V variable p.s.u., also reverse. Order Ref: 2P3.

MAINS TIME AND SET SWITCH. 25A, up to 6 hours delay. Order Ref: 2P9.

MOTORISED 6 MICROSWITCHES but motor 50V A.C. Order Ref: 2P19.

TWIN EXTENSION LEAD. Ideal lead lamp, Black & Decker tools, etc., 20m. Order Ref: 2P20.

MAINS COUNTER. Resettable, 3 digit. Order Ref:

ILLUMINOUS PANEL, 16 x 16V bulbs to light coal effect heater, etc. Order Ref: 2P317.

TIME AND SET SWITCH. 15A mains. Order Ref: 2P104

D.C. VOLT REDUCER. 12V-6V, fits into car lighter socket, Order Ref; 2P318.

CAPACITOR, VARIABLE. For tuning AM/FM with 1/4 in. spindle. Order Ref; 2P269

CAPACITOR, VARIABLE. 0.0005 solid dia. 1/4 in. spindle. Order Ref: 2P268. COPPER CLAD BOARD. 15 x 10 x 1/16 for p.c.b.

Order Ref: 2P409

25V-0V-25V MAINS TRANSFORMER. 11/2A. Order

20V-0V-20V DITTO. Order Ref: 2P411

80mm x 46mm x 65mm METAL PROJECT BOX with rubber feet, supplied as flat pack. Order Ref: 2P412. 24V 1A MAINS TRANSFORMER. Order Ref: 2P413. 12V 2A MAINS TRANSFORMER. Order Ref: 2P414. 80 OHM COAX. Extra thin, 15m. Order Ref: 2P417.

FOR A LONG LIST OF £1 BARGAIN PACKS SEE AUGUST ISSUE OR **RING US FOR THE LIST**

ROTARY SWITCH, 40A with porcelain pointer control knob. Order Ref: 2P419.

AIR-SPACED TUNING CAP with one section 350oF. the other 250pF, with ¼in. spindle and slow motion drive. Order Ref: 2P422.

DITTO but 150pF and 300pF. Order Ref: 2P423. TRANSMITTER TUNER. 2-gang, wide spaced. Order

Ref: 2P425 A.C. 250V CAPACITOR. 20µF. Order Ref: 2P427.

12V P.S.U. 800mA D.C. with pins for shaver socket. Order Ref: 2P428. MAINS MOTOR WITH GEARBOX giving 6 revs per

hour. Order Ref: 2P430. CLOCKWORK TIMESWITCH with scale settable up

to 6 hours. Order Ref; 2P432. OLD TIME RADIO CASE for the Good Companion. Order Ref: 2P436

4 OHM TWEETER, 20W, by Goodmans, Order Ref:

OLD TYPE 15A ROUND PIN PLUGS. Order Ref: 2P438. BT ENGINEER'S PHONE. Unused but missing some

parts, ideal for stripping. Order Ref: 2P439.

FLUORESCENT TUBE CHOKE. 65W or 80W. Order

MINI MOTOR WITH GEARBOX, giving 16 r.p.m. Order Ref: 2P442

ICESTAT. Cuts in just above freezing. Order Ref: 2P443.

BALANCE KIT with gram weights for chemical experiments etc. Order Ref: 2P444. Vu METER, 40mm square, Order Ref: 2P445.

SLYDLOK FUSE, 30A. Order Ref: 2P447. KV CAP. 1µF 1500V. Order Ref: 2P448.

9V P.S.U. 1A D.C., plugs into 13A socket.. Order Ref: 2P450.

6-CORE 3A FLEX, 15m, Order Ref; 2P451.

TERMS

Send cash, uncrossed PO, cheque or quote credit card number. If order is £25 or over deduct 10% but add postage, £3.50 if under 2 kilo, £6 if under 4 kilo,

& N FACTORS Pilgrim Works (Dept.E.E.) Stairbridge Lane, Bolney Sussex RH17 5PA Telephone: 01444 881965 E-mail: infactors@aol.com

READOUT

E-mail: editorial@epemag.wimborne.co.uk

John Becker addresses some of the general points readers have raised. Have you anything interesting to say?

Drop us a line!

WIN A DIGITAL MULTIMETER

A 31/2 digit pocket-sized l.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. It can also test diodes and bipolar transistors.

Every month we will give a Digital Multimeter to the author of the best Readout letter.

★ LETTER OF THE MONTH ★

SHOCK HORROR TALE!

Dear EPE,

I was re-reading some old EPE issues while waiting for the latest to turn up here in New Zealand (I don't suppose you could print EPE every week, could you?), and something Alan Winstanley wrote in Circuit Surgery of Sept '00 made me laugh out loud. I hasten to say I have the greatest respect for Alan's intellect which shines through everything he does, but I was reminded that there is sometimes a second, more amusing explanation for a set of symptoms.

A reader had queried Alan about "worrying" electric shocks from his dishwasher, and yet his RCD (residual current device) had not tripped the power off, and the RCD "checked out OK". Alan theorized a possible insulation fault but gave the excellent advice to get the dishwasher looked at by a professional.

The following story from my time as an electronic repairman shows how a working RCD might not trip even though the machine it is attached to is giving you electric shocks.

Some years ago I quickly attended a similar "fault" in an old, all-metal franking machine (stamps postage on envelopes) which had been relocated in an old office building and, while it was running well, had been giving electric shocks to everybody since the relocation "even when it was switched off". I believe the NZ power distribution system is the same as UK, 230V a.c., 50Hz, multiple earthed neutral, so on the way to the fault I was mentally going over things like earth wire broken off in the old machine, wiring faults and errors in the building, etc.

The ladies who used the machine were in some fear of their lives, and I had firmly advised them over the phone that this fear was well-grounded (is that a pun?). When I arrived onsite they were at first rather put out when they saw me dash in, wave my meter about the machine, glance around the room and burst out laughing.

What I really did was to check the machine competently, and drew the conclusion that when they walked over the nice new carpet in their nice refurbished office in their pretty feminine artificial "leather" shoes to the machine, all those thousands of volts of static electricity they had built up found a ready path to ground through the well-earthed machine! And that was it.

After my careful and sympathetic explanation to the ladies about how to minimise static buildup, and how it wasn't endangering their lives anyway, they ruefully saw the reason for my amusement, but still didn't want to touch the machine. In the end I suggested they leave the office scissors (metal) near the machine, they could pick up the scissors and, holding them firmly, touch the machine with the scissors first, thereby discharging themselves with a mighty crack! of spark and not feel a thing.

And that would be one way that EPE readers could get even severely-felt electric shocks "from" a machine and yet the machine's fully operational RCD wouldn't trip. Having said that, I very strongly advise people not to assume that electric shocks from machinery are just harmless "static". Get it checked or plan your funeral, electricity is a good servant but a bad master!

Stan Hood, Christchurch, New Zealand

Reminds me of a situation in my late school years. While showering in the sports changing room, I frequently felt tingles in my hand when lightly coming into contact with the metal shower tap. For weeks the school authorities would not believe me when I said that the tingling was due to electricity being present on the water piping.

Eventually the Electricity Board was called in – yes indeed, there was an electrical problem, affecting the adequate earthing of that part of the building. A lot of digging in the road outside was required before the fault was found and cured! I would not be telling the tale had the current flow been more severe.

had the current flow been more severe.

PIC ALARM

Dear EPE,

I've been building your *PIC Controlled Intruder Alarm* (Apr '02) – great application! It seems, though, that you can only arm the alarm when the entry zone is set-up to be normally-open, is this so?

In your article you suggest feedback would be welcome on the use of the RB4 interrupt for the panic switch. I have linked pins of the S3 connector but can still trigger the panic event by generating mains noise, even pulling the plug out and switching to battery power sometimes generates the event. I'm planning to add mains suppression etc.

Mark Jones, via email

Feedback is always welcome Mark, thanks. The entry zone restriction was not intentional, but in practice I have never encountered a situation where entering the main door zone could require a choice between normally-open and normally-closed contacts.

HOME SECURITY

Dear EPE,

I am currently doing my final year project on a home security system which involves a 4 × 3 matrix keypad, PIR sensor, magnetic switch and glass break detector. I'm using a PIC16F84 and PICBasic to write the software. Can you please give me some advice?

Brendon, Malaysia, by email

Sorry to disappoint you Brendon, but we cannot give specific advice for reader's own designs, but you might find my PIC Controlled Intruder Alarm of April '02 of interest. That uses a matrixed keypad.

8051 FREEWARE

Dear EPE,

I know that most of your projects that use microcontrollers are based around PIC devices, but I just want to let any of your readers who use the 8051 microcontroller, or its many derivatives, know about a very good freeware open source ANSI compliant optimising C compiler which I have been using for a few months, now called SDCC. It's available for download from sdcc.sourceforge.net.

There are several discussion forums for its users also on the same site. It can also be targeted at Z80, Gameboy Z80, AVR and PIC14x microcontrollers, and comes with a freeware 8051 software simulator.

Keep up the good work on your magazine, I have been a reader since I was a schoolboy hobbyist.

Jez Smith, by email

Thanks Jez, undoubtedly we have some readers who are 8051 users as well as PIC addicts. And thanks too for your continued interest in EPE!

BASIC STAMP

I have taught myself PICBasic and have a great interest in microcontrollers. What I would like to know is what industries use Basic Controllers and is it hard to start a career using and programming them? Any advice would be greatly appreciated.

Alex, via email

I suspect that in general industry does not use PICBasic types of program, preferring the more universally used assembler codings in various forms. Readers – what are your opinions?

SMOKE DETECTION

Dear EPE,

I am from Les Quennevais school in Jersey. For my business GCSE project I am going to make a photoelectric smoke detector, carbon monoxide detector and heat detector for the deaf. I am wondering if you could send me some circuit diagrams or tell me your suppliers as it would largely help me in my project. Any information that you could give would be very helpful Alan Morris.

via email

Our Teach In 2002 series looked at smoke detection in the June '02 issue, back issues can be ordered via our Online site, or according to the information published in each EPE issue. We have not done other smoke detectors in recent years.

STYLOPIC OP.AMP

Dear EPE

I am having problems finding the LM13600 transconductance op.amp for the *StyloPIC* of July 2002, the RS 304-453 is now listed as "no longer stocked". Do you know what other device could be used as an alternative please?

Mike Mackellow, via email

You can use the LM13700 instead as a direct replacement – no mods needed.

STYLOPIC

Dear EPE,

Following on from your StyloPIC in July 02, you might be interested in some info on the original. There were three variations of the pocket model - standard, treble and bass. The treble and bass models being respectively an octave higher or lower (mine is the standard model). Its big brother, the 350S, had many extra features such as short or long envelope. staccato, two speed vibrato, wah-wah, and eight voices.

An innovative feature is a light sensor (l.d.r.) for hand control of vibrato or wah-wah. It also has two styluses (for playing "chopsticks"?). An external amplifier was also available for either instrument, with tone and tremolo controls. On the technical side, the circuit diagram for the pocket version is in the back of the instruction

Tone generation is by a programmable uni-junction transistor so the waveform would be pulsed, however it is modified by what looks like a diode pump monostable so the mark-space ratio would vary depending on the note frequency (and presumably the harmonics generated). So the output waveform would be something like a square wave with slow rise and fall times. Vibrato is generated by a low frequency phase shift oscillator to vary the programming voltage of the unijunction transistor.

I know John Becker likes to recycle his software so here is something to consider in a future incarnation. It gives greater flexibility of the output waveform. And, of course, you can have multiple waveform tables. This is only an example, other changes may be needed for it to work correctly.

OUTIT:

call WAVFORM movwf PORTA

goto MAIN

WAVFORM: andlw \$7F : Sinewave + 2nd harmonic movwf PCL; 128 entries, amplitude 0 to 63

DT 00,00,00,00,00,01,02,04,06,08,11,13,16,19,22,26 DT 29,32,35,39,42,44,47,49,52,54,55,57,58,59,59,59 DT 60,60,60,60,60,59,59,59,59,59,57,57,57,57,57 DT 58,58,59,59,60,60,61,61,62,62,63,63,63,63,63,63 DT 62,61,60,59,58,56,55,53,51,49,47,45,43,41,39,37 DT 35,33,32,31,30,29,29,28,28,29,29,30,31,32,33,34 DT 35,36,38,39,40,41,42,43,43,43,43,42,42,41,39,38 DT 36,34,32,29,27,24,21,19,16,13,11,08,06,04,03,01 ; (DT is "Define Table of retlw's" in MPASM)

> Peter Hemsley, via email

Thanks Peter. The technical stuff I did not find on the web. The table concept looks interesting. I don't know that I'll ever upgrade StyloPIC - but

FLOW CHARTS

Dear EPE,

PICs are not my strong point! However, I've started to look at the code for your PIC Controlled Intruder Alarm (Apr '02) with a view to modifying it to suit my own purposes. Do you have a flow chart that you could send me?

Trevor Brearley, via email

No, sorry Trevor, I don't do flow charts for my software - I keep concepts in my head and work to those!

Readers who do like to work with flow charts will probably be interested in the Flow Code for PICmicro CD-ROM that's available via our CD-ROM pages in this issue, and in Terry de Vaux Balbirnie's review of it, also in this issue.

BIOPIC LEADS

I am building the BioPIC Heartbeat Monitor (Jun '02) and need to know the order code for Boots' lead pack, together with the information where to order from abroad. The TENS replacement electrode pads you specify are easy to find at almost any Boots shop, but the staff there know nothing about leads, nor how to order. I've tried at several Boots shops on my last trip to

Cristian, via email

Mine came from Boots in Wimborne. I don't know the order code, they were being supplied as normal stock items. If you can't get any, use flexible wire with crocodile clips to clip onto the chest pads. They don't need screening. You could try asking Boots HQ via email (www.google.com will provide a web address).

SERIAL ADC PIC TRICK

Dear EPE.

Readers might be interested in my PIC program for use with the TLC548/9 8-bit serial analogue-to-digital converter. I use file registers COUNT and TEMP as sort of "standard" registers, COUNT for timing etc and TEMP as a sort of second W. It helps me get a mental view of my

In the program this routine comes from, COUNT has previously been reset through DECFSZ, so I can get away with BSF COUNT,3. I have run this at 6MHz without problem, and it should go faster. The A-D value is stored in file UNIT.

A2DIN: BCF PORTB,7

; clear CS line to hold value to send

BSF COUNT,3

; set count to shift 8 bits (make sure that COUNT cleared before this section or use MOVLW etc)

FETCH: RLF UNIT,F

; move bits one place left & store new value in UNIT ; set 0 value

BCF UNIT,0 BSF PORTB.6

before Portb,0 bit test ; set A2D clock pin high, release bit for transfer

; is bit 0 (DOUT) BTFSS PORTB,5

> set? ; no, then leave UNIT bit 0 value

BSF UNIT,0

GOTO NEXTI

as is ; yes, set bit 0 of UNIT

NEXT1: BCF PORTB,6

: clear clock pin DECFSZ COUNT.F; is COUNT zero? **GOTO FETCH** ; no, get another

BSF PORTB.7

bit! ; yes, 8 bits clocked out & held in UNIT,

set CS line to get new value

RETURN

Graham Card, via email

Useful, Graham, thank you - I've put it in the PIC Tricks folder on our ftp site.

FREEZER ALARM

Dear EPE.

I've been reading Humphrey Berridge's Freezer Alarm in the May '02 issue, and I'm extremely impressed with the low component count for the functionality achieved, but I'd like to make a suggestion:

The piezo sounder needs to be as loud as possible, but it's only being fed with 5V pk-pk from pin GP4 to ground. If you connect the sounder between GP4 and GP5, and feed GP5 with an inverted signal, you will get 10V p-p drive in a bridge configuration - twice the voltage, at no extra cost!

The only changes required are to the sweep2 and sweep3 routines:

sweep2 bsf output ; output high

bcf output2 ; output2 low - added decfsz freq,f

goto sweep2 movfw nfreq movwf freq

sweep3 bcf output ; output low

bsf output2 ; output2 high - added decfsz freq,f goto sweep3

Plus an extra define line:

#define output2 gpio,5; inverted o/p to piezo sounder

Nigel Goodwin, via email

Thanks Nigel!

LOTTERY PREDICTOR

I am studying GCSE Electronics. My father has been purchasing *EPE* since 1994 and is still enjoying each new edition. In the April '95 issue I came across the National Lottery Predictor project and am wondering if you could please send me as much information on that topic as possible to further my knowledge and passion.

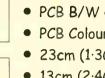
Gopyr, via email

So sorry, but we cannot provide additional material for any published design. Regarding building a circuit from 1995, we normally advise against attempting to build a design that is over five years old since parts could well have become obsolete during that time.

In this particular case, the p.c.b. is no longer available, nor will you be able to obtain the programmed PIC as we are no longer in touch with the authors, and they did not sell us the copyright to their software (that was before we began to insist that all project software must be made freely available to readers).

EARTH RESISTIVITY LOGGER

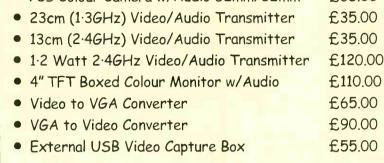
I am designing an "Earth Resistivity Logger" for archeological use, inspired by Robert Beck's Earth Resistivity Meter of Jan/Feb '97. Mine is PIC controlled and will have its own non-volatile memory (data stays held even after switch off); possibly a graphics l.c.d. may show rough details of reading values as grey scale; serial interface for connection to PC for deeper analysis.


I am not an archeologist and am approaching the design purely as an electronic problem to be solved - send an output signal, retrieve it from a distance and store the value. I am in communication with a local archeological society, but I would be pleased to hear from any EPE readers involved in this field, with special regard to the following:

- How many reading samples do you normally take on a site in one main session?
- How many samples would you like the logger to store before download to PC?
- Is powering it from a 12V car battery adequate, or do I need ±18V as Robert had?
- What probing techniques do you use? I'm assuming the twin-probe technique is best, as described by Robert.
- What maximum probe separation distance do you use?
- How deep do you insert the probes?
- Is a signal frequency of 137Hz as used by Robert the best to use?
- In your experience, how likely is it that 50Hz mains frequency is likely to occur on a site being surveyed, and would thus need to be filtered out in some way?
- Do you always plot the site squares in the same regular order, or would you prefer to sample in random order, telling the logger the square number being sampled?

Any answers would be appreciated, my email is john.becker@wimborne.co.uk.

Video Surveillance



All prices exclude VAT.

Many more products on our website:

WWW.BITZTECHNOLOGY.COM

Tel: 01753 522 902 Fax: 01753 571 657

A COMPLETE RANGE OF INVERTERS

150W TO 2500W - 12V & 24V

A Complete range of regulated inverters to power 220V and 240V AC equipment via a car, lorry or boat battery. Due to their high performance (>90%) the inverters generate very little heat. The high stability of the output frequency (+/-1%) makes them equally suitable to power sensitive devices.

These inverters generate a modified sine wave, which are considerably superior to the square waves which are produced by most other inverters. Due to this superior feature they are capable of powering electrical equipment such as TV,s, videos, desktop & notepad computers, microwave ovens, electrical lamps, pumps, battery chargers, etc.

Low Battery Alarm

The inverters give an audible warning signal when the battery voltage is lower than 10.5V (21V for the 24V version). The inverter automatically shuts off when the battery voltage drops below 10V (20V for the 24V version). Fuse protected input circuitry.

Order Code	Power	<u>Voltage</u>	Price
651.581	150W Continuous	12V	£36.39
651,578	150W Continuous	24V	£36.39
651.582	300W Continuous	12V	£50.64
651.585	300W Continuous	24V	£50.64
651.583	600W Continuous	12V	£101.59
651.593	600W Continuous	24V	£101.59
651.587	1000W Continuous	12V	£177.18
651.597	1000W Continuous	24V	£177.18
651,602	1500W Continuous	12V	£314.52
651 605	1500W Continuous	24V	£314.52
651,589	2500W Continuous	12V	£490.54
651.599	2500W Continuous	24V	£490.54

All prices are inclusive of V.A.T. C.

Many uses include:- * Fetes * Fairgrounds * Airshows * Picnics * Camping * Caravans * Boats * Camivals * Field Research and * Amateur Radio field days * Powering Desktop & Notepad Computers.

TEL.: +44(0)1702-527572

1. COMET WAY, SOUTHEND-ON-SEA, ESSEX, SS2 6TR FAX.:+44(0)1702-420243

DELIVERY CHARGES ARE £6-00 PER ORDER. OFFICIAL ORDERS FROM SCHOOLS, COLLEGES, GOVT. BODIES, PLC,S ETC. PRICES ARE INCLUSIVE OF V.A.T. SALES COUNTER. VISA AND ACCESS ACCEPTED BY POST, PHONE OR FAX, OR EMAIL US AT SALES@BKELEC.COM ALTERNATIVELY SEND CHEQUE OR POSTAL ORDERS MADE PAYABLE TO BK ELECTRONICS.

For Full Specifications View our web site at:-

WWW.BKELEC.COM/INVERTERS.HTM

PRACTICALLY SPEAKING

Robert Penfold looks at the Techniques of Actually Doing It!

CONCERNS about finished projects failing to work are probably the main reason for would-be constructors failing to "take the plunge". It is not a major concern for those with years of project building experience because they have the technical knowledge, equipment, and know-how to deal with practically any problem. The opposite is true for beginners who, on the face of it, have little chance of dealing with projects that refuse to work.

Keep it Simple

In reality the situation for beginners is better than it might seem. Provided you start with something reasonably simple and follow the instructions carefully there is a good chance of success. Prepublication checking for both books and articles containing electronic projects has increased over the years, and this has greatly reduced the chances of being led astray by printing errors. On the rare occasions that an error does creep in to an *EPE* article it is usually spotted quite early and corrected one or two issues later.

In general, the complexity of modern projects is greater, but your chances of failure if the instructions are followed "to the letter" are much less than they were. Like any creative skill, electronic project construction would not be a worthwhile hobby if perfect results were guaranteed every time with no skills required. You have to be prepared to put in some effort and try to go about things the right way.

It is worth repeating the importance of choosing a project that is within your capabilities. It is tempting to dive straight in with a project that will impress your friends, but the more complex the project the greater the risk that you will make a mistake. In the past it was not unusual to receive letters from readers having problems with projects that they clearly did not understand at all.

You do not need to know how a project works in order to build it successfully, but you do need to have a proper understanding of what it is supposed to do and how it is used. Something like a household gadget is a more appropriate starting point than an advanced piece of test equipment where you need a degree in physics in order to switch it on!

Fortunately, letters from readers who have "bitten off more than they can chew" are relatively rare these days, but it is still a problem to take seriously.

Mains Point

The mains supply is *potentially lethal*, as are projects that connect to it. Mains power projects are only suitable for those with a reasonable amount of experience at project construction. Even if a project is very

simple, if it connects to the mains supply it is certainly not suitable for a beginner.

Štart with projects that are battery powered. If you should make a serious blunder it is possible that one or two of the components will be damaged, but you should be perfectly safe. In most cases all the components will survive the experience as well.

The two main construction methods used in modern projects are stripboard and custom printed circuit boards (p.c.b.s). While both types of board are pretty straightforward to use, custom printed circuit boards represent the more foolproof option. Stripboard is a multi-purpose circuit board that has a regular matrix of holes, and in most projects only a few percent of these are actually used.

As its name suggests, a custom printed circuit board is specifically designed for a particular circuit and normally has just one hole per leadout wire or pin. With a custom board there is relatively little risk of making a mistake in the first place, and any errors that should creep in are likely to be spotted almost immediately. With stripboard there are hundreds of unused holes that are good at disguising mistakes, and some very careful checking is needed to detect them.

Bridging the Gap

Having chosen a suitable project and put it together with due diligence, what do you do if the finished unit fails to work? When a newly constructed project is clearly failing to work properly it is not a good idea to leave it switched on.

Leaving a faulty project switched on could result in damage to some of the components, and the semiconductors are particularly vulnerable. Always switch off faulty projects immediately and then recheck the component layout, wiring, etc.

The prudent project builder checks all this sort of thing very carefully during construction, and spotting errors early can save a lot of hassle latter. In order to properly check the unit you may have to partially dismantle it in order to get proper access to the circuit board.

Years of practical experience suggest that the vast majority of problems are due to "short-circuits" between copper tracks on the underside of the circuit board. This is not exactly a new problem, but the intricacies of modern boards make it even more problematic than in the past.

Unless the board is coated with a solder resist that is designed to discourage solder bridges, it is likely that several will be produced per circuit board. Most of these bridges will be spotted while you are constructing the

board, and in most cases they are easily removed using the bit of the soldering iron. If there is a lot of excess solder it is better to use a desoldering tool, and an inexpensive desoldering pump is ideal for this application. It is advisable to remove as much solder as possible and then redo any joints that have been desoldered.

Hidden from View

The more difficult problem is minute trails of solder that are often difficult or impossible to see with the naked eye. The situation can be made more difficult by the trails being hidden under excess flux from the solder. This tends to get liberally splattered across the underside of circuit boards during construction. There are various products that can be used to thoroughly clean the flux from boards, but vigorous brushing with a small brush such as an old toothbrush seems to do the job well enough.

1

A "dry" joint. Solder failed to

A good joint, nice and shiny.

Photos courtesy Alan Winstanley's Basic Soldering Guide

Good eyesight is not sufficient to guarantee that any solder bridges will be spotted. Some form of magnifier now has to be considered part of the standard toolkit for electronic project construction, and even a small magnifying glass will greatly increase the chances of detection.

An 8x or 10x loupe (also sold as lupes) is better though. The inexpensive types sold as photographic accessories for viewing slides and negatives are perfectly adequate for the present application.

Provided the board is thoroughly cleaned first, a careful visual check using a magnifier should reveal any solder bridges. As solder bridges occur so often it is a good idea to clean and visually inspect all completed circuit boards prior to installing them in the case.

Hot Spots

Dubious soldering is a common cause of problems, particularly amongst beginners. Soldering is like any skill, and it is a case of "practice makes perfect". The more projects you build the more proficient you will become at completing soldered connections. There is insufficient space here for a "soldering tutorial", but a

good one is available at the EPE web site. Some soldering irons and soldering kits are supplied with detailed instructions, and it is well worthwhile

studying these.

Probably the most common cause of so-called "dry" joints is the soldering iron being left unused for a few minutes before starting a new batch of connections. If there is a substantial amount of solder left on the bit, any flux in it will burn away and it will probably start to oxidise. If you produce the next joint without cleaning the end of the bit first, the joint will contain a significant proportion of old solder, which may not flow over the joint properly.

The resultant joint might look plausible and could seem to have good mechanical strength as well. However, joints of this type usually provide only intermittent electrical contact or no contact at all, and are relatively weak

mechanically.

Shining Example

Always make sure that the bit is tinned with fresh solder prior to making joints. Practice soldering with some bits of wire, a few resistors, and a scrap of stripboard before you start building projects. This will cost very little and will greatly enhance your chances of success.

Checks with a continuity tester or the continuity function of a multimeter should locate dry joints, but thoroughly checking even a small circuit board can be quite time consuming. Large amounts of excess flux are sometimes indicative of a bad joint, but this is of no help once the board has been cleaned.

Good joints normally have a characteristic mountain shape and the surface of the solder is very shiny. "Dry" joints are often more spherical in shape and the solder tends to have a relatively dull surface, possibly with some crazing.

Clean Break

If any joints look suspicious it is probably worthwhile desoldering them and then re-soldering them. Before trying again it is a good idea to have a close look at the two surfaces. These days it is unusual for dirt or corrosion on one of the surfaces to cause problems. Modern components are less vulnerable to corrosion on the leadout wires and tags, and the flux in electrical solders is very efficient at dealing with contaminants.

However, there can still be occasional problems though, and if there is any sign of contamination it is a good idea to clean both surfaces before redoing the joint. The best way to clean the surfaces is to gently scrape them with the small blade or a penknife, a miniature file, or something of this type.

The driest joint of all is the one you forget to do! Missing joints are usually fairly obvious with custom printed circuit boards, but can be difficult to see with stripboard where there are numerous unused holes and no pads as such. Firmly pulling on resistors, capacitors, diodes, etc., will reveal any missing joints, or ineffective joints that look plausible.

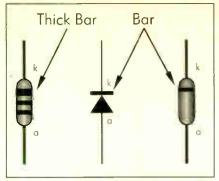


Fig.1. The wide band indicates the cathode (k) leadout of multi-band diodes.

Heat of the Moment

Apart from semiconductors, modern components are reasonably tolerant of heat. However, it is still possible that damage will occur if you take too long to complete joints. Heat damaged components usually show some obvious signs of damage, such as a darkening in colour or being slightly misshapen. Always replace any "off colour" or deformed components, or any components that show significant signs of physical damage.

Integrated circuits (i.c.s) are mostly fitted in holders, but transistors and diodes are often connected directly to the circuit board. Always take extra care when fitting these in place. As pointed out previously, it is a matter of "practice makes perfect", and you can avoid a lot of problems by learning to solder quickly and neatly before dealing with transistors and diodes.

Try and Try Again

Having thoroughly checked both sides of the board and made any necessary repairs it is time to reassemble the project and test it again. Thoroughly check the hard wiring against the wiring diagram, as it is relatively easy to make mistakes here. If the project still does not work, the most likely explanation is that you have missed an error in the wiring or on the circuit board.

With this type of thing there is a tendency to blame others and not accept that you could have made a mistake. In reality it is easy to make the odd mistake here and there, and even "old hands" make the occasional error.

Start by checking that every component on the circuit board is in the right place and has the correct value. Work through the components methodically making sure that none of them are overlooked. If you have managed to miss out a component, this error should then come to light. With stripboard construction make sure that any link wires are present and correct.

Ideally you should get someone else to check the unit against the construction diagrams. A fresh pair of eyes might spot something that you have consistently overlooked.

Wrong Connection

The components that must be fitted the right way round are the most likely to give problems. Layout diagrams and the markings on components such as diodes and electrolytic capacitors are usually quite explicit, so any errors should be easily spotted.

One exception is the type of diode that has several bands rather than one at the cathode ("k" or "+") end of the component. These have had something of a renaissance in recent times, so you may well encounter them. The bands indicate the type number using a variation on the resistor colour code. A wider band at that end of the body (Fig.1) indicates the cathode (k) lead.

Light emitting diodes (I.e.d.s) can also be problematic. If a project works apart from a I.e.d. indicator, it is oddson that the I.e.d. is simply connected the wrong way round.

A Pressing Connection

Before too long practically everyone makes the classic mistake of forgetting to switch on the project or omitting that all-important component – the battery. Battery connectors have always been notoriously unreliable. Try pressing the connector firmly onto the battery to see if it makes the project burst into action. Slightly compressing the female connectors with pliers usually gets a loose clip to work reliably.

Battery holders for 1.5V cells are also something less than totally reliable. Ensure that the terminals of the batteries and the holder are clean by gently removing any contamination with

fine sandpaper.

Multi-checks

A cheap multimeter is useful for checking that the battery voltage is actually getting through to the circuit board. It can also be used to check that the battery is in a usable state.

Even if you do not have much technical knowledge, a multimeter can still be useful for numerous basic checks. For example, it can be used for making continuity checks on switches, which may not operate in quite the way you think they do?

Have you confused the "on" and "off" settings? Often when a project seems to be working irrationally it is just that one of the switches does not function as expected. The high and low ranges are transposed, or something of this type.

A multimeter is also useful for checking cables for short-circuits or broken leads, checking that that plugs and sockets connect together properly, etc. Even some of the cheaper digital types now have the ability to check resistors, transistors, diodes, and capacitors, which is clearly more than a little useful. A multimeter is a piece of equipment that no project builder should be without.

Because modern components are very reliable you are unlikely to have a failure caused by a dud component. If you get everything connected together properly your projects will work, and it helps to keep this in mind. Of course, the projects will never work if you do not pluck up the courage to "take the plunge" and actually build them.

EPE IS PLEASED TO BE ABLE TO OFFER YOU THESE

ELECTRONICS CD-ROMS

ELECTRONICS PROJECTS

Logic Probe testing

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix's CADPACK schematic capture, circuit simulation and p.c.b. design software is included.

The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor;

NE555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

ELECTRONIC CIRCUITS & COMPONENTS V2.0

Circuit simulation screen

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols. Sections include: Fundamentals: units & multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes, transistors, op.amps, logic gates. Passive Circuits. Active Circuits. The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams Included in the Institutional Versions are multiple choice questions, exam style questions, fault finding virtual laboratories and investigations/worksheets

ANALOGUE ELECTRONICS

Complimentary output stage

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits.

Sections on the CD-ROM include: Fundamentals – Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections). Op.Amps – 17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers – Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections). Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections). Oscillators – 6 sections from Positive Feedback to Crystal Oscillators. Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

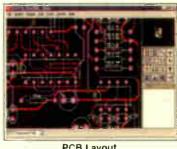
DIGITAL ELECTRONICS V2.0

Virtual laboratory - Traffic Lights

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual

laboratories allow users to operate many circuits on screen.

Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable action and circuits, and bistables – including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers. A/D and D/A converters, traffic light controllers, memories and microprocessors – architecture, bus systems and their arithmetic logic units. Sections on Boolean Logic and Venn diagrams, displays and chip types have been expanded in Version 2 and new sections include shift registers, digital fault finding, programmable logic controllers, and microcontrollers and microprocessors. The Institutional versions now also include several types of assessment for supervisors, including worksheets, multiple choice tests, fault finding exercises and examination question


FILTERS

Filter synthesis

Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev ladder filters. Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

ELECTRONICS CAD PACK

PCB Layout

Electronics CADPACK allows users to design complex circuit schematics, to view circuit animations using a unique SPICEbased simulation tool, and to design printed circuit boards. CADPACK is made up of three separate software modules (These are restricted versions of the full Labcenter software.) ISIS Lite which provides full schematic drawing features including full control of drawing appearance, automatic wire routing, and over 6,000 parts. PROSPICE Lite (integrated into ISIS Lite) which uses unique animation to show the operation of any circuit with mouse-operated switches, pots, etc. The animation is compiled using a full mixed mode SPICE simulator. ARES Lite PCB layout software allows professional quality PCBs to be designed and includes advanced features such as 16-layer boards, SMT components, and an autorouter operating on user generated Net Lists.

ROBOTICS & MECHATRONICS

Case study of the Milford Instruments Spider

Robotics and Mechatronics is designed to enable hobbyists/students with little previous experience of electronics to design and build electromechanical systems. The CD-ROM deals with all aspects of robotics from the control systems used, the transducers available, motors/actuators and the circuits to drive them. Full case study material (including the NASA Mars Rover, the Milford Spider and the Furby) is used to show how practical robotic systems are designed. The result is a highly stimulating resource that will make learning, and building robotics and mechatronic systems easier. The Institutional versions have additional worksheets and multiple choice questions.

- Interactive Virtual Laboratories
- Little previous knowledge required Mathematics is kept to a minimum and all calculations are explained:
- Clear circuit simulations

PRICES

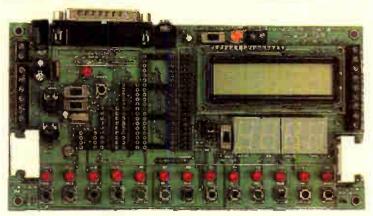
Prices for each of the CD-ROMs above are:

(Order form on third page)

Hobbyist/Student£45 inc VAT Institutional (Schools/HE/FE/Industry).....£99 plus VAT Institutional 10 user (Network Licence)£199 plus VAT Site Licence....£499 plus VAT

(UK and EU customers add VAT at 17.5% to "plus VAT" prices)

PICmicro TUTORIALS AND PROGRAMMING


HARDWARE

VERSION 2 PICmicro MCU DEVELOPMENT BOARD

Suitable for use with the three software packages listed below.

This flexible development board allows students to learn both how to program PICmicro microcontrollers as well as program a range of 8, 18, 28 and 40-pin devices. For experienced programmers all programming software is included in the PPP utility that comes with the development board. For those who want to learn, choose one or all of the packages below to use with the Development Board.

- Makes it easier to develop PICmicro projects
- Supports low cost Flash-programmable PICmicro devices
- Fully featured integrated displays 13 individual l.e.d.s, quad 7-segment display and alphanumeric l.c.d. display
- Supports PICmicro microcontrollers with A/D converters
- Fully protected expansion bus for project work
- All inputs and outputs available on screw terminal connectors for easy connection

£145 including VAT and postage 12V 500mA plug-top PSU (UK plug) £7 25-way 'D' type connecting cable £5

SOFTWARE

Suitable for use with the Development Board shown above.

ASSEMBLY FOR PICmicro V2

(Formerly PICtutor)

Assembly for PICmicro microcontrollers V2.0 (previously known as PICtutor) by John Becker contains a complete course in programming the PIC16F84 PICmicro microcontroller from Arizona Microchip. It starts with fundamental concepts and extends up to complex programs including watchdog timers, interrupts and sleep modes. The CD makes use of the latest simulation techniques which provide a superb tool for learning: the Virtual PlCmicro microcontroller. This is a simulation tool that allows users to write and execute MPASM assembler code for the PIC16F84 microcontroller on-screen. Using this you can actually see what happens inside the PICmicro MCU as each instruction is executed which enhances understanding.

Comprehensive instruction through 39 tutorial sections
 Includes Vlab, a Virtual PICmicro microcontroller: a fully functioning simulator
 Tests, exercises and projects covering a wide range of PICmicro MCU applications
 Includes MPLAB assembler
 Visual representation of a PICmicro showing architecture and functions

showing architecture and functions ● Expert system for code entry helps first time users ● Shows data flow and fetch execute cycle and has challenges (washing machine, lift, crossroads etc.) ● Imports MPASM files.

Virtual PICmicro

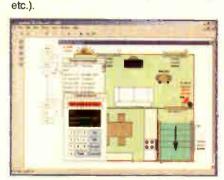
'C' FOR PICmicro VERSION 2

The C for PICmicro microcontrollers CD-ROM is designed for students and professionals who need to learn how to program embedded microcontrollers in C. The CD contains a course as well as all the software tools needed to create Hex code for a wide range of PICmicro devices – including a full C compiler for a wide range of PICmicro devices.

Although the course focuses on the use of the PICmicro microcontrollers, this CD-ROM will provide a good grounding in C programming for any microcontroller.

● Complete course in C as well as C programming for PICmicro microcontrollers
● Highly interactive course
● Virtual C PICmicro improves understanding
● Includes a C compiler for a wide range of PICmicro devices
● Includes full Integrated Development Environment
● Includes MPLAB software
● Compatible with most PICmicro programmers
● Includes a compiler for all the PICmicro devices.

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP; CD-ROM drive; 64MB RAM; 10MB hard disk space.


FLOWCODE FOR PICmicro

Flowcode is a very high level language programming system for PICmicro microcontrollers based on flowcharts. Flowcode allows you to design and simulate complex robotics and control systems in a matter of minutes.

Flowcode is a powerful language that uses macros to facilitate the control of complex devices like 7-segment displays, motor controllers and l.c.d. displays. The use of macros allows you to control these electronic devices without getting bogged down in understanding the programming involved.

Flowcode produces MPASM code which is compatible with virtually all PICmicro programmers. When used in conjunction with the Version 2 development board this provides a seamless solution that allows you to program chips in minutes.

● Requires no programming experience ● Allows complex PICmicro applications to be designed quickly ● Uses international standard flow chart symbols (ISO5807) ● Full on-screen simulation allows debugging and speeds up the development process ● Facilitates learning via a full suite of demonstration tutorials ● Produces ASM code for a range of 8, 18, 28 and 40-pin devices ● Institutional versions include virtual systems (burglar alarms, car parks

Burglar Alarm Simulation

PRICES

Prices for each of the CD-ROMs above are:

(Order form on next page)

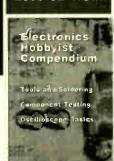
Hobbyist/Student
Institutional (Schools/HE/FE/Industry)
Flowcode Institutional
Institutional 10 user (Network Licence)
Site Licence

(UK and EU customers add VAT at 17.5% to "plus VAT" prices)

£45 inc VAT £99 plus VAT £70 plus VAT £249 plus VAT £599 plus VAT

TEACH-IN 2000 – LEARN ELECTRONICS WITH EPE

EPE's own Teach-In CD-ROM, contains the full 12-part Teach-In series by John Becker in PDF form plus the Teach-In interactive software covering all aspects of the series. We have also added Alan of the series. We have also added Alan Winstanley's highly acclaimed Basic Soldering Guide which is fully illustrated and which also includes Desoldering. The Teach-In series covers: Colour Codes and Resistors, Capacitors, Potentiometers, Sensor Resistors, Ohm's Law, Diodes and L.E.D.s, Waveforms, Frequency and Time, Logic Gates, Binary and Hex Logic, Op.amps, Comparators, Mixers, Audio and Sensor Amplifiers, Transistors, Transformers and Rectifiers, Voltage Regulation, Integration Rectifiers, Voltage Regulation, Integration, Differentiation, 7-segment Displays, L.C.D.s, Digital-to-Analogue.


▼. ▼ ▼ → DIE MEMO!

Sine wave relationship values

Each part has an associated practical section and the series includes a simple PC interface so you can use your PC as a basic oscilloscope with the various circuits. A hands-on approach to electronics with numerous breadboard circuits to try out.

£12.45 including VAT and postage. Requires Adobe Acrobat (available free from the Internet – www.adobe.com/acrobat).

FREE WITH EACH TEACH-IN CD-ROM - Electronics Hobbyist Compendium 80-page book by Robert Penfold. Covers Tools For The Job. Component Tasting; Oscilloscope Basics.

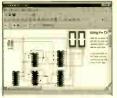
FREE BOOK

WITH TEACH-IN

2000 CD-ROM

ELECTRONICS IN CONTROL

Two colourful animated courses for students on one CD-ROM. These cover Key Stage 3 and GCSE syllabuses. Key Stage 3: A pictorial look at the Electronics section featuring animations and vidéo clips. Provides an ideal introduction or revision guide, including multi-choice questions with feedback. GCSE: Aimed at the Electronics in many Design & Technology courses, it covers many sections of GCSE Electronics. Provides an ideal revision guide with Homework Questions on each chapter. Worked answers with an access code are provided on a special website.


Single User £29 inc. VAT. Multiple User £39 plus VAT Student copies (available only with a multiple user copy) £6 plus VAT (UK and EU customers add VAT at 17.5% to "plus VAT" prices)

MODULAR CIRCUIT DESIGN

VERSION 3 Contains a range of tried and tested analogue and digital circuit modules, together with the Contains a range of fried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects. Version 3 includes cata and circuit modules for a range of popular PICs; includes PICAXE circuits, the system which enables a PIC to be programmed without a programmer, and without removing it from the circuit. Shows where to obtain free software downloads to enable BASIC programming. Essential information for anyone undertaking GCSE or "A" level electronics or technology and for hobbyists who want to get to grips with project design. Over seventy different Input, Processor and Output mocules are illustrated and fully described, together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

Single User £19.95 inc. VAT. Multiple User £34 plus VAT (UK and EU customers add VAT at 17.5% to "plus VAT" prices)

DIGITAL WORKS 3.0

Counter project

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability • Software for simulating digital logic circuits . Create your own macros – highly scalable ● Create your own circuits, components, and i.c.s ● Easy-to-use digital interface . Animation brings circuits to life ● Vast library of logic macros and 74 series i.c.s with data sheets Powerful tool for designing and learning.
 Hobbyist/Student £45 Inc. VAT.
 Institutional £99 plus VAT. Institutional 10 user £199 plus VAT. Site Licence £499 plus VAT.

ELECTRONIC COMPONENTS PHOTOS

A high quality selection of over 200 JPG images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material They are royalty free for

use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions – see licence for full details).

Also contains a FREE 30-day evaluation of Paint Shop Pro 6 – Paint Shop Pro image editing tips and on-line help included!

Price £19.95 Inc. VAT

Minimum system requirements for these CD-ROMs: Pentium PC, CD-ROM drive, 32MB RAM, 10MB hard disk space. Windows 95/98/NT/2000/ME/XP, mouse, sound card, web browser.

!	Please send me: CD-ROM ORDER FORM
	Electronic Projects Electronic Circuits & Components V2.0 Analogue Electronics Digital Electronics V2.0 Filters Electronics CAD Pack Robotics & Mechatronics Assembler for PlCmicro C' for PlCmicro Flowcode for PlCmicro Digital Works 3.0
	☐ PICmicro Development Board (hardware) ☐ Development Board UK plugtop power supply ☐ Development Board 25-way connecting lead
	☐ Teach-In 2000 + FREE BOOK ☐ Electronic Components Photos ☐ Electronics In Control – Single User ☐ Electronics In Control – Multiple User ☐ Modular Circuit Design – Single User ☐ Modular Circuit Design – Multiple User
	Full name:
	Address:
	Tel. No:
	Signature:
ı	☐ I enclose cheque/PO in £ sterling payable to WIMBORNE PUBLISHING LTD for £
ı	Card No: Switch Issue No.
1	Card NO: Switch issue No!

ORDERING ALL PRICES INCLUDE UK POSTAGE

Student/Single User/Standard Version price includes postage to most countries in the world EU residents outside the UK add £5 for airmail postage per order

Institutional, Multiple User and Deluxe Versions - overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add 17½% VAT or provide your official VAT registration number)

> Send your order to: **Direct Book Service** Wimborne Publishing Ltd 408 Wimborne Road East Ferndown, Dorset BH22 9ND

> > To order by phone ring

01202 873872. Fax: 01202 874562

Goods are normally sent within seven days

E-mail: orders@wimborne.co.uk

Online shop: www.epemag.wimborne.co.uk/shopdoor.htm

INGENUITY UNLIMITED

Our regular round-up of readers' own circuits. We pay between £10 and £50 for all material published, depending on length and technical merit. We're looking for novel applications and circuit designs, not simply mechanical, electrical or software ideas. Ideas must be the reader's own work and must not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values Please draw all circuit schematics as clearly as possible. Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown Dorset BH22 9ND. (We do not accept submissions for IU via E-mail.) Your ideas could earn you some cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE WORTH £586

- 100MS/s Dual Channel Storage Oscilloscope
- 50MHz Spectrum Analyser
- Multimeter Frequency Meter
- Signal Generator

If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours.

Every 12 months, Pico Technology will be awarding an ADC200-100 digital storage oscilloscope for the best IU submission. In addition, a DrDAQ Data Logger/Scope worth £69 will be presented to the runner up.

Switched Mode Fan

Regulator - A Cool Turn

THE circuit diagram shown in Fig.1 was developed as a controller for a 12V 1A d.c. fan. It is a switched-type regulator which is more efficient than a linear type. A sawtooth generator is derived from IC1, via the timing components resistor R1, capacitor C4 and diodes D1 and D2.

The waveform is fed to non-inverting input (pin 3) of IC2. This compares the difference between the sawtooth and a reference voltage produced by potentiometer VR1, and creates an output pulse that drives a MOSFET power transistor TR1.

The remaining components including inductor L1 and diode D3 are used to create a smoothed d.c. voltage which powers the d.c. fan. Resistor R4 is a dummy load and by adjusting VR1, the duty cycle can be adjusted.

Capacitors C1 to C3 decouple the supply, and note that electrolytic capacitors C6 to C8 were placed in parallel to reduce their overall effective series resistance (ESR) together with any associated heating effects.

Myo Min, Yangon, Myanmar.

555 Astable - Simpler Solution

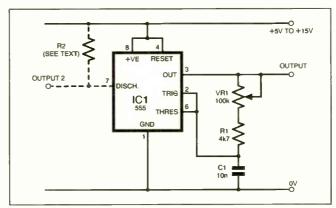


Fig.2. Circuit diagram for an alternative 555 Astable.

INSTEAD of using the usual circuit set-up, if the charge/discharge current for the timing capacitor is taken from the output (pin 3) of the 555 timer i.c. then an astable multivibrator can be made using just three external components as shown in Fig.2. An alternative output can be taken from pin 7, the "discharge" pin, using it as an open collector output port, thus isolating the load from the RC timing network. Select the load R2 to suit.

The mark: space ratio appears to be around 3:2 but gets worse below 5V or so. With the values shown, the frequency range is around 500Hz to 8kHz.

P. Tomlinson, Hull, East Yorkshire.

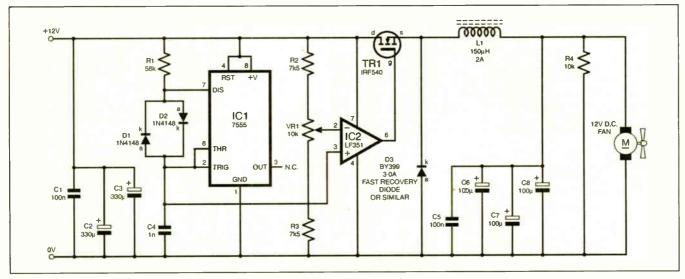
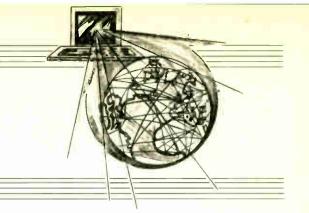



Fig.1. Circuit diagram for the Switched Mode Fan Regulator.

SURFING THE INTERNET

NET WORK ALAN WINSTANLEY

Regular users of our Internet site www.epemag.wimborne. co.uk can view the outline contents of each issue by visiting the Recent Issues page (/issues.htm) which features a photo or two of all our latest projects, with hyperlinks to pages describing the last four years or more of EPE projects as well.

You can view or download indexes of previous volumes of EPE by visiting /idxpage.htm – the latest indexes are in PDF format. On the same index pages, any "Please Take Note" updates are also available on line.

Frantic about FTP?

It is worth reminding readers and newcomers that our FTP site ftp://ftp.epemag.wimborne.co.uk/pub hosts our free source codes for almost all our PICmicro projects and more besides. You can download source code using FTP software such as the freeware version of WS_FTP from www.ipswitch.com, and all popular web browsers recognise FTP files as well. You may need a Zip utility such as WinZip (from www.winzip.com) to unzip some files; check download.com for a huge range of programs, freeware and shareware.

Some readers do seem to struggle when trying to access the FTP site, resulting in a (sometimes hostile) email being delivered to the writer. There is more to the Internet than web pages! File Transfer Protocol is a universal way of managing the transfer of an array of files. The best online resource for help with FTP is www.ftp planet.com, which you should bookmark.

From experience, the main reasons why problems arise are because:

- 1. A commercial firewall is preventing FTP access. This often happens when trying to access the FTP site from a workplace. Readers report success when they try to access the site from home instead.
- 2. Folder View has been disabled in your web browser. In Microsoft Internet Explorer, go Tools/Internet Options/Advanced/Browsing/Enable Folder view for FTP sites (tick yes).

As a service for those with an aversion to FTP, Thomas Stratford maintains a web-style mirror site for our PICmicro source code at http://homepages.nildram.co.uk/~starbug/epepic.htm.

Broadband Thermometer

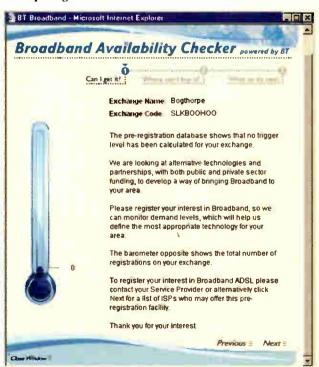
The haphazardous rollout of broadband services across the UK continues in its usual lottery-like manner. British Telecom is focussing on ADSL (Asymmetric Digital Subscriber Line) for the masses, which provides a download speed over a phone line of up to ten times the speed of an ordinary 56kbps modem, with the added advantage that it can be "always on".

British Telecom states that ADSL now covers 66% of all households. Cable or costly satellite or wireless access could be the only options for the remaining 34%. To help BT gauge the demand they have recently introduced a "pre-registration" facility on their web site (http://www.bt.com/broadband/). I decided to head over there to take a look.

I found a broadband availability checker, a pre-registration check, and a list of participating ISPs. The availability checker is a thermometer display indicating the level of interest in ADSL in your area. Unfortunately, for my own telephone exchange the thermometer is a worrying shade of ice blue.

A number of BT exchanges have been assigned a "trigger level" and in theory you can "pre-register" your interest in ADSL for that exchange. Then over time you can sit back and watch the virtual thermometer warm up and hit the roof, signifying that the exchange will finally be upgraded because the trigger level has been achieved (or not).

"The size of your exchange indicates that ADSL may not be viable," said the online form in my case. Unfortunately my exchange does not even have a trigger level allocated to it. Anyway, choosing a compatible ISP (let's try BT Openworld for starters, I thought) to handle my registration had no effect on the "temperature"; two weeks later there has been no contact from BT Openworld and the thermometer is still stuck firmly in the deep freezer department showing zero.


The problem with the pre-registration scheme is that you can only register your interest through a participating ISP, who then passes it on to BT Wholesale. Evidently some ISP's are not forwarding pre-registration enquiries, which means that the registration figures and therefore the levels of interest are going to be understated.

LeechGet Your Files

Seasoned web surfers know that right-clicking an image or filename opens a pop-up menu allowing you to Save Target As... Internet Explorer 6 offers provides icons for saving, when your mouse pointer hovers over an image. Recently I came across a free utility program for Windows that enhances the file download process. LeechGet (fetch the English version from www.leechget.de) offers further right-click options in the pop-up menu, and the program allows you to split the download in any number of sections and download them in parallel.

The main attraction is that by using the wizard you can see whether the server allows you to resume downloads following an interruption (e.g. your connection times out). There is no need to refetch the portions already downloaded. The download progress is also shown in the task bar area. This is an attractive and worthwhile program that has quickly become my standard means of fetching any files over a hundred kilobytes or so – download it now and see.

Next month I'll take a look at ways you can grab entire web sites to save onto your hard disk. You can email me at alan@epemag.demon.co.uk.

BT's online Broadband Availability Checker is decidedly lukewarm at times. Stone cold in fact.

Special Review

FLOWCODE FOR PICmicro

plus PIC DEVELOPMENT BOARD

TERRY de VAUX-BALBIRNIE

Terry casts an appraising eye over two new products

DOWN TO BASICS

OR READERS who are not yet familiar with PIC devices, these are programmable integrated circuits and comprise a family of microcontrollers from Arizona Microchip.

A PIC is manufactured in an "empty" condition. Unlike conventional i.c.s which have some dedicated purpose, a PIC will only perform the task you have in mind if you program it within the limits set by the manufacturer's parameters. It can then perform a wide variety of jobs, replacing all manner of conventional i.c.s, and may be cost effective even when the circuit is fairly simple. In more complex applications, a single PIC may replace a number of "ordinary" i.c.s.

Many projects published in EPE are PIC-based. To construct

Many projects published in *EPE* are PIC-based. To construct these, readers may wish to program their own PIC or buy the ready-programmed device. However, for those wishing to develop their own PIC circuits, some means of programming them is clearly necessary. This work is done in two stages. First, the program is worked out ("written") and any faults ("bugs") removed from it. Second, it is "assembled" and transferred to the PIC.

WORKING FOR YOU

If you are itching to see what a PIC can do for you, and have possibly been put off by reading textbooks, then *Flowcode* could be a very good choice. This is a piece of computer software that teaches you about PIC microcontrollers and shows how to program a

"virtual" (make believe) device. Its great strength is that you need to know nothing about PIC programming theory!

When you are ready to write your own programs, all you need is a clear idea of what you want the PIC to do. This is then entered on the screen in the form of a flow chart using standard flow chart symbols. It will then simulate the action of the PIC. You may play around to your heart's content without touching a real PIC! This is as good as hand-on experience, but is faster and costs nothing (apart from the initial outlay).

REQUIREMENTS

To use Flowcode, you will need (as a minimum requirement) a PC with a Pentium processor and having a CD-ROM drive, 32MB of RAM and 20MB of hard disk space. It is designed to be run under

Windows 98/ME/XP/NT/2000. It *cannot* be guaranteed to run using Windows 95.

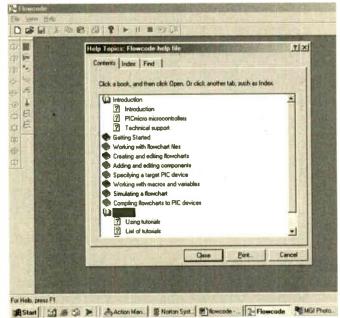
The software serves the purpose of developing the program while the associated *PIC Development Board* hardware may be used to transfer the program to a real PIC. Note that the Development Board may be used to program PICs from files not necessarily derived from Flowcode.

For those who simply wish to learn about PICs and work on their own programs, the software may be used on its own. Users who would like to get their hands on a real PIC and make it work in a circuit will need both the hardware and software products.

ASSUMED KNOWLEDGE

Users of these products will range from those having a fairly limited knowledge to experts in conventional (pre-PIC) electronics. Some will only wish to gain an idea of what a PIC can do while others will want to write complex programs. Flowcode assumes that the user has sufficient existing electronics knowledge to use it effectively.

Although not meant for the complete beginner, the necessary knowledge is easily gained from other sources. There are some inexpensive textbooks and useful pieces of software available.


You will also need some background knowledge regarding what PICs are and what they can do. You need to be reasonably computer-literate (if you can use the usual Windows operations such as cut, paste, print, save, etc. that will probably be sufficient).

You should know the difference between analogue and digital signals, be familiar with logic states and have some understanding of simple electronic components such as l.e.d.s, switches, sevensegment displays, etc.

It will probably be found easier working in a school or college environment where there is access to a teacher or lecturer. It may be harder for those working on their own. Even so, Flowcode's interactive nature makes it ideal for home study and, after all, such users can work as slowly or as quickly as they need to.

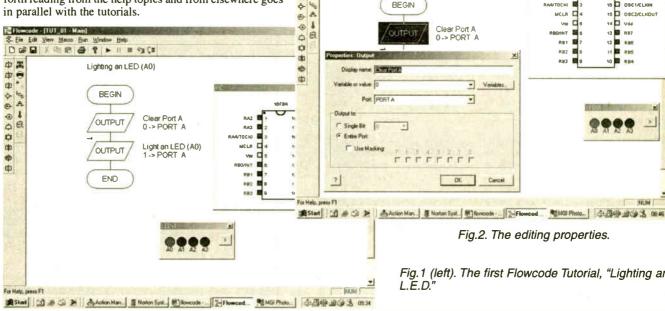
TWO PART SERIES

There are two elements to Flowcode – the program itself and the *help topics*. The latter may be opened separately or from within Flowcode. Here, there is an explanation of the subject matter (the "contents"),

The Help Topics in Flowcode.

also an alphabetical index and search facilities. These will be found useful at a later stage to locate a particular section.

The subject matter begins with an introduction and started" and ends with a list of some 28 practical tutorials. These are worked examples of flow charts that may be run on a "virtual" PIC to see how they behave.


For someone having only a minimum amount of knowledge, it seems best to read through the first few topics briefly before doing anything else. This will check whether anything needs to be brushed up on before proceeding.

The foundation work might seem daunting and it must be read slowly or the user might become discouraged. It would be best not to take too much notice of special terms initially because they might not

be necessary to follow the first few tutorials. They may be

looked at in more detail as they are needed.

When the first few topics have been read, it would then be a good idea to look at the first tutorial or two and see how things work from a practical perspective. Back and forth reading from the help topics and from elsewhere goes in parallel with the tutorials.

These are blocks of flow chart programming obtained from another flow chart and saved as a single icon. Flowcode operates by first translating the information from the flow chart into C language. It is then compiled and assembled using Arizona Microchip's MPASM assembler (which is supplied on the CD-ROM) into an ASM file. However,

There are icons for the various flow chart boxes and for input and

A very powerful technique is to call macros into a flow chart.

output devices (such as switches and l.e.d.s). By dragging a box on

to the flow chart, an arrow appears at the insertion point and the

flow chart expands to include the new elements.

D # 2 X 2 2 2 1 1 1 2 2 (1

Lighting an LED (A0)

中黑

中中

all this goes on in the background without the user being aware

- 5 X

18 RAI 17 RAO 18 OSC1/CLIGH RAS BEGIN MCLR -15 D 08C2/CLKOUT 14 V44 13 R87 12 M86 11 M85 10 M84 Clear Port A CUTPUT RB2 + V ٠

Fig.2. The editing properties.

Fig.1 (left). The first Flowcode Tutorial, "Lighting an L.E.D.

TUTORIALS

To use the tutorials from within the program you need to "open an existing Flowcode flowchart" whereupon a list of tutorials appears. Double-clicking on the first one (TUT_01) brings up the working screen with the first example on it (see Fig.1). At the top, there is a statement about what the PIC is going to do (in this case, Lighting an L.E.D.) and a flow chart complete with Begin, End and Output boxes appears.

The output boxes are defined in terms of what they do. There is (optionally) a pin diagram of the PIC (labelled with its type) and a row of four light-emitting diodes (l.e.d.s).

MAKING IT WORK

Nothing happens until you click Run then Go/Continue (or press the ">" arrow on the toolbar). The program then runs and the appropriate l.e.d. "lights up" (goes red). The PIC diagram (if displayed) also shows the pins that go high and low by turning from blank to red and blue respectively.

By pressing ">" in the LED box, the connections between the l.e.d.s and the PIC may be displayed and edited and in properties, the l.e.d. colour may be changed to green, yellow or blue and the number of l.e.d.s in the group altered from one to eight. A complex program may be run step-by-step. The clock speed may also be varied and can be made as low as 1Hz to watch the effect at each stage.

It is very rewarding to modify a tutorial by editing it, perhaps very gently to begin with and note the effect when the program is run. Double-clicking a flow chart box will bring up the properties which may then be changed (see Fig.2). Sorting out the reason if it fails to work as expected is highly instructive.

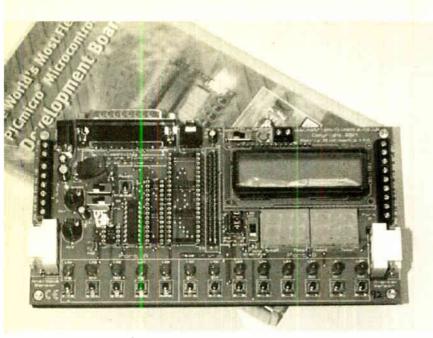
GAINING CONFIDENCE

When you feel confident, you will be able to create your own flow charts. When opening up a new window to do this, Begin and End boxes appear automatically because these are always needed. The flowchart is then built up by dragging icons from toolbars on to the diagram.

DEVELOPMENT BOARD

The PIC Development Board is a piece of hardware that plugs into your computer parallel port (see photograph). To use it, you will need (as a minimum requirement) a PC having a 100MHz Pentium processor running Windows 98/ME/NT/2000/XP (again, it cannot be guaranteed to run in Windows 95). It should have a parallel printer port, 1MB of hard drive space and 16MB of RAM.

The board is supplied in a case identical to a VHS cassette box together with software and documentation on a 3.5 in. floppy disk. The documentation is comprehensive and it might be best to print this out so that it is available for quick reference.


The board receives the assembled file from the computer and programs the PIC which is plugged into it. This may be done simply by clicking "compile to PIC" from the RUN menu in Flowcode. After that, the PIC may be run on the board. It may then be removed if need be and transferred to a custom-made p.c.b.

Having designed electronic circuits for many years, the PIC Development Board certainly seems very nicely made and sufficiently robust for all normal purposes. The underside has a foam backing lightly stuck in place. This will protect the work surface from scratching, insulate it from any conducting objects and prevent fine copper tracks from becoming broken if it is placed on something sharp.

This board is also compatible with the associated CD-ROMs Assembly for PICmicro V2 (formerly PICtutor), and "C" for PICmicro V2.

PLUGS AND SOCKETS

Fitted with a 25-way D-type plug, the board connects via a standard parallel lead to the computer parallel port. On top of the board, there are turned pin sockets for 8, 18, 28 and 40-pin PICs (most types are supported). A PIC16F84 is already fitted when supplied. This is electrically re-programmable and should provide up to 1,000 programming cycles. Replacements are widely available if required.

The PIC Development Board and "VHS type" storage box.

The board has a row of 13 l.e.d.s (to indicate the logic states when Port A/B pins are used as outputs) and pushbutton switches (to apply a logic state of 1 when they are used as inputs); a bank of four seven-segment l.e.d. indicators and a two-line 16-character liquid crystal display (see photograph), with an associated contrast potentiometer. Also, there is a choice available between a crystal and on-board *RC* circuit (as set by a switch) to control the clock speed.

Students often like to run things very slowly (say, at 1Hz) to see the effect of each step in the program (which was available in Flowcode during simulation). For this, the RC mode of operation is used. An on-board potentiometer may be used to alter the time period of the RC circuit and hence the clock speed, in conjunction with a "fast/slow" selector switch.

In addition, the board has a 40-way expansion bus suitable for an IDC cable link. There are also connectors for an audio output (for tone generation), for digital and analogue external sensors and port inputs/outputs. A manual Reset switch is also present.

IN AND OUT

While learning Flowcode, many users will rarely remove the existing PIC from its socket. However, when programming PICs for use in your own circuits, if devices are inserted and removed too many times, this could cause excessive wear and tear to the socket. If you need to repeatedly remove and replace the PIC, you could use zero-insertion force (ZIF) sockets "piggy-back" style in the existing holders.

For home use, the on-board sockets will probably be satisfactory or you could use further standard turned-pin units inserted in the PIC sockets that are most used. This would be a cheaper alternative to using ZIF sockets. The new ones would then receive the wear and would be easily replaced.

The board is said to be short-circuit proof on all inputs and outputs although this was not tested. A plug-in power supply unit is available although a suitable 12V d.c. 500mA (minimum) unregulated unit may already be to hand. This is connected via a standard "power-in" type socket.

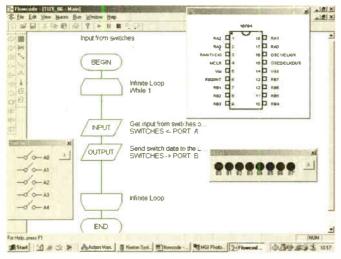
MAKING SENSE

Although the supplied PIC16F84 has no analogue-to-digital converter, such devices are fully supported and there is an on-board l.d.r. type light sensor and an "analogue sensor simulator" (potentiometer). Various external sensors such as for light, sound (microphone), temperature, pH, dissolved oxygen, gas pressure and heart rate are available as optional extras. These enable the programmed PIC to be used in "real life" situations.

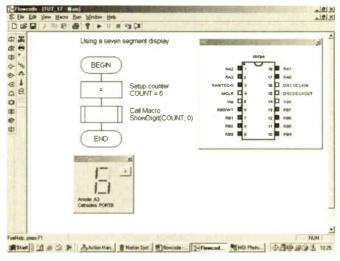
The capabilities of the PIC Development Board were tested by programming the as-supplied PIC using some of the Flowcode Tutorials. It performed the job perfectly. When "compile to PIC" is clicked on from within Flowcode, a box appears telling the user the stage that has been reached and whether or not the process has been successful. There is also a "program indicator" l.e.d. which operates during the time the PIC is being programmed. Programming is under full computer control without manual intervention.

CHECK IT OUT

As supplied, the PIC is ready-loaded with a test program. This checks for correct operation on delivery and takes the form of a simple "Knight Rider" effect (flashing the l.e.d.s from left to right then back again). If this is successful, the board is working correctly.


Some users will wish to study PICs for the needs of further education or industry. Others will want to work at home for self-interest and to develop their own programs. The materials are therefore made available in a student/home version; a single user institution version, a 10-user licence and a site licence. The student/home version does not have the burglar alarm and buggy simulations and this is reflected in the lower price. For many users, this will not matter.

Flowcode is an excellent concept. Those using it can concentrate on simulating a practical task without having to learn complex programming techniques. This and the PIC Development Board will be of great interest to the independent hobbyist as well as those involved with education and industrial training.


You can purchase Flowcode for PICmicro and the PIC Development Board from the EPE Electronics CD-ROMs pages in this issue – see page 677 for prices and ordering information.

SUPPORT

Technical support may be found at www.matrixmultimedia. co.uk. The web site will contain Frequently Asked Questions, and any updates for Flowcode that may be available from time to time. Support is also available via email at: support@matrixmultimedia.co.uk. It is also available by phone (but not for the student/home version).

Using switches and the infinite loop.

Tutorial operating a 7-segment display by using a macro.

Special Feature

LOGIC GATE INVERTER OSCILLATORS

GEORGE HYLTON

Part One

A compendium of practical oscillator circuits for the creative experimenter, all based on inverting logic gates.

MOS inverters can be usefully configured as oscillators. For sinewave generation it is usual to specify unbuffered inverters, whilst for other waveforms it may be more convenient to use the buffered kind. Many CMOS NAND and NOR gates can be connected so as to also behave as inverters, and thus as oscillators.

The aim of this article is to explain how inverter oscillators work and to give some simple design pointers.

CMOS INVERTER

The essentials of a typical single-stage CMOS inverter are shown in Fig.1. The heart of the circuit is formed around the two series-connected enhancement mode MOSFETs, TR1 and TR2, p-channel and n-channel respectively.

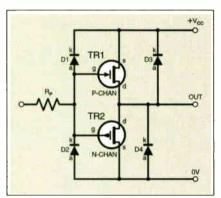


Fig.1. The essentials of a typical CMOS inverter, internal circuitry.

The source (s) of TR1 is connected to the positive supply line (V_{CC}). TR2's source is connected to the earthy (0V) side of the supply. The two drains (d) are connected together, as are the two gates (g). The whole configuration forms a complementary push-pull amplifier.

When used with digital signals, a sufficiently large positive input voltage turns TR2 on and TR1 off. The output is then low. An input voltage close to 0V takes the output high. It is unsafe to take the input more negative than about -0.5V as this can lead to damage of the chip.

At the input of this circuit is a protective resistance, R_p (typically about 200 ohms), and (usually) two gate protection diodes, D1 and D2. An excessive input voltage turns on one of the diodes and R_p then limits the current. There may also be two more protection diodes (D3 and D4) at the output. This stage, when used on its own, is known as an *unbuffered* inverter.

BUFFERING

In a buffered inverter, two more stages like this are added. The three-fold inversion gives the effect of a single inverter of much higher gain. The slope of the central portion of the input/output curve (Fig.2) is much steeper than a single inversion stage would produce. A digital input signal of high level makes the working point switch from P1 to P3, with a transition from P3 to P1 for a low level signal.

There is a price to pay for this steeper operation. If a slowly changing input is

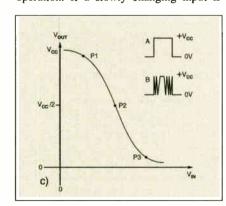


Fig.2. Input/output voltage curve for the circuit in Fig.1. For oscillators, P2 represents a typical working point. Ideally, output pulses should be as shown in waveform A, but when buffered inverters are used they can have jitter, as illustrated in waveform B.

applied, a point may be reached where all three inversion stages are biased to working points such as that at P2. The overall gain is then very high and stray feedback can make the circuit jitter or oscillate.

Also, random voltage variations (noise) mixed up with the input can make the circuit turn on and off rapidly, giving an output like that at waveform *B* instead of the wanted one at waveform *A*.

This is why single-stage (unbuffered) inverters are preferred for sine wave oscillators, where the input is not a repetitive series of high/low pulses, but a smoothly changing waveform and where, in order to set up the inverter, it is biased to a working point in the region of P2.

DIODE CONDUCTION

Diodes D1 and D2 are not meant to conduct during normal operation. However, they may do so in oscillator circuits, with undesirable effects on the frequency. Fig.3 shows a common square wave oscillator circuit configuration known by various names, such as astable, relaxation oscillator and multivibrator.

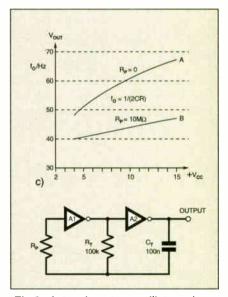


Fig.3. A two-inverter oscillator, showing the effect of V_{CC} on f_{o} , with and without swamping resistance R_{P} . Note that the frequency with Rp present is lower than the 50Hz obtained from the formula (see text).

Graph curve A shows the effect on frequency of changing the supply voltage V_{CC} . Part of the change in frequency is the result of protection diode conduction. The effect can be reduced by connecting a large extra protection resistance R_p in series with the input at A1. Curve B shows the change produced by increasing R_p to 10 megohms.

The extent to which a swamping resistance like R_p improves stability, or frequency accuracy, depends on how much bigger it is than the normal timing resistance, R_T . Note, however, that diode conduction is not the only influence on frequency stability. The output resistances of Al and A2, which are effectively in series with R_T and C_T respectively also affect timing, and they change with V_{TC}

It is also necessary to be aware that increasing the value of R_p will reduce the oscillation frequency. This is due to the CR constant of this resistor in conjunction with the inverter's input capacitance affecting the circuit's principal time constant, determined by R_T and C_T .

Frequency can be adjusted by changing C_T or R_T . This resistance also sets up the d.c. conditions; with C_T disconnected (no oscillation) negative feedback from A1 output to input via R_T sets the working point to about that at P2 in Fig.2.

FREQUENCY DETERMINATION

A capacitor C charging from a d.c. voltage source through a resistance R acquires a charge voltage which builds up, at first rapidly, and then ever more slowly as the charge accumulates. Theoretically, C takes for ever to charge right up to the source voltage.

However, the charge reaches 63 per cent of the source voltage after a time of $C \times R$ seconds, known as the *time constant* CR, where C is in farads and R is in ohms. More conveniently, C can be in microfarads and R in megohms. Thus a capacitor of $1\mu F$ charged through $1M\Omega$ becomes charged to 63 per cent of the applied voltage after one second.

In relaxation oscillators, such as that shown in Fig.3, the circuit changes state abruptly when the charge on C reaches the A1 inverter's critical threshold level, at about point P2 in Fig.2. At this point, the inverter whose output has been high switches to give a low output, and vice versa.

Capacitor C then discharges and when its voltage has decreased below the critical level, the circuit resets to its original state, and so on. If the charging and discharging threshold voltages are equal and the resistance is constant, the circuit generates rectangular waves with half cycles of equal duration, i.e. square waves.

In Fig.3, the time constant CR is 0.01 second $(0.1\text{M}\Omega \times 0.1\mu\text{F})$. Consequently, the charge and discharge periods each take 0.01 seconds, therefore one complete cycle takes 0.02 seconds. Using the period to frequency conversion formula $f_0 = 1/2\text{CR}$, the frequency is thus $1/(2 \times 0.01) = 50\text{Hz}$.

It should be noted, though, that CR may also be affected by other stray R and C values within the circuit. As stated earlier, it can also be affected by differences in supply voltage, and by the value of R_p.

However, as an approximation the formula can be used to determine the likely frequency to be produced. It can also be re-arranged so that for a given frequency, the required values for *C* and *R* can be calculated.

Thus if R is known, to find the value of C required for frequency f_o , the formula is rearranged to become:

$$C = 1/(2 \times f_o \times R)$$

To find R when C is known, it becomes:

$$R = I/(2 \times f_o \times C)$$

If the product $R \times C$ is megohms times microfarads the frequency is in Hertz. You can increase the units of R to 10M and correspondingly reduce those of C to 0·1uF (100nF) and still get f_o in Hz. In other words, if the units of R increase then those of C decrease by the same factor to get the same units of f_o . You can get f_o in kilohertz by having R in kilohms and C in microfarads or with R in megohms and C in nanofards.

You should also be aware that the actual values for the components used as C and R are subject to manufacturing tolerances. To adjust the oscillator frequency to that actually required, a variable resistor (i.e. potentiometer) can be inserted as in Fig.4.

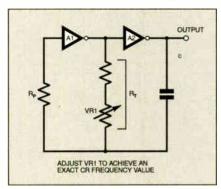


Fig.4. Frequency adjustment is provided by VR1. The ratio of maximum to minimum frequency can exceed 10 in low-frequency oscillators where C and VR1 are large. Frequency adjustment has little effect on the mark-space ratio.

MARK-SPACE RATIO

We have assumed in the foregoing discussion that the oscillator output is a square wave whose peak-to-peak voltage is close to V_{CC}. Because of differences between the MOSFETs manufactured into the CMOS inverter, the positive-going half-cycles may have slightly different durations to those of the negative-going half-cycles. They are said to have a different *mark-space* ratio.

If necessary, the mark-space ratio can be equalised with the aid of an adjustment circuit, such as that in Fig.5. In this case CR is calculated as $C \times (RI + (VRI/2))$, although the presence of D1 and D2 will modify the ratio, typically reducing the frequency due to the charge/discharge voltage having been reduced by about 0.7V.

A reasonable rule of thumb formula is shown in Fig.5.

To provide a wide spread for the markspace ratio, the value of R1 should be kept small in relation to the value of VR1.

VOLTAGE RATINGS

Standard CMOS inverters, such as the 4069 hex inverter, can be used with V_{CC}

Fig.5. Mark-space adjustment is provided by VR1. When D1 conducts the effective resistance is R1 plus section a of VR1. When D2 conducts it is R1 plus VR1 section b. Thus the charge and discharge of C can be adjusted differentially. If a wide range of control is needed R1 can approach zero ohms.

up to 15V (18V for some manufacturers). Modern high speed "equivalents", such as the 74HC04, are restricted to a maximum V_{CC} of 6V. They may also draw more current when biased for oscillator use.

SCHMITT INVERTERS

As illustrated in Fig.2, jitter can occur when a "normal" inverter's input voltage is at around the P2 level. To inhibit the jitter possible with slowly-changing inputs, CMOS inverters having a "snap" action, and known as Schmitt trigger inverters, can be used.

With these a slowly rising input voltage has no effect until an upper critical (threshold) value is reached. Then the high output flips abruptly to the low condition. If the input is then reduced slightly the output remains low.

Not until the input is lowered by a fairly substantial amount, to below the lower threshold level, does the output flip back to the high state. This backlash (hysteresis) prevents the output from jittering when there is noise mixed up with the input signal.

Schmitt trigger inverters can cope with signals arriving via long cables whose capacitance slows the rate of rise or fall of

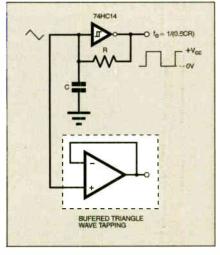


Fig.6. A Schmitt trigger inverter square wave oscillator which uses the minimum of components.

a pulse and which may pick up noise or interference.

Buffered Schmitt devices such as the 74HC14 hex inverter make good oscillators whose output waveform is very close to a square wave (Fig.6). The slight difference in the mark-space ratio which may be obtained is dependent upon the Schmitt trigger's precise upper and lower threshold levels.

The only external components needed are a resistor and a capacitor. These act as a kind of integrator which turns the square wave at the output into a triangular wave at the input. This has a lower amplitude (typically about 1V peak-to-peak for a 5V supply) than the square wave and is too small to turn on the protection diodes, consequently no swamping resistance is needed.

In a typical Schmitt inverter with $V_{CC} = 5V$ the circuit changes state when the input voltage rises to about +3V or falls to about +2V. Since the d.c. average voltage on C is 2.5V ($V_{CC}/2$) changes in input voltage of 0.5V are all that is needed to flip the circuit from one state to the other.

The difference between the two critical threshold voltages is called the hysteresis voltage. For the 74HC14 inverter this is typically quoted on data sheets as 0.5V for $V_{CC} = 2V$, 0.8V for $V_{CC} = 4.5V$ and 0.95V for $V_{CC} = 6V$.

Oscillation frequency is determined by how long it takes for these changes of input voltage to occur after a switch of output from high to low, or low to high. Since the required changes are only around one fifth of V_{CC} the time to produce them is relatively smaller than with the oscillators discussed so far.

The result is that the frequency is much higher than might be expected from the basic RC time constant. It is roughly 2/RC, but this is only an approximation since it is also affected by the supply voltage and the resulting hysteresis thresholds.

The triangle waveform at the junction of C and R can be tapped by using an op.amp buffer, as shown in the dotted box of Fig.6.

It is also possible to vary the mark-space ratio of the oscillator by using the diode and potentiometer configuration shown in Fig.5. This also has the effect of changing the triangle waveform to a rising or falling ramp (sawtooth).

SAWTOOTH OSCILLATOR

Another method of yielding sawtooth and pulse waveforms is shown in Fig.7, in which C is discharged via transistor TR1 as soon as the output of A2 goes high. The

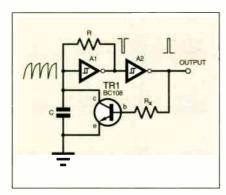


Fig.7. Sawtooth oscillator created by rapidly discharging C via TR1.

discharge of C causes the output of A2 to go low again, turning off TR1, whereupon C starts to charge up again and the process is repeated.

The discharge of C is very rapid and, almost immediate, but during the discharge of C there is a very short negative-going pulse at A1 output and a corresponding positive-going pulse at A2 output. The waveform at C is effectively a rising ramp.

EQUALISATION

The sawtooth amplitude is about $V_{\rm CC}/2$ and the rising of its slope is not linear. Linearity can be improved by substituting a constant current source for R. This can be made easier by taking advantage of the fact that the circuit still works if the top end of R is connected to $+V_{\rm CC}$ instead of A1 output, as shown in Fig.8.

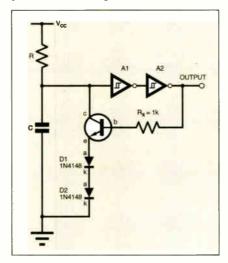


Fig.8. Linearising a sawtooth waveform.

There is, however, another problem. The frequency of the sawtooth is only about half that of the original triangular wave. The frequency can be increased by preventing C from discharging completely through TR1. With less recharging to be done the cycle speeds up.

In Fig.8 the speeding up is done by connecting two diodes in the emitter (e) of TR1. These make TR1 turn off before C is fully discharged. The inclusion of resistor Rx (of $1k\Omega$, say) prevents damaging current flow from A2 output through the base-emitter path of TR1.

With V_{CC} at +5V the sawtooth frequency will typically be about the same as the original triangle wave frequency and the two amplitudes will also be similar. Linearity is improved, too.

SINEWAVE OSCILLATORS

Oscillators can usually be considered as amplifiers with positive feedback. The feedback increases gain and if there is enough of it, the gain becomes infinite. Then any noise at the input is amplified by as much as the circuit will allow. In practice this means that the amplitude builds up until the system overloads. This reduces gain and stops any further increase.

In a sine wave oscillator, the positive feedback is channeled from output to input through some sort of filter which permits the greatest feedback at one particular frequency. This is the oscillation frequency.

PHASE REVERSAL

Since, in an inverter, a positive input voltage results in a negative output voltage an inverter should not oscillate if feedback is taken directly from output to input. Such feedback is negative and reduces gain.

Most CMOS sine wave oscillators do incorporate feedback from output to input, but only at d.c. The feedback's job is to set the working point on the linear part of the input/output curve and so establish the right starting conditions.

To permit a.c. oscillation, some arrangement must be incorporated to create a second phase reversal at the oscillation frequency. The two successive inversions (positive to negative, negative to positive) make feedback positive at the oscillation frequency.

One way of providing a second phase inversion is to pass signals through a second inverter (but note that this will not work with Schmitt inverters). This entails a risk, though: if feedback occurs at d.c. the working point may be de-stabilised. The result (latchup) leaves all the inverters either hard on or hard off (high or low), preventing a.c. oscillation. Also, if the overall feedback is over a wide band of frequencies, the circuit may oscillate at an unintended frequency.

Ways of avoiding these dangers will be covered later. For the present, let's look at other methods of obtaining a second phase inversion.

One method is to use a transformer. If the inverter output is applied to a primary winding, the secondary winding yields a copy, scaled up or down in voltage according to the turns ratio. The secondary winding is electrically isolated from the primary.

To make an oscillator, we choose the end of the transformer secondary winding which provides a voltage having the opposite polarity to the inverter's output voltage. This gives the required second inversion.

PRACTICAL SINEWAVES

A practical version, shown in Fig.9, incorporates a feedback adjuster, VR1, which can be set to control the strength of oscillation. In general, a setting which is just sufficient to ensure reliable oscillation gives the best waveform.

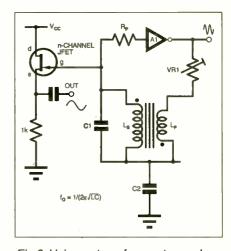


Fig.9 Using a transformer to produce phase inversion.

The frequency is determined by capacitor C1 and winding L_s . Capacitor C2 merely provides a bypass (decoupling) capacitance, and its presence ensures that there is d.c. negative feedback to stabilize the operating conditions.

A pure sine wave appears across L_s/C1. A distorted (peaks flattened) waveform appears at the inverter output but it can be made almost sinusoidal by careful setting of VR1.

The turns ratio depends on both the transconductance (g) of the inverter and the dynamic resistance (R_d) of the LC combination. The effect of the transformer is to reduce the impedance seen looking into the coupling winding from the inverter output to R_d/N^2 , where N is the ratio of the turns on L_s to the turns on the coupling winding.

To design an oscillator, first assume VR1 = 0 then calculate the turns ratio which will just allow oscillation. For this $N = (g \times R_d)$. In this type of oscillator, the working point will be on the linear part of the characteristic, i.e. P2. Both f.e.t.s are on and g is the sum of their transconductances.

To take an example, if g = 3 ms and $R_d = 100 \text{k}$, N is $3/1000 \times 100,000 = 300$. To allow for adjustment and device spreads a lower turns ratio is chosen. The best value of VR1 is best found by experiment but is usually a few times the output resistance of the inverter; try a 100k preset.

The correct setting of VR1 should give reliable oscillation in the face of any likely supply-voltage variations. When set up correctly the level of signal at the input is low enough to ensure that the protection diodes never conduct. Hence R_p is not needed. This is important when frequency stability must be maximised because both R_p and input capacitance are temperature-dependent.

AMPLITUDE LIMITS

In any oscillator the amplitude increases until something stops it. In CMOS

oscillators the limiting mechanism is peak flattening as the signals become large enough to be affected by the nonlinearity of the transfer characteristic. If VR1 is low enough to allow strong oscillation the output approaches a square wave.

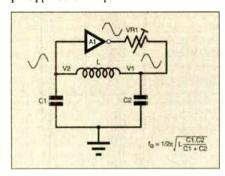


Fig.10 Colpitts oscillator. Phase inversion at the oscillating frequency is created by the pi-network C1, L, C2.

If VR1 is set for "just oscillating" the output is a sine wave except for slight peak crushing. The waveform across the LC itself can still be a good sinewave even when the output is crushed because the harmonics produced by crushing are attenuated by the LC circuit. With symmetrical crushing the main harmonic is the third and this is well away from the peak of the LC resonance curve.

When VR1 is set for strong oscillation the peak-to-peak output approaches V_{CC} . The level across the LC is normally much lower. The signal across the coupling winding is a good sine wave but only one Nth of the amplitude at the LC. To extract the full LC signal without upsetting circuit operation calls for a buffer, such as the f.e.t. follower in Fig.9.

COLPITTS OSCILLATOR

Transformers are often inconvenient. Designers may prefer to use a simple inductor without a secondary winding or

tappings. In this case the required second inversion can be performed by the tuning components themselves.

In the usual arrangement shown in Fig.10, the two capacitances C1 and C2, together with inductance L, form a pi-network. This inverts the voltage at one specific frequency, that at which the reactance of L is the same as the reactance of C1 and C2 in series.

Oscillation may well be violent and the waveform poorly shaped. Adding a feedback-control resistance, VR1, provides a "throttle" control to adjust the oscillation level. Then the waveform at the inverter output is peak-clipped but good sine waves are obtainable across the capacitors. Because of the network phase inversion, waveform voltages V1 and V2 are in antiphase. If C1 = C2 (the usual case), the amplitudes of V1 and V2 are equal, but opposite.

This oscillator is a version of a classical one, the Colpitts oscillator. It is easy to get it oscillating. The requirement is that the inverter should produce a gain of over one when driving the impedance looking into the pi-network.

With C1 = C2, this impedance is a quarter of the dynamic resistance of the tuning circuit at the oscillation frequency. In most practical cases, this impedance is more than high enough and VR1 is needed to limit amplitude and ensure good waveforms. The value of VR1 is not critical. Even if the resistance is considerably less than the maximum possible, the waveforms can still be good.

At radio frequencies, the Colpitts circuit can be tuned by a two-gang variable capacitor in place of C1 and C2, with the rotor earthed. A tuning range (ratio of maximum to minimum frequency) in excess of three is usually obtainable. The range is limited by the practical tuning capacitors available, where $f_{max}/f_{min} = \sqrt{C_{max}}/C_{min} = about \sqrt{10}$ in a circuit with typical stray capacitance.

To be concluded next month.

NEXT MONTH - WE GO TREASURE HUNTING THE PAST!

★ EPE BOUNTY METAL DETECTOR ★ PLUS: 16-page Special Supplement ★ COLLECTING & RESTORING VINTAGE RADIOS ★

Annual subscription rates:

6 Months: UK £15, Overseas £18 (standard air service), £27 (express airmall)

1 Year: UK £28.50, Overseas £34.50 (standard air service) £52 (express airmail)

2 Years: UK £52.00, Overseas £64.00 (standard air service) £99 (express airmail)

To: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

Tel: 01202 873872 Fax: 01202 874562 E-mail: subs@epemag.wimborne.co.uk

Order from our online shop at: www.epemag.wimborne.co.uk/shopdoor.htm

Name	
Address	
Post code	Tel

PRICES WILL GO UP IN SEPTEMBER TAKE ADVANTAGE NOW! SUBSCRIPTION ORDER FORM

My card number is:	
Signature	
Card Ex. Date	
Subscriptions can only start with the For back numbers see the Back Issues p	page.

If you do not wish to cut your issue, send a letter or a copy of this form.

OK SERVIC

NOTE: ALL PRICES INCLUDE UK POSTAGE

Hobbylst Compendium ch-in 2000 CD-ROM book with Te

PE TEACH-IN 2000 CD-ROM

The whole of the 12-part *Teach-In 2000* series by John Becker (published in *EPE* Nov '99 to Oct 2000) is now available on CD-ROM. Plus the *Teach-in 2000* interactive software covering all aspects of the series and Alan Winstanley's *Basic Soldering Guide* (including illustrations and Desoldering).

Teach-In 2000 covers all the basic principles of electronics from Ohm's Law to Displays, including Op.Amps, Logic Gates etc Each part has its own section on the interactive software where you can also change component values in the various on-screen demonstration circuits.

The series gives a harids-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface which allows a PC to be used as a basic oscilloscope.

ONLY £12.45 including VAT and p&p

Order code Teach-In CD-ROM

Circuits and Design

€6.49

CD-ROM

PRACTICAL REMOTE CONTROL PROJECTS

Provides a wealth of circuits and circuit modules for use in remote control systems of all kinds; ultrasonic, infra-red, optical fibre, cable and radio. There are instructions for building fourteen novel and practical remote control projects. But this is not all, as each of these projects provides are dead to building fourteen for the projects provides. a model for building dozens of other related circuits by sim-ply modifying parts of the design slightly to suit your own requirements. This book tells you how.

Also included are techniques for connecting a PC to a remote control system, the use of a microcontroller in remote control, as exemplified by the BASIC Stamp, and the application of ready-made type-approved 418MHz radio transmitter and receiver modules to remote control

Order code BP413 160 pages

systems

ELECTRONICS PROJECTS USING ELECTRONICS WORKBENCH M. P. Horsey This book offers a wide range of tested circuit modules which

rnis book oriers a wide range or tested circuit modules which can be used as electronics projects, part of an electronics course, or as a hands-on way of getting better acquainted with Electronics Workbench. With circuits ranging from 'bulbs and batteries' to complex systems using integrated circuits, the projects will appeal to novices, students and practitioners

Electronics Workbench is a highly versatile computer simu-lation package which enables the user to design, test and modify their circuits before building them, and to plan PCB layexplored using the free demo version of the application.

Contents: Some basic concepts; Projects with switches, LEDs, relays and diodes; Transistors; Power supplies; Op.amp projects; Further op.amp circuits; Logic gates; Real logic circuits; Logic gate multivibrators; The 555 timer; Flip-flops, counters and shift registers; Adders, comparators and multiplexers; Field effect transistors; Thyristors, triacs and diacs; Constructing your circuit; Index.

Temporarily out of print

DISCOVERING ELECTRONIC CLOCKS

W. D. Phillips
This is a whole book about designing and making elec-This is a whole book about designing and making electronic clocks. You start by connecting HIGH and LOW logic signals to logic gates. You find out about and then build and test bistables, crystal-controlled astables, counters, decoders and displays. All of these subsystems are carefully explained, with practical work supported by easy to follow prototype board layouts.

Full constructional details, including circuit diagrams and a printed circuit board pattern, are given for a digital electronic clock. The circuit for the First Clock is modified and developed to produce additional designs which include a Big Digit Clock, Binary Clock, Linear Clock, Andrew's Clock (with a semi-analogue display), and a Circles Clock. All of these designs are unusual and distinctive.

This is an ideal resource for project work in GCSE

This is an ideal resource for project work in GCSE Design and Technology: Electronics Product, and for project work in AS-Level and A-Level Electronics and Technology.

194 pages, A4 spiral bound Order code DEP1 £17.50

DOMESTIC SECURITY SYSTEMS A. L. Brown

This book shows you how, with common sense and basic do-it-yourself skills, you can protect your home. It also gives tips and ideas which will help you to maintain and improve your home security, even if you already have an alarm. Every circuit in this book is clearly described and illustrated, and contains components that are easy to source. Advice and guidance are based on the real experience of the author who is an alarm installer, and the designs themselves have been rigorously put to use on some of the most crime-ridden

streets in the world.

The designs include all elements, including sensors, detectors, alarms, controls, lights, video and door entry systems. Chapters cover installation, testing, maintenance and upgrading.

Order code NE25

£15.99

MICROCONTROLLER COOKBOOK

Mike James

The practical solutions to real problems shown in this cook-book provide the basis to make PIC and 8051 devices real-ly work. Capabilities of the variants are examined, and ways to enhance these are shown. A survey of common interface devices, and a description of programming models, lead on to a section on development techniques. The cookbook offers an introduction that will allow any user, novice or experienced, to make the most of microcontrollers.

240 pages

£14.99

Order code NE26

£21.99

A BEGINNER'S GUIDE TO TTL DIGITAL ICS

This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic inte-grated circuits. The devices covered include gates, oscilla-tors, timers, flip/flops, dividers, and decoder circuits. Some practical circuits are used to illustrate the use of TTL devices in the "real world".

142 pages

Order code BP332

€5.45

PRACTICAL ELECTRONICS CALCULATIONS AND

PRACTICAL ELECTRONICS CALCULATIONS AND FORMULAE

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias – tedious and higher mathematics have been avoided where possible and many tables have been included. included.

The book is divided into six basic sections; Units and Constants, Direct-Current Circuits, Passive Components, Alternating-Current Circuits, Networks and Theorems, Measurements.

256 pages

Order code BP53

All Prices include UK P&P

outs on-screen. All the circuits in the book are provided as runnable Electronic Workbench files on the enclosed CD-ROM, and a selection of 15 representative circuits can be

Computing 3 Robotics

WINDOWS XP EXPLAINED N. Kantaris and P. R. M. Oliver

WINDOWS XP EXPLAINED

N. Kantaris and P. R. M. Oliver

If you want to know what to do next when confronted with Microsoft's Windows XP screen, then this book is for you. It applies to both the Professional and Home editions.

The book was written with the non-expert, busy person in mind. It explains what hardware requirements you need in order to run Windows XP successfully, and gives an overview of the Windows XP successfully, and gives an overview of the Windows XP environment.

The book explains: How to manipulate Windows, and how to use the Control Panel to add or change your printer, and control your display; How to control information using WordPad, Notepad and Paint, and how to use the Clipboard facility to transfer information between Windows applications; How to be in control of your filing system using Windows Explorer and My Computer; How to configure your system to communicate with the outside world, and use Outlook Express for all your email requirements; How to use the Windows Media Player 8 to play your CDs, burn CDs with your favourite tracks, use the Radio Tuner, transfer your videos to your PC, and now to use the Sound Recorder and Movie Maker; How to use the System Tools to restore your system to a previously working state, using Microsoft's Website to update your Windows set-up, how to clean up, defragment and scan your hard disk, and how to backup and restore your data; How to successfully transfer text from those old but cherished MS-DOS procrams. data; How to successfully transfer text from those old but cherished MS-DOS programs.

268 pages

Order code BP514

£7.99

INTRODUCING ROBOTICS WITH LEGO MINDSTORMS

INTRODUCING ROBOTICS WITH LEGO MINDSTORMS Robert Perifold Shows the reader how to build a variety of increasingly sophisticated computer controlled robots using the briliant Lego Mindstorms Robotic Invention System (RIS). Initially covers fundamental building techniques and mechanics needed to construct strong and efficient robots using the various "click-together" component supplied in the basic RIS kit. Explains in simple terms how the "brain" of the robot may be programmed on screen using a PC and "zapped" to the robot over an infra-red link. Also, shows how a more sophisticated Windows programming language such as Visual BASIC may be used to control the robots.

Detailed building and programming instructions provided, including numerous step-by-step photographs.

288 pages – large format Order code BP901 £14.99

MORE ADVANCED ROBOTICS WITH LEGO MINDSTORMS - Robert Penfold

Covers the Vision Command System

Shows the reader how to extend the capabilities of the Snows the feader now so extend the capabilities of the brilliant Lego Mindstorms Robotic Invention System (RIS) by using Lego's own accessories and some simple home constructed units. You will be able to build robots that can provide you with 'waiter service' when you clap your hands, perform tricks, 'see' and avoid objects by using 'bats radar', or accurately follow a line marked on

the floor. Learn to use additional types of sensors includthe floor. Learn to use additional types of sensors including rotation, kight, temperature, sound and ultrasonic and also explore the possibilities provided by using an additional (third) motor. For the less experienced, RCX code programs accompany most of the featured robots. However, the more adventurous reader is also shown how to write programs using Microsoft's VisualBASIC running with the ActiveX control (Spirit.OCX) that is provided with the RIS kit.

Detailed building instructions are provided for the featured robots, including numerous step-by-step photographs. The designs include rover vehicles, a virtual pet, a robot arm, an 'intelligent' sweet dispenser and a colour conscious robot that will try to grab objects of a specific colour.

298 pages

Order code BP902

PIC YOUR PERSONAL INTRODUCTORY COURSE

PIC YOUR PERSONAL INTRODUCTORY COURSE SECOND EDITION John Morton

Discover the potential of the PIC microcontroller through graded projects — this book could
revolutionise your electronics construction work!

A uniquely concise and practical guide to getting up
and running with the PIC Microcontroller. The PIC is
one of the most popular of the microcontrollers that are
transforming electronic project work and product
design

transforming electronic project work and product design.
Assuming no prior knowledge of microcontrollers and introducing the PICs capabilities through simple projects, this book is ideal for use in schools and colleges. It is the ideal introduction for students, teachers, technicians and electronics enthusiasts. The step-by-step explanations make it ideal for self-study too: this is not a reference book – you start work with the PIC straight away.

The revised second edition covers the popular reprogrammable EEPROM PICs: P16C84/16F84 as well as the P54 and P71 families.

the P54 and P71 families.

270 pages

Order code NE36

INTRODUCTION TO MICROPROCESSORS

John Crisp
If you are, or soon will be, involved in the use of
microprocessors, this practical introduction is essential
reading. This book provides a thoroughly readable introduction to microprocessors, assuming no previous knowledge of the subject, nor a technical or mathematical background, It is suitable for students, technicians, engineers and hobbyists, and covers the full range of modern microprocessors

After a thorough introduction to the subject, ideas are After a thorough introduction to the subject, ideas are developed progressively in a well-structured format. All technical terms are carefully introduced and subjects which have proved difficult, for example 2's complement, are clearly explained. John Crisp covers the complete range of microprocessors from the popular 4-bit and 8-bit designs to today's super-fast 32-bit and 64-bit versions that power PCs and engine management systems etc. systems etc.

222 pages

Order code NE31

688

Testing, Theory and Reference

Bebop To The Boolean Boogie

By Clive (call me Max) Maxfield Specially Imported by EPE -Excellent value

An Unconventional Guide to Electronics Fundamentals, Components and Processes

This book gives the "big picture" of digital electronics. This indepth, highly readable, upto-the-minute guide shows you how electronic devices work and how they're made. You'll disdevices work and now they re made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean Algebra and Karnaugh Maps, and understand what Reed-Muller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly report sected current)

BEROPE

great seafood gumbol).

Hundreds of carefully drawn illustrations clearly show the important points of each topic. The author's tongue-in-cheek British humor makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate. A great reference for your own shelf, and also an ideal gift for a friend or family member who wants to understand what it is you do all day. . . .

470 pages - large format

Order code BEB1

£26.95

BEBOP BYTES BACK (and the Beboputer Computer Simulator) CD-ROM

CD-ROM

Clive (Max) Maxfield and Alvin Brown

This follow-on to Bebop to the Boolean Boogle This follow-on to Bebop to the Boolean Boogle is a multimedia extravaganza of information about how computers work. It picks up where "Bebop i" left off, guiding you through the fascinating world of computer design . . . and you'll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the CD-ROM contains a virtual microcomputer, simulating the motherboard and standard computer peripherals in an extremely realistic manner. In addition to a wealth of technic

istic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the CD-ROM contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the slightest bit interested in the inner workings of computers, then don't dare to miss this!

Over 800 pages in Adobe Acrobat format Order code BEB2 CD-ROM £21.95

DIGITAL ELECTRONICS - A PRACTICAL APPROACH With FREE Software: Number One Systems – EASY-PC Professional XM and Pulsar (Limited Functionality)

Richard Monk
Covers binary arithmetic, Boolean algebra and logic gates, combination logic, sequential logic including the design and construction of asynchronous and synchronous circuits and register circuits. Together with a considerable practical content plus the additional attraction of its close association with computer-aided design including the FREE software.

There is a 'blow-by-blow' guide to the use of EASY-PC Professional XM (a schematic drawing and printed circuit board design computer package). The guide also conducts the reader through logic circuit simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make

software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with its host of project ideas make it an ideal companion for the integrative assignment and common skills components required by BTEC and the key skills demanded by GNVQ. The principal aim of the book is to provide a straightforward approach to the understanding of digital electronics.

Those who prefer the 'Teach-In' approach or would rather experiment with some simple circuits should find the book's final chapters on printed circuit board production and project ideas especially useful.

250 pages

Order code NE28

DIGITAL GATES AND FLIP-FLOPS

lan R. Sinclair

This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and

flip-flops thoroughly and from the beginning.

Topics such as Boolean algebra and Karnaugh mapping are explainend, demonstrated and used extensively, and more attention is paid to the subject

of synchronous counters than to the simple but less important ripple counters.

No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working practices. The book concludes with an explanation of micro-processor techniques as applied to digital logic.

200 pages

Order code PC106

EDA - WHERE ELECTRONICS BEGINS

By Clive "Max" Maxfield and Kuhoo Goyal Edson

EDA, which stands for electronic design automation, refers to the software tools (computer programs) used to design electronic products. EDA actually encompasses a tremendous variety of tools and concepts. The aim of this book is to take a 30,000-foot view of the EDA world. To paint a "big picture" that introduces some of the most important EDA tools and describes how they are used to create integrated circuits, circuit boards and electronic systems. To show you how everything fits together without making you want to bang your head against the nearest wall.

"Did you ever wonder how the circuit boards and silicon chips inside your personal computer or cell phone were designed? This book walks you through the process of designing a city on an allen planet and compares it to designing an electronic system. The result is a fun, light-hearted and entertaining way to learn about one of the most important – and least understood – industries on this planet."

John Barr, Managing Director, Robertson Stephens
SPECIALLY IMPORTED BY EPE – EXCELLENT VALUE
98 pages – Large format
Order code EDA1

UNDERSTANDING ELECTRONIC CONTROL SYSTEMS Owen Bishop

Owen Bishop has produced a concise, readable text to introduce a wide range of students, technicians and professionals to an important area of electronics. Control is a highly mathematical subject, but here maths is kept to a minimum,

Control is a highly mathematical subject, but here matrix is kept to a minimum, with flow charts to illustrate principles and techniques instead of equations. Cutting edge topics such as microcontrollers, neural networks and fuzzy control are all here, making this an ideal refresher course for those working in Industry. Basic principles, control algorithms and hardwired control systems are also fully covered so the resulting book is a comprehensive text and well suited to college courses or background reading for university students.

The text is supported by questions under the headings Keeping Up and Test Your Knowledge so that the reader can develop a sound understanding and the ability to apply the techniques they are learning. Order code NE35

HOW ELECTRONIC THINGS WORK - AND WHAT TO DO WHEN THEY DON'T Robert Goodman

You never again have to be flummoxed, flustered or taken for a ride by a plece of electronics equipment. With this fully illustrated, simple-to-use guide, you will get a grasp on the workings of the electronic world that surrounds you

and even learn to make your own repairs.
You don't need any technical experience. This book gives you: Clear explanations of how things work, written in everyday language. Easy-to-follow, illustrated instructions on using test equipment to diagnose problems. Guidelines to help you decide for or against professional repair. Tips on protecting your expensive equipment from lightning and other electrical damage. Lubrication

and maintenance suggestions.

Covers: colour TVs, VCRs, radios, PCs, CD players, printers, telephones, monitors, camcorders, satellite dishes, and much morel 394 pages Order code MGH3

The books listed have been selected by Everyday Practical Electonics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

> A FURTHER SELECTION OF BOOKS SEE THE NEXT TWO ISSUES OF EPE

> > All prices include UK postage

Audio and Music

PREAMPLIFIER AND FILTER CIRCUITS

R. A. Penfold

This book provides circuits and background information for a range of preampliflers, plus tone controls, filters, mixers, etc. The use of modern low noise operational amplifiers and a specialist high performance audio preamplifier i.c. results in circuits that have excellent performance, but which are still quite simple. All the circuits featured can be built at quite low cost (just a few pounds in most cases). The preamplifier circuits featured include: Microphone preamplifiers (low impedance, high impedance, and crystall). Magnetic cartridge pick-up preamplifiers with R.I.A.A. equalisation. Crystal/ceramic pick-up preamplifier. Guitar pick-up preamplifier. Tape head preamplifier (to use with compact casette systems).

Other circuits include: Audio limiter to prevent overloading of power amplifiers. Passive tone controls. Active tone controls. PA filters (highpass and lowpass). Scratch and

rumble filters. Loudness filter, Mixers. Volume and balance controls.

92 pages Order code BP309

ELECTRONIC MUSIC AND

MIDI PROJECTS R. A. Penfold

R. A. Penfold
Whether you wish to save money, boldly go where no musician has gone before, rekindle the pioneering spirit, or simply have fun building some electronic music gadgets, the designs featured in this book should suit your needs. The projects are all easy to build, and some are so simple that even complete beginners at electronic project construction can tackle them with ease. Stripboard layouts are provided for every project, together with a wiring diagram. The

mechanical side of construction has largely been left to the

mechanical side of construction has largely been left to the individual constructors to sort out, simply because the vast majority of project builders prefer to do their own thing. None of the designs requires the use of any test equipment in order to get them set up properly. Where any setting up is required, the procedures are very straightforward, and they are described in detail.

Projects covered: Simple MilDI tester, Message grabber, Byte grabber, THRU box, MIDI auto switcher, Auto/manual switcher, Manual switcher, MiDI patchbay, MiDI controlled switcher, MiDI lead tester, Program change pedal, Improved program change pedal, Basic mixer, Stereo mixer, Electronic swell pedal, Metronome, Analogue echo unit. Analogue echo unit.

138 pages

€4.49

Order code PC116

£10.95

Circuits, **Data and** Design

PRACTICAL ELECTRONIC FILTERS

Owen Bishop
This book deals with the subject in a non-mathematical way. It reviews the main types of filter, explaining in simple terms how each type works and how it is used.

The book also presents a dozen filter-based projects with applications in and around the home or in the constructor's workshop. These include a number of audio projects such as a rythm sequencer and a multi-voiced electronic organ.

Concluding the book is a practical step-by-step guide to designing simple filters for a wide range of purposes, with circuit diagrams and worked examples.

Order code BP299

DIGITAL ELECTRONICS -A PRACTICAL APPROACH With FREE Software: Number One SOFTWARE Systems - EASY-PC

Professional XM and Pulsar (Limited Functionality)

Covers binary arithmetic, Boolean algebra and logic gates, combination logic, sequential logic including the design and construction of asynchronous and synchronous circuits and register circuits. Together with a considerable practical content plus the additional attraction of its close association with computer aided design including the FREE software.

There is a 'blow-by-blow' guide to the use of EASY-PC

Professional XM (a schematic drawing and printed circuit board design computer package). The guide also conducts the reader through logic circuit simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with its host of project ideas make it an ideal companion for the integrative assignment and common skills components required by BTEC and the key skills demanded by GNVQ. The principal aim of the book is to provide a straightfor-

The principal aim of the book is to provide a straightforward approach to the understanding of digital electronics.

Those who prefer the "Teach-In" approach or would rather experiment with some simple circuits should find the book's final chapters on printed circuit board productions and provides and provides the control of the production of the produ tion and project ideas especially useful.

250 pages (large format) Order code NE28 £19.99

A BEGINNER'S GUIDE TO TTL DIGITAL ICS R. A. Penfold

This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates, oscillators, timers, flip/flops, dividers, and decoder circuits. cuits. Some practical circuits are used to illustrate the use of TTL devices in the "real world".

142 pages

Order code BP332

HOW TO USE OP.AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as non-mathematical as possible.

Order code BP88

CIRCUIT SOURCE BOOK 2

R. A. Penfold

This book will help you to create and experiment with your own electronic designs by combining and using the various standard "building blocks" circuits provided. Where applicable, advice on how to alter the circuit parameters

The circuits covered are mainly concerned with signal generation, power supplies, and digital electronics.

The topics covered in this book include: 555 oscillators: sinewave oscillators; function generators; CMOS oscilla-tors; voltage controlled oscillators; radio frequency osciliators; 555 monostables; CMOS monostables; TTL monostables; precision long timers; power supply and regulator circuits; negative supply generators and voltage boosters; digital dividers; decoders, etc; counters and dis-play drivers; D/A and A/D converters; opto-isolators, flip/flops, noise generators, tone decoders, etc.

Over 170 circuits are provided, which it is hoped will be useful to all those involved in circuit design and application, be they profassionals, students or hobbyists.

Order code BP322

For a further selection of books see the next two issues of EPE

Project Building & Testing

ELECTRONIC PROJECTS FOR EXPERIMENTERS R. A. Penfold

Many electronic hobbyists who have been pursuing their hobby for a number of years seem to suffer from the dreaded "seen it all before" syndrome. This book is fairly and squarely aimed at sufferers of this complaint, plus any other electronics enthusiasts who yearn to try something a bit different. No doubt many of the projects featured here have practical applications, but they are all worth a try for their interest value alone.

The subjects covered include:- Magnetic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scrambler/descrambler, Bat detector, Bat style echo location, Noise cancelling, LED stroboscope, Infra-red "torch" Electronic breeze detector, Class D power amplifier Strain gauge amplifier, Super hearing aid. power amplifier,

Order code BP371

ELECTRONIC PROJECT BUILDING FOR BEGINNERS

This book is for complete beginners to electronic project building. It provides a complete introduction to the practical side of this fascinating hobby, including the following

Component identification, and buying the right parts resistor colour codes, capacitor value markings, etc; advice on buying the right tools for the job; soldering; making easy work of the hard wiring; construction methods, including stripboard, custom printed circuit boards, plain matrix boards, surface mount boards and wire-wrapping; finishing off, and adding panel labels; getting "prob-lem" projects to work, including simple methods of fault-

In fact everything you need to know in order to get started in this absorbing and creative hobby

135 pages

Order code BP392

€5.49

PRACTICAL FIBRE-OPTIC PROJECTS

While fibre-optic cables may have potential advantages over ordinary electric cables, for the electronics enthusiast It is probably their novelty value that makes them worthy of exploration. Fibre-optic cables provide an innovative interesting alternative to electric cables, but in the problem. This book provides a number of tried and tested circuits for projects that utilize fibre-optic cables.

The projects include:- Simple audio links, F.M. audio link, P.W.M. audio links, Simple d.c. links, P.W.M. d.c. link, P.W.M. motor speed control, RS232C data links, MIDI link, Loop alarms, R.P.M. meter.

All the components used in these designs are readily available, none of them require the constructor to take out a second mortgage.

132 pages

Order code BP374

£5.45

RADIO BYGONES

We also carry a selection of books aimed at readers of EPEs sister magazine on vintage radio Radio Bygones. These books include the Comprehensive Radio Valve Guides (five books with a Free copy of the Master Index) for just £15. Also Jonathan Hill's excellent Radio Radio, a comprehensive book with hundreds of photos depicting the development of the British wireless set up to the late 1960s.

The three volumes of our own Wireless For the Warrior by Louis Meulstee are also available. These are a technical history of radio communication equipment in the British Army from pre-war through to the 1960s.

For details see the shop on our UK web site at www.epemag.wimborne.co.uk or contact us for a list of Radio Bygones

BOOK ORDERING DETAILS

All prices include UK postage. For postage to Europe (air) and the rest of the world (surface) please add £2 per book. For the rest of the world airmail add £3 per book. CD-ROM prices include VAT and/or postage to anywhere in the world. Send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or card details, Visa, Mastercard, Amex, Diners Club or Switch – minimum card order is £5 – to:

DIRECT BOOK SERVICE, WIMBORNE PUBLISHING LTD. 408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND.

Books are normally sent within seven days of receipt of order, but please allow 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books see the next two issues of EPE. Tel 01202 873872 Fax 01202 874562. Email: dbs@epemag.wimborne.co.uk

Order from our online shop at: www.epemag.wimborne.co.uk/shopdoor.htm

BOOK ORDER FORM
Full name:
Address:
Signature:
i enclose cheque/PO payable to DIRECT BOOK SERVICE for £
Please charge my card £ Card expiry date
Card Number Switch Issue No
Please send book order codes:
Please continue on separate sheet of paper if necessary If you do not wish to cut your magazine, send a letter or copy of this form

CB SERVICE

Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmall outside of Europe. Remittances should be sent to The PCB Service. Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872; Fax 01202 874562; E-mail: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).

NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required – see the Back issues page for details.

Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
★ Multi-Channel Transmission System MAY '00		
Transmitter Receiver	264 265 Set	€6.34
Interface	266	20.54
★ Canute Tide Predictor JUNE 100	267	£3.05
★PIC-Gen Frequency Generator/Counter JULY '00	268	£5.07
g-Meter	269	€4.36
★ EPE Moodloop Quiz Game Indicator	271 272	£5,47 £4,52
Handy-Amp	273	€4.52
Active Ferrite Loop Aerial SEPT '00	274	€4.67
★ Remote Control IR Decoder Software only ★ PIC Dual-Channel Virtual Scope OCT '00	275	£5.15
Handelap Switch NOV '00	270	£3.96
★ PIC Pulsometer Software only	270	20.00
Twinkling Star DEC '00	276	£4.28
Festive Fader Motorists' Buzz-Box	277 278	£5.71 £5.39
★ PICtogram	279	£4.91
★PIC-Monitored Dual PSU-1 PSU	280	€4.75
Monitor Unit Static Field Detector (Multi-project PCB)	281 932	£5.23 £3.00
Two-Way Intercom JAN '01	282	£4.76
UFO Detector and Event Recorder		2.4.7.0
Magnetic Anomaly Detector	283	00.40
Event Recorder Audio Alarm	284 Set 285	£6.19
★ Using PICs and Keypads Software only	-	-
Ice Alarm FEB '01	287	£4.60
★ Graphics L.C.D. Display with PICs (Supp) Using the LM3914-6 L.E.D. Bargraph Drivers	288	£5.23
Multi-purpose Main p.c.b.	289	
Relay Control	290 Set	€7.14
L.E.Ď. Display ★ PC Audio Power Meter Software only	291	
★ PC Audio Power Meter Software only Doorbell Extender: Transmitter MAR '01	292	£4.20
Receiver	293	£4.60
Trans/Remote	294	€4.28
Rec./Relay EPE Snug-bug Heat Control for Pets APR '01	295 296	€4.92
EPE Snug-bug Heat Control for Pets APR '01 Intruder Alarm Control Panel	296	£6.50
Main Board	297	€6.97
External Bell Unit	298	€4.76
Camcorder Mixer ★ PIC Graphics L.C.D. Scope	299 300	£6.34 £5.07
Hosepipe Controller JUNE '01	301	£5.14
Magfield Monitor (Sensor Board)	302	€4.91
Dummy PIR Detector ★PIC16F87x Extended Memory Software only	303	£4.36
Stereo/Surround Sound Amplifier JULY 101	304	£4.75
Perpetual Projects Uniboard-1	305	£3.00
Solar-Powered Power Supply & Voltage Reg.		
MSF Signal Repeater and Indicator Repeater Board	306	€4.75
Meter Board	307	£4.75
★PIC to Printer Interface	308	€5.39
Lead/Acid Battery Charger Shorthage Leap Acrist	309	£4.99
Shortwave Loop Aerial ★Digitimer – Main Board	310 311	£5.07 £6.50
- R.F. Board	312	€4.36
Perpetual Projects Uniboard-2	205	62.00
L.E.D. Flasher — Double Docr-Buzzer Perpetual Projects Uniboard-3 SEPT 01	305 305	£3.00
Loop Burglar Alarm, Touch-Switch Door-Light	0.00	20.00
and Solar-Powered Rain Alarm	04.03	
L.E.D. Super Torches – Red Main – Display Red	313 314 Set	€6.10
- White L.E.D.	315	€4.28
★Sync Clock Driver	316	£5.94
★ Water Monitor Camcorder Power Supply OCT '01	317 318	£4.91 £5.94
PIC Toolkit Mk3	319	€8.24
Perpetual Projects Uniboard-4. Gate Sentinel, Solar-	305	£3,00
powered Bird Scarer and Solar-Powered Register	000	04.00
Teach-In 2002 Power Supply Lights Needed Alert	320 321	£4.28 £5.39
Pitch Switch	322	£5.87
Capacitance Meter - Main Board (double-sided)	323 324 Set	
	324 J 501	

PROJECT TITLE	Order Code	Cost
4-Channel Twinkling Lights DEC '01	325	£6.82
Ghost Buster - Mic	000)	
- Main	327 } Set	£5.78
★PIC Polywhatsit - Digital	220	
- Analogue	329 Set	£7.61
Forever Flasher JAN '02	330	£4.44
Time Delay Touch Switch	331	£4.60
★PIC Magick Musick	332	£5.87
Versatile Bench Power Supply	333	£5.71
★PIC Spectrum Analyser FEB '02	334	£7.13
Versatile Current Monitor	335	€4.75
Guitar Practice Amp	338	€5.39
★ PIC Virus Zapper MAR '02	337	£4.75
RH Meter	336	€4 28
★PIC Mini-Enigma - Software only	-	-
★Programming PIC Interrupts - Software only		-
★PIC Controlled Intruder Alarm APR '02 ★PIC Big Digit Display MAY '02	339	£6.50
	341	€6.02
Washing Ready Indicator Audio Circuits-1 - LM386N-1	342 343	£4.75 £4.28
- TDA7052	344	£4.28 £4.12
- TBA820M	345	£4.44
- LM380N	346	£4.44
- TDA2003	347	€4.60
- Twin TDA2003	348	£4.75
World Lamp JUNE '02	340	£5.71
Simple Audio Circuits-2 - Low, Med and High		
Input Impedance Preamplifiers (Single Trans.)	349	£4.60
Low-Noise Preamplifier (Dual Trans.)	350	€4.75
Tone Control	351	£4.60
Bandpass Filter	352	£4.75
Frequency Standard Generator – Receiver – Digital	353 354	£4.12 £6.82
★Biopic Heartbeat Monitor	355	£5.71
Simple Audio Circuits – 3	000	AU.F.I
- Dual Output Power Supply	356	£4.60
- Crossover/Audio Filter	357	£4.44
Infra-Red Autoswitch	358	£4.91
★EPE StyloPIC	359	£6.50
Rotary Combination Lock - Main Board	360	€5.39
- Interface Board	361	£4.91
★ Using the PIC's PCLATH Command – Software only Big-Ears Buggy	362	£5.71
Big-Ears Buggy ★PIC World Clock	363	
Simple Audio Circuits-4	363	£5.39
Low Freq. Oscillator	364	€4.44
Resonance Detector	365	€4.28
Vinyl-To-CD Preamplifier SEPT '02	366	£5.71
★ Freebird Glider Control	367	€4.91
★Morse Code Reader	368	€5.23

EPE SOFTWARE

Software programs for *EPE* projects marked with a single asterisk $\stackrel{\star}{\Rightarrow}$ are available on 3-5 inch PC-compatible disks or *free* from our internet site. The following disks are available: PIC Tutorial (Mar-May '98): PIC Toolkit Mk2 V2-4d (May-Jun '98): *EPE* Disk 1 (Apr '95-Dec '98): *EPE* Disk 2 (1999): *EPE* Disk 3 (2000): *EPE* Disk 4 (2001): *EPE* Disk 5 (Jan 2002 issue to current cover date): *EPE* Transition (Nov '01) is on CD-ROM. The 3-5 inch disks are £3.00 each (UK), the CD-ROM is £6.95 (UK). Add 50p each for overseas surface mail, and £1 each for airmail. All are available from the *EPE* PCB Service. All files can be downloaded free from our internet FTP site: ftp://ftp.epemag.wimborne.co.uk.

EPE PRINTED CIRCUIT BOARD SERVICE				
Order Code	Project	Quantity	Price	
	•••••			
Name				
Address				
Tol. No.				
161. 140	••••••	• • • • • • • • • • • • • • • • • • • •		
I enclose payme	ont of £ (ch	eque/PO in £ ste i	ling only) to:	
Everyday Practical Electronics				
MasterCard	lasterCard, Ame Club, Visa or S		J	
Card No		• • • • • • • • • • • • • • • • • • • •		
Card Exp. Date Switch Issue No				
Signature				
NOTE: You can also order p.c.b.s by phone, Fax, Email or via our Internet site on a secure server:				
http://ww	http://www.epemag.wimborne.co.uk/shopdoor.htm			

WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELIHOOD . . . YOU NEED THE MODERN ELECTRONICS MANUAL and the ELECTRONICS SERVICE MANUAL

THE MODERN ELECTRONICS MANUAL (CD-ROM VERSION ONLY)

The essential reference work for everyone studying electronics

- Over 800 pages
- In-depth theory
- Projects to bulld
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Manufacturers' web links
- Easy-to-use Adobe Acrobat format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Regular Supplements

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER IN ELECTRONICS!

The revised CD-ROM edition of the Modern Electronics Base Manual (MEM) contains practical, easy-to-follow information on the following subjects:

BASIC PRINCIPLES: Electronic Components and their Characteristics (16 sections from Resistors and Potentiometers to Crystals, Crystal Modules and Resonators); Circuits Using Passive Components (10 sections); Power Supplies; The Amateur Electronics Workshop; The Uses of Semiconductors; Digital Electronics (6 sections); Operational Amplifiers; Introduction to Physics, including practical experiments; Semiconductors (5 sections) and Digital Instruments (3 sections).

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own projects. From basic principles, like soldering and making printed circuit boards, to the tools needed for circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble a radio, loudspeaker circuits, amplifiers, car projects,

a computer interface, measuring instruments, workshop equipment, security systems, medical and musical circuits, etc. The Base Manual describes 12 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply look up the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual also covers Safety and provides web links to component and equipment Manufacturers and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the CD-ROM edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL (MEM - CD-ROM version only)

Revised CD-ROM Edition of Basic Work: Contains over 800 pages of information in Adobe Acrobat format. Edited by John Becker. Regular Supplements: Additional CD-ROMs each containing approximately 500 pages of additional information on specific areas of electronics will be available for £19.95 each. Information on the availability and content of each Supplement CD-ROM will be sent to you as they become available.

Presentation: CD-ROM suitable for any modern PC. Requires Adobe Acrobat Reader which is included on the MEM CD-ROM.

Price of the Basic Work: £29.95 POST FREE.

ORDER BOTH MANUALS TOGETHER AND SAVE £10

A mass of well-organised and clearly explained information is brought to you by expert editorial teams whose combined experience ensures the widest coverage Regular Supplements to these unique publications, keep you abreast of the latest technology and techniques if required

ELECTRONICS SERVICE MANUAL

(PRINTED VERSION ONLY)

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT

SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid.

UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and Manufacturers' Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.

TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.

SERVICING TECHNIQUES: The regular Supplements include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.

TECHNICAL NOTES: Commencing with the IBM PC, this section and the regular Supplements deal with a very wide range of specific types of equipment - radios, TVs, cassette recorders, amplifiers, video recorders etc...

REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

The essential work for servicing and repairing electronic equipment

- Around 900 pages
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Easy-to-use format
- Clear and simple layout
- Vital safety precautions
- Professionally written
- Regular Supplements
- Sturdy gold blocked ring-binder

Buy both Manuals and save £10.

APRED EARLY

ELECTRONICS SERVICE MANUAL

(ESM - Printed version only)

Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA Regular Supplements: Unlike a book or encyclopedia, this Manual is a living work continuously extended with new material. If requested, Supplements are sent to you on approval approximately every three months. Each Supplement contains around 160 pages - all for only £23.50+£2.50 p&p. You can, of course, return any Supplement (within ten days) which you feel is superfluous to your needs. You can also purchase a range of past Supplements to extend your Base Manual on subjects of particular interest to you. Presentation: Durable looseleaf system in large A4 format

Price of the Basic Work: £29.95 (to include a recent Supplement FREE).

alebalangan kalangan kalangan kalangan kalangan baran 199 mangan balangan kalangan kalangan kalangan kalangan kalang

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with the Electronics Service Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment - no small print and no questions asked. All we ask is that you pay the return postage. (Overseas buyers also have to pay our overseas postage charge). Sorry, but we can only make exchanges on the Modern Electronics Manual (CD-ROM version) if the CD-ROM is faulty, we cannot offer a money back guarantee on this product as the content can be printed out.

Wimborne Publishing Ltd., Dept Y9, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. Online shop: www.epemag.wimborne.co.uk/shopdoor.htm

	THE MODERN ELECTRONICS MANUAL (CD-ROM version only) ELECTRONICS SERVICE MANUAL plus a FREE SUPPLEMENT (Printed version only) i enclose payment of £29.95 (for one Manual) or £49.90 for both Manuals (saving £10 by ordering both together) plus postage if applicable.	Simply complete and return the order form with your payment to the following address: Wimborne Publishing Ltd, Dept. Y9, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND We offer a 30 day MONEY BACK GUARANTEE On ESM – see the panel above for details.		
	I also require the appropriate ESM Supplements four times a year. These are billed separately and can be discontinued at any time. (Please delete if not required.) FULL NAME	POSTAGE CHA MEM CD-ROM POST FI (Note we use the VAT portion to pay for own	REE TO ALL C	OUNTRIES
İ	ADDRESS	Price PER ESM PRINTED MANUAL		
		Postal Region	Surface	Air
ı		Mainland UK	FREE	_
	POSTCODE	Scottish Highlands, UK Islands & Eire Europe (EU)	£7 each	_ £23 each
ı	SIGNATURE	Europe (Non-EU)	£23 each	£30 each
		USA & Canada	£28 each	£39 each
ı	I enclose cheque/PO in UK pounds payable to Wimborne Publishing Ltd.	Far East & Australasia	£35 each	£43 each
ĺ	Please charge my Visa/Mastercard/Amex/Diners Club/Switch Switch Issue No		£28 each	£52 each
į	Card No	Please allow four work		

UK delivery. ka to some parta of the world. Each ESM weighs about 4kg when packed.

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our sales figures prove it. We have been the leading monthly magazine in this market for the last seventeen years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £8 (+VAT) per single column centimetre (minimum 2.5cm). The prepaid rate for classified adverts is 30p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 0ED. Phone/Fax (01255) 861161.

For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

TOTALROBOTS

ROBOTICS, CONTROL & ELECTRONICS TECHNOLOGY

High quality robot kits and components UK distributor of the OOPic microcontroller

> Secure on-line ordering Rapid delivery Highly competitive prices

Visit www.totalrobots.com

Tel: 0208 823 9220

ITRANSFORMERS

Transformers and Chokes for all types of circuits including specialist valve units Custom design or standard range High and low voltage

Variable Voltage Technology Ltd

Unit 24 Samuels Whites Estate Cowes, Isle of Wight PO31 7LP Tel: 01983 280592 Fax: 01983 280593 email: sales@vvt-cowes.freeserve.co.uk

www.vvttransformers.co.uk

PICmicro Controllers

16F628 \$4.22, 16F877 \$11.31

Wisp628 Programmer

in-circuit Flash PIC programmer kit \$21 S/H \$7, prices incl. VAT www.voti.nl/shop

Z88

NOW AVAILABLE WITH 128K AND 512K - OZ4

ALSO SPECTRUM **AND QL. PARTS**

W. N. RICHARDSON & CO.

HONE/FAX 01494 871319 E-mail: wnr@compuserve.com RAVENSMEAD, CHALFONT ST PETER, OUCKS, SL9 0NB

X-10[®] Home Automation We put you in control™

Why tolerate when you can automate?

An extensive range of 230V X-10 products and starter kits available. Uses proven Power Line Carrier technology, no wires required.

> Products Catalogue available Online. Worldwide delivery.

Laser Business Systems Ltd.

E-Mail: info@laser.com http://www.laser.com

Tel: (020) 8441 9788 Fax: (020) 8449 0430

http://www.olimex.com/pcb

PCB prototypes for \$26

FR-4, 1.5 mm, 35/35 um copper, 160x100 mm, double side, PTH, soldermask, component silkscreen production in 3-5 working days made in Bulgaria no import tax to Europe, UK and US

BTEC ELECTRONICS TECHNICIAN TRAINING

VCE ADVANCED ENGINEERING **ELECTRONICS AND ICT** HNC AND HND ELECTRONICS **NVQ ENGINEERING AND IT** Next course commences 16th SEPTEMBER 2002 FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: (020) 7373 8721

THE BRITISH AMATEUR **ELECTRONICS CLUB**

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.

For membership details, write to the Secretary:

Mr. T. S. C. Samuel-Mauryce 3A Colliery Street, off Clayton Lane, Openshaw, Manchester M11 2AW, Lancs, UK Tel: 0161 223 3208 after 6 pm

Email: tsc.samuel-mauryce02@talk21.com Please send s.a.e. for information

Valve Output Transformers: Single ended 50mA, £4.50; push/pull 50W, £38; 100W, £53. Mains Transformers: Sec 220V 30mA 6V 1A, £3; 250V 60mA 6V 2A, £5; 250V 60mA 6V 2A, £6. High Voltage Caps: 50µF 350V, 68µF 50V, 150µF 385V, 220µF 400V, 30µF 40V, 470µF 385V, 31£3 ee., 224.32µF 450V £5, 4µF 800V oll filled paper block £10, 10H 200mA choke £14. Postage extra. Record Decks and Spares: BSR, Garrard, Goldring, motors, arms, wheels, headshells, spindles, etc. Send or phone your want list for quote.

RADIO COMPONENT SPECIALISTS

337 WHITEHORSE ROAD, CROYDON SURREY, CRO 248. Tel: (020) 9684 1665 formers, high wol cape, valves, output transformers, appeals Phone or send your wents liet for quote.

www.luv-it-electronics.co.uk

Quality Components at lowest ever price Mail order only - we do not deal in credit cards If we have not got it we send you a cheque back We only deal in Cheques or Postal Orders

www.luv-it-electronics.co.uk

Phone 01843 570905

BOWOOD ELECTRONICS LTD

Contact Will Outram for your **Electronic Components**

Email: sales@bowood-electronics.co.uk Web: www.bowood-electronics.co.uk
7 Bakewell Road, Baslow, Derbyshire DE45 1RE Tel/Fax: 01246 583777

Send 41p stamp for catalogue

Miscellaneous

PROTOTYPE PRINTED CIRCUIT FREE BOARDS! Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

PRINTED CIRCUIT BOARDS – QUICK SER-VICE. Prototype and production artwork raised from magazines or draft designs at low cost. PCBs designed magazines or draft designs at low cost. PCBs designed from schematics. Production assembly, wiring and software programming. For details contact Patrick at Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast, BT5 4GX. Phone 028 9073 8897, Fax 028 9073 1802, Email agar@argonet.co.uk, G.C.S.E. ELECTRONICS KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics, 52 Severn Road, Clacton, CO15 3RB. www.geocitles.com/sirkituk. VALVES AND ALLIED COMPONENTS IN STOCK – please ring for free list. Valve equipment repaired. Geoff Davies (Radio). Phone 01788 574774. ELECTRONICS ENGINEER available to develop your prototype project from schematic drawing to assembled

prototype project from schematic drawing to assembled p.c.b. Phone 01633 895580. Mobile 07748 658567. BOOKLETS AND KITS FOR THE ELECTRONICS CONSTRUCTOR. Send s.a.e. for product list to: metaStable Electronics, PO Box 3103. Sheffield, S11 7WW. Visit www.metastable.electronics.btinter net.co.uk.

EPE NET ADDRESSES

EPE FTP site: ttp://ftp.epemag.wimborne.co.uk

Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:

PIC-project source code files: /pub/PICS

PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself! EPE text files: /pub/docs

EPE text tiles:/pub/docs
Basic Soldering Guide: solder.txt
Ingenuity Unlimited submission guidance: Ing_unit.txt
New readers and subscribers info: epe_info.txt
Newsgroups or Usenet users advice: usenet.txt
Ni-Cad discussion: nicadfaq.zip and nicad2.zip
Writing for EPE advice: write4us.txt

You can also enter the FTP site via the link at the top of the main page of our home site at: http://www.epemag.wimborne.co.uk

Shop now on-line: www.epemag.wimborne.co.uk/shopdoor.htm

80-048 Electronic digital caliper for both imperial (0-6 inches) and metric (0-150mm). Accuracy +/-0.001". Simple touch button facility to change from metric to imperial (and vice versa). On/off and zero button, inside and outside measuring plus locking screw to hold measurement. Uses a standard watch battery (included). Metal construction. Supplied in a neat plastic storage case. £34.95

80-042 Switch mode PSU (ATX type) for computers. Mains input to DC output. +5V @ 32A, +3.3V @ 25A, +12V @ 8.5A, -5V @ 0.4A, -12V @ 0.7A, +5V (aux) @ 0.75A, maximum 330W. Made by AC Bel, Part No. API7506. Case size 150 x 145 x 105mm. Fan cooled.

80-082 Test leads with crocodile clips. 4mm plug one end to an insulated crocodile clip the other. One red and one black, 200mm long, £1.00

56-967 CR2016 lithium battery. 3V. 20mm diameter x 1.6mm high. £1.00 56-968 CR2025 lithium battery. 3V. 20mm diameter x 2.5mm high. £1.00 42-544 Lithium button cell, CR2032. 3V, 20mm diameter x 3.2mm thick. Brand new (not surplus). £1.00

48-077 'AA' size Nickel Metal Hydride rechargeable battery. 1.2V, 1200mAh with nipple. Brand new. £1.75
38-403 Pack of 3 'AA' Ni-Cads, 650mA. Soldered together with a 2" lead to a 2 pin socket giving them a total of 3.6V, 650mA. You could split them up or join them together. Only £1.25
56-095 AAA rechargeable Ni-Cads. 240mAH. Supplied on cards of 4. Was 4 for £4.00. Now only £2.00

38-283 Mixture pack of LED's. All sorts of shapes and sizes and colours. Pack of 100 £3.50

48-111 Vibrating motor designed for pagers and mobile phones. 20mm long x 7mm diameter. Works between 3V and 6V. Very small and excellent quality. £2.50

SEND FOR OUR FREE CATALOGUE CONTAINING EVEN MORE BARGAIN ITEMS!

80-078 Mains PSU, 220-240V AC input, 15V DC, 800mA output. Plug in the wall type. 2m flying lead to a 2.1mm power socket. £3.95

80-102 IDE hard disk drive cable with 3 x 40 way IDC sockets so you can have two hard drives running off the same motherboard. 580mm long. £1.58 80-103 Floppy disk drive cable to enable the use of up to 2 floppy disk drives. Has 3 x 34 way IDC sockets and 2 x 34 way card edge connectors mounted on a 650mm long ribbon cable. £1.50

80-104 Ribbon cable lead, 450mm long with 3 x 40 way IDC sockets for use with hard drives and CD ROM's. Also included is a 4 pin in-line socket to a 4 pin in-line socket lead for internal CD ROM audio connection. £2.00

38-484 MES lamp holder with two screw fixing holes for mounting. Screw terminals for connection. White. £1.00 For Pack Of 4

56-155 KBPC3501 bridge rectifier. 100V, 35Amp. **£2.50 each**

48-140 PVC electrical tape, 19mm wide x 0.15mm thick x 33 metres long. Flame retardant, BS3924. 75p

80-045 12V, 17Ah, lead acid, sealed rechargeable battery. Gel type. Brand new. 180 x 165 x 75mm. These are usually around £45.00 each to buy.

56-006 Brand new **12V DC** fan. 80 x 80 x 25mm with 10" red and black lead. **£2.95**

WCN Supplies

Dept EE · The Old Grain Store

Rear Of 62 Rumbridge Street

Totton · Southampton · SO40 9DS

Telephone or Fax On

Southampton 023 8066 0700

Email: Info@wcnsupplies.fsnet.co.uk

ALL PRICES INCLUDE VAT

ELECTRONICS SURPLUS CLEARANCE SALE

FLUKE HANDHELD DIGITAL MULTIMETER MODEL 8024B. Cancelled export order. Brand new and boxed but with original purchasing organisation's small identifying mark on case. With test leads and handbook, List price £150. Our price £47.50, P&P £6.50.

A DIGITAL HANDHELD LCR METER. Measuring inductance, capacitance, resistance. LCD display. Range 2mH to 20H inductance. 2000pF to 200µF capacitance. 200 ohm to 20 megohm resistance. Brand new with test leads and manual. £44.00. P&P £4.

12V D.C.TO 240V A.C. 300 WATT POWER INVERTER. Ideal for use in your caravan, car, boat, to run TV, lighting, fridges, recharge your mobile phone, etc. Compact size, brand new and boxed, fully guaranteed. £49.50, p&p £6.50.

250	1/4 watt metal/carbon film resistors	£1
30	5mm red l.e.d.s	٤1
30	BCY71	£1
30	BCY72	£1
30	BFX30	£1
30	BC640	Ēi
30	BC558	£1
10	OC42 Military spec £2	
30	2N4393	£1
10	555 Timer chips	Ēi
4	IEC 3-on mains input chaesis socket	13
30	220uF electrolytics 10V	Ĕi
00	ELORI DIGCTION/TICS TOV	-1

ZENER DIODES 10V, 12V, 16V, 22V, 27V, 33V, All 400mW. 20 for \$1

10V, 12V, 16V, 22V, 27V, 33V. All 400mV 20 for £1. 10V, 15V, 33V, 47V. All 3W. 6 for £1. 120V, 600mW. 10 for £1. VALVE ASSOCIATED ITEMS

Valveholders Octal, B7G, B9A (state which)
 68μF 450V wkg electrolytics, 1¼in. x ¾in. dia.
 radial

3 47µF 400V wkg electrolytic, ¾in. x ¾in. dia.
radial £2.50
4 22µF 250V wkg electrolytic, 1in. x ¼in. dia. axial £1

4 22µF 250V wkg electrolytic, 1in. x ¼in. dia. axial £1
4 47µF mixed dielectric axial capacitors 250V wkg £1
5 10µF 400V electrolytic, 1in. x ¼in. dia. axial £2

5 Terminal block 4 screw terminals, 214in, length with fixing holes

BOOKS:

ELECTRIC UFOs by Albert Budden. The effects of electromagnetic pollution, UFOs, fireballs, abnormal states. 286 pages, photos. £10.

MULLARD HIGH QUALITY SOUND REPRODUCTION. A constructional manual for building valve amplifiers, pre-amps, tuners, circa 1958. 48 large format pages, facsimile copy. £12.50.

MULLARD VALVE DATA AND EQUIVALENTS HANDBOOK. Over 300 pages of valve data, base connections, characteristics and operating conditions for Mullard valves and their eqivalent makes. Facsimile reprint. £16.50, p&p £2.25.

Send 2 first class stamps for the Electronic Surplus Trader – our latest catalogue full of component bargains, velves, high voltage capacitors, obsolete semiconductors etc.

P&P £1.60 under £10. Over Free unless otherwise stated.

(Dept E) CHEVET BOOKS AND SUPPLIES

FRUSTRATED!

Looking for ICs TRANSISTORs?

A phone call to us could get a result. We offer an extensive range and with a world-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 17 40 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFT BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSW BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD CX CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDAJ MJE MJF MM MN MPS MPSA MPSH MPSU MRF NJM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAJ SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SVI T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + many others

We can also offer equivalents (at customers' risk)
We also stock a full range of other electronic components
Mail, phone, Fax Credit Card orders and callers welcome

Connect

Cricklewood Electronics Ltd

40-42 Cricklewood Broadway London NW2 3ET Tel: 020 8452 0161 Fax: 020 8208 1441

Watch Slides on TV.

Make videos of your slides. Digitise your slides (using a video capture card)

"Liesgang diaty" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART & BNC adaptors are available). They are in very good condition with few signs of use. More details see www.dlatv.co.uk. £91.91 + VAT = £108.00

Board cameras all with 512 x 582 pixels 8-5mm 1/3 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10V and 12V DC 150mA. 47MIR size 60 x 36 x 27mm with 6 infra red LEDs (gives the same illumination as a

small torch but is not visible to the human eye) £37.00 + VAT = £43.48
30MP size 32 x 32 x 14mm spy camera with a fixed focus pin hole lens for hiding behind a very small hole £35.00 + VAT = £41.13

40MC size 39 x 38 x 27mm camera for 'C' mount lens these give a much sharper image than with the smaller lenses £32.00 + VAT = £37.60

Economy C mount lenses all fixed focus & fixed iris

VSL1220F 12mm F1.6 12 x 15 degrees viewing angle £15.97 + VAT £18.76 VSL4022F 4mm F1.22 63 x 47 degrees viewing angle £17.65 + VAT £20.74 VSL6022F 6mm F1.22 42 x 32 degrees viewing angle £19.05 + VAT £22.38 VSL8020F 8mm F1-22 32 x 24 degrees viewing angle £19.90 + VAT £23.38

Better quality C Mount lenses

VSL1614F 16mm F1-6 30 x 24 degrees viewing angle £26.43 + VAT £31.06

VWL813M 8mm F1.3 with iris 56 x 42 degrees viewing angle £77.45 + VAT = £91.00 1206 surface mount resistors E12 values 10 ohm to 1M ohm 100 of 1 value £1.00 + VAT 1000 of 1 value £5.00 + VAT

866 battery pack originally intended to be used with an orbital mobile telephone it contains 10 1-6Ah sub C batteries (42 x 22 dia. the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily £7.46 + VAT = £8.77

Please add £1.66 + vat = £1.95 postage & packing per order

JPG Electronic

Shaws Row, Old Road, Chesterfield, S40 2RB. Tel 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch

Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

SHERWOOD ELECTRONICS

FREE COMPONENTS

Buy 10 x £1 Special Packs and choose another one FREE

SP1	15 x 5mm Red LEDs	SP134	15 x 1N4007 diodes	
SP2	12 x 5mm Green LEDs	SP135	6 x Ministure slide switches	
SP3	12 x 5mm Yellow LEDs	SP136	3 x BFY50 transistors	
SP8	15 x 3mm Red LEDs	SP137	4 x W005 1-5A bridge rectifiers	
SP7	12 x 3mm Green LEDs	SP138	20 x 2·2/83V radial elect. caps.	
SP8	10 x 3mm Yellow LEDs	SP140	3 x W04 1-5A bridge rectifiers	
SP10	100 x 1N4148 diodes	SP142	2 x CMOS 4017	
SP11	30 x 1N4001 diodes	SP143	5 Pairs min, crocodile clips	
SP12	30 x 1N4002 diodes		(Red & Black)	
SP18	20 x BC182 transistors	SP145	6 x ZTX300 transistors	
SP20	20 x BC184 transistors	SP146	10 x 2N37C4 transistors	
SP21	20 x BC212 transistors	SP147	5 x Stripboard 9 strips x	
SP23	20 x BC549 transistors		25 holes	
SP24	4 x CMOS 4001	SP151	4 x 8mm Red LEDs	
SP25	4 x 555 timers	SP152	4 x 8mm Green LEDs	
SP26	4 x 741 Op.Amps	SP153	4 x 8mm Yellow LEDs	
SP28	4 x CMOS 4011	SP154	15 x BC548 transistors	
SP29	3 x CMOS 4013	SP156	3 x Stripboard, 14 strips x	
SP34	20 x 1N914 diodes		27 holes	
SP36	25 x 10/25V radial elect. caps.	SP160	10 x 2N3904 transistors	
SP37	12 x 100/35V radial elect. caps.	SP161	10 x 2N3906 transistors	
SP39	10 x 470/16V radial elect, caps.	SP165	2 x LF361 Op.Amps	
SP40	15 x BC237 translators	SP166	20 x 1N4003 diodes	
SP41	20 x Mixed transistors	SP167	6 x BC107 transistors	
SP42	200 x Mixed 0-25W C.F. resistors	SP166	6 x BC108 transistors	
SP47	5 x Min. PB switches	SP172	4 x Standard silde switches	
SP49	4 x 5 metres stranded core wire	SP174	20 x 22/25V radial elect, caps	
SP102	20 x 8-pin DIL sockets	SP175	20 x 1/63V radial elect, caps,	
SP103	15 x 14-pin DIL sockets	SP177	10 x 1A 20mm quick blow fuses	
SP104	15 x 18-pin DIL sockets	SP182	20 x 4-7/63V radial elect, caps.	
SP105	4 x 74LS00	SP183	20 x BC547 transistors	
SP109	15 x BC557 transistors	SP187	15 x BC239 translators	
SP112	4 x CMOS 4093	SP189	4 x 5 metres solid core wire	
SP115	3 x 10mm Red LEDs	SP192	3 x CMOS 4066	
SP116	3 x 10mm Green LEDs	SP195	3 x 10mm Yellow LEDs	
SP124	20 x Assorted ceramic disc caps		6 x 20 pin DIL eockets	
SP126	8 x Battery clips - 4 ea.	SP198	5 x 24 pin DIL sockets	
00400	PP3 + PP9	SP199	5 x 2-5mm mono jack plugs	
SP130	100 x Mixed 0-5W C.F. resistors	SP200	5 x 2-5mm mono jack sockets	
SP131	2 x TL071 Op.Amps			
SP133	20 x 1N4004 diodes	2000	Control of the Contro	

2002 Catalogue now available £1 inc. P&P or FREE with first order. P&P £1.25 per order. NO VAT Orders to: RESISTOR PACKS - C.Film
5 each value - total 385 0.25W £3 00
10 each value - total 730 0.25W £4.25
0 1000 popular values 0.25W £6.25
5 each value-total 385 0.5W £4.00 Sherwood Electronics, 7 Williamson St., Mansfield, Notts. NG19 6TD. RP8 10 each value-total 750 5-RP11 1000 popular values 0-5W 10 each value-total 730 0-5W

ADVERTISERS INDEX

N. R. BARDWELL	
BITZ TECHNOLOGY	
B.K. ELECTRONICS	Cover (iv)/673
BRUNNING SOFTWARE	
BULL ELECTRICAL	
CHEVET BOOKS AND SUPPLIES	
CRICKLEWOOD ELECTRONICS	
CROWNHILL ASSOCIATES	
DISPLAY ELECTRONICS	
ESR ELECTRONIC COMPONENTS	
FOREST ELECTRONIC DEVELOPMENT	
ICS	No.Solv.
J&N FACTORS	
JPG ELECTRONICS	
MAGENTA ELECTRONICS	
MAGTRIX CONNECTORS	
MILFORD INSTRUMENTS	
PICO TECHNOLOGY	
QUASAR ELECTRONICS	
SHERWOOD ELECTRONICS	
SKY ELECTRONICS	
SQUIRES	
STEWART OF READING	
WCN SUPPLIES	

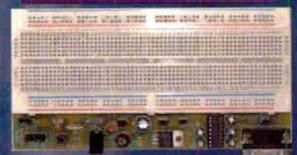
ADVERTISEMENT MANAGER: PETER J. MEW ADVERTISEMENT OFFICES:

EVERYDAY PRACTICAL ELECTRONICS, ADVERTISEMENTS. MILL LODGE, MILL LANE, THORPE-LE-SOKEN, ESSEX CO16 0ED.

Phone/Fax: (01255) 861161

For Editorial address and phone numbers see page 635

Published on approximately the second Thursday of each month by Wimbonne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RW. Distributed by COMAG Magazine Marketing, Tavistock Rd., West Drayton, UB7 7QE. Subscriptions INLAND: £15 (6 months); £28.50 (12 months); £52 (2 years). OVERSEAS: Standard air service, £18 (6 months); £34.50 (12 months); £54 (2 years). Express airmail, £27 (6 months); £52 (12 months); £92 (2 years). Payments payable to "Everyday Practical Electronics", Subs Dept, Wimborne Publishing Ltd., Email: subs@epemag.wimborne.co.uk, EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.


PIC BASIC COMPILERS

PIC Basic Plus & PIC Basic Pro Compilers

IC BASIC Plus, supports all 12 & 14 bit Microchip PiC-Microcontrollers, allowing the user to write professional programs in BASIC for all popular devices. The compilers produce fast, tight machine code to load directly into the PIC-Microcontroller (with or, without a programmer via the FREE bootloader). The Compiler produces code that is guaranteed 100% compatible with Microchips MPASM assembler. The compiler allows direct comparison between the BASIC program and the assembly listing. Two compilers are available, the PIC Basic Pro, entry level compiler and PIC BASIC Plus, professional compiler. Both produce fast assembly code from BASIC. The Compilers run under Windows 95,98,NT,ME,2000 and XP, and are supplied with a comprehensive, Windows based editor with Syntax highlighting and just two key clicks to compile and program and detailed manuals with worked examples.. The Compilers support a range of programmers including the Microchip PICStart-plus and our own development programmers. For a free demo of the Pro compiler visit our web site www.letbasic.com, or join our web based forum to hear what other users think of our compilers and supporting products... (PIC BASIC Pro is supplied with the book "Experimenting with the LET Basic Pro compiler" by Les Johnson, an invaluable guide for the beginner. See the web site for an example chapter).

Technical support is provided online via our web based forum, www.picbasic.org, or to tuters via telephone direct from the Author Additional support can be provided to tutors using our development system for educational purposes.

Prototype PCB system

Programmers

Development system

Supplied with source sode and documentation for 20 Educational projects. Supports LCD displays from 2x16 Chrs. to 128x64 dot matrix Graphics panel

New Serial LCD Display KIT or Ready Built Supplied with license free source code £16.00

All supporting components stocked at competitive prices
e.g PIC 16F84 04 /P - £1.80 each. PIC 16F877 04 P £3.95 each
LCD 2x16 Chrs, £7.50 each LCD 128x64 dat matrix £15.95 each
Many more items stocked, email sales@crownhill.co.uk for prices

32, Broad Street, Ely Cambridge, CB7 4AH

Crownhill Associa

Tel: 01353 666709 +44 1353 666709 Fax: 01353 666710 +44 1353 686710 sales@crownhill.co.uk

All prices exclude: VAT, postage and packing

POWER AMPLIFIER MODULES-LOUDSPEAKERS-MIXERS 19 INCH STEREO AMPLIFIERS-ACTIVE CROSS/OVERS

- PRICES INCLUDE V.A.T.
- * PROMPT DELIVERY

OMP MOS-FET POWER AMPLIFIERS HIGH POWER, TWO CHANNEL 19 INCH RACK

10,000's SOLD TO PRO **USERS**

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS

FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)

POWER RATINGS ARE R.M.S. INTO 4 OHMS, WITH BOTH CHANNELS DRIVEN EATURES: - independent power supplies with two toroidal transformers EATURES: - independent power supplies with two toroidal transformers Twin L.E.D. Vu Meters "Level controls "Illuminated on/off switch "Jack / XLR inputs " peakon Outputs "Standard 775mv inputs "Open and Short circuit proof "Lates" Mos-Fets or stress free delivery into virtually any load "High slew rate "Very low distortion "Aluminium ases " MXF600 & MXF900 fan cooled with D.C. Loudspeaker and thermal protection.

USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC

MXF200 W19" D11" H3½" (2U) MXF400 W19" D12" H5½" (3U) MXF600 W19" D13" H5½" (3U) MXF900 W19" D14" H5½" (3U) SIZES:-

PRICES:- MXF200 £175.00 MXF400 £233.85 MXF600 £329.00 MXF900 £449.15 SPECIALIST CARRIER DEL £12.50 Each

100 WATT ACTIVE SUB BASS AMPLIFIER PANEL

AN ACTIVE SUB BASS AMPLIFIER WITH A TRUE 100W RMS OUTPUT SUPERB CONSTRUCTION WITH THE FACILITIES TO INTEGRATE SEEMLESSLY INTO MOST HI-FI OR HOME CINEMA SETUPS. USE THIS PANEL PLUS ONE OF OUR LOUDSPEAKERS TO MAKE YOUR OWN SUB WOOFER THAT WILL MATCH OR BEAT MOST COMMERCIALLY AVAILABLE SUB WOOFERS.

FEATURES: . 100W RMS INTO 8 OHMS . HIGH AND LOW LEVEL INPUTS . TOROIDAL TRANSFORMER . SHORT CIRCUIT PROTECTION . D.C. SPEAKER PROTECTION . FREQUENCY RCLL OFF, LOWER 10Hz, UPPER 60Hz TO 240Hz (FULLY ADJUSTABLE) . AC3 COMPATIBLE FILTER CAN BE BYPASSED FOR 5-1 FORMATS. . AIRTIGHT CONSTRUCTION . TENS OF THOUSANDS OF OUR PANELS ALREADY IN USE. . COMPLETE WITH LEADS

SPECIFICATIONS:-* POWER 100W RMS @ 8 OHMS *FREQ RESP. 10Hz 15KHz -3dB * DAMPING FACTOR >200 * DISTORTION 0.05% * S/N A WEIGHTED >100dB * SUPPLY 230V A.C. *WEIGHT 2.7Kg * SIZE H254 X W254 X D94mm

THERE ARE 2 VERSIONS OF THE ABOVE PANEL AVAILABLE :-BSB100/8 8 OHM VERSION BSB100/4 4 OHM VERSION BOTH PANELS ARE PRICED AT £117.44 + £5.00 P&P INCL. V.A.T. CHECK WEBSITE FOR PANELS UP TC 500W

VISA

DELIVERY CHARGES:- PLEASE INCLUDE AS ABOVE. TO A MAXIMUM AMOUNT £30.00. OFFICIAL ORDERS FROM SCHOOL, COLLEGES, GOVT. PLCS ETC. PRICES INCLUSIVE OF V.A.T. SALES COUNTER. CREDIT CARD ORDERS ACCEPTED BY POST PHONE OR FAX.

FLIGHTCASED A new range of quality loudspeakers, designed to take advantage of LOUDSPEAKERS latest loudspeaker technology and enclosure designs. All modes utilise high quality studio cast aluminium loudspeakers with factory fitted grilles, wide dispersion constant directivity homs, extruded aluminium corner protection and steel believes the second of
ball comers, complimented with heavy duty black covering. The enclosures are fitted as standard with top hats for optional loudspeaker stands. The FC15-300 incorporates a large 16 X 6 inch horn. All cabinets are fitted with the latest Speakon connectors for your convenience and safety Five models to choose from.

ibl FC15-300 WATTS Freq Range 35Hz-20kHz, Sens 101dB, Size H695 W502 D415mm

Price:- £299.00 per pair ibl FC12-300 WATTS Freq Range 45Hz-20kHz, Sens 96dB, Size H600 W405 D300mm Price: £249.00 per pair

ibl FC12-200 WATTS Freq Range 40Hz-20kHz, Sens 97dB, Size H600 W405 D300mm Price:- £199.00 per pair

ibl FC12-100 WATTS Freq Range 45Hz-20kHz, Sens 100dB, Size H546 W380 D300mm Price:- £179.00 per pair

ibl WM12-200 WATTS Freq Range 40Hz-20kHz, Sens 97dB, Size H418 W600 D385mm Price:- £125.00 Each

SPECIALIST CARRIER DEL:- £12.50 per pair, wedge monitor £7.00 each Optional Metal Stands PRICE:- £49.00 per pair Delivery:- £6.00

OMP XO3-S STEREO 3 WAY ACTIVE CROSSOVER

WITCHARLE 2-WAY

BASS MID CONFIGURED 3 WAY

BASS/MID 2 WAY BASS/MID COMBINED

BASS 2 WAY MID/TOP COMBINED

FEATURES:-

FEATURES:Advanced 3-Way Stereo Active Cross-Over (Switchable two way), housed in a 19" x 1U case. Each channel has three level controls: Bass, Mid & Top. The removable front facia allows access to the programmable DIL switches to adjust the cross-over frequency: There are two versions available:X03-S Bass-Mid 125/250/500Hz, Mid-Top 1.8/3/5kHz, all at 24 dB per Octave.
X03 Bass-Mid 250/500/800Hz, Mid-Top 1.8/3/5kHz, all at 24 dB per Octave.
Please make sure you ask for the correct model when ordering. The 2/3 way selector switches are also accessed by removing the front facia. Each stereo channel can be configured separately. Bass Invert Switches are incorporated on each channel. Nominal 775mV input/output. Fully compatible with the OMP Rack Amplifer and Modules.

BOTH MODELS PRICED AT # £117,44 + £5,00 P&P

OMP MOS-FET POWER AMPLIFIER MODULES BUILT AND TESTED

modules now enjoy a world-wide reputation for quality, reflability and performance at a realistic price. Fou are available to suit he needs of the professional and hobby market i.e. Industry, Leisure, Instrumenta Freet, When companing prices, NOTE that all models include toroidal power supply, integral heatsink and Hieff etc. When comparing prices, NOTE that all models is slude foroize power supply, integral heatsink glass fibre P.C.B. and drive circuits to power a compatible Vu meter. All models are open and short circuit proof

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output Power 110 watts
R.M.S. into 4 ohms, frequency response 1Hz 100kHz -3dB, Damping Factor >300, Slew Rate
45V/US, T.H.D. typical 0.002°, Input Sensitivity
500mV, S.N.R. 110dB. Size 300 x 123 x 60mm.
Price: £42.85 + £4.00 P&P

OMP/MF 200 Mos-Fet Output Power 200 watts
R.M.S. into 4 ohms, frequency response 1Hz 100kHz -3dB, Damping Factor >300, Slew Rate
50V/US, T.H.D. typical 0.001°, Input Sensitivity
500mV, S.N.R. 110dB. Size 300 x 155 x 100mm.
Price: £66.35 + £4.00 P&P

OMP/MF 300 Mos-Fet Output Power 300 watts
R.M.S. into 4 ohms, frequency response 1Hz 100kHz -3dB, Damping Factor >300, Slew Rate
60V/US, T.H.D. typical 0.001°, Input Sensitivity
500mV, S.N.R. 110dB. Size 330 x 175 x 100mm.
Price: £83.75 + £5.00 P&P

OMP/MF 450 Mos-Fet Output Power 450 watts

Price:- £83.75 + £5.00 P&P

OMP/MF 450 Mos-Fet Output Power 450 watts
R.M.S. into 4 ohms,frequency response 1Hz 100kHz -3dB, Damping Factor >300, Siew Rate
75V/US, T.H.D. typical 0.001%, Input Sensitivity
500mV, S.N.R. 110dB Fan Cooled, D.C.
Loudspeaker Protection, 2 Second Anti Thump
Delay. Size 385 × 210 × 105mm.
Price:- £135.85 + £6.00 P&P

OHP/MF 1000 Mos- et Output Power 1000 watts R.M.S. into 2 ohms, frequency response 1Hz - 100kHz -3dB, Damping Factor >300, Slew Rate 75V/uS, T.H.D. typical 0.001%, Input Sensitivity 500mV, S.N.R. 110dB, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti Thump Delay. Size 422 x 300 x 125mm.

Price: £261.00 + £12.00 P&P

Price: - 2261.00 + £12.00 P&P

Price: - 2261.00 + £12.00 P&P

FET MODULES ARE AVAILABLE IN TWO VERSIONS

INPUT SENS 500mV.BANDWIDTH 100AHZ OR PE

DNAL EQUIPMENT COMPATIBLE) INPUT SEN

MADDIANTERS OF THE SENSE OF T

ELECTRONICS REFER WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR. 01702-527572 FAX.: 01702-420243 UNIT Web:- http://www.bkelec.