THE No.1 MAGAZINE FOR ELECTRONICS TECHNOLOGY & COMPUTER PROJECTS

USB THE EASY WAY PIC-Based USB Interface

EVERYDAY

D,

Ā

A digital optical 'phone link

HALLOWEEN HOWLER Uses digital WAY files in EEPROM

PLUS BACK TO BASICS - 7 Parking Radar Telephone Switch

www.epemag.co.uk

OCTOBER 2005

£3.30

Built in Audio .15lux CCD camera 12vdc 480 lines s/n ratio >48 db 1v P-P output 110x60x50mm ref EE1 £108.90

Metal CCTV camera housings for internal o external use. Made from aluminium and plastic they are suitable for mounting bod cameras in.Available in two sizes 100x70x170mm and 2-100x70x280mm Re EE6 £22 EE7 £26 Multi position brackets Re

Back Light

natic aperture lens Mirror function

Excellent quality multi purpose TV TFT screen, works as just a LCD colour monitor with any of our CCTV cameras or as a conventional TV ideal for use in boats and caravans 49.75mhz-91.75mhzVHF channels 1-5, 168.25mhz-222.75mhz VHF channels 6-12, 471.25mhz-869.75mhz, Cable channels 112.325mhz-166.75mhz Z1-Z7, Cable channels 224.25mhz-446.75mhz Z8-Z35 5" colour output screen, Audio 150mW.Connections, external aerial, earphone jack, audio/video input,12vdc or mains, Accessories supplied Power supply Remote control Cigar lead power supply Headphone Stand/bracket. 5" Fully cased IR light source

model £139 Ref EE9.

Colour CCTV Camera measure 60x45mm and has a built in light evel detector and 12 IR leds .2 lux 12 IR leds 12vdc Bracket Easy connect leads £75.90 Ref EE15

A high quality external colour CCTV camera with built in Infra red LEDs measuring 60x60x60mm Easy connect leads colour Waterproof PAL 1/4" CCD542x588 pixels 420 lines .05 lux 3.6mm F2 78 deg lens 12vdc 400ma Built in light level sensor. £108.90 Ref EE13

A small colour CCTV camera just 35x28x30mm Supplied with bracket, easy connect leads. Built in audio. Colour 380 line res. PAL 0.2 lux +18db sensitivity Effective pixels 628x582 6-12vdc Power 200mw £39.60 Ref EE16

Peltier n nodule. Each module is supplied with a comprehensive 18 page Peltier design manual featuring circuit designs, design information etc etc. The Peltier manual is also available separately Maximum watts 56.2 40x40mm Imax 5.54 Vmai 16.7 Tmax (c-dry N2) 72 £32.95 (inc manual) REF PELT1, just manual £4,40 ref PELT2

COMPAQ 1000mA 12vdc power supplies, new and boxed. 2 metre lead DC power plug 2.4mmx10mm £5.25 each. 25+ £3.50 100+£2.50

8mm lens

Comp MLR

ossbow with metal body. elfcocking for precise string alignment Aluminium alloy onstruction High tec fibre glass limbs Automatic safety catch Supplied with three bolts Track style for greate accuracy Adjustable real ight 50lb draw weight 150ft ecvelocity Breakac string 30m range £23.84 Ref PLCR002

suitable for CCTV applications

The unit measures 10x10x150mm, is mains rated and contains 54 infra red LEDs. Designed to mount on a standard CCTV camera bracket. The unit also contains a daylight sensor that will only ctivate the infra red lamp when he light level drops below preset level. The infrared lamp is suitable for indoor or exterior use, typical useage would be to nrovide additional IR llumination for CCTV cameras.

3km Long range video and audio link complete with transmitter, receiver, 12,5m cables with pre fitted connectors and aerials Acheive up to 3km. Cameras not included Ideal for stables remote buildings etc. Mains

mplete wireless CCTV sytem video. Kit comprise ith inhole colour camera with simple battery connection and a receiver with video output. 380 nes colour 2.4 ahz 3 lux 6-12vdc anual tuning Available in two ersions, ersions, pinhole and tandard.£79 (pinhole) Ref EE17, £86.90 (standard) Ref

GASTON SEALED LEAD ACID BATTERIES 3AH 12V @ £5.50 GT 1213 4AH12V@£8.80GT1234 7AH 12V @ £8.80 GT12 7AH 12V @ £19.80 GT1217

All new and boxed, bargain prices. Good quality sealed lead acid batteries

1.2ghz wireless receiver Full cased audio and video 1.2gh wirelessreceiver190x140x30mm metal case, 4 channel, 12vd Adjustable time delay, 4s, 8s, 12s 16s. £49.50 Ref EE20

The smallest PMR446 radios currently available (54x87x37mm). These tiny handheld PMR radios look great, user friendly & packed with features including VOX, Scan & Dual Watch. Priced at £59.99 PER PAIR they are excellent value for more. Our new favourite PMR radios! Standby: - 35 hours Includes:- 2 x Radios, 2x Belt Clips & 2 x Carry Strap £59.95 Ref ALAN1 Or supplied with 2 sets of rechargeable batteries and two mains chargers £93.49 Ref Alan2

The TENS mini Microprocessors offer si types of automatic programme for shoulde pain, back/neck pain, aching joints Rheumatic pain, migraines headaches sports injuries, period pain. In fact all ove body treatment. Will not interfere with existing medication. Not suitable for any one with a heart pacemaker. Batteries supplied £21,95Ref TEN327 Spare pack of electrodes £6.59 Ref TEN327X

Dummy CCTV cameras These motorised cameras will work either on 2 AA batteries o with a standard DC adapter (not supplied) They have a built in movement detector that will activate the camera if movement is detected causing the camera to 'pan' Good deterrent. Camera measures 20cm high, supplied with fixing screws. Camera also has a flashing red led. £10.95 Ref CAMERAB

INFRA RED FILM 6" square piece infra red film that will only allow IR light through Perfect for converting ordinary torches, light headlights etc to infrared output using standa light bulbs Easily cut to shape. squar £16.50 ref IRF2 or a 12" sq for £34.07 IRF2A

the state of the tide, Most areas in the world have two high tides and two low tides a day, so the tide clock has been specially designed to rotate twice each lunar day (every 12 hours and 25 minutes) giving you a quick and easy indication of high and low water. The Quartz tide clock will always stay calibrated to the oon, £23,10 REF TIDEC

LINEAR ACCTUATORS 12-36VDC BUILT IN ADJUSTABLE LIMIT SWITCHES POWDER COATED 18" THROW UP TO 1,000 LB THRUST (400LBRECOMMENDEDLOAD)SUPPLIEDWITH MOUNTING BRACKETS DESIGNED FOR OUTDOOR USE These brackets originally made for moving very large satellite dishes are possibly more suitable for closing gates mechanical machinery. robot wars etc. Our first sale was to a company building solar panels that track the sun! Two sizes ava-lable, 12" and 18" throw, £32.95 REF ACT12,

have a hole (5/16th UNF) in the centre and a magnetic strength of 2.2 gauss. We have tested these on a steel beam running through the offices and found that they will take more than 170lbs (77kgs) in weight before being pulled off. With keeper. £21.95 REF MAG77

w transmitter, receiver and camera

kit. £69.00 Kit contains four channel switchable camera with built in audio, six IR leds and transmitter, four channel switchable receiver, 2 power supplies, cables, connectors and mounting bracket £69.00 Wireless Transmitter Black and white camera (75x50x55mm) Builtin 4 channel transmitter (switchable) Audio built in 6 IR Leds Bracket/

stand Power supply 30 m range Wireless Receiver 4 channel (switchable) Audio/video leads and scart adapter Power supply and Manual £69.00 ref COP24

This miniature Stirling Cycle Engin measures 7" x 4-1/4" and comes complet with built-in alcohol burner. Red flywheel and chassis mounted on a green base, these all-metal beauties sflently running at spee in excess of 1,000 RPM attract attention and create awe wherever displayed. This mod comes completely assembled and ready t run. £106.70 REF SOL1

High-power modules using 125mm square multi crystal silicon solar cells with bypass diode Ant reflection coating and BSF structure to improve cell conversion efficiency: 14%. Using white tempered glass, EVA resin, and a weatherproo ilm along with an aluminum frame for extende outdoor use, system Lead wire with waterproc connector 80 watt 12v 500x1200 £315.17, 123 12vdc 1499x662x46£482.90 165 w 24v 1575x826x46mm £652

BULL GROUP LTD UNIT D HENFIELD BUSINESS PARK HENFIELD SUSSEX BN5 9SL TERMS: CASH, PO, CHEQUE PRICES+VAT WITH ORDER PLUS £5.50 P&P (UK) PLUS VAT. 24 HOUR SERVICE £7.50 (UK) PLUS VAT. OVERSEAS ORDERS AT COST PLUS £3.50 Tel: 0870 7707520 Fax 01273491813 Sales@bullnet.co.uk www.bullnet.co.uk

Ultra-compact, lightweight, easy to use and comfortable to hold, the new NVMT is unique for a night scope in offering a tactile suregrip plastic bodyshell and, for extra protection/grip, partialrubber armouring. Currently the top of the range model, the NVMT G2+ features a 'commercial' grade" Gen 2+ Image Intensifier Tube (IIT). The NVMT has a built-in, powerful Infrared (IR) Illuminator for use in very low light/total darkness. Power for the scope and IR is provided by 1 x 3V Lithium CR123A battery (not supplied). A green LED next to the viewfinder indicates when the Image Intensifier Tube is switched on while a red LED indicates when the IR Illuminator is switched on. Type Gen Weight Size Lens Mag 2x, Weight 400g, 125x82x35mm angle of view 30 deg, built in infra red, rang 3 - 400m, supplied with batteries £849 ref COB24023.

55 - 200 WATT INFRA RED TORCHS

Search guard 1 infrared torch Plastic bodied waterproof infrared rechargeable lamp. 100mm diameter lens, 200mm body length, 55 watt bulb, 1,000,000 candle power (used as an indication of relative power) Supplied complete with a 12v car mains plug in charger and a 240v sguard 1. Also available, 70watt @ £59, 100 watt @ £79, 200watt @

AIR RIFLES FROM £24.70

B2 AIR RIFLE Available In. 177 and .22• 19" Tapered Rifled Barrel• Adjustable Rear Sight• Full Length Wooden Stock• Overall Length 43° approxBarrel Locking Lever • Also available in CARBINE Grooved for Telescopic Sight model with 14" barrel - no front sight for use with scope. Weight approximately 6lbs Extremely Powerful .22 £28.90, 177 £24.70, pellets (500) £2.55, sights 4x20 £6.80. 4x28£15.32 Other models available up to £250 www.airpistol.co.uk

12V SOLAR PANELS AND REGULATORS 9WATT £58.75 15 WATT \$84.25 22 WATT £126.70 Regulator up to 60 watt £21.25

Regulators up to 135 watt £38.25 The combination of multi-crystal cells and a high-reliability module structure make this series of solar panels the ideal solar module For large-scale power generation hundreds or even thousands of modules can be connected in series to meet the desired electric power requirements. They have a high output, and highly efficient extremely reliable and designed for ease of maintenance. Separate positive negative junction boxes and dual by-pass diodes are a few examples of some of its outstanding features. Supplied with an 8 metre cable. Perfect for caravans, boats, etc. Toughened glass.

LOCK PICK SETS 16, 32 AND 60 PIECE SETS

This set is deluxe in every way! It includes a nice assortment of balls, rakes, hooks, diamonds, two double ended picks, a broken key extractor, and three tension wrenches. And just how do you top off a set like this? Package it in a top grain leather zippered case Part: LP005 - Price £45.00

This 32 piece set includes a variety of hooks, rakes, diamonds, balls, extractors, tension tools ... and comes housed in a zippered top grain leather case. If you like choices, go for this one! Part: LP006 - Price £65.00

If your wants run toward the blogest pick set you can find, here it is This sixty piece set includes an array of hooks, rakes, diamonds, balls, broken key extractors, tension wrenches, and even includes a warded pick set! And the zippered case is made, of course, of the finest top grain leather. First Class! Part: LP007 - Price £99.00

Mamod steam roller, supplied with fuel and everything you need (apart from water and a match!) £85 REF 1312 more models at www.mamodspares.co.uk

Mamod steam roller, supplied with fuel and everything you need (apart from water and a match!) £130 REF 1318 more models at www.mamodspares.co.uk

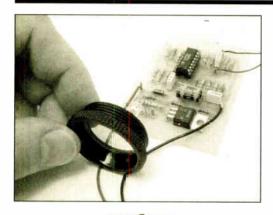
PEANUT RIDER STIRLING ENGINE This all metal, black and brass engine with red flywheel is mounted on a solid hardwood platform, comes complete with an alcohol fuel cell, extra wick, allen wrenches, and Owner's Manual.Specifications: Base is 5-1/4" x 5-1/4", 4" width x 9" height, 3/4" stroke, 3-1/2" flywheel £141.90

SHOP ONLINE WWW.BULLNET.CO.UK

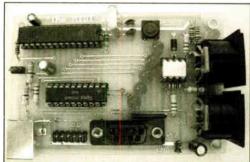
World Radio History

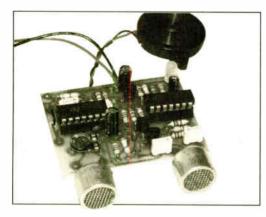
THE TIDE CLOCK These clocks indicate

Samarium magnets are 57mm x 20mm and


ISSN 0262 3617 PROJECTS ... THEORY ... NEWS ... COMMENTS ... POPULAR FEATURES ...

VOL. 34. No. 10 OCTOBER 2005


Cover illustration: Colette Brownrigg



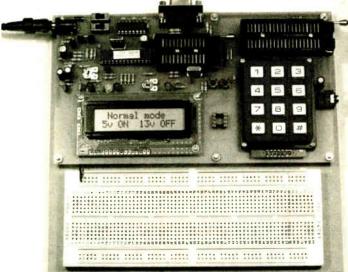
www.epemag.co.uk EPE Online: www.epemag.com

© Wimborne Publishing Ltd 2005. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our November 2005 issue will be published on Thursday, 13 October 2005. See page 667 for details

Projects	and	Circuits
----------	-----	----------

HALOWEEN HOWLER by Mike Hibbett Fun project; the sound comes from WAV files stored in EEPROM	676
PIC-BASED USB INTERFACE by Robert Lang USB the easy way with a PIC18F2455 microcontroller	686
INGENUITY UNLIMITED – Sharing your ideas with others Cybervox Light Interface; Theremin Volume Control; Voltage Splitter; Pulsed Motor Speed Controller	698
PHOTIC PHONE by Thomas Scarborough Communicate digitally over a light beam	708
BACK TO BASICS – 7 Parking Radar and Telephone Switcher by Bart Trepak Simple, easy-to-build circuits based on one or two CMOS logic chips	720
Series and Features	
TECHNO TALK by Mark Nelson The foggy history of electronic development	684
INTRODUCING THE VIRTUAL DIY CALCULATOR by Clive "Max" Maxfield & Alvin Brown Learn how computers do maths without making your brain ache!	694
NET WORK – THE INTERNET PAGE surfed by Alan Winstanley Dealing with spyware	702
PIC N' MIX by John Becker More on getting a DS1267 dual digital potentiometer working with a PIC	703
INTERFACE by Robert Penfold Using a D/A converter in a transistor tester	714
CIRCUIT SURGERY by Ian Bell	726


CIRCUIT SURGERY by Ian Bell Chopper op.amp i.c.s

Regulars and Services

PIC PROJECTS CD-ROM 20 "hand PICked" PIC projects	670
EDITORIAL	675
SHOPTALK with David Barrington The essential guide to component buying for EPE projects	680
NEWS – Barry Fox highlights technology's leading edge Plus everyday news from the world of electronics	682
BACK ISSUES Did you miss these?	706
SUBSCRIBE TO EPE And save money	716
CD-ROMS FOR ELECTRONICS A wide range of CD-ROMs for hobbyists, students and engineers	717
DIRECT BOOK SERVICE A wide range of technical books available by mail order, plus more CD-ROMs	728
READOUT John Becker addresses general points arising	731
PRINTED CIRCUIT BOARD SERVICE PCBs for EPE projects	733
ELECTRONICS MANUALS CD-ROM reference works for hobbyists, student and service engineers	734
ADVERTISERS INDEX	736

Readers Services • Editorial and Advertisement Departments 675

PIC Training & Development System The best place to start learning about microcontrollers is the PIC16F84 with its

simple easy to understand internal structure. Then continue on using the more sophisticated PIC16F877 family.

At the heart of our system are two real books which lie open on your desk while you use your computer to type in the programme and control the hardware. Start with four simple programmes. Run the simulator to see how they work. Test them with real hardware. Follow on with a little theory.....

with real hardware. Follow on with a little theory..... Our PIC training course consists of our mid range PIC programmer, a 298 page book teaching the fundamentals of PIC programming in assembly language, a 274 page book introducing the C programming language for PICs, and a suite of programmes to run on a PC. The module is an advanced design using a 28 pin PIC 16F870 to handle the timing, programming and voltage switching require-ments. Two ZIF sockets and an 8 pin socket allow most mid range 8, 18, 28 and 40 pin PICs to be programmed. The plugboard is wired with a 5 volt supply. The programming is performed at 5 volts, verified with 2 volts or 3 volts applied and verified again with 5.5 volts applied to ensure that the PIC is programmed cor-rectly over its full operating voltage. UK orders include a plugtop power supply.

- Universal mid range PIC programmer module + Book Experimenting with PIC Microcontrollers + Book Experimenting with PIC C + PIC assembler and C compiler software suite + PIC16F84 and PIC16F870 test PICs.....£159.00 (Postage & insurance UK £10, Europe £15, Rest of world £25)

Which Language to Learn

Everyone should start programming PICs using assembly language. That is the only way to fully understand what happens. Then there are good arguments in some applications to change over to using a high level language, but, BASIC or C? At the beginning BASIC is easy to learn while C can seen very strange, but the weakness of BASIC comes them is open of use while the people of C. What is it to transpose Once from its ease of use, while the power of C lurks in its strangeness. Once the early stages are past programmes are easier to write in C than in BASIC.

Experimenting with PIC Microcontrollers This book introduces PIC assembly language programming using the PIC16F84, and is the best way to get started for anyone who is new to PIC programming. We begin with four easy experiments, the first of which is explained over ten and a half pages assuming no starting knowledge of PICs. Then having gained some practical experience we study the basic principles of PIC programming, learn about the 8 bit timer, how to drive the liquid crystal display, create a real time clock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven's *Fur Elise*. Finally there are two pro-jects to work through, using the PIC16F84 as a sinewave generator and investigating using the PIC16F88 (from the PIC16F877 family) to moni-tor the power taken by domestic appliances. In the space of 24 experi-ments, two projects and 56 exercises the book works through from absolute beginner to experienced engineer level.

Web site:- www.brunningsoftware.co.uk

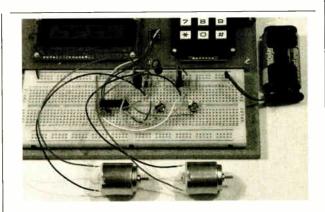
PIC C Language The second book *Experimenting with PIC C* starts

with an easy to understand explanation of how to write simple PIC programmes in C. The first few pro-grammes are written for a PIC16F84 to keep continuity with the first book Experimenting with PIC Microcontrollers. Then we see how to use the same C programmes with the PIC16F627 and the PIC16F877 family.

We study how to create programme loops using C, we experiment with the IF statement, use the 8 bit and 16 bit timers, write text, integer and floating point variables to the liquid crystal display, and use the keypad to enter numbers

Then its time for 25 pages of pure study, which takes us much deeper into C than is directly useful with PICs as we know them - we are studying for the future as well as the present. We are not expected to understand everything that is presented in these 25 pages, the idea is to begin the learning curve for a deep understanding of C.

In chapter 9 we use C to programme the PIC to produce a siren sound and in the following chapter we create the circuit and software for a freezer thaw warning device. Through the last four chapters we experiment with using the PIC to measure temperature, create a torch light with white LEDs, control the speed of one then two motors, study how to use a PIC to switch mains voltages, and finally experiment with serial communication using the PIC's USART.


Some of the programmes towards the end of Experimenting with PIC C are shown in assembler and C to enable the process to be fully explained, and in the torch light experiments, due to the fast switching speed, the programmes are written only in assembler.

As you work through this book you will be pleasantly surprised how C makes light work of calculations and how easy it is to display the answers.

Ordering Information

The programmer module connects to the serial port of your PC (COM1 or COM2). All our software referred to in this advertisement will operate within Windows 98, XP, NT, 2000 etc.

Telephone with Visa, Mastercard or Switch, or send cheque/PO. All prices include VAT if applicable.

White LED and Motors

Our PIC training system uses a very practical approach. Towards the end of the second book circuits need to be built on the plugboard. The 5 volt supply which is already wired to the plugboard has a current limit setting which ensures that even the most severe wiring errors will not be a fire hazard and are very unlike-ly to damage PICs or other ICs. We use a PIC16F627 as a freezer thaw monitor, as a step up

switching regulator to drive 3 ultra bright white LEDs, and to control the speed of a DC motor with maximum torque still available. A kit of parts can be purchased (£30) to build the circuits using the white LEDs and the two motors. See our web site for details.

Mail order address:

Brunning Software 138 The Street, Little Clacton, Clacton-on-sea, Essex, CO16 9LS. Tel 01255 862308

World Radio History

NEXT MONTH

TEACH-IN 2006

Are you starting electronics for the first time? Or perhaps you are a little more experienced but have missed out on some aspects of electronics? Do you wonder about how circuits work and what really goes on inside them? Do you want to be able to design and build your own circuits and get them to work first time? Are you a student or thinking about gaining a formal qualification in electronics? If the answer to any one or more of these questions is "yes" then our Teach-In 2006 series is going to be just right for you!

We won't assume that you have any previous knowledge, and while we will include the relevant theory, we won't bore you with a lot of mathematics. Each part includes a number of Practical Investigations providing you with an opportunity to prove why real circuits work. And with each part there will be a short multiple choice Quiz on-line for you to enter.

A Final Test will also be available on-line, successful completion of which will lead to the award of a personalised EPE Teach-In Certificate, something that will provide you with lasting formal recognition of your success.

List of Topics

• Units, Multiples and Sub-multiples. Atoms, Electrons and Electric Current. Periodic Table. Introducing Resistors, Batteries, Switches. Current, Voltage and Resistance. Potential Difference. Ohm's Law.

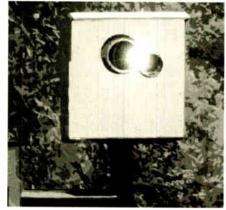
• Circuit Diagrams. Series and Parallel Circuits. Circuit Construction Techniques. Basic Measurements – The Multimeter. More Circuit Theory. Power and Energy. Voltage Divider. Current Divider.

• Charge and Capacitance. Introducing Capacitors and Inductors. Magnetism and Inductance.

• Introducing Transformers and Semiconductors. Diodes. Rectifiers. Power Supplies.

• Introducing Transistors. Basic Concepts of Amplifiers. Gain and Frequency Response. Single and Multi-stage Amplifiers. Coupling.

• Test and Measurement. Waveforms. The Oscilloscope. Signal Sources and Signal Generators. Optoelectronics. Introducing Light Emitting Diodes.


• Digital Electronics. Introducing Logic Circuits.

• Introducing Microprocessors and PICs. Programming. Interfacing. Typical Applications.

• Analogue Electronics. Introducing Operational Amplifiers. Inverting, Non-inverting and Differential Amplifiers. Filters. Comparators. Typical Applications.

• Radio and Communications. Tuned Circuits. Modulation and Demodulation. Transmitters and Receivers. Aerials. Introducing Quartz Crystals. Typical Applications. Radio Constructional Project.

CAMERA WATCH MK2

The publication of the first EPE Speed Camera Watch project in Jan '05 generated a lot of interest and many suggestions for enhancements. Camera Watch Mk2 addresses those suggestions.

It uses GPS signals to locate speed cameras. It can store up to 10,000 camera positions and can scan them all within one second. An I.c.d. provides the visual feedback and enables the display of additional GPS related information.

As requested, an RS232 PC interface has been added. The unit's database can now be extracted, uploaded to the internet and shared with other users.

You can also download other user's databases and merge them with your own. A special web site has been set up for this option.

Significantly, too, the ability to set an acoustic warning for exceeding preset speeds (30, 40, 50, 60 and 70 mph) has also been added.

PIC CHROMATONE

You've all experienced Sound-to-Light displays – haven't you – discos, parties, raves, etc? But what about Light-to-Sound? Bet that's probably a new one to you – but not any longer if you read next month's light-controlled musical novelty!

Light-to-sound? Well it's just a matter of turning thoughts on their head a bit. Given the infinite variety of colour tones around us, all we do is to electronically sense what colours they are and produce frequency tones specific to them.

It must be said, though, the resulting design is a gimmick. But it's a fun gimmick, and should provide much musical entertainment!

DON'T MISS AN ISSUE – PLACE YOUR ORDER NOW!

see page 727 Or take out a subscription and save money. see page 716

NOVEMBER 2005 ISSUE ON SALE THURSDAY, OCTOBER 13

Everyday Practical Electronics, October 2005

Quasar Electronics Limited PO Box 6935, Bishops Stortford, **CM23 4WP** Tel: 0870 246 1826 Fax: 0870 460 1045 E-mail: sales@guasarelectronics.com Postage & Packing Options (Up to 2kg gross weight): UK standard 3-7 Day Delivery – £3.95; UK Mainland Next Day Delivery – £8.95; Europe (EU) – £6.95; Rest of World – £9.95 lOrder online for reduced price UK Postaget We accept all major credit/debit cards. Make cheques/POs payable to Quasar Electronics Limited. Prices include 17.5% VAT. MAIL ORDER ONLY. Call now for our FREE CATALOGUE with details of over 300 high quality kits, projects, modules and publications.

Helping you make the right connections!

IC & ATMEL Programmer

We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site.

Programmer Accessories: 40-pin Wide ZIF socket (ZIF40W) £15.00 18VDC Power supply (PSU010) £19.95 Leads: Parallel (LDC136) £4.95 / Serial (LDC441) £4.95 / USB (LDC644) £2.95

NEW! USB 'Flash' PIC Programmer

USB PIC programmer for most 'Flash' devices. No external power supply making it truly portable. Supplied with box and Windows Software. ZIF Socket and USB Plug A-B lead not incl.

Kit Order Code: 3128KT - £34.95 Assembled Order Code: AS3128 - £39.95

"PICALL" ISP PIC Programmer

"PICALL" will program virtually all 8 to 40 pin serial-mode* AND parallel-mode (PIC16C5x family)* Programmed PIĆ micro controllers.

Free fully functional software. Blank chip auto detect for super fast bulk programming. Parallel port connection. Supply: 16-18V dc. Assembled Order Code: AS3117 - £24.95

ATMEL 89xxx Programmer

Uses serial port and any standard terminal comms program. 4 LEDs display the status. ZIF sockets not included. Supply: 16VDC

Kit Order Code: 3123KT - £29.95

NEW! USB & Serial Port PIC Programmer USB/Serial connection.

Header cable for ICSP. Free Windows software. See website for PICs supported. ZIF Socket and USB Plug A-B lead extra. 18VDC. Kit Order Code: 3149KT – £34.95

Assembled Order Code: AS3149 - £49.95

USB Flash ICSP PIC Programmer

Fully assembled version of our 3128 USB Flasher PIC Programmer but WITHOUT the pregramming socket. It just has 5-pin ICSP header (GND, VCC, CLK, DAT, VPP) and cable. No external PSU required. Free Windows software.

Order Code: AS3182 - £37.95

ABC Maxi AVR Development Board

CREDIT CARD SALES

The ABC Maxi board has an open architecture design based on Atmel's AVR AT90S8535 RISC

microcontroller and is ideal for developing new designs. Features:

8Kb of In-System Programmable Flash (1000 write/erase cycles) • 512 bytes internal SRAM • 512 bytes EEPROM 8 analogue inputs (range 0-5V)

4 Opto-isolated Inputs (I/Os are

bi-directional with internal pull-up resistors)
Output buffers can sink 20mA current (direct I.e.d. drive) ● 4 x 12A open drain MOSFET outputs ● RS485 network connector • 2-16 LCD Connector 3-5mm Speaker Phone Jack

 Supply: 9-12VDC.
 The ABC Maxi STARTER PACK includes one assembled Maxi Board, parallel and serial cables, and Windows software CD-ROM featuring an Assembler, BASIC compiler and in-system

programmer. Order Code ABCMAXISP - £89.95 The ABC Maxi boards only can also be purchased separately at £69.95 each.

Here are just a few of the controller and data acquisition and control units we have See website for full details. Suitable PSU for all units: Order Code PSU445 - £8.95

Rolling Code 4-Channel UHF Remote

State-of-the-Art. High security. 4 channels. Momentary or latching relay output. Range up to 40m. Up to 15 TXs can be learned by one Rx (kit includes one Tx but more available separately). 4 indicator LEDs.

Rx: PCB 77x85mm, 12VDC/6mA (standby) Two & Ten Channel versions also available. Kit Order Code: 3180KIT - £39.95 Assembled Order Code: AS3180 - £47.95

Computer Temperature Data Logger

Serial port 4-channel temperature logger. °C or °F. Continuously logs up to 4 separate sensors located 200m+ from board. Wide range of free software applications for storing/using data.

PCB just 38x38mm. Powered by PC. Includes one DS1820 sensor and four header cables.

Kit Order Code: 3145KT - £16.95 Assembled Order Code: AS3145 - £23.95 Additional DS1820 Sensors - £3.95 each

Most items are available in kit form (KT suffix) or pre-assembled and ready for use (AS prefix).

NEW! DTMF Telephone Relay Switcher

Call your phone number using a DTMF phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired. User settable

Security Password, Anti-Tamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. 130 x 110 x 30mm. Power: 12VDC.

Kit Order Code: 3140KT - £39.95 Assembled Order Code: AS3140 - £59.95

Serial Port Isolated I/O Module

Computer controlled 8-channel relav board. 5A mains rated relay outputs and 4 opto-isolated digital inputs (for monitoring switch

states, etc). Useful in a variety of control and sensing applications. Programmed via serial port (use our new Windows interface, terminal emulator or batch files). Serial cable can be up to 35m long. Includes plastic case 130 x 100 x 30mm. Power: 12VDC/500mA.

Kit Order Code: 3108KT - £49.95 Assembled Order Code: AS3108 - £59.95

Infra-red RC 12-Channel Relay Board

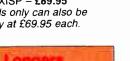
Control 12 on-board relays with included infra-red remote control unit. Toggle or momentary. 15m+ range. 112 x 122mm

Supply: 12VDC/0·5A. Kit Order Code: 3142KT – **£39.95**

Assembled Order Code: AS3142 - £49.95

PC Data Acquisition & Control Unit

Monitor and log a mixture of analogue and digital inputs and control external devices via the analogue and digital outputs. Monitor pressure, tempera-



ture, light intensity, weight, switch state, movement, relays, etc. with the apropriate sensors (not supplied). Data can be processed, stored and the results used to control devices such as motors, sirens, relays, servo motors (up to 11) and two stepper motors.

Features

- 11 Analogue Inputs 0.5V, 10 bit (5mV/step) 16 Digital Inputs – 20V max. Protection 1K in series, 5-1V Zener
- 1 Analogue Output 0-2-5V or 0-10V. 8 bit (20mV/step)
- 8 Digital Outputs Open collector, 500mA, 33V max
- Custom box (140 x 110 x 35mm) with printed front & rear panels
- Windows software utilities (3.1 to XP) and programming examples
 Supply: 12V DC (Order Code PSU203)

Kit Order Code: 3093KT - £64.95 Assembled Order Code: AS3093 – £94.95

Hot New Kits This Summer! Here are a few of the most recent kits added to our range. See website or join our email Newsletter for all the latest news.

NEW! EPE Ultrasonic Wind Speed Meter

Solid-state design wind speed meter (anemometer) that uses ultrasonic techniques and has no moving parts and does not need

calibrating. It is intended for sports-type activities, such as track events, sailing, hang-gliding, kites and model aircraft flying, to name but a few. It can even be used to monitor conditions in your garden. The probe is pointed in the direction from which the wind is blowing and the speed is displayed on an LCD display.

Specifications

 Units of display: metres per second, feet per second, kilometres per hour and miles per hour
 Resolution: Nearest tenth of a metre

Range: Zero to 50mph approx.

Based on the project published in Everyday Practical Electronics, Jan 2003. We have made a few minor design changes (see web site for full details). Power: 9VDC (PP3 battery or Order Code PSU345). Main PCB: 50 x 83mm.

Kit Order Code: 3168KT - £34.95

NEW! Audio DTMF Decoder and Display

Detects DTMF tones via an on-board electret microphone or direct from the phone lines through the onboard audio transformer. The

numbers are displayed on a 16-character, single line display as they are received. Up to 32 numbers can be displayed by scrolling the display left and right. There is also a serial output for sending the detected tones to a PC via the serial port. The unit will not detect numbers dialled using pulse dialling. Circuit is microcontroller based. Supply: 9-12V DC (Order Code PSU345). Main PCB: 55 x 95mm.

Kit Order Code: 3153KT – £17.95 Assembled Order Code: AS3153 – £29.95

NEW! EPE PIC Controlled LED Flasher

This versatile PIC-based LED or filament bulb flasher can be used to flash from 1 to 160

LEDs. The user arranges the LEDs in any pattern they wish. The kit comes with 8 superbright red LEDs and 8 green LEDs. Based on the Versatile PIC Flasher by Steve Challinor, *EPE* Magazine Dec '02. See website for full details. Board Supply: 9-12V DC. LED supply: 9-45V DC (depending on number of LED used). PCB: 43 x 54mm. Kit Order Code: 3169KT – £11.95

Most items are available in kit form (KT suffix) or assembled and ready for use (AS prefix)

FM Bugs & Transmitters

Our extensive range goes from discreet surveillance bugs to powerful FM broadcast transmitters. Here are a few examples. All can be received on a standard FM radio and have adjustable transmitting frequency.

MMTX' Micro-Miniature 9V FM Room Bug

Our best selling bug! Good performance. Just 25 x 15mm. Sold to detective agencies worldwide. Small enough to hide just about anywhere. Operates at the 'less busy' top

end of the commercial FM waveband and also up into the more private Air band. Range: 500m. Supply: PP3 battery. Kit Order Code: $3051KT - \pounds 8.95$ Assembled Order Code: $AS3051 - \pounds 14.95$

HPTX' High Power FM Room Bug

Our most powerful room bug. Very Impressive

performance. Clear and stable output signal thanks to the extra circuitry employed. Range: 1000m @ 9V. Supply: 6-12V DC (9V PP3 battery clip suppled). 70 x 15mm. Kit Order Code: 3032KT - £9.95 Assembled Order Code: AS3032 - £17.95

MTTX' Miniature Telephone Transmitter

Attach anywhere along phone line. Tune a radio into the signal and hear

exactly what both parties are saying. Transmits only when phone is used. Clear, stable signal. Powered from phone line so completely maintenance free once installed. Requires no aerial wire – uses phone line as antenna. Suitable for any phone system worldwide. Range: 300m. 20 x 45mm. Kit Order Code: 3016KT – £7.95 Assembled Order Code: AS3016 – £13.95

Assembled Order Code. ASSUID - 213.9

3 Watt FM Transmitter

Small, powerful FM transmitter. Audio preamp stage and three RF stages deliver 3 watts of RF power. Can be used with the electret

microphone supplied or any line level audio source (e.g. CD or tape OUT, mixer, sound card, etc). Aerial can be an open dipole or Ground Plane. Ideal project for the novice wishing to get started in the fascinating world of FM broadcasting. 45 x 145mm. Kit Order Code: 1028KT - **£23.95** Assembled Order Code: AS1028 - **£31.95**

25 Watt FM Transmitter

Four transistor based stages with a Philips BLY89 (or equivalent) in the final stage. Delivers a mighty 25 Watts of RF power. Accepts any line level audio source (input sensitivity is adjustable). Antenna can be an open dipole, ground plane, 5/8, J, or YAGI configuration. Supply 12-14V DC, 5A. Supplied fully assembled and aligned – just connect the aerial, power and audio input. 70 x 220mm.

Order Code: AS1031 - £134.95

Helping you make the right connections

Electronic Project Labs

Great introduction to the world of electronics. Ideal gift for budding electronics expert!

500-in-1 Electronic Project Lab

This is the top of the range and is a complete electronics course taking you from beginner to 'A' level standard and beyond! It contains all the parts and instructions to assemble 500 projects. You get three comprehensive course books

(total 368 pages) – Hardware Entry Course, Hardware Advanced Course and a microcomputer based Software Programming Course. Each book has individual circuit explanations, schematic and assembly diagrams. Suitable for age 12 and above. Order Code EPL500 – £149.95

30, 130, 200 and 300-in-1 project labs also available - see website for details.

Number 1 for Kits!

With over 300 projects in our range we are the UK's number 1 electronic kit specialist. Here are a few other kits from our range.

1046KT - 25W Stereo Car Booster £29.95 3087KT - 1W Stereo Amplifier £6.95 3105KT - 18W BTL mono Amplifier £9.95 3106KT - 50W Mono Hi-fi Amplifier £23.95 3143KT - 10W Stereo Amplifier £10.95 1011-12KT - Motorbike Alarm £12.95 1019KT - Car Alarm System £12.95 1048KT - Electronic Thermostat £9.95 1080KT - Liquid Level Sensor £6.95 3003KT - LED Dice £7.95
3006KT - LED Roulette Wheel £9.95
3074KT – 8-Ch PC Relay Board £24.95
3082KT – 2-Ch UHF Relay £30.95
3126KT – Sound-Activated Relay £8.95 3063KT – One Chip AM Radio £11.95
3102KT – 4-Ch Servo Motor Driver £15.95
3155KT – Stereo Tone Controls £11.95
1096KT – 3-30V, 5A Stabilised PSU £32.95
3029KT – Combination Lock £7.95
3049KT – Ultrasonic Detector £14.95
3130KT – Infra-red Security Beam £13.95
SG01MKT – Train Sounds £6.95
SG10 MKT - Animal Sounds £5.95
1131KT - Robot Voice Effect £9.95
3007KT - 3V FM Room Bug £6.95
3028KT - Voice-Activated FM Bug £11.95
3033KT - Telephone Recording Adpt £8.95
3112KT - PC Data Logger/Sampler £18.95
3118KT - 12-bit Data Acquisition Unit £49.95
3101KT - 20MHz Function Generator £69.95

Secure Online Ordering Facilities • Full Product Listing, Descriptions & Photos • Kit Documentation & Software Downloads

www.quasarelectronics.com

World Radio History

EPE PIC PROJECTS VOLUME 1 MINI CD-ROM

A plethora of 20 "hand-PICked" PIC Projects from selected past issues of EPE

Together with the PIC programming software for each project plus bonus articles

The projects are:

PIC-Based Ultrasonic Tape Measure You've got it taped if you PIC this ultrasonic distance measuring calculator EPE Mind PICkler Want seven ways to relax? Try our PIC-controlled mind machine!

want seven ways to relax? If your PIC-controlled mind machine PIC MIDI Sustain Pedal Add sustain code discourse AUDI line we with this

Add sustain and glissando to your MIDI line-up with this inexpensive PIC-controlled effects unit

PIC-based MIDI Handbells

Ring out thy bells with merry tolling - plus a MIDI PIC-up, of course!

EPE Mood PICker

Oh for a good night's sleep! Insomniacs rejoice – your wakeful nights could soon be over with this mini-micro under the pillow! PIC Micro-Probe

A hardware tool to help debug your PIC software PIC Video Cleaner

Improving video viewing on poorly maintained TVs and VCRs PIC Graphics LCD Scope

A PIC and graphics LCD signal monitor for your workshop

PIC to Printer Interface

How to use dot-matrix printers as data loggers with PIC microcontrollers

PIC Polywhatsit

A novel compendium of musical effects to delight the creative musician

PIC Magick Musick

Conjure music from thin air at the mere untouching gesture of a fingertip

PIC Mini-Enigma Share encrypted messages with your friends — true spymaster entertainment

PIC Virus Zapper

Can disease be cured electronically? Investigate this controversial subject for yourself

PIC Controlled Intruder Alarm

A sophisticated multi-zone intruder detection system that offers a variety of monitoring facilities

PIC Big-Dlgit Display Control the giant ex-British Rail platform clock 7-segment digits that are now available on the surplus market

PIC Freezer Alarm

How to prevent your food from defrosting unexpectedly PIC World Clock

Graphically displays world map, calendar, clock and global time-zone data

PICAXE Projects

A 3-part series using PICAXE devices – PIC microcontrollers that do not need specialist knowledge or programming equipment

PIC-based Tuning Fork and Metronome

Thrill everyone by at long last getting your instrument properly tuned!

Versatile PIC Flasher

An attractive display to enhance your Christmas decorations or your child's ceiling

(a) 1998 - 2003 TechBies Interactive Inc. & Vemborne Publishing LM

Vol 1

Vol 2

INCLUDING

ONLY

Order on-line from www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA \$ prices) or by Phone, Fax, Email or Post.

NOTE: The PDF files on this CD-ROM are suitable to use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader.

EPE PIC PROJECTS CD-ROM ORDER FORM

Please send me (quantity) EPE PIC PROJECTS VOL 1 CD-ROM
Price £14.45 each - includes postage to anywhere in the world.
Name
Address
· · · · · · Post Code · · · · · · ·
\Box i enclose cheque/P.O./bank draft to the value of £
Please charge my Visa/Mastercard/Amex/Diners Club/Switch
£
Card No
Card Security Code (The last 3 digits on or just under the signature strip)
Start Date Expiry Date Switch Issue No
SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk
Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.
Normally supplied within seven days of receipt of order.

Send a copy of this form, or order by letter if you do not wish to cut your iss

BECOME A PIC PROJECT BUILDER WITH THE HELP OF EPE!

Europe's Largest Surplus Store

20,000,000 Items on line NOW ! New items added daily

Established for over 25 years. UK company Display Electronics prides itself on offering a massive range of electronic and associated electro-mechanical equipment and parts to the Hobbyist, Educational and Industrial user. Many current and obsolete hard to get parts are available from our vast stocks. which include:

- 6.000.000 Semiconductors
- 5,000 Power Supplies
- 25,000 Electric Motors
- 10,000 Connectors
- 100,000 Relays & Contactors
- 2000 Rack Cabinets & Accessories
- 4000 Items of Test Equipment
- 5000 Hard Disk Drives

www.distel.co.uk

Display Electronics 29 / 35 Osborne Road Thornton Heath Surrey UK CR7 8PD

Telephone [44] 020 8653 3333 Fax [44] 020 8653 8888

PLEASE ENSURE YOU TELEPHONE TO CHECK AVAILABILITY OF EQUIPMENT BEFORE ORDERING OR CALLING.

OSCILLOSCOPES

	TEKTRONIX 2247A 4 Channel 100MHz	
	Counter/Timer/ Voltmeter £275 TEKTRONIX 2335 Dual Trace 100MHz Delay Sweep £125	
	TERTHUNIA 2335 Dual trace toumhz belay Sweep . £125	
	TEKTRONIX 485 Dual Trace 350MHz Delay Sweep	
	IWATSU SS5711 4 Channel 100MHz Delay Sweep£150	
	PHILIPS 3065 2+1 Channel 100MHz Dual TB/Delay - Autoset £200	
	PHILIPS 3055 2+1 Channel 60MHz Duat TB/Delay - Autoset £150	
	PHILIPS PM3217 Dual Trace 50MHz Delay Sweep£125	
	KIKUSUI COS6100 5 Trace 100kHz IJelay	
	TEKTRONIX 475A Dual Trace 250MHz Delay Sweep . £175	
	TEKTRONIX 475 Dual Trace 200MHz Delay Sweep £150	
	TERTRONIX 465B Dual Trace 100MHz Delay Sweep £125	
	TEKTRONIX 465 Dual Trace 100MHz Delay Sweep £95	
	PHILIPS PM3209 Dual Trace 40MHz Delay£125	
	PHILIPS PM3215 Dual Trace 50MHz£75	
	KENWOOD CS4035 Dual Trace 40MHz	
	PANASONIC VP5564A Dual Trace 40MHz	
	HITACHI V525 Dual Trace 50MHz Custors	
	HITACHI V523 Dual Trace 50MHz Delly	
	HITACHI V425 Dual Trace 40MHz Cursors	
	HITACHI V422 Dual Trace 40MHz	
	HITACHI V223 Dual Trace 20MHz Delity	
	HITACHI V222 Dual Trace 20MHz	
	HITACHI V212 Dual Trace 20MHz	
	FARNELL DTV12-14 Dual Trace 12MHz	
	STORAGE	
	PHILIPS PM3320 Dual Trace 200MHz 250Ms/S £300	
	LECROY 9400 Dual Trace 125MHz	
	TEKTRONIX 468 Dual Trace 100Mildz Dalay Supas Distal	
	TEKTRONIX 468 Dual Trace 100MMz Delay Sweep Digital Storage	
	VELLEMAN HPS5 1MHz 5MHz Sampling Handheld Unused £60	
	TELEBRIN HE SO HIGHZ SIVINZ SAMPING MANORED UNUSED 200	
i		

ANALYSERS

ADVANTEST R3265A 100Hz-8GHz	Ĥ
TEKTRONIX 492P 50kHz-21GHz	н
HP8560A 50Hz-2.9GHz Built In Tracking Gen	н
HP 8560A 50Hz-2.9GHz	MA
HP 8569A 10MHz-22GHz	MA
HP 8565A 10MHz-22GHz £750	PHI
HP 853A with 8559A 100kHz-21GHz£1100	200
HP 182T with 8559A 100kHz-21GHz £750	PAN
HP182T with 8558B 100kHz-1500MHz	FM
CTEWADT -	
STEWART o	r t

SPECIAL OFFERS

HP 182T with 85574 10kH-550MHz £300-£300 HP 140T with 85554 10kH-2-16GHz £500 ADVANTEST TRAT31 10kH-2-16GHz £500 MARCON 1232 20012+30CHHz £100 MARCON 1232 20012+30CHHz £100 MARCON 12370 30Hz-110MHz £150 MARCON 12370 30Hz-110MHz £500 MARCON 12370 30Hz-110MHz £500 MARCON 12370 30Hz-110MHz £500 MARCON 12570 30Hz-110MHz £500 MARCON 12570 30Hz-110MHz £500 MARCON 12570 30Hz-110MHz £500 MARCON 12570 30Hz-100MHz £500 MARCON 12570 30Hz-110MHz £500 MARCON 12570 30Hz-110MHz £500 MARCON 12570 30Hz-110MHz £500 MARCON 12570 30Hz-110MHz £500	HP 8165A Programmible Signal Scurce 1M412:50MH2 (Pulse/ Function) £325 HP 3325A Synthesister Function Gen 21MH2 £530 HP 3312A Function Gen 01H2-13MH2 £540 HP 3312A Function Gen 01H2-13MH2 £500 HP 3312A Synthesized Function Gen 11MH2 £250 WW/ETEK 13 Stabilized Function Gen 11MH2 £255 WAVETEK 25 Synthesized Function Gen 12MH2 £150 ANALOGUE 2003 Synthesized Wulli Function Waveform £250 TMANDER TGSC3 PulseFunction Gen SMH2 £195 THANDER TGSC3 SubserFunction Gen SMH2 £195 SMH2 £195	HP 5316A Universal Counter 0-100MHz HPIB 525 THANDAR TESID Frequency Counter 5Hz-200MHz Battery 50 THANDAR TESID Frequency Meter 10Hz-200MHz Battery 50 BLACK STAR Meteor 10D Counter 5Hz-100MHz 55 BECKMAN UC10A Universal Counter 120MHz 55 BECKMAN UC10A Universal Counter 120MHz 55 LEADER ALC 5043 Digital Counter 100MHz 55 DEGITAL MULTIMETERS ETC
SIGNAL GENERATORS HP 8360B Sweeper with 83/92A 10MHz 200Hz £1/20 HP 8360B Sweeper with 83/92A 10MHz 200Hz £1/20 HP 8350A Resper with 83/92A 10MHz 200Hz £1/20 HP 8350A Sweeper with 83/92A 10MHz 200Hz £1/20 HP 8350A Sweeper with 83/92A 10MHz 200Hz £1/20 HP 8350A Sweeper with 83/92A 10MHz 200Hz £1/20 HP 8350A Resper with 83/92A 10MHz 200Hz £1/20 HP 8350A Respective for 860C £ HP 8560C Sig Gen 2 6GHz £1/50 HP 8560C Sig Gen 2 6GHz £1/20 MARCON 2019 Symbased AMFH 80Hz 100MHz £0/00 HP 8560E Sig Sig Gen 2 65 950MHz £0/00 HP 8560E Sig Sig Gen 2 65 950MHz £0/00 HP 8560E Sig Sig Gen 2 66 92 16 5GHz £0/00 HP 8560E Sig Sig Gen 2 66 92 16 5GHz £0/00 HP 8560E Sig Sig Gen 2 66 92 216 5GHz £0/00 HP 8560E Sig Sig Gen 2 66 92 216 5GHz £0/00 HP 8560E Sig Sig Gen 2	Immutch 103/2 Seept for Auto Set Series 1193 Immutch 103/2 Seept for Auto Set Series 1193 Immutch 103/2 Seept for Auto Set Series 1193 Immutch 103/2 Seept for Auto Set Series 120 Immutch 103/2 Seept for Auto Set Series 120 Immutch 103/2 Set Set Series 120 Immutch 103/2 Set Series 120 Immutch 103/2 Set Series 120 Immutch 103/2 Set Series 121 Immutch 103/2 Set Series 125 Immutch 103/2 Set Series 126 Immutch 103/2 Set Series 126	SOLARTRON 7150 6m digit True RMS IEEE 275 SOLARTRON 7150Plus As Above * Temp Measurement. E100 DAIRON 1055 bit digit Alocal ACDC Resistance IEEE 505 FLUKE 77 3% digit Handheld 635 FLUKE 77 Sheers 2 3h digit Handheld 635 FLUKE 77 Sheers 2 3h digit Handheld 645 FLUKE 75 Sheers 2 3h digit Bench 620 AVO DA116 3h digit Mth Battenes & Leads. 620 AVO D Mits in Ever Reaty Case with Leads elc 615 AVO B Mits with Leads elc 615 RACAL Stold Thre RMS RF Millivotimeter 5M: 20Mitz 300 MACAL Stold Stolf Thre RMS RF Millivotimeter 5M: 20Mitz 301 Stold COVMILL GY1427 Dual Chan AC Millivotimeter 10mv In 12 ranges 104: 1Mb Lunusad 775 KENWOOD VT176 Dual Chan AC Millivotimeter 640 FARNELL 102 0-30V 0-2A Twee 110 FARNELL 102 0-30V 0-2A Twee 110 FARNELL 103 0-30V 0-2A Twee 155 FARNELL 10-10-30V 0-2A Ancee Digital 195
Near Reading RG7 3RS 1. Fax: (0118) 933 2375 sading.co.uk y (other times by arrangement)	This is a VERY SMALL SAMPLE OF Please check availa	ANTEED. Manuals supplied - STOCK. SAE or Telephone for lists. bility before ordering. added to Total of Goods and Carriage

Everyday Practical Electronics, October 2005

www.stewart-of-rea Open 9am-5.00pm Monday to Friday (o

17A King Street, Mortimer, Ne Telephone: (0118) 933 1111.

EE278 135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST Tel 01283 565435 Fax 546932 http://www.magenta2000.co.uk E-mail: sales@magenta2000.co.uk All Prices include V.A.T. ADD £3.00 PER ORDER P&P. £6.99 next day

VISA

disk, lead, plug, p.c.b., all components and instructions

UP TO 4 METRES
 RANGE

LOW CURRENT

DRAIN

KIT 812.....£15.00

Extra 16F84 chips £3.84 Power Supply £3.99

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher effi-ciency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer, kit includes transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

Kit No. 845 £64.95

PIC LCD DISPLAY DRIVER

16 Character x 2 Line display, pcb, programmed PIC16F84, software disk and all components to experiment with standard intelligent alphanumeric displays. Includes full PIC source code which can be changed to match your application.

KIT 860.....£19.99

Learn how to drive the display and write your own code.
Ideal development base for meters, calcu-

- lators, counters, timers --- just waiting for your application!
- Top quality display with industry standard griver, data and instructions

PIC STEPPING MOTOR DRIVER

PCB with components and PIC16F84 programmed with demonstration software to drive any 4 phase unipolar motor up to 24 Volts at 1 Amp <u>Kit includes 100</u> <u>Step Hybrid Stepping Motor</u> Full software source code supplied on disc. Use this project to develop your own applications, PCB allows 'simple PIC programmer' 'SEND' software to be used to reprogram chip.

KIT 863.....£18.99

8 CHANNEL DATA LOGGER

From Aug/Sept.'99: *EPE*. Featuring 8 analogue inputs and serial data transfer to PC. Magenta redesigned PCB - LCD plugs directly onto board. Use as Data Logger or as a test bed for developing other PIC16F877 projects. Kit includes Icd, progd. chip, PCB, Case, all parts and 8 x 256k EEPROMs

KIT 877.....£49.95

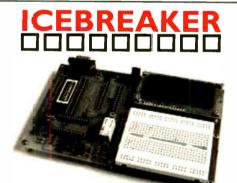
PIC16F84 MAINS POWER CONTROLLER & 4 CHANNEL LIGHT CHASER / DIMMER

 Zero Volt Switching
 Opto-Isolated 5 Amp HARD FIRED TRIACS With program source code disk.
Chase Speed and dimming potentiometer controls.

• 12 Way keypad Control KIT 855.....£39.95 Reprogram for other applications

PIC TUTOR 1

EPE MARCH APRIL MAY '98 PIC16F84 STARTER SERIES


The original PIC16F84 series by John Becker. Magenta's Tutor board has individual switches and leds on all bortA and PortB lines, plus connectors for optional 4 digit seven segment led display, and 16 x 2 intelligent Icd. Written for newcomers to PICs this series. Disk has over 20 tutorial programs. Connect to a PC parallel port, send, run, and experiment by modifying test programs - <u>Then Write and Program your Own</u>

KIT 870... £27.95, Built...£42.95 16x2 LCD..£7.99. LED display..£6.99. 12VPSU..£3.99

SUPER PIC PROGRAMMER

Magenta's original parallel port programmer. Runs with downloaded WINDOWS 95 - XP software. Use standard Microchip .HEX files. Read/Prog/Verify wide range of 18,28, and 40 pin PICs. Including 16F84/876/877, 627/8, (Inc. 'A' versions) + 16xx OTPs.

KIT 862... £29.99 Power Supply £3.99

PIC Real Time In-Circuit Emulator as PIC16F877 in-circuit Programs can be written, downloaded,

- ICEbreaker uses PIC16F877 in-circuit debugger.
- Links to standard PC Serial port (lead supplied).
 Windows (95 to XP) Software included
- Windows (95 to XP) Software included
 Works with MPASM assembler
 16 x 2 LCD display, Breadboard, Relay, I/O devices and patch leads.

Featured in EPE Mar'00 Ideal for beginners & experienced users.

KIT 900...£34.99 With serial lead & software disk, PCB, Breadboard, PIC16F877, LCD, all components and patch leads. POWER SUPPLY - £3.99 STEPPING MOTOR 100 Step £9.99

20W Amp. Module

EPE May '05 -- Superb Magenta Stereo/Mono Module

Wide bandwidth Low distortion 11W /channel Stereo 20W Mono True (rms) Real Power

Short Circuit & Overheat Protected. Needs 8 to 18V supply.

Stable Reliable design

Latest Technology IC with local feedback gives very high performance.

KIT 914 (all parts & heatsink for stereo or mono) £11.90

Magenta BrainiBorg

A super walking programmable robot with eyes that sense obstacles and daylight: BrainiBorg comes with superb PC software CD (WIN95+ & XP) and can be programmed to walk and respond to light and obstacles on any smooth surface.

CD contains illustrated constructional details, operating principles, circuits and a superb Educational Programming Tutorial.

Test routines give real-time 'scope traces of sensor and motor signals. Connects to PC via SERIAL port with the lead supplied.

Kit includes all hardware, components, 3 motor/gearboxes. Uses 4 AA batteries (not supplied). An Ideal Present!

KIT 912Complete Kit with CD rom & serial lead £49.99KIT 913As 912 but built & tested circuit board£58.95

2.30.3

EPE PIC Tutorial EPE Apr/May/Jun '03 and PIC Resources CD

Follow John Becker's excellent PIC toolkit 3 series.

 Magenta Designed Toolkit 3 board with printed component layout, green solder mask, places for 8, 18, 28 (wide and slim), and 40 pin PICs. and Magenta extras.

16 x 2 LCD, PIC chip all components and sockets included.

KIT 880 (with 16F84) £34.99, built & tested £49.99 KIT 880 (with 16F877) £39.99, built & tested £55.99

EPE TEACH-IN 2004

THE LATEST NOV 03 SERIES All parts to follow this new Educational Electronics Course. Inc. Breadboard, and wire, as listed on p752 Nov. Issue. KIT 920.....£29.99 Additional Parts as listed in 'misc.' Section (less RF modules, Lock, and Motor/g.box)

Reprints: £1.00 per part. KIT921......£12.99

MAGENTA BRAINIBOT 1& II

- Full kit with ALL hardware and
- electronics.
 As featured in EPE Feb '03 (KIT
 - 910)
 Seeks light, beeps, and avoids obstacles
 - Spins and reverses when
 - 'cornered''
 Uses 8 pin PIC chip
 - ALSO KIT 911 As 910 PLUS programmable from PC serial port leads and software CD included.
 - KIT 910....£16.99 KIT 911....£24.99

All prices include VAT. Add £3.00 p&p. Next day £6.99

Tel: 01283 565435 Fax: 01283 546932 email: sales@magenta2000.co.uk

and then tested by single-stepping, run-

ning to breakpoints, or free run at up to 20Mhz.

Full emulation means that all ports re-

spond immediately - reading and driv-

Features include: Run; set Breakpoint; View & change registers, EEPROM, and

program memory; load program; 'watch

ing external hardware.

window registers.

C6.99. 12VPSU..£3.99

102005 Image: Control of the second seco	J.S. LF353N £0.40 Dete Acquisi- co.52 TBI D556 £0.52 thon £25.38 PBU LF411CN £0.98 AD420AN £25.38 OL 0.40 AD557JN £6.75 VOS LM311N8 £0.19 AD7528JN £14.04 LM311N8 £0.90 AD7528JN £14.04 LM331N14 £0.20 AD7828KN £20.38 LM335Z £1.12 DAC0800 £2.40 LM335Z £1.42 AC0800 £2.40 LM335Z £1.42 AC0800 £2.40 LM338N £0.36 LC17109CPL £7.75 £6.38 LM380N £0.99 12C508A04P £0.78 £6.38 LM380N £0.99 12C508A04P £0.78 £6.38 LM380N £0.27 16C54C04P £1.49 £7.60 LM392NN £0.27 16C54A-04P £1.43 £7.60 LM3900N £0.79 12C509A04P £0.78 £7.60 LM3900N £0.79 16C54A-04P £1.43 <th>2A 1000V £0.45 AD162 3A 200V £0.34 BC107 3A 400V £0.40 BC107B 3A 600V £0.33 BC108 3A 1000V £0.33 BC108B 4A 100V £0.78 BC108C 4A 200V £0.78 BC109C 4A 400V £0.86 BC109C</th> <th>£0.05 BC640 £0.13 TIP50 £0.08 BCY70 £0.27 TIP110 £0.08 BCY71 £0.29 TIP120 £0.80 8CY72 £0.20 TIP120 £0.80 8CY72 £0.20 TIP120 £0.78 BD124P £6.86 TIP122 £0.78 BD135 £0.46 TIP126 £0.78 BD135 £0.22 TIP127 £0.19 BD135 £0.22 TIP127 £0.19 BD136 £0.21 TIP132 £0.30 BD138 £0.19 TIP137 £0.30 BD138 £0.19 TIP141 £0.76 BD1202 £0.50 ZVN210 £0.78 BD237 £0.32 ZVN210 £0.79 BD202 £0.50 ZVN210 £0.14 BD2402 £0.37 ZVN210 £0.14 BD2402 £0.37 ZVN210 £0.18 E0.42 ZVN420 £0.18 £0.1</th> <th>6A £0.28 6A £0.52 6A £0.56 6A £0.74 6A £0.88 6A £0.42</th>	2A 1000V £0.45 AD162 3A 200V £0.34 BC107 3A 400V £0.40 BC107B 3A 600V £0.33 BC108 3A 1000V £0.33 BC108B 4A 100V £0.78 BC108C 4A 200V £0.78 BC109C 4A 400V £0.86 BC109C	£0.05 BC640 £0.13 TIP50 £0.08 BCY70 £0.27 TIP110 £0.08 BCY71 £0.29 TIP120 £0.80 8CY72 £0.20 TIP120 £0.80 8CY72 £0.20 TIP120 £0.78 BD124P £6.86 TIP122 £0.78 BD135 £0.46 TIP126 £0.78 BD135 £0.22 TIP127 £0.19 BD135 £0.22 TIP127 £0.19 BD136 £0.21 TIP132 £0.30 BD138 £0.19 TIP137 £0.30 BD138 £0.19 TIP141 £0.76 BD1202 £0.50 ZVN210 £0.78 BD237 £0.32 ZVN210 £0.79 BD202 £0.50 ZVN210 £0.14 BD2402 £0.37 ZVN210 £0.14 BD2402 £0.37 ZVN210 £0.18 E0.42 ZVN420 £0.18 £0.1	6A £0.28 6A £0.52 6A £0.56 6A £0.74 6A £0.88 6A £0.42
Initial Initial <thinitial< th=""> <thinitial< th=""> <thi< td=""><td>CO.28 LMC.6032/IN £1.33 Torb/1-20F £3.77 C0.25 LF311N £0.74 Yoftage £0.27 Koltage C0.26 LF324N £0.75 Regulators £0.27 £0.73 LT1013CN8 £4.64 780.6 £0.27 C0.33 LT1013CN8 £4.64 780.6 £0.27 £0.72 £0.73 £0.22 £0.72 £0.7</td><td>25A 200V E1:5A BC170B 25A 200V E1:5A BC171B 25A 400V E1:82 BC171B 25A 600V E1:82 BC177 35A 50V E1:47 BC178 35A 100V E1:47 BC178 35A 200V E1:44 BC182L 35A 400V E1:44 BC182L 35A 400V E1:44 BC182L 35A 400V £1:39 BC183L 35A 1000V £2:33 BC184 Thyristors 2N5060 E0:19 BC206B 2N5061 E0:19 BC206B 2N5061 E0:19 BC206B 2N5061 E0:26 BC212 C106D1 E0:36 BC212</td><td>£0.41 BD438 £0.27 ZTX302 £0.41 BD442 £0.37 ZTX450 £0.36 BD534 £0.47 ZTX451 £0.36 BD535 £0.37 ZTX450 £0.36 BD534 £0.47 ZTX450 £0.36 BD535 £0.50 ZTX453 £0.36 BD535 £0.50 ZTX450 £0.75 BD597 £0.92 ZTX502 £0.38 BD648 £0.52 ZTX51 £0.17 BD650 £0.53 ZTX4000 £0.18 BDX53C £0.53 ZTX451 £0.16 BDX53C £0.53 ZTX4500 £0.16 BDX53C £0.32 ZTX490E £0.16 BDX54C £0.33 ZTX490E £0.15 BF180 £0.33 ZTX490E £0.08 BF257 £0.33 ZTX751 £0.08 BF257 £0.33 ZTX750 £0.72 BF423 £0.15 ZTX7890E <</td><td>£0.19 £0.26 £0.16 £0.16 £0.17 £0.22 £0.33 £0.35 £0.36 £0.33 £0.36 £0.33 £0.36 £0.33 £0.36 £0.33 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.36 £0.37 £0.36 £0.36 £0.36 £0.37 £0.36 £0.56</td></thi<></thinitial<></thinitial<>	CO.28 LMC.6032/IN £1.33 Torb/1-20F £3.77 C0.25 LF311N £0.74 Yoftage £0.27 Koltage C0.26 LF324N £0.75 Regulators £0.27 £0.73 LT1013CN8 £4.64 780.6 £0.27 C0.33 LT1013CN8 £4.64 780.6 £0.27 £0.72 £0.73 £0.22 £0.72 £0.7	25A 200V E1:5A BC170B 25A 200V E1:5A BC171B 25A 400V E1:82 BC171B 25A 600V E1:82 BC177 35A 50V E1:47 BC178 35A 100V E1:47 BC178 35A 200V E1:44 BC182L 35A 400V E1:44 BC182L 35A 400V E1:44 BC182L 35A 400V £1:39 BC183L 35A 1000V £2:33 BC184 Thyristors 2N5060 E0:19 BC206B 2N5061 E0:19 BC206B 2N5061 E0:19 BC206B 2N5061 E0:26 BC212 C106D1 E0:36 BC212	£0.41 BD438 £0.27 ZTX302 £0.41 BD442 £0.37 ZTX450 £0.36 BD534 £0.47 ZTX451 £0.36 BD535 £0.37 ZTX450 £0.36 BD534 £0.47 ZTX450 £0.36 BD535 £0.50 ZTX453 £0.36 BD535 £0.50 ZTX450 £0.75 BD597 £0.92 ZTX502 £0.38 BD648 £0.52 ZTX51 £0.17 BD650 £0.53 ZTX4000 £0.18 BDX53C £0.53 ZTX451 £0.16 BDX53C £0.53 ZTX4500 £0.16 BDX53C £0.32 ZTX490E £0.16 BDX54C £0.33 ZTX490E £0.15 BF180 £0.33 ZTX490E £0.08 BF257 £0.33 ZTX751 £0.08 BF257 £0.33 ZTX750 £0.72 BF423 £0.15 ZTX7890E <	£0.19 £0.26 £0.16 £0.16 £0.17 £0.22 £0.33 £0.35 £0.36 £0.33 £0.36 £0.33 £0.36 £0.33 £0.36 £0.33 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.37 £0.36 £0.36 £0.37 £0.36 £0.36 £0.36 £0.37 £0.36 £0.56
4042B £0.19 24hC173 £0.32 74hC241 £0.32 74hC241 4043B £0.35 74hC241 £0.37 74hS240 £0.37 74hS241 4044B £0.35 74hC241 £0.47 74hS241 £0.47 74hS241 4044B £0.35 74hC241 £0.40 74hS243 40.47hS 41.5743 4044B £0.35 74hC241 £0.34 74hS243 40.47hS 41.5743 4047B £0.34 74hC251 £0.30 74hS243 40.49UB £0.17 74hC257 £0.25 74hS251 4049UB £0.17 74hC257 £0.25 74hS251 40.558 £0.32 74hS257 40518 £0.23 74hC237 £0.25 74hS257 40558 £0.32 74hS273 40.528 40.528 41.5273 40.528 41.5273 40.548 40.567 £0.38 74hS273 40.548 40.567 £0.38 74hS367 40.548 £0.47 41.5383 40.5678 £0.34	£0.41 NE5532N £0.48 (387A) £277 £0.32 NE5534N £4.35 LM317L £0.75 £0.33 NE5534N £4.35 LM317L £0.75 £0.30 NE5534N £4.35 LM317L £0.75 £0.30 P607CN £2.33 LM317L £0.76 £0.45 OP90GP £2.91 LM327K £2.78 £0.45 OP90GP £1.84 LM332K £2.40 £0.46 OP90GP £1.84 LM334Z £0.96 £0.46 OP90GP £1.84 LM334Z £0.96 £0.42 OP113GP £2.91 LM338L £5.31 £0.44 OP176GP £1.84 LM338L £5.31 £0.44 OP176GP £5.26 LM723 £0.43 £0.24 OP177GP £2.97 REF195GP £3.04 £0.21 OP280GP £2.37 REF195GP £3.04 £0.21 OP297GP £1.43 DLdees £0.33	Triacs BC237/B BT136-500 £0.58 BT136-600 £0.50 BC232B BC232B BT137-600 £0.58 BT137-500 £1.00 BC232B BC232B BT137-500 £1.00 BT137-500 £1.00 BT137-500 £1.00 BTA08-600B £0.242 BTA08-600B £0.96 BC37-25 BTA08-600C+£0.96 BTA08-600C+£1.10 BC337-16 BTA16-600B £1.28 BTA16-600B £1.28 BTA26-600B £0.78 BTA16-600B £1.28 BTA26-600B £0.78 BTA26-600B £0.78 BTA26-600B £0.78 BTA26-600B £0.78 BTA26-600B £0.78 BC347 TIC206D E0.70 BC393 TIC206D £0.70 BC347 TIC226D E0.80 BC477 TIC246M £1.00 BC317	E0 11 BFY52 £0.24 E0 11 BS107 £0.21 E0 11 BS107 £0.21 E0 15 BS107 £0.21 E0 15 BS107 £0.15 E0 24 BU208A £1.53 E0 30 BU508 £1.40 Comm BU508 £1.40 E0 30 BU508 £1.40 C0 07 BU211A £0.78 E0 07 BU211A £0.83 E0 07 BU27055 £5.60 patch £0.73 RF530 E0.25 BU27005 £5.60 F0.73 RF530 £0.43 E0.27 BL7640 £0.43 For 0 £0.41 RF630 £0.43 F0.27 RF740 £0.91 Fast E0.27 BL7955 £0.90 for 0 C0.21 RF830 £0.48 for 0 E0.25 BL7905 £0.90 for 0 E0.02 BL7955 £0.90	ality cononts plus or re- t stock. All leading factures. rality rvice day des- n all stock. Friendly ful stoff. Delivery ay service all small orders at a charge. service for res >1kg
4081B £0.16 74H-C4040 £0.29 74D-2031H 4082B £0.21 74H-C4049 £0.31 AD590JH 4085B £0.28 74H-C4051 £0.50 AD5952AN 40868 £0.33 74H-C4052 £0.34 AD5952AN 4093B £0.14 74H-C4052 £0.24 AD6220AN 40948 £0.27 74H-C4053 £0.22 AD6220AN 40948 £0.27 74H-C4075 £0.27 AD6251N 40948 £0.27 74H-C4075 £0.37 AD6251N 40948 £0.32 74H-C4075 £0.37 AD633IN 40978 £0.35 74H-C4075 £0.37 AD645IN 4503B £0.40 74H-C4511 £0.44 AD711JN 4503B £0.40 74H-C4513 £0.90 AD737AN 4510B £0.47 74H-C4513 £0.90 AD737AN 4511B £0.97 74LS00 £0.22 AD812AN 45128 £0.47 74LS01	£5.28 TDA1170S £4.80 IN5401 £0.06 £4.48 TDA2004 £2.21 IN5402 £0.06 £13.92 TDA2030AV £1.24 IN5402 £0.06 £9.88 TDA2030AV £1.24 IN5402 £0.01 £9.88 TDA2030AV £1.24 IN5406 £0.10 £9.88 TDA2050V £2.51 IN5406 £0.10 £5.97 TDA2822A £0.79 IN5408 £0.32 £7.98 TDA2653A £2.99 6A05 £0.32 £7.98 TDA2653A £1.25 6A1 £0.33 £7.98 TL04105 £3.11 6A4 £0.22 £7.98 TL061CP £0.37 6A6 £0.33 £5.50 TL064CN £0.29 6A10 £0.33 £5.50 TL072CN £0.40 6A158 £0.17 £5.41 TL074CN £0.37 8A159 £0.17 £5.50 TL074CN £0.37 8A141 £0.17	2N2369A £0.51 BC547C 2N2904A £0.35 BC548A 2N2904A £0.35 BC548B 2N2907A £0.38 BC548C 2N2907A £0.38 BC548C 2N3053 £0.31 BC549C 2N3055 £0.58 BC550C 2N3054 £0.58 BC556A 2N3439 £0.62 BC556B 2N3440 £0.50 BC557A 2N3702 £0.09 BC557B 2N3702 £0.08 BC557B 2N3704 £0.11 BC558A 2N3771 £1.44 BC559A 2N3771 £1.44 BC559A 2N3771 £1.44 BC558B 2N3771 £1.44 BC558B 2N3772 £0.08 BC557B 2N3705 £0.08 BC558B 2N3771 £1.44 BC559A 2N3772 £1.72 BC560A 2N3772 £1.72 BC560A 2N3772 £0.09 BC633B 2N3772 £0.01 BC637 2N3905 £0.10 BC638 2N3905 £0.10 BC638	£0.08 MJE350 £0.32 C £0.08 MPSA05 £0.14 Order £0.08 MPSA06 £0.11 need, £0.08 MPSA13 £0.09 quanti £0.08 MPSA13 £0.09 quanti £0.09 MPSA42 £0.15 order £0.09 MPSA55 £0.13 Qu £0.19 MPSA55 £0.14 Qu £0.08 STW80NE-1023.80 Qi Av £0.08 TIP29A £0.32 Ko £0.09 TIP29A £0.32 count £0.09 TIP29A £0.37 items £0.08 TIP31A £0.28 quanti	rder what you no pack ites or min er value. antity counts allable offer dis- ts for all subject to y required, e, fax or or a quote.
45568 £0.40 74LS26 £0.17 ADM6934 45848 £0.27 74LS27 £0.25 ADM6934 45848 £0.47 74LS37 £0.20 CA3046 45858 £0.47 74LS32 £0.23 CA31302 47248 £0.94 74LS32 £0.23 CA31304 401048 £0.18 £0.18 CA3140E CA3240E 401098 £0.58 74LS38 £0.18 CA3240E 401748 £0.46 74LS42 £0.42 D631102 401748 £0.46 74LS42 £0.42 D631102 401748 £0.46 74LS42 £0.42 D631102 401748 £0.46 74LS42 £0.38 ECL7611062 74HC02 £0.16 74LS73 £0.38 ECL76110 74HC03 £0.17 74LS83 £0.38 ECL76110 74HC04 £0.16 74LS83 £0.38 ECL7621 74HC05 £0.16 74LS83 £0.38 <	N 16.48 DL142003A £0.44 CA2000 £0.51 N 16.48 DL142003A £0.44 CA2000 £0.51 N 16.65 EPROM's UF4001 £0.00 £0.00 C0.87 24LC088P £0.73 UF4003 £0.00 £0.63 24LC188P £0.67 UF4003 £0.00 £0.91 24LC32AP £1.14 UF4004 £0.00 £2.00 £3.99 UF4005 £0.11 £2.00 £3.99 UF40066 £0.11 £2.00 £3.99 UF4007 £0.11 £2.20 £72568.1552:00 Zeners 2.7 to 339 P £0.62 £72C301-15.52:17 1.3W £0.11 £0.80 27C4001-15.52:41 1.3W £0.11 P £0.80 27C4001-1205.84 £0.33 Mow £2.36 Free with all order free with all order £2.36 £3.40 Free with all order £1.21 GM76C88 £3.60 Free with all order £4.48	a capacitors. Full Technical deta capacitors. Full Technical deta comparison of the second secon	$\label{eq:constraints} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	per 100 60 per 100 72 per 100 75 per 100 50 23 Each 50 09 Each 60 09 Each 60 09 Each 60 12 Each 60 09 Each 60 12 Each 60 09 Each 60 56 Each 61 54 Each 61 55 Each 61 54 Each 61 55 Each 61 54 Each 61 55 Eac

Everyday Practical Electronics, October 2005

THE No. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY & COMPUTER PROJECTS

VOL. 34 No. 10 **OCTOBER 2005**

Starting Out

Teaching electronics or design and technology? A student studying electronics or design and technology? A newcomer to electronics? Generally interested in electronics and want to learn more? Like to brush up on your electronics theory? Then our new ten part Teach-In series is sure to be of interest to you - or someone you might know. It starts next month and you will find more details about it on page 667.

We think the on-line monthly test and end of series on-line test and certificate are a first for EPE. Our Teach-In courses are always popular and, as this one has been written by Mike Tooley, who is well known for his many books and articles and who edited our Electronics Service Manual, it will no doubt be very well received. Mike has over 30 years experience in teaching electronics at all levels and has an easygoing writing style that helps to get the subject across in a readily understandable form.

Don't miss the start of the series next month. With cut backs by high street newsagents you may find issues are sold out quickly. We suggest you place an order with your newsagent or take out a subscription and save money - see page 716.

Cameras Again!

Next month also sees the publication of a Mk2 Speed Camera Watch. The original vesion, published in the January issue, aroused a great deal of interest and the Mk2 version has been greatly enhanced. One of the major changes - suggested by readers - has been to add an audible speed warning. This makes it easy to keep to the speed limit without constantly checking the speedo. So when you come off the motorway into a 30mph area it will help to make sure you adjust your speed accordingly. The memory has also been enlarged to hold up to 10,000 camera or black spot coordinates so, hopefully, it will cover everywhere you want to go, and keep you within the law.

Mile denus

AVAIL ABILITY

Copies of *EPE* are available on subscription anywhere in the world (see opposite), from all UK newsagents (distributed by CONIAG) and from the following electronic component retailers: Omni Electronics and Yebo Electronics (S. Africa). EPE can also be purchased from retail magazine outlets around the world. An Internet on-line version can be purchased and downloaded for just \$14.99US (approx £8) per year available from www.epemag.com

SUBSCRIPTIONS

Subscriptions for delivery direct to any address in the UK 6 months £16.50, 12 months £31, two years £57; Overseas: 6 months £19.50 standard air service or £28.50 express airmail, 12 months £37 standard air ser-

£28.50 express airmail, 12 months £37 standard air ser-vice or £55 express airmail, 24 months £69 standard air service or £105 express airmail. To subscribe from the USA or Canada see the last magazine page. Online subscriptions, for downloading the magazine via the Internet, \$14.99US (approx £8) for one year avail-able from www.epemag.com. Cheques or bank drafts (in £ sterling only) payable to *Everyday Practical Electronics* and sent to EPE Subs. Dept., Wimborne Publishing Ltd. 408 Wimborne Road East, Ferndown, Dorset BH22 9ND Tel: 01202 873872. East, Perndown, Dorsei, Brizz, Shub, rei, Drizue, or Sorz., Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at: http://www.epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Maestro or Visa, (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price £7.95 plus £3.50 p&p (for overseas readers the postage is £6.00 to everywhere except Australia and Papua New Guinea which cost £10.50). Normally cost with econo drow but please allow of drows sent within seven days but please allow 28 days for delivery – more for overseas.

Payment in £ sterling only please. Visa, Amex, Diners Club, Maestro and MasterCard accepted. Send, fax or phone your card number, card expiry date and card security code (the last 3 digits on or just under the sig-nature strip), with your name, address etc. Or order on our secure server via our UK web site. Overseas cus-tomers – your credit card will be charged by the card provider in your local currency at the existing exchange rate exchange rate

Editorial Offices: EVERYDAY PRACTICAL ELECTRONICS EDITORIAL Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND Phone: (01202) 873872. Fax: (01202) 874562.

Email: enquiries@epemag.wimborne.co.uk

Web Site: www.epemag.co.uk EPE Online (downloadable version of EPE): www.epemag.com EPE Online Shop: www.epemag.wimbome.co.uk/shopdoor.htm See notes on Readers' Technical Enquiries below – we regret lengthy technical enquiries cannot be answered over the tele-booo phone

Advertisement Offices:

EVERYDAY PRACTICAL ELECTRONICS ADVERTISEMENTS 408 Wimborne Road East, Ferndown, Dorset BH22 9ND Phone: 01202 873872 Fax: 01202 874562 Email: stewart.keam@wimborne.co.uk

Editor: MIKE KENWARD Deputy Editor: DAVID BARRINGTON Technical Editor: JOHN BECKER Business Manager: DAVID J. LEAVER Subscriptions: MARILYN GOLDBERG General Manager: FAY KEARN Editorial/Admin: (01202) 873872 Advertising Manager: STEWART KEARN (01202) 873872 **On-Line Editor: ALAN WINSTANLEY** EPE Online (Internet version) Editors: CLIVE (MAX) MAXFIELD and ALVIN BROWN

READERS' TECHNICAL ENQUIRIES

E-mail: techdept@epemag.wimborne.co.uk We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

PROJECTS AND CIRCUITS

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

A number of projects and circuits published in EPE employ voltages than can be lethal. You should not build, test, modify or renovate any item of mains powered equipment unless you fully understand the safety aspects involved and you use an RCD adaptor.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk). We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture.

TRANSMITTERS/BUGS/TELEPHONE EQUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.

Everyday Practical Electronics, October 2005

Constructional Project

Halloween Howler

Mike Hibbett

Halloween's coming - why not give your "trick or treat" visitors a scare?!

PICTURE a pumpkin head, eyes lighting up red and emitting an eerie howl when someone walks past it!

Although intended to help generate a bit of fun over Halloween, this project also serves to demonstrate just how easy (and cheap) it can be to output audio in an electronics project. The sound comes from a pre-recorded computer "WAV" file stored in a small non-volatile memory. WAV files can be downloaded from the internet, extracted from music CDs and even recorded by yourself on a PC using software supplied with most operating systems.

The circuit can be configured into one of two modes of operation: Halloween Howler, which includes a light sensor to detect moving objects, and a generic three-input design that allows one of three stored sound samples to be played when an input is asserted. This second setup provides a more general purpose sound generator that can have a number of uses. Only minor component changes are required for the different setups, which are described later.

WAV File Format

WAV files are one of the simplest formats used for storing sounds on a PC and are typically used for short sound clips. They are not a very efficient format. For example, a CD quality four minute music track requires about 42MB. An MP3 format file would require a tenth of that, but also requires complex encoding and decoding algorithms to record and play back.

A WAV file consists of a small header section which defines how the content has been recorded followed by the data itself. When a sound source is recorded, for example from the microphone on your PC, there are two factors that will determine the quality and size of the file: the number of data bits used per sample, and the rate at which samples are taken. Values of four, eight and 16 are typical for the number bits per sample, while the sample rate varies typically from 8000 to 44000 samples per second. The sample rate determines the maximum frequency that you can record and must be at least twice that of the highest frequency to be sampled.

For reasons that will become clear later, the WAV files used in this design are encoded at 11025 samples per second, with an 8-bit resolution per sample. This provides an acceptable quality sound output without requiring enormous and expensive memory storage. WAV files are easy to create in this format on a PC, and existing higher quality sound files can be easily re-encoded to this format.

Digital-to-Analogue Conversion

The heart of this project is the circuit which converts the digital representation of the sound, stored in the WAV file, into an analogue signal. In other words, it is a digital-to-analogue converter (DAC). DACs are not just used for creating audio, they are used in PC video cards to create the analogue video signals. and they find many other uses in embedded control systems.

There are a number of ways to implement a DAC. Some of the more common methods that can be used in a hobby project are:

Pulse Width Modulation: Many microcontrollers provide an option to control a pulse-width modulated (p.w.m.) peripheral, such as a motor for example. The p.w.m. control is generally run at least three times the sample rate, and the output signal is connected to an RC (resistor/capacitor) filter to produce an averaged analogue signal. The nice feature is that it requires just a single output pin, and is a good option if you have a spare p.w.m. on your micro.

On chip DAC: Some high performance microcontrollers have a DAC peripheral built in, with a resolution of eight to 16 bits. These are the easiest to use.

Dedicated DAC: These implement all the electronics into a single chip, such as the Analog Devices DAC08 for example. Discrete R2R DAC: This technique uses an array of resistors connected to a parallel port on the microcontroller. This is cheap, easy to route on a p.c.b. and very effective. It is also very easy to drive in software.

Single bit DAC: Uses a single output port pin to drive an RC circuit, at high speed. However, the sound file needs to be encoded in a special way and the encoder must "model" the characteristics of the RC circuit. It's quite complex and hard to understand but very easy to implement if you have a fast enough microcontroller.

Digital Potentiometer: These devices can readily be used as 8bit (or greater) DACs, the "wiper" output providing an analogue voltage in respect of a input digital value.

Chosen R2R DAC

For this project the simplest and cheapest method is used, the discrete R2R DAC. By carefully examining the I/O (input/output) port requirements (memory interface, DAC output pins, trigger input pins) a search of the Microchip database showed that the PIC16F628 was ideal for the purpose. It is small, cheap and every available pin can be used, so nothing is wasted! In the Howler there is plenty of free code space for adding extra features later on should you wish to.

The trick behind making an R2R DAC work lies in being able to drive all the output pins simultaneously. Delays in setting some outputs will result in unacceptable distortion in the audio signal. That limits the number of bits (and therefore the DAC resolution) – we can drive at most eight bits simultaneously, so eight bits it is then!

The next issue to deal with is the sample rate. CD quality audio is sampled at 44kHz: there are two problems with that rate. First we would not be able to read data from memory fast enough, and secondly we would quickly run out of storage space. The industrystandard rate of 11025Hz was chosen as a fair compromise.

As it is a standard encoding rate, so we can use existing PC tools to create our sound sources, it allows us to store almost six seconds of sound, and we can read data from a serial EEPROM (electrically erasable programmable read-only memory) at this rate. The sound's quality isn't bad either. In theory it would be possible to run at a sample rate of 22050Hz, but with just three seconds of recorded sound. Feel free to tinker!

Circuit Description

There are two configurations that can be used for the Halloween Howler. They both use the same circuit, which is shown in Fig.1, with a few minor changes. We first describe the Halloween setup and explain the changes required for the second setup later.

The circuit is based around a PIC16F628 microcontroller, IC5, that reads a standard Windows WAV file stored in a serial EEPROM, IC2. The eight bits of data that represent each sound sample are output on PIC PORTB, to which the R2R DAC is connected.

Capacitor C4 provides some initial filtering, and as this signal is quite high impedance it is buffered by an op-amp, IC3a. Op.amp IC3b acts as both a low pass filter (C5 and R25) and attenuator to provide the correct drive to a small audio power amplifier, IC4. The low pass filter removes the high frequency artifacts caused by the signal switching at the sample rate.

The audio amplifier based around IC4 uses the device's application sheet design and produces about 350mW, more than enough to drive a small 4Ω or 8Ω loud-speaker connected to jumper connector TB8. Potentiometer VR1 provides a volume control.

Light emitting diodes D1 and D2 are standard 5mm red l.e.d.s that illuminate when the sound is triggered, simulating glowing red eyes. Any l.e.d.s will do, so

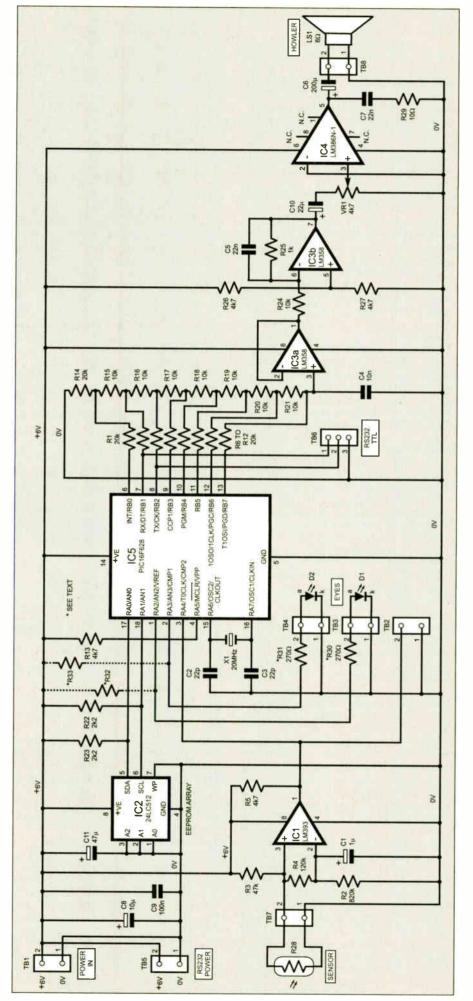


Fig.1. Complete circuit diagram for the Halloween Howler

long as the PIC's drive capability of 25mA per pin is not exceeded.

The sound output is triggered by a sudden rise in light level on a light dependent resistor (l.d.r.), R28, connected to TB7. Op.amp IC1 is configured as a comparator into which the l.d.r. is fed. Capacitor C1 and resistor R2 provide a bias to the comparator's reference input so that gradual changes in light level, such as sunrise or clouds passing over the moon, do not trigger the sound output. The sensitivity of the circuit is largely determined by resistor R4; reduce this to increase the sensitivity.

The circuit is triggered by a sudden *rise* in light level – the idea being that as someone approaches the pumpkin the light level falls, then as they go past, the circuit triggers. So the pumpkin wakes up behind them, adding to the scary effect!

Serial EEPROM IC2 holds the WAV file sound data, of up to 64KB, about six seconds. A PC can be connected via RS232 interface on TB5 and TB6 using a suitable level shifter circuit as shown later in Fig.3.

The serial EEPROM also holds data which defines how the p.c.b. is configured. The sound file and the configuration information are downloaded using a simple PC program, **dlwav.exe**.

The board is powered at 6V, supplied by four 1.5V batteries connected via TB1.

Alternative Setup

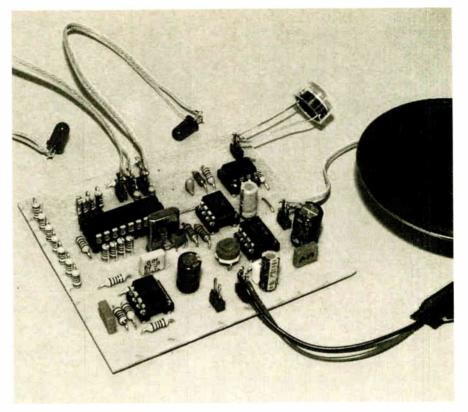
The PIC software supports a second mode of operation, using three input signals to trigger one of three stored WAV files. In this configuration the light detection circuitry and l.e.d.s D1 and D2 are removed (but not their jumper headers, TB7, TB3 and TB4, respectively.

Other circuit changes are:

R30, R31 replaced by wire links R32, R33 values changed to 4k7 IC1, R2, R3, R4, C1 not fitted

The three new trigger inputs are connected to TB2, TB3 and TB4. A low level input will trigger the sound.

Construction


Printed circuit board component and track layout details are shown in Fig.2. This board is available from the *EPE PCB* Service, code 535.

Solder the two wire links first, then i.c. sockets and jumper header pins (terminal pins may be used instead of the latter), followed by the remaining components. Before fitting the i.c.s, apply power and check that the (nominally) 6V supply voltage is reaching the correct i.c. socket pins. Remove power and fit the i.c.s, observing normal static precautions when handling them.

Wire up l.e.d.s D1 and D2 via TB3 and TB4, connect a speaker via TB8 and connect the light sensor l.d.r. to TB7. The l.d.r. is not polarity sensitive and can be fitted either way round.

If you are programming your own PIC it must be programmed with the Osc HS, power-up timer and watchdog options enabled in the Config bits.

Download your WAV file to the board, then power the board up again. Quickly move your hand over the l.d.r.; The "eyes" l.e.d.s will illuminate while the sound is

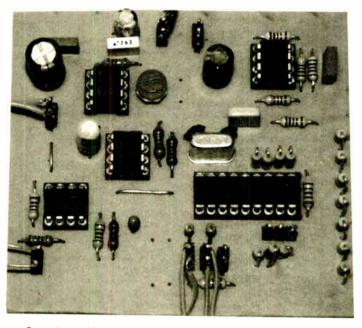
Finished prototype with the off-board components attached ready for the pumpkin

Approx. Cost

COMPL	DNEN15	Guidance Only excl spe	eaker, batts & interface
Resistors R1, R6 to R12,R14 R2	20k 1% (11 off) 820k	C11 C12 to C16	47μ radial elect. 10V 1 μ radial elect. 25V (optional – see text) (5 off)
R3	47k See	Semiconductor	s
R4	120k TALK	D1, D2	5mm red I.e.d., (2 off)
R5, R13, R26, R27 R15 to	4k7 (4 off)	IC1 IC2	LM393 dual op.amp 24LC512 serial EEPROM
R21, R24	10k 1% (8 off)	IC3	LM358 dual op.amp
R22, R23 R25	2k2 (2 off) 1k	IC4	LM386N-1 audio
R28 R29	ORP12 l.d.r. 10Ω	IC5	power amp PIC16F628-20 micro-
R30, R31 R32, R33	270Ω see text (2 off) 4k7 or not fitted (see text) (2 off)	IC6	controller, pre-pro- grammed (see text) MAX232 RS232 converter (optional
	rbon film unless stat-		- see text)
ed		Miscellaneous	<i>.</i>
Potentiometer		TB1 to TB10	jumper header or
VR1 Capacitors	4k7 min. preset		1mm terminal pins (see text)
C1	1 μ radial elect. 25V	SK1	9-pin D-type con-
C2, C3	22p ceramic disc, 2.5mm pitch (2 off)		nector, female (optional - see text)
C4	10n ceramic disc, 5mm pitch	LS1 X1	8Ω min. speaker 20MHz Crystal
C5, C7	22n ceramic disc, 5mm pitch (2 off)		board, available from
C6	220μ radial elect. 16V		ervice, code 535; 8-pin
C8	10µ radial elect. 16V	d.i.l. socket (4 c	off); 16-pin d.i.l. socket
C9	100n ceramic disc, 5mm pitch	(see text); 18-p	oin d.i.l. socket; strip- – see text); pumpkin!;
C10	22µ radial elect. 63V	connecting, solo	

COMPONIENTE

being played. Adjust volume potentiometer VR1 for an appropriate sound level.


You can download WAV files to the board any number of times; The EEP-ROM can be written to over 100,000 times so you are unlikely to wear it out!

Pumpkin Head

Once you are happy with the setup you can install it into a pumpkin. It's best to place the p.c.b. and speaker inside a sealed plastic bag since the inside of a pumpkin remains damp for many weeks.

Position the light sensing l.d.r. in the "mouth" and the l.e.d.s close to the holes cut for the "eyes". Covering the eye holes with red crepe paper helps to diffuse the light and adds to the scary effect.

Positioning the pumpkin requires a little thought, since it must be pointing to a light source (such as a porch lamp). It must be positioned so that the light is interrupted when someone approaches. A little experimentation may be required, and the value of resistor R4 adjusted if necessary.

Completed Howler prototype circuit board. Note resistors R33 and R32 do not apper on this board and the author has used header pins for the wiring take-off terminals

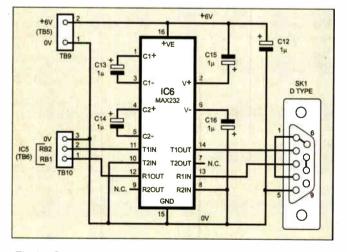
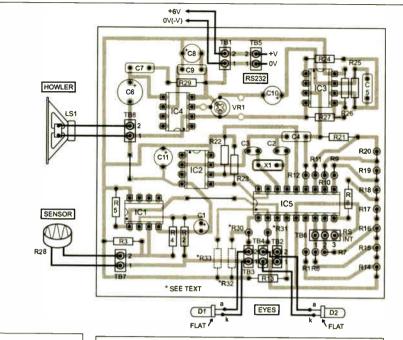



Fig.3. Suggested circuit diagram for a suitable RS232 Interface using the Maxim MAX232 chip. This circuit and accompanying board has not been tested with the Howler

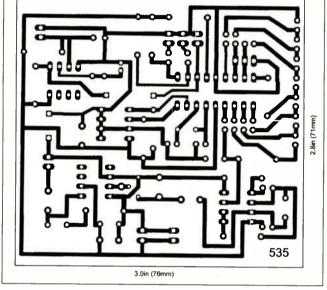


Fig.2. Printed circuit board topside component layout, offboard wiring details and full-size underside copper foil master pattern for the Haloween Howler

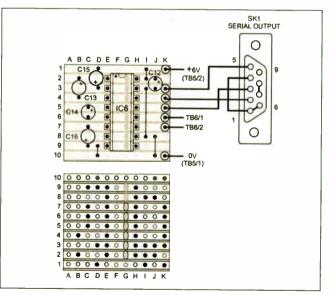


Fig.4. Stripboard component layout and wiring details for the suggested RS232 Interface circuit

The final effect on visitors is priceless, and worth the effort!

Sound Downloading

The WAV file files can be downloaded from the *EPE* website (see later). The program consists of **dlwav.exe** and **cp30fwm.dll**. Copy these files to a directory on your PC (any name you want) and then run the **dlwav.exe** program.

An example of the program window is shown in Fig.5. First select the appropriate COM port, then click on the p.c.b. configuration that you will be using. If you choose the second option then two further input boxes will appear for additional sound files. Type in the names of the sound files you want to use, or click on the browse button to find them using Explorer.

Download Interface

When you are ready to download the files to the board, connect an RS232 interface circuit to the PC and p.c.b. If you do not have such an interface, the circuit shown in Fig.3 can be assembled on stripboard. A suggested layout is shown in Fig.4, but has not been tested with the prototype.

Click the Download button in (as in Fig.5). After a few seconds the program should indicate it is waiting for the p.c.b. to respond. Apply power to the p.c.b. After a few seconds the **diwav** screen should indicate the download progress. Downloading takes approximately 90 seconds. When it has finished, remove power from the p.c.b.

and disconnect the cables.

The program will check that the sound files are of the correct format. They must be stored in 11025Hz, 8-bit Mono mode format. Microsoft's Sound Recorder application can resample audio files to the correct format. If you open a WAV file in Sound Recorder and select the File->Save As option you can click on the Change button in the dialog and select the correct format. If the

PCB Hardware Setup	Com Port	
LDR Sensor & Single Sound	G Com 1	
C 3 Inputs & up to 3 Sounds	C Com2	
Sound File Selection		
Sound #1	Browse	

Fig.5. Screenshot of the download application window

sound sample is too long it will be truncated by the **dlwav** program, although you can also use the Sound Recorder application to trim the file to the length you want.

Suitable sounds can be easily found on the Internet and resampled to the correct format if necessary. A search via **www.google.com** for "Halloween sounds" resulted in plenty of interesting options! If you choose to record your own sounds make sure that you record at a high level using a decent microphone. Low volume sound samples will not playback well. The author found a cheap "Studio Microphone" quite acceptable.

Resources

Software, including source code files, for this design can be downloaded *free* from the *EPE* Downloads site, accessible via the home page at **www.epemag.co.uk**. It is held in the PICs folder, under Halloween.

This month's *Shop Talk* provides information about obtaining pre-programmed PICs and component buying advice.

SHOP TALK with David Barrington

Halloween Howler

No real "howlers" appeared when casting an eye down the components list for the *Halloween Howler* project. The LM op.amps and auidio power amp i.c.s. should be widely available from our components advetisers.

For those readers who intend to program their own PICs, it should be pointed out that its the 20MHz version of the PIC16F628-20 that is required. This is usually identified by the -20 after the main type number.

The MAX232 RS232 serial interface i.c. is one of the most favoured devices and readers should have no trouble in obtaining one from most of our components advertisers. For more technical details you could log-on to www.maxim-l.c.com.

Some readers may experience difficulty in locating the 24LC512 serial EEPROM. This is currently listed by **Maplin** (**2** 0870 429 6000 or **www.maplin.co.uk**), code N31BH. The serial EEPROM holds the WAV file sound data, up to 64KB, about six seconds.

Standard 5mm red I.e.d.s are used to simulate the "glowing eyes". Almost any I.e.d. will do here, so long as the PIC's drive capability of 25mA per pin is *not* exceeded.

For those readers unable to program their own PICs, ready programmed PIC16F628-20 microcontrollers can be purchased from Magenta Electronics (2003 565435 or www.magenta2000.co.uk) for the inclusive price of £4.90 each (overseas add £1 for p&p). The sound file and the configuration information can be downloaded free from the EPE Downloads site, accesible via the home page at www.epemag.co.uk. It is held in the PICs folder under Halloween.

The Howler printed circuit board is available from the *EPE PCB* Service, code 535 (see page 733). Don't forget to seal the completed p.c.b. and miniature speaker inside a plastic bag; the inside of a pumpkin remains very moist for many weeks.

PIC-Basedf USB Interface

The most surprising aspect when checking through the availability of components for the *PIC-Based USB Interface* was the s.i.l. resistor array. Component suppliers carried plenty of stocks of these resistor arrays but none at the 680 ohms specified in the article. However, a 680 ohms 5-way commoned s.i.l. resistor module was found listed by Farnell (******* 0670 1200 100 or www.farnellinone.co.uk), code 476-330.

The Darlington output opto-isolator type 6N139 is currently stocked

by Rapid Electronics (2 01206 751166 or www.rapidelectronics.co.uk), code 58-0602. Readers should have no difficulty purchasing the MAX232 RS232 serial interface chip, this is one of the more popular devices.

For the USB type-B socket you could approach ESR Components (**3** 0191 251 4363 or www.esr.co.uk), who carry a large range of PC connectrors. Also try Jaycar (see back cover), code PS-092 or Jameco (www.jameco.com), code 230957.

The PIC18F2455 is one of the new USB-enabled flash memory microcontrollers and for those readers unable to program their own PICs, preprogrammed PIC18F2455s can be purchased from Magenta Electronics (2003 565435 or www.magenta2000.co.uk) for the inclusive price of £10 each (overseas add £1 for p&p). The software, including source code files, is available for *free* download via the Downloads link on our UK website at www.epemag.co.uk.

The printed circuit board is available from the *EPE PCB Service*, code 536, (see page 733).

Photic Phone

The IRF610 *n*-channel power MOSFET called for in the *Photic Phone* project does not appear to be in favour with our components advertisers. However, it is listed by **Farnell (2007)** 1200 100 or *www.farnellinone.co.uk*), code 354-430 and **RS Components** (201536 44079 or *rswww.com*) code 139-833.

The author specified a 500 ohm resistor for the ultrabright l.e.d., but as 510 ohms is the preferred value and it is shown as this in the circuit diagram. The Siemens SFH203 photodiode was purchased (*credit card only*) from **RS** (see above), code 195-681.

The Phone printed circuit boards are available as a pair from the EPE PCB Service, codes 531 and 532. As to the lens option, we leave that to readers own ingenuity. A toy telescope or binoculars perhaps.

Back to Basics - Parking Radar/Telephone Switch

We do not expect readers to encounter any buying problems when shopping for parts for the *Parking Radar* or *Telephone Switch*, this month's *Back To Basics* projects. The relay used with the *Telephone Switch board* will, of course, need to be selected to suit the ratings of the appliance being controlled.

The 40kHz ultrasonic transmitter and receiver transducers, used in the *Parking Radar*, are normally sold in pairs. As an idea it might be worth investigating a combined single transmitter/receiver transducer from **Jaycar** (see back cover), code AU-5550. We have no idea as to the pinout arrangement for this device.

The two printed circuit boards are available from the EPE PCB Service, codes 533 (Radar) and 534 (Tele) – see page 733.

buy.Microchip - source the parts you need - quickly and easily

When developing or manufacturing products, time to market is essential and this may mean you need to get hold of parts quickly. To complement our distributors' inventory of Microchip product, buy.Microchip gives you the ability to order direct from our factory.

Buy online, pay by credit card Complements existing distribution channels

Currently available in 28 European countries Special fast-turnaround, flexible factory test cell

Speed is important. You need to bring products to market fast to beat your competitors, and can't afford to wait around for longleadtime components or development tools. Microchip has created buy.Microchip, an extension of the Microchip website that allows you to place orders directly with Microchip to ensure the fastest possible delivery of the parts you need.

Microchip's distributors carry an extensive range of our vast product range. However, sudden increases in demand mean your requirements change and your particular, unique, product requirements may not be immediately available from a distributor. Conventional semiconductor production approaches can make it difficult to respond quickly. Microchip have built an innovative "Flex Cell" in our testing facility that is used to provide the parts sold through buy.Microchip.

Buy any Microchip product - devices, tools and development kits

Items in stock ship within 48 hours of ordering

Basically it's a flexible test cell, which is separate from our high volume test line. While the flex cell shares the same test platform, test software, testing method and quality standards, it has one difference. In the flex cell, Microchip breaks set-ups all day to reconfigure to the immediate need of our customers. As a result, flex cell delivers short lead-times, but it costs more to manufacture so this is reflected in the pricing. If you have an urgent requirement, buy.Microchip can get you parts fast!

The Microchip name, logo and PIC are registered trademarks of Microchip Technology Incorporated in the USA and other countries. All other trademarks and registered trademarks are the property of their respective owners. © 2005 Microchip Technology Inc. All rights reserved. ME139Eng/04.05

A roundup of the latest Everyday News from the world of electronics

ALL SYSTEMS ARE GO!

From movies to betting, the sky's the limit reports Barry Fox

OVE it or hate it, Rupert Murdoch's satellite station *BSkyB* just keeps going from strength to strength. Murdoch's son James is now CEO and running the show.

News . . .

At a recent meeting held to update city analysts, Chief Financial Officer Jeremy Darroch described the company as being in "robust health" and reported 12% subscriber growth over the last year, with 11% revenue growth.

Churn, subscribers who stop paying, averages 10.3% per year. Despite this, Sky now has 7.78 million paying subscribers with home dishes. Average revenue from each subscriber is now £384. "We expect 8m subscribers by the end of this year and 10m by end of the decade" says Murdoch. "We have 0.89m Sky+ PVR users with 1m expected in the next few weeks." Asked whether Sky's 10 million target is dependent on the UK government's analogue switch off plans, Murdoch admitted: "Of course there is some connection – the (government) switch off plan does not have a lot of clarity."

Revenue from Sky's interactive TV betting is rising by 40% a year with more growth expected following liberalisation of the UK laws. People can now lose even more money they cannot afford from the privacy of their homes. To protect children the electronic programme guide is being redesigned, with the option to remove all adult material from the menu and control the replay of Sky+ recordings

An intriguing new service will be launched before the end of year that will let five million top-tier subscribers who also have a broadband connection use it to download movies and sports to a PC, or laptop "to watch on a train".

At a recent London gathering FlexiPanel Ltd unvelied ToothPIC, a PIC microcontroller module with in-built Bluetooth and radio communications software libraries. The class-1 radio is FCC/CE certified and has 100m range with its integral antenna.

"ToothPIC offers you radio communications straight out of the box." said Richard Hoptroff, managing director of FlexiPanel. "No specialist knowledge of radio frequency design is required. Indeed, many remote control and data acquisition applications can use our off-the-shelf firmware, so the PIC doesn't even need to be programmed." "We shall start by offering a few hundred movies on demand" says Murdoch. No details of the cost or technology are yet available. But Sky confirms that the PC will need to download a software application and very small print on a slide shown by Murdoch showed *Spiderman 2* using a file of 500MB – almost certainly with MPEG-4 compression instead of MPEG-2, as currently used by Sky and Freeview. Sky has already confirmed that its HDTV service, due for launch early next year, will use MPEG-4.

"The move from MPEG-2 to MPEG-4 will have to happen" says Murdoch. He also confirms that Sky and Microsoft are partners in DRM, the Digital Rights Management that controls how and when downloads can be viewed.

Ouestion Time

But many key questions on the new broadband service remain unanswered, most important how long the download will remain playable on a PC and what happens if a customer churns out. Murdoch's reply on this was very vague. "The DRM rights will depend on the window. They will vary with the title. There are no details yet. We will have details as we move forward".

The vagueness may be due to the fact that Sky is currently re-negotiating its movie contracts with three Hollywood studios,

Details also remain sketchy on the HDTV service now promised for 2006. There will be an additional charge for the receiver which will have one Ethernet and two USB ports and "greatly expanded hard drive" for the connection of peripherals and "a variety of new features" "By 2007 CRT production will be discontinued – there will be 10 million HD Ready sets sold by end of the decade" says Murdoch. "By Christmas you will be able to buy a very good quality HD Ready screen for under £1000. It's going to be great. It's going to be a big story over the next five or six years".

Down To Earth

More immediate and down to earth Sky will soon launch a battery radio that works anywhere in the house or garden to receive the sound of satellite stations that can normally only be heard from a mains-powered receiver with fixed dish antenna. The Gnome comes in two halves, a transceiver that plugs into the back of an ordinary satellite receiver, and a pint-sized portable.

A wireless telemetry link at 433MHz lets the portable switch channels on the satellite receiver; an FM signal at 864MHz carries hi-fi stereo to the portable. Working range is around 30 metres; the likely cost around £100. The Gnome is being made for Sky by Global Communications of Essex.

Murdoch confirms the Gnome will also work with *Freesat*, Sky's free-to-air satellite radio and TV service.

When Murdoch was asked about recent concern over the life cycle of existing receivers and how long receiver boxes can be expected to last, and a comment by Sky's suppliers that they are not allowed to talk about planned life, he tried to reassure:

"Life cycle is not an issue – at this point. We don't see any deterioration. There is a lot of life in them yet... I looked again before this conference. If we did see something I would tell you".

ToothPIC Unveiled

Based on the high-end PIC18LF6720 microcontroller, ToothPIC is supported by a large range of free software, from on-chip firmware solutions such as OpenTooth. which provides access control from a cellphone, to the user interface server, which allows it to create user interfaces on PCs, pocket PCs and high-end cellphones. Using Wireless Field Programming it can be reprogrammed from any Windows PC via Bluetooth, allowing OEMs to distribute product upgrades to their customers by email. "We are really enthusiastic about the ToothPIC modules." says beta customer Marcel Jacomet, Lecturer at Bemer Fachhochschule, Switzerland, who uses them for teaching. "They are so simple to use and to download our own applications."

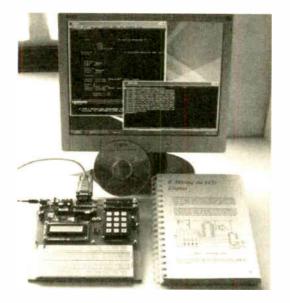
Utility functions are provided to take easy advantage of the ToothPIC peripherals, including real time clock, UART, 10-bit 12 channel A/D inputs and five p.w.m. outputs. The on-board power regulator accepts anything from 3V to 10V. For more information on FlexiPanel's ToothPIC browse: www.flexipanel.com.

Conrad's One-Stop Shopping

COLLOWING our welcome to Conrad Electronics last month, the company have filled us in with a bit more information about themselves:

Conrad has more than 80 years at the cutting edge of technology and says it leads the world in the supply of components. The Company began with providing components for kits for making radios in the 1920s, and then progressed in the 1930s to kits for making TVs. Components are now supplied for computers, multimedia, telephone, radio, and a multitude of home systems and electrical needs.

Conrad offers its products and services by catalogue, through retail branches and also via the Internet. Over 110 million products are shipped each year and products are supplied directly to customers in more than 150 countries worldwide. There are over 15,000 components on the website!


You can also subscribe online to the free regular Newsletter and stay informed about all the latest offers and exciting products.

In Conrad's advert with us (see elsewhere in this issue), you can obtain a discount of 10% off orders valued at £30 or more. You'll also get the chance to win a Voltcraft Multimeter worth £139 in Conrad's Prize Draw! For more information on Conrad browse: www.conrad-direct.co.uk.

Email:customerservice@conrad-direct .co.uk. or Tel 0870 732 3223.

Brunning Update Training

Brunning Software have just released a revised and updated version of their PIC Training and Development System. Peter Brunning believes that the practical approach is the natural way of learning so the theory is kept to a minimum. But he also believes that a newcomer can never become a proficient PIC programmer unless he or she has a grounding in the language of the processor.

The first of the two books included with the course gives a gentle start to PIC assembly language, while the second book teaches how to program PICs using the C language. The P801 PIC Training System works through from absolute beginner to experienced engineer level.

For £159 plus postage you get a programmer module which is also your experimental test bed, two books, CD with PIC assembler and C compiler, plugtop PSU (UK only) and PC serial COM lead.

For more information contact Brunning Software, 138 The Street, Little Clacton, Clacton-on-Sea, Essex C016 9LS.

Tel: 01255 862308. Web: www.brunningsoftware.co.uk

PCB-POOL

The team at PCB-POOL have launched a number of new services. In their recent press release they say that they are Europe's largest on-line p.c.b. prototype supplier and are broadening their offering, promising a range which will suit every level of p.c.b. designer. The improvements will provide for reduced leadtimes, and electrical testing as standard. The aim of the service is to pass on the cost saving benefits of prototype p.c.b. manufacture to the designer. Expensive tooling and photoplot charges have been eliminated.

The company has recognized the importance of receiving high quality p.c.b. prototypes, and all files are fully design-rule checked and validated by experienced CAM engineers. As an extra assurance for p.c.b. designers full electrical test is being offered on all four to six layer prototypes free of charge.

You can order pre-production quantities, working from a standard lead-time of eight working days. A fast turnaround service with a reduced lead-time of five working days is also available.

For further information visit: www.pcbpool.com, or free phone: 0800 3898560.

Quote...Unquote

Dixons, one of the UK's leading retailers of consumer technology on the high street, has announced the launch of a Dixons-exclusive. Hitachi-branded Hi-Fi that the retailer believes will redefine the shape of future home entertainment systems.

OUT are tape decks, CD-only players, AM radios and other legacy technologies.

IN are a 40GB hard drive that stores 10,000 songs, a DAB radio, a DVD player that plays all CD formats, and high specification speakers. Other enhancements include front and rear USB ports to enable owners of MP3 players to plug and play or plug and go.

TEGHNO-TALK MARK NELSON

USELESS AT THEIR JOB

Why cannot historians agree on even the key elements of recent electronic history? Mark Nelson investigates

OU'D think that historians could at least do the job they're paid to do. As professionals, they of all people should be able to sort out who invented what and when.

"History is bunk," famously said the industrialist Henry Ford and from this you might infer he had a low opinion of historians. I could easily take offence at this remark, having a degree in economic and social history, but I feel bound to agree – up to a point. "Historians" manage to present multiple versions of what they present as facts, so it's not hard to criticise historians for failing to come up with a single, incontrovertible version of past events.

If only life were that simple! History exists to justify people's beliefs, as the conflicting versions of how any industrial or territorial dispute began will readily illustrate. And who invented radio – Marconi, Popov, Tesla or Nathan Stubblefield? It all depends whose side you are on!

Perception of Kilby

And in that vein I had to smile when I read Jack Kilby's obituary in the September issue of this magazine, where it stated that he was the inventor of the monolithic integrated circuit (i.c.). It may be received wisdom but it's a "fact" that's widely contested by alternative historians and it all boils down to what you call an integrated circuit.

By common consent an integrated circuit contains both active and passive electronic components, all "integrated" in a single package. Who first invented it, patented it or turned it into a practical device is a matter of debate:

Jack Kilby of Texas Instruments invented the i.c. in 1958, yet the patent was awarded the following year to Robert Noyce, cofounder of Fairchild Semiconductor Corporation. In the event, both pioneers shared the honours when the U.S. Academy of Engineering bestowed on them both the academy's Draper Award in 1978; in 1989 President George Bush (senior) awarded each \$175.000.

So how come they both invented the i.c.? It depends on your definition. Kilby had the notion that all parts of an electronic circuit, not merely the transistor, could be made out of silicon on a single substrate. Creating the entire circuit in monolith i.c. form would make it smaller and much easier to produce. The idea appealed to his employers and in just over a month Kilby had built a working model.

This was in September 1958 and in February of the following year Texas

Instruments filed a patent for their "Solid Circuit", which was shown publicly for the first time in March.

Rough Justice?

Ingenious as this Solid Circuit was, it could not in itself set the world alight with just one transistor on-board. Someone who realized this was Robert Noyce, who had independently thought along similar lines. Although he did not start until January 1959, his debut design was the first i.c. with more than one transistor.

Aware, too, of Kilby's work he delivered a patent application that stressed the unique characteristics of his own design along with details of its potential applications, something missing from Kilby's presentation. This paid off for him and it was he who was awarded the patent for the first integrated circuit while Kilby's submission was still being analysed. Was this rough justice? It's hard to tell.

Of course you cannot do much with such basic circuit elements and it fell to others to develop i.c.-type devices with practical applications. The microprocessor is one and in 1968 Los Angeles computer expert Gilbert Hyatt took the integrated circuit a step further by including in one place all the pieces necessary to operate a computer (except memory and interface).

His patent application for this microprocessor was submitted in 1970 and although three engineers from Intel Corporation created the first commercially viable microprocessor the following year, while Hyatt's paperwork was still being scrutinised, it was nevertheless Hyatt who was eventually credited with its invention by the U.S. Patent Office.

Ancient History

But this is by no means the end of the bickering and there are several other valid claimants for the credit of being father of the i.c. Radar scientist Geoffrey (GW.) Dummer of Britain's Royal Aircraft Establishment had already outlined his ideas for integrated circuits in May 1952 and attempted to build a prototype in 1956.

His 1952 revelation was made at a conference in Washington D.C. when he explained how a solid block of material such as silicon could comprise separate layers that would act as the key components needed by electronic systems. He was thus the first person to publicise the concepts that Kilby and Noyce later brought to fruition.

Unfortunately for Dummer, his rudimentary integrated circuit of 1956 failed to persuade

British investors willing to fund further research, losing an opportunity to create a multi-million pound industry.

If you broaden the definition of the i.c. to include thermionic technology, then the honours must fall to the Germans. For in 1926 the Loewe company's OE 333 radio receiver employed a valve that incorporated two audio amplifier stages plus a final amplifier, all in a single standard-size glass tube.

You can see photos of this 3NF valve on the Web at www.jogis-roehrenbude.de /Roehren-Geschichtliches/Loewe-Roehren/Loewe.htm and if you read German, you may care to download the period literature offered on this page.

Final Example

For my final example of disputed history, let's take a truly fundamental innovation of modern times, the printed circuit board or p.c.b. It's modern history after all, so determining the inventor must be a total no-brainer, but surprisingly not. A clue to the fact that it's perhaps not such a modern invention is its alternative and older name, the printed wiring board or PWB.

Because it was first exploited in earnest on the other side of the Atlantic, a notion grew up that the Americans invented the process to speed production of rugged military radios during World War II (p.c.b.s did not become commonplace in consumer electronics for another decade or more).

Then more diligent researchers named the inventor as Paul Eisler (1907-1995), an Austrian-born engineer who like many of his comrades came to Britain in the 1930s.

According to Eisler's own testimony, he first conceived the technique at his home around 1936, using small strips of copper foil fixed with varnish onto Bakelised paper (paper impregnated with phenolic resin to form a rigid but easily shattered board). In his book *My Life with the Printed Circuit*, he states that he employed his "first printed circuit invention in the form of a complete radio set that worked perfectly", as a credential when applying for a job with Plessey.

We can certainly credit Eisler with creating the first true printed circuit board but the idea was by no means new in 1936. A fascinating piece of research in the *Articles* section of **www.circuitree.com** reveals a patent of 1903 by Albert Parker Hanson, living in Berlin, for circuit boards using stamped copper tracks bonded adhesively to paraffined paper. The patent even illustrates double-sided and multilayer p.c.b.s – such modernity over 100 years ago!

World Radio History

Switch on to Conrad and get 100% OFF

From power supplies and components to circuits and accessories, if you need the latest technology, there's only one place to look.

Europe's favourite electronics and technology retailer, Conrad offers a huge selection of over 15,000 of the most popular products at the best prices.

Place any first order over £30 and we'll reward you with a 10% saving. That's right, 10% OFF! And you'll also get the chance to win a Voltcraft Multimeter worth £139 in our exclusive Prize Draw.

So why go anywhere else?

Plus WIN A Voltcraft Multimeter worth £139

- Large display
- Optical interface
- 40,000 counts LCD
- Backlight
- Professional performance

Switch on to Conrad today and visit www.conrad-direct.co.uk/multimeter

Constructional Project

PIC-Based USB Interface

Robert Lang

How to easily use USB to communicate with the new PIC18F2455 microcontroller

RE you ready to jump on the Universal Serial Bus (USB) bandwagon? Maybe you have an existing embedded application you would like to update to use USB. Maybe you have a new PIC application you would like to develop to use USB. In this article we explore the basics of an easy way of getting data into and out of a PIC18F2455 microcontroller using its USB interface.

The design allows existing RS232 devices to be controlled by a Windows 2000/XP USB connection. In addition, l.e.d.s can be controlled over the USB. Although the design is simple, it illustrates the process of getting data into and out of the PIC over a USB connection. The "easy way" approach to USB makes maximum use of existing free software and Windows drivers.

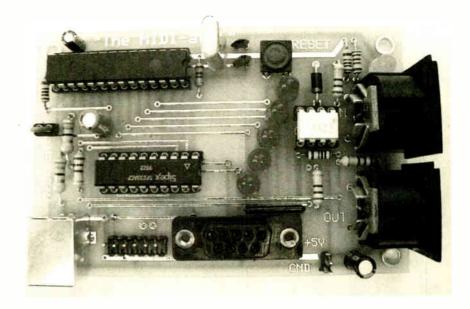
Introduction to USB

The goals of the USB 2.0 development team were very lofty. They wanted to simplify, from the user's point of view, personal computer peripherals. They wanted a system that supported real time video, voice and audio data. They wanted a protocol that could handle isochronous data transfers and asynchronous messaging.

They wanted a standard interface that could quickly be used in products. They wanted new classes of devices that would expand the personal computer's capability, and they wanted backward compatibility with previous versions of USB.

The result is Universal Serial Bus Specification, Revision 2, a 650 page behemoth, that is available as a free download (see References, Ref.1, later). The USB specification contains almost anything you would want to know about USB, it is suggested that you start by reading Chapter 9 which discusses the USB device framework.

Chapter 9 includes device requests, descriptors and class definitions. USB allows peripherals to be plugged and unplugged without down-powering the computer. This process, called "enumeration", involves communicating with the peripheral to discover its identity and characteristics. Information about the device is contained in descriptors that are transmitted to the host during enumeration. A unique address is assigned to each peripheral to be used for run-time transfers. The device is also assigned a configuration during the enumeration process.


Slave Protocol

All USB peripherals are slaves that obey a defined protocol. They must react to request transactions sent from the host PC. For example, the peripheral must respond to control transactions that request detailed information about the device and its configuration. All USB devices support the requests and descriptor definitions described in Chapter 9.

In addition, devices may provide extended services that are characteristic of a group of devices. A class of devices, for example the Audio Device Class, is defined by a specific set of descriptors, requests and interface/endpoint usage. So you might find descriptors, request and interface usage relating to a volume control in the Audio Device Class but not in the Imaging Device Class. Each USB device has two or more endpoints. An endpoint is a uniquely addressable portion of the USB device that is a sink or source of information that flows between the host and the device. One can think of an endpoint as a device buffer where data is placed to be transferred by the USB engine to or from the host. USB is a host-centric protocol so "IN" endpoints transfer data to the host from the USB device and "OUT" endpoints transfer data from the host to the USB device.

USB 2.0 supports four types of data transfer: Control, Interrupt, Isochronous and Bulk. Control transfers are typically used for command and status operations. They are essential and all enumeration functions are performed using control transfers. Interrupt transfers are typically non-periodic, small device "initiated" communication requiring bounded latency. An Interrupt request is queued by the device until the host polls the USB device.

Isochronous transfers occur continuously and periodically. They typically contain time sensitive information, such as an audio or video stream where a delay or retry would be unacceptable. However, if a

Everyday Practical Electronics, October 2005

World Radio History

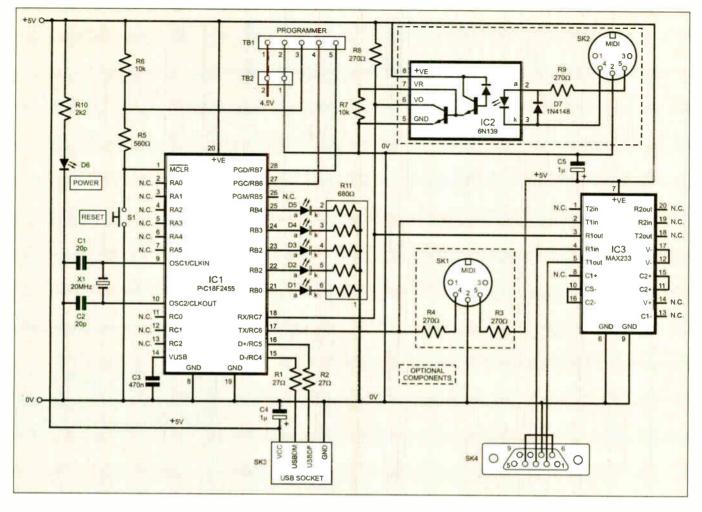


Fig.1. Complete circuit diagram for the PIC-Based USB Interface

packet or frame were to be dropped every now and again, it is less likely to be noticed by the listener/viewer.

Bulk transfers provide error correction on the data payload and error detection/retransmission mechanisms, ensuring data is transmitted and received without error. Bulk transfers are the lowest priority and use spare un-allocated bandwidth on the bus after all other transactions have been allocated.

Class Definitions

A USB device class is a group of devices that has a common set of descriptors, requests and interface/endpoint usage. Some of the USB device classes that have been defined in the specifications include Audio Device Class, Imaging Device Class, Communication Device Class (CDC), Human Interface Device (HID) Class, Mass Storage Device Class, Printer Device Class and others. Some of the classes have subclasses such as the MIDI devices under the Audio Class.

If you can fit your device into a standard USB device class then you can leverage your software development efforts by using the standard device drivers written by the operating system developers.

With our "easy" approach to USB we make the device a Communication Device. A complete description of the communication device class is contained in *Universal Serial Bus Class Definitions for Communication Devices* (Ref.2). It is only 121 pages.

Putting the USB device into the Communication Device class has two advantages:

1. Microchip has written and freely distributes PIC software for the Communication Device class to emulate RS232 over a USB connection.

2. From the PC side, the USB device just looks like a COM port to the Windows software. This allows us to use existing Windows software like Hyperterminal to communicate with the device over the USB port.

PIC18F2455

The PIC18F2455 is one of the new USB-enabled flash memory microcontrollers from Microchip. It has 24K bytes of flash program memory that allow the user to store about 12 thousand 16-bit instructions which can be erased and reprogrammed electrically. The flash program memory supports 100,000 write/erase cycles and has a greater than 40-year data retention period.

This PIC has 2048 bytes of RAM data memory, and has many of the features users have come to expect from Microchip: a universal synchronous-asynchronous receiver/transmitter (USART), four timers, ten 10-bit ADC channels, and a master synchronous serial port (MSSP). The MSSP is useful for communicating with peripheral devices such as serial EEP-ROMS, and supports SPI and I²C protocols. The PIC18F2455 operates at clock speeds up to 48MHz. The USB engine is V2.0 compliant and operates at low (1.5 million bits per sec) and full (12Mb/sec) speeds. The USB engine supports all types of data transfer and up to 32 endpoints. It has one kilobyte of RAM starting at 400h that is shared between the CPU and the USB engine. This shared memory can be configured for optimum use by the user. The first few locations are defined in **usbmap.c** and **usbmap.h** and are used for an endpoint (buffer) descriptor table consisting of: STAT, CNT and ADR.

There is one buffer descriptor table for each endpoint. STAT is the status register for the endpoint. Bit 7 determines who owns the buffer (CPU or USB engine) and who can write to it. CNT is the number of bytes in the buffer. ADR is the pointer to where the endpoint buffer starts in the 400h to 7FFh range.

Circuit Description

The circuit diagram for the PIC-Based USB Interface described here is fairly simple and is shown in Fig.1. We begin with the power supply. There is none – the device is powered by the USB bus!

There are a couple of critical components. One is C3, a 470nF capacitor connected to V_{USB} on the PIC18F2455. This is a filter capacitor and without it the PIC may not run at USB full speed. Since we are using power from the USB bus, we also need the $l\mu$ F capacitors, C4 and C5, to reduce the inrush current when the device is plugged into the USB bus.

When designing the circuit board, there were grand plans to make it also function as a USB MIDI interface. For that reason some additional components were added as outlined in Fig.1. The additional hardware needed for MIDI is very minimal - an optical isolator, IC2, on the input, some resistors and a couple of MIDI sockets. To get Windows to recognize the device as a MIDI interface, the PIC must be reprogrammed. The MIDI components are not needed for this project, but may be helpful to experienced readers who wish to add their own PIC code to make use of them.

The PIC18F2455 is the heart of the system. Use is made of its internal USB voltage regulator, USB transceiver and USB pull-up resistors. A 20MHz crystal (X1), in conjunction with capacitors C1 and C2, provides the clock signal. The 20MHz clock is increased to 48MHz inside the PIC

The PIC handles all communications with the host over the USB bus and handles the two-way serial communication at 115,200 bits per second to the MAX233 RS232 driver/receiver, IC3. This device converts the 0V to 5V signals from the PIC to $\pm 12V$ RS232 signals. The MAX233 generates the ±12V levels internally from the +5V supply line with no external components.

The output from IC3 is routed to socket SK4 where the RS232 cable is connected.

The five l.e.d.s (D1 to D5) are tied to the PIC's RB0 to RB4 pins and are used for status indicators as explained later. Pins RB6 and RB7 were used for in-circuit programming of the PIC during development of the software. The Reset switch, \$1, connects the PIC's MCLR pin to the 0V line, causing the PIC to restart the program.

Construction

Component and track layout details for the printed circuit board are shown in Fig.2. This board is available from the EPE PCB Service, code 536. Start assembly by soldering in the link wires, using 22-gauge single-core wire. Next, solder the small components: diodes, resistors and capacitors. Add sockets for the PIC18F2455, MAX233 and the 20MHz crystal.

Now place a mounting screw under the USB socket position if you plan to use that hole to secure the board in a box. The screw cannot be accessed once the USB socket is installed. Alternatively, you may prefer to use the board without a box, in which case you could fix four stick-on rubber feet to it later.

Next mount the reset switch, and sockets SK3 and SK4.

Omit those components which are for the MIDI interface, unless you intend to write your own PIC software for it.

If you intend to program the PIC yourself using a programmer suited to the PIC18F2455, mount the programming connector, TB1, and test points TB2. Preprogrammed PICs and source code files are available as stated later.

Software Writing

Because Microchip wrote the CDC software in C, it was decided to write the remainder of the software in C as well. The C18 compiler is available for

COMPONENTS

Resistors		See Shop
R1, R2	27Ω (2 off)	TALK
R3, R4, R8, R9	270Ω (4 off)	page
110, 110	(see text)	
R5	560Ω	
R6	10k	
R7	10k (see text)	
R10	2k2	
R11	680Ω 5-way	
	commoned	
	resitor module	
	5% carbon film ι	inless
stated		
Capacitors		
C1, C2	20p ceramic dis	
	5mm pitch (2 (,
~~	470m environde d	

- , -	5mm pitch (2 off)
C3	470n ceramic disc
	5mm pitch
C4, C5	1μ radial elect.
	10V (2 off)

Semiconductors

D1 to D6	red l.e.d. (6 off)
D7	1N4148 signal
	diode (see text)

IC1	PIC18F2455 microcontroller, pre-programmed
	(see text)
IC2	6N139 opto-isolator (see text)
IC3	MAX233 RS232
	interface
Miscellaneou	IS
S1	min. s.p. push-to-
	make switch
SK1, SK2	5-pin DIN socket
	(2 off) (see text)
SK3	USB B connector,
	p.c.b. mounting
SK4	9-pin D-type connector
0	(female)
X1	20MHz crystal
TB1	5-way terminal
	pin block
TB2	2-way terminal
	pin block

Printed circuit board, available from the EPE PCB Service, code 536; 20-pin d.i.l. socket; 28-pin d.i.l. socket; connecting wire; solder, etc.

Approx. Cost Guidance Only

excluding case

£25

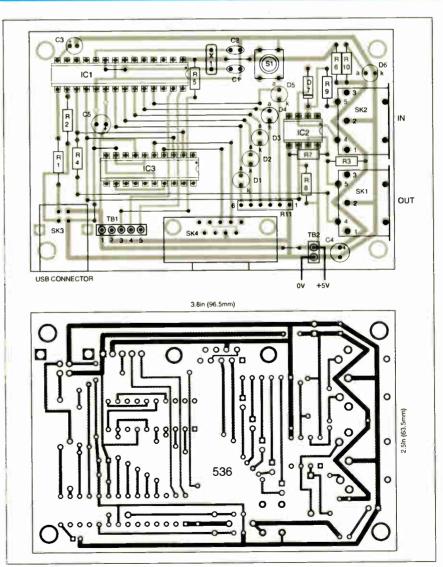
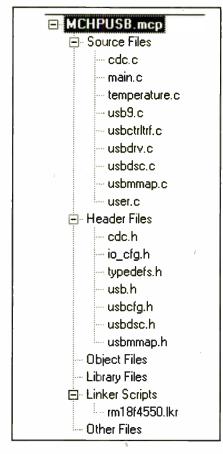
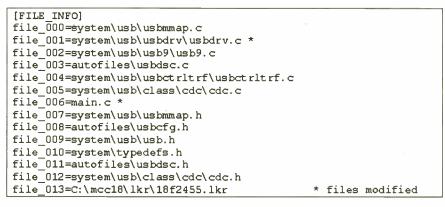



Fig.2. Component and track layout details for the PIC-Based USB Interface p.c.b.

Fig.3. Files for the communication device class firmware

download from Microchip (see later) and is free for the first 60 days. After that time the compiler reverts to an unoptimized version. For that reason, the PIC software for this project was compiled with all optimization turned off.


Part of this design's software uses the CDC framework provided by Microchip, from whom it can be downloaded free. Additional information on the CDC framework can be found in Ref.3. When the MCHPUSB code is loaded into the C18 compiler the project files are as shown in Fig.3.

To compile the source code for this USB device, first delete the **temperature.c, user.c, usbcfg.h** and **main.c** files from the display. Then replace the **main.c** and **usbcfg.h** files with the ones supplied for this USB interface. Listing 1 shows the modified files installed in the project. If you are using a bootloader you can use the linker file supplied with the project, otherwise you should use the standard **18F2455.lkr** file.

The basic information about the device is contained in the device descriptor **device_dsc**, and configuration descriptor **cfg01** contained in file **usbdsc.c**. For example, the device descriptor, shown in Listing 2, tells the host that this is a CDC type device, and that the packet size for endpoint EP0 is eight bytes.

The vendor ID and product IDs are defined here. A vendor ID of 0x04D8 identifies this as a Microchip device. Normally the vendor ID and product ID are used to identify the operating system driver to be loaded when the device is plugged into the USB port.

Listing 1 Files For USB Device

Listing 2 USB Device Descriptor

rom USB DEV DSC device dsc=	1
{	
<pre>sizeof(USB_DEV_DSC);</pre>	// Size of this descriptor in bytes
0x01,	// DEVICE descriptor type=1
0x0200,	// USB Spec Release Number in BCD format=2.00
0x02,	// Class Code, 2=CDC device
0x00,	// Subclass code
0x00,	// Protocol code
0x08,	// Max packet size for EPO =8, see usbcfg.h
0x04D8,	// Vendor ID
0x000Å,-	// Product ID: CDC RS-232 Emulation Demo
0x0000,	<pre>// Device release number in BCD format</pre>
0x01,	// Pointer to Manufacturer string descriptor
0x02, *	// Pointer to Product string'descriptor
0x00,	// Pointer to Device serial number string (none)
0x01	// Number of possible configurations
1.	

Descriptor Pointers

In addition, the device descriptor points to some string descriptors for the manufacturer and product. The **rom** in the **device_dsc** type statement means that this constant information will be stored in program memory, thus freeing up valuable RAM memory on the PIC18F2455 device.

The configuration descriptor, cfg01, defines the amount of power that the device can draw, 100mA. Two interfaces are defined in the configuration descriptor. The first interface (#0) has one endpoint (EP02_IN) which does 8-byte interrupt transfers. EP02_IN is polled by the host every 2ms. The second interface (#1) has two endpoints (EP03_OUT and EP03_IN) which do bulk data transfers. The data packet size is 64 bytes.

The string descriptors consist of a byte containing the size of the string descriptor, a byte containing the value "3" that identifies it as a string descriptor and a string containing the text in Unicode format. Microchip has cleverly performed the conversion to Unicode by declaring each character as a word type.

Variable Locations

The Microchip CDC framework software is general-purpose and automatically allocates the USB (400h-7FFh) region of memory. Because the framework does this automatically, it is not as clear where variables are located in memory, as is the case when using assembly language or allocating the variables manually.

The PIC18F2455 has rules as to how the memory must be allocated, which are defined in Ref.4. Table 1 shows the USB portion of the PIC18F2455 memory as allocated by the Microchip USB framework and the **main.c** program. The framework provides several functions which are used to communicate over the USB:

• mUSBUSARTIsTxTrfReady determines if the USB engine is ready to accept a new string to transmit via USB

• mUSBUSARTTxRam writes a string of known length from data memory to USB

• GetsUSBUSART reads a string from the USB

• mCDCGetRxLength reports the length of the last string read from USB

Microchip advises that these functions should not be used in a blocking manner such as:

while (!mUSBUSARTIsTxTrfReady()).

Since the CDC framework is written to poll the USB data, there must be nothing in the software that will cause a significant delay in the polling.

Interrupts

Although the USB portion of the program does not use any interrupts, it became necessary to use interrupts to handle the RS232 serial interface. Interrupts are triggered when a character is received or a character can be transmitted.

It may be useful to follow along with the author's source code available from *EPE*. Received characters are loaded into 128-byte circular buffers (serial_ input_buffer and serial_output_buffer) by the usart_handler interrupt routine. The routines serial_receive and serial_send are used to access the data in the buffers.

Indicators

A series of indicators has been implemented using the l.e.d.s. When the device is first powered up, all five l.e.d.s D1 to

Table 1 USB RAM Memory Allocation

RAM Address hex)	Value (how)	Variable Name	Description	Function	MEMORY
nex)	(hex)	Variable Name	Buffer Descriptor Status	Buffer Descriptor Table	TAMIAIE
		Sale Dell'S Sales	Register (See page 171-174	(BDT) for Endpoint 0 Out	
400	variable	ep0bo.Stat	of Reference 3)	(BDT) for Endpoint o Odt	8
400	variable	eponotat	# of Bytes to be transmitted	and the second second	
			(before transmission) or		
	S. Last	I that I have been produced in	bytes transmitted (after	a state of the second second second	
401	08	ep0bo.Cnt	transmission).		
402		ep0bo.ADRL	Buffer Address Low Byte		
402		ep0bo.ADRH	Buffer Address High Byte		
403	04	opolo Adriti	Buffer Descriptor Status	Buffer Descriptor Table	-
			Register (See page 171-174	(BDT) for Endpoint 0 In	
404	variable	ep0bi.Stat	of Reference 3)		
101	Tarrante		Buffer size in bytes (before	in a start of the second	
			receive) or # of bytes received		
405	08	ep0bi.Cnt	(after receive).	nd the second second second	
406		ep0bi.ADRL	Buffer Address Low Byte		
407		ep0bi.ADRH	Buffer Address High Byte		
08-413			unused for CDC application		1
			Buffer Descriptor Status	Buffer Descriptor Table	1
	, ver		Register (See page 171-174	(BDT) for Endpoint 2 In	1
414	variable	ep2bl.Stat	of Reference 3)		
			# of Bytes to be transmitted		
			(before transmission) or	化物理学者的基础的	
			bytes transmitted (after		USBRAM
415	08	ep2bl Cnt	transmission).	的制度和分析自己的社会。	
416		ep2biADRL	Buffer Address Low Byte	認知得知時法認可	
417		ep2bLADRH	Buffer Address High Byte		6
			Buffer Descriptor Status	Buffer Descriptor Table	
			Register (See page 171-174	(BDT) for Endpoint 3 Out	
418	variable	ep3bo.Stat	of Reference 3)		
			# of Bytes to be transmitted		
		the second s	(before transmission) or		
	1.11		bytes transmitted (after		
419	40	ep3bo.Cnt	transmission).		
41A	08	ep3bo.ADRL	Buffer Address Low Byte		
41B	05	ep3bo.ADRH	Buffer Address High Byte		
			Buffer Descriptor Status	Buffer Descriptor Table	
			Register (See page 171-174	(BDT) for Endpoint 3 In	1
410	variable	ep3bi.Stat	of Reference 3)		
			Buffer size in bytes (before		
			receive) or # of bytes received	1 - 1 - 1 - 1 - 1 - 1	
41D		ep3bi.Cnt	(after receive).		
41E	48	ep3bi.ADRL	Buffer Address Low Byte		
41F	05	ep3bl.ADRH	Buffer Address High Byte		
420-427		SetupPkt[8]	8 bytes	Endpoint 0 Out Buffer	
428-42F		CtrlTnData[8]	8 bytes	Endpoint 0 In Buffer	
500-507		cdr_nolice[8]	8 byles	Endpoint 2 In Butter	
508-547		cdc_data_nx[64]	64 bytes	Endpoint 3 Out Buffer	USERS
548-587		cdc_data_tx[64]	64 bytes	Endpoint 3 In Buffer	
700-77F		serial_input_buffer(128)	128 bytes		
780-7FF		serial_output_buffer(128)	128 bytes		USBRAM

D5 are flashed sequentially. This indicates that the device is programmed and that the clock is running. Next, the l.e.d.s are flashed as shown in Table 2 while the USB enumeration is done.

When the enumeration is successfully completed l.e.d.s D1 and D2 will flash alternately. During the first enumeration the operating system will ask for a device driver.

The user must point to the directory that contains the **mchpcdc.inf** file as shown in Fig.4. This file contains information that matches the product ID and vendor ID to the **usbser.sys** driver. The communication device class driver for Windows is called **usbser.sys** and is part of the Windows 2000/XP operating system.

The system will complain that the driver has not passed the Windows Logo testing, which is surprising since Microsoft wrote the driver, but continue the installation anyway. When the software installation is complete you will see Fig.5 on screen.

The flow of the main program is as follows. The **InitializeSystem** routine flashes the l.e.d.s to verify that the program is working, initialises the USB and initialises the USART to a transmission rate of 115,200 bits per second. The bit rate can be changed in the **IntializeUSART** routine. Next the serial interrupts are enabled by the EnableInterrupts routine. All of the USB transmissions are handled by the USBTasks routine which is part of the CDC framework provided by Microchip. The DataTransfer routine displays the USB status on the l.e.d.s by calling the BlinkUSBStatus routine.

The USB_to_USART_handler handles the processing of received USB data and its transmission out via the RS232 connection. The USART_to_USB_handler does the receipt of incoming RS232 data and the queuing of the data for USB transmission. The display_leds routine is called by these

World Radio History

last two routines to control the l.e.d.s based on the data received by the device.

Just to make it interesting, the receipt of certain characters toggle the l.e.d.s on and off. If a "0" is received, the logic showing the USB status in the l.e.d.s is turned off. Of course your imagination is the only limit to what can be done on the PIC once the USB data link is working.

There was some difficulty with getting the RS232 input to work. The first problem had to do with some variables, like **istart**, that were used in both the interrupt routine and the main routines. These variables needed to be declared as **volatile** to make sure both routines used the latest values.

A second problem had to do with the way the number of received bytes was calculated in the serial_rxbytes routine. This routine had to be modified to work with the C18 compiler. The C18 compiler was used to compile and link the C source into the MCHPUSB.hex file.

If you are programming your own PIC, make sure that your system works with the PIC18F2455 since the programming algorithm is different to that for many other PICs.

Hardware Testing

Before plugging the device into your computer's USB port, check its operation by

Table 2 LED Blink Codes

USB STATE	LED 1	LED2	LED 3	LED4	LED5
Detached State	off	off	off	off	off
Attached State	on	on	off	off	off
Powered State	on	off	off	off	off
Default State	off	on	off	off	off
Addressed State	blinking	off	off	off	off
Configured State	blinking	blinking	off	off	off
ASCII '0' received via USB or USART	LEDs toggled between Configured State and all off.				
ASCII '1' received via USB or USART	toggled	unchanged	unchanged	unchanged	unchanged
ASCII '2' received via USB or USART	unchanged	toggled	unchanged	unchanged	unchanged
ASCII '3' received via USB or USART	unchanged	unchanged	toggled	unchanged	unchanged
ASCII '4' received via USB or USART	unchanged	unchanged	unchanged	toggled	unchanged
ASCII '5' received via USB or USART	unchanged	unchanged	unchanged	unchanged	toggled

applying a 5V power source to connector TB2. The first thing that should happen is that the l.e.d.s should flash sequentially. This means that the device is powered and programmed. The device should draw less than 55mA. If it does not, stop and check the circuit.

Do not plug the device into your USB port until you are sure your wiring is correct or you may damage the port. Some, but not all USB ports, have overload protection, so do not rely on it. The next thing to do is to plug the device into the USB port and check that the device is properly enumerated (see earlier). This can be done using the **USBVIEW** program (see later). Fig.6 shows the output of the USBView program with the hardware and software of this article connected.

USBVIEW shows that the device has one configuration and a maximum control packet size of eight bytes. It operates at full speed and has three open pipes. The first

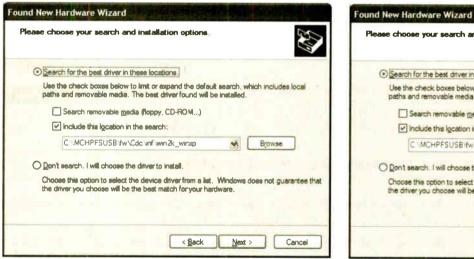


Fig.4. First device enumeration

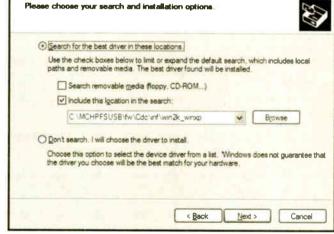


Fig.5. USBVIEW of installed device

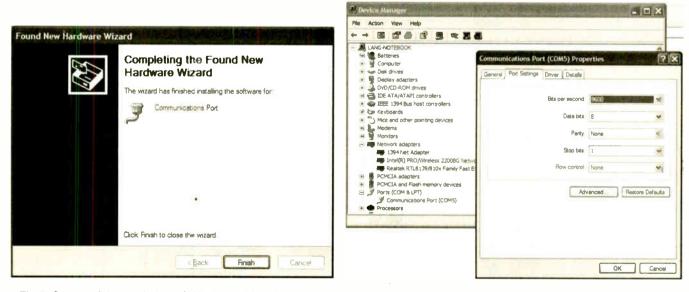


Fig.5. Successful completion of Windows driver installation

Fig.7. Device Manager view of installed device

pipe uses interrupt data transfers and is for device-to-host data transfers (82) every 2ms and has a maximum packet size of eight bytes.

The second pipe uses bulk data transfers and is for host-to-device data transfers (03) and has a maximum packet size of 64 bytes. The third pipe uses bulk data transfers and is for device-to-host data transfers (83) and has a maximum packet size of 64 bytes. We can also look at the USB device using the XP device manager as shown in Fig.7.

It will be seen that the USB device looks like a standard Windows COM port (COM5). To Windows application programs, like Hyperterminal or a program you might write in Visual Basic or C, the device will look like a standard COM port and can be accessed as one.

Hyperterminal Test

The final test involves using the Hyperterminal (or other) terminal emulation program. Plug the USB device into a Windows 2000/XP PC running Hyperterminal, connect a loopback plug to the RS232 socket on the USB as shown in Fig.8. With this configuration the transfer of data into and out of the device can be observed.

RS232 data routed out of the device is sent back to it via the loopback plug. The data typed into Hyperterminal will also appear on the Hyperterminal screen after being sent to the USB device, sent out the RS232 connector, read back in the RS232 connector and transmitted via USB back to the host.

Although there are no data flow controls on the USART data, blocks of 15,000 characters have been-sent and received successfully at 115,200 bits per second using this device.

One additional piece of information about using Windows programs like Hyperterminal with the USB device: if you unplug the USB device from the host computer with Hyperterminal running, when you plug the USB device back into the host, Hyperterminal will not be able to communicate with it.

The proper sequence, if you want to unplug the device and reconnect it, is to shutdown Hyperterminal before unplugging. This applies whether the USB is disconnected by unplugging or using its Reset switch (S1).

For the final test, remove the loopback plug. Now if you type a "0" in the Hyperterminal the flashing l.e.d.s should stop. Typing consecutive "1"s should turn on and off l.e.d. D1. Likewise "2, 3, 4, 5" should turn on and off l.e.d.s D2, D3, D4

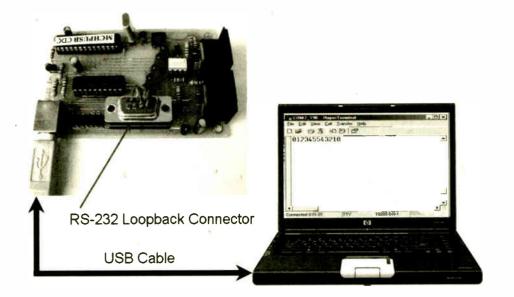


Fig.8. USB-RS232 Testing Configuration

and D5. Another "0" should set the l.e.d.s back to the USB status reporting mode.

Note that this logic is seen to work when the loopback is plugged in, but it will not be seen when the USB "0" takes the device out of USB status reporting mode – the "0" being echoed from the loopback plug puts it back into USB status reporting mode.

Conclusion

This is an interesting project which allows computers using the Windows 2000/XP operating system to communicate with a PIC microcontroller over the USB port. The device allows computers that do not have a COM serial port to use legacy devices.

This project also provides a practical introduction to USB, to CDC devices, to one of the new USB flash PICs and to the C18 compiler. As well as showing how l.e.d.s can be controlled via USB, it also provides the basics of getting data into and out of a PIC using USB, becoming the foundation of more complicated USB PIC projects.

Resources

Sourcecode is available for free download from our Downloads site, access via www.epemag.co.uk.

References

1. Universal Serial Bus Revision 2.0 Specification:

www.usb.org/developers/docs/

2. Universal Serial Bus Class Definitions for Communication Devices:

www.usb.org/developers/devclass_doc s#approved

3. Migrating Applications to USB from RS-232 UART with Minimal Impact on PC Software, Microchip Application Note AN956.

4.Microchip datasheet PIC18F2455/ 2550/4455/4550 for High Performance Enhanced Flash USB Microcontrollers with nanoWatt Technology:

wwl.microchip.com/downloads/en/De viceDoc/39632b.pdf

5. PIC18F2XX0/2XX5/4XX0/4XX5 Flash Microcontroller Programming Specification from www.microchip.com 6. Microchip MPLAB C18 Student

Edition Compiler: www.microchip.com/stellent/idcplg?I d c S e r v i c e = S S _ G E T _ P A G E & n odold = 1406 & d DocName = en010014 & pa

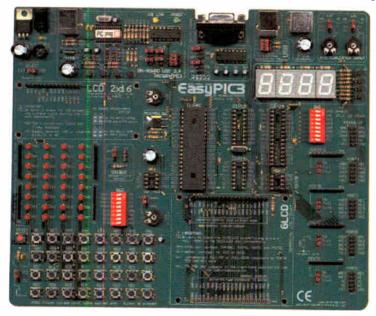
odeId=1406&dDocName=en010014&pa rt=SW006011 7 Communication Device Class (CDC)

7. Communication Device Class (CDC) Firmware:

www.microchip.com/stellent/idcplg?I d c S e r v i c e = S S _ G E T _ P A G E & n odeId=2124¶m=en022625

8. USBVIEW Computer Program:

www.ftdichip.com/Resources/Utilities. htm


Robert Lang is a professional electrical engineer interested in embedded microprocessors, mechanical musical instruments and MIDI. He is a freelance writer for electronic hobbyist, computer and synthesizer magazines. He can be reached at **rlang@netdoor.com** or by a Google search for **HARPSITRON**.

World Radio History

MICROCONTROLLER DEVELOPMENT TOOLS from Breadboarding Systems

Make PICmicro[®] development easy with the EasyPIC3 - only £99!

The new EasyPIC3 Development Board combines a versatile development/experiment board with a built-in USB programmer. With its wealth of on-board I/O devices and support for virtually all 8, 14, 18, 28 and 40-pin PICmicro[®] microcontrollers in the 10F, 12F, 16F and 18F families, we're certain you won't find a more versatile high quality board at such a low price. The EasyPIC3 Development Board is supplied with USB programming/power cable, programming software and useful example programs.

Also available are similar boards for the 8051, AVR and dsPIC, each at the same great price of £99 including UK delivery and VAT—please telephone or see our website for further details.

EasyPIC3 Development Board features:

- High quality development/experiment board with built-in USB 2.0 high-speed programmer.
- Programming software compatible with Windows operating systems including 2000 and XP.
- Comes with a PIC16F877A microcontroller but compatible with virtually all 8, 14, 18, 28 and 40pin PICmicro[®] devices in the 10F, 12F, 16F and 18F families.
- On-board I/O devices including switches, LEDs, seven-segment displays, potentiometers and RS-232 interface. Now also features USB and PS/2 keyboard interface connectors.
- Provision for easy fitting of optional DS18S20 temperature sensor, and LCD and GLCD displays.
- All I/O lines available for off-board expansion.
- Wide range of optional add-on boards available including ADC, DAC, EEPROM, Compact Flash, MMC/SD, Keypad, RTC, RS-485, CAN and IrDA. Additional add-ons available soon.
- Powered from your PC's USB port or optional mains adapter.
- Supplied with example programs written in assembly language, BASIC, C and Pascal.
- Supplied with Microchip Technology's MPLAB development software and demonstration versions of MikroElektronika's mikroBASIC, mikroC and mikroPascal compilers.

Learn about microcontrollers with our EasyPIC3 Starter Pack - just £149!

We've taken the EasyPIC3 Development Board and added a 16x2 character LCD display, 128x64 graphical LCD, DS18S20 temperature sensor, RS-232 serial communications cable and our own easy-to-follow microcontroller tutorial to form a complete and self-contained Starter Pack—everything you need to learn about and experiment with microcontrollers! With this pack you will quickly become proficient in microcontroller programming and interfacing. Please see our website for full list of covered topics.

Make programming easy too with mikroBASIC, mikroC and mikroPascal

Three incredibly easy-to-use yet powerful compilers for PICmicro[®] microcontrollers, each featuring a user-friendly code editor, built-in tools and routines and source-level debugger. Supplied libraries facilitate rapid development and include ADC. CAN, Compact Flash, EEPROM, Ethernet, Graphic LCD, I²C, LCD, 1-wire, PWM, RS-485, sound, SPI, USART, USB routines and many more. mikroBASIC and mikroPascal—£99 each, mikroC---£149.

Call 0845 226 9451 or order online at www.breadboarding.co.uk

All prices include UK delivery and VAT. Major credit and debit cards accepted. Secure online ordering.

Introducing the Virtual DIY Calculator

Estrulator Interface			
E Rayle	Sectors.	191.5	Text State
2			
			innin i
			011
DuCt Reat	Se No		San Low

Clive "Max" Maxfield & Alvin Brown

Learn how computers do maths without making your brain ache!

HEN you come to think about it, there are lots of "applicationtype" computer books along the lines of Learn Prof. Cuthbert Dribble's Visual Programming V6.0 In 21 Days (you often have only 21 days, because that's when version 7.0 of the software is going to come out). Sad to relate, however, there really aren't many tomes – outside of mega-complex University courses – that teach how computers actually work.

In order to address this sad state of affairs, the authors decided to pen their own humble offering. One point we considered is that it's a lot easier to learn how to do something if you actually have a specific project in mind.

For example, if someone simply hands you a plank of wood, a saw, a hammer and some nails, you might hang around for a while pondering just what to do. But if you are also presented with the plans for a simple bird table, then you can immediately leap into the fray with gusto and abandon.

Thus, we decided to base a book (details are given later) on the concept of a simple calculator called the DIY Calculator, The cunning part of all of this is that we created the DIY Calculator as a virtual machine that runs on your home computer. This article is a spin-off from the book and is designed to give a brief introduction as to how the DIY Calculator functions. In order to facilitate this, you can download a fullyfunctional copy of the DIY Calculator website from our at software www.DIYCalculator for free (you'll find instructions on how to download and install the calculator on the website).

Computers and Calculators

In its broadest sense, a computer is a device that can accept information from the outside world, process that information using logical and/or mathematical operations, make decisions based on the results of this processing, and – ultimately – return the processed information to the outside world in its new form.

The main elements forming a computer system are its central processing unit (CPU), its memory devices (ROM and RAM) that are used to store programs (sequences of instructions) and data, and its input/output (I/O) ports that are used to communicate with the outside world. The

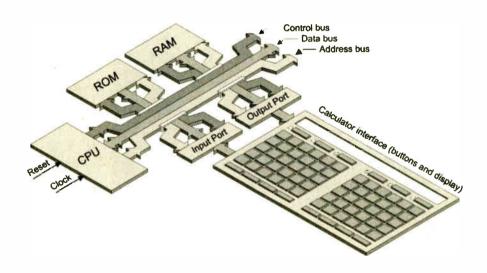


Fig.1. The main elements forming a computer-calculator. Reproduced from How Computers Do Math with the kind permission of the publisher

CPU is the "brain" of the computer, because this is where all of the numbercrunching and decision-making is performed. Read-only memory (ROM) has its contents hard-coded as part of its construction; by comparison, in the case of random access memory (RAM), you can load new values into it and read these values back out again later.

The term "bus" is used to refer to a group of signals that carry similar informa-

tion and perform a common function. A computer actually makes use of three buses called the control bus, address bus, and data bus. The CPU uses its address bus to "point" to other components in the system; it uses the control bus to indicate whether it wishes to "talk" (output/ write/transmit data) or "listen" (input/read/ receive data); and it uses the data bus to convey information back and forth between itself and the other components. Our virtual computer is equipped with a data bus that is eight bits wide and an address bus that is 16

Once we've conceived the idea of a general-purpose computer, the next step is to think of something to do with it. In fact

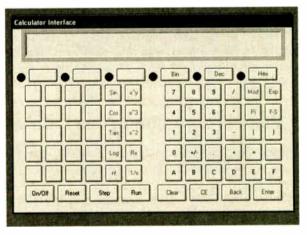


Fig.2. Screenshot of the DIY Calculator's interface

there are millions of tasks to which computers can be assigned, but the application we're interested in here is that of a simple calculator. So what does it take to coerce a computer to adopt the role of a calculator? Well, one thing we require is some form of user interface, which will allow us to present data to – and view results from – the computer (Fig.1).

The calculator's user interface primarily consists of buttons and some type of display. Each button has a unique binary code associated with it, and this code will be presented to the computer's input port whenever that button is pressed. Meanwhile, one of the computer's output ports can be used to drive the display portion of the interface.

A Simple Test Case

In order to provide a simple demonstration as to how the DIY Calculator works, download your free copy and install it as described on our website. Now use the **Start > Programs > DIY Calculator > DIY Calculator** command (or doubleclick the **DIY Calculator** icon on your desktop) to launch this little rapscallion, which should look something like the screenshot shown in Fig.2.

Click the **On/Off** button on the calculator interface to power it up and then click on some of the "0" through "9" buttons. Nothing happens, because we haven't loaded a program yet. In a moment we are going to create our own program, but just to provide a simple example, we've already provided a test case for you to play with as part of the download.

Use the Tools > Assembler command (or click the appropriate icon in the main window's tool bar) to launch an application called the assembler. Now use the assembler's File > Open command to open the file called hello.asm that you'll find in the C:\DIY Calculator\Work folder on your system.

This program is in a low-level computer programming language known as *assembly language*. Each computer has its own assembly language, but once you've learned one (especially one as simple as ours), this makes it much easier to learn others if you need to do so.

Now use the assembler's **File >** Assemble command. This takes our source program and assembles (translates) it into a new file called **hello.ram** that contains

Value	Decimal	Binary	Hexadecimal
zero	0	%0000	\$0
one	1	%0001	\$1
two	2	%0010	\$2
three	3	%0011	\$3
four	4	%0100	\$4
five	5	%0101	\$5
six	6	%0110	\$6
seven	7	%0111	\$7
eight	8	%1000	\$8
nine	9	%1001	\$9
ten	10	%1010	SA
eleven	11	%1011	SB
twelve	12	%1100	SC
thirteen	13	%1101	SD
fourteen	14	%1110	SE
fifteen	15	%1111	SF

Fig.3. Binary and hexadecimal

Listing 1: Program to read button codes and write to the main display

_					des and write to the main displa-
	CLRCODE: MAINDISP: KEYPAD:	.EQU .EQU .EQU	\$10 \$F031 \$F011	# # #	Code to clear main display Output port to main display Input port from keypad
		.ORG LDA STA	\$4000 CLRCODE [MAINDISP]	# # #	Set origin to address \$4000 Load ACC with clear code Store ACC to main display
	LOOP:	LDA CMPA JC STA JMP	[KEYPAD] \$0F [LOOP] [MAINDISP] [LOOP]	# # # #	Load ACC from the keypad Compare accumulator to \$0F Jump if C flag is set else copy ACC to display Jump to LOOP
		.END		#	End of the program

the raw instruction and data values that will be processed by our virtual CPU. The contents of this file are in a form called *machine code*, because this is the form that is actually executed by the computer (machine).

Use the assembler's File > Exit command to dismiss this application. Next, use the Memory > Load RAM command to load the hello.ram file that you'll find in the C:\DIY Calculator\Work folder into the DIY Calculator's memory. Finally, click the Run button to execute this program and see the message "Hello World" appear on the calculator's main display.

Binary and Hexadecimal

In a moment we're going to create our own program, but before we start, we need to understand that computers store and manipulate data using the binary number system, which comprises just two digits: 0 and 1. One wire (or register bit/memory element) can be used to represent two distinct binary values: 0 or 1; two wires can represent four binary values: 00, 01, 10, and 11; three wires can represent eight binary values: 000, 001, 010, 011, 100, 101, 110, and 111; and so on. As our virtual computer has an 8-bit data bus, this can be used to represent 256 different binary values numbered from 0 to 255 in decimal or %00000000 to %11111111 in binary (where the "%" symbol is used to indicate a binary value).

The problem is that humans tend to find it difficult to think in terms of long strings of 0s or 1s. Thus, when working with computers, we tend to prefer the hexadecimal number system, which comprises 16 digits: 0 through 9 and A through F as shown in Fig.3.

In this case, we use "\$" characters to indicate hexadecimal values. Each hexadecimal digit directly maps onto four binary digits (and vice versa of course). This explains why we noted earlier that our 16bit address bus could be used to point to $2^{16} = 65,536$ different memory locations, which are numbered from \$0000 to \$FFFF in hexadecimal.

The Accumulator (ACC) and Status Register (SR)

There are just a couple more things we need to know before we plunge headfirst into the fray. As illustrated in Fig.4, amongst other things, our CPU contains two 8-bit registers called the *accumulator* (ACC) and the *status register* (SR). (In this context, the term "register" refers to a group of memory elements, each of which can store a single binary digit.)

As its name implies, the accumulator is where the CPU gathers, or "accumulates", intermediate results. In the case of the status register, each of its bits is called a *status bit*, but they are also commonly referred to as *status flags* or *condition* codes, because they serve to signal (flag) that certain conditions have occurred. We will only concern ourselves with the carry (C) flag for the purposes of our example program.

Since we may sometimes wish to load the status register from (or store it to) the memory, it is usual to regard this register as being the same width as the data bus (eight bits in the case of our virtual system). However, our CPU employs only five status flags, which occupy the five least-significant bits of the status register. This means that the three most-significant bits of the register exist only in our imaginations, so their non-existent contents are, by definition, undefined.

The Program Itself

For the purposes of this article, we're going to create a simple program that first clears the calculator's main display, and then loops around waiting for us to click one or buttons on the keypad. If any of these buttons are part of the "0" through "9" or "A" through "F" set, we're going to display these value on the main display. In a moment we're going to enter our program as shown in Listing 1. But before we do that, let's walk through this code step-by-step.

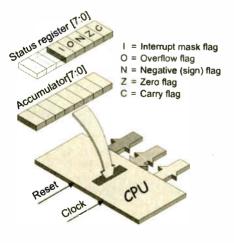


Fig.4. The accumulator (ACC) and status register (SR)

The first thing we do is to declare some constant labels and associated them with certain values using .EQU ("equate") commands. In the case of this program, the CLRCODE label is associated with a hexadecimal value of \$10, which is a special code that will clear the calculator's main display. By comparison, the MAINDISP label is associated with the hexadecimal value \$F031, which happens to be the address of the output port that drives the calculator's main display. Similarly, the KEYPAD label is associated with the hexadecimal value \$F011, which is the address of the input port that is connected to the calculator's keypad. (Note that everything to the right of a "#" character is treated as a comment and is therefore ignored by the assembler.)

Following the .EQU commands we see a .ORG ("origin") statement, which we use to specify \$4000 as being the start address in our program. (The reason we use \$4000 is that this is the first address in the DIY Calculator's virtual RAM. When we come to run the program, the DIY Calculator will automatically start at this address.)

Next, we use a LDA ("load accumulator") instruction to load our special clear code into the accumulator, and then we use a STA ("store accumulator") instruction to copy this value to the main display, thereby clearing it.

Now we find ourselves at the LOOP address label, which is where we are going to wait for the user to click on a key. There are a couple of things we need to understand here. First, our virtual calculator's front panel contains an 8-bit register. By default, this register is loaded with a dummy value of \$FF. When we click a button on the keypad, a code associated with that button is loaded into this register. When the CPU reads from the input port connected to the calculator's keypad, it actually reads the value out of this register. Furthermore, the act of performing this read automatically reloads the register with its default \$FF value. Last but not least, the hexadecimal codes associated with the "0" through "9" and "A" through "F" keys are \$00 through \$09 and \$0A through \$0F, respectively (we'd have been extremely silly to make this work any other way).

When we arrive at the LOOP label, we use a LDA ("load accumulator") instruction to load the accumulator from the memory location pointed to by the KEYPAD label. As we previously noted, this is the address of the input port connected to the calculator's keypad. Next, we use a CMPA ("compare accumulator") instruction to compare the contents of the accumulator with a value of \$0F.

If the value in the accumulator is larger, the carry (C) status flag will be loaded with 1; this means that the user clicked a button whose code is higher than \$0F, which we don't wish to happen. Thus, if the user did click a button other than "0" though "9" or "A" through "F", the JC ("jump if carry") instruction will return the program to the LOOP label to await another key. Otherwise, we use a STA ("store accumulator") instruction to copy this key code to the main display, and then we use a JMP ("unconditional jump") instruction to return us to the LOOP label to await another key. The final statement in the program is a .END that, not surprisingly, informs the assembler that its task here is completed.

Entering and Running the Program

Now we're really ready to rock and roll. If you haven't already done so, launch the DIY Calculator and invoke the assembler. (If you still have the assembler open from running the test case earlier, then use its **File > New** command to create a new source code file.)

Enter the program shown in Listing 1, use the assembler's File > Save As command to save this program with the name mykeytest.asm, and then use the assembler's File > Assemble command to translate your source program into a code equivalent called machine mykeytest.ram (if any errors are reported in the status bar at the bottom of the assembler window, debug them and reassemble the program). Finally, use the assembler's File > Exit command to dismiss this application.

Click the **On/Off** button on the calculator interface to power it up. (Alternatively, if the calculator is still powered up from running the test case earlier, then use the main window's **Memory > Purge RAM** command to delete the old program from the calculator's memory.) Next, use the **Memory > Load RAM** command to load the **mykeytest.ram** file that you just created into the DIY Calculator's memory.

Now, click the **Run** button to execute this program and observe that the main display is cleared. The program is now looping around waiting for you to press a key. Try clicking several of the "0" to "9" and "A" to "F" keys and observe the corresponding characters appearing on the main display. Also try clicking some of the other keys (such as "=" and "+") and observe that – due to the way in which we created our program – these are discarded and do not appear on the display.

But Wait, There's More!

We've really only scratched the surface of what is possible with the DIY Calculator. For example, click the **Reset** button on the calculator's front panel. Make sure the main window fills your screen, and then use the **Display > CPU Registers, Display > Memory Walker**, and **Display > I/O Ports** commands to invoke these utilities. As each tool appears, drag it to a clear area on your screen (if you have enough room on your screen, you might also try launching the **Display > Message System** utility).

Now click the **Step** button on the calculator's front panel a few times and watch what happens in the various displays for each click. Next, click one of the number buttons – say the "6" key – and then click the **Step** button a couple more times, again watching the various displays for each click.

Note that you can use the main window's **Help > Contents** command to learn more about what these diagnostic tools do. And if you want to experiment a little further, a slightly more testing example program that uses the DIY Calculator to implement a simple pseudo-random number generator is described on the website.

Further Projects

The book, *How Computers Do Math*, is organized in an interesting way. First there are a series of chapters introducing fundamental concepts such as *Subroutines* and *Recursion*. Each chapter is then backed up by a suite of interactive laboratories, each of which details what the reader will lean and how long it will take (typically 20 to 40 minutes each), followed by step-by-step instructions that walk the reader through that lab.

For educators, the CD ROM accompanying the book includes all of the labs as Adobe Acrobat files that can be printed out and used as handouts. Also, all of the illustrations in the book are provided as PowerPoint slides that can be used as the basis for presentations.

The chapters and labs build on each other until, at the end, we have a four function calculator that can input numbers in decimal, convert them into 16-bit binary integers, perform addition, subtraction, multiplication, and division on these binary values, and then present the results from these calculations in decimal on the main display. But this is only a starting point. On the DIY Calculator's website, it is intended to develop this much further by introducing the concept of floating-point values, describing our own simple floating-point format, and then implementing binary floating-point versions of our input, output, and math subroutines. (We are also going to do the same for Binary Coded Decimal (BCD) - check the website for more details.)

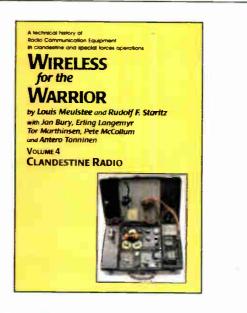
And this is still just the beginning, because (in conjunction with schools, colleges, universities, and individual readers), we plan on creating subroutines (with associated documentation) to implement many more math functions. These will be provided on the website for folks to download and experiment with and – hopefully – to say "I can do better than that" and send in their own versions.

As yet another example of something that may interest educators, as a final year project at the beginning of 2005, a team of students at the University of Newcastle upon Tyne, created VHDL models of the DIY calculator and then implemented a physical version of the little scamp using a field-programmable gate array (FPGA) development board. (Details of this project, including the VHDL source files and the project notes, are available on our website.)

So there you have it. Now there is a way to learn about how computers work – and how they do math – that's actually fun and doesn't make your brain ache or your eyes water. We'd love to hear what you think about all of this, so please feel free to email us at **info@DIYCalculator.com** to share your thoughts and ideas.

The book, *How Computers Do Math* – John Wiley & Sons, ISBN 0471732788 – is scheduled to roll off the printing presses September 2005. Throughout *How Computers Do Math*, we introduce the way in which computers work and walk readers through the process of creating a simple four-function calculator program (add, subtract, multiply and divide) from the ground up.

WIRELESS for the WARRIOR


Volume 4 CLANDESTINE RADIO

A technical history of Radio Communication Equipment in clandestine and special forces operations

Volume 4 'Clandestine Radio' – not only 'spy' equipment but sets used by Special Forces, Partisans, Resistance, 'Stay Behind' organisations, Diplomatic Service, Australian Coast Watchers, RDF and intercept receivers, bugs and radar beacons. The information has been compiled through the collaboration of a vast number of collectors and enthusiasts around the world. Volume 4 includes information on more than 230 sets and ancillaries. It contains 692 pages in hardback format, and features over 850 photographs, 360 line drawings and 440 data tables.

Volume 1 'Wireless Sets No.1 to 88' – covers the early radios, prior to the outbreak of World War II, and wartime sets which were never released in large quantities or were abandoned after trials.

Volume 2 'Standard Sets for World War II' – provides information in detail of mass-produced Wireless Sets such as No.18, 19, 22 and 38. Additionally included are a number of post-war sets on which development had been started during World War II.

Volume 3 'Reception Sets' – the receivers described span the era 1932 to the 1960s, and coverage includes not only reception sets specifically designed or adapted for the British Army, but also sets adopted from other arms (RN and RAF), special receivers, direction finding receivers, army broadcast reception sets, Canadian and Australian army sets, commercial receivers adopted by the army, and army welfare reception sets.

PRICES INCLUDING POSTAGE

	UK	Europe airmail Rest of World surface mail	Rest Of World airmail
Vol 1	£33.00	£34	£44
Vol 2	£43.50	£47*	£55.95*
Vol 3	£42.50	£47	£55.95
Vol 4	£45	£49*	£57.95*

*For delivery to Canada Vol.2 and Vol 4 can only be sent by surface post.

Cheques made payable to Direct Book Service. Direct Book Service, Wimborne Publishing Ltd, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND Tel: 0202 873872 Fax: 0202 874562 www.radiobygones.co.uk

Please send me: Wireless For The Warrior
(quantity) Vol 1;(quantity) Vol 2;(quantity) Vol 3;(quantity) Vol 4
Name
Post Code
Please charge my Visa/Mastercard/Amex/Diners Club/Maestro
Card security No: (last 3 digits on the signature strip)
Valid From Expiry Date Maestro Issue No WARRIOR

Everyday Practical Electronics, October 2005

Readers' Circuits

Ingenuity Unlimited

 WINA PICO PC BASED

 OSCILLOSCOPE WORTH £586

 OSCISS Dual Channel Storage

 OSCIlloscope

 OSCILLOSCOPE

Pico Technology PC-based oscilloscope could be year Every 12 months, Pico Technology will be awarding a PicoScope 3205 digital storage oscilloscope for the best IU submission. In addition a DrDAQ Data Logger/Scope worth £59 will be presented to the runner up.

Our regular round-up of readers' own circuits. We pay between £10 and £50 for all material published, depending on length and technical merit. We're

looking for novel applications and circuit designs, not simply mechanical, electrical or software ideas. Ideas *must be the reader's own work* and **must not have been published or submitted for publication else**where. The circuits shown have NOT been proven by us. *Ingenuity Unlimited* is open to ALL abilities, but items for consideration in this column should be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and include a full circuit diagram showing all component values. **Please draw all circuit** *schematics as clearly as possible.* Send your circuit ideas to: *Ingenuity Unlimited*, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. (We do not accept submissions for IU via email). Your ideas could earn you some cash and a prize!

Cybervox Light Interface – Enlightened Extermination

DALEK aficionados will know that when these diabolical creatures speak, a set of head mounted lights flash in sympathy with each spine-chilling word spoken. The circuit shown in Fig.1 is designed to be attached to the *EPE Cybervox* (July '05) and will flash filament lights whenever a word is spoken.

The voice signal is picked from the *Cybervox* board at connection point 19 (junction of C16 and the signal side of

VR5). The signal is passed via capacitor C1 to an amplifier formed around an LM351 op.amp. The voltage gain of this amplifier is adjustable from about $\times 10$ to $\times 1000$. The gain level set by VR1 forces the output of the amplifier to swing between the supply rails (referred to as clipping) – a situation which is normally to be avoided.

In this application, however, these large voltage swings are usefully rectified by

D1 and D2 and used to charge capacitor C4. As soon as the voltage across C4 reaches 0.6V, transistor TR1 conducts, turning on l.e.d. D3. Power transistor TR2 is used to switch more demanding loads such as filament lights and will only require a heatsink if more than two bulbs are wired in parallel.

Mike Boyden, Binfield, Bracknell

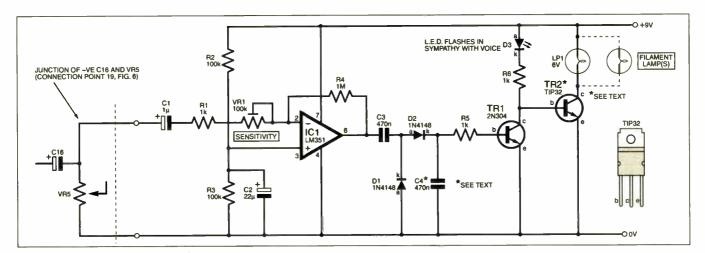


Fig.1. Circuit for the add-on Cybervox Light Interface for the EPE Cybervox Dalek voice emulator project - July '05 issue

Theremin Volume Control – Waving Soundly

N the *EPE Theremin* (Oct '04), Robert Penfold commented that his method for volume control gave a somewhat abrupt variation. Fig.2 shows an alternative, which still adheres to the concept of using hand capacitance to change the volume, but has the advantage of a nice gradual action whilst still allowing a tremolo effect to be obtained by fluttering the hand or fingers.

The circuit is simple, easy to set up and has a low component count. As it was designed to be a direct replacement for Robert's volume control, it only requires a single supply of 9V, and it could well be useful in other applications.

The design is based on an ICM7556 dual timer, with one half functioning as an astable oscillator and driving the other, which is connected as a monostable pulse generator. The hand capacitance sensor is an aluminium plate, 18cm x 10cm as a rough match to hand size. This is mounted in the vertical plane and with the 10cm side vertical, and is situated at one side of the instrument case behind a 6mm thick sheet of MDF, which gives a convenient lower limit for hand proximity.

The plate is connected directly to the 7556, no isolating capacitor being needed. No specific timing capacitor is used either, and the inherent stray circuit capacitance gave a suitable frequency of about 25kHz with the $1.2M\Omega$ timing resistor, R1. This arrangement maximises the hand capacitance effect, for greatest sensitivity.

In use, the monostable is adjusted by preset VR1 to have a period slightly shorter than that of the oscillator when a hand is not near the sensor plate, whereupon the output voltage is as shown in Fig.3a, changing to that in Fig.3b and then Fig.3c as the oscillator period progressively lengthens when a hand nears the plate. This waveform is then inverted by a CA3140 op.amp, whereupon the timeaveraged output voltage is low for the Fig.2a waveform and increases as a hand nears the sensor. Output averaging is performed by the R6, C4 filter, thus providing the steady voltage needed to supply control current to pin 5 of the original CA3080 gain-control amplifier (IC4).

The CA3140 was chosen not for its high

input impedance but for its good slewrate characteristic and because its output bottoms at only a few millivolts above the negative rail, which is necessary to enable the CA3080 gain to be reduced to zero for total sound cut-off.

For optimum operation, it is important that VR1 is adjusted until zero sound is only just achieved and it is convenient therefore to have it as a front panel control. The Theremin note then becomes audible when a hand approaches within some 12cm to 15cm from the sensor plate.

If VR1 is turned much below the setting for zero sound output then the

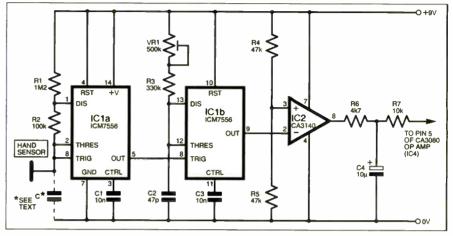


Fig.2. Theremin Volume Control circuit diagram

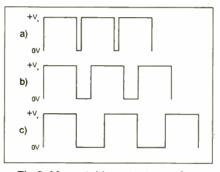


Fig.3. Monostable output waveform

monostable period will exceed that of the astable oscillator. This means that it will only trigger on alternate cycles of the oscillator, resulting in an output waveform having about a 50:50 mark-space ratio and hence giving a considerable sound output in the absence of a hand near the sensor.

This is a useful characteristic, simplifying any setting-up work on the Theremin tone production circuitry and also obviating the need for l.e.d. indication of control circuit functioning.

Tony Read, Rugby

Voltage Splitter – *Single Bias*

THE commonly used method to split a single supply is to use an op.amp and two resistors, as shown in Fig.4. Using an LM386 audio i.c. instead of the op.amp, the resistors are not required, see Fig.5. This saves on board space. Of 20 LM386s tried, 15 of them split the voltage to within 5%. The worst was 8.4%. This was sufficient for my application and would probably be so for most applications.

If more accurate splitting is required this

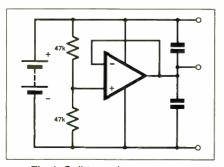


Fig.4. Splitter using an op.amp

can be done by connecting one or the other input to the negative rail via a $47k\Omega$ pot (Fig.6). With most examples the split could be set precisely. With a 12V supply and loading only the one side with a 200 Ω resistor (30mA) caused less than 0.5% change in the split (regulation). This is better performance than the op.amp solution can provide.

Op.amps are normally limited to 20mA

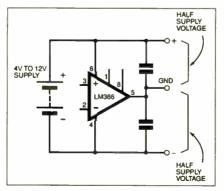


Fig.5. Splitter using an LM386

of imbalance current. It is quite possible that other more robust audio amp i.c.s, such as the TDA2003, can be used if a more rigid split and a higher imbalance current is required. The LM386N-4 will handle 18V. The LM386N-1 has a quiescent current of 8mA at 12V. This should not be too onerous even for a battery application.

Neville Frewin, Fontainebleu, South Africa

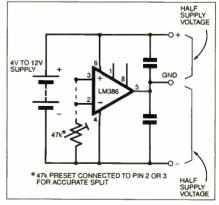


Fig.6. An LM386 splitter with trimmer

Everyday Practical Electronics, October 2005

Pulsed Motor Speed Controller – Over and Out

THE circuit diagram shown in Fig. 7 was built to keep the speed of a motor constant with varying load conditions. It works by driving the motor with a train of 12V pulses, and varying the mark/space ratio of these pulses to control its speed. This method is reckoned to be more efficient than using a linear regulator because the series pass transistor dissipates much less power.

The speed of the motor is determined by measuring the voltage developed across it when no power pulse is being applied (this is effectively using the motor as a generator) and comparing its output voltage to a reference.

The 555 timer, IC1, is configured in its astable mode with capacitor C3 and resistor R8 determining the "output low" pulse width. This is of constant duration (about 7ms) and drives transistor TR1, via resistor R2, to feed a 12V power pulse to the motor M1.

The "output high" duration ("the dead time") is determined by the value of the timing capacitor charge current. This charge current is itself determined by the voltage developed across the motor when no power is being applied to it. This motor voltage is compared by comparator TR2 to a 4.7V reference voltage provided by Zener diode D2.

So, if the voltage across the motor is less than about 3.5V transistor TR2 conducts and turns on TR3, its collector current charging timing capacitor C3. Resistor R7 limits the maximum collector current of TR3 and so limits the minimum "dead time" of the power pulses.

Switch-On

At switch-on, the voltage developed across the motor between the power pulses is zero so transistors TR2 and TR3 both conduct heavily and timing capacitor C3's charge time is very short. As the motor accelerates to its target speed and its "generated" voltage increases, TR2 and TR3 both reduce their conduction, increasing the time it takes to charge C3 and so the "dead time" increases.

Eventually, an equilibrium is reached when the voltage generated across the motor is about the same as the reference voltage minus the voltages dropped across TR2's emitter-base junction and diode D1 junction. Diode D1 protects TR2's emitter-base junction from reverse bias during the 12V power pulse to the motor. During the power pulse both TR2 and TR3 are switched off so they have no effect on C3's discharge current.

Capacitor C1 reduces the voltage "spike" developed across the motor produced by its internal inductance when the 12V pulse ends, and is most important to protect transistor TR1. Capacitor C2 provides a "soft start" for the motor by making the reference voltage build up slowly on switch-on; it can be omitted or increased in value as desired.

If the circuit is unstable, for instance, the motor is continually starting and stopping, increase the value of resistor R4 to reduce the system gain until stability is achieved.

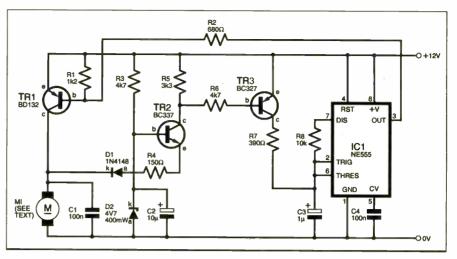
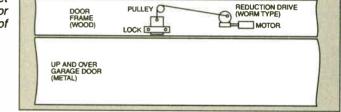
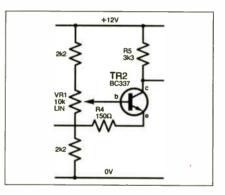



Fig.7. Circuit diagram for the Pulsed Motor Speed Controller

Fig.8. General set up of garage door lock from inside of garage


Up-and-Over Lock Out

I use the circuit with a motor and worm-type reduction drive salvaged from an old VCR (the cassette loading mechanism) to form part of a lock mechanism for an up-and-over garage door, see Fig.8. All I had to do was add a small bolt through the output gear so that I could fasten the drive cord to it.

The drive cord is "shock leader" for fishing lines -I do not know what that is used for but I know that it has a 451b breaking strain rating, and its waterproof (the garage gets damp in the winter).

The lock plates are both 1/4in. aluminium and so rustproof and strong enough for the job. As can be seen from Fig.8, the motor lifts and lowers the lock plate thereby opening and closing the door lock.

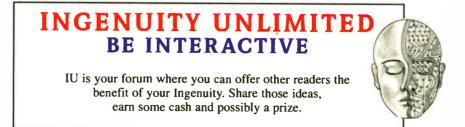

In practice, it works fine from no load to stall, though it is a bit juddery at low load. If the judder is too great, reduce the value of capacitor C3. The motor has a stall current of about 600mA, and it should be ensured that the series pass transistor TR1 is still saturated under such conditions – reduce the value of resistor R2 if necessary to ensure that this is the case.

Fig.9. Alternative base bias arrangement for transistor TR2 to give variable speed

The circuit should work fine as a variable speed controller by varying the reference voltage on TR2's base (b), though judder may be encountered at low speeds and with low loads unless the timing capacitor C3 is reduced in value. Suitable circuit alterations for this are shown in Fig.9. It must be stressed that this circuit modification is untested.

Peter A. Tomlinson, Hull, East Yorkshire.

atlas

Peak Electronic Design Ltd Atlas House, Kiln Lane Harpur Industrial Estate Buxton, SK17 9JL, UK Tel. 01298 70012

the Atlas DCA55

- Automatically analyse most 2 and 3 leaded semiconductors.
- Automatically identify all leads, just connect any way round!
- Measures lots of parameters too such as gain, V_{BE}, V_{GS}, etc...

LCR40 £69.00

DCA55 £49.00

Passive components, semiconductors, power devices, network cabling Choose your perfect analyser

SCR100 299,00

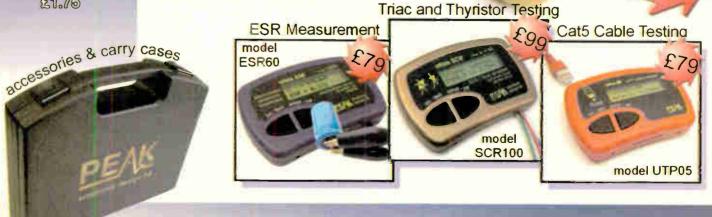
CR40

"Star Pack" LCR and DCA in carry case £118.00

Carry cases £15.00

SMD Tweezer **Probes for LCR** 219.00

Spare Battery 21.75


New Low Prices limited time only

the Atlas LCR40

component analysat

scroll - off

- Automatically identify Inductors, Capacitors and Resistors.
- Inductors from 1µH to 10H.
- Capacitors from 1pF to 10,000µF.
- **Resistors from 1** Ω to 2M Ω
- 1% Basic accuracy.
 - Automatic frequency selection.

DC.A55

www.peakelec.co.uk all prices include UK Delivery and VAT

World Radio History

Don't just test it ... Anals

Surfing The Internet

Net Work

Alan Winstanley

AST month's *Net Work* column highlighted AuthSMTP (see www.authsmtp.net), a third party mail service that promises to solve most outgoing email problems. This can be a perfect solution for users having domain mail relaying problems, or other issues such as a regular ISP's mail server being blacklisted due to spam campaigns.

In use, AuthSMTP's service is holding up extremely well and has been entirely trouble free for the past three months, offering superior performance to the writer's broadband service provider, although the writer's Eudora E-mail software was problematic initially. A 14-day trial of AuthSMTP can be ordered online.

They're Spying On Us

This month we revisit the thorny topic of dealing with spyware and we take a look at some of the latest and most popular anti-spyware programs. Spyware is said to affect 90% of Windows PCs and can be dropped onto a computer in a number of ways. It may be included in some trial software, or it could originate from certain web pages or other computer files or downloads. Spyware programs reside on a host computer such as a PC and may be used to transmit credit card numbers or login details to a third party, or may have marketing-related purposes instead. They may hijack your web browser home page as well.

Some of the worst examples of spyware involve elements of "social engineering" which play mind-games by raising uncertainties in the minds of users and tricking them into clicking through to another web site. For example, a pop-up might appear that warns you that your PC has an infection (which it has: it's the pop-up itself); clicking through might take you to a cheap utility software.

In a recent example, the author became increasingly irked to find a pop-up advert appearing every time he visited eBay's web site. By using the free spyware removal tool Ad.Aware (highlighted in May 2005 *Net Work*, see **www.lavasoft.de**), some spyware was detected, but every time it was deleted by Ad Aware, the popup advertisement re-appeared. Only by using a whole armory of anti spyware tools was the problem eventually cured.

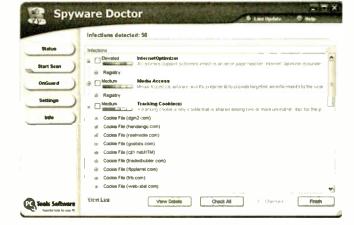
The pop-up was also deceptive, as it resembles an authentic dialogue box that encourages neophyte computer users to click a "Next" button. The only redeeming grace was the unobtrusive warning link along the bottom of the pop-up. A similar pop-up also appeared, this time with a logo for "Casale Media". This Internet marketing company claims to operate one of the world's largest online media marketing networks, with 140 million "unique users" per month.

Warreing WARNINGI You may have critical errors on your PC. The wized will help you reprove the performance of your PC by removing critical system errors which may case frequent application cashes , ratability or silve computer speeds. To continue by scenning your computer for critical errors, dick "Hest" balow.

Example of a spyware-generated pop-up

Not Us, Guv'nor

The eBay problem was eventually tracked down to "People On Page" spyware advertising. I asked Casale Media to comment on this form of persistent pop-up advertising. Casale assured me that they do not have the ability to target anyone's computer or put any software onto their machine.


They added that they do not support pop-up advertisements and they specify that any site hosting adverts must only place popunders, and the amount of advertisements displayed to individual users is restricted to one per day. Casala blamed the persistent appearance of pop-ups on the presence of third party adware, as the Casale network only placed pop-unders – which appear after a short duration, underneath the main target web site.

The source of the People on Page spyware could not be pinpointed, and it proved troublesome to remove (it appeared to defeat AdAware SE), demonstrating the wisdom of using a range of spyware removal tools to hopefully cure any problems.

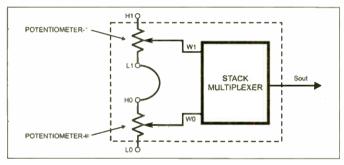
Large portal sites such as www.download.com, www.shareware.com, www.snapfiles.com and TUCOWS (The Ultimate Collection of Windows Software at www.tucows.com) are good places to start searching for utilities. Current anti-spyware contenders worth considering include: Paretologic's Xoftspy (www.xoftspy.co.uk, free download, \$39.95 one-time fee for the full version), the excellent Spyware Doctor (www.pctools.com £19.95) and the ubiquitous Spybot Search and Destroy (donationware) from www.safer-networking.org/en/download/.

Webroot offers the acclaimed Spysweeper for \$29.95 per year (free trial available from www.webroot.com). Other spyware tools to consider are Sunbelt Software's CounterSpy which has a 15 day trial and costs \$19.95 per year. See www.sunbelt-software.com/CounterSpy.cfm for their take on Microsoft's own Anti Spyware tools, which is available in beta from Microsoft via http://tinyurl.com/47cus.

Next month, I'll be looking at ways of handling web site passwords and logins, without having to resort to memory or some dog-eared notebook (that you lost anyway). If you have any comments, suggestions or feedback please email them to the writer at **alan@epemag.demon.co.uk**

Just one of many anti spyware programs

World Radio History


More on using a DS1267 dual digital potentiometer with a PIC

AST month we examined the basics of using the DS1267 dual digital potentiometer chip. We now look at some further aspects of its use.

Stacked Configuration

The potentiometers can be connected in series as in Fig.5. This stacked configuration allows the user to double the end-toend resistance and the number of steps from 256 to 512 (9-bit resolution).

The wiper output for the stacked pots is taken from the Sour pin, which is the multiplexed output of the wiper of pot 0 (W0) or pot 1 (W1), as governed by the stack select bit (bit 0). If bit 0 = 0, the output to Sour will be that of W0. If bit 0 = 1, the Sour output will be from W1.

Cascade Operation

Multiple DS 1267s can be daisy-chained as in Fig.6. As a data bit is entered into the shift register, a bit will appear at the Cour output. The stack select bit will always be the first out at the beginning of a transmission. The Cour pin is always active regardless of the state of RST. This allows the shift register to be read without changing its value.

The Cour output can be used to drive the DQ input of another DS1267. When connecting multiple devices together, the total

number of bits transmitted must always be 17 times the number of DS1267s in the daisy-chain.

An optional feedback resistor of between 2k and 10k can be placed between the Court erminal of the last device and the first DQ input. This allows the PIC to be read as well as written to, or to circulate data through the daisy-chain.

When reading data via the COUT pin and feedback resistor, the PIC must set its pin that controls the DQ line into a highimpedance (input) state. When RST is taken high, bit 17 is present on the final COUT pin, which is fed back to the first DQ input through the resistor. The first DQ pin's status can then be read by the PIC. By successive clocking of the CLK line, the

register contents can be read and stored into PIC registers allocated by the user for the purpose.

When the CLK input is then taken from low to high, bit 17 is loaded into the first position of the DS1267 register, and bit 16 becomes present on final Cour and first DQ pins. After 17 bits (of 17 times the number of DS1267s in the

daisy-chain), the data will have been shifted completely around and back to its original position. When RST is taken low to end data transfer, the same value as before the read occurred is loaded into the W0, W1 and stack select bit registers.

Cascading Demo

The demo code discussed last month simply illustrates the writing of data to a single DS1267. It can also be used with two or more DS1267s cascaded, as in Fig.7. The control code now requires pot values

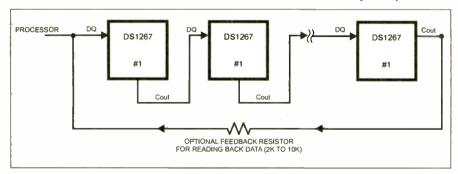


Fig.6. Daisy-chaining several DS1267 devices

Fig.7. Cascading demo circuit

appropriate to each pot in the chain. These codes are sent in the same way as with one DS1267, but as a serial stream of $17 \times$ the number of DS1267s (two in this case).

By deleting the **goto** ENDPOT command the demo sends data to both chips. Note though that as written the code sends the first data group to the second chip, and the second group to the first chip. The ramping rate for the second pot group is higher than for the first.

Practically Speaking

In reality, it will be unlikely that repetitive looped control of one or more DS1267s would be required, unless ramped waveforms at various frequencies and slope angles were required.

Instead, it is more likely the pot wiper values may only need to be changed periodically. For this the PIC would only set particular values into the POTVALx registers immediately prior to the sending routine being called (call SETPOTS). Then at the end of that routine, the goto SETPOTS command would be replaced by a single return command.

Applications

The diagrams in Fig.8a and Fig.8b show two ways in which the DS1267 can be used in a circuit. In Fig.8b, the required pot is connected between the +5V and -5V lines. The wiper is then connected to the non-inverting input of a unity-gain (buffering) op.amp. The op.amp output can then be used to control some other aspect of the circuit. only the gain, but also the offset bias of the stage. In that application, the setting of the pots is performed via a PC coupled to the controlling PIC.

It should be noted that any op.amp used as above should be defined as a rail-to-rail device.

Data Readback

A use for reading back data from a

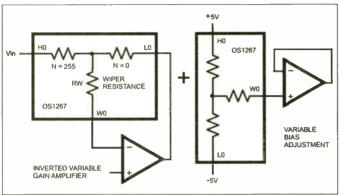
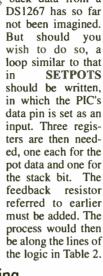



Fig.8. Using a DS1267 with an op.amp

Secondly, Fig.8a shows how the gain of an op.amp circuit can be amended by a DS1267 pot. The gain of the circuit is set by the relative resistance values at either side of the pot's wiper. A further implementation of this idea is shown in the full datasheet.

In a forthcoming *EPE* project, a DS1267 is used with a single op.amp to control not

Table 2. Data Readback Logic

set RST high read data (DQ) bit and store it as the stack bit send clock high then low read data bit store it into bit 0 of PIC's first pot register rotate that register left by one place send clock high then low repeat process eight times repeat the last eight reads for the second pot register set RST low use the readback values as required

Listing 2

DELAY: decfsz COUNTER0,F goto DELAY decfsz COUNTER1,F goto DELAY return

demo code is clocked at too fast a rate for a meter.

Such a loop could consist of a routine such as that in Listing 2. This could be called by the command **call DELAY** immediately prior to the final command **goto SETPOTS**. This delay code would slow the wiper code changing routine by a factor of $256 \times 256 = 65536$. Other more sophisticated delay routines could be used instead, for example by using the PIC's timer to set the delay length.

Meter Monitoring

If an oscilloscope is not available, the W0, W1 and Sour waveforms can be monitored via a multimeter. This requires that a delay loop is put into the code, so that the analogue voltages at the three pins can be followed on the meter. As it stands, the

Aoyue 909 All in one

The 909 repair system contains a high quality closed circuit 0 to 15V 1.5A power supply, 35W temp controlled 24V soldering iron (200-480C) and a 450W 100-500C Hot air gun for SMD work **£99.99**

Aoyue 936 Soldering Iron

This temperature controlled 35W soldering iron Has a range of between 200C-480C and comes complete with spare heating element and iron holder. Very simple to use and only £24.99

WWW.LICHFIELDELECTRONICS.CO.UK

Work station & 0-15V PSU The Aoyue 398 Power Source Platform is a combined 0-15V closed circuit power supply & work table with stepless PCB clamps.

Autoranging RS232 multimeter

The UT60 is an autoranging multimeter with RS232 interface enabling readings to be displayed on a PC. Features include fused 10A range, frequency, capacitance, data hold, selectable auto/manual ranging, continuity buzzer and full icon display. £64.99

£34.99

Open Mon-Sat: 9.00-5.00 Sun: 10.00-4.00

Lichfield Electronics, The Corn Exchange, Conduit Street, Lichfield. Staffordshire, WS13 6JU

Everyday Practical Electronics, October 2005

We can supply back issues of EPE by post, most issues from the past three years are available. An EPE index for the last five years is also available at www.epemag.co.uk or see order form below. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photocopy of any one article (or one part of a series) can be purchased for the same price. Issues from Nov. 98 are available on CD-ROM see next page - and issues from the last six months are also available to download from www.epemag.com. Please make sure all components are still available before commencing any project from a back-dated issue.

DID YOU MISS THESE?

JUNE '04 Photocopies only

PROJECTS • PIC Quickstep • Crafty Cooling

Work - The Internet Page.

JULY '04 Photocopies only

PROJECTS . Portable Mini Alarm . Bongo Box . Hard Drive Warbler • EPE PIC Magnetometry

FEATURES ● Making Front Panel Overlays ● Practically Speaking ● Teach-In 2004 – Part 9 ● Ingenuity Unlimited ● Circuit Surgery ● Techno Talk ● PIC-N-Mix ● Net Work – The Internet Page.

AUG '04

PROJECTS ● EPE Scorer ● Keyring L.E.D. Torch ● Simple F.M. Radio ● EPE PIC Magnetometry

Logger - 2. FEATURES • PIC To PS/2 Mouse and Keyboard

ECTRONICS

SEPT '04

PROJECTS • EPE Wart Zapper • Radio Control Failsafe • Rainbow Lighting Control • Alphamouse Game

FEATURES • Light Emitting Diodes – Part 1 • High Speed Binary-To-Decimal For PICs • Practically Speaking • Ingenuity Unlimited • Techno-Talk • Circuit Surgery • PIC-N'-Mix • Network – The Internet Page

Photocopies only OCT '04

PROJECTS • EPE Theremin • Smart Karts – Part 1 • Volts Checker • Moon and Tide Clock Calendar. FEATURES • Light Emitting Diodes – 2 • Circuit Surgery • Interface • Ingenuity Unlimited • Techno Talk • PIC-N'-Mix • Network – The Internet Page • POPOTO ROBOTS - Special Supplement

NOV '04

PROJECTS • Thunderstorm Monitor • M.W. PHOJECTS • Inunderstorm Monitor • M.W. Amplitude Modulator • Logic Probe • Smart Karts - 2. FEATURES • Light Emitting Diodes-3 • Floating Point Maths for PICs • Ingenuity Unlimited • PE 40th Anniversary • Circuit Surgery • Techno Talk • PIC-N'-Mix • Net Work – The Internet Page.

DEC '04 Photocopies only

PROJECTS • Super Vibration Switch • Versatile PIC Flasher • Wind Direction Indicator • Smart Karts - 3

FEATURES

Light Emitting Diodes-4

Ingenuity
Unlimited

Circuit Surgery
Interface

PIC N' Mix
Techno Talk

Net Work

The Internet Page INDEX Vol. 33

JAN '05

PROJECTS ● Speed Camera Watch ● Gate Alarm ● Light Detector ● Smart Karts - 4.

■ Light Detector ● Smart Aarts - 4. FEATURES ● Practially Speaking ● 32-Bit Signed Integer Maths for PICs ■ Ingenuity Unlimited ● Circuit Surgery ● Techo Talk ● PIC 'N' Mix ● Picoscope 3205 Review ● Net Work – The Internet Page

FEB '05

PROJECTS • PIC Electric MK2 Pt1 • Sneaky Sound Card Mixer

Smart Karts - 5.

FEATURES • Interface • Circuit Surgery • Ingenuity Unlimited • Techno Talk • PIC 'N' Mix • E-Blocks and Flowcode V2.0 Reviews
 Net Work - The Internet Page

MAR '05

PROJECTS • Cat Flap • Stereo Headphone Monitor • PIC Electric Mk2 Pt2 • Smart Karts -6 . Bingo Box.

FEATURES ● TK3 Simulator and PIC18F Upgrade ● Circuit Surgery ● Ingenuity Unlimited ● Techno Talk ● PIC 'N' Mix ● Practically Speaking ● Net Work - The Internet Page

APR '05

PROJECTS

Spontaflex Radio Receiver

Safety Interface

Fridge/Freezer Door Alarm Smart Karts - 7

FEATURES • Back To Logic Basics - 1 • Circuit Surgery • Ingenuity Unlimited • Interface • PIC18F Microcontroller Family Introduction • Techno Talk • Net Work – The Internet Page

MAY '05

PROJECTS • Crossword Solver • DAB Radio Aerial • 20W Amplifier Module • Smart Karts - 8 • Water Level Detector • Burglar Alarm FEATURES • Back To Logic Basics - 2 • Circuit Surgery • Ingenuity Unlimited • Passive Componen: Testing • Practically Speaking Techno Talk • Net Work - The Internet Page

JUNE '05

PROJECTS • PIC Ultrasonic Radar • Radio Control Model Switcher • Super-Ear Audio Telescope • Electronic Scarecrow • Digital Lock FEATURES • Catch the Wave (Tsunami) • Back To Basics – 3 – Digital TV Switchover + Programming PIC 18F Interrupts • Circuit Surgery • Interface • Ingenuity Unlimited • Net Work – The Internet Page

JULY '05

PROJECTS

Cybervox

LF and VLF Converter

Multi-Clap Switch

Doorchime

Electronic Dice FEATURES • Discovering PICs Reviewed • Back To Basics - 4 • Digital TV Switchover • Practically Speaking • Circuit Surgery • Interface • Net Work -The Internet Page

AUG '05

PROJECTS

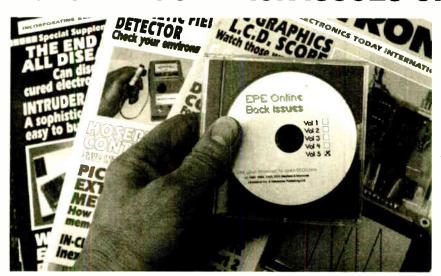
Motor Amplifier

Pain Monitor

FEATURES ● Back To Basics – 5 ● Circuit Surgery ● Interface ● Ingenuity Unlimited ● Techno Talk ● PIC 'N' Mix ● NetWork – The Internet Page

SEPT '05

PROJECTS • All Band Radio • Snooker and Darts Scoreboard • Multicore Cable Tester • Controlling Model Railway Signals • Daily Reminder • Whistle Switch


FEATURES • Back To Logic Basics – 6 • Circuit Surgery • Practically Speaking • Ingenuity Unlimited • Techno Talk • PIC •N PIC • Net Work The Internet Page

BACK	ISSUES	ONLY	£3.8	0 ea	ch inc.	. UK p	&р.
Overseas	prices £4.	50 each	surface	mail,	£5.50	each	airmail.

We can also supply issues from earlier years: 2000 (except Feb., Mar., July, Oct.), 2001 (except Feb., May, Aug., to Nov.), 2002 (except Feb., June, Aug. to Nov.), 2003 (except June), 2004 (except June, July, Oct. and Dec). Where we do not have an issue a photocopy of any one article or one part of a series can be provided at the same price.

ORDER FORM - BACK ISSUES - PHOTOCOPIES- INDEXES
Send back issues dated
Send photocopies of (article title and issue date)
Send copies of last five years indexes (£3.80 for five inc. p&p - Overseas £4.50 surface, £5.50 airmail)
Name
Address
I enclose cheque/P.O./bank draft to the value of £
Please charge my Visa/Mastercard/Amex/Diners Club/Switch £
Card No
Valid FromCard Expiry DateCard Security Code
SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.
E-mail: orders@epemag.wimborne.co.uk On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm Payments must be in £ sterling – cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.

STORE YOUR BACK ISSUES ON MINI CD-ROMS

A great way to buy EPE Back Issues - our mini CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. Note: no free gifts are included. All this for just £14.45 each including postage and packing.

VOL 1: BACK ISSUES - January 1999 to June 1999 Plus some bonus material from Nov and Dec 1998 VOL 2: BACK ISSUES – July 1999 to December 1999 VOL 3: BACK ISSUES - January 2000 to June 2000 VOL 4: BACK ISSUES - July 2000 to December 2000 VOL 5: BACK ISSUES - January 2001 to June 2001 VOL 6: BACK ISSUES - July 2001 to December 2001 VOL 7: BACK ISSUES - January 2002 to June 2002 VOL 8: BACK ISSUES - July 2002 to December 2002 VOL 9: BACK ISSUES - January 2003 to June 2003 VOL 10: BACK ISSUES – July 2003 to December 2003 VOL 11: BACK ISSUES - January 2004 to June 2004 VOL 12: BACK ISSUES - July 2004 to December 2004

NOTE: These mini CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader (available free from the Internet - www.adobe.com/acrobat)

WHAT IS INCLUDED

All volumes include the EPE Online editorial content of every listed issue, plus all the available PIC Project Codes for the PIC projects published in those issues.

Note: Some supplements etc. can be downloaded free from the Library on the EPE Online website at www.epemag.com. No advertisements are included in Volumes 1 and 2; from Volume 5 onwards the available relevant software for Interface articles is also included.

EXTRA ARTICLES – ON ALL VOLUMES

BASIC SOLDERING GUIDE - Alan Winstanley's internationally acclaimed fully illustrated guide. UNDERSTANDING PASSIVE COMPO-NENTS - Introduction to the basic principles of passive components. HOW TO USE INTELLIGENT L.C.Ds, by Julyan llett – An utterly practi-cal guide to interfacing and programming intelligent liquid crystal display modules. PhyzzyB COMPUTERS BONUS ARTICLE 1 – Signed and Unsigned Binary Numbers. By Clive "Max" Maxfield and Alvin Brown. PhyzzyB COMPUTERS BONUS ARTICLE 2 – Creating an Event Counter. By Clive "Max" Maxfield and Alvin Brown. INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph's book that explains computer graphics technology. FROM RUSSIA WITH LOVE, by Barry Fox - Russian rockets launching American Satellites. PC ENGINES, by Ernest Flint - The evolution of Intel's microprocessors. THE END TO ALL DISEASE, by Aubrey Scoon – The original work of Rife. COLLECTING AND RESTORING VINTAGE RADIOS, by Paul Stenning. THE LIFE & WORKS OF KONRAD ZUSE - a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

Note: Some of the EXTRA ARTICLES require WinZip to unzip them.

Everyday Practical Electronics, October 2005

Order on-line from www.epemag.wimborne.co.uk/ shopdoor.htm or www.epemag.com (USA \$ prices) or by phone, Fax, E-mail or Post

BACK ISSUES MINI CD-ROM ORDER FORM

ONLY

£14.45 each including VAT and p&p

NOW AVAILABLE

Please send me (quantity) BACK ISSUES CD-ROM VOL 1
Please send me (quantity) BACK ISSUES CD-ROM VOL 2
Please send me (quantity) BACK ISSUES CD-ROM VOL 3
Please send me (quantity) BACK ISSUES CD-ROM VOL 4
Please send me (quantity) BACK ISSUES CD-ROM VOL 5
Please send me (quantity) BACK ISSUES CD-ROM VOL 6
Please send me (quantity) BACK ISSUES CD-ROM VOL 7
Please send me (quantity) BACK ISSUES CD-ROM VOL 8
Please send me (quantity) BACK ISSUES CD-ROM VOL 9
Please send me (quantity) BACK ISSUES CD-ROM VOL 10
Please send me (quantity) BACK ISSUES CD-ROM VOL 11
Please send me (quantity) BACK ISSUES CD-ROM VOL 12
Price £14.45 each - includes postage to anywhere in the world.
Name
I I Address
l
Post Code
I enclose cheque/P.O./bank draft to the value of £
Please charge my Visa/Mastercard/Amex/Diners
Club/Maestro
۱ ۱۶
#= •••••••••••••••••••••••••••••••••••
Card No.
Card Security Code
Card Security Code (The last 3 digits on or just under the signature strip)
the signature strip)
the signature strip) Valid FromExpiry Date
the signature strip)
the signature strip) Valid FromExpiry Date
the signature strip) Valid FromExpiry Date Maestro Issue No SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd.,
the signature strip) Valid FromExpiry Date Maestro Issue No SEND TO: Everyday PractIcal Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
the signature strip) Valid FromExpiry Date Maestro Issue No SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.
the signature strip) Valid FromExpiry Date Maestro Issue No SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. E-mail: orders@epemag.wimborne.co.uk
the signature strip) Valid FromExpiry Date Maestro Issue No SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. E-mail: orders@epemag.wimborne.co.uk Payments must be by card or in £ Sterling – cheque or bank
the signature strip) Valid FromExpiry Date Maestro Issue No SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. E-mail: orders@epemag.wimborne.co.uk

Photic Phone

Thomas Scarborough

Using a single ultrabright l.e.d., this simple low-cost, high security, optical voice link achieved a range of four metres, and 15 metres with a single lens

HIS project slices up the human voice into forty-thousand binary segments a second, transmits it over a light-beam, then re-integrates it at the other side. That is, it applies pulse width modulation (p.w.m.) to the voice, to create a binary transmission. This is far more advantageous than similar analogue circuits, which typically achieve a range of no more than a few metres.

The circuit presented here has a range approximately five times greater than similar analogue circuits. Without the use of lenses, the prototype Photic Phone achieved a range of four metres. With a single lens at the Transmitter, it achieved a range of 15 metres. In theory, therefore, with the use of two lenses, it should achieve a range of fifty metres using a single cheap, ultrabright l.e.d.

The problem with similar analogue circuits is that these depend on a light beam of continuously variable intensity. What happens in this case is that, over distance, the subtler nuances of the light beam are lost – and with them the intelligibility of the voice.

Transmitting a voice in binary form has the advantage of always transmitting at full intensity. This means that even the weakest nuances of a voice will reach the Receiver as strongly as the rest.

Lighting The Way

Besides being good fun, communicating via a light-beam may have certain advantages over other methods of transmission. It requires no wires, it needs no radio license, it is very cheap to implement, and it is all but impossible for anyone to eavesdrop on a transmission. Not only this, but the Photic Phone may also be used with fibre optic cable or a laser (at a price)!

It has at least one further, less obvious use. This is to detect pulsed, reflected light. In this case the circuit would require a few small modifications, in particular the addition of an oscillator to the Transmitter circuit, and a diode charge pump to the Receiver. Such a circuit should have a potential range of a few metres with lenses, and would detect, for example, persons walking past a window or approaching a door.

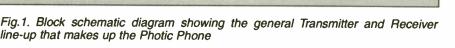
In Concept

MIC

While the Photic Phone has an unusually good "line-of-sight" range, it does have two limitations in particular which the constructor might wish to be aware of. First, it has a "tinny" sound which does not match the quality of the humble telephone. However, its sound quality is more than adequate for clear voice communication. Second, although it incorporates fairly effective filtering, there is likely to be an audible hum when it is used under a.c. lighting.

The seed for this project was sown with the original Wind-Up Torch (EPE, October 2000). In order to conserve power, the author pulsed the torch's light on the one hand, and gathered it with a lens on the other. It was then noted that a pulsed, focused ultrabright l.e.d. would easily light up objects 15 metres away.

> TWO-STAGE PREAMPLIFIER


RECEIVE

The next impetus came as the author was developing the *Bat Detector* (*EPE*, March 2004). While contemplating the circuit diagram, it seemed obvious that it should be possible to transmit a modulated voice over a light-beam. This proved to be true, and a simple experiment achieved a short range.

The author also wondered just how simple such a circuit might potentially be. At first a direct analogue-to-binary conversion of the voice at the voice's natural frequency – around 300Hz – was tried.

Although this had the advantage of great simplicity, the clarity of transmission (or lack of it) was such that one could barely, if at all, make out what was being said. Female voices were more easy to discern than male – perhaps due to their higher frequency.

TRANSMIT

BANDPASS FILTER

RECEIVER

TRANSMITTER

MODULATED

TR1

MOSFET

AUDIO AMPLIFIER

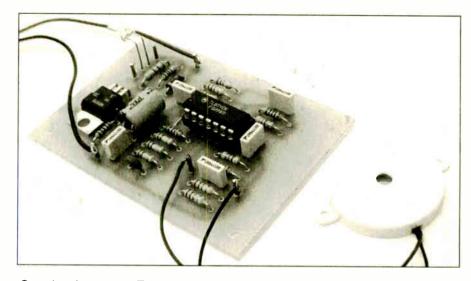
MIXER

IC1d

PREAMPLIFIER

Clarity further improved if compression was applied at the transmitter. However, this approach was obviously not destined for practical success.

The obvious way to go, it seemed. was p.w.m. (pulse width modulation). This is not the same as digital transmission, since the latter converts the voice into equally spaced 0s and 1s, usually in a mathematically encoded form. Nor is it the same as amplitude modulation (a.m.), which modulates the amplitude of a signal. Instead, p.w.m. chops up the voice into binary segments with varying mark-space ratios, which correlate directly to the voice.


Fast Response

A breakdown of the Photic Phone system into the Transmitter and Receiver sections is shown in the block diagram Fig.1.

The next key question was how fast an ultrabright l.e.d. would be able to switch. The author found that many ultrabright l.e.d.s (although not white l.e.d.s) could switch at 100kHz. Therefore, to be on the safe side, a modulating frequency a little above 40kHz was chosen for the circuit.

Again, it was considered whether compression would be required at the transmitter. However, in practice this proved not to be necessary, on condition that one knows approximately how loudly to speak into the microphone. As shown, the piezo microphone needs to be held about 10cm from the mouth when speaking normally.

As it turned out, one of the most important requirements of the circuit was filtering. Firstly, a low-pass filter (482Hz) was required to reduce acoustic feedback. An early prototype produced acoustic feedback at 15 metres distance. This low-pass filter also doubles as demodulation or

Completed prototype Transmitter circuit board. The passive piezoelectric sounder acts as the circuit's microphone

"decoding" for the modulated voice. Secondly, it was necessary to include a high-pass filter (175Hz) at the receiver end, to suppress the hum of a.c. lighting.

Note that since a power MOSFET (TR1) is used to switch the ultrabright l.e.d. D1, the light output of the Transmitter could easily be increased. A few ultrabright l.e.d.s could be used at once, or even the exceptionally bright Lumileds that are now available on the hobbyist market.

Transmitter Circuit

The full circuit diagram for the Transmitter stage of the Photic Phone is shown in Fig.2. Op.amp IC1a is configured as a relaxation oscillator, running at just over 40kHz. Notice that its output is taken from inverting input pin 2, instead of output pin 1. This is to obtain a rough approximation of a triangle wave for the modulating signal, which is presented to IC1d pin 13.

Next, a simple preamplifier, IC1b and IC1c, is employed to amplify the signal from a piezo microphone, MIC1. This is a cheap, disc type, piezo sounder, without an integral drive circuit.

The potential at IC1b non-inverting input pin 5 is lightly biased through resistors R1 and R2, and gain is set through resistors R7 and R10. The values of these two resistors may be increased for greater sensitivity, and vice versa. However, bear in mind that greater sensitivity means increased acoustic feedback, which is more problematic at shorter distances.

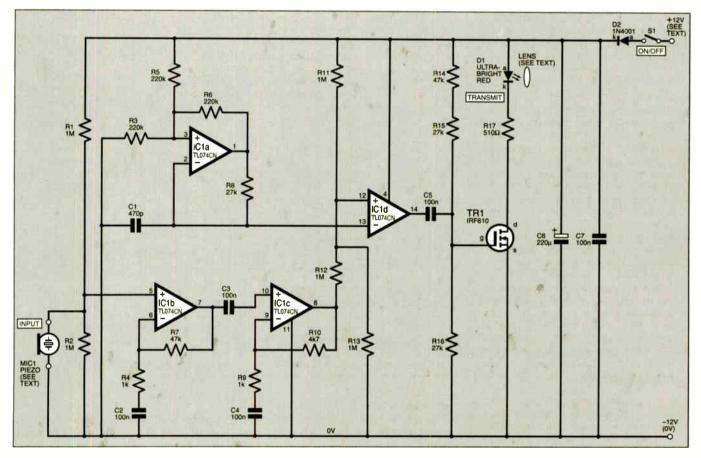
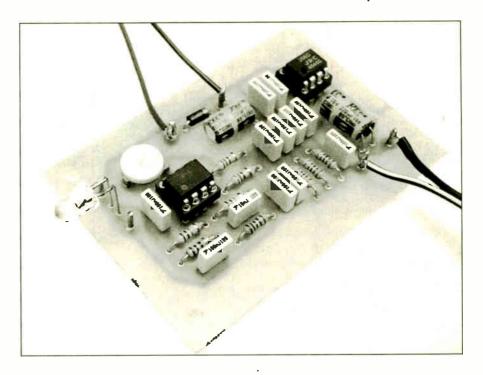


Fig.2. Complete circuit diagram, less power source, for the Photic Phone Transmitter

Resistors R11 to R13 are particularly important to the circuit, since these "contain" the signal at IC1d input pin 12 within one-third and two-thirds of the supply voltage. That is, the maximum amplitude of the preamplifier signal at IC1d input pin 12 matches the maximum amplitude of the modulating signal at IC1d input pin 13.

Lastly, the gate (g) of MOSFET TR1 is biased at its switching voltage through resistors R14 to R16, so that a modulated signal at IC1d output pin 14 causes the ultrabright "transmit" l.e.d. D1 to switch. If a different MOSFET is used, R14 to R16 may need to be adjusted so that the potential at TR1's gate (g) approximates the switching voltage. Bearing this in mind, most power MOSFETs may be used.


Receiver Circuit

The complete circuit diagram for the Receiver section is shown in Fig.3. This comprises a preamplifier, IC2, followed by a simple passive bandpass filter, and a 500mW r.m.s. audio amplifier i.c. IC3.

The "receive" photodiode D3 was taken from the author's spares box, but any sensitive photodiode or phototransistor may be used here, e.g. the Siemens SFH203. As a rough guide, the resistance of the author's photodiode fell below $10k\Omega$ when situated 10cm from the "transmit" l.e.d. D1.

Resistor R18 may be modified to suit D3, and ideally the potential at the D3/R18 junction would be about half supply voltage when receiving. A light dependent resistor (l.d.r.) also worked here, but with much reduced sensitivity.

Of course, an infra-red diode could be used for D1, with a matching photodiode or phototransistor for D3. In this case, the Photic Phone would communicate invisibly. However, considering the difficulty of working with an invisible beam, the author would not wish to attempt this himself!

Component layout on the finished Receiver board

Light Signals

The potential at the junction between photodiode D3 and resistor R18 fluctuates rapidly as a light signal is received. This is fed to the non-inverting input (pin 3) of preamplifier IC2 by means of coupling capacitor C8. The preamplifier's noninverting input (pin 2) is biased by means of resistors R19 and R20.

After this follow five passive filters, which make up a second-order low-pass filter (cut-off 482Hz), and a third-order high-pass filter (cut-off 173Hz), which form a bandpass filter when combined. This filter essentially permits the voice to pass, while filtering out both low frequency ripples caused by a.c. lighting, and the

high frequency modulating signal. While active filters could have been used in this circuit, this would not have contributed to a simpler circuit, nor would it strictly have been necessary.

1

The fact that the high-pass filter is third-order, and its cut-off frequency relatively high, reveals that ripple from a.c. lighting was problematic during development of the circuit. While this filter does not completely eliminate hum, it greatly reduces it, particularly if photodiode D3 is placed in a black tube (see Fig.6). One could insert another highpass filter if desired.

The author was unable to find the required 9.2 kilohm resistors for the filter,

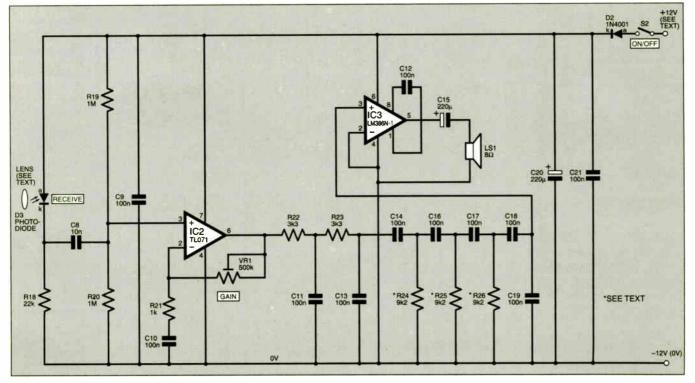


Fig.3. Full circuit diagram for the Receiver section of the Photic Phone. Note the lens is optional - see text

1

COMPONENTS

Approx. Cost Guidance Only

excl case, lens and batts

	See	Semiconductors	
13,		D1	ultrabright red I.e.d. (see text)
1M (7 off)			1N4001 50V 1A rect. diode (2 off)
220k (3 off)		· · · · ·	sensitive photodiode or phototran-
1k (3 off)			istor (e.g. SFH203 – see text)
47k (2 off)		TB1	IRF610 n-channel power MOSFET
27k (3 off)			TL074CN quad j.f.e.t. op.amp
4k7			TL071 j.f.e.t. op.amp
510Ω			LM386N-1 audio amplifier
22k			
3k3 (2 off)			
9k2 (10k and 100k in	parallel) (3 off)	MIC1	3V to 30V piezo sounder, without
on film	,		integral driver)
			s.p.s.t. toggle or slider switch (2 off)
			0.5W 8 ohm miniature loudspeaker
500k enclosed roun	d preset	B1, B2	12V sealed lead-acid battery or 12V
			regulated power supply - see
470n ceramic or pol	vestor		text (2 off)
thop containing of por	yester	Printed circuit b	oards available from the EPE PCB
			B1(Trans.) and 532(Rec.); 8-pin d.i.l.
100n ceramic or pol	vestor (16 off)	socket (2 off): 14-n	in d.i.l. socket; ABS plastic case, size
220 radial elect 16		and style to choice	(see text); lenses (optional – see text);
		screened micropho	one cable (optional); cable ties; battery
ron ocianic or poly	63(6)	clip (2 off): solder n	ins (12 off): solder etc
	220k (3 off) 1k (3 off) 47k (2 off) 27k (3 off) 4k7 510Ω 22k 3k3 (2 off) 9k2 (10k and 100k in on film 500k enclosed roun 470p ceramic or pol 100n ceramic or pol 220μ radial elect. 16	1M (7 off) TALK 220k (3 off) page 1k (3 off) 47k (2 off) 27k (3 off) 4k7 510Ω 22k 3k3 (2 off) 9k2 (10k and 100k in parallel) (3 off)	13,SeeD11M (7 off)TALKD2, D4220k (3 off)pageD31k (3 off)TR1 $47k$ (2 off)TR1 $27k$ (3 off)IC1 $4k7$ IC2 510Ω IC322kIC33k3 (2 off)IC19k2 (10k and 100k in parallel) (3 off)MIC1on filmS1, S2500k enclosed round presetB1, B2470p ceramic or polyesterPrinted circuit b $500k$ enclosed round presetSocket (2 off); 14-pand style to choiceand style to choice

however, an easy solution is to use 10 kilohm resistors and to wire $100k\Omega$ resistors in parallel, which equals about 9.1 kilohms.

The cut-off frequency of the filters is calculated with the formula $f=2\pi CR$. The two low-pass filters comprise R22/C11 and R23/C13, while the three high-pass filters comprise resistors R24 to R26 and capacitors C14, C16 and C17.

Audio Amplifier

The audio signal amplifier, IC3, uses the popular LM386N-1 i.c., which puts out a respectable 0.5W r.m.s. into 8 ohms. Capacitor C19 is used as a final low-pass filter, recommended in data sheets (usually its value lies around 10nF), and C15 is a coupling capacitor for loudspeaker LS1.

To simplify design, the usual Zobel network at the output of IC3 was omitted. Capacitor C12 is used to boost the amplifier's gain, and this may be increased up to 10μ F for increased gain, its positive terminal wired to pin 1 of IC3).

The current consumption of both Transmitter and Receiver is fairly high (about 15mA each), therefore two 12V sealed lead-acid batteries would be recommended, or two 12V regulated power supplies.

Construction

The printed circuit boards (p.c.b.s) for the Transmitter and Receiver both measure just 80nim (3.15in.) \times 55mm (2.17in.) Instructions are given here for soldering both boards simultaneously.

The component layouts, off-board wiring and underside copper foil master patterns for the Transmitter and Receiver p.c.b.s for the Photic Phone are given in Fig.4 and Fig.5. These boards are available as a pair from the *EPE PCB Service*, codes 531(Trans.) and 532(Rec.)

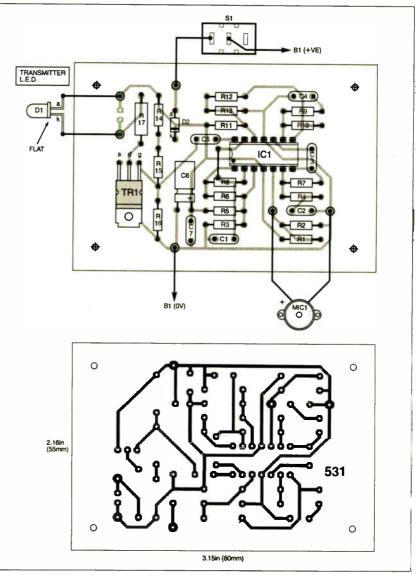
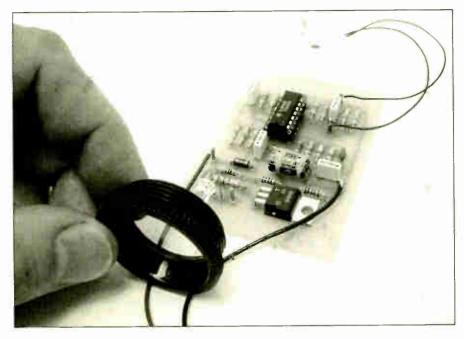
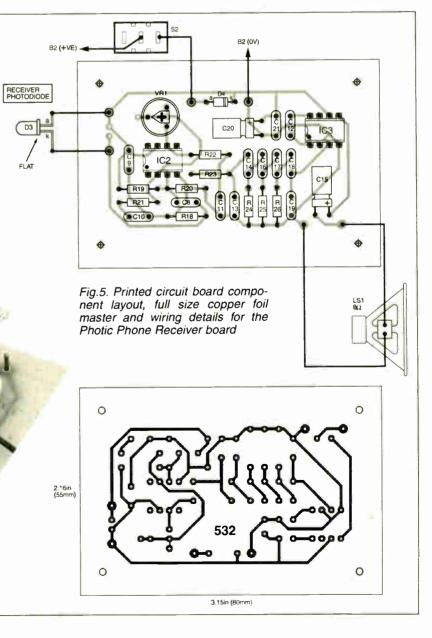


Fig.4. Transmitter printed circuit board component layout and wiring details

Since the two circuits amplify audio signals, and operate at a relatively high frequency, good solder joints need to be made throughout. All the components are fairly robust, and should not suffer from a good (though not excessive) application of solder. The integrated circuits should not be inserted in their dualin-line (d.i.l.) sockets until circuit board construction has been completed and double checked for any component placement errors or bad soldering connections, including "bridged" copper tracks.


Working on each board in turn, begin construction by soldering the twelve solder pins, the three d.i.l. sockets, the twenty-six resistors and twenty-one capacitors (note the polarity of C6, C15 and C20). Solder preset potentiometer VR1, diodes D1 to D4 (D1 and D3 may be situated off-board for convenience), and transistor TR1.

Follow this by attaching the piezo microphone MIC1, loudspeaker LS1 and the two battery clips, observing the correct polarity, to the circuit boards as shown in Fig.4 and Fig.5. Finally, insert IC1 to IC3 in the d.i.l. sockets, observing their correct orientation.


Final Assembly

Suitable ABS plastic cases may be used for the Transmitter and Receiver, with the Transmitter being mounted on a tripod if desired. The piezo sounder/microphone MIC1 may be mounted in a separate, small ABS case, and wired to the p.c.b. by means of screened microphone cable to make a "CB-style" handheld microphone.

Lenses may be used with the Transmitter and Receiver as shown in Fig.6. and each should increase the range of the Photic Phone a few times over. Either add a single lens at the Transmitter (see photograph), or lenses at both the Transmitter and Receiver. The lenses are positioned so that the semiconductor chips within D1 and D3 are located precisely at the focal points of the lenses. A method for determining the approximate focal length of a lens is shown in Fig.6.

Experimenting with a lens in front of the Transmitter's ultrabright light emitting diode (l.e.d.) to check its operating range. With no lens it reached four metres and with it achieved a range of around 15 metres. The completed Receiver board is shown below left.

Everyday Practical Electronics, October 2005

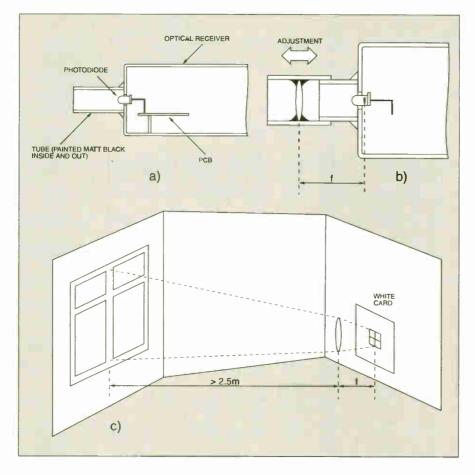
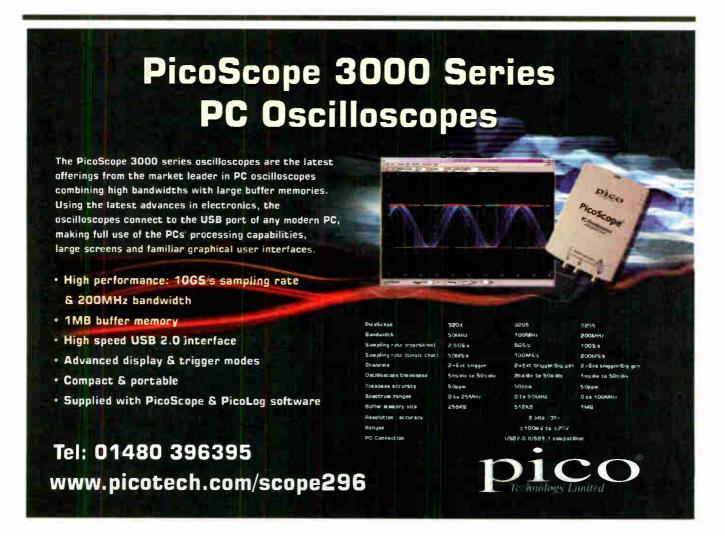


Fig.6. (a) Method of reducing mains lighting hum, (b) suggested adjustable lens mounting arrangement and (c) determining the approximate focal length of a lens

Setting Up and Use


Begin the setting up procedure by turning the Receiver's preset Gain control VR1 up (clockwise) about one-third. If the circuit is powered up under a.c. lighting, a soft hum should be heard. If the volume of the hum varies as you move your hand across photodiode D3, this is a likely indication that all is well with the Receiver.

Now place the Transmitter about one metre from the Receiver, with the ultrabright l.e.d. D1 pointing directly at photodiode D3. When you power up the Transmitter, D1 should immediately illuminate, and there may be a squeal in loudspeaker LS1 due to acoustic feedback.

If there is no acoustic feedback, tap microphone MIC1. The tap should be heard in the loudspeaker. In the case of acoustic feedback, back-off (turn anticlockwise) preset VR1 slightly until the Receiver is silenced, then tap microphone MIC1. Again, the tap should be heard in the loudspeaker.

From here on, it is now merely a matter of "pushing the boundaries" by increasing the range, experimenting with the gain of the Receiver with preset VR1 (note that higher gain does not always translate to better performance), and by experimenting with lenses. It should be found that, with a single lens at the Transmitter, the Photic Phone should operate over 10 metres' distance with ease, and likely a good deal further.

Note that for two-way, "line-of-sight" communication you will require two sets of Photic Phones.

USING A D/A CONVERTER IN A TRANSISTOR TESTER

N the previous Interface article we considered the basics of using a digital to analogue converter to provide analogue to digital conversion. In particular, the use of this method in an "improved" transistor tester was considered. Most transistor testers use a fixed base current which produces a collector current that varies widely depending on the gain of the device.

The method outlined previously uses a "suck it and see" approach that steps-up the base current until a certain collector current is achieved. In other words, it uses a fixed collector current and a variable base current. This ensures that the gain reading is always taken at a reasonably high collector current where the test device will operate quite efficiently. This avoids having low gain but serviceable transistors being erroneously indicated as duds.

Transistor Tester Circuit

The circuit diagram for the transistor tester appears in Fig.1. The digital to ana-logue converter is based on an AD557JN chip (IC1), and this has been covered in recent Interface articles. It is an 8-bit converter that has an output voltage range of 0 to 2.55 volts, which equates to a resolution of 10 millivolts. In this application a voltage swing of 2.55 volts is adequate and it is not necessary to use any amplification. Some signal conditioning is required though, since it is actually a variable output current that is needed and not a variable voltage.

Of course, using a series resistor gives a simple but often effective form of voltageto-current conversion, but in this case about 0.6 volts is needed before a significant current will start to flow. This is simply due to the fact that a silicon transistor has a

forward threshold potential of about 0.6 volts. Once that threshold has been reached, large increases in the base current produce little increase in the base voltage.

One way around this problem is to simply adjust the mathematics of the software to take the forward threshold voltage into account. A slight drawback of this method is that it reduces the effective resolution of the system, with output values from 0 to 60 being left unused. The alternative used here is to process the output voltage of IC1 using a simple non-inverting buffer amplifier based on IC2. However, the inclusion of D1 in the negative feedback network adds about 0.6 volts to the output potential from IC1, nullifying the forward threshold voltage of test components.

NPN Testing The base of a *npn* test device is driven from the output of IC2 via resistor R2. The collector load resistor for an npn test transistor is R3, and IC3 is used as the voltage comparator.

The Select In handshake input is used to monitor the output of IC3. R4 and R5 set the comparator's threshold voltage at half the supply potential, or 2.5 volts in other words. The base current is incremented until the collector voltage falls below this level, which occurs with a collector current of just over 20 milliamps.

This is high enough to ensure that any test device will operate efficiently, and realistic readings should even be obtained when testing power transistors. On the other hand, the test current is not so high that small signal transistors are in danger of being zapped.

The base current is a little over eight microamps per LSB, so multiplying the final value output to the converter by eight gives the base current in microamps. The current gain of a transistor is equal to its collector current divided by the base current, and with this design the collector current is 20 milliamps (20000 microamps).

Dividing 20000 by the final base current therefore gives the current gain of the test component. The mathematics can be simplified slightly, and dividing 2500 (2000/8 = 2500) by the final value sent to the converter gives the current gain of the test device.

PNP Testing

Some additional circuitry is needed in order to accommodate pnp test devices. The base current for a pnp test transistor is fed via R6 to a simple current mirror based on TR1 and TR2. The collector of TR2 drives the base of a pnp test device, and sinks a current that is approximately equal to the input current via R6. Resistor R7 acts as the collector load for pnp test components, and IC4 acts as the voltage comparator that detects the collector voltage going through the half-supply level. Its output is monitored by the printer port's Paper Out handshake line.

The connections to the two voltage comparators are such that their outputs go high when the 20 milliamp threshold current is exceeded. The software therefore has to increment the base current until a high logic level is detected from the relevant comparator. Rather than having npn/pnp switching, the interface has separate npn and pnp test sockets.

The circuit requires an accurate and stable +5V supply that can handle currents of up to 50 milliamps. The connections to the printer port are made using a piece of

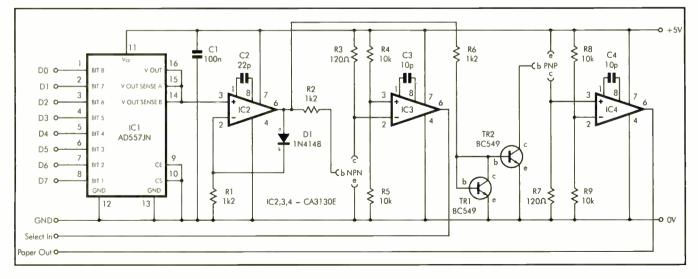


Fig.1. The circuit diagram for the Transistor Tester. Separate test sockets are used for npn and pnp test transistors.

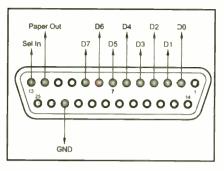


Fig.2. The 11 connections to the printer port are made via a 25-way D-type connector.

11-way ribbon cable that will probably have to be peeled from a 20-way cable. It is advisable to use a connecting cable that is no more than about two or three metres long. A 25-way male D connector is fitted at the PC end of the cable, and the correct method of connection is shown in Fig.2.

All four integrated circuits are MOS devices that require the usual anti-static handling precautions. Diode D1 can be any small signal silicon diode such as a 1N914 or 1N4148. For optimum accuracy with pnp test components the current gains of TR1 and TR2 should be reasonably well matched, so there is an advantage in using two components from the same gain group (e.g. BC549Cs).

Miniature 3-way DIN sockets are suitable for making the connections to most small transistors. It is necessary to make up a set of test leads to accommodate awkward transistors such as power types. The connections to power devices can be made by way of miniature crocodile clips or small spring-loaded test prods.

Software

The sample program for the transistor tester is an extension of the analogue to digital converter program described in the previous Interface article. The form has two labels (see Fig.3), one of which acts as the digital readout, while the other just pro-vides a "Transistor Tester" heading. There are two command buttons, and operating the appropriate one takes a reading from an npn (Command1) or pnp (Command2) test transistor. The subroutine for the npn button is in Listing 1.

The routine is a For Next loop that outputs values from 1 to a maximum of 255 to the data lines of the printer port. The count is started at 1 rather than 0 in order to avoid errors later in the routine due to a division by zero.

Each time the value in variable "loopcount" is incremented, the corresponding current gain is calculated and displayed on the digital readout. However, the value is incremented so fast that only the final gain figure is actually displayed.

When bit 4 of the handshake input port (&H379) goes high, loopcount is set at 255 and the loop is brought to a halt. This line is placed at the end of the loop so that the display is left showing a valid reading.

If the measured current gain is less than 10, an If Then instruction displays "OPEN" on the readout. This indicates that the test device is not exhibiting a significant amount of current gain and it has probably gone open circuit.

It is important that each test device is checked initially without the base terminal connected. This should result in "OPEN" being displayed, because only minute leakage currents will flow through a serviceable device with no base current applied. Obtaining any gain reading when no base current is applied indicates that the test component has an excessively high leakage current and is faulty.

A current gain reading of 2500 is intercepted by another If Then instruction that displays "CLOSED" on the digital readout. Real-world transistors have current gains of no more than about 1000, and a gain of 2500 indicates that the test component has gone closed circuit. A faulty device in this state will provide a "CLOSED" reading with or without the base terminal connected.

The routine for testing pnp transistors is essentially the same as the one for checking npn devices. The only difference is that a masking value or 32 rather than 16 is used when testing the state of the handshake input line, so that the Paper Out line at bit 5 of the handshake input register is monitored.

Listing 1

Private Sub Command1_Click()

For loopcount = 1 To 255 Out &H378, loopcount Currentgain = 2500 \ loopcount Label1.Caption = Currentgain If Currentgain = 9 Then Label1.Caption = "OPEN" If Currentgain = 2500 Then Label1.Caption = "CLOSED" If (Inp(&H379) And 16) = 16 Then loopcount = 255 Next loopcount

End Sub

Form1 TRANSISTOR TESTER 312 NPN Reading PNP Reading

Fig.3. The sample transistor tester program in action. Operating a button takes a reading for the appropriate type (npn or pnp) of transistor.

Mods

A common display is used for npn and pnp devices, but it would obviously be a simple matter to add another label component and use that for pnp readings. With separate displays it would be possible to use the two loops with a timer component so that readings were updated (say) 20 or 30 times per second. The system functions properly with npn and pnp devices connected simultaneously, so it would then effectively provide separate npn and pnp testers.

It is possible to alter the collector current at which measurements are made, and it is just a matter of altering the values of resistors R2, R3, R6, and R7. Resistors R2 and R6 must have the same value, which has to be ten times higher than the value used for R3 and R7. The correct value for R3 and R7 is equal to 2.5 divided by the required test current (in amps). The circuit is unlikely to work well using test currents of more than about 30 milliamps, or much less than about one milliamp.

This system of gain measurement gives better resolution at low gains than at the other end of the range. This was deemed acceptable as it was primarily designed for checking low gain devices that tend to be problematic when tested using simple transistor testers.

Making R2 and R6 20 times higher in value than R3 and R7 would accommodate gains down to 20, and would give better resolution at high gains. Of course, the mathematics in the software would have to be adjusted to suit this change. The current gain would be equal to 5000 divided by the final value fed to the digital-to-analogue converter.

EPE BINDERS

The EPE ring binder uses a special system to allow the issues to be easily removed and re-inserted without any damage. A nylon strip slips over each issue and this pass-es over four rings in the binder, thus holding the magazine in place. The binders are finished in hard-wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them

for use easily.

The price is £7.95 plus £3.50 post anc packing. If you order more than one binder add £1 postage for each binder after the *initial* £3.50 postage charge (overseas readers the postage is £6.00 each to everywhere except Australia and Papua New Guinea which costs £10.50 each).

Send your payment in £'s sterling cheque or PO (Overseas readers send £ sterling bank draft, or cheque drawn on a UK bank or pay by card), to Everyday Practical Electronics, Wimborne Publishing Ltd, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562

E-mail: editorial@epemag.wimborne.co.uk. Web site: http://www.epemag.co.uk Order on-line from www.epemag.co.uk/shopdoor.htm

We also accept card payments. Mastercard, Visa, Amex, Diners Club or Maestro. Send, fax or phone your card number, card expiry date and card security code (the last 3 digits on or just under the signature strip), plus Maestro Issue No. with your order.

SOUIRES MODEL & CRAFT TOOLS

100 London Road, Bognor Regis, West Sussex, PO21 1DD. Tel 01243 842424, Fax 01243 842525. email: sales@squirestools.com

The Squires 2006 Mail Order Catalogue has just been published. It features over 10,000 tools, materials and components all available by POST FREE mail order. If you would like to receive a copy of our catalogue, please contact us at the above address.

Our Shop is open 9.00 - 5.30 Monday to Saturday.

How would you like to pay £2.58 instead of £3.30 for your copy of EPE? Well you can - just take out a one year subscription and save over 71p an issue, or £8.60 over the year

You can even save over 92p an issue if you subscribe for two years - a total saving of £22.20

Overseas rates also represent exceptional value

You also:

- Avoid any cover price increase for the duration of your subscription
- Get your magazine delivered to your door each month
- Ensure your copy, even if the newsagents sell out

Order by phone or fax with a credit card or by post with a cheque or postal order, or buy on-line from www.epemag.co.uk (click on "Subscribe Now")

EPE SUBSCRIPTION PRICES

Subscriptions for delivery direct to any address in the UK: 6 months £16.50, 12 months £31, two years £57; Overseas: 6 months £19.50 standard air service or £28.50 express airmail, 12 months £37 standard air service or £55 express airmail, 24 months £69 standard air service or £105 express airmail. Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subs. Dept., Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at http://www.epemag.co.uk. Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Maestro or Visa. (For past issues see the Back Issues page.)

ONLINE SUBSCRIPTIONS

Online subscriptions, for downloading the magazine via the Internet, \$14.99US (approx. £8) for one year available from www.epemag.com.

USA/CANADA SUBSCRIPTIONS

To subscribe to EPE from the USA or Canada please telephone Express Mag toll free on 1877 363-1310 and have your credit card details ready. Or fax (514) 355 3332 or write to Express Mag, PO Box 2769, Plattsburgh, NY 12901-0239 or Express Mag, 8155 Larrey Street, Anjou, Quebec, H1J 2L5.

Email address: expsmag@expressmag.com.

Web site: www.expressmag.com.

USA price \$60(US) per annum, Canada price \$97(Can) per annum - 12 issues per year.

Everyday Practical Electronics, periodicals pending, ISSN 0262 3617 is published twelve times a year by Wimborne Publishing Ltd., USA agent USACAN at 1320 Route 9, Champlain, NY 12919. Subscription price in US \$60(US) per annum. Periodicals postage paid at Champlain NY and at additional mailing offices. POSTMASTER: Send USA and Canada address changes to Everyday Practical Electronics, c/o Express Mag., PO Box 2769, Plattsburgh, NY, USA 12901-0239.

SUBSCRIPTION ORDER	
 WISA 6 Months: UK £16.50, Overseas £19.50 (standard air service), £28.50 (express airmail) 1 Year: UK £31.00, Overseas £37.00 (standard air service) £55 (express airmail) 2 Years: UK £57.00, Overseas £69.00 (standard air service) £105 (express airmail) To: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND Tel: 01202 873872 Fax: 01202 874562 E-mail: subs@epemag.wimborne.co.uk 	
I enclose payment of £ (cheque/PO in £ sterling only), payable to Everyday Practical Electronics	
My card number is: Please print clearly, and check that you have the number correct	
Signature	
Card Security Code (The last 3 digits on or just under the signature strip)	
Card Ex. Date Maestro Issue No	
Name	
Address	
Post code Tel	

STARTING

NEXT MONTH

EA CHOIN

ENROL

NOW

Everyday Practical Electronics, October 2005

EPE IS PLEASED TO BE ABLE TO OFFER YOU THESE ELECTRONICS CD-ROM

Logic Probe testing

ELECTRONICS PROJECTS

Electronic Projects is split into two main sections; Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix's CADPACK schematic capture, circuit simulation and p.c.b. design software is included.

The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor; NE555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

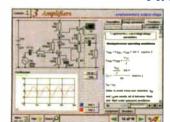
virtual laboratories, worked examples and pre-designed circuits allow students to

Sections include: Fundamentals: units & multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors,

Included in the Institutional Versions are multiple choice questions, exam style

questions, fault finding virtual laboratories and investigations/worksheets.

transformers. Semiconductors: diodes, transistors, op.amps, logic gates. Pass/ve


Circuits. Active Circuits. The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams.

learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols.

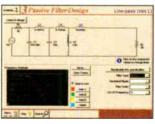
ELECTRONIC CIRCUITS & COMPONENTS V2.0 Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The

Circuit simulation screen

Complimentary output stage

DIGITAL ELECTRONICS V2.0

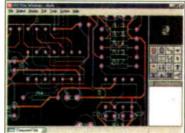
Virtual laboratory - Traffic Lights


ANALOGUE ELECTRONICS Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: **Fundamentals** – Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections). **Op.Amps** – 17 sections covering everything from Symbols and Signal Connections to

Differentiators. Amplifiers – Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections). Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections), Oscillators – 6 sections from Positive Feedback to Crystal Oscillators. Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable action and circuits, and bistables – including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers. A/D and D/A converters, traffic light controllers memories and microprocessors - architecture, bus systems and their arithmetic logic units. Sections on Boolean Logic and Venn diagrams, displays and chip types hav been expanded in Version 2 and new sections include shift registers, digital fault finding, programmable logic controllers, and microcontrollers and microprocessors.

The Institutional versions now also include several types of assessment for supervisors, including worksheets, multiple choice tests, fault finding exercises and examination questions


ANALOGUE FILTERS

Filter synthesis

Analogue Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev ladder filters. Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev

ELECTRONICS CAD PACK

PCB Layout

Electronics CADPACK allows users to design complex circuit schematics, to view circuit animations using a unique SPICE-based simulation tool, and to design printed circuit boards. CADPACK is made up of three separate software modules. (These are restricted versions of the full Labcenter software.) ISIS Lite which provides full schematic drawing features including full control of drawing appearance, automatic wire routing, and over 6,000 parts. **PROSPICE Lite** (integrated into ISIS Lite) which uses unique animation to show the operation of any circuit with mouse-operated switches, pots. etc. The animation is compiled using a full mixed mode SPICE simulator. ARES Lite PCB layout software allows professional quality PCBs to be designed and includes advanced features such as 16-layer boards, SMT components, and an autorouter operating on user generated Net Lists.

ROBOTICS & MECHATRONICS

Case study of the Milford Instruments Spider

Robotics and Mechatronics is designed to enable hobbyists/students with little previous experience of electronics to design and build electromechanical systems. The CD-ROM deals with all aspects of robotics from the control systems used, the transducers available, motors/actuators and the circuits to drive them. Case study material (including the NASA Mars Rover, the Milford Spider and the Furby) is used to show how practical robotic systems are designed. The result is a highly stimulating resource that will make learning, and building robotics and mechatronic systems easier. The Institutional versions have additional

- worksheets and multiple choice questions. Interactive Virtual Laboratories
- Little previous knowledge required
- Mathematics is kept to a minimum and all calculations are explained
- Clear circuit simulations

PRICES Prices for each of the CD-ROMs above are: (Order form on third page)

Hobbyist/Student£45 inc VAT Institutional 10 user (Network Licence)£249 plus VAT Site Licence.....£499 plus VAT

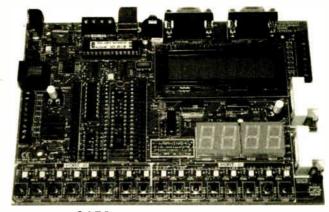
(UK and EU customers add VAT at 17.5% to "plus VAT" prices)

Everyday Practical Electronics, October 2005

PICmicro TUTORIALS AND PROGRAMMING

HARDWARE

VERSION 3 PICmicro MCU DEVELOPMENT BOARD


Suitable for use with the three software packages listed below.

This flexible development board allows students to learn both how to program PICmicro microcontrollers as well as program a range of 8, 18, 28 and 40-pin devices from the 12, 16 and 18 series PICmicro ranges. For experienced programmers all programming software is included in the PPP utility that comes with the development board. For those who want to learn, choose one or all of the packages below to use with the Development Board.

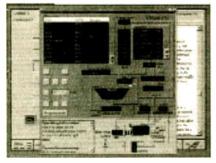
- Makes it easier to develop PICmicro projects
- Supports low cost Flash-programmable PICmicro devices
- Fully featured integrated displays 16 individual l.e.d.s,
- quad 7-segment display and alphanumeric l.c.d. display
- Supports PICmicro microcontrollers with A/D converters
- Fully protected expansion bus for project work
- USB programmable

NEW V3

• Can be powered by USB (no power supply required)

£158 including VAT and postage

supplied with USB cable and programming software

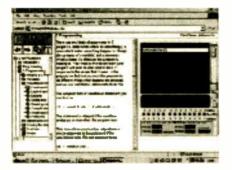

SOFTWARE

Suitable for use with the Development Board shown above.

ASSEMBLY FOR PICmicro V3 (Formerly PICtutor)

Assembly for PICmicro microcontrollers V3.0 (previously known as PICtutor) by John Becker contains a complete course in programming the PIC16F84 PICmicro microcontroller from Arizona Microchip. It starts with fundamental concepts and extends up to complex programs including watchdog timers, interrupts and sleep modes. The CD makes use of the latest simulation techniques which provide a superb tool for learning: the Virtual PICmicro microcontroller. This is a simulation tool that allows users to write and execute MPASM assembler code for the PIC16F84 microcontroller on-screen. Using this you can actually see what happens inside the PICmicro MCU as each instruction is executed which enhances understanding.

Comprehensive instruction through 45 tutorial sections ● Includes Vlab, a Virtual PICmicro microcontroller: a fully functioning simulator ● Tests, exercises and projects covering a wide range of PICmicro MCU applications ● Includes MPLAB assembler
 Visual representation of a PICmicro showing architecture and functions ● Expert system for code entry helps first time users ● Shows data flow and fetch execute cycle and has challenges (washing machine, lift, crossroads etc.) ● Imports MPASM files.


Virtual PICmicro

C' FOR PICmicro VERSION 2

The C for PICmicro microcontrollers CD-ROM is designed for students and professionals who need to learn how to program embedded microcontrollers in C. The CD contains a course as well as all the software tools needed to create Hex code for a wide range of PICmicro devices – including a full C compiler for a wide range of PICmicro devices.

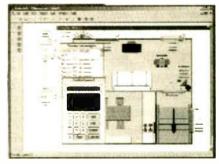
Although the course focuses on the use of the PICmicro microcontrollers, this CD-ROM will provide a good grounding in C programming for any microcontroller.

Complete course in C as well as C programming for PICmicro microcontrollers
 Highly interactive course ● Virtual C PICmicro improves understanding ● Includes a C compiler for a wide range of PICmicro devices ● Includes full Integrated Development Environment ● Includes MPLAB software ● Compatible with most PICmicro programmers ● Includes a compiler for all the PICmicro devices.

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP; CD-ROM drive; 64MB RAM; 10MB hard disk space.

FLOWCODE FOR PICmicro V2

Flowcode is a very high level language programming system for PICmicro microcontrollers based on flowcharts. Flowcode allows you to design and simulate complex robotics and control systems in a matter of minutes.


Flowcode is a powerful language that uses macros to facilitate the control of complex devices like 7-segment displays, motor controllers and l.c.d. displays. The use of macros allows you to control these electronic devices without getting bogged down in understanding the programming involved.

Flowcode produces MPASM code which is compatible with virtually all PICmicro programmers. When used in conjunction with the Version 2 development board this provides a seamless solution that allows you to program chips in minutes.

Requires no programming experience
 Allows complex PICmicro applications to

be designed quickly ● Uses international standard flow chart symbols (ISO5807) ● Full on-screen simulation allows debugging and speeds up the development process

● Facilitates learning via a full suite of demonstration tutorials ● Produces ASM code for a range of 18, 28 and 40-pin devices ● Professional versions include virtual systems (burglar alarm, buggy and maze, plus RS232, IrDa etc.).

Burglar Alarm Simulation

£45 inc VAT	•
£57 inc VAT	•
£99 plus VAT	•
£99 plus VAT	•
£300 plus VAT	•
£599 plus VAT	•

PRICES Prices for each of the CD-ROMs above are: (Order form on next page)

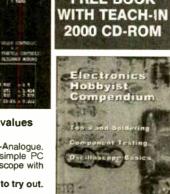
Hobbyist/Student Flowcode V2 Hobbyist/Student Institutional (Schools/HE/FE/Industry) Flowcode Professional Institutional/Professional 10 user (Network Licence) Site Licence (UK and EU customers add VAT at 17.5% to "plus VAT" prices)

Evervdav Practical Electronics, October 2005

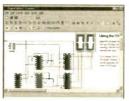
World Radio History

TEACH-IN 2000 – LEARN ELECTRONICS WITH EPE

EPE's own Teach-In CD-ROM, contains the full 12-part Teach-In series by John Becker in PDF form plus the Teach-In interactive software (Win 95, 98, ME and above) covering all aspects of the series. We have also added Alan Winstanley's highly acclaimed *Basic Soldering Guide* which is fully illustrated and which also which is fully illustrated and which also includes *Desoldering*. The *Teach-In* series covers: Colour Codes and Resistors, Capacitors, Potentiometers, Sensor Resistors, Ohm's Law, Diodes and L.E.D.s, Waveforms, Frequency and Time, Logic Gates, Binary and Hex Logic, On amos Comparators Mivers Audio


1 2224 FREE BOOK

Op.amps, Comparators, Mixers, Audio and Sensor Amplifiers, Transistors, Transformers and Rectifiers, Voltage Regulation, Integration, Differentiation, 7-segment Displays, L.C.D.s, Digital-to-Analogue, Each part has an associated practical section and the series includes a simple PC interface (Win 95, 98, ME ONLY) so you can use your PC as a basic oscilloscope with the various circuits.


A hands-on approach to electronics with numerous breadboard circuits to try out.

£12.45 including VAT and postage. Requires Adobe Acrobat (available free from the Internet - www.adobe.com/acrobat).

FREE WITH EACH TEACH-IN CD-ROM - Electronics Hobbyist Compendium 80-page book by Robert Penfold. Covers Tools For The Job: Component Testing; Oscilloscope Basics

DIGITAL WORKS 3.0

Counter project

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability . Software for simulating digital logic circuits Create your own macros - highly scalable Create your own circuits, components, and i.c.s Easy-to-use digital interface

 Animation brings circuits to life
 Vast library of logic

 macros and 74 series i.c.s with data sheets Powerful tool for designing and learning. Hobbyist/Student £45 inc. VAT. Institutional £99 plus VAT. Institutional 10 user £249 plus VAT. Site Licence £599 plus VAT.

ELECTRONIC COMPONENTS PHOTOS

A high quality selection of over 200 JPG images of electronic

components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for

use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions - see licence for full details).

Also contains a FREE 30-day evaluation of Paint Shop Pro 6 – Paint Shop Pro image editing tips and on-line help included!

Price £19.95 inc. VAT

Minimum system requirements for these CD-ROMs: Pentium PC, CD-ROM drive, 32MB RAM, 10MB hard disk space. Windows 95/98/NT/2000/ME/XP, mouse, sound card, web browser.

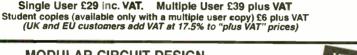
Please send me: CD-ROM OR Electronic Projects Electronic Circuits & Components V2.0 Analogue Electronics Digital Electronics V2.0 Filters Electronics CAD Pack Robotics & Mechatronics Assembly for PICmicro V2 C' for PICmicro V2 Flowcode V2 for PICmicro Digital Works 3.0	DER FORM Version required: Hobbyist/Student Institutional Institutional/Professional 10 user Site licence
 PICmicro Development Board V2 (hardwa Development Board UK plugtop power so Development Board 25-way connecting la 	upply
 □ Teach-In 2000 + FREE BOOK □ Electronic Components Photos □ Electronics In Control - Single User □ Electronics In Control - Multiple User □ Modular Circuit Design - Single User □ Modular Circuit Design - Multiple User 	Note: The software on each version is the same, only the licence for use varies.
Full name:	
Address:	
Post code	
Signature:	
 I enclose cheque/PO in £ sterling payable to Please charge my Visa/Mastercard/Amex/Di 	
Valid From:Card exp	iry date:
	Switch Issue No
Card Security Code (The last 3 digi	ts on or just under the signature strip)

ORDERING ALL PRICES INCLUDE UK POSTAGE

Student/Single User/Standard Version price includes postage to most countries in the world EU residents outside the UK add £5 for airmail postage per order

stitutional, Multiple User and Deluxe ersions - overseas readers add £5 to the asic price of each order for airmail postage to not add VAT unless you live in an EU European Union) country, then add 17½% AT or provide your official VAT registration umber).

Send your order to: **Direct Book Service** Wimborne Publishing Ltd 408 Wimborne Road East Ferndown, Dorset BH22 9ND


To order by phone ring

1202 873872. Fax: 01202 874562 Goods are normally sent within seven days

E-mail: orders@wimborne.co.uk Online shop:

ww.epemag.wimborne.co.uk/shopdoor.htm

Everyday Practical Electronics, October 2005

MODULAR CIRCUIT DESIGN

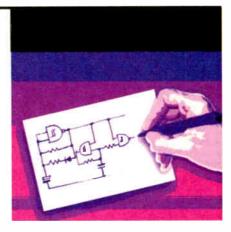
Questions on each chapter. Worked answers with an access code are provided on a special website.

VERSION 3 Contains a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus alfowing anyone with a basic understanding of circuit symbols to design and build their own projects. Version 3 includes data and circuit modules for a range of popular PICs; includes PICAXE circuits, the system which enables a PIC to be programmed without a programmer, and without removing it from the circuit. Shows where to obtain free software downloads to enable BASIC programming. Essential information for anyone undertaking GCSE or "A" level electronics or technology and for hobbyists who want to get to grips with project design. Over sevently different Input, Processor and Output modules are illustrated and fully described, together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

pinouts, power supplies, decoupling etc.

ELECTRONICS IN CONTROL

Two colourful animated courses for students on one CD-ROM. These cover Key Stage 3 and GCSE syllabuses, Key Stage 3: A pictorial look at the Electronics section featuring animations and video clips. Provides an ideal introduction


or revision guide, including multi-choice questions with feedback. GCSE: Aimed at the Electronics in many Design & Technology courses, it covers many sections of GCSE Electronics. Provides an ideal revision guide with Homework

Single User £19.95 inc. VAT. Multiple User £34 plus VAT (UK and EU customers add VAT at 17.5% to "plus VAT" prices)

Constructional Project

Back to Basics – CMOS Logic Devices

Bart Trepak

Part 7 – Parking Radar and Telephone Switch Illustrates how useful circuits can be designed simply using CMOS logic devices as the active components

MONG the many gimmicks fitted to modern top-of-the-range cars, a parking radar would rank as one of the more useful. Presented now is a little unit that is both inexpensive and easily fitted to any car (even an "old banger") and should help to prevent expensive mishaps!

The unit uses ultrasonics to determine the distance to an obstruction, the presence of which is indicated initially by an l.e.d. As the distance is reduced, a sounder emits a tone that rises in pitch to give a rough indication of the distance before impact!

As well as its intended use, this unit could also be suitable for a blind or partially sighted person to indicate the presence of obstacles in their path.

Basic Operation

All radars operate on more or less the same principle -a signal is transmitted which bounces back from the target to a receiver, which measures the time taken for the echo to return.

For long distance radar, radio frequency signals are used, but for short range applications (up to a few tens of metres) ultrasonics offer a simpler method. Despite the frequency being beyond the range of human hearing, the speed of the sound is still roughly 300m/sec, or 1 m every 3ms.

This sort of time is easily resolved using ordinary components. Ultrasonic beams are also moderately directional (typically having a beam width of about 30°) so that only the object roughly in front of the transmitter should be detected.

The Parking Radar block diagram is shown in Fig.7.1. The master oscillator controls a 40kHz oscillator which drives an ultrasonic transmitter producing an ultrasonic beam directed at the target. The beam is reflected back, picked up by the ultrasonic receiver whose output signal is amplified. The resulting signal is used to set a bistable which has been previously reset at the start of the transmission.

The result is a pulsed output from the bistable. The duration of the pulses depends on the time between the transmission and its reception. Fig.7.2 illustrates the waveforms at various points in

the circuit when the distance is large, medium and small. At very large distances (not shown) the reflected signal is too small to set the bistable and so the output remains low, while at decreasing distances, the output spends more and more time in the logic high state.

This p.w.m. (pulse width modulated) waveform is fed to a simple integrator which produces a d.c. voltage proportional to the distance from the target. This could be read on a suitably calibrated meter but here it is used to control a voltage controlled oscillator (VCO) which produces an audio tone increasing in pitch as the distance to the target is reduced.

The range obtainable from such a system is limited by four factors: the power

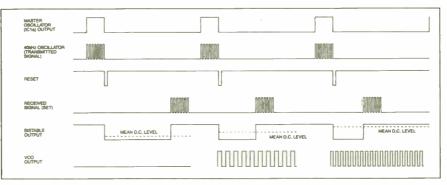


Fig.7.2. Waveforms at various points in the circuit when the "object" distance is large, medium and small

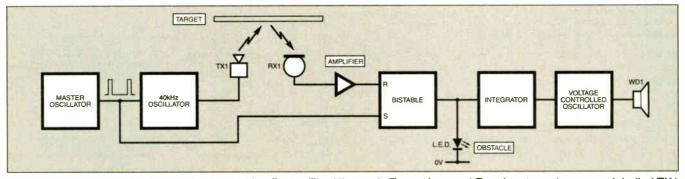
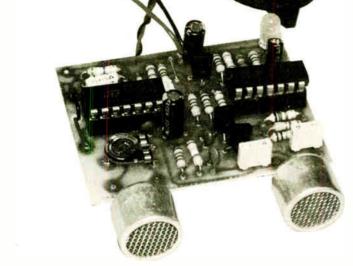



Fig.7.1. Block schematic diagram for the Parking Radar. The Ultrasonic Transmitter and Receiver transducers are labelled TX1 and RX1 respectively

transmitted; the gain of the echo amplifier; target reflection efficiency; the direction in which the echo is reflected. This will obviously be different for large flat surfaces perpendicular to the beam than for irregular or angled surfaces which will tend to absorb or disperse the signal rather than reflect it towards the receiver.

Sophisticated ranging systems include a variable gain amplifier to amplify weak received signals more than strong ones to provide a constant amplitude return signal to get around these problems. Fortunately in this application, where a miss is as good as a mile, we are only interested in short ranges (normally less than one

metre) which make such measures largely unnecessary, even with poorly reflecting surfaces.

Circuit Diagram

The complete circuit diagram for the Parking Radar is shown in Fig.7.3.

The master oscillator formed around Schmitt NAND gate IC1a produces short positive-going pulses of about 0.4ms duration every 4ms, as defined by components C1, R1, R2 and D1. When IC1a output pin 10 goes high, the oscillator built around IC1b is enabled and oscillates at a frequency of 40kHz, adjustable by preset VR1. IC1c inverts the output of IC1b, and transducer TX1 is driven in anti-phase by both gates for maximum power output.

When the output of IC1a goes low, it switches off the transmission. It also generates a pulse across capacitor C7, which triggers the bistable formed around IC2a and IC2b.

The echo signal reflected from the target is picked up by transducer RX1 and amplified by the circuit around transistors TR1 and TR2. The reset input of the bistable is held just above the logic threshold of the gate by the potential divider formed by resistors R8 and R9. Transistor TR2's collector (c) is coupled to this input via capacitor C8. The output of IC2a (and thus IC2c) is therefore a rectangular waveform which goes low when the transmitted signal ends and high when it is received after being reflected.

The distance range at which the amplified echo signal is large enough to reset the bistable is about one metre with the components shown, although this can be varied somewhat by altering the value of R9. At this range l.e.d. D2, which is controlled by the output from IC1c, begins to turn on giving an indication of the presence of an obstacle.

The output from IC2c also feeds into the integrator formed around R12 and C9. The voltage across C9 rises according to the time for which the output of IC2c is high. It increases as the range decreases.

A simple voltage controlled oscillator (VCO) is formed by IC1d and its associated components. As the voltage across C9 rises, transistor TR3 is turned on harder and passes a greater current, causing capacitor C10 to charge faster. When the voltage at the input of IC1d falls below the lower logic threshold, the output goes high, discharging C10 via D3 and R16.

Although the discharge time remains constant, the charge time falls and consequently the oscillation frequency rises with increased current flowing into the base (b) of TR3. This is reproduced by the piezo buzzer WD1 as a tone with a rising pitch. The frequency varies from low frequency clicks at a range of around 1m, to about 300Hz when the range has fallen to 5cm. Resistor

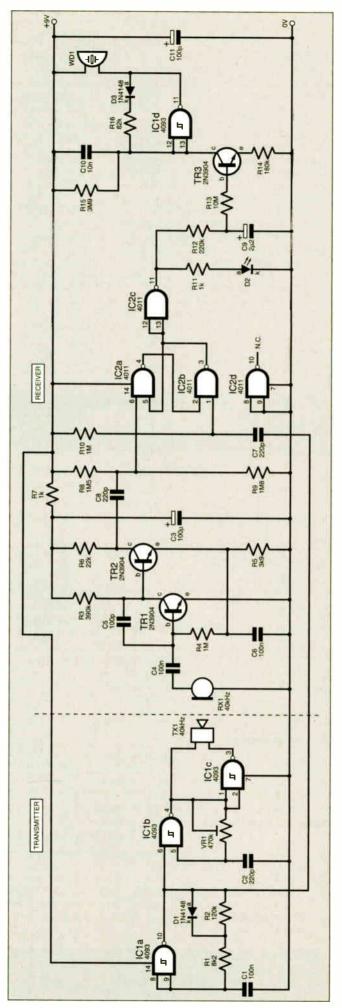


Fig.7.3. Full circuit diagram for the Parking Radar

R15 is included to suppress oscillation due to leakage when TR3 is off.

Construction

Resistors

R1

R2 R3

Printed circuit board component and track layout details are shown in Fig.7.4. This board is available from the *EPE PCB* Service, code 533.

The board should be assembled in order of ascending component size. Normal precautions should be observed regarding component orientation for diodes, transistors etc. and when handling the CMOS i.c.s. Use sockets for i.c.s, but do not insert the i.c.s. until the board has been fully checked.

Pads for the battery connector are provided although some form of d.c. plug and socket may be more appropriate in this application. Care should be taken to ensure the correct polarity of the supply.

Transducers TX1 and RX1 are not interchangeable in this application. Their function should be marked on their case. The pin connected to the case is the 0V terminal. The transducers should be mounted on the p.c.b. pads provided, not on extension leads. Although the prototype used ordinary transducers, waterproof ones are preferable.

8k2k

120k

390k

COMPONENTS

PARKING RADAR

R8

R9

R12

1M5 1M8

220k

The only setting up required is the adjustment of VR1 to obtain a 40kHz signal across TX1. This is best done using an oscilloscope but in the absence of one, the voltage across RX1 or at TR2 collector (c) can be monitored and VR1 adjusted for maximum echo signal strength.

The circuit is fairly uncritical in component values but the values of R8 or R9 may need to be altered to ensure that the quiescent voltage (when no signal is present) at their junction is above the logic high threshold of IC2a. Typically, this means greater than about 5V with a 9V supply.

Enclosures

The p.c.b. should be housed in a suitable enclosure mounted somewhere on the back of the car. The type will depend on individual circumstances. It needs to protect the components from moisture and dampness. Added protection can be given by coating the p.c.b. with a "conformal" spray.

The l.e.d. and buzzer are mounted in a separate case connected back to the p.c.b. If preferred, the buzzer may be connected to the 0V line rather than to +9V, which will enable a 3-core cable to be used for the

overall assembly interconnections.

Since the unit has a minimum range indication of about 5cms, note that the warning tone will not increase in frequency once this distance is reached. The circuit therefore does not give an indication of distance down to zero as this will normally be indicated by a crunching sound!

The maximum range is around one metre (depending on the target). This unit is not suited to modifying for greater distance detection.

The circuit should be powered by a 9V battery, although operation at 12V is also possible. The total current drawn at 9V is around 1.5mA, rising to some 10mA when sounding, so that an on/off switch is recommended. This can be a panel mounted type which can be switched on manually or by a relay activated by the reversing light when the reverse gear is selected if automatic switching is preferred. For the other applications mentioned, different arrangements for this will no doubt need to be devised.

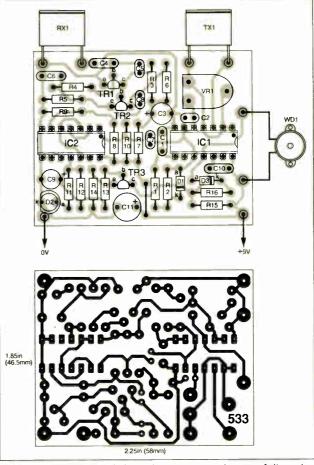


Fig.7.4. Printed circuit board component layout, full underside copper foil master and off-board wiring for the Parking Radar module

R5 R6 R7,R11		R13 R14 R15 R16	10M 180k 3M9 82k	
All 0.25W 5% Potentiometer	carbon nim		See Shop	
VR1	470k skeleto	on preset	TALK	
Capacitors			page	
C1,C4,C6 C2,C7,C8 C3,C11 C5 C9 C10	220p disc ce 100µ radial 100p disc ce 2µ2 radial e	ter or cerami eramic (3 off) elect. 16V (2 eramic lect. 16V er or ceramic		
Semiconductor	s			
D1,D3 D2 TR1 to TR3 IC1 IC2	5mm red I.e 2N3904 npr	transistor Schmitt NANI		
Miscellaneous				
TX1 RX1 WD1		sonic receive	tter (see text) r (see text)	
Printed circuit board, available from the <i>EPE PCB</i> <i>Service, code 533</i> ; 14-pin d.i.l. socket (2 off); cases to suit; 9V battery and clip (see text); connecting wire; solder etc.				
Approx. Cost Guidance Only			£15	

excl case and batts

World Radio History

Telephone Switch

HIS simple Telephone Switch will enable you to remotely switch an appliance on or off simply by phoning home a specific number of times free of charge from anywhere in the world. Now how's that for remote control?

Basic Operation

The block diagram of Fig.7.5 shows that the basic operation is based on a counter and a timing unit built around a monostable which together control a bistable. The telephone rings are detected by an input circuit which provides an output pulse, the duration of which is determined by the length of the ringing signal.

A single pulse is generated each time, no matter how long the phone rings. The first ring resets the counter and also sets the monostable which has an adjustable period of between about 90 and 180 seconds.

The number of calls which occur before the monostable times out are counted and if this coincides with a preset number chosen, a bistable is either set or cleared. The bistable controls a transistor which drives a relay enabling any appliance from a lamp to a heating system to be switched on or off as required. The number of calls to switch the output on and off has been chosen to be five and three respectively, although this can be changed if required.

The circuit obviously cannot discriminate between a routine call to your number or your own call, but since it is most unlikely that anyone will call your number three times in the space of one and a half minutes, the system has a high immunity to false switching. Anyone trying to contact you would no doubt hang on for some time to allow the phone to be answered. They would thus be unable to make the required number of calls before the monostable timed out, even if they tried again a short time later.

Ringing-In

A problem could arise, however, if someone just happens to ring while you were in the middle of making your sequence of calls, in which case the appliance could end up being switched on when you wanted it switched off. This is not very likely as the caller would have to make his/her call immediately after your last one but before the monostable had timed out. In order to ensure that even this cannot happen, the difference in the output on or off is made equal to two.

In this scenario, an engaged tone will probably be heard which should alert you to the possibility that the system may have gone wrong. Since this simple circuit cannot indicate the state of its output to you, it would be quite easy to lose track of whether the output was on or off. A Set/Reset bistable has therefore been used in preference to a toggle type so that

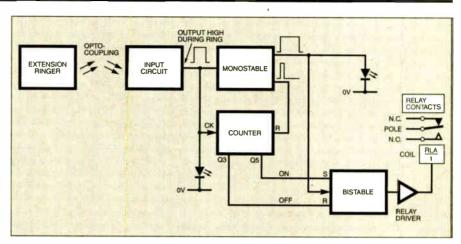


Fig.7.5. Block diagram for the Telephone Switch

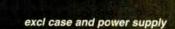
N

a different number of calls is required to switch the relay on from that required to switch it off.

It is therefore an easy matter to repeat the required sequence some time later if you are not sure that the unit responded correctly to the earlier sequence, in the full knowledge that you will not inadvertently switch the unit on when you wanted it off, or vice-versa.

Note that the circuit does not count the individual rings themselves, which normally (in the UK) occur as pairs with an equal period of silence between them. This pattern is generated by the local exchange and may be different to the pattern which the caller hears in his phone.

This means that the home number must be re-dialled the number of times required to switch the unit on or off. The phone should be allowed to ring at least three times before hanging up to ensure that the signal has got through. More rings can be allowed if required but as the monostable starts timing from the beginning of the first ring, time must be allowed to make the required number of calls.


COMPONENTS					
TELEPHO					
Resistors	See				
R1 R2, R5, R6 R3 R4 R7 R8 All 0.25W 5% d	680k SHOP 1k (3 off) TALK 10k 470k 1M5 (see text) 100k (see text)				
Potentiometer					
VR1	1M skeleton pre- set				
Capacitors					
C1 C2 C3, C4	10 μ radial elect. 16V 10n disc ceramic 100 μ radial elect. 16V (2 off)				
Semiconductors					
D1 D2 D3	5mm red I.e.d. 5mm green I.e.d. 1N4148 signal diode				

TR1	BP103 phototran- sistor or 2N3904 <i>npn</i> transistor
TR2	(see text) 2N3904 <i>npn</i> tran- sistor
TR3	2N3904 npn tran-
IC1	sistor (see text) 4093 quad Schmitt NAND gate
IC2	4017 decade
IC3	counter 4011 quad NAND gate
liscellaneous	
MIC1	3V-30V piezo sounder (see text)
RLA	relay (see text)

Printed circuit board, available from the EPE PCB Service, code 534; 14-pin d.i.l. socket (2 off); 16-pin d.i.l. socket; case to suit; 9V mains adaptor (see text); connecting wire; solder etc.

Approx. Cost

Guidance Only

Everyday Practical Electronics, October 2005

E15

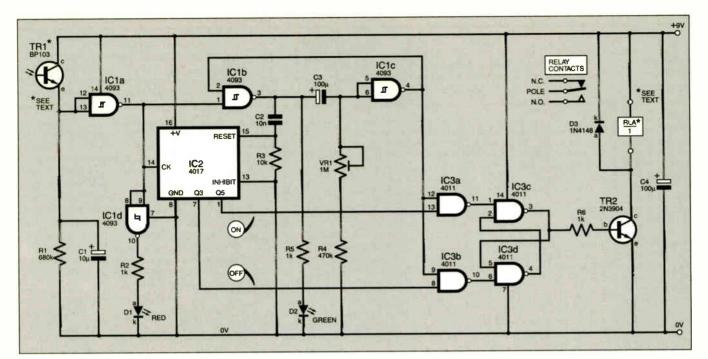


Fig.7.6. Complete circuit diagram for the Telephone Switch. No direct connection to the phone line is required. Two options of phone interfacing can be made, one optical, the other audio

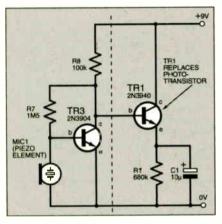
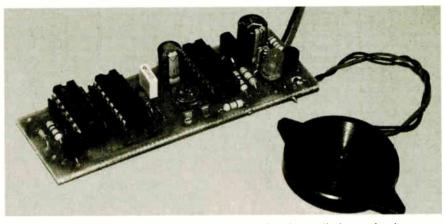


Fig.7.7. Alternative audio input circuit


Circuit Diagram

The complete circuit diagram for the Telephone Switch is shown in Fig.7.6. The circuit has been designed so that no direct connection to the phone line is required. Two choices of interface can be made, one optical, the other audio.

The optical interface can be via a commercial plug-in extension ringer unit. As well as an audio output, these normally have an l.e.d. which flashes in time with each ring. In Fig.7.5, a phototransistor, TR1, detects the flashing l.e.d. and its output is fed to the inputs of Schmitt NAND gate IC1a.

If an extension ringer is not available, the audio input circuit of Fig.7.7 may be used instead. The phone rings, detected by microphone MIC1, are amplified by transistor TR3 and fed to an *npn* transistor used as TR1 in place of the phototransistor.

Whichever method is used, when the telephone rings, TR1 will switch on causing capacitor C1 to charge and the inputs of IC1a to go high. This gate is connected as an inverter so that its output will go low, triggering the monostable built around IC1b and IC1c.

Completed Telephone Switch incorporating the audio input circuit

The values of resistor R1 and capacitor C1 are chosen so that the circuit will not respond to the ending of individual rings, and so the output of IC1a will therefore remain low throughout the overall time that the telephone rings.

The output from ICla also feeds to ICld, which drives l.e.d. D1 via buffer resistor R2. The l.e.d. indicates when the circuit responds to a call and it should remain on (and not flash) until the call is terminated.

When the monostable is triggered, the output of IC1b goes high (indicated by l.e.d. D2). This causes counter IC2 to be reset via C2, and the output of IC1c to go low, triggered via C3. With IC1c output low, gates IC3a and IC3b are disabled, preventing the output bistable formed by gates IC3c and IC3d, from changing state.

Time Out

Each time the call is terminated the output of IC1a will go high, switching off l.e.d. D1 and causing the counter to advance but not affect the monostable, which remains in its triggered state with l.e.d. D2 turned on. Eventually, when the monostable times out after a period determined by the value of C3 and R4/VR1, the output of IC1c will go high, enabling gates IC3a and IC3b. If three or five calls have been received by this time, then counter outputs Q3 or Q5 will be high, causing the output of either gate IC3b or IC3a to go low.

If gate IC3a goes low, the bistable will be set with the output of IC3c going high. This switches on TR2 via R6 and turns on relay RLA, switching on the supply to the load to be controlled.

If IC3b's output goes low, however, the bistable will be cleared and the output of IC3c will go low, switching off TR2 and the relay. Diode D3 inhibits backe.m.f. generation when the relay switches off.

If any other number of calls, except three or five, are received by the time that the monostable times out, counter outputs Q3 and Q5 will be low and the outputs of IC3b and IC3c will remain in their previous state, as will the relay. The circuit stays in this state until another call is received, which will again reset the counter and the operation will begin again. The output circuit will, however, only respond to three or five rings.

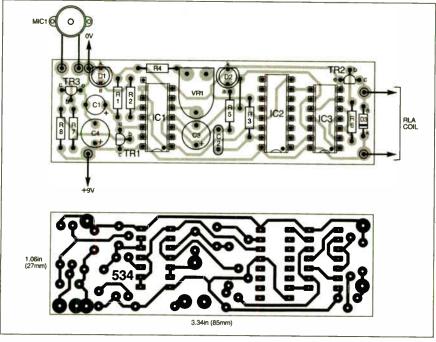


Fig.7.8. Printed circuit board component layout, full-size copper foil master and offboard wiring details for the "audio" version of the Telephone Switch

Power Supply

The unit can operate from a range of d.c. supply voltages, but 9V is suggested. It draws virtually no current (especially if the phototransistor input version is built) when no calls are being received. Current consumption will rise slightly when a call is received due mainly to the l.e.d.s, but will rise dramatically when the relay is energised.

A 9V battery supply can be used when testing the circuit, but for serious use a 9V d.c. mains adaptor is recommended, especially if the relay is to be left energised for long periods. A low voltage mains adapter of the type used for powering small appliances such as radios and calculators would be ideal. Do not exceed a supply of 15V d.c.

Construction

Printed circuit board component and track layout details are shown in Fig.7.8. This board is available from the *EPE PCB* Service, code 534.

The p.c.b. will accommodate either version of the input circuit. If the phototransistor version is built, the microphone, TR3 and resistors R7 and R8 should be left out and the phototransistor fitted in place of TR1.

The phototransistor specified is housed in an l.e.d.-type package with only the collector and emitter terminals connected. There is no base lead and so the centre pad (b) on the p.c.b. for TR1 should be left unconnected. Note that the collector (c) terminal is adjacent to the flat area on the rim of the package so that this lead should go to the pad connected to the positive battery supply.

It will probably be necessary to mount the phototransistor on flying leads and these should be kept as short as possible. One possible method of coupling the phototransistor to the l.e.d. on the extension ringer is to use a clear epoxy resin to ensure a good light path between the two components. Once this has set, it should be painted black or covered with an opaque material to ensure that ambient light does not upset the operation of the circuit.

Flying Leads

The board should be assembled and checked as stated previously. Note that the relay and microphone (if used) should be connected to the allocated pads by means of flying leads. The microphone is a piezo type more often encountered in designs as a sounder (it can work in either mode). Although the type used in the prototype had red and black leads, it may be connected either way around.

If possible, these leads should not be extended as this could make the circuit sensitive to stray electrical fields. The microphone should be placed close to a telephone or glued to an extension ringer to ensure that the circuit responds. In noisy environments it is possible that the circuit could be triggered by other random sounds and care should be taken to ensure that this cannot happen by shielding the microphone. If these efforts prove unsuccessful, the phototransistor option should be used.

Relay

The relay should be chosen to suit the supply voltage, although in practice most relays will operate from a range of voltages. Most 12V relays for example will operate quite satisfactorily from a supply of 9V to 15V. A higher voltage rating is to be preferred as these will generally have a higher coil resistance and therefore draw a lower current when operating.

The relay contacts must be rated for the appliance to be switched. Do not connect the relay to an a.c. mains powered appliance unless you are suitably qualified or supervised.

Depending on the application, it may be desirable to mount the circuit in a box. The choice of case is yours. In may then be more convenient to mount the l.e.d.s on the panel, in which case the leads may simply be extended as required (although in use they are not really required as, hopefully, there will not be anyone at home to observe them!). Holes will also be required for the microphone or photo transistor as well as sockets for a d.c. supply.

Testing

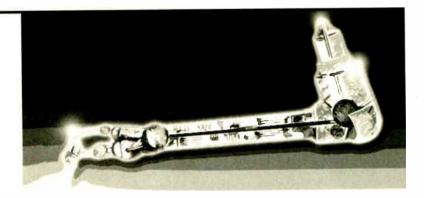
The circuit may be tested and set up by connecting a 9V battery and a temporary l.e.d. (in series with a suitable ballast resistor of say 1k) across the relay coil terminals. When the microphone is tapped (or the phototransistor illuminated), both l.e.d.s D1 and D2 should light. D1 should switch off shortly afterwards while D2 should remain on.

The circuit should be activated a number of times by tapping the microphone or switching on the phototransistor, making sure each time that D1 switches off again. If five such "inputs" are made within the time D2 is on, the temporary l.e.d. should light (or the relay switch on) when D2 switches off. Repeating the procedure with only three "inputs" should cause the output to switch off, while any other number of "inputs" made within the time that D2 is on should be ignored by the circuit.

Once this has been done, it would be best to "phone a friend" or at least get him to phone you. When your phone rings, make sure that l.e.d. D1 only lights once and remains on for the duration of the ringing call. If it follows the individual rings by switching off each time, the value of R1 or C1 should be increased.

Do not make the values of R1 or C1 much larger than necessary to achieve this because the l.e.d. may then remain on for too long after the call has terminated and the circuit could fail to recognise the next call. The components specified should not need to be altered in the majority of cases.

It then only remains to set preset VR1 for a monostable time (D2 on) sufficiently long to enable five separate calls to be made to the number. This will obviously depend on how many digits must be dialled and if a re-dial facility is used, but the time should be made as short as possible to minimise the possibility of false switching.


Remember that extra digits such as area codes may need to be dialled, especially if the device is to be used from abroad. Of course, this unit has been designed to switch the output on after five calls and off after three but this could be easily changed by utilising the other outputs of the 4017 counter.

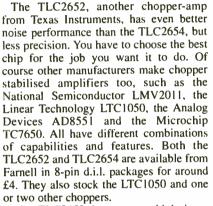
Next Month: Weather Vane Repeater and a Noughts & Crosses Emigma (see below).

Regular Clinic

Circuit Surgery

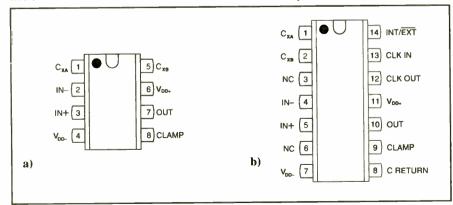
lan Bell

Following on from last month, our "consultant surgeon" looks into some chopper op.amp i.c.s and offers some circuit advice on how to use them


AST month, in response to one of the threads on the *EPE Chat Zone*, we looked at the theory of chopper stabilised amplifiers (also known as auto-zeroing amplifiers). These circuits have very low drift and are therefore suitable for use with very low frequency signals, where slow changes in the amplifier's offsets with time due to factors such as temperature and power supply fluctuations cannot be easily blocked or filtered out.

We discussed how these circuits achieved high precision by continuously nulling their own offsets. This month we will look at a couple of real chopper amplifier chips, with which you might like to experiment.

For the Chop


The TLC2654 is a high-precision chopper-stabilized operational amplifier from Texas Instruments. It has very good d.c. precision, featuring an extremely low change in offset voltage with temperature of around 0.003μ V/°C, and a very low offset of around 1 μ V maximum.

These figures are much better than can be achieved with ordinary operational amplifiers. In addition, as we explained last month, low-frequency noise is significantly reduced compared with ordinary operational amplifiers by the chopper stabilization due to the reduction of 1/f noise.

The TLC2652 has a very high input impedance CMOS input stage and is particularly suitable for low-level signal processing applications such as strain gauges, thermocouples, and other transducer amplifiers. It has a default chopping frequency of 450Hz.

The higher chopping frequency of the TLC2654, compared with the TLC2652, accounts for the better noise performance and bandwidth, which covers a frequency spectrum from near d.c. to 10kHz, with best performance up to 5kHz. Like the TLC2652, it is suitable for wide-bandwidth low frequency and subsonic applications and is also appropriate for use with strain gauges and thermocouples.

Fig.1. (a) Pinout connections for the TLC2652 and TLC 2654 8-pin version and (b) the pinout details for the 14-pin version

A Packaged Deal

Both the TLC2652 and TLC2654 are available in 8-pin and 14-pin d.i.l. versions and have the pinouts shown in Fig.1. On the 8-pin version you get the dual power supply (V_{DD+} and V_{DD-}), differential inputs (IN- and IN+), and output (OUT) that you would expect with any operational amplifier, plus three other less familiar pins: C_{XA} , C_{XB} and CLAMP. These are for the nulling capacitors and

These are for the nulling capacitors and clamping feature, which we will look at in more detail later. The 14-pin version includes provision for an external clock (INT/EXT, CLK IN, CLK OUT) and a special connection point for the nulling capacitors (C RETURN).

A number of other chopper stabilized op.amps have the same or similar pin connections, for example the TC7650. The LTC1050 is different: it does not need external capacitors so pin 1 and pin 8 are no-connections and has a clock input on pin 5.

The C_{XA} and C_{XB} pins are used to connect two capacitors which are required for operation of these amplifiers. The capacitors are used for holding the nulling trim voltage, as explained last month.

However, the user does not have to control the chopping process in any way and these devices can simply be used as operational amplifiers. The chopping frequency is fixed by the internal oscillator and is invisible to the user. The 14-pin versions do provide the user with more control – the chopping can be driven from an external clock.

The capacitors connected to C_{XA} and C_{XB} should be in the range of 0.1μ F to 1μ F and located as close as possible to the pins. On the 8-pin versions of the chips the other end of each capacitor is connected to either V_{DD} or V_{DD+} (see Fig. 2). On the 14-pin version there is a special C RETURN pin to which the capacitors can be connected. In applications needing a fast response use high-quality film capacitors such as mylar, polystyrene, or polypropylene. In other applications are satisfactory.

World Radio History

In Response

One problem with chopper amplifiers that we did not discuss last month is their response to overload conditions, which occur when very large input signals push the output into saturation at one of the supply rails. Under these conditions the circuit is no longer a linear amplifier and is therefore unable to find the correct nulling voltage to compensate for offsets.

Thus, after an overload, a chopper amp may take some time to recover to full performance. The CLAMP pin provides a means by which the internal circuitry can detect overload conditions and hence prevent the amplifier from becoming heavily saturated. This in turn speeds up recovery once the overload condition is removed.

If clamping is required the CLAMP pin is connected to the inverting input IN- (in parallel with the closed-loop feedback resistor) (see Fig.3). If connected the clamp is automatically activated when the output is approximately IV from either supply rail.

When activated the clamp reduces the gain of the amplifier and the output is prevented from going into saturation. Since the output must source or sink current through the clamp circuitry the maximum output voltage swing is slightly reduced when the clamp is used.

On Guard

In order to get the full benefit of high precision capabilities of chopper stabilised amplifiers, good circuit board layout is required. Problems are caused by leakage across the p.c.b. (printed circuit board), so thorough cleaning and drying after construction is important.

Also, a useful technique is to include an input guard in the p.c.b. layout. A guard is a p.c.b. copper track in a ring surrounding the input terminals, which absorbs leakage currents. The ring connects to a low impedance point ideally at the same common mode voltage as the inputs. The concept of the p.c.b. guard ring layout is shown in Fig.4; the actual layout for a given application will depend on the i.c. package used.

Chopper stabilised operational amplifiers can be used in the same circuit configurations as ordinary op. amps, including those for inverting and non-inverting amplifiers. These are shown in Fig.5. These schematics include the guard ring (the circles near the inputs). Two circles are drawn on the schematic as both inputs are guarded, but only one ring in created on the p.c.b., as shown in Fig. 4.

Of course, with the TLC2652 and TLC2654, and other choppers with external nulling capacitors, these are present whereas they may not be in a normal op. amp circuit. You may also use the clamp facility, but this is not included in Fig.5. If required, connect the clamp (pin 5) to the inverting input (pin 2) as shown in Fig.3.

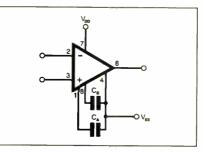


Fig.2. Connection details for the nulling capacitors

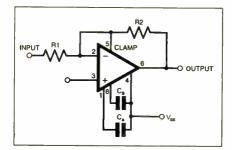


Fig.3. If clamping (overload protection) is required, the CLAMP pin is connected to the inverting input IN- pin

The gains of the circuits in Fig.5 are set by the values of resistors R1 and R2 in the usual way. The gain is R2/R1 for the inverting amplifier and 1+(R2/R1) for the non-inverting amplifier. Resistor R3 does not contribute to the gain setting, but is present to help minimise offsets. The value

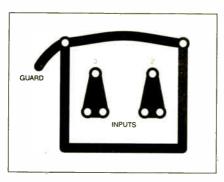
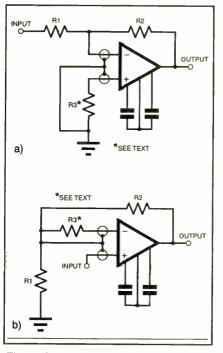
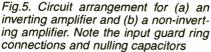




Fig.4. Input "guard ring" on a printed circuit board tracking

of R3 should be equal to the parallel combination of R1 and R2, that is $(R1\times R2)/(R1+R2)$. This value ensures that the impedance of the external circuit viewed from each input is equal, to minimise the difference in voltage drops due to input bias currents.

	Obtaining EPE			
An initiative in the UK is desi Called <i>Just Ask!</i> its aim is to deliver magazines.	gned to help you obtain your favourite magazines from newsagents. raise awareness that newsagents can stock, order and often home	Just Ask		
PRACTICAL ELECTRONICS VIEW, MARINE FOR ELECTRONICS TO INCLOSE & COMPTER MOLECTS	NEWSAGENTS ORDER FORM Please reserve/deliver a copy of <i>Everyday Practical Electronics</i> for	me each month		
Signed				
Name and Address				
		••••••••••		
	Post Code Tel			
Everyday Practical Electronics is published on the second Thursday of each month and distributed S.O.R. by COMAG Make sure of your copy of EPE each month – cut out or photostat this form, fill it in and hand it to your newsagent.				

FREE Electronics Hobbyist Compendium book with Teach-In 2000 CD-ROM

The whole of the 12-part *Teach-In 2000* series by John Becker (published in *EPE* Nov '99 to Oct 2000) is now available on CD-ROM. Plus the *Teach-In 2000* interactive software (Win 95, 98, ME and above) covering all aspects of the series and Alan Winstanley's Basic Soldering

Guide (including illustrations and Desoldering). Teach-In 2000 covers all the basic principles of electronics from Ohm's Law to Displays, including Op.Amps Logic Gates etc. Each part has its own section on the interactive software where you can also change component values in the various on-screen demonstration circuits.

The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a sim-ple computer interface (Win 95, 98, ME only) which allows a PC to be used as a basic oscilloscope

ONLY £12.45 including VAT and p&p Order code Teach-In CD-ROM

Robotics

INTRODUCING ROBOTICS WITH LEGO MINDSTORMS Robert Penfold

Robert Penfold Shows the reader how to build a variety of increasingly sophis-ticated computer controlled robots using the brilliant Lego Mindstorms Robotic Invention System (RIS). Initially covers fundamental building techniques and mechanics needed to construct strong and efficient robots using the various "click-together" components supplied in the basic RIS kit. Then explains in simple terms how the "brain" of the robot may be programmed on screen using a PC and "zapped" to the robot over an infra-red link. Also, shows how a more sophisticated Windows programming language such as Visual BASIC may be used to control the robots. Details building and programming instructions provided.

Details building and programming instructions provided, including numerous step-by-step photographs.

288 pages – large format Order code BP901 £14.99

MORE ADVANCED ROBOTICS WITH LEGO MINDSTORMS - Robert Penfold

Covers the Vision Command System

 Covers the Vision Command System

 Shows the reader how to extend the capabilities of the brilliant Lego Mindstorms Robotic Invention System (RIS) by using Lego's own accessories and some simple home constructed units. You will be able to build robots that can provide you with 'walter service' when you clap your hands, perform tricks, 'see' and avoid by see' and avoid objects by using thats radar', or accurately follow a line marked on the floor. Learn to use additional types of sensors including rotation, light, temperature, sound and ultrasonic and also explore the possibilities provide dby using an additional (third) motor. For the less experienced, RCX code programs accompany most of reader is also shown how to write programs using Nicrosoft's VisuatBASIC running with the ActiveX.

 Databet building instructions are provided for the featured robots. However, the RIS kit.

 Databet building instructions are provided for the featured robots. The obesigns includer step-by-step photest are obots. The designs includer rover vehicles, a virtual point. The designs includer rover vehicles, a virtual step colour conscious conduct at will try to grato building a structions are provided for the feature of robots including numerous step-by-step photest are building instructions are provided for the feature of robots. The designs include the rover vehicles, a virtual step colour conscious cons

298 pages	Order code BP902	£14.99

ANDROIDS, ROBOTS AND ANIMATRONS - Second

ANDROIDS, ROBOTS AND ANIMATRONS – Second Edition – John lovine Build your own working robot or android using both off-the-shelf and workshop constructed materials and devices. Computer control gives these robots and androids two types of artificial intelligence (an expert sys-tem and a neural network). A lifelike android hand can be built and programmed to function doing repetitive tasks. A fully animated robot or android can also be built and pro-grammed to perform a wide variety of functions. The contents include an Overview of State-of-the-Art Robots; Robotic Locomotion; Motors and Power Controllers; All Types of Sensors; Tilt; Bump; Road and Wall Detection; Light; Speech and Sound Recognition; Robotic Intelligence (Expert Type) Using a Single-Board Computer Programmed in BASIC; Robotic Intelligence (Intelligence); Making a Lifelike Android Hand; A Computer-Controlled Robotic Insect Programmed in BASIC; Telepresence Robots With Actual Arcade and Virtual Reality Applications; Al Computer-Controlled Robotic Arm; Animated Robots and Androids; Real-World Robotic Applications. **Robotic Applications**

Order code MGH1 £16.99 224 pages

DIRECT BOOK SERVICE

NOTE: ALL PRICES INCLUDE UK POSTAGE

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book

For a further selection of books see the next two issues of EPE.

Radio

92 pages

BASIC RADIO PRINCIPLES AND TECHNOLOGY

Ian Poole Radio technology is becoming increasingly important in today's high technology society. There are the traditional uses of radio which include broadcasting and point to point radio as well as the new technologies of satellites and cellular phones. All of these developments mean

and cellular phones. All of these developments mean there is a growing need for radio engineers at all levels. Assuming a basic knowledge of electronics, this book provides an easy to understand grounding in the topic. Chapters in the book: Radio Today, Yesterday, and Tomorrow; Radio Waves and Propagation; Capacitors, Inductors, and Filters; Modulation; Receivers; Transmitters; Antenna Systems; Broadcasting; Satellites; Personal Communications; Appendix – Basic Calculations Calculations

263 pages

Order code NE30 £18.99

PROJECTS FOR RADIO AMATEURS AND S.W.L.S.

R. A. Penfold This book describes a number of electronic circuits, most

of which are quite simple, which can be used to enhance the performance of most short wave radio systems. The circuits covered include: An aerial tuning unit; A simple active aerial; An add-on b.f.o. for portable sets;

Computers and Computing

THE INTERNET FOR THE OLDER GENERATION

A wavetrap to combat signals on spurious responses; An audio notch filter; A parametric equaliser; C.W. and S.S.B. audio filters; Simple noise limiters; A speech processor; A volume expander

Other useful circuits include a crystal oscillator, and RTTY/C.W. tone decoder, and a RTTY serial to parallel converter. A full range of interesting and useful circuits for short wave enthusiasts.

> Order code BP304 £4.45

AN INTRODUCTION TO AMATEUR RADIO

I. D. Poole I. D. Poole Amateur radio is a unique and fascinating hobby which has attracted thousands of people since it began at the turn of the century. This book gives the newcomer a comprehensive and easy to understand guide through though the two denses in the mark term the set. comprehensive and easy to understand guide initiagin the subject so that the reader can gain the most from the hobby. It then remains an essential reference volume to be used time and again. Topics covered include the basic aspects of the hobby, such as operating proce-dures, jargon and setting up a station. Technical topics covered include propagation, receivers, transmitters and aerials etc.

Order code BP257 £5.49 150 pages

Assuming no prior knowledge of microcontrollers and introducing the PIC's capabilities through simple projects, this book is ideal for use in schools and col-leges. It is the ideal introduction for students, teachers, technicians and electronics enthusiasts. The step-by-step explanations make it ideal for self-study too: this is not a reference book – you start work with the PIC strainth away.

Straight away. The revised second edition covers the popular repro-grammable EEPROM PICs: P16C84/16F84 as well as the P54 and P71 families.

£15.99

Order code NE36 270 pages

BAY FOR BEGINNERS

eBar For Beginners Cherry Mixon There are two kinds of people, those who are trading on eBay and the rest who are missing out. Though eBay has been embraced by entrepreneurs all over the world, it remains the peoples' site and offers the largest mar-ket for the smallest fee.

eBay presents an opportunity for everyone, the trick is to master it. This book shows you how to start trading on eBay UK. It also offers advice on getting organised

on eBay UK. It also offers advice on getting organised and tips to put you ahead. The book has been developed from Cherry's popu-lar hands-on course "Buying and Selling on eBay for Technological Simpletons". In addition to fully explan-ing eBay and how to trade on it there are sections on Paypal, producing pictures of your sale items, fees and accounts, safety and security including what to do when things go wrong and what protection is crouded. £8.99

provided.	
178 pages	Order code BP551

NEWNES PC TROUBLESHOOTING POCKET BOOK - THIRD EDITION

Howard Anderson, Mike Tooley All the essential data for PC fault-finding and upgrad-ing. This book provides a concise and compact reference that describes, in a clear and straightforward manner, the principles and practice of fault-finding and upgrading PCs and peripherals. The book is aimed at anyone who is inveloced with the inclusion configuration, maintenance. involved with the installation, configuration, maintenance, upgrading, repair or support of PC systems. It also pro-vides non-technical users with sufficient background information, charts and checklists to enable the diagnosis of faults and help to carry out simple modifications and repairs. In order to reflect rapid changes in computer tech-nology (both hardware and software) this new edition has completely revised and rewritten.

256 pages	Order code NE41	£19.99

Everyday Practical Electronics, October 2005

THE INTERNET FOR THE OLDER GENERATION Jim Gatenby Especially written for the over 50s. Uses only clear and easy-to-understand language. Larger type size for easy reading. Provides basic knowledge to give you confi-dence to join the local computer class. This book explains how to use your PC on the Internet and covers amongst other things: Choosing and setting up your computer for the Internet. Getting connected to the Internet. Sending and recelving emails, pho-tographs, etc., so that you can keep in touch with fam-ily and friends all over the world. Searching for and saving information on any subject. On-line shopping and home banking. Setting up your own simple web and home banking. Setting up your own simple web Order code BP600 £8.99

HOW TO BUILD YOUR OWN PC -Third Edition

Morris Rosenthal

228 pages

Morris Rosenthal More and more people are building their own PCs. They get more value for their money, they create exactly the machine they want, and the work is highly satisfying and actually fun. That is, if they have a unique begin-ner's guide like this one, which visually demonstrates how to construct a state-of-the-art computer from start to finish.

to finish. Through 150 crisp photographs and clear but minimal text, readers will confidently absorb the concepts of computer building. The extra-big format makes it easy to see what's going on in the pictures. For non-special-ists, there's even a graphical glossary that clearly illustrates technical terms. The author goes "under the hood" and shows step-by-step how to create a socket 7 (Dentime and appi tel chiescib) and a Sint 1 (Pentime hood" and shows step-by-step how to create a socket / (Pentium and non-intel chipsets) and a Slot 1 (Pentium II) computer, covering: What first-time builders need to know; How to select and purchase parts; How to assemble the PC; How to install Windows 98. The few existing books on this subject, although badly outdated, are in steady demand. This one delivers the expertise and new technology that fledgling computer builders are eagerly looking for.

224 pages – large format Order code MGH2 £20.99

PIC YOUR PERSONAL INTRODUCTORY COURSE SECOND EDITION John Morton Discover the potential of the PIC micro-controller through graded projects – this book could revolutionise your electronics construction work! A uniquely concise and practical guide to getting up and running with the PIC Microcontroller. The PIC is one of the most popular of the microcontrollers that are transforming electronic project work and product design design.

Theory and Reference

BEBOP TO THE BOOLEAN BOOGIE Second Edition Clive (Max) Maxfield

BOOK PLJS CD-ROM

Cive (Max) Maxifield This book gives the "big picture" of digital electronics. This indepth, highly readable, up-to-the-minute guide shows you how electronic devices work and how they're made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean Algebra and Karnaugh Maps, and understand what Reed-Muller You'll also down it's used. And there's much, MUCH more. The author's tongue-in-cheek humour makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate. Comes with a free CD-ROM which contains an eBook version with full text search plus bonus chapter -An Illustrated History of Electronics and Computing. Conductors and insulators; Voltage, current, resistance, capacitance and inductance; Semiconductors; Primitive togic functions; Binary arithmetic; Boolean algebra; Karnaugh maps; State diagrams, tables and machines; (ICs); Memory ICs; Programmable ICs; Application-specific integrated circuits (ASICs); Circuit boards (PWBs and DWBs); Hybrids; Multichip modules (MCMs); Atternative and future technologies.

and future technologies

Order code BEB1 500 pages £27 50

BEBOP BYTES BACK (and the Beboputer Computer Simulator) CD-ROM (Max) Maxfield and Clive

Alvin Brown

Atvin Brown This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza of information about how com-puters work. It picks up where "Bebop I" left off, guid-ing you through the fascinating world of computer design . . . and you'll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the CD-ROM contains a virtual microcom-puter, simulating the motherboard and standarc com-puter, simulating the motherboard and standarc com-puter, simulating the motherboard and standarc com-puter of trivia, and hundreds of carefully drawn illus-trations, the CD-ROM contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the experiences of early computer pioneers. If you're the

slightest bit interested in the inner workings of comput-ers, then don't dare to miss this! Over 800 pages in Adobe Acrobat format

CD-ROM Order code BEB2 CD-ROM £21.95

SCROGGIE'S FOUNDATIONS OF WIRELESS AND ELECTRONICS - ELEVENTH EDITION S. W. Amos and Roger Amos

Scroggie's Foundations is a classic text for anyone work-ing with electronics, who needs to know the art and craft of the subject. It covers both the theory and practical aspects of a huge range of topics from value and tube technology, and the application of cathode ray tubes to radar, to digital tape systems and optical recording techniques

Since Foundations of Wireless was first published over 60 years ago, it has helped many thousands of readers to become familiar with the principles of radio and electronics. The original author Sowerby was suc-ceeded by Scroggie in the 1940s, whose name became synonymous with this classic primer for practitioners and students alike. Stan Amos, one of the fathers of modern electronics and the author of many well-known books in the area, took over the revision of this book in the 1980s and it is he, with his son, who have produced this latest version. 400 pages

Temporarily out of print

GETTING THE MOST FROM YOUR MIN TIMETER

R. A. Penfold

This book is primarily aimed at beginners and those of lim-ited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the rela-tive merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discussed.

Checks being discussed. In the main little or no previous knowledge or experience is assumed. Using these simple compo-nent and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects.

96 pages

£5.49

STARTING ELECTRONICS, THIRD EDITION NEW KEITH BRINDLEY

A punchy practical introduction to self-build electronics The ideal starting point for home experimenters, techni-cians and students who want to develop the real hands-on skills of electronics construction.

A highly practical introduction for hobby sts, students, and technicians. Keith Brindley introduces readers to the functions of the main component types, their uses, and the basic principles of building and designing electronic circuits

Breadboard layouts make this very much a ready-to-run book for the experimenter, and the use of multimeter, but not oscilloscopes, and readily available, inexpensive components makes the practical work achievable in a home or school setting as well as a fully equiped lab.

Order code NE42

THE AMATEUR SCIENTIST CD-ROM The complete collection of The Amateur Scientist articles from

Scientific American magazine.

Over 1,000 classic science pro-

288 pages

CD-ROM

£10.99

Plus over 1,000 pages of helpful science techniques that never appeared in Scientific American.

Exciting science projects in: Astronomy; Earth Science; Biology; Physics; Chemistry; Weather ... and much more! The most complete resource ever assembled for hobbyists and professionals looking for novel solutions to research problems.

. Includes extensive Science Software Library with even more science tools

Suitable for Mac, Windows, Linux or UNIX. 32MB RAM minimum, Netscape 4.0 or higher or Internet Explorer 4.0 or higher. Over 1.000 projects

CD-ROM

Music, Audio and Video

Order code BP239

MAKING MUSIC WITH YOUR COMPUTER Stephen Bennett

NEW

£7.45

Stephen Bennett Nearly everyone with musical aspirations also has a com-puter. This same computer can double as a high quality recording studio capable of producing professional recordings. This book tells you what software and hard-ware you will need to get the best results. You'll learn about recording techniques, software and effects, mixing, mastering and CD production. Suitable for PC and Mac users, the book is full of tips, "how to do" topics and illustrations. It's the perfect answer to the question "How do I use my computer to produce my own CD?"

Order code PC120 £10.95

92 pages

QUICK GUIDE TO ANALOGUE SYNTHESIS

lan Waugh Even though music production has moved into the digi-tal domain, modern synthesisers invariably use ana-Even though music production has moved into the digi-tal domain, modern synthesisers invariably use ana-logue synthesis techniques. The reason is simple – analogue synthesis is flexible and versatile, and it's rel-atively easy for us to understand. The basics are the same for all analogue synths, and you'll quickly be able to adapt the principles to any instrument, to edit exist-ing sounds and create exciting new ores. This book describes: How analogue synthesis works; The essen-tial modules every synthesiser has; The three steps to synthesis; How to create phat bass sounds. How to create simple and complex synth patches; Where to find soft synths on the Web. If you want to take your synthesiser – of the hardware or software variety – past the presets, and program your own sounds and effects, this practical and well-illustrated book tells you what you need to know.

60 pages Order code PC118

QUICK GUIDE TO MP3 AND DIGITAL MUSIC

CUICK GUIDE TO MP3 AND DIGITAL MUSIC lan Waugh MP3 files, the latest digital music format, have taken the music industry by storm. What are they? Where do you get them? How do you use them? Why have they thrown record companies into a panic? Will they make music easier to buy? And cheaper? Is this the future of music? All these questions and more are answered in this concise and practical book which explains everything you need to know about MP3s in a simple and easy-to-understand manner. It explains:

understand manner, it explains: How to play MP3s on your computer; How to use MP3s with handheld MP3 players; Where to find MP3s on the Web; How MP3s work; How to tune into Internet radio stations; How to create your own MP3s; How to record your own CDs from MP3 files; Ofher digital audio music formats.

Whether you want to stay bang up to date with the lat-est music or create your own MP3s and join the on-line digital music revolution, this book will show you how. Order code PC119 60 pages \$7.45

ELECTRONIC MUSIC AND MIDI PROJECTS R. A. Penfold

R. A. Pentold Whether you wish to save money, boldly go where no musician has gone before, rekindle the pioneering spir-it, or simply have fun building some electronic music gadgets, the designs featured in this book should suit your needs. The projects are all easy to build, and some are so simple that even complete beginners at electronic project construction can tackle them with ease. Stripboard layouts are provided for every project, together with a wiring diagram. The mechanical side of constructor has largely been lett to individual con-structors to sort out, simply because the vast majority of project builders prefer to do their own thing in this respect.

of project builders prefer to up their with the second respect. None of the designs requires the use of any test equipment in order to get them set up properly. Where any setting up is required, the procedures are very straightforward, and they are described in detail. Projects covered: Simple MIIDI tester, Message grabber, Byte grabber, THRU box, MIDI auto switcher, Auto/manual switcher, Manual switcher, MIDI patchbay, MIDI controlled switcher, Mong and change pedal, Basic change pedal, improved program change pedal, Basic mixer, Stereo mixer, Electronic swell pedal, Metronome, Analogue echo unit.

Order code PC116 £10.95 £5.45 124 pages

THE INVENTOR OF STEREO – THE LIFE AND WORKS OF ALAN DOWER BLUMLEIN Robert Charles Alexander

This book is the definitive study of the life and works of one of Britain's most important inventors who, due to a cruel set of circumstances, has all but been overlooked by history.

by history. Alan Dower Blumlein led an extraordinary life in which his inventive output rate easily surpassed that of Edison, but whose early death during the darkest days of World War Two led to a shroud of secrecy which has covered his life and achievements ever since. His 1931 Patent for a Binaural Recording System Was 60 (reducting that most her bin contengancies)

was so revolutionary that most of his contemporaries regarded it as more than 20 years ahead of its time. Even years after his death, the full magnitude of its detail had not been fully utilized. Among his 128 patents are the principal electronic circuits critical to the development of the world's first elecronic television

svstem. During his short working life, Blumlein pro-

system. During his short working life, Blumlein pro-duced patent after patent breaking entirely new ground in electronic and audio engineering. During the Second World War, Alan Blumlein was deeply engaged in the very secret work of radar devel-opment and contributed enormously to the system eventually to become 'H2S' – blind-bombing radar. Tragically, during an experimental H2S tlight in June 1942, the Halifax bomber in which Blumlein and sever-al colleances were fluing, crasped and all aboard were al colleagues were flying, crashed and all aboard were killed. He was just days short of his thirty-ninth birthday.

420 pages Order code NE32 VIDEO PROJECTS FOR THE

£17.99

ELECTRONICS CONSTRUCTOR R. A. Penfold

Written by highly respected author R. A. Penfold, this book contains a collection of electronic projects specially designed for video enthusiasts. All the projects can be simply constructed, and most are suitable for the newcomer to project construction, as they are assembled on stripboard.

There are faders, wipers and effects units which will add sparkle and originality to your video recordings, an audio mixer and noise reducer to enhance your soundtracks and a basic computer control interface. Also, there's a useful selection on basic video production techniques to get you started.

Complete with explanations of how the circuit works. shopping lists of components, advice on construction, and guidance on setting up and using the projects, this invaluable book will save you a small fortune.

Circuits include: video enhancer, improved video enhancer, video fader, horizontal wiper, improved video wiper, negative video unit, fade to grey unit, black and white keyer, vertical wiper, audio mixer, stereo headphone amplifier, dynamic noise reducer, automatic fader, pushbutton fader, computer control interface, 12 volt mains power supply.

124 pages	rder code PC115	£10.95	£5.45
-----------	-----------------	--------	-------

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION

R. A. Penfold

Practical construction details of how to build a number of audio power amplifiers ranging from about 50 to 300/400 watts r.m.s. includes MOSFET and bipolar transistor designs.

96 pages

Temporarily out of print

Circuits, **Data and** Design

PRACTICAL ELECTRONIC FILTERS

Owen Blahop This book deals with the subject in a non-mathematical way. It reviews the main types of filter, explaining in sim-

ple terms how each type works and how it is used. The book also presents a dozen filter-based projects with applications in and around the home or in the constructor's workshop. These include a number of audio projects such as a rythm sequencer and a multi-voiced electronic organ.

Concluding the book is a practical step-by-step guide to designing simple filters for a wide range of purposes, with circuit diagrams and worked examples.

Order code BP299 £5.49 88 pages DIGITAL ELECTRONICS -A PRACTICAL APPROACH

With FREE Software: Number One SOFTWARE Systems - EASY-PC

Professional XM and Pulsar (Limited Functionality) Richard Monk

Covers binary arithmetic, Boolean algebra and logic gates, combination logic, sequential logic including the design and construction of asynchronous and synchronous circuits and register circuits. Together with a consid-erable practical content plus the additional attraction of its close association with computer aided design including

close association with computer aided design including the FREE software. There is a 'blow-by-blow' guide to the use of EASY-PC Professional XM (a schematic drawing and printed circuit board design computer package). The guide also con-ducts the reader through logic circuit simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with is bost of contect ideas make it an ideal companion for its host of project ideas make it an ideal companion for the integrative assignment and common skills compo-nents required by BTEC and the key skills demanded by GNVQ. The principal aim of the book is to provide a straightforward approach to the understanding of digital electronics.

Those who prefer the 'Teach-In' approach or would rather experiment with some simple circuits should find the book's final chapters on printed circuit board production and project ideas especially useful.

250 pages (large format) Temporarily out of print

A BEGINNER'S GUIDE TO TTL DIGITAL ICs

R. A. Penfold This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates, oscillators, timers, flip/flops, dividers, and decoder circuits. Some practical circuits are used to illustrate the use of TTL devices in the "real world".

£5.45

Order code BP332 142 pages

MICROCONTROLLER COOKBOOK

Mike James The practical solutions to real problems shown in this cook-book provide the basis to make PIC and 8051 devices really work. Capabilities of the variants are examined, and ways to enhance these are shown. A survey of common interface devices, and a description of programming models, lead on to a section on development techniques. The cookbook offers an introduction that will allow any user, novice or experienced, to make the most of micro any controllers.

£23.99 240 pages Order code NE26

RADIO BYGONES

We also carry a selection of books aimed at readers of EPE's sister magazine on vintage radio Radio Bygones. These books include the Comprehensive Radio Valve Guides (five books with a Free copy of the Master Index) for just £15. Also Jonathan Hill's excellent Radio Radio, a comprehensive book with hundreds of photos depicting the development of the British wireless set up to the late 1960s.

The four volumes of our own Wireless For the Warrior by Louis Meulstee are also available. These are a technical history of radio communication equipment in the British Army and clandestine equipment from pre-war through to the 1960s.

For details see the shop on our UK web site at www.epemag.co.uk or contact us for a list of Radio Bygones books.

Project Building & Testing

ELECTRONIC PROJECTS FOR EXPERIMENTERS R. A. Penfold

Many electronic hobbyists who have been pursuing their hobby for a number of years seem to suffer from the dreaded "seen it all before" syndrome. This book is fairly and squarely aimed at sufferers of this complaint, plus any other electronics enthusiasts who yearn to try something a bit different. No doubt many of the projects featured here have practical applications, but they are all worth a try for their interest value alone.

The subjects covered include:- Magnetic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scramble/descrambler, Bat detector, Bat style echo loca-tion, Noise cancelling, LED stroboscope, Infra-red "torch", Electronic breeze detector, Class D power amplifier, Strain gauge amplifier, Super hearing aid.

Order code BP371 \$5.45

FAULT-FINDING ELECTRONIC PROJECTS R. A. Penfold

138 pages

Starting with mechanical faults such as dry joints, short-circuits Statung with their ballical labels social as us yon to solve the etc, coverage includes linear circuits, using a meter to make voltage checks, signal tracing techniques and fault finding on logic circuits. The final chapter covers ways of testing a wide range of electronic components, such as resistors, capacitors, operational amplifiers, diodes, transistors, SCRs and triacs, with the aid of only a limited amount of test equipment.

The construction and use of a Tristate Continuity Tester, a Signal Tracer, a Logic Probe and a CMOS Tester are also included

Temporarily out of print 136 pages PRACTICAL FIBRE-OPTIC PROJECTS

. A. Penfold While fibre-optic cables may have potential advantages over ordinary electric cables, for the electronics enthusiast it is probably their novelty value that makes them worthy of exploration. Fibre-optic cables provide an innovative interesting alternative to electric cables, but in most cases they also represent a practical approach to the problem. This book provides a number of tried and d circuits for projects that utilize fibre-optic cables

The projects include:- Simple audio links, F.M. audio

link, P.W.M. audio links, Simple d.c. links, P.W.M. d.c. link, P.W.M. motor speed control, RS232C data links, MIDI link, Loop alarms, R.P.M. meter.

ents used in these designs are readily All the compon available, none of them require the constructor to take out a second mortgage.

132 pages DISCOVERING PICS W.D.Phillips A good introduction to PIC programming, covering everything you need to know to get

you started. No previous knowledge of microcontrollers is required, but some previous experience with electronic circuits is assumed. Covers the basic concept of a micro-controller, fundamentals of a PIC-based circuit and using the MPLAB program. Further chapters introduce binary, PIC architecture, the instruction set, the PIC memory map PIC architecture, the instruction set, the PiC memory map and special registers plus real world programming. Four simple projects are also fully described; a Wavy Wand, an Electronic Dice, a Games Timer and a Pulse Monitor. The associated CDROM contains the book in PDF format,

MPLAB (plus instruction manuals in PDF format) and all the programs covered in the book as assembler (ASM) files.

In addition a p.c.b. based hardware kit is also available that makes up into the Wavy Wand which will spell out a short message via a line of i.e.d.s when waved through the air. 190 pages, A4 spiral bound

Book + CDROM Order code DOC1 £22.00

Book + CDROM + Hardware Order code DOC2 £28.50

For a further selection of books see the next two issues of EPE

BOOK ORDERING DETAILS

All prices include UK postage. For postage to Europe (air) and the rest of the world (surface) please add £2 per book. For the rest of the world airmail add £3 per book. CD-ROM prices include VAT and/or postage to anywhere in the world. Send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or card details, Visa, Mastercard, Amex, Diners Club or Maestro to:

DIRECT BOOK SERVICE, WIMBORNE PUBLISHING LTD 408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND

Orders are normally sent out within seven days of receipt, but please allow 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books and CD-ROMs see the next two issues of EPE. Tel 01202 873872 Fax 01202 874562. Email: dbs@epemag.wimborne.co.uk Order from our online shop at: www.epemag.co.uk/shopdoor.htm

BOOK/CD-ROM ORDER FORM

Full name:	
Address:	
Telephone No:	
Signature:	
□ I enclose cheque/PO payable to DIRECT BOOK SERVICE for £	
Please charge my card £ Card expiry date	
Card Number Maestro Issue No.	
Card Security Code (The last 3 digits on or just below the signature strip)	
Please send book/CD-ROM order codes:	
Please continue on separate sheet of paper if necessary	

If you do not wish to cut your magazine, send a letter or copy of this form

World Radio History

Email: john.becker@wimborne.co.uk

of the general points readers have raised. Have you anything interesting to say?

Drop us a line!

WIN AN ATLAS LCR ANALYSER WORTH £69

An Atlas LCR Passive Component Analyser, kindly donated by Peak Electronic Design Ltd., will be awarded to the author of the Letter Of The Month each month.

The Atlas LCR automatically measures inductance from 1 μ H to 10H, capacitance from 1pF to 10,000 μ F and resistance from 1 Ω to 2M Ω with a basic accuracy of 1%.

All letters quoted here have previously been replied to directly.

★ LETTER OF THE MONTH ★

Dalek Gigs!

I've recently been chatting with Mike Boyden, who has built several of my Cybervox Dalek voice emulators (July '05) and which are being used by various Dalek "clubs". The concept of such "clubs" greatly amused my wife and I told Mike so. He replied:

Tell your wife that Dalek stuff is far too serious a matter to be left in the hands of children! (I only found out about it when approached by a local guy who bought a Dalek from a (BBC licensed would you believe) workshop.

He earns a very tidy sum doing "gigs" with his Dalek which have included (and I am not making this up):

Weddings

• A funeral (to press the button to move the casket into the next world -I kid you not)

Shopping Mall promotions (he once

Crossword Update

Dear EPE,

As a result of chatting with several readers I have made some updates to the *Crossword Solver* code (May '05). These changes address the following issues:

1. The l.c.d. access routines would not always start properly on power up.

2. Words greater than 16 characters in length had a character missing when displayed.

3. The unit did not reject a request for a word longer than its biggest entry, resulting in rubbish being displayed.

That was quite handy feedback from readers since 1 am using the 4-bit display method in my forthcoming *Camera Watch Mk2* project!

A quick question – do you have any PIC assembly code, or an algorithm, for taking a 16-bit unsigned binary number and displaying it in decimal ASCII? All the algorithms I have come across use the "divide by 10" technique which is quite "expensive", even on a PIC18F. I'll use them if necessary but I was wondering if there was a better algorithm?

Mike Hibbett, via email

Thanks for the updated code Mike, which is now on our Downloads site (via www.epemag.co.uk).

Regarding your query, I use Peter Hemsley's BIN2DEC (binary to decistopped a running thief by shouting: "STOP OR I WILL EXTERMINATE YOU ..." at which point the thief stopped frozen to the spot, whereupon he was carted off by security people)

• Appearances at Strip Clubs (I didn't ask ...)

• POP Festivals

Oh yes, not to mention ... he has been set on fire, had water poured onto him (disabling the Dalek and all the electronics) and fallen off the stage and into a crowd of 50,000 drunken head bangers at some sort of rave event.

So tell her some Daleks have found a very eventful life on earth – he he he ... Mike Boyden, via email

That's hilarious Mike, thanks for sharing it. And thanks too for your IU offering in this issue – the Dalek lighting interface for Cybervox. I should've thought of doing that myself originally!

mal) routine, then OR (or ADD) 48 to all decimal digit values (each 0 to 9) so that an l.c.d. shows them as ASCII characters. You'll find many examples of my use of this in my published software. Peter's excellent 32-maths routines are on our Downloads site.

Rally Components

Dear EPE,

Your July '05 Letter of the Month cast doubts about buying cheap bargain components at rallies. I agree it is most frustrating to spend time and effort constructing a project, only to find it doesn't work because of cheap faulty components.

This is self-inflicted punishment. If one goes to the time and trouble to remove components from disregarded p.c.b.s and expect them to work – well, I wonder! My time is more valuable than this wasted exercise.

I consider it good practice to test all the components before I solder them into a project to verify they are within the correct tolerance. This saves time trying to trace a defective component after the circuit is built.

I buy my spares from a reputable small firm which attends all the major rallies, and is very reasonable pricewise.

Ken Barry, Blackpool, via email

Thanks for that Ken.

PIC Spanish Translator

Dear EPE,

After recently building your wonderful *TK3* PIC programmer, and going through the *PIC Tutorial*, I have been considering trying to develop a Spanish translator/study aid and was wondering whether you have anything similar planned for a future project?

Ideally I would like voice playback and recognition but maybe this would be stretching a PIC too far! Playback seems possible though by using a PWM output as the D to A converter but it would require an awfully large memory to store the samples.

Maybe something similar to the *Crossword Solver* (May '05) would suffice if it had the added feature of a couple of games, hangman etc, to help you learn new vocabulary. Again though 1'm coming across problems in getting a dictionary file that I could use to base the design on and that comes in a compressed format so it will fit into a PIC's program memory along with the program code.

My final point is whether to code in assembly language, C or even BASIC? It seems that the device doesn't need to run extremely quickly so I'm thinking that C or BASIC may be the best way to go if I can get my hands on a freeware compiler.

I'd like to actually get this design off the ground one day and so I was hoping that you or one of your readers could possibly point me in the right direction or have any advice.

Thank you for listening and supplying such a thought provoking magazine. Hoping that now I have TK3 up and running and with the help of your magazine I may at last be able to build my own PIC controlled device.

Lee Archer, via email

Thanks for the kind words Lee! A translator is not something that should be undertaken lightly by anyone. Whilst in principle the technique needed is simple, its implementation would be complex because of the vast vocab such a device would need, and that needs lots of memory. And voice recognition is way beyond what hobbyists can realistically achieve.

Also, there are commercial devices available, I have a German/English unit for instance – key in a word in either language and the equivalent in the other is shown on screen.

I'm not a great user of C and would suggest that the compactness of code written in PIC assembler might be better.

So best of luck if you attempt it, but it's not something I would feel comfortable trying, although I recognise the challenge!

As One Door Opens ...

Dear EPE,

I feel that the increased availability of the Internet and "black box" technology has been the final "nail in the coffin" for hobbies like amateur radio, weather satellite receiving and data communications by the airwaves. Increased competition in the consumer electronics manufacturing industry has also made the hobbyist construction of audio equipment largely unfeasible. But I'm pleased that EPE continues to contain many inventive designs.

We must, however, remember that current projects using the PIC processors may seem impressive today but years ago a designer would only have had a limited armoury of components including passive devices, semiconductors and a range of discrete analogue and digital i.c.s. Here the hardware design would have to be finalised and could not be "tweaked" later in the software.

What of the future for amateur electronics? The promised invasion of surface mounted devices failed to lead to the demise of dual-in-line integrated circuits, as the EU safety and EMC directive failed to stem the interest in amateur electronics and I don't suppose the introduction of lead-free solder in the future will do so either.

As long as there are people willing to design and publish high quality electronic projects and manufacturers produce suitable devices there seems no need to worry about the popularity of the hobby. Chris Lewis, via email

To take your first point first, Chris, I think many will disagree with you about the demise of amateur radio. There is considerable evidence of thriving HAM activity, even though it may no longer be publicised so heavily as it used to be.

Furthermore, despite the availability of low cost (and not so low cost) audio equipment, there is still an interest in building one's own amplifier, and indeed there is considerable satisfaction to be gained by doing so. Reader response to Raymond Haigh's articles in this area prove the point.

But you are right about PICs in a sense – technology does move on, and techniques change because of that. Sooner or later something more advanced than a microcontroller may indeed come along and ultimately replace it.

But it's a case of "as one door opens another one shuts – partly". The microcontroller is not going to disappear until something better appears, even then it is likely to continue to exist alongside the new technology. Look at how valves were once dominant, but when transistors came along, valves were not totally ousted, and continue to be used even now in several forms. Nor have i.c.s replaced transistors. There is a role for both.

And as long as technology exists, there will always be those who wish to explore it in a variety of ways, including the construction of designs based upon it, and so will magazines like EPE cater for such interests, in both practical and tutorial roles.

Pain Monitor

Dear EPE,

I read with interest your article on how to build a pain monitor (Aug '05). We have developed a number of advanced units similar to yours (8051 based) over the last six years and have presented many studies, using the devices, to consultant anaesthetists at national meetings. Our professor is head of the pain management service at the University Hospitals of Leicester and director of UHL research and development, he specialises in pain management.

We have conducted considerable research in the area of portable pain measurement devices and have worked with large companies like GSK to evaluate our devices. We are looking into commercial opportunities, but unfortunately the market is very small and the free pain gauge that you show is widely used, even though it is not the correct format compared to paper VAS scores.

There was a commercial unit sold called the Clinitrac, this is no longer available due to poor sales and the advent of PDA questionnaire systems with VAS. PDA systems have been validated and are widely used by drug companies and researchers of chronic and acute pain, although we feel that they are not entirely suitable.

I think that your unit would be useful for a doctor/patient that wishes to gain a rough estimate of pain scores but would not be suitable for controlled research data.

Of course, if we could really measure pain electronically, instead of the subjective measures currently used, the unit would be on every doctors wish list. The problem is as elusive as measurement of depth of anaesthesia, although some progress has been made in this area.

I like your wildlife monitor idea, given folks increased interest in the environment, this has great potential and would provide very useful data for researchers in this area.

Ed Pallett, University Division of Anaesthesia, Leicester Royal Infirmary, via email

Thanks for your interesting letter Ed, which I sent on to Mark Piper, the anaesthetist who inspired my design. One of the first questions I asked him was about electrically monitoring pain, and he confirmed it's not possible, although I had expected that there might be brain waves which could be monitored in this respect.

Laser ranges with PICs

Dear EPE,

Reading the August '05 *Readout*, I thought you might like to ponder the way radio altimetry worked. The frequency of transmission is linearly swept so that the return is at a slightly different frequency to the transmission, and the difference gives the range. If the difference frequency is small enough it could be handled by a PIC? But I don't know if the frequency of a laser can be swept.

John Waller, Plainfield, USA, via email

That's intriguing John! I'll think on it, thank you.

GPS Validity

Dear EPE,

I refer to my letter about GPS validity in Aug '05 (thanks for printing it by the way).

It seems to me the Standard is not so standard after all! Perhaps I should explain a bit more. The values I refer to come directly from the NMEA GGA Standard and the validity flag can actually have any value from 0 to 8 (although many values are not used). This standard is used by all professional GPS equipment, Trimble Navigation is probably the industry standard.

The following was copied from www.gpsinformation.org/dale/nmea.htm

GGA – essential fix data which provide 3D location and accuracy data, e.g.:

\$GPGGA,123519,4807.038,N,01131.000, E,1,08,0.9,545.4,M,46.9,M,,*47

GGA	Global Positioning
123519 4807.038,N 01131.000,E 1 Fix quality:	System Fix Data Fix taken at 12:35:19 UTC Latitude 48 deg 07.038' N Longitude 11 deg 31.000' E 0 = invalid 1 = GPS fix (SPS) 2 = DGPS fix 3 = PPS fix 4 = Real Time Kinematic 5 = Float RTK 6 = estimated (dead reck-oning) (2.3 feature)
	7 = Manual input mode
08	8 = Simulation mode Number of satellites being tracked
0.9	Horizontal dilution of posi-
545.4,M	Altitude, Meters, above mean sea level
46.9,M	Height of geoid (mean sea level) above WGS84 ellip- soid
(empty field)	Time in seconds since last DGPS update
(empty field) *47	DGPS station ID number the checksum data, always begins with * Colin Gill, via email

Now the fog clears – thanks for the info Colin! So I'll keep my decoding as is for GPRMC (I don't use GGA).

FR4 Laminate

Dear EPE.

I have been buying your mag for years now and this is the first time I have needed to ask a question.

I need to get hold of some unclad, i.e. plain with no copper, FR4 laminate, or equivalent, to make a circuit board that I will put turret tags or equivalent onto.

Can you point me in a direction where I can get some?

Paul, via email

Sorry Paul, I regret that I don't know of any supplier – ask readers directly through our Chat Zone (via www.epemag.co.uk). By quoting you now in Readout, let's see if this also gets you any reader response via the editorial office.

PCB SERVICE

Printed circuit boards for most recent *EPE* constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for *airmail* outside of Europe. Remittances should be sent to The PCB Service, *Everyday Practical Electronics*, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872; Fax 01202 874562; Email: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag. wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to *Everyday Practical Electronics* (Payment In £ sterling only). NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail. Back numbers or photostats of articles are available if required – see the *Back Issues* page for details. We do not supply kits or components for our projects. *Please check price and availability in the latest issue. A large number of older boards are listed on our website.*

A large number of older boards are listed on our website. Boards can only be supplied on a payment with order basis.

ſ

PROJECT TITLE	Order Code	Cost
Infra-Guard APR '04	439	£5.07
★ Moon Clock	442	£5.71
★ Teach-In '04 Part 6 – Software only ★ EPE Seismograph Logger		÷ .
Control Board	440	
Sensor Amp. Board	441 }pai	£6.50
In-Car Lap-Top PSU MAY '04	443	£4.60
Beat Balance Metal Detector	444	£4.60
Teach-In '04 Part 7 – Transmitter Receiver	445 446	£4.91 £4.75
Moisture	440	£4.75 £4.44
+ PIC Quickstep JUNE '04	448	£5.71
Body Detector MkII	449	£4.91
★ Teach-In '04 Part 8 - Software only	. .	-
★ MIDI Synchronome – Software only Hard Drive Warbler JULY 04	450	-
★Bongo Box	450	£4.60 £6.02
Portable Mini Alarm - Sensor	452	£5.23
- Counter	453	£5.07
★ Teach-In '04 Part 9		
PIC Combination Lock Alarm Monitor	454 455	£5.07 £5.71
Keyring L.E.D. Torch AUG '04	456	£4.12
★ Teach-In '04 Part 10 - PIC Curtain or Blind Winder	457	£5.39
Simple F.M. Radio – F.M. Tuner	458	£5.07
- Tone Control	459	£4.75
 Audio Power Amp (TDA2003) Power Supply 	347	£4.60 £5.39
★ EPE Scorer - Control Board	461	£6.66
- Display Board	462	£7.93
- Slave Board	463	£5.55
★ PIC to Mouse/Keyboard – Software only EPE Wart Zapper SEPT '04	464	£4.60
*Radio Control Failsate	465	£4.76
★ AlphaMouse Game	466	£4.60
★ Rainbow Lighting Controller - Software only	-	-
★ Moon and Tide Clock Calendar OCT '04	467	£5.55
Volts Checker ★ Smart Karts – Software only	468	£4.20
Logic Probe NOV '04	469	£4.76
Thunderstorm Monitor	470	£5.39
MW Amplitude Modulator – V.F.O./Buffer	1224	
– V.F.O./Burrer – Modulator/PA	471 472	£4.76 £5.07
- Power Supply	473	£4.76
Super Vibration Switch DEC '04	474	£4.75
Wind Direction Indicator	475	£6.18
	476	£4.75
- Multipurpose Board	477 478	£4.44 £4.75
- Simple Cycler	479	£4.44
- Luxeon V Controller	480	£4.44
- Power Supply	473	£4.76
Light Detector JAN '05 ★ Camera Watch	481 482	£4.44
Gate Alarm – Oscillator	482	£6.03 £4.92
- Delay/Timer	484	£4.92
Sneaky – Transmitter FEB 105	485	£4.60
	486	£4,91
	487 488	£5.87
Sound Card Mixer	489	£5.71 £7.29
Headphone Monitor MAR 05	490	£5.71
EPE Cat Flap	491	£6.02
★Bingo Box – Main	492	£9.04
- Big Digit Display Spontaflex Radio- Tuner APR '05	493 494	£10.31
- Coil Pack	494	£5.55 £5.71
- Audio Amplifier	496	£5.55
- Tuning Capacitor Board	406	£4.28
★ Safety Interface Back-To-Basics 1– Fridge/Freezer Door Alarm	497	£6.18
Daux-10-Dasius I- FRUge/FIG8281 D001 Alatti	498	£5.39
the second se		

PROJECT TITLE	Order Code	Cost
★Crossword Solver MAY 05	499	£6.66
20W Amplifier Module	500	£5.14
Back-To-Basics 2 - Water Level Alarm	501	£5.39
- Burglar Alarm	502	£5.87
★ PIC Ultrasonic Scanner JUN '05	503	£6.66
★ Radio Control Model Switcher	504	£5.87
Back-To-Basics 3 – Scarecrow	505	£5.55
– Digital Lock	506	£6.66
CompactFlash Interface Board	507	£6.66
LF/VLF Converter JUL 105		
 Fixed Capacitor Board 	508	£5.71
- Mixer/Oscillator Board	509	£5.86
– Buffer Amplifier	510	£5.23
– Q-Multiplier	511	£5.23
 Tuning Capacitor Board 	406	£4.28
Back-To-Basics 4 – Doorchime	512	£6.34
- Electronic Dice	513	£6.02
★ Cybervox	514	£6.82
Multi-Clap Switch	515	£6.66
Audio System AUG '05		
- Preamplifier	516	£6.02
 Mic. Supply Board 	517	£5.23
- Power Amp	518	£6.02
★ Pain Monitor	519	£7.14
MotorAmp	520	£7.45
Back-To-Basics 5		
– Kitchen Timer	521	£5.87
- Room Thermometer	522	£6.02
All-Band Radio – Full Version SEPT 05	523	£5.71
– Mini Version	524	£5.23
★ Multicore Cable Tester – Main	525	£6.19
- Active	526	£5.55
Back-To-Basics 6 – Daily Reminder	527	£6.19
- Whistle Switch	528	£5.87
★Model Railway Signal Control	529	£6.19
★ Snooker/Darts Scoreboard	530	£8.72
Photic Phone – Transmitter OCT 05 – Receiver	531 532 }pair	£6.98
Back-To-Basics 7 - Parking Radar	533	£5.71
- Telephone Switch	534	£5.55
★ Haloween Howler	535	£6.02
★ PIC-Based USB Interface	536	£6.19

EPE SOFTWARE

All software programs for EPE Projects marked with an asterisk, and others previously published, can be downloaded free from our Downloads site, accessible via our home page at: www.epemag.co.uk.

EPE PRINTE	D CIRCUII	BOARD S	ERVICE
Order Code	Project	Quantity	Price
	-		
Name			
Address	•••••••••••••••••••••••••••••••••••••••		
	••••••		•••••
Tel. No			
I enclose payment of	£ (che	eque/PO in £ ster	ting only) to:
VISA			Down Club
Pra		ectronics	frita vrzad w rząd
105.07Carb	rCard, Ame		Maestro
	isa or Switcl	n/Maestro	
Cord No.			
Card No.			
Valid From			
Card Security Code (The last 3 digits or	n or just under	ch/Maestro Issi the signature :	ue No strip)
Signature			
NOTE: You can also	order p.c.b.s by rnet site on a se	phone, Fax, Ema	il or via our
		e.co.uk/shopdoe	or.htm

Everyday Practical Electronics, October 2005

ELECTRONICS MANUALS ON CD-ROM £29.95 EACH

ELECTRONICS SERVICE MANUAL

Everything you need to know to get started in repairing electronic equipment

• Around 900 pages • Fundamental principles • Troubleshooting techniques • Servicing techniques • Choosing and using test equipment • Reference data • Manufacturers' web links

- Easy-to-use Adobe Acrobat format Clear and simple layout
- Vital safety precautions
 Professionally written
 Supplements

SAFETY: Safety Regulations, Electrical Safety and First Aid. UNDERPINNING KNOWLEDGE: Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and Manufacturers' Data, etc. PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components. TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc. SERVICING TECHNIQUES: The Manual includes vital guidelines on how to Service Audio Amplifiers. The Supplements include similar guidelines for Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc. TECHNICAL NOTES: Commencing with the IBM PC, this section and the Supplements deal with a very wide range of specific types of equipment - radios, TVs, cassette recorders, amplifiers, video recorders etc. REFERENCE DATA: Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

/The essential reference work for everyone studying electronics

THE MODERN ELECTRONICS MANUAL

• Over 800 pages • In-depth theory • Projects to build • Detailed assembly instructions • Full components checklists • Extensive data tables • Manufacturers' web links • Easy-to-use Adobe Acrobat format • Clear and simple layout • Comprehensive subject range • Professionally written • Supplements

BASIC PRINCIPLES: Electronic Components and their Characteristics; Circuits Using Passive Components; Power Supplies; The Amateur Electronics Workshop; The Uses of Semiconductors; Digital Electronics; Operational Amplifiers; Introduction to Physics, including practical experiments; Semiconductors and Digital Instruments. CIRCUITS TO BUILD: The Base Manual describes 12 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s. EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply look up the glossary and you'll find a comprehensive definition in plain English. The Manual also covers Safety and provides web links to component and equipment Manufacturers and Suppliers.

Full contents list available online at: www.epemag.wimborne.co.uk

SUPPLEMENTS: Additional CD-ROMs each containing approximately 500 pages of additional information on specific areas of electronics are available for £19.95 each. Information on the availability and content of each Supplement CD-ROM will be sent to you.

Presentation: CD-ROM suitable for any modern PC. Requires Adobe Acrobat Reader which is included on the CD-ROM. Wimborne Publishing Ltd., Dept Y10, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.

	ORDER FORM
THE MODERN ELECTRONICS MANUAL CD-ROM	Simply complete and return the order
ELECTRONICS SERVICE MANUAL CD-ROM I enclose payment of £29.95 (for one Manual) or £49.90 for both Manuals (saving £10 by	form with your payment to the following address:
ordering both together).	Wimborne Publishing Ltd,
FULL NAME	Dept. Y10,
(PLEASE PRINT)	408 Wimborne Road East, Ferndown,
ADDRESS	Dorset BH22 9ND
	Price includes postage to anywhere in
	the World
POSTCODE	
	We will happily exchange any faulty CD-ROMs but since the content can be printed
	out we do not offer a refund on these items.
I enclose cheque/PO in UK pounds payable to Wimborne Publishing Ltd.	
Please charge my Visa/Mastercard/Amex/Diners Club/Switch/Maestro	Your CD-ROM(s) will be
Card No Switch/Maestro Issue No	posted to you by first class mail or airmail, normally
Valid From Expiry Date	within four working days of receipt of your order
Card Security Code	

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our sales figures prove it. We have been the leading monthly magazine in this market for the last twenty years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £10 (+VAT) per single column centimetre (minimum 2.5cm). The prepaid rate for classified adverts is 40p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. **VAT must be added.** Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Phone: 01202 873872. Fax: 01202 874562. Email: epeads@wimborne.co.uk

For rates and information on display and classified advertising please contact our Advertisement Manager, Stewart Kearn as above.

TOTALROBOTS

ROBOTICS, CONTROL &

ELECTRONICS TECHNOLOGY High quality robot kits and components UK distributor of the OOPic microcontroller

> Secure on-line ordering Rapid delivery Highly competitive prices

Visit www.totalrobots.com

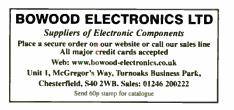
Tel: 01737 371688

X-10[®] Home Automation We put *you* in control[™]

Why tolerate when you can automate? An extensive range of 230V X-10 products and starter kits available. Uses proven Power Line Carrier technology, no wires required.

Products Catalogue available Online. Worldwide delivery.

Laser Business Systems Ltd.



E-Mail: info@laser.com http://www.laser.com Tel: (020) 8441 9788 Fax: (020) 8449 0430

N.R. BARDWELL LTD ELECTRONIC COMPONENT SUPPLIES Stock of I.e.d.s, Semiconductors, Resistors, Capacitors and many more items. Send 44p for lists or visit out secure online ordering of www.bardwells.co.uk 288, Abbeydale Road, Sheffield. S7 1FL Email - sales@bardwells.co.uk

www.pawbooks.co.uk

Using ICs. Pinout diagrams. Numeric control. Interactive Demonstrations. Write, save, load your own programs. See ICs working on screen.

The Versatile, Programmable On Screen Display System www.STV5730A.co.uk PRL-HINC PR

Please mention EPE when replying to advertisements

To advertise your company Contact: Stewart Kearn

Tel: 01202 873872

Email: stewart.kearn@wimborne.co.uk

BTEC ELECTRONICS TECHNICIAN TRAINING

NATIONAL ELECTRONICS VCE ADVANCED ICT HNC AND HND ELECTRONICS FOUNDATION DEGREES NVQ ENGINEERING AND IT DESIGN AND TECHNOLOGY

LONDON ELECTRONICS COLLEGE 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: (020) 7373 8721 www.lec.org.uk

VVITRANSFORMERS

Transformers and Chokes for all types of circuits including specialist valve units Custom design or standard range High and low voltage

Variable Voltage Technology Ltd

Unit 3, Sheat Manor Farm, Chillerton, Newport, Isle of Wight, PO30 3HP Tel: 0870 243 0414 Fax: 01983 721572 email: sales@vvt-cowes.freeserve.co.uk www.vvtttransformers.co.uk

Miscellaneous

MAKE YOUR HOBBY A BUSINESS. Earn money making a unit for the partially sighted. Exclusive areas. Outlets provided. Full assembly Instruction manual and suppliers. DETAILS 02392 830158

VALVES AND ALLIED COMPONENTS IN STOCK. Phone for free list. Valves, books and magazines wanted. Geoff Davies (Radio), tel. 01788 574774.

FREE! PROTOTYPE PRINTED CIRCUIT BOARDS! Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

PRINTED CIRCUIT BOARDS – **QUICK SERVICE.** Prototype and production artwork raised from magazines or draft designs at low cost. PCBs designed from schematics. Production assembly, wiring and software programming. For details contact Patrick at Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX. Phone 028 9073 8897, Fax 028 9073 1802, Email agar@argonet.co.uk

1/2 PRICE VALVES AND RADIO & ELECTRONIC COMPONENTS

Catalogues available for £1 refundable on 1st order. Over 1480 different valves and over 500 radio/electronic components. W. Burcher, 676 Foxhall Road, Ipswich, Suffolk, IP3 8NQ.TEL: 01473 272218

WANTED GRUNDIG YACHT BOY RADIO. Must be model 210 from between 1970-1974. Must be in mint condition. Will pay very good money for a set in mint condition. Contact Peter Tankard on Tel 0114 2316321

Everyday Practical Electronics, October 2005

World Radio History

Rechargeable Batteries With Solder Tags

NICAD

AA 2000mAh£2.82 C 4Ah£4.70 D 9Ah£7.60 PP3 150mAh£4.95	AA 650mAh £1.41	1
C 4Ah£4.70	C 2.5Ah£3.60	I
D 9Ah£7.60	D 4Ah£4.95	
PP3 150mAh		

Instrument case with edge connector and screw terminals

Size 112mm x 52mm x 105mm tall

NIMH

BP3 RP7 RP10 RP4

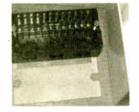
RP8 RP11

 St. Theory blocks

 RESISTOR PACKS - C.Film

 5 each value - total 365 0.25W
 £3.05

 10 each value - total 730 0.25W
 £4.55


 5 each value-total 345 0.5W
 £6.45

 5 each value-total 345 0.5W
 £4.20

 10 each value-total 369 0.5W
 £6.85

 1 000 popular values 0.5W
 £6.85

This box consists of a cream base with a PCB slot, a cover plate to protect your circuit, a black lid with a 12 way edge connector and 12 screw terminals built in (8mm pitch) and 2 screws to hold the lid on. The cream bases have minor marks from dust and handling price $\pounds 2.00 + VAT(=\pounds 2.35)$ for a sample or $\pounds 44.00+VAT$ (= $\pounds 51.70$) for a box of 44.

866 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1 6Ah sub C batteries (42 x 22 dia. the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily £7.46 + VAT = £8.77

Please add £1.66 + VAT = £1.95 postage & packing per order

JPG Electronics

Shaws Row, Old Road, Chesterfield, S40 2RB. Tel 01246 211202 Fax 01246 550959 www.JPGElectronics.com Mastercard/Visa/Switch Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

-			
SL	IERWOOD	EL E	CTRONICS
3			
	FREE CO	MPONE	NTS
Bu	y 10 x £1 Special Packs a	Ind choos	e another one FREE
SP1	15 x 5mm Red LEDs	SP135	5 x Miniature slide switches
SP2	12 x 5mm Green LEDs	SP136	3 x BFY50 transistors
SP3	12 x 5mm Yellow LEDs	SP137 SP138	4 x W005 1-5A bridge rectifiers 20 x 2-2/63V radial elect. caps.
SP5 SP6	25 x 5mm 1 part LED clips 15 x 3mm Red LEDs	SP140	3 x W04 1.5A bridge rectifiers
SP0 SP7	12 x 3mm Green LEDs	SP142	2 x CMOS 4017
SPB	10 x 3mm Yellow LEDs	SP143	5 Pairs min, crocodile clips
SP9	25 x 3mm 1 part LED clips	01140	(Red & Black)
SP10	100 x 1N4148 diodes	SP144	5 Pairs min.crocodile clips
SP11	30 x 1N4001 diodes		(assorted colours)
SP12	30 x 1N4002 diodes	SP146	10 x 2N3704 transistors
SP18	20 x BC182 transistors	SP147	5 x Stripboard 9 strips x
SP20	20 x BC184 transistors		25 holes
SP23	20 x BC549 transistors	SP151	4 x 8mm Red LEDs
SP24	4 x CMOS 4001	SP152	4 x 8mm Green LEDs
SP25	4 x 555 timers	SP153	4 x 8mm Yellow LEDs
SP26	4 x 741 Op.Amps	SP154	15 x BC548 transistors
SP28	4 x CMOS 4011	SP156	3 x Stripboard, 14 strips x
SP29	3 x CMOS 4013	CD4CO	27 holes 10 x 2N3904 transistors
SP33	4 x CMOS 4081	SP160 SP161	10 x 2N3904 transistors
SP34	20 x 1N914 diodes 25 x 10/25V radial elect. caps	SP164	2 x C106D thyristors
SP36 SP37	12 x 100/35V radial elect. caps	SP165	2 x LF351 Op.Amps
SP38	15 x 47/25V radial elect caps	SP166	20 x 1N4003 diodes
SP39	10 x 470/16V radial elect. caps	SP167	5 x BC107 transistors
SP40	15 x BC237 transistors	SP168	5 x BC108 transistors
SP41	20 x Mixed transistors	SP171	8 Metres 18SWG solder
SP42	200 x Mixed 0.25W C.F. resistors	SP172	4 x Standard slide switches
SP47	5 x Min. PB switches	SP173	10 x 220/25V radial elect. caps
SP49	4 x 5 metres stranded core wire	SP174	20 x 22/25V radial elect. caps
SP101	8 Metres 22SWG solder	SP175	20 x 1/63V radial elect. caps
SP102	20 x 8-pin DIL sockets	SP177	10 x 1A 20mm quick blow fuses
SP103	15 x 14-pin DIL sockets	SP178	10 x 2A 20mm quick blow fuses
SP104	15 x 16-pin DIL sockets	SP181	5 x Phono plugs - asstd colours
SP105	4 x 74LS00	SP182	20 x 4-7/63V radial elect. caps.
SP109	15 x BC557 transistors	SP183 SP187	20 x BC547 transistors 15 x BC239 transistors
SP112 SP115	4 x CMOS 4093 3 x 10mm Red LEDs	SP187	4 x 5 metres solid core wire
SP115 SP116	3 x 10mm Green LEDs	SP192	3 x CMOS 4066
SP118	2 x CMOS 4047	SP195	3 x 10mm Yellow LEDs
SP124	20 x Assorted ceramic disc caps	SP197	6 x 20 pin DIL sockets
SP126	6 x Battery clips - 3 ea.	SP198	5 x 24 pin DIL sockets
120	PP3 + PP9	SP199	5 x 2.5mm mono jack plugs
SP130	100 x Mixed 0.5W C.F. resistors	SP200	5 x 2.5mm mono jack sockets
SP131	2 x TL071 Op.Amps		- ,
SP133	20 x 1N4004 diodes	0005	Optimized in the line of the
SP134	15 x 1N4007 diodes		Catalogue available £1 inc.
1		P&F	or FREE with first order.

P&P or FREE with first order. P&P £1.50 per order. NO VAT Cheques and Postal Orders to: Sherwood Electronics, 7 Williamson St., Mansfield, Notts. NG19 6TD.

ADVERTISERS INDEX

)5)5
)5
)5
93
66
(ii)
35
71
25
74
71
iv)
36
iii)
04
73
81
04
01
13
69 26
36
15
71
1 6 3

ADVERTISEMENT OFFICES:

408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND PHONE: 01202 873872 FAX: 01202 874562 EMAIL: epeads@wimborne.co.uk

For Editorial address and phone numbers see page 675

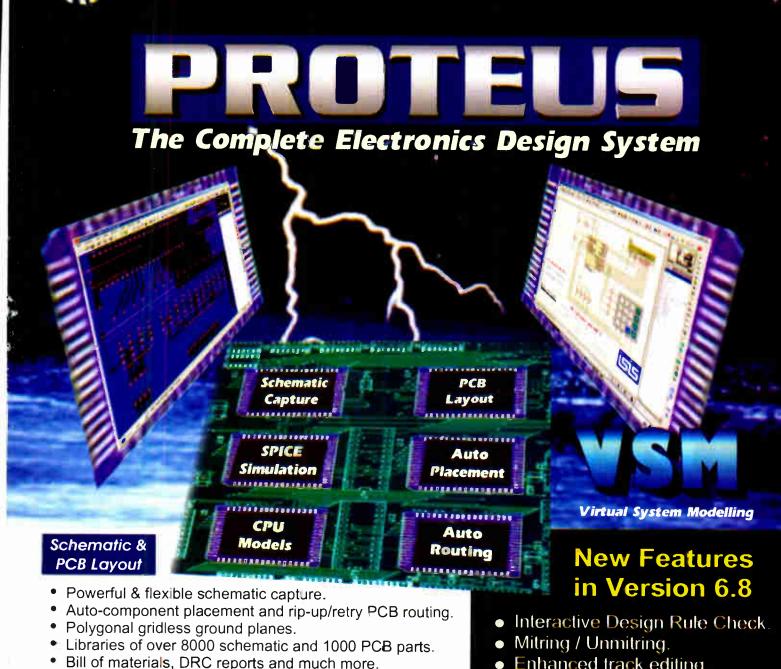
EPE SUBSCRIPTIONS

SAVE 71p AN ISSUE OVER UK NEWSTAND PRICES ON A UK ONE YEAR SUBSCRIPTION

Subscriptions for delivery direct to any address in the UK: 6 months £16.50, 12 months £31, two years £57; Overseas: 6 months £19.50 standard air service or £28.50 express airmail, 12 months £37 standard air service or £55 express airmail, 24 months £69 standard air service or £105 express airmail. Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subs. Dept., Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at http://www.epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Switch or Visa. (For past issues see the Back Issues page.)

ONLINE SUBSCRIPTIONS

Online subscriptions, for downloading the magazine via the Internet, 14.99US (approx. £8) for one year available from www.epemag.com.


USA/CANADA SUBSCRIPTIONS

To subscribe to EPE from the USA or Canada please telephone Express Mag toll free on 1877 363-1310 and have your credit card details ready. Or fax (514) 355 3332 or write to Express Mag, PO Box 2769, Plattsburgh, NY 12901-0239 or Express Mag, 8155 Larrey Street, Anjou, Quebec, H1J 2L5. Email address: expsmag@expressmag.com.

Web site: www.expressmag.com. USA price \$60(US) per annum, Canada price \$97(Can) per annum – 12 issues per year.

Everyday Practical Electronics, periodicals pending, ISSN 0262 3617 is published twelve times a year by Wimborne Publishing Ltd., USA agent USACAN at 1320 Route 9, Champlain, NY 12919. Subscription price in US \$60(US) per annum. Periodicals postage paid at Champlain NY and at additional mailing offices. POSTMASTER: Send USA and Canada address changes to Everyday Practical Electronics, c/o Express Mag., PO Box 2769, Plattsburgh, NY, USA 12901-0239.

Published on approximately the second Thursday of each month by Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RW. Distributed by COMAG Magazine Marketing, Tavistock Rd., West Drayton, UB7 7QE. Subscriptions INLAND: £16.50 (6 months): £31 (12 months): £57 (2 years). OVERSEAS: Standard air service, £19.50 (6 months): £37 (12 months): £67 (2 years). Express airmail, £25.20 (6 months): £51 (12 months): £10 (2 years). Payments payable to "Everyday Practical Electronics". Subs Dept, Wimborne Publishing Ltd. Email: subs@epemag.wimborne.co.uk. EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, with the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not whatsoever.

Mixed Mode SPICE Circuit Simulation

- Berkeley SP CE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers

- Supports PIC, AVR, 8051, ARM7 and BASIC STAMP micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays. switches, keypads, virtual terminal and much, much more.
- Compatible with popular compilers and assemblers from Microchip, Crownhill, IAR, Keil, and others.

Tel: 01756 753440 Fax: 01756 752857 Contact us for Free Demo CD

 Enhanced track editing. Struct/Array expansion.

NEW

ARM/LPC2000

MODELS FOR

PROTEUS VSM NOW AVAILABLE

- ELF/DWARF file loader.
- Expanded model libraries.

Call Now for Upgrade Pricing

www.labcenter.co.uk info@labcenter.co.uk

World Radio History

This is where we live

Yes that's right, down town, down under in Sydney Australia. We are a bunch

of electronics enthusiasts who sell a great range of goodies through our FREE 400 page catalogue! (see below) Don't be frightened! You can purchase on the Net from us 24/7/365 through our secure encrypted system. Post and packing charges are modest and you can have any of 8000 + unique products delivered to your door within 7 - 10 days of your order. Some specific products are shown below.

Theremin Synthesiser Kit

KC=5295 £17.50 + post & packing

The Theremin is a weird musical instrument that was invented early last century but is still used today. The Beach Boys' classic hit "Good Vibrations" featured a Theremin. By moving your hand between the antenna and metal plate, you create weird sound effects like in those scary movies! Kit includes a machined, silk-screened, and pre drilled case, circuit board, all electronic components,

and clear English instructions.

2

50MHz Frequency Meter Kit with LCD Display KC-5369 £20.30 + post & packing

If you want a great value frequency meter, then this project is for you. It features autoranging operation for ease of use, switching between its three ranges. High resolution of 0.1Hz up to 150Hz, 1Hz between 150Hz and 16MHz, and 10Hz above 16MHz. It can be powered by a 9V battery or

wall adaptor (not included) and the case measures just 5 1/8" x 2 5/8" x 1". Kit includes laser cut & silk screened case, circuit board, electronic components, & clear English

Lead Acid Battery Zapper Kit

KC-5414 £11.75 + post and packing This simple circuit is designed to produce bursts of high-energy pulses to help reverse the effects of sulfation in "wet" lead acid batteries. This is particularly useful when the battery has been sitting for a period of time without use. Kit Includes circuit board, case, leads, electronic components, and clear English instructions.

fuel curves, to nitrous controllers, and more! The book includes all instructions, components lists, colour pictures, and circuit layouts. There are also chapters on engine management, advanced systems, DIY modifications, and more. Over 150 pages! All of the projects described are available in kit form exclusively from laycar. Check out our

Performance Electronics for Cars Book

the projects described are available in kit form, exclusively from Jaycar. Check out our website for all the details.

Australia's leading electronics magazine, Silicon Chip, has developed a range of projects

for performance cars. There are 16 projects in total, ranging from devices for remapping

Here are just two

Universal Voltage Switch Kit

85-5080 £6.35 + post & packing

KC-5377 £8.70 + post and packing This is a universal module which can be adapted to suit a range of different applications. It will trip a relay when a preset voltage is reached. It can be configured to trip with a rising or falling voltage, so it is suitable for a wide variety of voltage outputting devices eg., throttle position sensor, air flow sensor, EGO sensor. It also features adjustable hysteresis (the difference between trigger on/off voltage), making it extremely versatile. You could use it to trigger an extra fuel pump under high boost, anti-lag wastegate shutoff, and much more. Kit supplied with PCB, and all electronic components.

Smart Fuel Mixture Display KC-5374 £8.15 + post & packing

This new 'smart' version has a few additional touches such as, auto dimming for night driving, emergency lean-out alarm, and better circuit protection. Another great feature, is the 'dancing' display which operates when the ECU is operating in closed loop. Closed loop means that the air/fuel ratio is optimum for fuel economy and emission performance. Kit supplied with PCB and all electronic components.

 Car must be fitted with air flow and EGO sensors (standard on all EFI systems) for full functionality.

Digital Fuel Mixture Display KC-5300 £18.30 + post and packaging

Monitor your car's air fuel ratio in real time on a three-digit display as well as on the programmable 10-LED bargraph. The kit will indicate ratios between 11.8 & 20.6 for petrol and 12.7 & 21.5 for propane/LPG. Features include: lean and rich indication, fast 220ms update time for bargraph, 440ms update time for 3-digit display, 0-1V display for setting up adjustments, dot or bar option for bargraph and automatic display dimming for night driving. All this in a case measuring just 3.25 x 2.12 x 1.22 in. Kit includes case with silk-screened panel, PCBs, pre-programmed PIC micro, 7-segment displays, red acrylic, hook-up wire and all electronic components.

World Radio History

We Stock...

Sub-Assemblies & Electronic Kits

Power Products & Accessories

Audio & Visual Equipment & Accessories

Computer & Telecoms Accessories

Burgular Alarms & Surveillance Equipment

Lighting Products & Accessories

Gadgets & Unique Gifts

Log on to www.jaycarelectronics.co.uk/catalogue for your FREE catalogue!

0800 032 7241 (Monday - Friday 09.00 to 17.30 GMT + 10 hours only). For those who want to write: 100 Silverwater Rd Silverwater NSW 2128 Sydney AUSTRALIA

tion Dattery should be sconnected from the p when using this project

400+ page Catalogue
 Post and Packing Charges:

 Order Value
 Cost

 £20 - £49.99
 £5

 £50 - £99.99
 £10

 £100 - £199.99
 £20

 £200 - £499.99
 £30

 £50+
 £40

 Max weight 12lb (5kg) - heavier parcels

 POA. Minimum order £20.