

GROUP-MASTER 30 WATT GUITAR AMPLIFIER

Coldenair

"THIRTY" HI-FI AMPLIFIER

A VERSATILE UNIT FOR INSTRUMENTALISTS AND

being suitable for clubs and public address

ldeal for bass, lead or rhythm guitar, and all other musical instruments.

The two 12-inch 25-watt heavy duty loudspeakers are specially designed for this type of amplifier, and give outstanding reproduction.

Robust attractive two-tone finished cabinet of compact size, $28'' \times 20'' \times 10\frac{1}{2}''$ fitted with carrying handles.

For standard AC mains 50c/s operation.

Four inputs provided can be used simultaneously with instrument pickups or mikes.

Separate Bass and Treble controls are incorporated.

or deposit of £4.12.0 and twelve monthly payments of £3.12.5. Carriage and insurance 25/- to be sent with deposit.

RADIO

9 x 23 in. Price 25 -.

TUBULAR SPEAKER Booster Speaker. Plugs into earpiece socket of most radios and tape recorders. Gives double the volume and a hi fi stereo effect that will amaze you, size approx. P. & P. 1,9.

TRANS/RECEIVER No. 46 Compactly carried by one man. This has a range of approx. 10 miles, and being crystal controlled tuning is avoided, and operation is as accurate as a telephone. Frequency 3,6-9.1 Mc/s. Complete stations comprising re-

ceiver transmitter rod aerial, one set of head-phones and mike in canvas carrying bag. The crystal coil units can be presented. The crystal coil units can be supplied for 35/- per set, post free. Brand new in maker's sealed cartons.

Price per station £4.10.0. P. & P. 10/- each-Two stations for £9.10.0. Post Free.

EL34. **VOCAL GROUPS**

Four separate inputs are provided with two volume controls. Bass and Treble controls are incorporated. Amplifier operates standard 50c/s mains. 3 ohm and 15 ohm speakers may

be used. Full 12 month guarantee. Factory built and tested. Perforated cover with carrying handles can be provided if required, price 21/-.

or deposit of £1.16.0 and twelve monthly payments of £1.9.2. Carriage 15'- to be sent with deposit. of £1.9.2. (

schools, dance halls, theatres and public address. Suitable for any type of mike or pickup. Valve line-up: two EF86; one ECC83; one GZ34; two

5 WATT AMPLIFIER

A high quality 30-watt amplifier developed for use in large halls and clubs, etc. Ideal for bass, lead or rhythm guitars,

IDEAL FOR HOME USE. Suitable for guitars, record decks and microphones. Cabinet size approx. 13 x 18 x 7 in. The cabinet is well made and attractively finished. Volume bass and treble controls incorporated. Price 9 gns. post paid. Send S.A.E. for leaflet.

THE COLORIAIT GRAMETTE

A compact 3-4 watt gram, amplifier that can be used with all types of record A compact 3-4 watt gram, amplifier that set of the players. Fitted with volume and tone controls, incorporating mains players. Fitted with volume and tone controls, incorporating mains isolating transformer, thus making the unit completely safe. A triode isolating transformer, thus making the unit completely safe. Price 3 gns. P. & Incorporating mains 50 WATT MODEL P. 5:- Ready built and tested £3.19.6. P. & P. 5/-.

THREE

A uniquely designed 2 valve 3 watt gram, amplifier,

Ö 0

fully enclosed in a compact well ventilated metal case, size $7 \times 5\frac{1}{2} \times 2\frac{5}{2}$ in. Three controls provided, Volume, Treble and Bass. A completely safe unit incorporating mains isolating transformer. 4 gns. P. & P. 5.

GOLDENAIR

NOW AVAILABLE

PRICE 49 GUINEAS

OR TERMS. SEND

FOR DETAILS

TYPE 19 SHORT WAVE RECEIVING SET

Works straight off the mains. An excellent short wave receiver, requires only phones for immediate operation. Price 65.19.6. P. & P. 10/-. Suitable phones 15/- per pair.

P. & P. 2/6. Pr. 67: 4/9.

During an evening's testing of this excellent receiver, we obtained clear reception from scores of stations, many of them thousands of miles distant, including ship stations, government transmissions, maritime broadcasts, etc. and also she short wave Radio Lyvamburg broadcasts. the short wave Radio Luxembourg broadcasts.

H.R.O. INSTRUCTION HANDBOOK 3,6 each. P. & P. 6d.

SET INSTRUCTION No. HANDBOOK 3/6 each. P. & P. 6d.

1155 INSTRUCTION HANDBOOK 3,6 each. P. & P. 6d.

MICRO ALLOY TRANSISTORS Mat 100 Mat 101 7/9 Mat 120 Mat 121 VHF Transistor ADTI40 . Above MATs postage paid

Ferrite Slab Aerials suitable for transistor sels 3/-. P.

NEW WALK-ROUND ELECTRONIC EQUIPMENT STORE AT NO. 4 LAMBERTS ARCADE, LOWER BRIGGATE, LEEDS (NEXT TO HALFORDS CYCLE SHOP). OPEN ALL DAY WEEKDAYS AND ALL DAY SATURDAY.

C.O.D. 5/- EXTRA NO C.O.D. UNDER 30/-48hr. DESPATCH SERVICE POSTAGE RATES APPLY IN U.K. ONLY

ALL MAIL ORDERS TO :-

FOREIGN & TRADE ORDERS WELCOMED, S.A.E. WITH ALL ENQUIRIES PLEASE PHONE LEEDS 34703

SONA ELECTRONIC CO. (DEPT. P.E. 3) BRIGGATE HSE., 13 ALBION PLACE, LEEDS 1

SURBITON PARK RADIO LTD.

ALL ORDERS DESPATCHED SAME DAY

WE PAY POSTAGE AND INSURANCE

SATISFACTION OR MONEY REFUND GUARANTEE • DEPENDABLE SERVICE

LEADING STOCKISTS OF MARTIN RECORDAKITS AND AUDIOKITS

MARTIN RECORDAKITS	1 ,		Mehly.
HALF TRACK	Dep.	&	pmts.
TAPE AMPLIFIER FOR STUDIO DECK, with ready wired printed circuit, control and input panels, mains and output transformers, knobs, plans, screws etc.; FF86, ECC83, EZ80, EM85 and 2 EL84, 3 watts output. Magic eye, Radio & Mic inputs at			of
COLLARO STUDIO DECK Vary Land	47/-	8	25/6
CASE for above with 8 x 5in, speaker, two tone grey	44/-	8	24/6
COMPLETE KIT with tape and microphone £29,19,6	120/-	12	44/-
TAPE AMPLIFIER FOR STUDIO DECK, as above.			
COLLARO STUDIO DECK Great Marriage 1771	52/-	а	27/6
CASE as above, two tone grey	56/-	12	20/6
TAPE PRE AMPLIFICATION 433.19.6	136/-	12	49/10
HALF TRACK for STUDIO deck, 400m/V out. £8.8.0 QUARTER TRACK, as above SELF POWERED	34/-	6	25/8
TAPE HEADS, Bradmarie Helf Torols Des 199,9.0	39/-	6	28/4
and Erase on plate	- !		-

ARMSTRONG AMPLIFIERS AND TUNERS

MODEL 222	1	MODEL	223	
STEREO AMP. 222, 10 + 10 w.	£27.10.0	110/-	12]	40/4
224 F.M. 223 AM/FM. TUNER/AMPLIFIERS, MONO	£22.[0.0 £28,15.0	90/- 115/-	12 12	32/2 42/2
227/M AM/FM with 5 watt amp 227/M AM/FM with 10 w, amp TUNER/AMPLIFIERS STEREO	£26,10,0 £36,15.0	106/- 147/-	12 12	38/10 53/10
127/S AM/FM with S + 5 w. amp 227/S AM/FM with 10 + 10 w. amp 226/S as 227/S with Mag. P.U. Shelf mounting Teak Case for any of above	56100	150/- 211/- 260/-	2 2 2	55/- 77/4 88/-

|--|

STEREO AMPLIFIERS		1	
Leak Stereo 20, Pre-amplifier and Main amplifier			
Rogers Cadet Mk2 with Pre-amplifier 4 ECLB6 valves	229/-	12	80/8
	107/-	12	39/2
Leak Transistor Stereo 30, Pre-amplifier and main amplifier	100/		
E49,(U,U	198/-	12	72/7

	1 1101-	1 1	1 44/4
F.M. TUNERS Tripletone, F.M. Tuner Less power £13,19.6 Tripletone, F.M. Tuner With power £5,14.6 Jason JTY/2, F.M. and T.V. sound, Switched, self powered £22,5.0	56]-	12	20/6
	63/-	12	23/1
	89/-	12	32/7

SURBITON PARK RADIO LTD.

48A SURBITON ROAD, KINGSTON-UPON-THAMES
SURREY

Phone: KIN 5549

- ORDERS FOR CASH, COD OR TERMS
- HOURS 9 a.m. to 6 p.m. (1 p.m. Wednesday)
- Easily reached by frequent trains Waterloo to Surbiton

MARTIN AUDIOKITS The new Martin All Transistor Ten Watt Amplifier kits represent excellent value for money. Each unit is complete, requiring only to be connected to the next. We show only the popular units here. Others available including stereo. The following would make up a TRANSISTORISED AMPLIFIER IS ohms MODEL	Dep.		Mchly. pmts. of
UNIT I—FIVE INPUT SELECTOR. Size 3½ x 3in. Mag. PU. Crystal PU, Radio, Mic., Tape Head 22.7.6 UNIT 4—PRE-AMPLIFIER AND CONTROL. Size 6½ x 2½in. Volume en/off, bass and treble control.	-	-	-
UNIT 7-MAIN AMPLIFIER, 10 watts 6 transitator, transformerless Push Pull output. Mounted on heat sink.	-	-	-
LS. imp. 15 ohms	_	-	-
CONTROL PANEL for Units I and 4 10.6	_	E	_
ALL ABOVE FOUR UNITS WITH PANEL, 15 ohms £15.8.0 TRANSISTORISED AMPLIFIER 3 ohms MODEL UNIT 5 MAIN AMPLIFIER, as Unit 7 but 3 ohms	62/-	12	22/6
UNIT 6 POWER SUPPLY, as Unit 8 but 18-24 Volts	-	-1	tion and
ALL FOUR UNITS WITH PANEL 3 ohms (14.5.0 SEND FOR LEAFLET OF COMPLETE RANGE	57/-	12	20/10

GRAMOPHONE UNITS

GRAMOFHOME ON 13			
B.S.R. UA25, Very latest model with cart 46.6.0 Garrard SRP10 Single player, Mono cartridge 45.10.0	- 1	1 —	-
Garrard Skriv Single player, Mono cartridge £5.10.0	_	-	-
Garrard Autoslim, 4 Speed changer Mono £7.17.0	33/-	6	24/-
Garrard AT/5/P Improved Autoslim, Stereo 19.0.0	36/-	6	27/4
Garrard A.T.6 Autoslim de Luxe, mono £11.9.0	47/-	8	25/3
Garrard AT/5/3000LM as AT6, but with slim arm, stereo		1	
411 12 6	46/6	8	25/9
Warrard 4H/F. Transcription unit Mono 41700	68/-	12	24/11
Garrard "Deccadek" Single Player with Decca "Deram"	001-		A7/16
Cartridge	63/-	12	-
Garrard LAB. "A", Transcription changer Mono	0.5/-	144	23/1
619,14.9	201		
	79/-	12	28/11
Philips AG1016, Stereo cartridge, will change 7in.	88/-	12	32/3
records with adaptor 10/- extra		1 . 1	
Golden With adaptor 10/- extra £12.12.0	50/6	12	18/6
Goldring GL58, with arm but less cartridge £17.1.0	69/-	12	24/E1
Goldring GL70, with arm but less cartridge 627.9.4	111/4	12	40/1
Goldring "88", Transcription less arm £18.18.5	76/5	12	27/8
LEAFLETS ON REQUEST			70

HI FI LOUDSPEAKERS

GUITAR SPEAKERS

Fane, 12in. Heavy duty unit 20 watt Goodmans Audiom 51, 12in, 15 watt Bass	£5.5.0 £9.2.8	36/8	71	
Goodmans Audiom 61, 12in. 20 watt Bass	or Lead	57/8		27/8 21/1
Goodmans Audiom 81, 15in. Goodmans Audiom 91, 18in. 50 watt Bass	£25,0.0 £27,10.0	100/-	12	36/8 40/4
Wharfedale W 12/EG, 12in, 15 watt Lead Wharfedale W 15/EG, 15in, 15 watt Bass	£10,10.0	42/- 70/-	8 :	23/6 25/8
WRITE FOR GOODMANS ELECTRIC	GHITAD	REACT		, -

GUITAR AMPLIFIERS

Linear Diatonic 12 watt 2 inputs Linear Conchord 30 watt 2 inputs with Cover Leak TL 25 25 watts amp and pre-amp Leak TL 50 50 watts amp and pre-amp	£19,4.6 £42.5.0	169/-	12 19/3 12 28/2 12 61/1 13 75/2
--	--------------------	-------	--

MICROPHONES AND FLOOR STANDS

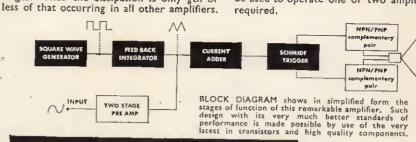
Resio Heavy Duty Floor Stand	£11,2,6 ;13,10,0 £7,0.0 £4,10.0 £2,10.0	44/6 54/-	8 24/9 12 19/9
------------------------------	---	--------------	---------------------------

The only amplifier of its kind in th

USES PULSE-WIDTH MODULATION AND UNIQUE OUTPUT STAGE IN A **GREAT ORIGINAL**

FANTASTIC STANDARDS PERFORMANCE

· As well as the countless private constructors sending for the X-10, it has also been ordered by well over fifty large industrial organisations, by national utilities, by universities and by museums in Britain alone. Next month we look forward to letting you know what con-structors tell us about this amplifier.


Philatelists might well envy our mail, for constructors are sending to us from all parts of the world for the X-10 and we are thinking of buying a larger stamp album.

Already 3 nationally famous audio equipment manufacturers in this country have expressed in-terest in the X-10 and it is most likely that the X-10 will radically influence all future amplifier design.

Others who have ordered the X-10 include public address specialists, pro-fessional guitarists, musicians, government departments, factories and laboratories - and, if we may say it, we hope you,

This high fidelity integrated power amplifier and pre-amp uses Il transistors and has a transformerless output of up to 10 watts for feeding into a 15 ohm loudspeaker system. It requires only the addition of tone and volume controls and a 12 volt D.C. power supply to make it a complete mono high fidelity assembly of exceptional quality. Stereo is achieved by using two X-10 amplifiers and ganged or separate controls. Input sensitivity is sufficient for all crystal ceramic or magnetic pick-ups. The manual supplied with the X-10 gives detailed instructions for connecting the controls and for using the amplifier in a wide variety of applications.

This radically new transistor amplifier (patents applied for) is the first to be marketed anywhere in the world using the pulse width modulation principle (P.W.M.), a technique which permits an enormous reduction in the power dissipation in the output transistors. In the case of the Sinclair X-10, the output efficiency is about 95% as compared with about 60% for conventional class B output stages. Thus the dissipation is only $\frac{1}{8}$ th or That is why no heat sink is required for the output stage, why small high frequency transistors can be used in place of the conventional low frequency power transistors and why the X-10 will operate from two 4/- batteries with normal use for about three months. A mains operated power supply unit design specially for the X-10 is available which can be used to operate one or two amplifiers as

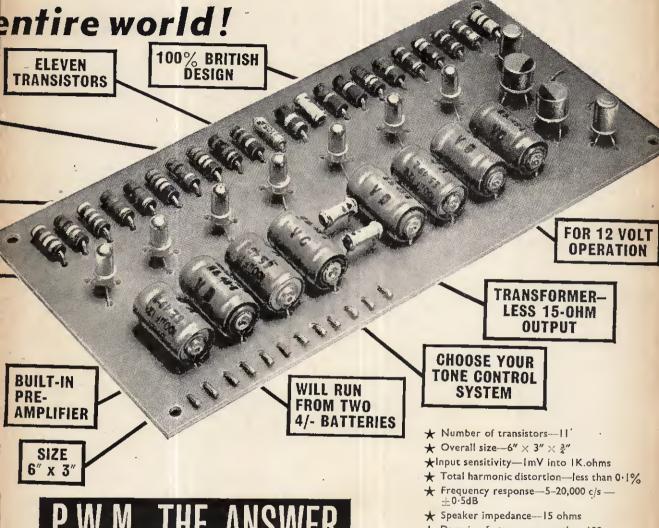
Easiest of all to assemble

Not least among the many important features of the X-10 is the elegant component layout. This together with the X-10 Manual and assembly instructions make building exceptionally easy. When assembled the amplifier, which measures only $6'' \times 3'' \times \frac{3}{4}''$, can be placed in any convenient position with leads brought out to controls, input, output and power supply.

GUARANTE If you are not completely satisfied with your purchase immediately on arrival (we are confident you will be delighted) your full purchase price will be refunded instantly without question if you return the goods as received. FULL SERVICE FACILITIES ALWAYS AVAILABLE TO ALL SINCLAIR CUSTOMERS.

All parts including 11 transistors and X-10 Manual come to

10 WAT OUTPUT


NO **HEAT SINK**

Ready built and tested, X-10 Manual with

X-10 Power Supply Unit (ready built) for A.C. Mains 200-240Y. Will power up to two X-10's

The most revolutionary design yet from SINCLA

O COMBINED 10 WATT HI-FI AMPLIFIER AND PRE-AMP

P.W.M. THE ANSWER

With P.W.M. the audio signal modulates a high frequency square wave "carrier" by varying the mark-space ratio. These variations are converted to energy in the output stage. Being independent of the transfer characteristics stage. Being independent of the transfer characteristics of the output transistors, the output is an exact replica of the input signal. The improvement in the quality of reproduction from the loudspeaker is instantly apparent. Transient response is greatly improved, there is no falling off in the higher audio frequencies, no intermodulation of the transfer course is to flat that you rould distortion and the response curve is so flat that you could draw it with a ruler! A new type of output stage and P.W.M. plus many other refinements result in an amplifier which is compact, rugged, stable, requires no heat sink-and costs so little. The X-10 may be used with low-put pick ups such as Decca Deram, Ortofon, etc., as well as with microphones, tape play-back heads, etc. Used in pairs the X-10 brings new depths to stereo listening.

- * Damping factor-greater than 100
- ★ Quiescent consumption—75mA
- * Supply voltage-12Volts D.C.

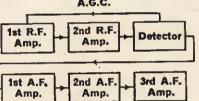
SINCLAIR X-10 MANUAL

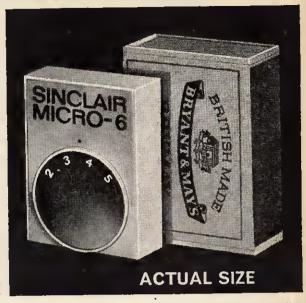
Explains how the amplifier functions, how to add volume and tone controls to suit your precise requirements, and how to use the X-10 for stereo. - A variety of systems are shown, none of which will add more than a few shillings to the original cost of your X-10. The Manual which is included with every X-10 is available separately for 1/-.

> ORDER FORM AND MORE SINCLAIR DESIGNS ON PAGES FOLLOWING

ADIONICS LTD., COMBERTON, CAMBRIDGE Telephone: COMBERTON 682

The smallest, most exciting


NOW IS THE TIME TO BUILD IT


With the days so short, the performance from this amazing 6-stage radio is proving sensational. Stations simply pour in from the Continent with outstanding quality and again and again the Micro-6 is reported to be giving excellent results where other sets cannot be used at all. As the illustration shows, the set is smaller than a matchbox, yet everything including batteries and ferrite rod aerial is contained in the tiny white, black and gold case. The Micro-6 has vernier-type tuning and is switched on by inserting the micro-plug of the earpiece into the socket at the side. This remarkable British receiver cannot be too highly recommended both as an intriguing design to build and a most practical radio to use. It's a set you will be delighted to build and use. IT PLAYS ANYWHERE.

SINCLAIR MICRO-6

BRITISH-DESIGNED 6-STAGE RECEIVER

- Size— $1\frac{4}{5}'' \times 1\frac{3}{10}'' \times \frac{1}{2}''$
- Weight—Under I oz.
- Tunes over medium wave band
- Bandspread for easy reception of Luxembourg

The Micro-6 uses three special Micro-Alloy transistors in a new and original circuit. Two stages of R.F. amplification are followed by an efficient double diode detector which drives a high-gain 3-stage A.F. amplifier. Powerful A.G.C. applied to the first R.F. stage ensures fade-free reception from the most distant stations tuned in.

SINCLAIR TR750 AMPLIFIER

Designed specially for Micro-6 and

Slimline users

This amplifier makes a powerful car, portable or domestic radio used with the Micro-6 or Slimline receivers and a plug is included for connecting to these sets. With its own built-in volume control and on-off switch, the TR750 has a full

switch, the TR750 has a full 750 milliwatt transformerless output for 10mV into 10K ohms and a frequency response from 30 to 20,000 c/s ± 1dB. It will also make an efficient hi-fi record reproducer used singly or paired for stereo and there are many other uses for the TR750 which is available for building or ready built.

output aquency + IdB. record ed for uses for

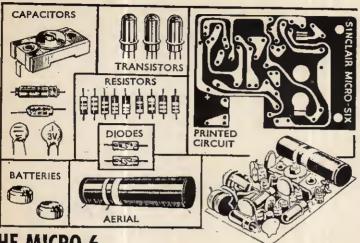
Ready built and tested 45/-

Trace that fault with a

SINCLAIR MICRO-INJECTOR

This ingeniously designed device generates and injects a test signal into any part of audio or radio equipment at any frequency from Ikc/s to 30 Mc/s by means of which it becomes easy to locate faults rapidly and accurately. Measures 1\frac{1}{2}\times 1\times 1\t

Parts and instructions


27/6

32/6

SINCLAIR RADIONICS LTD., COMBERTON, CAMBRIDGE
Telephone: COMBERTON 682

radio set in the world OVER 10,000 BUILT AND IN USE THROUGHOUT THE WORLD

THE MICRO-6 **INCLUDES THE SMALLEST COMPONENTS EVER**

We show here some of the components (apart from vive snow here some of the components (apart from case dial and earpiece) required for building the Micro-6, drawn to actual size. They include the smallest components ever to be made available to domestic set constructors. Being of the kind used in space and computer electronics, they have to be reliable. The tuning system has investigated the state of the components are considered to the components and the components are considered to the considered to in space and computer electronics, they have to be reliable. The tuning system has ingenious vernier control for easy station separation. The batteries (obtainable anywhere) are each smaller than an aspirin tablet and give upwards of 70 hours working life. The 8-page fully illustrated instruction manual shows very clearly how to assemble the Micro-6 step by step, making it easy for anyone to build.

All parts required to build the Micro-6 including lightweight earpiece, case and instructions come to

nylon strap for wearing the Micro-6 like a wrist watch 7/6 MALLORY MERCURY CELL TYPE ZM312 (2 required) Pack of 6

What they say about the Micro-6

A.F.N., Munich; Holland; France; Germany and many more stations came in without any trouble at all (on Micro-6). At 7.30 a.m. I tuned in Caroline. Kendal is not an ideal reception area.

(Signed) J.A.M., Kendal. May I congratulate you on a truly splendid

May 1 congraturate you on a truly aprended design. Keep up the good work.

I am highly satisfied with results. Receives most stations on medium wave band with remarkable volume in a bad signal area.

(5495) (Signed) M.A., Sheffield 6.

See preceding pages

This is what the unique Sinclair Guarantee means

Every purchase you make from Sinclair Radionics Ltd. is covered by the following guarantee:

If you are not completely satisfied

with your purchase (we are confident you will be delighted) your purchase price will be refunded in full instantly and without question.
FULL SERVICE FACILITIES ARE

ALWAYS AVAILABLE TO SINCLAIR CUSTOMERS.

The extra-easy-to-build 4-stage pocket receiver

IDEAL FOR NEWCOMERS TO TRANSISTOR SET BUILDING

Wide range

aonearance

in 2 or 3

tone and volume

Easily built

· Excellent

Here's a fine performing set which is ideal for newcomers to transistor building. It has self-contained aerial and takes standard PP5 batteries. Measures only $2\frac{R}{K} \times 1\frac{R}{K} \times \frac{R}{K}$, Tunes over medium waveband by means of vernier type control. The Slimline has great power and quality and wilt bring in B.B.C. and European programmes. All parts including royal blue and gold case, earpiece and easy to follow instructions come to

If you do not wish to cut coupon from page, please mention Practical Electronics, January

161

SINCLAIR MICRO-AMPLIFIER

Makes an F.M. **Transmitter**

Makes an Audio or Broad Band R.F. Amplifier

Smaller than a 3d. piece! Frequency response 30 to 50,000c/s ± 1dB. Power gain 60dB (1,000,000 times). Instructions show you how to make a broadband R.F. amplifier, F.M. transmitter or a sub-miniature hi-fi amplifier with an output suitable for any earpiece or even loudspeaker. A fascinating design for experimenters, modellers, etc.

Parts and instructions come to

	when writing.
To SINCLAIR RADIONICS LTD Please send items detailed below:— £ s, d.	., COMBERTON, CAMBRIDGE
111174	NAME
	ADDRESS
	ADDKESS
TOTAL £	
For which I enclose CASHICHEQUEIMONEY ORDER .	Pre. 12

EVERYTHING YOU NEED... FVERYTHING YOU

The DTV Group hold the largest stocks of the widest range of rectifiers, valves, test equipment, transformers, components and accessories of all kinds. Send LARGE s.a.e. for free lists. Terms of Business: C.W.O. or C.O.D.

direct Feplacement LTD

Dept. P.E., 126 Hamilton Road, West Norwood, London, S.E.27 Telephone: GIPsy Hill 6166 (PBX)

TRANSISTOR TESTER

The Unique D.909 Tests Alpha Gain (A.C. Gain) and Beta Gain (D.C. Gain) with transistors in place. Facilities also provided for testing leakage between Collector and Emitter and Collector

Base. Exclusive Variable Voltage Smoothed D.C. Power Supply, continuously variable from 0/25 v. up to 25mA. Output voltage can be used as centre-tapped voltage supply enabling modern transistorised receivers £10 each to be tested.

Send large S.A.E. for detailed leaflet

TRANSDUCERS

As specified for use in the Ultrasonic Control System featured in this issue.

Gulton Transducers can be used for simple remote control without cables or electronic links, two units only being required. The Transducers are suitable for both transmitting and receiving. Ideally suited for the experimenter and designer for remote control systems

55/- or two for £5 of all kinds. Free TX/RX circuit with each order. each Components for use with the Transducers: QHF9 Transformer Set of 7 transistors 4/- each at 5/- each ... 25/6 each at 1/6 each ***

1/1,000 h.p., normal running speed 5,000 r.p.m. Spindle dia, 3/32 in., length 11/32 in. For $1\frac{1}{2}$, 6 or 12 v. Reversible. 25/- each plus 1/6 p. & p.

MICRO-MOTORS

This new Sleyride Motor is precision

made and prototype tested by RAE

Farnborough. Only I in. dia., 2 in.

long and weighs only 1.3 oz. Rated

current reed relay and coil

EAGLE PRODUCTS NEW PRICES

F53 GT50 TD79 MM4 P535 P525 P31 SP31 OC34 S53271 SS3271 SS219 MR4 MR60 CR5 T501 T502 T503 TC801 K4/16 PVC105 LT44/700 TP100 SF20 The following are available:—
TP703
Transistor Tape Recorder
T1206
Transistor Intercom
TA790
Telephone Amplifier
Tage
SA80
Sephyr T Transistor Radio
SA80
Watt Stereo Amplifier
Microphone
Mirrophone
Mirrophone
Mirrophone £18,7.6 £4.6.0 £3.4,6 £4.16.0 £10.5.6 £1.15.3 £2.2.10 £2,17.0 £2,17.0 £4.9.5 £4.17.0 £1,12.0 Microphone Microphone Microphone Desk Stand]

Microphone Floor Stand
Radio Jack
Tape Head Demagnetizer
Microphone Mixer
3.5 mm Plug and Socket
2.5 mm Plug and Socket
Standard Jack Plug
Standard Shielded Jack Plug
Standard Socket
Sub-min. Slide Switch DPDT
Miniature Slide

MCI TP26G CM16 GM35 EP50K EP30K EP10K TK20A L.20 MR2P 2.8 2.8 2.8 3.9 2.3 2.3 3.3 4.4 4.4 13.8 15.0 17.3 11.0 MR2P MR2P MR2P MR2P SR2P MR3P ITI/I

Lapel Microphone, Magnetic Microphone Crystal Cartridge 2½" Speaker Guitar Pick-up Guitar Pick-up Guitar Microphone 50,000 O.P.V. Multimeter 30,000 O.P.V. Multimeter 10,000 O.P.V. Multimeter 10,00 I m/a Panel Meter Signal Injector Field Indicator Test Lead Kit

Trade Enquiries Invited.

TRANSISTORS 0A79 3/-0A81 2/-0A85 3/-0A86 4/-0A90 3/-0A91 3/-0A96 3/8 5/6 8/8 AC155 AC156 AC154 AC157 OC78 OC79 0430 3/8 0480 3/8 0016W 35/-0019 25/-0026 25/-0035 12/-0041 8,-0041 8,-0042 2/8 0043 12/8 0043 12/8 0045 5/-0045 5/-0047 5/8 0047 8/8 OC79 OC81 OC82 OC83 OC84 OC139 OC140 OC141 OC169 AD140 . . . 27/6 4/-8/-31/-OC169 OC170 OC171 OC200 OC201 OC202 OC203 10/-10/-9/8 7/6 6-8-8-8-8-8-9/8 17/-3/-12/6 5/-5/6 4/3 5/8 8/-20/-24/6 13/-19/-7/9 8/6 7/9 8/6 OC204 . MAT100 GET114 MAT101 ... MAT120 ... pair 16/-0073 16/-ADT140 .. 15/-

SETS OF TRANSISTORS Set No. 1; comprising OC44, 2 x OC45, OC81, matched pair OC81 20/-Set No. 2: comprising OC81, matched pair OC81 12/8.

RECORD PLAYER AND TAPE DECK UNITS BSR Monarch UA14 £6.6.0 BSR Monarch UA15 \$6.19.6 The new BSR Monarch UA15SS fitted with CI ceramic stereo cartridge £10.18.11 TD2 Tape Deck, half track £8.18.0 TD10 Tape Deck half track £10.5.0 BSR Monarch Till? £3.10.0 BSR Monarch GU7 23.17.6 Garrard Autostim £7.15.0 Garrard AT6 £11.5.0 Garrard SRP10 All the above are also available with sterco cartridges at slight extra cost. SINCLAIR KITS

Sinclair Micro 6 £2.19.6 TR750 Power Amplifier 29 R Sinclair Micro Injector 27.6 Sinclair Micro Amplifler 28.6 Sinclair X10 Kit. \$5.19.6 Sinclair X10 Ready Built \$6.19.6

£2,14.6

MAINS TRANSFORMERS Primarles 200/230/250 V 250-0-250v 80mA 0-4-6.3v 4A 0-4-5v 2A 21/9 300-0-300v 80mA 0-6.3v 4A 0-6.3v 1A 22/6 350-0-350v 80mA 0-4-6.3 4A 0-4-5v 2A 21/8 250-0-250v 100mA 0-6.3v 4A 0-5v 2A 27/8 350-0-350v 100mA 0-6.3v 4A 0-5v 2A1 27/6 350-0-350v 200mA 0-6.3v 4A 0-5v 3A 55/-

CATALOGUE

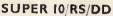
Our latest 1964 65 Catalogue is now available. Copies have \$6.0.11 been sent to many of our regular customers. If you have not received your copy please grou us a line. Please send 1/in stamps.

TERMS: Cash with Order or C.O.D. Posiage and Packing Charges extra. Single valves 9d. Minimum Parcel Post charges 2/-. Please include sufficient postage with your order. Minimum C.O.D. fees and postage 3/6. These Postal Rates apply to U.K., only. For full terms of business see inside cover of catalogue. Personal shoppers 9 s.m. to 5 p.m. Mon. to Friday, Saturday 10 s.m. to 1 p.m.

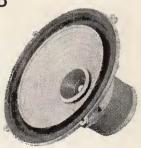
ALPHA RADIO SUPPLY CO., 103 Leeds Terrace, Wintoun Street, LEEDS 7

Mains Unit for above

100C DM175 MC70 DM17HL DM16HL DS2

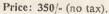

THE WHARFEDALE Super Range

Each loudspeaker in this range is fitted with roll surround for low resonance and double diaphragm assembly for extended HF response.



SUPER 8/RS/DD

Impedance 10/15 ohms.
Ceramic Magnet.
Flux density 14,500 oersteds.
Total flux 60,000 maxwells.
Aluminium Voice Coil.
Max. input 6 watts rms
or 12 watts peak.
Frequency range 40-20,000 c/s.
Bass resonance 50/60 c/s.
Price: 134/2 inc. P.T.



Impedance 10/15 ohms.
Flux density 16,000 oersteds.
Max. input 10 watts rms
or 20 watts peak.
Frequency range 30-20,000 c/s.
Aluminium Voice Coil.
Bass resonance 38/43 c/s.
Price: 218/8 inc. P.T.

SUPER 12/RS/DD

Impedance 12/15 ohms.
Flux density 17,000 oersteds.
Total flux 190,000 maxwells.
Aluminium Voice Coil.
Max. input 20 watts rms
or 40 watts peak.
Frequency range 25-20,000 c/s.
Bass resonance 26/32 c/s.

Write for informative and fully illustrated 12 page booklet

WHARFEDALE WIRELESS WORK'S LTD IDLE BRADFORD YORKSHIRE

Telephone: Idle 1235/6

Telegrams: 'Wharfdel', Bradford.

RST

Cordially invite

Practical Electronics

readers

To try our unsurpassed

VALVE MAIL ORDER SERVICE

Vast quantities of modern and obsolete fully guaranteed valves available from stock at very moderate prices. Send S.A.E. for Full lists

SPECIAL 24 HOUR EXPRESS MAIL ORDER SERVICE

Callers welcome

AN EXAMPLE OF THE VALUE YOU GET from RST

BRAND NEW TRANSISTORS

OC35 OC42 OC44 OC45	10/- 6/- 5/- 5/-	OC72 OC74 OC75 OC77	8/- 8/- 8/-	OC81D OC81m/pi OC82 OC82D	8/- 6/-
400 voit	5/• s 350 mA	SILICON R	5/- ECTIFIE		6/- /6 each

| METAL RECTIFIERS | 12/- (FC142) | 12/- (FC150) |

R5, IS5, IT4, 3S4, 3V4 Set of 4, 17/DAF91, DF91, DK91, DL92, DL94 Set of 4, 17/DAF96, DF96, DK96, DL96 Set of 4, 25/-

TERMS OF BUSINESS C.W.O. or C.O.D. 4/2 PACKING CHARGE ON ALL C.O.D. ORDERS. POSTAGE 6d. per VALVE

RST VALVE MAIL ORDER CO.

211a, STREATHAM ROAD, MITCHAM, SURREY

Telephone: MiTcham 6202 & 6771

Mon. - Sat. 9 a.m. - 5.45 p.m. Wednesday 9 a.m. - 1 p.m. Lunch 1.30 - 2.30

FRANCIS

OF STREATHAM

include among their customers many who call personally from all over the country, because of the stocks and service in TAPE AND HI-FI EQUIPMENT to be found there. With so many shops to choose from, there must be excellent reasons why people prefer to buy from Francis. Perhaps you would care to find out by calling or writing to us about your requirements.

- ★ VERY LARGE STOCKS OF TAPE AND HI-FI
- * NO EXTRA FOR CREDIT UP TO 18 MONTHS
- * OWN SERVICE DEPARTMENT
- * FREE SERVICE DURING GUARANTEE PERIOD

FRANCIS OF STREATHAM 169-173 STREATHAM HIGH ROAD, LONDON, S.W.16

Between St. Leonards Church and Streatham Stn. Open all day

Phone STR 0192/0466

SAVBIT ALLOY
saves wear on
soldering iron bits

The world-famous copper loaded alloy containing 5 cores of non-corrosive flux, that saves the soldering iron bit. Ersin Multicore Solder is also available in hightin quality alloys. 60/40 in 22 s.w.g. for printed circuits, transistors, etc.

THE HANDY DISPENSER

Easy to find in the tool box—simple to use. Virtually a third hand for tricky soldering jobs. 12 feet 5 core 18 s.w.g. ERSIN MULTICORE SAVBIT alloy in a continuous coil used direct from free-standing dispenser.

2/6 each

SAVBIT SIZE 1 CARTON Contains approximately 30

feet of 18 s.w.g. SAVBIT.

It is also sup-

plied in 14 s.w.g. and 16 s.w.g. Obtainable from radio and electrical stores.

5/- each

BIB WIRE STRIPPER AND CUTTER

Strips insulation without nicking wire, cuts wire cleanly, adjustable to most thicknesses. Splits extruded plastic twin flex.

3/6 each

MULTICORE SOLDERS LTD.

MULTICORE WORKS . HEMEL HEMPSTEAD . HERTS. (BOXMOOR 3636)

CMME 24

Better Performance and Value . . . with Heathkit Equipment

A WIDE RANGE OF WELL DESIGNED KIT-SETS TO CHOOSE FROM

YOU CAN SAVE £££s BY BUILDING ANY HEATHKIT MODEL

MALVERN

COTSWOLD

"MALVERN" HI-FI EQUIPMENT CABINET. Will house all your Hi-fi equipment, Left " in the white," Size: 39 x 32 x 21 in. Kit £18,1.0 A wide range of other cabinets.

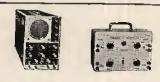
"COTSWOLD" HI-FI SPEAKER SYSTEMS. Acoustically designed enclosures, complete with 12 in. bass speaker, elliptical mid-range speaker, and tweeter to cover full frequency range of 30-20,000 c/s. Cross-over unit, level control, etc. Left "in the white," Standard "Cotswold", Size: 26 × 23 × 14 in.

MFS "Cotswold" for the smaller room. Size: 36 × 16 × 14 in. Kit £23,4.0

SSU-I SPEAKER SYSTEM. A practical solution speakers.

Without legs £10.17.6 Kit
With legs £11.12.0 Kit

A wide range of speakers available. Send for details.


FM TUNER

5.00

in. FLAT-FACE GENERAL PURPOSE OSCILLOSCOPE. Model 10-12U. An out-standing 'scope. "Y" sensitivity, 10 mV rms per cm at I ke/s: Bandwidth 3 c/s to 4.5 Mc/s, T/B 10 c/s to 500 kc/s in 5 steps. Kit £32.12.6. Assembled £41.10.0.

22 SERVICE 'SCOPE, Model OS.1 Light (wt. 10½ lb.), compact, $5'' \times 8'' \times 14\frac{1}{2}''$. The ideal portable for servicemen. Kit £22.18.0. Assembled £30.8.0.

ELECTRONIC SWITCH, Model S-3U. Convert your scope to dual trace, Kit £12,18.0. Assembled Your 'sco £18,10.0.

10-12-U

HI-FI FM TUNER, Range 88-108 Mc/s. able in two units, sold separately. TUNER (FMT-4U) 10.7 Mc/s IF £2,15.0 (inc. P.T.). IF AMPLIFIER (FMA.41) pages 15.0 (inc. P.T.). (FMA-4U) power supply and valves £13.3.0. Total

9 + 9W HI-FI STEREO AMPLIFIER, Model S-99. Ganged controls. Stereo/Mono Gram., Radio, Tape inputs. P.C. board construction. Attractive presentation, Kit £27.19.6. Assembled

"OXFORD" LUXURY TRANSISTOR PORT-ABLE, Model UXR-2. Beautiful solid leather case

GENERAL COVERAGE RECEIVER, Model RG-1, Freq. coverage 600 kc/s-1.5 Mc/s. 1,7-32 Mc/s. in 6 switched bands, Many features incl. attice crystal filter. Kit 439.16.0 Assembled

HFW-I

6 in. DE LUXE VALVE VOLTMETER, Model IM-13U. Measures ac and do volts 0-1.5 to 1,500V in 7 ranges. Res. to 1,000 MO in 7 ranges. Modern styling, with gimbal mount. Kit £18.18.0. Assembled £26.18.0.

VALVE VOLTMETER, Model V-7A, DC volts to 1,500, AC to 1,500 rms and 4,000 V pk. to pk. Res. 0.1-1,000 MΩ. Kic £13.18.6. Assembled £19.18.6. RF Probe 309-CU £1.13.6 kit. HT Probe HV.336 £2.19.6 kit. Will extend range of models V-7A or IM-13U.

TV ALIGNMENT GENERATOR, HFW-1. 3.6 to 220 Mc/s on fundamentals. Unique electronic sweep oscillator. Built-in fixed and variable marker generators (5 Mc/s crystal). Kit £34,18.0. Assembled £44,10.0.

RG-I

Send for FREE British Catalogue of Heathkit

Deferred Terms over £10 in U.K.

Range of Models

Prices quoted include postage U.K.

AM/FM TUNER Covers FM 88-108 Mc/s, AM 16-50, 200-550, 900-2,000 M, Tuning heart (£4.13.6 inc. PT) and IF Amp. Case. Total £26.10.0 Kit 6W STEREO AMPLIFIER, Model S-33H, An

inexpensive stereo/mono amplifier. Ideal for use with the Decca Deram lightweight pickup. Modern attractive styling. Kit £15,17.6 Assembled £21.7.6

"GARRARD" AUTO RECORD PLAYER. Model AT.6. A four-speed stereo/mono unit with auto, record selection. Fitted with R.105 crystal £13.12.1. With Decca Deram pickup pickup £14.6.1.

5W MONO AMPLIFIER. Model MA-5, general purpose amplifier based on model \$-33.
Separate bass and treble controls, gram and radio inputs. Printed circuit. Kit £10.19.6. Assembled £15.10.0.

SUNIOR ELECTRONIC WORKSHOP, Model 20 exciting experiments can be Special solderless connections. Kit only £7.13.6.

MULTIMETER. Model MM-IU. Ranges 0-1.5v to 1,500v A.C. and D.C. 150 μ A to 15A D.C.; 0.2 to 20 M Ω , 44'' 50 μ A meter. Kit £12.18.0. Assembled

R.F. SIGNAL GENERATOR, Model RF-IU. Freq. coverage from 100 ke/s-100 Me/s or six bands, on fundamentals and up to 200 Me/s on calibrated harmonics. Kit £13.8.0. Assembled £19.18.0.

DECADE RESISTANCE, Model DR-IU. Range 1-99,999Ω in 1Ω steps. Kit £10.8.0. Assembled

DECADE CAPACITOR, Model DC-IU range. 100 μμF to 0.111 μF in 100 μμF steps. Kit £7.5.0. Assembled £10.8.0.

INTERNATIONAL MAIL ORDER SCHEME INTERNATIONAL THAT CONTROL OF 1250 covering the American Heathkit range of 250 models. Illustrated American catalogue and full details can be obtained from us for 1/2 post paid. 50W PUBLIC ADDRESS AMPLIFIER, Model PA-I. A multi-purpose unit, suitable for vocal and instrumental groups. 4 inputs for guitars, mics, etc. 2 heavy duty speakers, vol. indicator, variable tremolo, modern cabinet. Kit £54.15.0. Assembled £74.0.0.

50W POWER AMPLIFIER, Model MA-50. Ideal for sound reinforcing systems, etc. Kit £19.18.0. Assembled £27,18.0.

"MOHICAN" TRANSISTOR GENERAL

COVERAGE RECEIVER, Model GC-IU. Freq. coverage 580 kc/s to 30 Mc/s in 5 bands. Electrical band spread on 5 additional bands covers "amateur" freq. from 80-10 M. from 80-10 M. B.F.O. Tuning and Zener Send for details. Kit £37.17.6. Assembled £45.17.6.

80-10m AMATEUR TRANSMITTER, Model DX-40U. Crystal controlled. Power input 75w. c.w. 60w. peak controlled carrier phone. Output 40w. Kit £33.19.0. Assembled £45,17.6.

TRANSISTOR INTERCOM, Models XI-IU and XIR-IU, Ideal for home or business. Each master (XI-IU) will operate up to 5 remote stations. 9v. battery operation. XI-IU (Master) kit £10.19.6. Assembled £16.19.6. XIR-IU (Remote) kit £4.7.6. Assembled £5.16.0.

DAYSTROM LI

Dept. P.M. 1, GLOUCESTER, ENGLAND

WORLD'S LARGEST SELLING ELECTRONIC KITSETS

ease	send	me FREE	BRITISH	CATALOGUE (Yes/No)
. 11 .1	- 4 - 24		11.	

ull details of model(s)_

NAME (BLOCK CAPITALS) ADDRESS

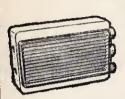
PM-1

NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

KED BY OUR SUPER AFTER SALES SERVICE

S WAVEBAND PORTABLE OR CAR RADIO

Amazing performance and specification Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS


Covers Medium and Long Waves, Trawler Band and two Short Waves to approx. 15 metres.

Push-pull output for room filling volume from rich toned heavy duty 5in. speaker. Air spaced ganged tuning condenser. Ferrite rod aerial for M & L Waves and telescopic aerial for S Waves. Real leather-look case with gilt trim and shoulder and hand straps. Size 9 x 7 x 4in.

Total cost of parts now only

Parts Price List and easy build plans 3,
10 Parts Price List and easy build plans 3,
11 PARTS Price List and easy build plans 3,
12 PARTS Price List and easy build plans 3,-

TRANSONA FIVE Home, Light, A.F.N., Lux. all at good volume. G.P. Durham

G.P. Durham

7 stages—5 transistors and 2 diodes
Fully tunable over Medium and Long
Waves and Trawler Band. Incorporates
Ferrite rod aerial, tuning condenses,
volume control, new type fine tone
super dynamic 2½in. speaker, etc.
Attractive case. Size 6½ × 4½ × 1½in.
(Uses 1289 battery available anywhere.)
P. R.P. Parts Price list and easy build

with red speaker grille. P. & P. Parts Price List and easy build 3.6 plans 2. Total cost of all 42/6

COMPONENT BARGAINS ALL POST FREE

TRANSISTORS
PHILCO MADT Type 2N1727
Maximum frequency of oscillation 150 Mc/s . . . 8/6.
PHILCO MADT Type 2N1728
Maximum frequency of oscillation 150 Mc/s 9/6.
PHILCO MADT (Micro Alloy Diffused) Type 2N503 Maximum frequency of oscillation over 500 Mc/s mum frequence over 500 Mc/s 1/6 Diodes 1/6 Standard interleaved output transformers for valve output 3/6

SWITCHES SWITCHES
Slide, single pole, heavy springs
2/3 Yaxley 6-way, 2 pole ...

TUNING CONDENSERS Air spaced fine quality German manufacture with slow motion drive. 0.0005 with oscillator section 9/6 Subminiature similar 00 with Subminiature similar 00 with uning and oscillator sections 716 Subminiature mica dielectric with trimmers. Tuning 200 pf. Oscillator 50 pf . 5/6 Mica dielectric 0.0003 mfd.

BELLPHONES
Ex-G P.O. Suitable as sound powered telephones. Resistance of coil 60 ohms approx. 3in. 5/9

U-shaped magnet HEADPHONES High fidelity miniature magnetic earpieces (2) on slim band with lead and plug. Easily converted to stereo. American manufacture 13/6

facture . 13/6 Miniature crystal earpiece with lead plug and socket 6/6 DIALS AND KNOBS 3in. dial with polished brass insert and M/L calibrated disc 6/6

lin, cream knobs with polished brass insert and rim 1/3 each brass insert and rim CASES

Real leather-look cases in chest-nut shade with holes punched for tuning, volume control and switch. Also holes punched for car aerial socket and tone control, 9½ × 3½ × 7½in. approx. Complete with carrying straps 35/-

Plastic cases in grey polystyrene Plastic cases in grey polystyrelle with red ornamental grille, 6½ × 4½ × 1½in, approx. 6/9 Telescopic aerials with fixing 6/6

SUPER SEVEN

• 9 stages-7 transistors and 2 diodes

MELODY

"... amazed at volume and performance. has really come up to my expectations". S.G., Stockton-on-Tees.

8 stages—6 transistors and 2 diodes

Our latest completely portable transistor Our latest completely portable transistor radio covering Medium and Long Waves. Incorporates pre-tagged circuit board, 3in. heavy duty speaker, top grade transistors, volume control, tuning condenser, wave change slide switch, sensitive 6in, Ferrite rod aerial. Push-pull output. Wonderful reception of B.B.C. Home and Light, 208 and many Continental stations. Handsome leather-look pocket size case, only 6½ × 3½ × 1½in. approx. with gilt speaker grille and supplied with hand and shoulder straps.

Parts Price List and Total cost of all easy build plans 2/- parts now only Total cost of all P. & P. £3.9.6

TRANSONA SIX

●8 stages -6 transistors and 2 diodes

This is a top performance receiver covering full Medium and Long Waves and Trawler Band. High-grade approx. 3in. speaker makes listening a pleasure. Ferrite rod aerial. Many stations listed in one evening including Luxentium load and aleas. Attractive case. bourg loud and clear. Attractive case in grey with red grille, Size 6½ × 4½ × 1½in. (Uses PP4 battery available any-

Total cost of all 59/6 P. & P. Parts Price List and easy build parts now only 59/6 3,6 plans 2;-

ROAMER SIX NEW!!

NOW WITH PHILCO MICRO-ALLOY R.F. TRANSISTORS

■ 6 WAYEBAND!!

8 stages—6 transistors and 2 diodes

Listen to stations half a world away with this 6 waveband portable. Tunable on Medium and Long Waves. Trawler band and three Short Waves. Sensitive Ferrite rod aerial and telescopic aerial for short waves. Top grade transistors, and the speaker, handsome case with gilt fittings. Size 7½ × 5½ × 1½in.

Extra band for easier tuning of LUX., etc.

Total cost of all £3.19.6 P. & P. 3,6 easy build plans 2, -(Carrying Strap 2,6 extra.)

All components used in our receivers may be purchased separately if desired. Parts price lists and easy build plans supplied free with sets of parts or available separately at fixed prices stated.

(will drive large speaker). available anywhere.)

Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with carrying strap for outdoor use. Completely portable—has built-in Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3in, speaker Size 7½ × 5½ × 1½in. (Uses 9v battery,

Total cost of all £3.19.6 P. & P. Parts Price List and easy build parts now only £3.19.6 P. & P. Parts Price List and easy build plans 2/-

DIO EXCHANGE Ltd 61a, HIGH STREET, BEDFORD. Phone: 2367

Callers side entrance Barratts Shoe Shop Open 9-5 p.m. Sats. 10-12.30 p.m.

L. K. ELECTRONICS The Cheapest—The Best—Quickest Service

Famous Autochanger or Single Player Units supplied with brand new, two-tone, de-luxe portable cabinets, $17 \times 15 \times 8$ in. Strong carrying handle, gilt finish clips and hinges are used by famous make for 22 gn. model. Ready cut out motor board, 14×13 in. Front baffle 7×4 in. High flux loudspeaker and 3 watt amplifier. Amplifier ready built on metal chastis with output transformer, volume and tone controls. All items fit together perfectly. Assembly in 30 minutes, Only 5 wires to join. 12 months' written guarantee. Available separately or package deals as below.

Our NEW MK II Superb Kits are now being dispatched.

L K PRICES FOR COMPLETE KITS.

Autochanger Kits as above B.S.R. U.A. 14, T.C. 8 Mono Garrard Autoslim, Mono	····· 41	D. 7.6 F	P.P. 5 6
Single Player Kits as above			
Garrard S.R.P. 10, Mono	£11	0.12.6 F	P. 5 6
E.M.I. Autostop, Mono		9. 17. A. F	P. 5.6
individual Prices for those who	Wish to purchase senarat	elv	
Record Player Cabinet with Cut	t-out Board 🖒	2.15.0 P	.P. 3 6
Amplifier with 7 x 4in, speaker	******* £	3.10.0 P	.P. 2 6
SCOOP! B.S.R. U.A. 25	Autochangers, T.C.	8 Man	- P11

rand new and boxed. Wired for stereo. Note OUR price £5.7.6. P.P. 5/-. The very, very latest model.

● SCOOPI B.S.R. U.A. 14 Autochangers. T.C. 8 Mono P.U. Brand new and boxed. Wired for stereo. Note OUR price £5.7.6. P.P. 5/-. Latest model.

SCOOP! Garrard Autoslim. Mono P.U. Brand new and boxed. Wired for stereo. Latest model. Note OUR price £6.0.0 boxed. Wired only. P.P. 5/-.

● SCOOP! Garrard A.T.S. Wired for stereo, inclusive of head and mono cartridge (A.T.S is an auto transcriptor). The finest changer of them all. OUR price, brand new and boxed, £7.10.0 only.

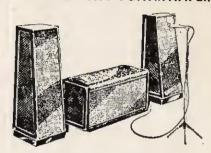
AUTOCHANGERS

Single Players	
E.M.I. Autostop, Mono	£5.7.6 P.P. 4/6
Garrard S.R.P. IV, Mono	45.50 PP 414
E.M.I. Separate Pick-up "	£3.0.0 P.P. 3/6
Transcription Units-Stereo Head-Mono	
Garrard 4 H.F. Stereo	£14,10,0 P.P. 5/-
Philips A.G. 10/16, Stereo	/12 0 0 P P 5/-
Garrard A. I.S. Stereo	JOIOADD SI
Garrard 301	£16.10.0 P.P. 5/-

● SCOOP! Record Player Cabinets. Two-tone, de-luxe finish with cut-out board. These are brand new and product of very famous national manufacturer. OUR price £2.15.0 only. P.P. 3/6.

SCOOP! 3-watt Gramophone Amplifier. Complete with 5in. P.P. 5/-The amplifier is complete, on a fabric-covered baffle board.

transformer included. Tone and volume controls and on/off switch. Ready to switch on and play. Terrific volume. Size $12\frac{1}{2}$ in, × 6in. × $3\frac{1}{2}$ in. back to front. For 200-250 v. A.C. Output 3 watts.


◆ SCOOP! Diodes—over 1,000,000 in stock—ideal substitute O.A.81 vision detector. Note OUR price £1.0.0 per 500. P.P. 2/-. (In 500 lots only).

SCOOP! Transistor Tape Recorder. The best obtainable by very famous manufacturer. Brand new, boxed, guaranteed, Reduced from 12 gns. OUR price £7,10.0. P.P. 3/6. Complete with microphone, tape, batteries and operational booklet. Features push-pull amplifier, two motors, single switch operation, pause, speed, wind, rewind, record, play back. Can be used in any position, indoor

● SCOOP! Hi-Fidelity Speakers, 15-watt. Very famous national manufacturer—we cannot mention name. 45-13,000 c.p.s., 3 or 15 ohm voice coils, response 45-13,000 c.p.s. Magnet 15,000 lines. In carton—unopened and unused. OUR price £4.4.0 only.

 SCOOP! A Stereophonic Amplifier with the following features. SCOOP! A Stereophonic Amplifier with the following features, A twin gauged tone control in a special negative feedback circuit, giving a wide range of tone correction. A balance control enabling the amplifiers to be equalized in output to compensate for pick-up, lead, speakers, recording differences. A speaker switch, MI, single amplifier. M2, dual amplifiers for increased Monaural output. S.3, two speakers at 5 watts per channel. Twin gauged volume controls and all four controls placed equidistant along the front of the chassis. Designed, made and guaranteed by Brittamer Ltd. Brand new and at a fraction of original cost. OUR price £7.10.0 only.

THE SIOUX 60 WATT GUITAR AMPLIFIER

Incorporating Ten High Duty Speakers in two columns of five designed to handle efficiently the full output of Amplifier at frequencies down to 25 c.p.s. Heavily made Cabinet in two-tone Vynair. For 200-250 v. to 50 c.p.s. A.C. Mains operation. Four jack socket inputs and two independent volume controls for simultaneous connection of up to four instrument pick-ups for microphopus. Level frequency response throughout the or microphones. Level frequency response throughout the Audible Range. OUR INCLUSIVE PRICE FOR AMPLIFIER, MIKE, STAND, SPEAKERS, 35 GNS.

SCOOP! Cartridges - Ceramic Diamond Stylii - Stereo - By Acos. Limited Number only at one ‡ of original price-10/- only By Acos. Limited Number of P.P. 1/-. While stocks last.

Speakers ex Equipment. 5in. 5/-, 7in. ×4in. 6/-, 6in. 6/6, 8in. 7/-. P.P. 1/6 each.

◆ SCOOP! Microphones. Complete Lead Coax. Plug, Brand New. OUR price 5/- only. P.P. 1/6.

● SCOOP! A Limited Number Only, Tape Decks by B.S.R. Latest model. A.C./200;240 v. Brand new and boxed. OUR price £6.10.0 only. P.P. 4/6.

● SCO OP! 1964 Radiogram Chassis.

medium, short. 5 watts per channel. 6 valves. Latest Mullard
A.C. 200/250 v. Ferrite aerial. Glass dial. Horizontal wording.
Size 13in.×4in. Aligned and calibrated. Concentric controls.
Isolated chassis. Size 13in.×9in. high x Sin. deep. Product of famous national manufacturer. Brand new and boxed. Maker's

guarantee. OUR price £13.10.0. List price £19.8.0. P.P. 5/6. Our Chassis List quotes prices—the keenest in the Trade. We are Main Agents for the complete range of Brittamer Chassis and Amplifiers. "Brittamer"—the Complete Pagin. makers of Radiogram Chassis to the Top Names in Radio.

◆ SCOOP! For £25.0.0 only. A fabulous offer. Garrard A.T.5 Transcriptor, plus 2 12in. 15 watt Hi-Fidelity speakers, plus the very fatest Continental push-button chassis by Brittamer. Stereo, 3-wave band, 6 valves, 5 watts per channel. The finest chassis of its type in the world. You will be amazed at performance and quality. We unhesitively a server properly the chastic. tatingly recommend this chassis.

TRANSISTOR SECTION

● SCOOP! A first-class 2 wave-band 3 transistor superhet chassis by world famous manufacturer. Fully built, aligned, tested, guaranteed, Full coverage long and medium waves. Note OUR price £5.4.0 only. Suitable speaker 10/6. A few cabinets can be supplied at 22/6 each. OUR price for the package deal £6.10.0 only. Ideal for Caroline.

S.A.E. enquiries please. Our Complete Lists I/- only-credited against your order

● IF NOT ADVERTISED IT IS STILL IN STOCK

K. ELECTRONICS (Victoria) L

17 GILLINGHAM ROW, WILTON ROAD, LONDON, S.W.1.

The NEW Stern-Clyne **ELECTRONIC CONCERT ORGAN**

TO BUILD YOURSELF

DESIGNED -

- For the Electronic amateur seeking the most fascinating
- For the discriminating organist seeking an instrument which DOES sound like a pipe organ.

NEW -

- Constructional methods introducing "sectional complete instrument" building.
- Extended range of tone colours. Without unrealistic "Gimmick" effects.

THE MOST COMPREHENSIVE KIT OF PARTS AVAILABLE IN THIS COUNTRY

START BUILDING FOR AS LITTLE AS £68.10.0 approx. (H.P. Terms Available)

Write today for brochure (enclosing 6d. stamp) to: Electronic Organ Dept., 18 TOTTENHAM COURT ROAD, LONDON, W.C.1, or call at your nearest branch.

VISIT OUR SHOWROOM AT 18 TOTTENHAM COURT RD., LONDON, W.I and hear this fabulous new Electronic Concert Organ demonstrated.

STERN-LLYNE

ELECTRONIC HOBBIES ORGANISATION BRITAIN'S GREATEST GREAT

HERE'S WHY THOUSANDS OF **ELECTRONICS ENTHUSIASTS** BUY WITH CONFIDENCE FROM STERN-CLYNE -

- A wide range of exclusive equipment available including our own speciality

 - MULLARD DESIGNS - for the home constructor or ready assembled.
- The finest selection of Hi-Fi and Audio equipment by all leading manufacturers.
- A comprehensive range of electronic components for the build it yourself enthusiast available at all branches.
- Retail shops, showrooms and demonstration rooms throughout London and the provinces all carry extensive stocks.
- Finest Mail Order Service-geared to give prompt and efficient attention.
- Hire Purchase facilities available on orders of £11 10. 0 and over.
- Hi-Fi advisory service to help you in choosing the right equipment.
- After sales service complete satisfac-

VISIT YOUR NEAREST STERN-CLYNE ELECTRONICS CENTRE

LONDON

18 Tottenham Court Rd., W.I. MUSeum 5929-0095. Half Day Sat. 23 Tottenham Court Rd., W.I. MUSeum 3451-2. Half Day Thurs. 309 Edgware Rd., W.2. PADdington 6963. Half Day Thurs. 109 Fleet St., E.C.4. FLEet St. 5812-3. Half Day St. 162 Holloway Road, N.7. NORth 7941. Half Day Thurs. 9 Camberwell Church St., S.E.5. RODney 2875. Half Day Thurs.

BRISTOL

26 Merchant Street, Bristol I. Bristol 20261.

Now open 6 days a week.

CROYDON

12 Suffolk House, George St. MUNicipal 3250. Half Day Wed.

LIVERPOOL

52 Lord Street, Liverpool. Royal 7450.

MANCHESTER

20-22 Withy Grove, Manchester 4. BLAckfriars 5379-5246.
Open 6 days a week.

SHEFFIELD_

125 The Moor, Sheffield. Sheffield 29993.

MAIL ORDERS AND ENQUIRIES TO:

Dept. P.E., 3-5 Eden Grove, Holloway, London, N.7. NORth 8161-5.

FOR - IMMEDIATE - DESPATCH -PHONE - US - TODAY

BUILD YOUR OWN RECORD PLAYER

4 Speed Autochange 2-tons Cabinels 17 v. 15 v. 8jin. Fig. 9 m. 15 v. 8jin. Fig. 18 m. 15 v. 8jin. Fig. 18 m. 19 v. 19 v.

QMAX CHASSIS

The cutter consists of four parts: a die, a punch, an Allen

lin. lin. lin. lin. lin.	14 6 14 6 15 6 15 9 18/- 18/-	lain. lain. lain. lain. lain. lain.	18 - 18 6 20 - 20 - 20 6 22 6	2in. 23in. 2in. Jin.sq.	34 3 37 9 44 9 31 6 28 -
--------------------------------------	--	--	--	----------------------------------	--------------------------------------

CRYSTAL MIKE INSERTS. High output.
Fillitature size, Lin. dia. y žin. 4/4
ACOS MIKE INSERT I x sin 8/6
ACOS STICK MIKE 39-1
T.S.L. DE LUXE STICK MIKE 25
TELEPHONE CONTACT MIKE 10/6
GUITAR XTAL MIKE 15/6
PROFESSIONAL MAGNETIC GUITAR
MIKE with Vol. & Tone Controls 59 6
Moving Coil Mike 90/-, Floor Stand 57/-
TANNOY CARBON MIKE 5/6

FULL WAVE BRIDGE SELENIUM RECTIFIER: 2, 6 or 12 v. 1) amp. 89; 2 2, 113; 4 2, 17;6. CHARGER TRANSFORMERS. Tapped input 200/250 v. for charging at 2, 6 or 12 v. 1; amps., 15;6; 2 amps., 17;6; 4 amps., 22;6. Circuit included. 4 AMP CAR BATTERY CHARGER with ammeter, Leads, Fuse Case, etc., for 6 v. or 12 v., 59;8.

MINIATURE PANEL METERS

Size Ifin. sq. Precision jewelled bearings, 2% accuracy, silvered dials, fine pointers, 0-1 mA. 27/6; 0-5 mA. 27/6; 0-300 V. 27/6; 0-50 µA 39/6: 0-500 µA 32/6. "S" meter 35/-

MOVING COIL MULTIMETER TK20A. 0-1000 v. A.C. D.C. ohms. 0-1001k, etc., 0-150 mA Pocket size žin. scale. 49,6. VALVE HOLDERS. EA50 6d. B12A, CRT. 1/3. Eng. and Amer. 4, 5, 6 and 7-pin 1/-. Printed circuit BA, B7G. Int. Oct. 1/-. MORSE KEY 4:6; BUZZER 4:6. MOULDED Int. Oct. or Mazda Oct. 6d.: B7G, B8A, B8G, B9A 9d. B7G with can 1:9. B9A with can 1:9. Ceramic EF50, B7G, B9A, Int. Oct. 1/-. E7G, B9A caus, 1/- each, Valve base plugs E7G, B9A, Int. Oct. 2/3.

1965 RADIOGRAM CHASSIS

Three Wavebands
S.W. 16 m. 50 m.
Latest Mullard, etc.
M.W. 200 m. 500 m,
L.W. 800 m. -2,000 m,
L2-month guarantee. A.C. 200-250 v. 4-w25, EZS3,
Short-Medium-Long-Gram, Ferrite Aerial. A.V. 60 m.
Negative Feedback. 5 watts 3 ohm. Chassis 130; n. x
7in. high x 5in. deen. Glass dial size 13in. x 4in.
horizontal wording. Two Pilot Lamps. Four Knobs.
Aligned and calibrated. Chassis isolated from mains.

BRAND NEW £9.15.6 Care. 4/8. Matched Speakers Sin. 17/6; 10in. 25/-; 12in. 30/

Famous Manufacturers' Surplus Bargain Ferguson Quality Amblifier 4 Watts

Size 62 x 5 x 4in. 200-250 AC double wound mains transformer. Volume and tone controls. Sensitivity 200 mv. Response 25 to 20,000 cps. Price 49 6 each. Complete with valves, etc. with valves, etc. 49/6 Brand no 2 units matched for stereo etc., 89/6.

MAINS TRANSFORMERS 200/250 AC Post 2/- each

200/250 AC Post 2/- each STANDARD 250-0-250, 80 mA, 6.3 v. 3.5 a., tapped 4 v. 4 a. Rectifier 6.3 v. 1 a. tapped 5 v. or 4 v. 2 a. 22/8 Ditto 350-0-350 MINIATURE 200 v. 20 mA, 6.3 v. 1 a. 10/8 MIDGET 220 v. 45 mA, 6.3 v. 2 a. 10/8 MIDGET 220 v. 45 mA, 6.3 v. 2 a. 17/8 STANDARD 250-0-250 v. 45 mA, 6.3 v. 2 a. 17/8 STANDARD 250-0-250 v. 65 mA, 6.3 v. 3.5 s. 17/8 DITTO 150 MIDGET 200 v. 20 mA, 6.3 v. 1 a. 17/8 DITTO 150 MIDGET 200 v. 10 mB, 10/8 GENERAL TRANS, 6.3 v. 1 a. 18/8 GENERAL PURPOSE LOW VOLTAGE. 10/8 GENERAL PURPOSE LOW VOLTAGE. 10/8 GENERAL PURPOSE LOW VOLTAGE. 10/8 MIDGET 200 v. 20

MAINS POWER PACKS. Ready built with Mains Transformers, Rectifiers and Condensers etc., providing H.T. and L.T. 200 v. 20 mA. D.C. § wave 6.3 v. 1 a. A.C. 25/6 220 v. 50 mA. D.C. § wave 6.3 v. 2 a. A.C. 35/6 250 v. 80 mA. D.C. Full wave 6.3 v. 4 a. A.C. 45/6

"THE POWER MITE" 45/4

4 TRANSISTOR PUSH-PULL

Size

3×1|×|in.
A ready built ministure push-pull amplifier with
Driver and output transformers, 4 transistors.
Ideal for use with record players, intercoms,
BABY ALARMS, etc., Complete with full
instructions and circuit,
Price 47/6

9 v. Batt, 2.3, 2 in. Speaker 15/-

NEW MULLARD TRANSISTORS

0C71 6'-, 0C72 7',6, 0C81D 7',6, 0C81 7',6, AF115 10',6, AF114 11-, 0C44 8'-, 0C45 8'-, 0C171 9'-, 0C87 8'-, 0C171 9'-, 0C87 18'-, 0C87 Tamistor Holders 1:3. Sab Miniature Condensers, 0.1 mRd., 30 v., 1',3, 1, 2, 4, 6, 8, 13, 2, 8, 30, 50, 100 mPd., 1s voit 2, 6 each.

TRANSISTOR 4 CHANNEL MIXER with 4 separate input-output controls, 59,6

Volume Controls

Long spindles. Midget Size 5K ohms to 2 Meg. LOG or L/S 3/a. D.P. 4.8. LIN. Stereo L/S 10/6, D.P. 14/6. Linear or Log Tracks.

80 CABLE Coax Semi-air spaced 6d. yd. 40 yd. 17/6, 60 yd. 25/-. Low loss 5dB per 100ff. at 500 me/s. Ideal 625 lines 1/8 yd.

THE "INSTANT" BULK TAPE ERASER AND RECORDING HEAD DEMAGNETIZER

B.T.H. TAPE MOTORS 115 y A.C. 28 w. 12/6 pair, for 200 250 v. (in series)

A HAPPY CHRISTMAS TO ALL READERS

Written guarantee with every purchase.

RETURN OF POST DESPATCH

Buses 133, 68 pass door.

S.R. Stn. Selhurst.

(Export welcome. Send remittance and extra postage, no C.O.D.)

BAKERS

Selhurst'

25 WATT 5 GNS 12" GUITAR 15 OHM VOICE COIL RESPONSE 20-10 000

RACE RESONANCE 80 ens GENTINE MUSICAL INSTRUMENT LOUDSPEAKED

12ia, STALWART HEAVY DUTY 15w.
3 or 15 ohm voice coils. Unlimited Applications, 5 gns.
Response 45-13,000 cps. Magnet 12,000 lines.

12ia, STANDARD HEAVY DUTY 20w.
More powerfol magnet 14,000 lines
special suspension. 40-14,500 cps. Recommended
wherever a high standard of reproduction is desired.

12in. BASS HEAVY DUTY 25w.
New 1964 high power model. Aluminium 12 gns.
eoil former with magnetic damping 25-15,000 cps.
Ideal for all electric guitars.

15in. AUDITORIUM MODEL 35w. Improved magnet alcomax with heavy large plated assembly, weight 16 lbs., 17,000 lines, 20-12,000 eps. Heat proofed Coil Former. Ideal for all Electric Guitars.

Bakers affer a full repair service. Specials made to arder, Older types updated. Recoved, Re-energised,

WAVE-CHANGE SWITCHES WAVE-CHANGE SWITCHES 2 p. 2-way, or 2 p. 5-way, long spindle 3 p. 4-way, or 1 p. 12-way, long spindle 3 p. 4 y. 2-way, or 1 p. 12-way, long spindle 3 p. 4 y. 2-way, or 1 p. 3-way, long spindle 3 p. 4 way, 2 wafer, long spindle 3 p. 4 way, 2 wafer, long spindle 3 p. 6-way, 3 p. 4-way, 4 p. 3-way, 6 p. 2-wy, 12-way, 2 p. 6-way, 3 p. 4-way, 4 p. 3-way, 6 p. 2-wy, 12-way, 12-w

BOOKS (List S.A.E.) "W.W." Radio Valve Data..... 8/6 3/6 How to Receive Foreign T.V.

JACKS. Standard open-circuit 2:6, closed-circuit 46. Grundig type 3-pin 1/3; Grundig Lead Type 3-6. Phono Pings 1:-. Socket 1:-. Banana Pings 1:-. Sockets 1:-. JACK FLUGS STANDARD Screened 3:-. Grundig 3-pin 3:6. BULGIN NON-REVERSIBLE PLUGS and SOCKETS. P74 2-pin 4:3; P73 3-pin 4:6; P194 6-pin 6:5. P466 6-pin 12:6; P360 3-pin 4:-; Mains selector panel with plug 1:-.

TRIPLETONE HI-FI MAJOR £15,18,9

12 watts 15 to 20,000 c.p.s. 5 valves A.C. mains isolated. 12in. x 5\(^3\)in. x 6in. high. Built-in pre-amp. and mixer. Two inputs and volume controls. Sensitivity mic. 10 mV.; Gram 250 mV. 3 tone controls, Bass, Treble and Middle. Auxiliary power supply. Ideal for all Electric Guitars. Cabinet with handle, 30/- extra.

NO ORDER TOO SMALL 337 WHITEHORSE ROAD. WEST CROYDON THO 1665

Post 1/-, Full List 1/-, C.O.D. 2/- extra.

HOME RADIO Ltd.

187 LONDON ROAD, MITCHAM, SURREY (MIT. 3282)

Shop hours: 9-5,30; Including Sat. Friday, 9-6,30. Closed all Wednesday

There's a hole in your baggage
Dear Santa!
Dear Santa!

We trust that your
HOME RADIO CATALOGUE
is not among those giving
Santa the slip! But just in case you
haven't yet ordered one (dreadful
thought) here is a gentle reminder.
Fill in the Coupon and send it
off today with cheque or P.O. for 6/-.

HOME RADIO LTD. WISHES EVERYONE A MERRY XMAS AND A HAPPY NEW YEAR!

Remember..

For every complete £1's worth of Components you order from us you can enclose one of the Coupons from our Catalogue and deduct a shilling from your remittance.

		1,42		
CK				
PITALS	pleas	e		

NAME

ADDRESS

HOME RADIO LTD., Dept. PE, 187 London Rd., Mitcham, Surrey

Enclose P.O. for 6!-

VOL. 1 No. 3 JANUARY 1965

Practical Electronics

The Thermionic Valve

Sixty years ago occurred an event that laid the foundation for the future electronics industry. In November 1904, Sir John Ambrose Fleming took out a patent for his oscillation valve-a device making use of the Edison Effect for the rectification of radio and audio frequencies. Thus was born the diode, the first of what was to become a large family of thermionic devices utilising the phenomenon of electron emission.

From the earliest days the radio industry adopted the thermionic valve as its own, but there were also other applications such as electrical measuring instruments where this device soon proved its worth. With these increasing and diversified uses for the valve, a new industry began to evolve-Electronics was coming into being.

New knowledge and techniques acquired particularly during the war years 1939-45 led to the development of computers and other electronically operated devices quite outside the conventional radio communications field. Ironically, these developments also resulted in research into the properties of semiconductor materials and led in turn to the discovery that would end the reign of the thermionic valve in many fields-but this is another story.

All of this is, of course, history. What of the position today, and in particular how important is the thermionic valve to the amateur constructor of electronic equipment?

Those who have taken up electronics as a hobby in the last few years and those just starting will probably have little interest in working with valves. But we imagine the valve will continue for some time yet to have its devotees among the older hands who became involved with electronics in the pretransistor era. A spares box well stocked with "bottles" accumulated over the years is one possible assurance against sudden and total loss of interest in the valve; the plentiful supply of replacements at low prices is another.

Bearing all this in mind, it will be our policy to include a number of valve operated devices amongst our constructional projects, although current trends demand that the major emphasis be given to designs based on semiconductors.

So, sixty years after its discovery we find the thermionic valve superseded in many fields, but by no means completely eclipsed. What of the future? At least so far as high power work is concerned, it seems likely that modern versions of Fleming's diode and other valves using the cathodic emission principle will continue to play a vital role in electronic engineering for many more years to come.

THIS MONTH

CONSTRUCTIONAL PROJECTS

HIGH IMPEDANCE VOLTMETER 5 WATT INTEGRATED

AMPLIFIER 178

COMPACT LOUDSPEAKER

ENCLOSURE 183

DARKROOM TIMER 187 PRINT RECORDER 204

PRECISION DECIMAL STEP

PRE-AMPLIFIER 208

ELECTRONIC GUITAR 217

SPECIAL SERIES

BEGINNERS START HERE_3 200 SOUND ON TAPE-3 202

GENERAL FEATURES

ELECTRONIC POWER 172 FLEMING AND THE DIODE 186 VALVE ON/OFF CIRCUITS 193

NEWS AND COMMENT

EDITORIAL 171 LORD BOWDEN OPENS EXHIBITION 180 READOUT 191 **NEWS BRIEFS** 197 ELECTRONORAMA 198 DETACHED PARTICLES 210 P. E. DATA BOOKLETS 211 **NEW PRODUCTS** 212

Our February issue will be published on Thursday, January 14

All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower An correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Editorial and Advertisement Offices: PRACTICAL ELECTRONICS, George Newnes Ltd., including postage for one year, to any part of the world, 35s. © George Newnes Ltd., 1965. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

Marinous of Conversion from Athematical Conversion of the Conversi

NERGY FROM NOTHING—perhaps a scientist's dream!

All the laws of science are against it. Scientists are looking for new, efficient and cheaper ways of converting heat energy to electricity.

Thermionic, thermoelectric, magnetohydrodynamic and thermo-photovoltaic principles, the four most significant heat to electricity conversion methods, are

reviewed and compared in this article.

Fig. 1 summarises a number of possible electricity producing energy conversion methods. It is a fundamental principle that, although it may be changed from one form to another, energy is indestructible. One common example is the conversion of energy from heated petrol to motion in a motor car.

In a closed thermodynamic system, energy is neither created nor destroyed. There is a limiting factor in the conversion of heat to other forms of energy, known as the Carnot efficiency factor. The greater the temperature change of a heat to electricity converter, the higher will be its conversion efficiency.

THERMIONIC CONVERSION

One of the most common forms of thermionic converter is Edison's "double-life" incandescent lamp. Instead of enclosing a single filament in one envelope he used two filaments. Filament I was connected directly to the power source, and filament 2 was connected to the source via an open switch (see Fig. 2). When filament 1 broke down, the switch automatically closed bringing filament 2 into use. Edison's idea amounted to little more than a domestic gimmick,

but as it turned out this principle was the first step toward the development of the thermionic valve.

During his experiments Edison connected ammeters in the two separate circuits, as will be seen from the diagram. When filament 1 was energised a small current was registered on ammeter A2 while the switch was still open. Some electrons had moved from the hot filament to the cold one. This phenomenon became known as the "Edison Effect", the principle of thermionic emission.

Later developments of Edison's discovery led to the diode valve. In the simplest type of valve the filament acts as the cathode. Other types have separate cathodes which are heated by the filaments. Fig. 3a

shows a simple diode valve circuit.

When the cathode is heated the disturbance of ions due to the high temperature produces a "cloud" of electrons in the vicinity of the cathode. This is known as a space charge.

So far, battery B2 is isolated from the valve by S1. In this condition a state of random activity exists around the cathode with no control over the electrons.

Now if S1 is closed, battery B2 supplies a potential to the anode, positive with respect to the cathode. Here we have a new condition whereby the negatively charged electrons are attracted to the positively charged anode, causing an electron flow in the direction shown in Fig. 3b. If the supply voltage from B2 is increased the anode, having now a greater positive potential, will attract more electrons towards it and so increase the current through the valve. However, this rise in current is not directly

this rise in current is not directly proportional to the rise in anode voltage due to the retarding effect of the space charge, and therefore does not follow Ohm's Law (Fig. 3c). When the anode voltage is increased to a state whereby the maximum possible current is obtained, the diode is said to be saturated.

One other method of increasing the current is to raise the temperature of the cathode by increasing the filament voltage but this can only be done within the limits of the current carrying capacity of the filament. The effect of this method is shown in Fig. 3c.

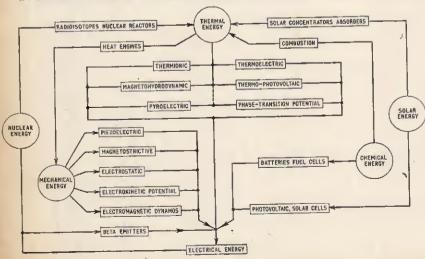


Fig. 1. Chart of energy conversion methods

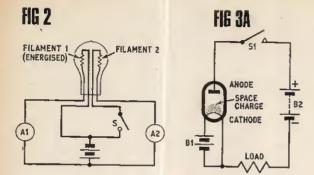


Fig. 2. Edison's "double-life" lamp

REDUCING THE SPACE CHARGE

The retarding effect of the space charge can be considerably reduced by filling the valve tube with an ionised gas. Let us consider the path of a single electron passing through a certain amount of rarified gas or vapour (Fig. 4). During motion the electron will eventually collide with a gas atom (Fig. 4a), producing a new electron and positively charged ion (Figs. 4b and c). These two electrons are attracted towards the anode but on the way they collide with neutral atoms. If collision is great enough to cause ionisation there will be four electrons and three ions (Fig. 4c). This increase of electrons is called an electron avalanche.

The three main classes of thermionic energy converter are illustrated in Fig. 5. The typical diode shown in Fig. 5a is filled with caesium plasma, in which the positive ions neutralise to a great extent the negative electron space charge and permit a free flow of electrons to the anode.

To operate gas filled diodes efficiently the operating temperature should exceed 2,000°C. When filled with caesium vapour, ionisation is achieved more readily, but the high temperature necessary to provide this condition may impair the life of the cathode.

Fig. 5b shows a section of a vacuum close-spaced diode. In this type of energy converter the cathode and anode are very close together—for effective operation they should be about 0.01mm apart.

The third method of reducing the space charge effect is by using crossed electric and magnetic fields (Fig. 5c). Here the heated cathode and the cold anode are in the same plane, and separated by a space less than one-eighth of the width of the electrodes. An auxiliary anode, called the accelerator, is placed parallel to the cathode and anode a short distance away. A magnetic field is placed in such a position that the electrons, after being attracted towards the positively charged accelerator, will be diverted to the true anode. Theoretically, the magnetic triode would seem to be much more efficient than the close-spaced diode—22 per cent compared with 12 per cent under similar operating conditions.

A number of factors determine the efficiency of the system: the scattering of electrons by gas molecules; the reflection of electrons at the anode surface; general electron scattering; non-uniformity of electric and magnetic fields.

THERMOELECTRIC CONVERSION

The principle of thermoelectric conversion is that an electric current is produced by a change of temperature in a solid substance. Conversely, as in a thermo-

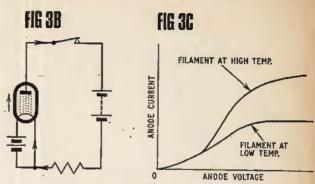
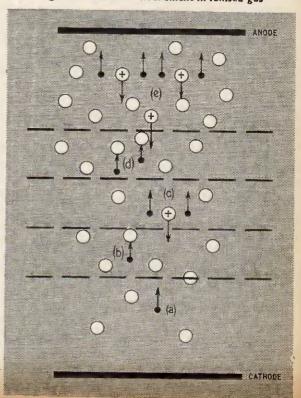


Fig. 3. Simple diode vaive circuit and characteristics

electric refrigerator, if an electric current is passed through a solid the temperature of the solid will change. Thermoelectric effects are reversible physical phenomena.


In 1822, Thomas Seebeck discovered that when the junction of two different metals was heated an electric current was produced. He verified this theory by observing the deflection of a magnetic needle when held close to the junction.

Twelve years later, a Frenchman, John Peltier, discovered that if an electric current was passed through the junction of two different metals, the temperature of the junction increased or decreased depending on the direction of current flow.

depending on the direction of current flow.

Later, in 1857, Thomson (who later became Lord Kelvin) observed that if an electric current is passed through a single solid of homogeneous material, the temperature gradient was in fact matched by a new reversible temperature gradient created and dependent on the direction of current flow.

Fig. 4. Electron bombardment in ionised gas

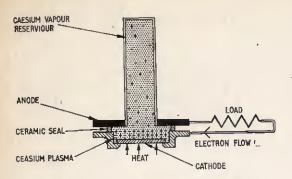


Fig. 5a. Diode filled caesium plasma

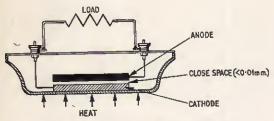


Fig. 5b. Vacuum close-spaced diode

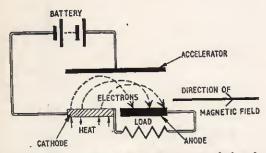
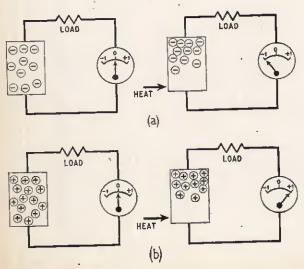



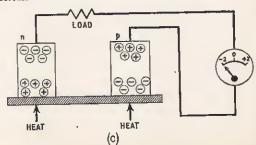
Fig. 5c. Electron flow influenced by crossed electric and magnetic fields

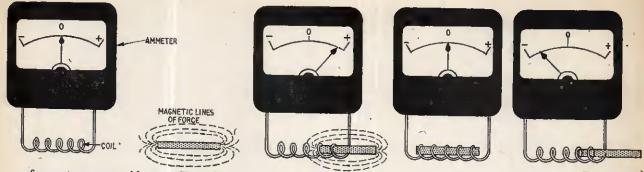
All these discoveries led to the development of the semiconductor device. Fig. 6 illustrates the theoretical principles of the *n*-type (6a) and *p*-type (6b) semiconductor material. In Fig. 6a the *n*-type material is negatively charged at ambient temperature with electrons moving at random. The circuit is completed by an ammeter and load resistance. If heat is applied to one end of the material the electrons move towards the cooler part charging it more negatively. The meter would show a deflection indicating the direction of current flow. Similarly the *p*-type material shown in Fig. 6b is positively charged. When heat is applied positively charged particles (holes) are attracted towards the cooler end of the material, but the direction of current flow is reversed.

The effects of combining p- and n-type semiconductor materials are shown in Fig. 6c, where the combined current produced is theoretically doubled for the same

amount of heat applied.

Whilst thermoelectric conversion is very reliable the efficiency is relatively low, from 3 to 16 per cent depending on the material.


MAGNETOHYDRODYNAMIC CONVERSION


Faraday's principle of electric induction is illustrated in Fig. 7. If an electric conductor is moved in a magnetic field an electric current is induced in the conductor. A practical example can be set up by connecting a coil directly to an ammeter. A bar magnet, capable of being inserted in the coil, is held above and in the same plane (see Fig. 7a). While the magnet is held stationary there will be no deflection of the meter needle. If the magnet is now rapidly inserted in the coil as shown in Fig. 7b the meter will register a current in one direction. While the magnet is held inside the coil, no current will flow (Fig. 7c), if the magnet is moved in the reverse direction a current will flow in the reverse direction as shown in Fig. 7d.

A new concept of this principle is used in magnetohydrodynamic conversion, but instead of a wire conductor, ionised gas is used. In the conventional power generator, a gas-driven turbine engine causes the armature to rotate cutting the magnetic lines of force and inducing a current in the armature wire (see Fig. 8a). In the m.h.d. generator ionised gas flows directly through the magnetic field inducing a current through the probe wires (see Fig. 8b).

In the practical m.h.d. converter the gas is heated to a very high temperature and pressure in the superheater. The gas molecules partly ionise forming a plasma of negative electrons and positive ions. This ionised gas then passes through a nozzle into the conversion chamber (see Fig. 9). The gas is at a very high pressure in the chamber so cutting the lines of

Fig. 6. Thermoelectric conversion using semiconductor materials

force at a very rapid rate. Two electrodes are placed one on each side of the gas stream so that the anode picks up electrons deflected by the magnetic field.

The voltage developed between the anode and cathode is dependant on the magnetic field strength, gas velocity, and electrode spacing. The conductivity of the plasma greatly influences the characteristics of the converter. Many gases do not ionise appreciably at temperatures between 2,000 and 3,000 degrees centigrade unless the gas is charged with caesium vapour or potassium.

Magnetohydrodynamic converters have one great advantage over other types described in this article: they can be constructed to produce large quantities of electrical energy for mains distribution. Efficiencies of about 60 per cent are envisaged while the conventional turbogenerator rarely exceeds 40 per cent.

THERMO-PHOTOVOLTAIC CONVERSION

In 1961, Pierre Aigrain delivered a lecture proposing an interesting concept for heat to electricity conversion using an incandescent heat source to excite electrons in a pn structure. This system is particularly suitable in environments where there is little sunshine. Fig. 10 shows the theoretical circuit. The photons from an incandescent source are heated to a temperature of more than 1,800°C and are directed towards the converter surface by a parabolic reflector.

Its theoretical efficiency is about 70 per cent, but in practice this may be reduced to about 35 per cent. These figures are based on a system using monochromatic light,

The author is grateful to the American Raytheon Company, the Thermo Electron Engineering Corporation, Avco-Everett Research Laboratory, and Professor H. H. Woodson of the Massachusetts Institute of Technology for their co-operation in the preparation of this article.

Fig. 9. Complete system for m.h.d. conversion

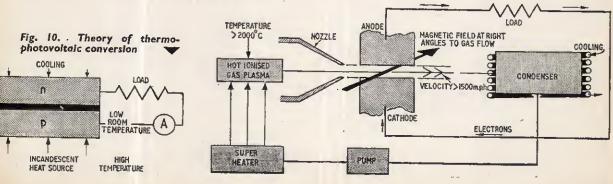


Fig. 7. Faraday's principle of electric induction

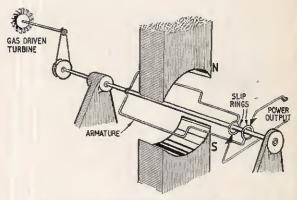


Fig. 8a. Electromagnetic generator principle

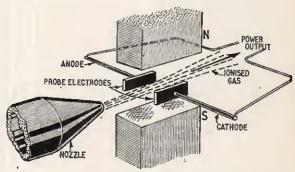


Fig. 8b. Magnetohydrodynamic conversion using ionised

HIGH IMPEDANCE VOLTMETER

By R. E. F. STREET

Most readers will probably be aware of the danger of obtaining misleading results when using most ordinary multimeters to measure potentials in high resistance circuits. For example, if one measured the anode potential of the triode a.f. amplifier in a commercial a.m. superhet, the meter might read 20V instead of the 60V to 80V which one might expect.

The reason for this occurrence is that the meter draws sufficient current through the anode load (which may perhaps be 220 kilohms) that the anode voltage is reduced by the voltage drop across the load. Thus, if the meter took a current of 500μ A, the extra voltage drop would be 50 with a 100 kilohm load. Therefore, if the anode potential were 60V, connecting the meter would reduce it to about 10V which would be the reading obtained.

CURRENT TAKEN

If the meter concerned were fully deflected when taking 500μ A, it would have a sensitivity of 2 kilohms per volt; the meter described here has a sensitivity of some 50 times this figure—100 kilohms per volt. The current taken (on any range) from the circuit under test in order to secure f.s.d. is thus only 10μ A and, of course, if readings are taken below the half-way point on the scale of the meter, then the current from the circuit under test will be 5μ A or less.

This design can therefore be used to take readings in circuits where very high resistances are involved without unduly reducing the potentials concerned.

There are available moving-coil multimeters with sensitivities of 100 kilohms/V, and while they give more accurate results than the unit described here, they are considerably more expensive.

In designing this meter, the aim was to produce a unit of high sensitivity which would be comparatively cheap to construct and it was decided that a high order of accuracy was not needed, or practicable, if the cost were to be kept down to a reasonable figure. Generally, where a high impedance meter is required, high accuracy in readings is secondary to the need for the meter to disturb the circuit under test as little as possible.

CIRCUIT

The circuit of the instrument is given in Fig. 1a on the blueprint. Some readers may recognise a degree of similarity to a Mullard circuit which was in fact used as a basis for this design. One transistor is used—an OC75—in a current amplifying circuit.

The indicator is a 500 μ A meter (M1) which is used in a bridge circuit. When S2 is operated, current flows through TR1 and also through R11 and VR2. VR2 is adjusted so that the potentials at A and B become equal and thus M reads zero. If now a potential is applied to the test terminals, a current flows in the base circuit of TR1 and the collector current increases, unbalancing the bridge and giving a reading on the meter M1.

ACCURACY

The reading on M1 does not increase by equal increments for equal increases in the potential applied to the test terminals, as will be obvious if the circuit is studied. However, the non-linearity is not thought to be serious since the instrument is intended to act as an indicator rather than to give readings of high accuracy.

METER MOVEMENT

The suggested movement is a 2in 500µA type. There is no real point in obtaining an expensive larger meter since the accuracy of the circuit does not really justify the use of such a meter. If a physically larger meter is used, then the layout, and perhaps the mounting box, may have to be changed.

Meters of higher sensitivity can be used, but will be more expensive, though increasing the sensitivity of the complete instrument. Naturally, the values of R1 to R9 will need modifying by experiment if a more sensitive movement is employed.

...,...

INTERNAL STANDARD

The "Calibrate" position of S1 needs some explanation. Before using the instrument, it is necessary to calibrate it; R9 and the dry cell BY1 provide a suitable internal reference potential to enable this to be done.

RANGE SWITCHING

A single switch S1 is used for range selection. It should have very good insulation and a ceramic type may be used if available. In the prototype, a Radiospares "Maka-Switch" was employed. A one-pole, 12-way wafer was arranged, by means of the movable "stop", to give a choice of nine ways, as shown in Fig. 3 on the blueprint.

Eight ranges are shown in Fig. 1: 1V, 5V, 10V, 50V, 100V, 250V, 500V, and 1kV. Securing a range of a given f.s.d. (xV, for example) is merely a matter of interposing a resistor of (100,000x) ohms in the negative test lead, between the base of TR1 and the negative test terminal. Thus, if the constructor wished to add more ranges, or to use ranges with differing f.s.d.'s, the modification would be easy to carry out. Note that the Key to SI Positions on the blueprint shows position 7 as 150V; this should, of course, read 250V.

There are also two ways of wiring up the switch S1. In the first, shown in Fig. 1a, and used in the prototype, the multiplier resistors are arranged in a chain around the "ways" of S1. In the second method, shown in Fig. 1b, the resistors are arranged one for each way of S1, and one end of each is joined to the negative test

terminal.

The first method has the advantage that the maximum value of resistor required is lower and, consequently, the resistors will, in many areas, be easier to obtain. The second method is perhaps really to be preferred since the multiplier of each range can easily be adjusted to give optimum accuracy, without affecting the values of the other multipliers. However, more will be said of this in the section on the wiring of S1.

CONSTRUCTION

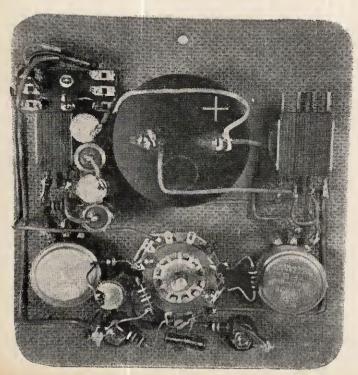
The prototype was built to fit inside a metal box intended for flush-mounting of a control unit for an electric cooker. This box is made by MK Electric

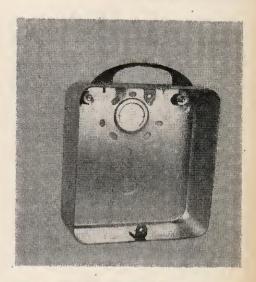
Ltd., and the list number is 5120; it can be obtained from electrical suppliers either "off the shelf" or to order. The use of the box gives a professional finish to the meter, as can be seen from the photographs.

The drilling diagram for the panel of the meter is given in Fig. 4 on the blueprint,

BATTERIES

So that the instrument can be entirely self-contained, the batteries are housed in the case and can be seen in Fig. 3, the wiring diagram, and in the illustration on this page. Five 1.5V cells will be required and the type suggested is the Ever Ready D23 or equivalent. The Ever Ready U16 cells are also sufficiently small.


Four of the cells are wired in series as shown in Fig. 2. The method is to place the four cells side by side, alternate cells being inverted as shown, and bind them together with transparent sticky tape. Short pieces of stiff insulated wire are then soldered to the cells to connect them in series. The brass caps must first be cleaned and so must a small area of the zinc at the base of each cell so that the solder will "take" well. A hot iron is essential so that joints may be made very quickly to avoid damage to the cells.


No clips are used to keep the cells in position on the rear of the front panel. Instead, stiff insulated wire is used for all the connections to the cells (except the one to M1 and VR1) and provides enough support, particularly if the wires are kept as short as possible.

WIRING

Wiring of the unit is not at all difficult and plastics-covered wire should be used for all leads. All the wiring shown in Fig. 3 should be carried out except that associated with the multiplier resistors.

continued on page 211

Photograph (left) shows details of wiring and component layout. Photograph (above) shows the cabinet with the front panel and components removed. A piece of felt measuring 5½ in × 4½ in is stuck to the back of this box. This felt serves two purposes: it seals the unwanted holes and it prevents any marking of surfaces on which the voltmeter may be placed

INTEGRATED TRANSISTOR AMPLIFIER

THIS FINAL ARTICLE DESCRIBES THE POWER SUPPLY AND GIVES DETAILS OF STEREO ARRANGEMENTS

The d.c. low voltage power supply for the 5 watt integrated amplifier can be obtained from a single type PP9 battery if a low power, high quality output of some 250-300 milliwatts coupled with complete portability is the main consideration as already explained.

However, where high power quality reproduction is required, the d.c. low voltage source of power is obtained with the aid of silicon rectifiers and a suitable step down transformer, the primary of which is connected to the normal 200–240V domestic 50c/s mains supply.

Before describing in detail the power supply unit designed for this amplifier, it will be useful to explain the reasons which lead to the choice of a full wave bridge rectification circuit.

VOLTAGE REGULATION

It is essential that the regulation of the available d.c. voltage should be very stable if distortionless reproduction is to be achieved when using a class B amplifier. With zero signal input the quiescent current is only some 50mA for the combined preamplifier and power amplifier; but when the input signal reaches a level of full drive the power output requirements may reach 500mA (or 1 amp if two amplifiers are used for stereo). The load current is drawn through the internal resistance of the power supply. This internal resistance is partly due to the resistance of the silicon rectifiers in the forward direction of current flow (which is fortunately very small) and to a greater extent due to the resistance of the copper wire used in secondary winding of the mains transformer.

Dealing first with the case of the bi-phase full wave

circuit, this necessitates a centre-tapped secondary winding. The secondary voltage is chosen so that for an r.m.s. voltage of 20V in each half of the secondary with respect to the centre tap, the rectified output will equal the peak voltage which is obtained by multiplying the r.m.s. value by $\sqrt{2}$. In this instance this equals 28 volts.

It is extremely difficult to centre-tap accurately this winding, and any imperfection of centre tap reflects an unbalance of the current distribution either side of the required neutral point or zero.

It must be clear that there will thus be a small floating potential that is never returned at any instant to true zero. This unbalance is therefore reflected upon the silicon diodes which are effectively in series across the secondary with respect to a.c. and in parallel with respect to the d.c. line. This voltage never is tied exactly to a finite neutral point and varies continuously according to the power load requirements.

ADVANTAGE OF BRIDGE CIRCUIT

The full wave bridge on the other hand consists of four silicon rectifiers used in a self-balancing circuit and supplied by a simple untapped winding of heavier gauge copper wire (with a correspondingly lower d.c. copper resistance) and the difficulties associated with a centre tap are entirely eliminated.

This system is therefore totally adequate in its ability to provide the instantaneous varying demand of the class B output amplifier. Its regulation is inherently good and it is self-balancing with respect to earth. The ripple after rectification is very low and there is, therefore, less chance of electrolytic capacitor failure.

The complete circuit of the power supply unit is shown in Fig. 10. The 20V secondary winding of T1 supplies the bridge circuit composed of four silicon

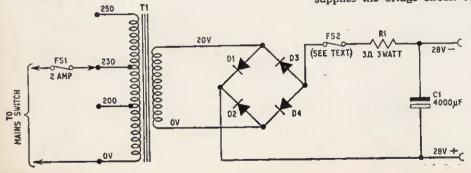
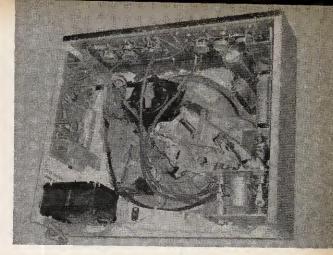


Fig. 10. Circuit diagram of the power supply unit

rectifiers D1-D4, and the pulsatory d.c. output is filtered by C1 and R1. Protection against over-load is provided by FS1 in the primary side of the mains transformer, and by FS2 in the negative d.c. line. FS2 should be 1 amp for monaural and 2 amp for stereo applications.

The mains transformer may appear to be of somewhat generous proportions, but it should be explained that this has been selected with the object of meeting the requirements of a pair of 5W integrated amplifier units—such as would be used in a stereo set-up. Furthermore this is a standard type of component and is readily available.

CONSTRUCTION DETAILS


All components are assembled on a piece of $\frac{3}{8}$ in plywood measuring $7\frac{3}{4}$ in \times 4in. Output connections are made via a pair of sockets on a panel situated at one end of the unit. At the opposite end is another panel carrying the two fuses and the mains transformer voltage adjustment.

Each pair of silicon rectifiers is mounted on an angle bracket fashioned from 16 s.w.g. aluminium, see Fig. 11. The rectifiers have threaded bushes and are secured by means of the washers and nuts provided.

STEREO REPRODUCTION

The integrated quality amplifier has not been designed solely for stereophonic reproduction as it is felt that a great number of music lovers have decided views regarding the restriction imposed by the positioning of loudspeakers in relation to the listener and the difficulty in obtaining good stereophonic reproduction in the average lounge or living room.

There is also the sad medical fact that a large number of music lovers do not possess identical hearing in both ears, and it was the latter fact that influenced the choice of the single-ended monaural amplifier. This presents two entirely separate amplifiers to the stereophonic user, each channel being individually adjustable for tone and volume and so enabling the most satisfactory balance to be obtained.

Photograph of the author's stereo arrangement. The two pre-amplifiers and power amplifiers are mounted on the front and two sides of the cabinet respectively

COMPONENTS.

Resistor

RI 3Ω 3W wire-wound

Capacitor

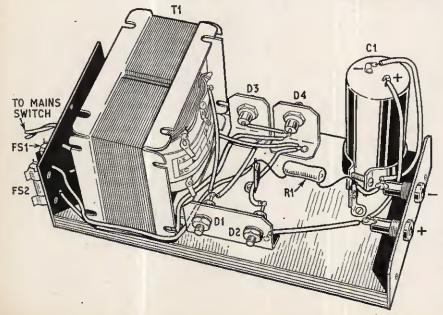
CI 4,000µF elect. 40V (Mullard C431 series)

Rectifiers

DI-4 BYZI3 silicon (Mullard) 4 off

Transformer

TI Mains transformer. Secondary 0-20V (Douglas)


Fuses

FSI Mains fuse 2 amp

FS2 H.T. fuse I amp (2 amp for stereo)

Miscellaneous

Paxolin mains panel incorporating fuse holders; pair PK8A red and black plugs and sockets; capacitor clip; piece of paxolin 4in \times 1 $\frac{1}{2}$ in; baseboard $7\frac{3}{4}$ in \times 4In plywood; connecting wire and sleeving; brass wood screws

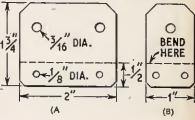


Fig. 11 (above). Drilling details of the 16 s.w.g. aluminium angle brackets for mounting the silicon rectifiers. DI and D2 are mounted on bracket A and D3 and D4 are mounted on two brackets to the dimensions of B

Fig. 12 (left). Layout of components and wiring on plywood baseboard

To obtain stereophonic reproduction, assign one amplifier unit to the right-hand channel, and another to the left-hand channel. The output from each power amplifier is then fed to the correctly positioned right-hand and left-hand loudspeakers. The two outputs from the stereo pick-up head are fed to the correct right-hand and left-hand pre-amplifier inputs.

The volume from each loudspeaker can be individually adjusted to suit the listener's comfort and the desired tonal balance obtained by varying the setting

of the bass and treble controls.

A COMPACT INSTALLATION

It is not proposed to discuss in detail arrangements for housing these units. No real problem exists here, for the very compactness of the equipment simplifies this matter, and readers will have their own ideas concerning the type of installation they prefer,

It does, however, seem of general interest to include an illustration of one particular stereo set-up which has proved highly satisfactory. As can be seen (on page 179), all the electronic equipment is installed inside the table top cabinet which houses the record player.

TABLE I

5W OUTPUT								
TRI -TR2 TR3 TR4 TR5	Ve 1.5V Vc 4V Vc 1.5V Vc 3V Ve 1.5V D.C. Supply 28V	TR6 TR7 TR8 TR9 TR10	Ve Ve Vc Vc	1V 14V 0·5V -28V -14V				

Total current—quiescent 50mA; max. drive 500mA
Measured on 20,000Ω/V meter. Volume control at minimum

The two pre-amplifier sub-assemblies are separately mounted on the front side of this cabinet, and the power amplifiers one on either side of the cabinet. A modified form of construction has been employed for the power supply unit. The mains transformer is mounted in the left-hand rear corner, while the remaining parts are grouped in the opposite corner.

TABLE 2

		300mW	OUTPUT		
TRI TR2 TR3 TR4 TR5	Ve Vc Vc Vc Ve D.C.	0·5V 1·3V 0·5V 0·8V 0·5V Supply 9V	TR6 TR7 TR8 TR9 TR10	Ve Ve Vc Vc	0·3V 9V 0·2V -9V -4·5V

Total current-quiescent 4mA; max. drive 50mA Measured on 20,000Ω/V meter. Volume control at minimum

SCREENED LEAD

From the above account, it will be apparent that it is not essential to fix the pre-amplifier and the power amplifier assemblies together to form a single unit. But if they are separated, it is most important to use a screened lead between the pre-amplifier output terminal

and the power amplifier input.

One final point concerning the combined assembly: check carefully that components or connection points on the facing surfaces of the two plastics panels do not come into contact with one another. There should be no risk of this happening if the specified types of components are used. If larger components are employed, it may be necessary to increase the separation between the two panels.

Lord Bowden Opens Mullard Exhibition

ALL the current plans for a new technological revo-lution will come to nought without an accompanying revolution in the field of education. For this to be brought about automation must not be confined to industry and the factory floor, but must be applied in the classroom, with teaching machines, tape recorders, closed circuit television and other visual aids replacing more and more the teacher.

At least there is no doubt that this is the trend of education in the future as seen by the new minister for

Education and Science, Lord Bowden,

Performing his first public function since his appointment as a minister in the new government, Lord Bowden opened the Mullard Educational Service 10th Anniversary Exhibition in London on 11 November 1964. The minister stressed the vital importance of increasing the efficiency of education—in terms one would apply to industry—by obtaining a higher output of students per teacher. For this to be achieved, "programmed learning" must be employed far more extensively than before.

Lord Bowden speaks as an authority on technological and electronic matters. Prior to entering Parliament he was Principal of Manchester College of Science and Technology; Dean of the Faculty of Technology Manchester University; Chairman of the Electronics Research Council of the Ministry of Aviation; and President of the Science Masters Association.

The exhibition set out to show how the Mullard Educational Service assists the school, the technical college, the university and the industrial training school to teach physics and electronic engineering. One section of the exhibition featured more than seventy demonstrations and experiments.

Each piece of equipment has been specifically designed for use in schools and technical colleges. Some idea of the extent of the subjects covered may be gained from the following short selection of working

Determination of e/m, using magnetron effect; Light controlled oscillator, energy conversion; Velocity of sound, echo technique method; Van de Graaf generator, a source of very high voltage; Hysteresis loop displays, using an oscilloscope and coils; Slow running multivibrator operating down to 1c/s; Geiger-Muller probe, detection of β and γ radiation; Binary adder/subtractor-adds or subtracts digits and numbers up to a maximum of 127.

Lord Bowden (left) talking to Mr. S. R. Mullard at the Mullard Educational Service Exhibition

SOLDER WITH

PRIMAX and PRIMAXA SUPER EFFICIENT SPOTLIGHT SOLDERING GUNS

Distributors: S. KEMPNER LTD., LONDON, W.1 29 PADDINGTON STREET, Tel.: HUNter 0755

D.I.Y. with GOODMANS HIGH FIDELITY MANUAL

A Practical Guide to full listening enjoyment.

The Manual is much more than a catalogue of Goodmans High Fidelity Loudspeakers—it contains practical and informative articles. Those of particular interest to the D.I.Y. enthusiast include special beginners page, advice on stereo, stage-built systems and full cabinet drawings. Whether building or improving your own audio set-up or choosing a complete speaker system, you'll find it useful and interesting as well as informative. Ask or Write for your FREE copy.

Please Fidelity	send m Manual	e a	free		of	the	Goodmans	High
Name	Morre canadad - (() () depressing	**********	*********	(masa sawasan paga	744127		wall and they was a some stated the file of the	
Address	10*********		**** *******	1888 1888 1 141410			4 (andett conditions \$

GOODMANS

GOODMANS INDUSTRIES LIMITED Axiom Works, Wembley, Middlesex Telephone: WEMbley 1200 A Member of the Rentaset Group

VOUCHER entitling you as a customer to full refund of your travelling expenses to and from any of our showrooms. Send for your FREE copy today, or call into any of our showrooms to see, hear and compare our fantastic selection of recorders.

5 STAR FEATURES

- * FREE TRAVEL TO AND FROM OUR SHOWROOMS
- * FREE DEMONSTRATIONS IN YOUR OWN HOME
- * OVER 300 MODELS FROM 15-243 GNS.
- * FREE ONE-YEAR SERVICING
- * FREE TECHNICAL ADVICE

Please send me your FREE BROCHURE (P.E.3)

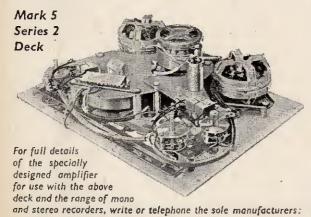
Address.

CITY & ESSEX TAPE RECORDER CENTRES LTD.
Head Office: Citex House, 191 Plashet Rd., London, E.13

CITY & ESSEX TAPE RECORDER CENTRES

242/4 Pentonville Rd., N.1 (150 yds. from Kings Cross Station)	TER 8200
228 Bishopsgate, E.C.2 (Opposite Liverpool St. Station)	BIS 2609
2 Maryland Point Station, Stratford, E.15 (Adj. Station)	
205 High St. North, E.6 (Opposite East Ham Station)	MAR 5879
232 F. India Bask Bd. Beats 544 (4.0)	GRA 6543
232 E. India Dock Rd., Poplar, E.14 (Adj. Blackwall Tunnel)	EAS 5978

NOTE: Bishopsgate Showrooms open Mon.-Fri. 9 a.m.—6 p.m. Sunday 9.30 a.m.—2 p.m. Closed Sat. Other Showrooms open Mon.-Sat. 9 a.m.—6 p.m. Thursday to 1 p.m.



If you're thinking in terms of tape recording, then the Brenell deck and complete recorders should be uppermost in your mind. The reliability, the versatility and the quality of manufacture are seldom equalled in other tape recorders (even in those costing much more).

How many can equal or better this specification?

4 record/playback speeds $1\frac{7}{6}$, $3\frac{3}{4}$, $7\frac{1}{2}$ and 15 ips • 3 motors (capstan motor-hysteresis synchronous) • low 'wow and flutter' content (0.05% at 15 ips, 0.1% at $7\frac{1}{2}$ ips, 0.15% at $3\frac{3}{4}$ ips and 0.25% at $1\frac{7}{6}$ ips) • double-gapped ferrite erase head to minimise erase noise • narrow-gapped record/playback head to give extended frequency response • pause control • superimpose control • $8\frac{1}{4}$ ° dia. reels (to take $10\frac{1}{2}$ ° dia. N.A.B. reels at extra cost) • fast rewind • digital rev. counter.

PLEASE NOTE OUR NEW ADDRESS:

BRENELL ENGINEERING CO. LTD.
231-5 LIVERPOOL ROAD, LONDON, N.1
Telephone: NORth 8271 (5 lines)
GD840

OXLEY

TYPE 062

SUB-MINIATURE 'Barb'' insulators

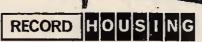
A new OXLEY Patented sub miniature Insulator which is speedy to assemble and with outstanding physical characteristics:

The P.T.F.E. bush, which is supplied with the heavily silver Plated brass "barb" partly inserted, is located in an ordinary .062" dia. hole and the barbed spill is pressed firmly through the assembly, thus expanding the P.T.F.E. bush on the far side of the chassis and locking the complete assembly firmly in the chassis.

Working voltage 500 V.DC; Capacity less than 5 pf; Temperature range ~55°C to +200°C; Resistance to pull in either direction 3 lbs; Chassis thickness = 22 24; SWG = .022'.088* = 0.55 0.72 m m; Mounting hole dia..062' = 1/16* = 1.58 m/m.

100 of these insulators mounted, occupy only one square inch of chassis space.

UXLEY DEVELOPMENTS CO., LTD.


ULVERSTON : LANCASHIRE.

HOUSING HI-FI?

The Lowflex is the world's most flexible hi-fi unit. Its three compartments are fully adjustable to take a complete hi-fi set up including tape recorder and records. For full details of this and other cabinets in the Record Housing range write for free catalogue and name of local stockist (U,K. only).

Walnut or Mahogany 27 gns. Teak

30 ans.

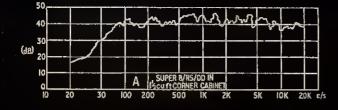
(Dept PE1), Brook Road, London, N.22 Telephone: BOWes Park 7487/8

Those of us who have enjoyed high quality sound reproduction over the last decade or so have sometimes been embarrassed by the size of the enclosures housing our loudspeakers. In addition to the understandable reaction of the ladies to large and sometimes ungainly pieces of furniture, we have also been subjected to a number of entertaining articles, with references to "concrete ovens" and "Beethoven stalking you in the linen cupboard". There are, of course, very good reasons for using concrete and for building enclosures of large volume, but most of us have to live in small rooms where two large loudspeaker enclosures could not be accommodated, and we have to make sure that we are getting the best possible results from the size of cabinet we choose.

IMPORTANCE OF ENCLOSURE SIZE

Generally speaking, the volume of the enclosure affects only the low frequency performance of the loudspeaker. This can be seen quite clearly from Fig. 1, which shows the response curves of an 8in loudspeaker in cabinets of 1½ cu ft and 9 cu ft respectively, at A and B. In both cases the performance remains substantially constant at the treble end up to 20kc/s, but at the bass end the 9 cu ft cabinet adds a whole octave to the performance of the loudspeaker compared with the $1\frac{1}{2}$ cu ft cabinet. The main object of enclosure design is to maintain the frequency response of the system as flat as possible from the centre of the spectrum (say 1kc/s) down to the lowest audible frequency, and from the response curve it will be obvious that the size of enclosure is of great importance.

If we use a full-range cone loudspeaker without a cabinet, the lowest note it will produce is dependent on the size of the baffle on which it is PARTONE...
THE DESIGN


By K. F. RUSSELL

mounted. The positive and negative pressure waves produced instantaneously at the front and rear of the cone will cancel one another if the path length from front to rear is appreciably less than half the wave length at the frequency being produced. Frequencies in the 50c/s region would require a path length of the order of 11ft, and baffles with dimensions less than this will produce partial cancellation at low frequencies. Because of the large size of baffle required to obtain efficient bass performance, it is more usual to enclose the rear of the loudspeaker to prevent the front radiation from interfering with the radiation from the back of the cone, and to improve the efficiency of coupling the loudspeaker to the air load at low frequencies. There are three basic methods of treating the enclosure, all of which have their advantages and disadvantages, and these will be briefly considered.

TOTAL ENCLOSURE

If the enclosure is completely sealed apart from the loudspeaker opening, there is no air path between the front and rear of the loudspeaker, and by suitably treating the interior of the cabinet with absorbent material, it is possible to eliminate substantially all the rear radiation. With this type of enclosure, the volume enclosed determines the lowest frequency produced by the system. This is because the smaller

Fig. 1. Response curves of a full range 8in loudspeaker in a $1\frac{1}{2}$ cu ft enclosure and a 9 cu ft enclosure

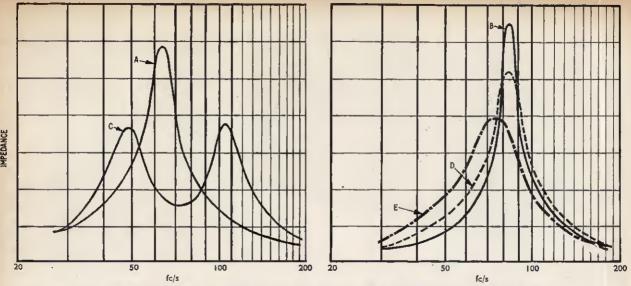


Fig. 2. Impedance curves of a full range unit in a 1 cu ft enclosure. A—open back; B—total enclosure; C—reflex tuning; D—acoustic resistance small area; and E—acoustic resistance optimum area

the volume of the enclosure, the harder it is for the cone to move against the pressure built up inside it. Total enclosures of 12 cu ft or more are very good indeed, and the bass performance remains quite acceptable in total enclosures down to about 4 cu ft. Below this, the low frequency roll-off point rapidly rises from around the 50c/s mark to 100c/s, and with enclosures of ½ cu ft or less the efficiency is very poor below 150c/s or so.

The effect of the enclosure on the low frequency performance can be seen from Fig. 2, which shows impedance/frequency curves of an 8in loudspeaker in enclosures of I cu ft capacity. Curve A shows the rise in impedance at the resonance point of the loudspeaker mounted in such a cabinet, without a back panel fitted. This is therefore equivalent to the open baffle resonant frequency of the unit, and is in the region of 63c/s. Putting the rear panel in position and sealing the enclosure immediately raises the resonant frequency of the system to 84c/s, as seen from curve B, and the Q of the system is also increased slightly. The new resonant frequency of 84c/s represents the point at which the low frequency output of the system begins to disappear. Because of the steepness of the resonance peak, the system sounds objectionable unless a considerable amount of sound absorbent material is inserted in the enclosure. has the effect of lowering the impedance of the loudspeaker at the resonance point, and it also spreads the hump in the impedance curve over a wider range of frequencies. The result is more pleasant to listen to, but the efficiency of the system is reduced.

REFLEX ENCLOSURES

Apart from horn loading, reflex cabinets tuned correctly give the best reinforcement to the low frequency output of loudspeakers. Any sized loudspeaker enclosure can be tuned to resonate after the manner of a Helmholtz resonator by providing an opening, sometimes in the form of a tunnel or pipe, of the appropriate dimensions, and the result is called a "reflex" or "bass reflex" enclosure.

The elastic nature of the air inside the enclosure produces a resonating system with the mass of the air in the vent, and the frequency of resonance is entirely determined by the dimensions. If the resonant frequency of the enclosure is matched to that of the loudspeaker, the system becomes very efficient at that frequency. This is beneficial when the resonant frequency is low because it is always difficult to generate enough power at the lowest frequencies of audibility. At the resonant frequency, the output from the vent and the front of the cone are in phase, which further adds to the efficiency at this frequency, even though at other frequencies the two are out of phase and some cancellation can take place.

The disadvantage of the tuned reflex cabinet is that, like the untreated total enclosure, the resonance point is rather pronounced, and is often audible. Again, internal treatment of the cabinet can largely overcome this defect. It will be seen by referring to curve C of Fig. 2 that, by appropriate design of the vent in the reflex version of the enclosure, the resonance of the system has been lowered from 63c/s to less than 50c/s. Audibly this means that lower frequencies can be reproduced and that there is less distortion in the low frequency range. Fig. 3 shows the waveform of the vent output from a I cu ft tuned reflex enclosure fitted with an 8in unit, and it can be seen that even at 30c/s, the waveform is reasonably clean.

There is a second resonance peak in the impedance curve of a reflex system, which is clearly shown in curve C of Fig. 2. In this case the secondary peak appears at a little over 100c/s, and causes a slight rise in output from the system at that frequency. A second peak can be rather annoying audibly, and sometimes is quite difficult to remove.

ACOUSTIC RESISTANCE

The use of an acoustic resistance in a resonant enclosure is analogous to the use of electrical resistance in an electrically resonant circuit. The resistance usually takes the form of a piece of cloth which covers an opening in the enclosure—in some cases the tuning vent itself. One effect is to lower the Q of the tuned system. The resistance also controls the phase shift at the vent, spreading the vent output over a wider range of frequencies and at the same time suppressing the upper resonance peak which appears on curve C in Fig. 2.

With a small area of acoustic resistance, the tuned frequency of the system is similar to that of a total

enclosure, but the Q is rather lower. This is seen at curve D in Fig. 2. With a larger resistance area, it is possible to reduce the tuned frequency of the system until it approaches the resonant frequency of the loud-speaker itself, and at the same time to maintain a reasonably sized hump in the impedance curve. The optimum acoustic resistance treatment for the 1 cu ft cabinet fitted with the 8in unit under test is shown as curve E in Fig. 2. The peak of the curve is in the region of 75c/s, but the curve itself is comparatively shallow, resulting in a useful reinforcement of output over a fairly wide band of frequencies. The upper resonance peak of the reflex enclosure has been eliminated.

The acoustic resistance in this case was provided by a number of fairly narrow slots cut in the back of the cabinet, and covered on the inside with a soft woollen cloth. In the case of curve D, four slots were used, and in the case of curve E, 12 slots. The low frequency output of this cabinet is satisfactorily clean, and efficiency is maintained below 50c/s. Low frequency waveforms are shown in Fig. 4, and show little distortion even at 30c/s with an input of 1 watt.

The 1 cu ft design using the acoustic resistance type of loading has been chosen as the subject of the remainder of the article, being the most suitable compromise providing adequate low frequency performance, good sensitivity and compact dimensions, in keeping with the 5 watt integrated transistor amplifier described in this and the two previous issues of PRACTICAL ELECTRONICS.

Having ensured that the enclosure is capable of a smooth and efficient performance at the low frequency end of the spectrum, the next important thing is to choose a loudspeaker unit with suitable characteristics.

CHOICE OF LOUDSPEAKER

To maintain a good output at low frequencies, it is necessary to move a large amount of air, and this requirement can be most easily met by a unit with a fairly large cone area. In the case of the I cu ft enclosure mentioned above, a speaker unit of not less than 8in in diameter is desirable. It is important to choose a unit with a free suspension, so that the fundamental mechanical resonance is reasonably low in frequency. The free suspension is, however, more important in that it will allow a large excursion of the cone at low frequencies, enabling the unit to move a good volume of air and so maintain its efficiency in the low frequency range.

Most well designed units with free cone suspensions also employ long speech coils, which are designed to maintain a constant number of turns in the magnetic gap, even with the longest cone movement. This makes sure that the drive to the cone is in linear relationship with the applied signal. It is also important that the loudspeaker is fitted with a rigid chassis, which will not vibrate on its own account, nor easily distort to throw the speech coil and cone out of alignment. Usually die-cast chassis are better in this respect, but if a pressed steel chassis is employed, it must be of adequate gauge.

The efficiency and overall performance of a loudspeaker are decided to a very large extent by the magnet. A magnet providing high flux density in the speech coil gap is essential to good high frequency response and clean transients. Similarly, a high flux density controls the movement of the coil more efficiently at low frequencies, with the result that the low frequency performance tends to be cleaner.

Fig. 3. Waveform of vent output in a I cu ft reflex enclosure fitted with an 8in unit and an input of I watt

Fig. 4. Waveform of the output of an 8in unit in a I cu ft enclosure with slotted back and an input of I watt

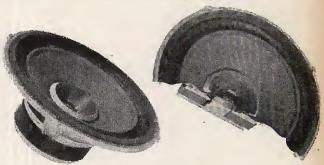
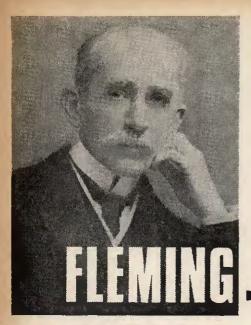



Fig. 5. A full range 8in loudspeaker showing (A) usual appearance and (B) cut away view of the edge suspension and ceramic magnet

Efficiency, too, is related to flux density, so that all in all, a large magnet is of the greatest importance in a high performance unit. This does not mean a slug magnet with a large decorative cover over it. Slug magnets represent a fairly cheap way of providing flux densities up to about 10,000 gauss with high efficiency, but flux densities in excess of this usually demand ring magnets of considerable size and weight. The best units with a diameter of 8in or so are fitted with either Alcomax or ceramic ring magnets providing flux densities in the gap of 14,000 to 16,000 gauss.

A typical high performance 8in unit is shown in Fig. 5. The magnet is of the ceramic type, which is very shallow in depth, and produces a flux density of 14,500 gauss in the gap. The cone is suspended at the edge by an annulus of flexible material with a U-shaped cross section. The main cone generates frequencies up to 10,000c/s, where the small cone takes over. The small cone is directly coupled to the speech coil and carries the response of the unit to above 20kc/s, which is generally regarded as the limit of audibility. The speech coil is wound with aluminium wire in the interests of lightness in the moving parts. The performance of this loudspeaker, as seen from the response curves of Fig. 1, shows quite clearly the effectiveness of the free suspension and the powerful magnet at the two ends of the audible frequency scale.

Next month's article will deal with the construction of a I cu ft design using acoustic resistance loading

discress. I have found a netter of rectifying

Electrical os attations. of Electruly all in the same discretion, so third I can detect them with an ordinary Kinner followent-I have been teceming riginal on an court with nothing but a keiner Jahrananchi and my device . but at present my an a Laboration

I cale This open up a wide field for book . an I can now measure sware that is reaking the flow the effect of the transmiller. I have not reculined the to any one get as it may become very useful your very sicered

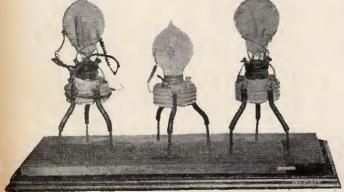
MING...AND THE DIODE

60th Anniversary of the Invention of the Thermionic Valve by Sir Ambrose Fleming, F.R.S.

THE "Fleming Oscillation Valve", the forerunner of today's vast range of specialised valves, was discovered by Sir Ambrose Fleming just 60 years ago, in November 1904. Perhaps one of the most important electronic discoveries of the century, this invention heralded the birth of the electronics industry.

At the time of his discovery, Sir Ambrose was Professor of Electrical Engineering at University College, London, and since 1899 had been Scientific Adviser to The Marconi Company. He was very closely associated with Marconi himself and had played a leading part in the design of the powerful transmitting equipment at Poldhu in Cornwall, with which Marconi made his first successful wireless transmission across the Atlantic in 1901.

In his search for better methods of detecting electromagnetic or wireless waves, Sir Ambrose, recalling the results of earlier research involving the passage of electric currents through rarefied gases, conducted a series of experiments utilising some of his original apparatus. This new work led him to the discovery of the "Fleming Oscillation Valve", the first thermionic valve produced in the world. This was quickly recognised by the Marconi Company and the "valve" was soon put into full production.

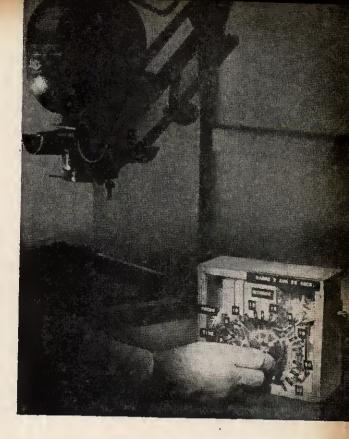

The immediate effect of Fleming's diode was to improve the sensitivity of the early wireless telegraphy receiving apparatus which previously had been dependent upon coherers or crystal detectors. But the subsequent developments were even more momentous.

One man's discovery frequently inspires other workers in a similar field. This was so in the case of the thermionic valve. Following on the success of Fleming's invention, three years later Lee de Forest of America patented a thermionic valve with a third electrode. The invention of the triode (Lee de Forest originally called it the "audion") made possible both the generation and the amplification of alternating currents; it brought to an end the era of the spark transmitter, and ushered in the wireless telephone. Soon many further potentialities of the valve were perceived . . .

Sir Ambrose died in his 96th year on 18 April, 1945, at Sidmouth, where he had spent the last few years of his intensely active life in retirement.

(Left) Three early Fleming diodes (Right) Two early Marconi production models of the Fleming diode

At the top of the page appears a reproduction of the end of a letter from Fleming to Marconi informing him of this discovery which "may become very useful" (Photographs kindly supplied by the Marconl Co. Ltd.)



By G. J. FLANAGAN

In photographic enlarging it is necessary to switch the mains powered enlarger on for a known length of time and to do this reasonably accurately.

The timer unit described has been tested during long periods of photographic work and has the advantages of being completely self-contained and, as usual with transistor apparatus, quite small.

The design of the time circuit gives time delays of up to 45 seconds, which is longer than normal exposure times usually required during enlarging.

darkroom timer

PERHAPS the easiest way of considering the working of this circuit is to split it into three distinct parts, the CR time constant circuit, the transistor amplifier which operates the relay, and the actual switching of the mains to the apparatus required.

THE CR TIMING CIRCUIT

If a capacitor is charged from a battery, and then connected to a resistor, the time taken for the charge to decay is a simple function of the original charge stored in the capacitor and the value of the associated resistor. As may be expected, the larger the charge stored in the capacitor the longer the time it will take to decay; and also the larger the value of the resistor, the less current that can flow, and the longer the time taken for the charge to decay. The amount of charge stored in a capacitor is proportional to the value of the capacitance and the voltage to which it is charged.

The timing circuit uses a constant charging potential, that of the battery supply, applied across a large capacitor C using a variable resistor VR to obtain the variable delays. The time constant of the circuit can be obtained by the product of $C \times R$ where C is expressed in *farads* and R in *ohms*. This gives the approximate delay in seconds. For transistor circuitry, or circuits using large time constants, it is more convenient to think in terms of $1\mu F \times 1$ megohm = 1 sec.

Referring now to the circuit diagram of the complete unit—see Fig. 1 on blueprint—with the variable resistor VR1 at minimum and the switch S2 in position 1, we have

 $1,000\mu\text{F} \times 1/1,000 \text{ megohm (1 kilohm)} = 1 \text{ sec}$ and, with the variable resistor at maximum

 $1,000\mu F \times 26/1,000$ megohm (26 kilohm) = 26 sec

In position 2 by similar multiplication, the times are 27 sec and 53 sec. In practice these values are very slightly reduced because of the current taken by the circuit.

TRANSISTOR RELAY DRIVE

One essential consideration in designing the relay drive is that the time constant obtained from the CR network should be changed as little as possible, that is to say that the current drawn by the base of the first transistor should be much smaller than that passing in the CR circuit. Now the input impedance of the d.c. amplifier circuit (TR1 and TR2) is:

$$Z_{in} = R_b + \beta_1 R_e$$

Where R_b is the physical resistance of the base-emitter diode of the transistor, R_e is the emitter resistance (= $25/I_e$ ohms, I_e in milliamps), β_1 being the current gain of the first transistor.

Thus, for high input impedance we must use a large emitter resistance between the silicon emitter follower transistor TR1 and the germanium output transistor TR2. In the latter stage the transistor is used in the grounded emitter configuration so that voltage gain is obtained.

A silicon transistor is used for TR1 because of the low leakage current characteristic of this type. The variable 5 kilohm resistor VR2 across the base emitter junction of TR2 enables adjustment to be made to compensate for the differences in the current gains of transistors used in the circuit. VR2 is set to maximum and then reduced till the maximum time on range 1 is 25 seconds.

The diode D1 across the relay RLA prevents the reverse voltages, developed when the output stage is switched off, from damaging TR2.

SWITCHING CIRCUITS

This section deals with the circuit required to switch a photographic enlarger but, as stated previously, the timer could be used with almost any apparatus requiring to be timed, by suitable changes to this section to suit individual requirements.

In enlarging, the basic course of events are:

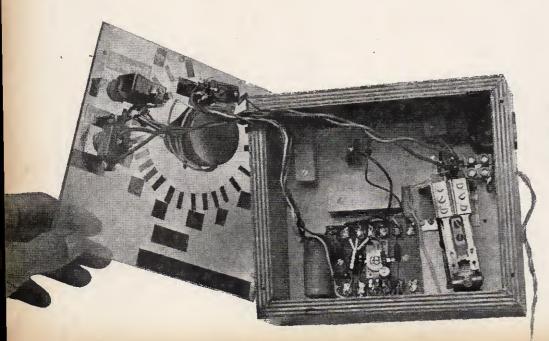
- (1) Switch on and focus the enlarger, adjust iris for exposure.
- (2) Switch off enlarger.
- (3) Insert photographic paper and expose.

This cycle is then repeated for each enlargement. The timer in this circuit is only capable of a maximum time of 45 seconds, so that it is clear that for the focusing of the enlarger we must be able to switch on the enlarger independently of the timer. This is most simply done by putting a second switch S3 in parallel with the timer switch. If this is a double-pole double-throw switch it can also be used to switch off the timer supplies when focusing or when the unit is not in use. The arrangement of the relay switching contacts to do this and to charge the capacitor are shown in Fig. 1.

CONSTRUCTION DETAILS

As can be seen from the photographs, the original unit was constructed on a plywood baseboard and this was fitted with a perspex top. The mounting of the resistors and transistors on the miniature tagstrip is shown in Fig. 5. A 2-pin socket was attached to the original, and also a mains lead, so that the unit when needed could be simply inserted between the mains supply and the enlarger, as would be a piece of extension flex.

The reason for fixing the time range switch and variable resistor to the top of the box, was to enable a long pointer to be used so as to obtain more accurate positioning of the variable resistor, and hence of the chosen time. The second range was expected, from the values chosen, to be 25 seconds greater than the first range which was timed with a stop watch. Spot checks showed this to be correct at the lower end of the scale, but to be about 2 seconds less than this at the longest time. All wiring was cableformed to make a much neater finished unit.


The timer may be powered by a 9V battery, or the mains operated supply unit depicted in Fig. 2 could be employed.

SAFETY PRECAUTIONS

Any switch controlling the mains supply to apparatus should be fitted in the line side of the mains, so that when the switch is in the off position, the appliance in question is not live. This should be adhered to with this circuit. Since this means that the switch contacts on the timer will always be line while the timer is plugged in, some form of complete cover for the unit is essential. That is to say the circuit should not be built up and left on an open chassis. A cover like the original is ideal but a metal box could also be used, though this should be adequately earthed. This is important as the equipment will be used in near darkness with damp hands.

The timer should give long trouble free service,

and save hours of clock watching.

Photograph of the timer showing components mounted on the perspex front panel and layout inside the cabinet.

LEARN **ELECTRONICS** - AS YOU BUILD

over 25 CIRCUITS-

EXPERIMENTS — MODELS TEST EQUIPMENT — including:

- Valve ExperimentsTransistor Experiments
- Electro-magnetic Experiments
- Basic Amplifier
- Basic Oscillator
- Basic Rectifier
- Signal Tracer
- Simple Counter
- Time Delay Circuits
- CATHODE RAY OSCILLOSCOPE

- Square Wave generator
- Morse Code Oscillator
- Simple Transmitter
- Electronic Switch
- Photo-electric circuit
- Basic Computer Circuit
- Basic transistorised radio receiver using printed circuit
- A.C. Experiments
- D.C. Experiments

The full equipment supplied comprises: valves, transistors, photo-tube, modern type chassis board; printed circuit board; full range resistors, capacitors and inductors; transformers; potentiometers; switches; transistors; valves; all hardware, wiring and every detail required for all practical work plus CATHODE RAY OSCILLOSCOPE for demonstrating results of all experiments carried out. All practical work fully described in comprehensive PRACTICAL MANUALS. Tutor service and advice if needed.

This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components; their symbols and how to read a completed circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used, and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computers and automation; photoelectrics; counters, etc., and rules and procedure for fault finding and servicing of all types of electronic equipment.

- NO PREVIOUS KNOWLEDGE NEEDED
- SENT IN ATTRACTIVE BOX
- COMPLETE ADVICE SERVICE
- NO MATHS USED OR NEEDED REASONABLE FEE-NO EXTRAS REQUIRED

A completely NEW up-to-date home study experimental course by BRITISH NATIONAL RADIO SCHOOL -

Britain's Leading Electronic Training Organisation.

POST	NOW	FOR	FREE	BROCHURI	_

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE. Please send free Brochure, without obligation, to:

Block Capitals Please

THE MOST SUCCESSFUL HI-FI PLAN EVER OFFERED TO CONSTRUCTORS

by return suit you best. MARTIN ELECTRONICS, 154 HIGH ST., BRENTFORD, MIDDLESEX Leaflet showing Details of all Martin Audiokits, please to

Coupon brings brochure

ADDRESS

TYGAN FRET (Contem. pst.), 12 × 12ln. 3/-;12 × 18ln. 3/-;12 × 24ln. 4/-, etc. EXFANDED ARDUSED METAL—Attractive gilt finish ½ in. × ½ in. diamond mesh 4/8 sq. tt. Multiples of 6 in. cut. Max. size 4(t. × 3tt., 47/8, plus sare Tabinet Acoustic Wadding (In. thick approx.) 12ln. wide, any length cut, 1/6 ft., 4/- yd.

Volume Controls—5K-2 Meg. ohms, 3in. Spindles. Morganite Midget Type 1in. diam. Guar. 1 year. LOG or LIN ratios less Sw. 3/a. DP. Sw. 4/s. Twin Stereo less Sw. 6/6. DP. Sw. 3/a. Specials to order.

WAVECHANGE SWITCHES. 1 p. 12-way, 2 p. 2-way, 2 p. 6-way, 3 p. 4-way, 4 p. 2-way, 4 p. 3-way, long spindle, 3/6 ea.

ENAMELLED COPPER WIRE—]b. reels 14g-20g, 266; 22g-22g, 3/-; 30g-34g, 3/9; 36g-32g, 4/3; 39g-40g, 4/6, etc.
TINNED COPPER WIRE, 16-22g, 2/6 jlb.
ERSIN MULTIGORE SOLDER, 60/40 4d.
per yard. Cartons 2/8, etc.

New Boxed	VA	LVES	Bai	Red gain P.	
1T4 1R5, 185 384, 3V4 ECC81	3/6 6/- 7/-	EF86 EL33 EL84 EL84	8/6 12/6 12/6 7/-	PCL83 PCL84 PCL85 PL36	10/6 10/- 11/6 10/6

174	3/6	EF86	8/6 1	PCL83	10/6
1R5, 185	8/-	EL33	12/6	PCL84	10/-
334, 3V4	7/-	ELS4	12/6	POL85	11/6
ECC81)		EL84	7/-	PL36	10/6
ECC82	7/-	EY51	9/-	PL81	9/6
ECC83		EY86	9/	PL83	8/-
ECL80	9/-	EZ81	7/-	PY33	10/6
ECL82	10/-	GZ32	9/8	PY82	7/-
ECL86	10/6	PCC884	8/-	U25	10/6
EF80	7/6	PCF80	3/-	UL84	8/-

CO-AX 80 ohm CABLE

High grade low loss Cellular Air Spaced Polythene—in. diam. Stranded Cond.

Now only 6d. yard

BARGAIN PRIOSE—SPECIAL LENGTHS 20 yds. 9:: P. & P. 1/6. Coax. Plugs 1/-; 40 yds. 17/6; P. & P. 2.-, Sockets 1/-; 60 yds. 25/-; P. & P. 3/-. Couplers 1/3.

The new, easy way to build

MARTIN AUDIOKITS comprise a cleverly designed range of prefabricated transistorised units from which you can build from a single pre-amp stage to an integrated 20 watt series hi-fi assembly suitable for use with today's finest accessories. Assembling these tested and guaranteed units could hardly be simpler, but the final results appear thoroughly professional. Quality is superb; attractive knobs and escutcheons are available. As new units come along, they can be added to your assembly stage by stage so that Audiokits are never outdated.

F.M. TUNER Advance Notice

A quality VHF/FM Tuner designed specifically for use with Audiokit and other Hi-Fi assemblies will be ready for release very soon. Details will gladly be sent on request.

MARTIN ELECTRONICS LTD., 154/5 HIGH ST., BRENTFORD, MIDDLESEX Phone: ISLeworth 1161/2

DE-LUXE RECORD PLAYER KIT

Incorporating 4 Sp. Garrard Auto-Slim unit and Mullard latest 3 watt printed circuit amplifier (ECL86 and EZ80), vol., bass and treble controls, with 8 x 5in. 10,000 line speaker. Contemporary styled two-tone cabinet, charcoal grey and off-white with matching blue relief. Size 17tin. x 16in. x 8in. A stylish unit capable of quality reproduction. Circuit and const. details 2/6 (free with kit).

COMPLETE KIT

so many units to chose from that it is a

simple matter to select just the units to

Carr. and ins. 10/-. £13.19.6

Illuminated Perspex control panel escutcheon 7/6 extra. Ready wired 30/- extra. 4 contemporary mounting legs (6 or 13in.), 12/6 per set.

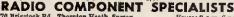
RECORDING TAPE

Famous American Columbia (CBS) Premier quality tape at NEW BEDUCED PRICES. A genuine recommended Quality Tape—TRY IT. Brand new, boxed and fully guaranteed. Filted with leader and stop foils.

Speakers P.M.—3 ohms 21" E.M.I. 15/6. Goodmans 31" 16/6. 5" Rola 15/6. 6" Elac 16/6. 7" × 4" Goodmans 15/6. 8" Rola 19/6. 10" R. × A. 25/-. 9" × 6" Goodmans 22/6. E.M.I. Ceramic Magnet 37/6. Tweeter 22/6. Jack Pings, Standard 24' Irganic Type, 2/6. Serened ditto, 3/3. Miniature scr. 11", 2/3. Sub-min. 1/3.

TRANSISTOR COMPONENTS

IRANSISIOR COMPONENTS
Måget IF, F= 465 Kc/s 3c in. diam. ... 5/3
Osc, Coll M. & L.W. ... 5/3
Midget Driver Trans. 5.51 ... 5/8
Sphuns. ... 6/9
Elect. Condensers.—Midget Type 1 mid.-60
mid. ca. 1/8, 100 mid. 9/-, 12V
Condensers 150 v. working: 01 mid., 106 mid., 1 mid., 1/-, 25 mid., 1/8 mid., 1/4 mid. 9/d.; 0.5 mid., 1/4 mid. 1/-, 25 mid., 1/8; 5/2 mid., 1/8 mid., 1/6 mid., 1/-, 1/2 mid., 1/8; 5/2 mid., 1/8 mid. 1/2 mid. 1/8; 6/2 mid., 1/8 mid. 1/8 mid. 1/8 mid. 1/8 mid., 1/8 mid. 1/8 mid.


Condensers—Silver Mica. All values 2pF to 1,600pF, 8d. each. Dittos Ceramics 9d. Tub. 450V T.C.C. etc. 0.001 mFd to 0.01 and 0.1/330V. 9d. 0.02-0.1/500V. 1/-. 0.25 Hunt, 1/6. 0.5 T.C.C. 1/8, etc., etc. Gloss Tol. Silviness—10% opF-500pF, 8d. 600-5.000pF, 1/-. 1% 2pF-100pF, 9d. 100pF-500pF, 1/-. 1% 2pF-100pF, 9d. 100pF-500pF, 1/-. 1% 2pF-100pF, 1/-. 18esistors—Full Range 10 ohms-10 meg. ohms 20% 1 and 4W, 3d., 3W, 5d. (Midget type modern rating) 1W, 8d., 2W, 9d. Hi-Sish. 5% 1W, 1W, 8d. (100 ohms-1 meg). Other values 9d. 1% 1W, 1/6, etc., etc.

TRIMMERS, Geramic (Compression Type)—
30pF, 50pF, 70pF, 9d.; 100pF, 150pF, 1/3;
250pF, 1/6; 600pF, 1/8;
PHILIPS. Bee Hive Type (conc. air spaced)
—2-8pF 1/1; 3-30pF, 1/4.
KNOBS--Modern Continental types Brown
or Ivory with Gold Ring; 1" dia., 9d. each;
11", 1/- each; Brown or Ivory with Gold
Centre, 1" dia., 10d. each; 11", 1/3 each.
LARGE SELECTION AVAILABLE.

METAL RECTIFIERS. STC Types—RMI, 4/8; RM2, 5/8; RM3, 7/8; RM4, 16/-; RM5, 21/-; RM4B, 17/6; Mullard BY100, 10/6.

TUB-ELECTROLYTICS-CAN

25/25v. 50/12v. 1/9; 8+8/450v. 4/6; 60/50v. 100/125v. 2/-; 32 + 32/275v. 4/6; 8/450v. 4/350v. 2/3; 50/50/350v. 6/6; 16 + 16/450v. 5/6; 60/250/275v. 12/6; 32 + 32/450v. 6/6. 100 + 200/275v. 12/6.

70 Brigstock Rd., Thornton Heath, Surrey.

Hours: 9 a.m.-6 p.m., 1 p.m. Wed.,

THO 2188. Terms C.W.O. or C.O.D. Post and Packing up to 1 lb. 9d.; 1 lb. 1/8; 3 lb.
2/3; 5 lb. 2/9; 8 lb. 3/6.

A SELECTION FROM OUR POSTBAG

"Just what I have been seeking"

Sir—I feel certain that you will receive many letters praising your excellent new magazine, and wonder whether mine will be noticed among them, but I would like to say, all the same, how much

I appreciate it.

I am thinking of taking up electronics as a career, and this publication is just what I have been seeking, from which to find general information, practical projects and the like. I am sure that it will be widely read and appreciated by electronics enthusiasts everywhere.

Thank you again for a fine magazine.—Yours faithfully.

DAVID JONES, Pwllheli, Caerns.

Aid to homework

Sir—I wish to congratulate you on your new publication and wish it well for the future. I found the subject matter worthwhile and the booklet and resistance colour card worth the money. Even the Greek alphabet helped me with my son's homework. I hope you will continue along transistor lines, since the field is wide open to you relative to other publications.

I would privately welcome an attempt to list transistor equivalents—even if only approximate—and to give relative characteristics, i.e. type with type. Even if you don't get down to this I shall continue to take your publication. I wish you well.—Yours sincerely,

G. T. C. Morris, Carshalton.

Roding Boys' Society

Sir—May we be so bold as to offer our congratulations regarding your new Journal. It should be just the thing for modern youth, and for that matter anyone with an up-to-the-minute mind. Our own Society is dedicated to spreading science, electronics and similar activities for boys, as we think such things are sadly neglected in the Youth Programme of this country. However, many other things of great interest to lads are pursued . . . camping, expeditions. visits, etc.

There may be many of your new readership who would be very interested in the work of our Society, either as keen lads who might like to join in, or as patrons who feel like helping to spread this movement. We hope you think our activities worth mentioning in the pages of "P.E."—Yours sincerely, (signed)

D. Moere, R. Phipps, R. Marchant, A. Jones (members) and K. L. Smith, B.Sc., G3JIX, Leader R.B.S.

Beginners . . .

Sir—I have just read the first issue of your magazine and I must say I am impressed by your approach to beginners in radio and electronics—this I may say has been long awaited by many youngsters I know.—Yours faithfully,

H. S. YORKE, A.I.P.R.E., Dunfermline, Fife.

R. F. POTTER.

... Start here

Sir—First of all may I congratulate you on a first rate magazine. However, may I plead as a technical man myself that the magazine (or a portion of it) will not "talk" to us as though we were about fourteen years old.

I would appreciate the inclusion of articles dealing with radio control.—Yours faithfully,

Middleton, Kings Lynn. Conflicting points of view! Maybe some newcomers to electronics would like to express their opinions of the manner in which this series is presented?

Mains stabiliser

Sir—Congratulations on a publication which seems very likely to be the much needed bridge between the other "Practicals". I am much impressed by the start, and hope that the continuation will be as good or better.

May I make a suggestion for early inclusion in "Constructional Projects"? Many readers would, I know, be glad to be able to build a mains voltage stabiliser suitable for use with electronic equipment, using components in relatively cheap supply. The following is the probable spec: Input 200–250V, 50c/s; Output 230–240V, 50c/s; Loading 0–25W. This type of unit would be of such great use with very many types of electronic gear that it may be worth an early priority in the series.—Yours faithfully.

C. A. HARLING, Cheltenham,

We can almost certainly promise you a mains voltage stabiliser of this kind before long.

Electronic ignition

Sir—I should like to congratulate you on your new magazine. What a boon it will be to enthusiasts who are interested in electronics other than radio and television, subjects which are already well catered for by your sister magazines.

I was very interested in your article "Semiconductor Devices for Automobiles" especially the section dealing with transistor assisted ignition. If it is possible could you please let me know the value of the individual components in this circuit as I should like to attempt constructing one. Thank you very much for some very interesting reading.—Yours truly,

J. R. FENN, Stratford, London, E.15.

This was essentially an introductory article. It is our intention to publish more detailed design information on transistor ignition systems in the future.

Garage door control

Sir—With reference to your remarks about garage door control you may be interested to hear that I have constructed a mechanism operated by simple low frequency magnetic induction. A ferrite rod is mounted behind the wall and has its coil connected to a two stage d.c. transistor amplifier. This operates a relay when a signal is received.

A SELECTION FROM OUR POSTBAG

continued

A simple oscillator comprising another ferrite rod, power transistor, capacitor, and battery is housed in a plastics torch case and this is carried in the glove box of the car. To operate, the "torch" is pointed through the windscreen at the brick wall.

I wish to take this opportunity of wishing you and PRACTICAL ELECTRONICS every success.—Yours

faithfully.

T. J. KELLY, Worcester Park, Surrey.

Magnetic induction systems are often used for control and communications purposes, but it must be noted that such systems are subject to the Wireless Telegraphy Act, and require a G.P.O. licence.—J. Valence.

Future projects

Sir—Congratulations! PRACTICAL ELECTRONICS is a really fine magazine, well presented, well illustrated and readable!

Can I dare hope for a readers' letters page, in the near future, and please, plenty of articles on inexpensive electronic apparatus for the constructor, test-gear, receivers, amplifiers, etc., both valve and transistor, in each issue.

Yes, a grand magazine, worthy of every enthusiast's support-my regular order has already been placed,-Yours sincerely,

H. E. CHAMBERLAIN, Newark-on-Trent, Notts.

Sir—Congratulations on your very forward-looking journal. I am very pleased that you will be concentrating on the solid-state physics of tomorrow.

I would like you to consider giving us constructional articles on the following: Electronic Flashgun (transistorised circuit) and a battery portable tape recorder based on the Garrard batteryoperated tape deck. Other articles which I would personally find very interesting would be a continuation of your "Electronic Didjeridoo" to include a square wave tone generator, attack and decay control, and a vibrator or tremolo

oscillator and amplifier. All these must be circuits using transistors of course.

Perhaps a more ambitious series of articles on making an oscilloscope using transistors could be considered, as also an electronic organ. A photo-electric light meter using light sensitive transistors would not come amiss either.

Enough for the moment on suggestions for future subjects. I am sure this magazine will be a great success.—Yours faithfully,

> H. R. DUBASH, London, S.E.4.

Our thanks to all those readers who have offered suggestions for future con-structional articles. We have a busy and exciting time ahead!

Simple geiger-muller ratemeter

Sir-I like the first copy of PRAC-TICAL ELECTRONICS and have placed a regular order. Will you kindly ask Mr. Rowles whether an equivalent to the HC4 may be used for his ratemeter? May the MX168 be used instead. Perhaps Mr. Rowles would compare these two tubes for me.-Yours faithfully,

> H. S. KING, Head of Science Dept.; Saint Ivo School. St. Ives, Huntingdon.

The ratemeter described was designed for use with halogen quenched type Gelger tubes. As the MX168 is of this type it is quite in order to use this tube. The working voltage of this and other Mullard MX tubes is 420V, hence no alteration to the circuit as published is required. (But please note the correction to the values of RI and R2 given on page 129 of last month's issue). The author has tried the MX168, MX115, MX108 and a surplus type tube PET 40 in the ratemeter, all giving satisfactory results. -I. F. Rowles.

School's report

Sir—Having had a chance to look over the first issue of PRACTICAL ELECTRONICS since yesterday, I am sure that you will be pleased to know that I approve very much its content and general layout and will have no hesitation in bringing it to the attention of pupils and colleagues.

I am especially pleased with the article on the simple Geiger-Muller ratemeter (possibly because we have just made one ourselves which might stand a little modification) and I was surprised and delighted to find the promise of a

follow-up with some basic experiments. I am also rather surprised, but very pleased to find the inclusion of such articles as "Beginners Start Here" and "New look at the Electron". These and the comments of "Detached Particles" and the other news and comment articles give, in my view, an excellent balance to the constructional projects.

For the future, I would like to see a series dealing with binary counters and simple computing

In this type of magazine I think the adverts are an essential part of the reading material. You are probably as well aware of this as I am, but I think it does bear repeating that the adverts form an important consumer service—par-ticularly in the electronics field which is ever expanding and where we often require components that we, in the provinces, cannot expect to obtain locally and which could be extremely expensive if we were not able to obtain surplus or second-hand items.-Yours faithfully,

R. MITCHELL, B.Sc., Science Dept., Buckhaven High School, Buckhaven, Fife.

"Mathematical snobbery"

Sir—I have just read through the first number of PRACTICAL ELEC-TRONICS and must write to congratulate you on this production. There are only one or two small points I would criticise:

- (1) The unnecessary introduction somewhat advanced mathematical formulae into the midst of an otherwise useful practical article by J. F. Rowles. There is a kind of mathematical snobbery which demands a mathematical appendix to scientific articles in more theoretical papers but it is out of place in the present context.
- (2) I do not follow the transistor biasing arrangements in the same article—However I was brought up on valves.-

Yours faithfully, R. W. Sawyer, B.Sc., Head of Science Dept., The Grammar School. Ilminster, Somerset.

VALVE ON-OFF CIRCUITS

By G. D. Howat

HERE are three electronic circuits, all based on a common symmetrical configuration, which can be applied to a very wide range of problems. They form, in effect, three variations on a theme, and comprise the multivibrator, the monostable switch or flip-flop, and the bistable switch. It is the purpose of this article to discuss briefly the properties of the first and last of these circuits, and to investigate the flip-flop in more detail. Also it will be explained how these principles were applied to a particular design problem.

The theme and variations are set out in Fig. 1. It is seen that the first and last variations are symmetrical

but the flip-flop is not.

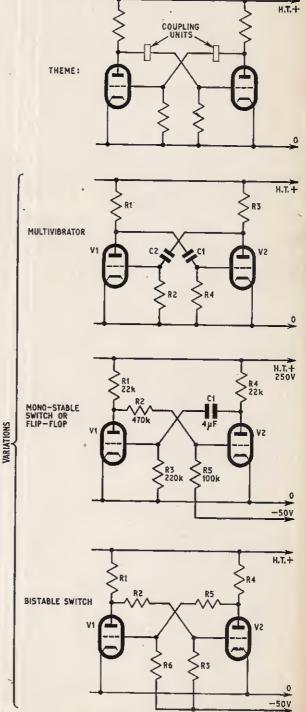
MULTIVIBRATOR

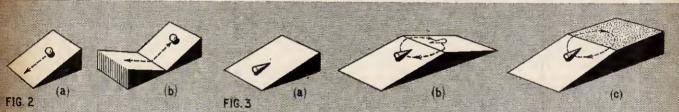
The multivibrator, probably the best known of the three, is a free-running oscillator which produces a square wave output at each anode. It is very useful as a signal generator and signal tracer because of the high harmonic content of the square wave output. It also finds uses in timebases, audio frequency equipment (tone generators, organs) and in various specialised applications including pulse radar techniques.

The multivibrator action consists of the alternation of two complementary astable states. In case there is any confusion about the meaning of the term "astable state", a mechanical model may help to clarify the problem. A sphere resting anywhere on a sloping surface as in Fig. 2a is an astable system since it will not remain in this condition but will roll down the slope. If two such systems are arranged as in Fig. 2b we have the mechanical analogy of a multivibrator with the sphere continually changing over from one

astable state to the other.

At any instant one of the valves (V1 in multivibrator) conducts and its anode is at a potential below the The grid of V2 is negative, making the valve non-conducting. C2 charges up via R2 and R3 to almost the full h.t. voltage. At the same time C1 is slowly discharging and the voltage on its lower end is rising towards earth. At a certain point on this rise V2 starts to conduct and the potential on the top end of C2 begins to fall. Since this capacitor has most of the h.t. voltage across it the falling potential at the anode end of C2 pushes the voltage on the grid of V1 below earth. This results in an "avalanche process": the anode end of C1 rises in potential as V1 cuts off and the grid of V2 becomes even more positive. More voltage appears across R3 and, via C2, the grid of V1 is pushed more negative still until finally the valve is cut off. The second half-cycle is now in progress and is a mirror image of the first, i.e. V2 is now conducting and will continue, via C2, to hold V1 cut off until a sufficient amount of the charge on C2 has leaked away through R2. When this has happened another changeover occurs, identical with the first, and returns the circuit to its original state. Since each anode alternates between being cut off and conducting at constant current, the output waveform at the anodes will be the familiar square shape.




Fig. 1. Basic configuration and practical on-off circuits

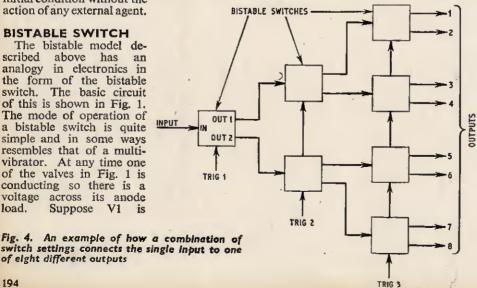
MECHANICAL ANALOGY

Before going on to discuss the remaining two circuits, it is necessary to explain the meaning of some more of the terms used, especially monostable, bistable, and quasi-stable states. These are demonstrated by the models drawn in Fig. 3. Fig. 3a shows a cone resting on a sloping surface—this being an example of a monostable system: if the cone is pushed it will always roll back to the same position. That is, it only has one position where it will remain stationary although, unlike the astable system, it will remain on the slope. If this model is modified as in Fig. 3b then the result is rather different. There are now two independent stable positions which the cone can take up—one on each side of the model. If the cone is pushed uphill it will change over from one stable state to the other, by simply rolling over the top. A second push will cause it to move back again. This is then a system with two stable states and is thus called a bistable system as distinct from a monostable one.

conducting, then a voltage exists across R1. The potential divider action of R2, R3 results in a negative voltage being applied to the grid of V2 keeping it cut off. Because of this there is no equivalent voltage across R4 and the other potential divider, formed by R5 R6, cannot bias V1 to cut off as the top of R5 is nearly at h.t. voltage. V1, therefore, continues to pass current. This represents one stable state—one valve conducting and the other one held cut off by it. Unlike the similar situation in the multivibrator, however, it will remain in this state indefinitely. The other stable configuration is the mirror image of the above one with V2 conducting and the voltage across its anode load keeping V1 cut off. In order to make the switch change over a suitable triggering pulse must be applied to the grid of the conducting valve. A negative pulse is required and it momentarily cuts the valve off, allowing the other one to take over the conducting state.

Since the bistable switch will remain in either of its stable states indefinitely it has the property of being

Figs. 2 and 3. Mechanical analogy of the circuit principles


If the top of the wedge in Fig. 3a is almost, but not quite, flattened as in Fig. 3c then we have a situation part way between the above two. If the cone is pushed it will roll up the plain area of 3c onto the dotted area. It will remain here for a short time, moving very slowly, but since the dotted area is slightly tilted it will ultimately roll back down to its initial position on the front (unmarked) section. This shows the action of a system with one stable and one quasi-stable state. When the cone is pushed it moves from the stable condition (blank front region) to the quasi-stable condition (on the dotted area) and stays here for a short time. Unlike the bistable system, however, it then reverts to the initial condition without the action of any external agent.

such it is used sometimes in the memory units of computers. Digital computers work on binary arithmetical methods, that is mathematics based on only two numbers. One bistable switch can therefore remember the entire numerical system of binary arithmetic, by letting one stable condition represent one digit and the other stable state the other one. In binary then one switch can remember 0 and 1, two switches can remember 0, 1, 2 and 3, three can remember 0 to 5 and so on. Any number can thus be stored in a sufficient number of bistable switches in binary arithmetic.

able to "remember" one single bit of information. As

BISTABLE SWITCH

The bistable model described above has an analogy in electronics in the form of the bistable switch. The basic circuit of this is shown in Fig. 1. The mode of operation of a bistable switch is quite simple and in some ways resembles that of a multivibrator. At any time one of the valves in Fig. 1 is conducting so there is a voltage across its anode load. Suppose V1 is

SWITCHES TRIGGERED	OUTPUT LINE OPERATING
0	1
1 ONLY	5
2 ONLY	3
3 ONLY	2
1 AND 2	7
1 AND 3	6
2 AND 3	4
. 1,2,3	8

of eight different outputs 194

five principle kinds of gate operations: AND, OR, NAND, NOT. The circuits of two of these are shown in Fig. 11. The AND circuit combines together. The or circuit combines them by addition. Nor denotes a negative quantity. The NoR circuit combines the functions of both Nor Now if a certain computation or calculation is required these signals can be combined in a pre-determined manner by using gates. There are the input signals (corresponding to noughts and ones by multiplying them and or, while NAND combines NOT and AND functions.

Binary code

Suppose we want to add two numbers. For simplicity we will take 27 and 14. 27 is broken down to values of the power of 2:

$$2 \times 2 \times 2 \times 2 = 2^{4} = 16
2 \times 2 \times 2 = 2^{3} = 8
0 = 0 = 0
2 = 2^{1} = 2
1 = 2^{9} = 1$$
added together = 27

The binary coded values would then be

$${2^4+2^3+0+2^1+2^0}\atop{1}$$

All positions from the highest power of 2 down to 20 must be filled, In this case 22 is not used so must be entered as 0.

Now let us break down 14 as follows:

$$2 \times 2 \times 2 = 2^3 = 8
2 \times 2 \times 2 = 2^2 = 4
2 \times 2 = 2^1 = 2
0 = 0 = 0$$
added together = 14

Here 24 and 2º are not used and must be represented by 0. The binary values would be

$$0 + 2^3 + 2^2 + 2^1 + 0$$

$$0 + 2^3 + 2^2 + 2^1 + 0$$

By adding the two series of digits the same rules apply as in ordinary arithmetic except that when the answer is a 2 or more the remainder is written down and the quotient carried to the next column on the left. For instance if the answer is 2, divide by 2, carry this answer to the next column on the left and write down the remainder (0).

01110 (representing 14) 11011 (representing 27)

100101

It will be seen that all even numbers are represented by 0 and odd numbers by 1. Now converting back to a decimal number

×

VALVE CHARACTERISTICS

A.C. Resistance

The a.c. resistance of a thermionic valve is equal to a small change in anode voltage divided by a small change in anode current.

 $r_a = dV_a/dI_a$

.02 where d denotes the small part in the V_a/I_a characteristic which almost linear—see Fig. 9 on page 3 (last month's issue).

Mutual Conductance

The mutual conductance of a valve is an expression of the effect of changes in anode current due to changes in grid voltage.

$$g_m = \frac{\mathrm{d}I_a}{\mathrm{d}V_g}$$

where d denotes the small part of the I_a/V_g characteristic which is almost inear—see Fig. 9 on page 3 (last month's issue).

Amplification Factor

The ratio of V_a to V_g is called the amplification factor (μ) ,

$$\mu = \frac{dV_a}{dV_a}$$

where d denotes the small parts of the characteristics which are used.

Stage or Amplifier Gain

Stage gain is given as the ratio of a.c. signal voltage at the output to that at the input.

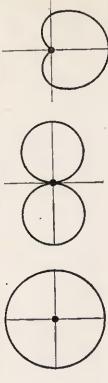
Voltage gain = output signal voltage input signal voltage =
$$\frac{\mu v_{1n}R_{L}}{R_{L} + r_{a}} / v_{1n} = \frac{\mu R_{L}}{R_{L} + r_{a}}$$

This is where vin is the input signal voltage and R_L is the anode load, often converted to decibels by using the following expressions:

Voltage gain =
$$20 \log_{10} \left(\frac{\text{output voltage}}{\text{input voltage}} \right) dB$$

(output watts) dB Power gain = 10 log10 (input watts)

Corrections to Data Booklet-2 (last month's issue)


page 2, Theory

Expression in the second line should read: $I_a \propto V_a^{8/2}$

"... between anode and grid, known as the Miller Effect." page 4, Applications
The last line in the first paragraph should read:

MICROPHONES

Microphones can be divided into four basic types according to their polar sensitivity patterns. The correct use of directional characteristics in microphone placement reduces the effects of extraneous noises and reverberation.

. Cardioid Fig. 2. Bidirectional Fig. 3. Omnidirectional

Unidirectional

The most popular type of unidirectional microphone is the cardioid, the polar characteristic of which is shown in Fig. 1. This characteristic is achieved by combining the principles of a velocity and a pressure microphone. Typical front to back sensitivity ratios are of the order of 15dB but a single-element ribbon type has been developed with a ratio of 20dB. Unidirectional microphones are particularly useful for public address work where the risk of acoustic feedback has to be minimised.

Bidirectional

The polar characteristic shown in Fig. 2 is typical for a bidirectional velocity ribbon microphone. Sound is picked up from the front and rear of the microphone at approximately equal intensities.

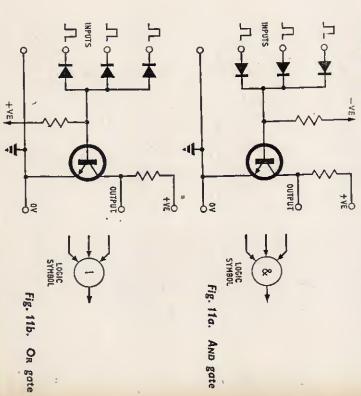
Omnidirectional

The sensitivity of an omnidirectional microphone, as can be seen in Fig. 3, embraces a circular area around it. Crystal and dynamic microphones can be made omnidirectional and are particularly suitable for recording large orchestral concerts and stage productions.

Polydirectional

This type of microphone can provide a choice of two or three directional characteristics or a continuously variable characteristic.

Impedance Matching


Carbon, ribbon and dynamic (electromagnetic) microphones usually have low impedance and require a matching transformer for linking to a high impedance amplifier input. It should be remembered that the ratio usually quoted on a transformer is the voltage ratio. The impedance ratio is the square of the voltage ratio.

=

Erasure is effected by passing a high frequency current through the coil of a similar head, which has a gap about 20 times the size of the recording head gap. The magnetised particles of oxide on the tape are saturated by the field produced by the erase current. Due to the very high frequency used the resulting signal is inaudible.

COMPUTER PRINCIPLES

The most common kind of computer makes use of a binary code, i.e. numbers are identified whether they are odd or even and how many times two can be divided into them. In order to be able to store such information or perform mathematical calculations, the computer has to recognise the information or number fed into it by noughts and ones. Calculation takes place by combining a series of noughts and ones in accordance with the binary code. These noughts and ones are usually stored in the computer in a logical manner by using bistable circuits (fflp-flops). (These circuits are explained elsewhere in the January issue of PRACTICAL ELECTRONICS.) From this it can be seen that a circuit can be conditioned to pass one of two signals or, in the case of the computer, a nought or one.

A flexible arrangement of controlling treble and bass by using only two controls is shown in Fig. 9. A more severe degree of correction can be achieved by using the negative feedback principle. There are a number of books available which give more details of tone correcting circuits.

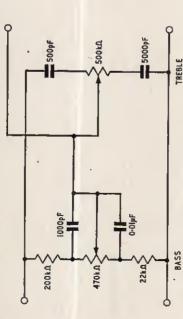


Fig. 9. Combined variable bass and treble, cut and boost circuit

MAGNETIC TAPE RECORDING

Current, in the form of a.c. signals, is fed through a coil wrapped round a soft iron or ferrite core (see Fig. 10). The core is so arranged that the gap between the pole faces is only about 0.0001in maintained by the insertion of a non-ferrous shim. Each minute particle of magnetic oxide on the tape which passes the gap is magnetised when current flows through the coil. The direction and magnitude of flux in selected particles is shown in Fig. 10 when a sine wave is recorded.

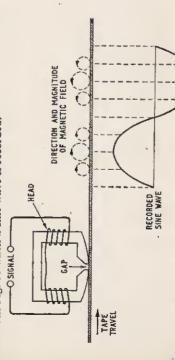


Fig. 10. Magnetic tape recording principle

Due to the partial non-linearity of the magnetic characteristic of the core a high frequency bias current is applied at the same time as the signal current to magnetise the head on the linear portion of the characteristic.

The nominal impedance of a microphone is usually quoted as being the electrical impedance at 1,000c/s since the impedance of such a non-linear device increases with frequency. For example, the range of impedance of a microphone may be from 19 to 75 ohms; the rated impedance would be 38 ohms at 1,000c/s.

Crystal microphones are high impedance devices and can be connected direct to the high impedance input of an amplifier. The crystal is effectively a capacitor which

may be considered to be in series with the generated voltage and following grid resistor (see Fig. 4) which should be from 1 to 5 megolms. Too low a resistance may have the effect of attenuating low frequencies.

Fig. 4. Crystal microphone input

CRYSTAL

HICROPHONE

MESSISTOR

LOUDSPEAKERS

The most common loudspeaker in use today is the dynamic (moving-coil) type (see Fig. 5) which has to a large extent superseded the old mains energised type. The electrostatic loudspeaker is becoming more widely used but is relatively expensive. Public address systems sometimes use horn type loudspeakers where high efficiency is more important than quality of reproduction.

In the moving-coil loudspeaker the greater proportion of high frequencies are reproduced by the centre area of the cone. As a result small loudspeakers (up to about 5in diameter) will reproduce high frequencies better than low frequencies.

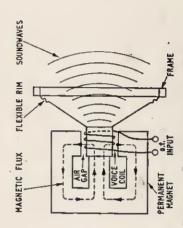


Fig. 5. Diagrammatic section of a dynamic moving-coll loudspeaker

Fig. 6. Typical dual

Medium size loudspeakers (6 to 10in diameter) will produce a better low frequency response but may still be restricted below about 100c/s. Large loudspeakers (12 to 15in diameter) will reproduce these lower frequencies but because of the mass of the cone, free vibration at high frequencies is restricted and does not give the best results.

Crossover Networks

It follows from the previous paragraphs, therefore, that the ideal setup is to have three loudspeakers of different sizes to cope adequately
with the entire audio frequency range. However, many people compromise by using one large loudspeaker (woofer) and one small loudspeaker (tweeter) which give very satisfactory results. These two units
should be close to each other to avoid undesirable pseudo-stereophonic
effects. This is catered for by some manufacturers who make dual
concentric loudspeakers (see Fig. 6). Here the small horn shaped
tweeter is mounted concentric with the cone of the woofer.

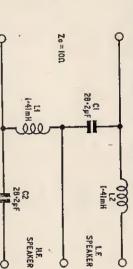


Fig. 7. Simple crossover network

If a two or three loudspeaker system is used it is desirable that each should be fed mainly with the range of frequencies which it will handle. To achieve this a crossover network is employed. Fig. 7 shows a simple circuit for series connected loudspeakers at a crossover frequency of 800c/s and giving 10dB per octave drops. Values for components at other impedances can be determined by:

$$L = Z_0/2\pi f \sqrt{2}$$
 and $C = 1/2\pi f Z_0 \sqrt{2}$

where

L = inductance of L1 and L2 $Z_0 = \text{speech coil impedance}$ C = capacitance of C1 and C2 f = crossover frequency

PICK-UPS

Much of what has already been said under microphones applies also to pick-ups and their connections to amplifiers.

Electromagnetic pick-ups

They are usually low impedance devices requiring matching transformers. These can be sub-divided into three types:

(a) A moving iron pick-up has a steady field supplied by a permanent magnet with an iron armature in the gap.

(b) A moving coil pick-up has a stylus attached to the coil which is allowed to move in the magnetic field.

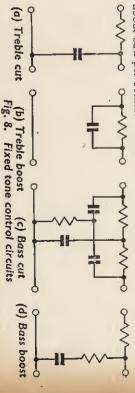
(c) Magnetostriction pick-ups make use of the principle of tension and compression of certain ferromagnetic metals (such as nickel, iron, cobalt and manganese alloys) when placed in a magnetic field. If subjected to this treatment the magnetic reluctance changes. The stylus is attached to a wire or rod of this material.

Piezo-electric pick-ups

This is the technical term for the more familiar crystal pick-up. The crystal is subjected to twisting or bending which produces electrical charges on some of its surfaces. The voltage produced is higher than that from most magnetic pick-ups. The characteristic impedance is also high enabling it to be connected directly to a high impedance valve amplifier. The frequency response is not as good at high frequencies above about 9kc/s or low frequencies below about 100c/s, compared with that of electromagnetic pick-ups.

Capacitance pick-ups

This type is self explanatory in that the stylus causes a mechanical variation of the distance between two plates so varying the capacitance in an oscillator circuit. The output is usually very low, hence it needs a very high gain amplifier. However, the frequency response is very good up to about 30kc/s.


Other types

Ribbon pick-ups operate on the same principle as ribbon microphones. In eddy-current pick-ups the stylus moves a high resistance vane close to the inductor of a resonant circuit in an oscillator.

Strain gauge pick-ups are based on the principle that the resistance of a conductor changes when the conductor is strained.

TONE CONTROLS

For a number of very good reasons some audio reproducing devices give signals which haven't level (or flat) frequency response characteristics. In order to correct for this an equaliser has to be used. The simplest kinds of fixed equaliser are shown in Fig. 8. These circuits, known as passive equalisers, give only a limited amount of boost or cut, usually about 6dB per octave.

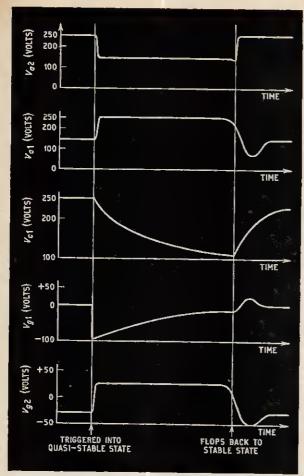
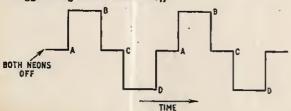



Fig. 5. Graphs of a flip-flop which took 30 seconds to revert to the stable state after being triggered

It is possible to "gate" two amplifiers with a bistable switch, i.e. arrange for two amplifiers to operate alternately, one in each stable condition of the switch. By connecting the inputs of the two gated amplifiers together, we have a two-way electronic switch where an input to the system will be passed to one of the two outputs when the switch is set one way, but will appear at the other output when the switch changes over. In this respect it operates just like an ordinary mechanical change-over switch, but differs in being able to switch over in a millionth of a second or less. As the output

Fig. 6. Two complete cycles required for a flashing display A—Unit switched on, Via conducting. Neon I switched on B—VIa cut off. Flip-flop triggered into quasi-stable state. Both neons off

-Flip-flop changes over. Neon 2 switched on -Multivibrator changes back to original state. Flip-flop triggered again. Both neons off

of one switch can be connected to the input of another. very complex switching networks can be produced. Fig. 4 is an example, each combination of switch settings connects the single input to a different one of the eight outputs.

Clearly, the bistable switch is a very useful circuit element. Unfortunately, in order to build a computer very large numbers of them are required and for this. reason it is usually impractical for amateurs to attempt the construction of a digital computer. Even if the units are transistorised the cost of building several hundred or even thousand switches makes the idea impracticable. Modern digital computers are transistorised and at the present time a considerable amount of research is going on to try to build bistable units capable of operating in the shortest possible time; certain solid state circuits now switch over in much less than 10-8 second.

FLIP-FLOP

The final variation on the theme is the flip-flop, the circuit diagram of which is shown in Fig. 1. The circuit is seen to be "half-way" between a multivibrator and a bistable switch, with one grid-anode coupling via an RC network and the other via a resistor to a

negative bias line.

In the stable condition V1 is conducting and a voltage exists across the anode load R1; the potential divider action of R2, R5 maintains the grid of V2 negative, keeping the valve cut off. Its anode is then at h.t. potential and, since V1 grid is at earth potential, C1 charges up to the full h.t. voltage. Suppose a negative-going pulse is now applied to the grid of V1. Its anode will rise towards h.t. as the valve cuts off. and the voltages at all points on the resistor chain (R1, R2, R5) rise. Because of this V2 grid now goes positive, the valve passes a heavy current and the anode potential falls sharply. Since C1 is charged to h.t. voltage, the sudden fall in potential of its upper plate causes the other plate to fall the same amount below earth. This results in V2 remaining cut off although the original triggering pulse has passed.

The flip-flop is now in the quasi-stable state: V1 is cut off and V2 is conducting. Unlike the bistable switch, however, this is not a second stable state because something is happening-C1 is discharging. The upper end of C1 is held at the anode potential of V2, which is more or less constant, but at the lower end the potential is rising towards earth. At a certain point, when V1 grid is about 12 volts negative, the valve begins to conduct and an "avalanche process" takes place, as in the multivibrator. As V1 conducts to an increasing extent the voltage across RI increases due to anode current, so all the points on the R1, R2, R5 chain fall in potential, causing V2 to pass less current. The voltage at the upper end of C1, connected to V2 anode, rises pulling up with it the potential at its lower end, causing VI grid to go even less negative. whole system is now in effect an amplifier with positive feedback. The end result of all this is that V2 cuts off completely, its grid being driven very negative. VI grid, on the other hand, is now positive, CI having "dragged" the voltage up. It is the heavy anode current passing through R1 which keeps V2 cut off via R2. Finally, as C1 recharges to h.t., V1 grid returns to earth potential.

This shows how a flip-flop, when triggered, temporarily changes from a stable to a quasi-stable state, but always reverts to the stable state of its own accord

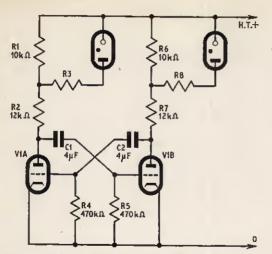


Fig. 7. A multivibrator with two alternately flashing neons connected in the anode circuits

after a definite time. This time is determined mainly by C1 and R3, and to a certain extent by R2 and R5.

In order to test the validity of this explanation, the author constructed a flip-flop which took 30 seconds to revert to the stable state after being triggered. By connecting a voltmeter to various points on this prototype.

switching a flip-flop

Fig. 8b. Complete triggering circuit for

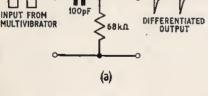
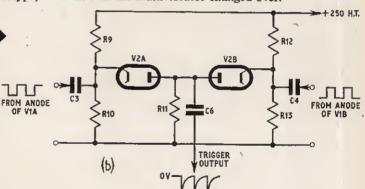
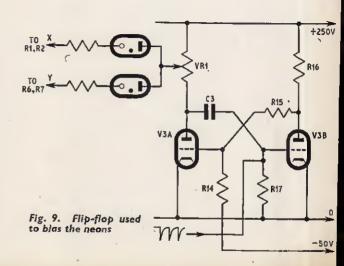


Fig. 8a. Basic differentiating circuit

the graphs shown in Fig. 5 were obtained. An examination of these shows that the expected waveforms are actually observed in practice.


For some reason flip-flops are unpopular but the author believes that they can provide the answer to a number of problems. Possibly their main use lies in their property of possessing a time delay factor which can be anything from microseconds to minutes. They find uses in the production of very short pulses, in simple timing machines, for example photographic timers or even egg timers! It is possible to obtain from one flip-flop a pulse capable of triggering a chain of subsequent flip-flops, each unit being triggered as the previous one flops back from the quasi-stable state. In this way a sequence of events can be controlled, each separate step being independently controllable from one flip-flop. This circuit can be used to switch in a number of operations during the manufacture of a particular product. Like the bistable switch the flipflop can store one "bit" of information, but only for a limited time. It can therefore be used as a short-term


self-resetting memory unit. Where a production line is in operation, such a circuit can stop one article from following another too closely by holding back the second for a pre-determined time after the first has passed.

PRACTICAL CIRCUIT

So far, mainly theoretical aspects of these three circuits have been discussed. To conclude this article it will be explained how a particular design problem was solved by the use of the principles outlined above. What was required was a display unit illuminated at each end by a lamp. The two lamps were required to flash on and off alternately with a time delay between one extinguishing and the other one lighting. This is easily seen by looking at Fig. 6. Both the overall cycle time and the delay time had to be infinitely and independently variable. The lamps used were neon bulbs since these can be worked directly from the circuits. As high speeds were required relays could not be used.

The basic circuit used was a multivibrator with the neons connected in the anode circuits (see Fig. 7). Each neon struck at 80 volts which was present across R1 and R6 in the anode loads. R3 and R6 are ballast or safety resistors. Using this arrangement the lights just flashed alternately and further circuitry was needed to interrupt the neon voltage supply briefly each time the multivibrator changed over.

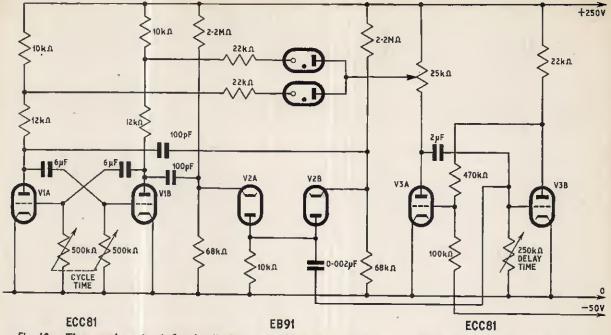


Fig. 10. The complete circuit for the display unit with added refinements to control the cycle time and delay time

A triggered flip-flop is suitable to control the flashing, the triggering device being fed by two square waves, 180 degrees out of phase, from the anodes of the multivibrator (see Fig. 8b). In order to provide a sharp pulse to trigger the flip-flop the square wave has to be differentiated by a simple RC circuit such as that shown in Fig. 8a. C3, R10 and C4, R13 are the differentiating components in Fig. 8b, their outputs being fed to the diodes which are arranged to pass only negative pulses. The pulses trigger the valve which is conducting in the stable condition of the flip-flop.

Referring now to Fig. 9, the anode of V3a is held at h.t.; the valve is not conducting. A negative pulse fed into the grid of V3b causes the voltage on the anode to rise and biases V3a to conduct. V3a anode voltage falls producing a current through the anode load, VR1, which can be adjusted to provide a common voltage

on the anodes of the neons of, say, h.t. minus 40 volts (i.e. 210 volts).

In this condition one anode of the multivibrator is not conducting and is held at h.t. The voltage across the relevant neon will be only 40 volts which is insufficient to cause it to strike.

However, the anode voltage of the other multivibrator valve will be at h.t. minus 80 volts (i.e. 170 volts). The other neon, therefore, will also have only 40 volts across it, and will fail to strike. Only when the flip-flop returns to the stable condition will the second neon strike, when the relevant multivibrator valve and V3a are not conducting. The entire cycle of operation is depicted in Fig. 6.

The final circuit used is shown in Fig. 10 with some added refinements to control the cycle time and delay time.

NEWS BRIEFS

P.E. Amplifier at Tape and Hi Fi Club

A MEETING of the North London Tape and Hi Fi Club took place at Bush Hill Park School on 21 October 1964, with some 30 members in attendance. The Chairman, Mr. J. Wilson, extended a warm welcome to the guest speakers, Mr. Denis Horner and Mr. Alan Nash of Cosmocord Ltd., who gave a most interesting and enlightening lecture on the growth of Rochelle salt crystals from seeds, describing the technological process involved up to the completed crystal wafer as used in the manufacture of the Acos crystal cartridge pick-up and the crystal microphone.

In the limited time available after the lecture a demonstration of hi fi reproduction was given. The equipment consisted of a Garrard transcription 301 player unit with a Warden articulated tone arm and Acos S1/1 ceramic cartridge, the amplifier chosen being the 5W integrated amplifier recently featured in PRACTICAL ELECTRONICS. The system was completed by two Tannoy Chatsworth 15 ohm loudspeakers.

Transistorised Hi Fi

AMEETING of the newly formed Society of Electronic and Radio Technicians will be held on Thursday 14 January 1965 at 7.15 p.m. when Mr. D. M. Chave of the Lowther Manufacturing Company will talk about "Transistorised Hi Fi". The meeting will be held at the London School of Hygiene and Tropical Medicine, Keppel Street, Gower Street, London, W.C.1.

Further details may be obtained from the Society at

9 Bedford Square, London, W.C.1.

ELECTRONORAMA

HIGHLIGHTS FROM THE CONTEMPORARY

Time Without Ticks

THE long admired ingenuity and skill of the watch-maker in working with minute parts appears to have been equalled by the electronic engineer, at any rate the expertise of these previously unassociated technologies have been successfully combined by a Swiss company to produce the world's first electronic wristwatch. This is the Bulova Accutron—an instrument which has been described as the first significant advance in time keeping in 300 years.

Instead of the traditional balance wheel, hairspring and escapement mechanism, the Accutron incorporates a precision tuning fork as its basis of time measurement. An accuracy of within 2 seconds a day (99.9977 per

cent) is guaranteed.

The electronic heart of the watch is a transistor oscillator which converts the d.c. energy from a tiny power cell into pulses of current. These pulses energise coils which actuate the tuning fork 360 times per second. One tine of the fork is linked by a ratchet-and-pawl indexing mechanism to a conventional gear train, which drives the hands.

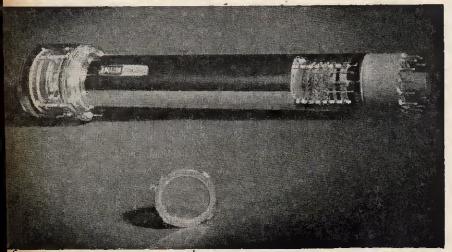
The transistor, resistor and capacitor can be seen in their plastics compartment in the right hand part of the watch case; the drive and phase sensing coils are visible at the top of the case. These coils are wound from copper wire 0.0006 in diameter (one-fifth the diameter of an average human hair). Each watch uses 700 feet of this wire.

Current consumption is 6μ A. The miniature cell will power the watch for a minimum period of one year, and is

easy to replace.

In addition to its appeal as a personal timepiece, Accutron mechanisms have found a role in a variety of special applications. In a special case and with extra gears and switches added this watch has been used as a signal cut-off timer or "satellite-silencer" within four families of satellites—Explorer, Tiros, Telstar and Syncom.

It is currently being evaluated for use on Nimbus, the


meteorological satellite, the Orbiting Astronomical Observatory scientific satellite, and several others.

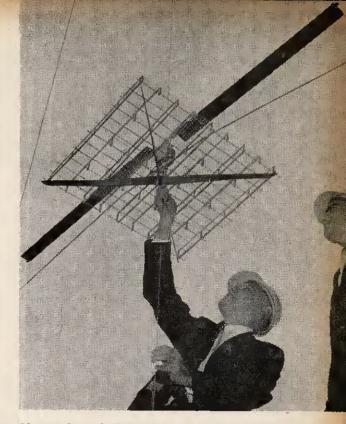
NEW material known as ELCON A has been developed which gives prolonged life to image orthicon camera tubes. The ELCON target introduces electronic conduction in transferring the charge pattern from the image side to the beam side. Ion migration is therefore virtually eliminated. This means that sensitivity and stability of contrast reproduction remains constant and there is complete freedom from "sticking".

This picture shows the new English Electric ELCON target beside a 3 in image orthicon television camera tube.

Remote Power

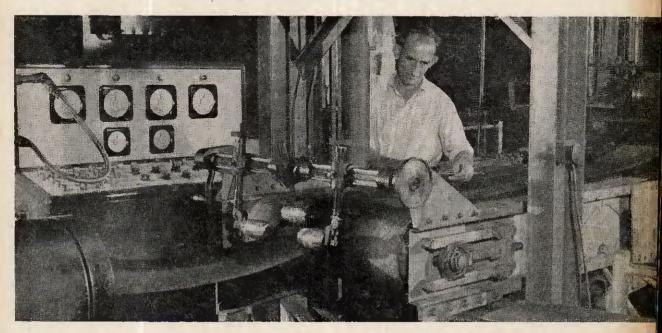
HERE is one example of electronic energy conversion which is being developed in the Raytheon Spencer Laboratory, America. Microwave energy, similar to that used in radar, is beamed from a parabolic antenna on the ground upward to a small helicopter. The rectifying antenna, mounted under the helicopter, is actually an array of thousands of tiny diodes, each less than half an inch long. When the microwave energy strikes the diodes, an immediate flow of direct current takes place to drive the motor for the rotor blades.

The "helicopter" hovers within the guy ropes, keeping it positioned over the microwave beam.


Keeping in Touch

SCIENTISTS in Russia have been working on an artificial hand which imitates the principle of the human hand and can "feel" with the fingers. The human sense of touch is detected in the brain by impulses from the nerves and sensory cells.

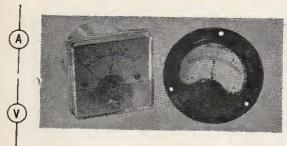
Transducers made of electro-conductive rubber or thin wire and sensitive to pressure are fixed on the tips of the fingers. Under influence of the pressure on the transducers, based on the grasping effort of the fingers, signals from them modulate the output from a vibrator fitted on


the hand near a nerve going direct to the brain.

The new hand overcomes a shortcoming of prosthetic appliances controlled by electric signals from the muscles when the hand carries out grasping motions, but so far it cannot be used freely without the user looking at what his fingers are doing.

Automatic Tyre Tread Control

The tread on a rubber road tyre is designed to withstand a multitude of driving conditions. It is essential, therefore, that the manufacturing process should be controlled to fine limits. To prevent distortion of the tread Lancashire Dynamo Electronic Products has installed thyristor controlled plant at the Pirelli factory to control the calendar and conveyor systems. Silicon controlled rectifier units are used to supply the calender and conveyor drive motors. Here the rubber tread strip is seen travelling from the extruder through the calender shaping process.



ELECTRONORAMA ELECTRONORAMA ELECTRONORAMA .

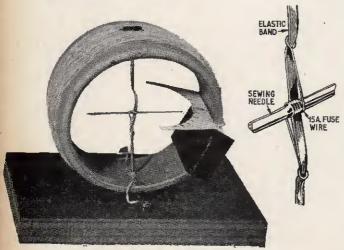
BEGINNERS start here...

3

An Instructional Series for the Newcomer to Electronics

MOVING COIL METERS

Shown here are typical examples of a left-to-right reading meter, and a centre-zero meter


CIRCUIT SYMBOLS

This is the general symbol for a meter or galvanometer. Sometimes the function of a meter is indicated as in the two symbols given above:

A = ammeter (current)

V = voltmeter (voltage, potential difference)

UR experimental section this month deals with the construction of a very simple device which will give an indication of current flowing in a circuit. Meters are usually delicate and expensive items of equipment, their prices ranging from £1 to £3 or even more. There are a number of retailers who stock a wide selection of meters with various ranges and different degrees of accuracy; it will be instructive to look at the advertisements on other pages. One should certainly not rush into purchasing an instrument of this nature without having first acquired some basic knowledge of the subject.

A GALVANOMETER

Our simple meter, which is in fact more accurately described as a galvanometer, is illustrated in Fig. 3.1. It is very easy to make and costs very little for the component parts. The items you will need are a sewing needle, an elastic band, a wooden baseboard measuring approximately 4in × 2½in × ½in, some sealing wax or glue, four ½in brass wood screws and a short length of 15 amp fuse wire.

The cylindrical former on which the coil is wound can be made of cardboard, and it should be about $2\frac{1}{2}$ in in diameter and $1\frac{1}{2}$ in wide. This former can be made by winding a piece of cardboard round a milk bottle, glueing it and tying until the glue is set. Alternatively, you could cut a piece from a postal tube, cut up an empty plastics liquid container, or an Ajax or Vim carton.

The pointer is an ordinary sewing needle around which is tightly wrapped a short piece of 15 amp fuse wire. If you have a soldering iron (and the necessary skill!) you can improve the pointer by soldering the needle and wire together—but this is by no means essential. The ends of the wire are then twisted around the centre of a piece of elastic so that the needle does not slip down. The ends of the elastic are pushed through holes in the cardboard former and fastened to it with sealing wax or glue. It may be necessary to experiment a little so as to get the position of the needle and the tension of the elastic just right.

Insert a pair of the wood screws through the former (from the inside), one on either side of the elastic anchor point. These two screws should be 1 in apart.

WINDING THE COIL

The only item which it is likely you will need to buy is a quantity of 36 gauge double silk covered wire. A 2oz reel will be more than adequate for the present purpose. Make a note that such wire is generally referred to in the following abbreviated form: 36 s.w.g. (standard wire gauge) d.s.c.

If any difficulty is experienced in obtaining double silk covered wire, enamelled wire will suit equally well, although it is a rather tricky operation to remove

the enamel covering.

Bare the end of the wire by removing the silk covering or scraping off the enamel coating until the copper is exposed. Wrap the end of the wire tightly around one woodscrew.

Wind on a single layer of wire to cover about I in width of the former. Bring the wire back to the start and wind a second layer immediately over the first winding. Continue in this manner with consecutive layers until the required number of turns is reached. Terminate the wire by wrapping tightly around the second screw, having first bared the wire of insulating material as before.

Fig. 3.1. The simple home-made galvanometer

Fig. 3.2 (right). An enlarged view of the galvanometer "movement". This shows how the needle is attached to the elastic band

If a soldering iron is available, you can make secure and permanent terminations by soldering the wire to these screws. The iron should be of the small instrument type, with a fin or fin bit. Use Multicore solder—this contains flux which assists the soldering operation. Ensure that the iron is fully heated and the bit well tinned, then place this on the joint and apply the solder. Remove the iron immediately the solder has flowed into the joint. Avoid an excess of solder, a thin coating is all that is necessary.

Now to return to the meter. The wood screws serve a double purpose by acting as terminals and as a means of fixing the coil former to the baseboard. If small holes are first pierced in the baseboard, the two screws can then be gently tapped into the board. Do not, of course, attempt to turn these screws for this will result

in broken connections.

In the photograph you will see that we have mounted a second pair of screws on the baseboard and soldered two short wires between these and the first pair. This arrangement is not absolutely essential, but it finishes off the instrument neatly, and makes for ease of use afterwards.

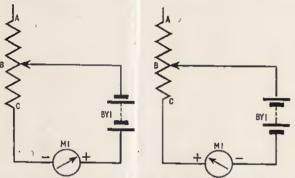


Fig. 3.3. Simple experiments can be performed using the galvanometer in conjunction with the resistance element and a small battery

THE SCALE

Next cut out a small piece of cardboard and from this fashion the scale. If you look closely at Fig. 3.1 the required shape will be clear. Attach the scale temporarily to the coil former by means of a piece of thread.

You can calibrate the scale by connecting a number of batteries of different value to the terminals and making a mark in line with the pointer setting obtained. You will notice probably that the resulting scale is not linear. This means, if you mark the point indicated for a 4½V battery then add another 4½V battery in series to give 9V, the position indicated by the needle is not twice the distance from the zero position.

You will also see that by changing round the battery connections, the needle will deflect in the opposite direction. Thus the meter can be used to indicate positive or negative values. When calibration is completed the scale can be glued to the inside of the former, or may remain simply tied to it with a piece of

thread.

The amount of needle deflection obtained is decided by the voltage applied to the meter. An increase in voltage causes more electrons to flow round the circuit, more current in the coil produces an increase in the magnetic field due to the coil, and this field in turn causes a corresponding increase in deflection of the needle. As a magnetic field is produced regardless of the direction in which the current flows, the needle deflection can be in either direction—depending upon which way round the battery is connected.

USING THE METER

Those of you who have constructed the simple resistance apparatus described in the first article of this series can use it in conjunction with the meter to show the change in current as the slider is moved along the wire. Initially, you will recall, we used a bulb to indicate a change in current; now you can repeat those experiments, replacing the bulb by the meter. This is shown diagrammatically in Fig. 3.3 which you should compare with Fig. 2.1 in last month's article.

We realise that this meter is limited in the number of uses to which it can be put and for the beginner, who hopes no doubt to make electronics his hobby for many years to come, it will be simply an *indicating* device and not a *measuring* device. We are sure that those of you who are really keen will eventually invest in a good meter which, with careful use, will last many years.

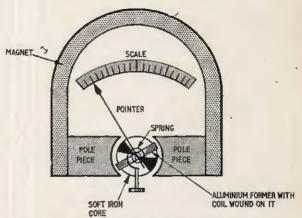


Fig. 3.4. The essential parts of a moving-coil type of current measuring instrument

THE MOVING COIL METER

It may be useful at this point to mention briefly the basic types of meter available on the market. By far the most common meter is of the "moving coil" type. As its name suggests, this is basically a coil of wire (wound on a former) which is free to rotate in a magnetic field, see Fig. 3.4. A current flows through the coil and sets up a magnetic field of its own. This field reacts with the magnetic field produced by the horseshoe permanent magnet and causes the coil to move. Attached to the coil is a pointer, the amount of movement of the pointer being governed by the current flowing in the coil.

Notice that the pointer normally rests at the left-hand end of the scale—this is the zero position. It is held in this position by a pair of hair springs which have a dual function, for they also provide the electrical connection between the meter terminals and the coil

winding.

When current flows the coil rotates in opposition to the action of the springs, and the needle is thus deflected towards the right-hand end of the scale. This type of meter is very widely used. There are also centre-zero meters which respond to either negative- or positive-going currents, as in fact does our simple home-made device.

PART THREE

T is now proposed to discuss recording level indicators. Most tape recorders incorporate some device for indicating the signal level during recording. Where there is no such device, the reason may be twofold: first, automatic recording control may be applied, and second, the simplicity of the machine may not warrant an indicator.

We need not consider the second case here, and as for the first, this is a special subject which the author hopes to return to later. Recording level indicators fitted to most machines are intended both as warning devices, to prevent overloading, and adjustment aids, to enable us to obtain the best signal-to-noise ratio under varying conditions. Two methods are used:

the magic (electronic) eye, and the meter.

The magic eye, as shown in Fig. 3.1, may take a number of forms, and the display portion can be of almost any shape, provided it gives a clear indication of the peak condition, i.e. the highest modulation level, or loudest sound. For this reason, the magic eye may be referred to as a "peak-reading device". Its one great advantage is the speed of reaction: an electron beam has no inertia, whereas a meter movement must have some damping, and, however quickly it reaches the peak indication, it must take an appreciable time to fall away again.

In practice, the meter measures a varying d.c., which is the amplified and rectified signal. This charges a capacitor, the circuit constants being chosen in such a way that the meter indicates the peak slightly after it occurs, as the discharge of the capacitor begins. Successive peaks then restore the charge and the meter

indicates an average level.

Without going too deeply into a.c. theory, it is necessary to explain this business of "average values". It it was only needed to measure pure sine waves, a form of meter could be used quite safely. This is because the average value of a sinusoidal waveform is always the same, being 0.707 of the peak value, and known as the root-mean-square, or r.m.s. value.

But the audio signals with which we are concerned in tape recording are far from being pure sine waves. A meter which responded to average values would give little indication of true peaks. A meter which was incorporated in a circuit that allowed it to respond to peaks of short duration would not give a true indication of the average signal level. A compromise must be found.

METER RISE-TIME

The validity of this compromise will depend on the rise-time of the meter, that is, how fast it can respond to peaks. The meters used by broadcasting stations

can respond to peaks which are as short as 5 msec, the circuit being arranged so that the needle falls away at a rate of 8dB per second, which still allows adequate measurement of the average modulation level. A fall-rate of about 1½dB per second is about the limit to a useful indicating device, and a figure of about 3dB per second should be obtainable with meters of modern "constructors" quality.

FITTING A METER

Adding a meter to the normal tape recorder is not a difficult job, and may interest some readers as a useful experiment.

First, it is necessary to consider what voltages and currents are available to drive the meter, how they may be obtained, and from which points in the circuit.

One obvious source is the high level output or monitor socket of the tape recorder. But as the moving coil meter we may expect to use is a current consuming device, any attempt to use it directly will load the signal circuits of the tape recorder. A valve voltmeter is the

answer to the problem.

Fortunately, we do not need to dip deeply into the purse for a convenient source of signal and a means of making a valve voltmeter based on our moving coil unit is already available. A meter of 0-1 mA f.s.d., or even 0-5 mA, should be readily procurable from several of the advertisers in PRACTICAL ELECTRONICS. But before we decide how to utilise the meter, let us take a look at the existing circuits of the magic eye.

MAGIC EYE CIRCUIT

Referring to Fig. 3.2, V1 is a magic eye of a type widely used in modern tape recorders. The audio signal is derived from the same point which feeds recording current to the recording head, the anode of the head amplifier, and applied via a blocking capacitor C1 to the magic eye circuit.

In series with this capacitor is a limiting resistor R1, whose function is to prevent the heavy loading of the signal circuits that would otherwise be offered by the rectifier D1. This resistor is also used to regulate the signal voltage, in conjunction with C2, which acts as a

high frequency bypass capacitor.

The audio signal is then rectified by D1 and a varying d.c. appears across the load R2, the capacitor C3 charging up to the r.m.s. level, and thus maintaining a changing bias in proportion to the signal level, which

is applied to the control grid of V1.

The construction of the magic eye includes an amplifier triode so that a negative voltage of between 15 and 25 volts at the grid produces the zero shadow angle, or maximum indication, as when the columns meet on a display such as the EM84.

DIODE TRIODE

We can use the existing valve base and dispense with the rectifier by fitting a diode triode, or, more conveniently, a double triode, with grid and anode of one half strapped to operate as diode. Our signal is then applied as shown in Fig. 3.3. Again, C1 feeds the signal, via R1 to the diode. But now the diode is a strapped triode, and the feed to its cathode is via a variable resistor, VR1, to enable us to set the recording level. Note the difference in the values of the load components C3, R2. This is to increase the time constant and allow for the meter inertia discussed above.

The rectified signal is now applied to the grid of the second half of the valve V2 and the amplified anode current produces a measurable voltage across the cathode bias resistor. This is made variable to allow meter "zero-ing." An alternative method would have been to insert the meter in the anode of the valve and feed the cathode from a potentiometer across the h.t.

SCREENED LEADS

When experimenting in this way, remember to keep the leads from the existing circuit to the new circuit as short as possible, or unwanted audio feedback can occur. If any wiring is altered, it is important to avoid hum loops by keeping the screening commoned to a single point. For example, if the meter unit is more conveniently situated outside the meter, use twin-screened wire for the signal leads, and earth the screening at the tape recorder end. Take a separate lead for the h.t. negative line, and join it directly to the negative line of the head amplifier stage—not to some other, more physically convenient place.

For further experiments, it may be possible to progress at a later date to the more accurate Peak Programme Meter, which gives a better indication of peaks, while still retaining average modulation indication, as described in the earlier discussion of this subject.

The volume unit meter circuit described here measures loudness rather than peaks, and if any professional work is to be done, it is the rapid peaks that are most needful of watching. They are the signals that do the damage, overloading the tape and causing distortion.

A further refinement would be a transistorised meter circuit, allowing modification to some of the portable recorders which have no indicating devices. As a matter of interest, the reason that a meter is used on a portable rather than the popular magic eye, is simply the power demands of the latter which would quickly overtax the battery.

PRACTICAL ELECTRONICS BINDERS

EASI-BINDERS specially designed to hold 12 issues of PRACTICAL ELECTRONICS are now available.

These binders are finished in maroon waterproof and greaseproof cloth and are embossed with gold lettering on the spine.

Order your binder from:
Binding Department,
George Newnes Ltd.,
Tower House,
Southampton Street,
London, W.C.2.

The price, per binder, is 13s. 6d., inclusive of postage.

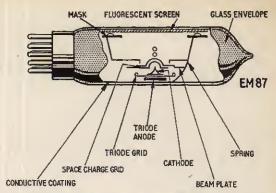


Fig. 3.1. Cross-section of Mullard EM87 magic-eye valve. The column-type beam closes with a peak input voltage of 10 volts and a 1½mm overlap; a clear bright line is produced with a 15 volt peak input

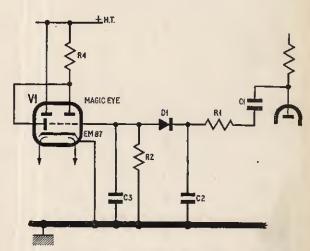


Fig. 3.2. Circuit for magic-eye recording level Indicator

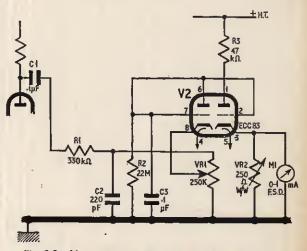
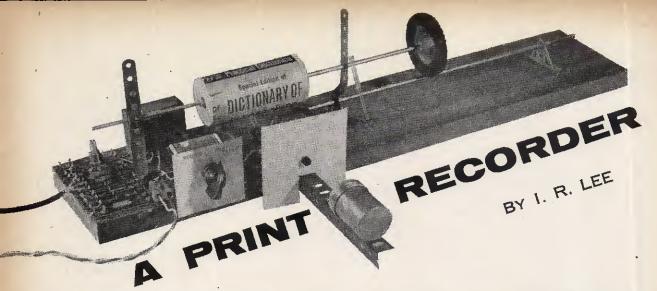



Fig. 3.3. Meter-type recording level indicator, using valve detector and amplifier

THE machine may be called, in simple terms, a print recorder but can reproduce drawings. The drum, on which the printed matter is placed, is rotated and moved along so tracing a helical path.

A minute spot of light is focused on to the print and reflected from the print on to a photosensitive device. The output from the photo device is used to modulate a.c. for recording on magnetic tape.

When a copy of the recording is required a piece of photosensitive paper is placed on the drum, the drum is again revolved, and the recorded signal is applied to the light beam which is focused on to the paper. The picture is built up on the paper, line by line, and the paper is then developed in the normal way. The finished print is a negative copy of the original.

CIRCUIT

The photoelectric pick-up, which is placed by the drum, is an OC71 transistor with the black paint coating scraped off. This provides an adequate pick-up which is sensitive to light. The emitter and collector only of the transistor are used, the base being left unconnected.

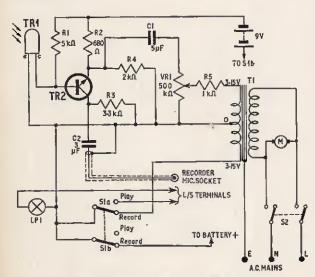


Fig. 1. Modulator circuit

The signal produced when the transistor is illuminated is used to modulate an a.c. signal from half the secondary winding of transformer T1.

The circuit shown in Fig. 1 uses any a.f. npn transistor. The signal from TR1 is applied to the base of the transistor TR2. The a.c. signal to be modulated is taken from half of the centre-tapped 6.3V secondary of T1 via VR1 and C1, and is applied to the emitter of the transistor TR2. The modulated signal appears across R3 and is fed to the MIC input of a tape recorder via C2.

VR1 controls the a.c. being applied to the circuit. Too much a.c. will saturate the signal and too little a.c. will cause shallow modulation so causing a very contrasting image. It may take time to obtain a reasonable setting for this control as it is very critical. R5 was put into the circuit to provide a load across T1 when the wiper of VR1 is set electrically close to the centre-tap end of T1.

The switch S1 is used to control the beam and modulation circuits. In the "record" position the beam lamp LP1 is lit continuously by half of the secondary winding of T1. Modulation takes place in the record position. In the "play" position the modulation circuit is not used and the signal from the recorder is applied direct to the beam lamp.


When the tag board is wired as shown in Fig. 2, it can be screwed to the wooden base. TI is also screwed to the baseboard. The battery can be held in position on the baseboard by adhesive tape. SI can be mounted on a piece of aluminium sheet $2\frac{1}{2}$ in square, which is screwed to the baseboard (see photograph).

Before actually fitting the pick-up to the angled strip its most sensitive surface must be found. This can be done by switching on the modulation network and monitoring the signal on a tape recorder. The pick-up is rotated in a beam of light (from a torch) until the output from the modulation network reaches its highest level. The side of the pick-up facing the beam source when the signal output is at its greatest is the most sensitive area. This surface should face the drum.

MECHANICAL CONSTRUCTION

The recorder is built on a wooden base about 2ft long, 4in wide and ½in thick. The mechanical system is mainly built up from Meccano parts.

The picture drum can be made to individual requirements. The model shown in the photograph employs

a drum made from a thick cardboard tube, but a lever top can will serve just as well. A reasonable size would be about 2½ to 3½ in long and 1½ to 2in diameter. An eight-hole Meccano bush is fitted centrally on one end so that the tin will revolve truly concentric (see Fig. 3).

A hole is made in the centre of the opposite end of the drum and a long screw or a piece of studding about 4in long is threaded through the hole and fixed on both sides of the end disc (or lid of the can) with two locking nuts (see Fig. 4). This can now be fitted on to the drum. A nut, which will fit the long screw, is clamped firmly between two Meccano perforated strips bolted together. One strip is slightly longer than the other and bent at right angles so that two holes can be used to screw it down to the baseboard (see Figs. 4 and 5).

PICTURE

DRUM

This clamp is then placed centrally on the wooden base about 6in from one end and screwed down through the holes in the bent up section of the perforated strip. (See Fig. 5.)

An angled trunnion (Meccano) is then placed centrally at the opposite end of the base from this clamp and screwed firmly home with two screws. Another angled trunnion is placed about 9in away from the one at the end and aligned parallel to it and in the centre of the baseboard, then screwed down (Fig. 3).

Next, a 3in perforated strip is bent to the shape shown in Fig. 3, part C. This strip is then bolted to the bottom hole of the second trunnion and the vacant holes aligned to take axle B.

The screw on the picture drum must now be threaded into the scanning nut which is mounted in its clamp.

MECCANO PULLEY

WHEEL AND TYRE

Fig. 3. Drive details

RUBBER COUPLING BUSH WHEEL ANGLED TRUNNIONS NUT FOR SCAN SCREW SCANNING SCREW Q 0 0 END VIEW OF 0 PICTURE SCANNING NUT DRUM CLAMP 0 0 0

Figs. 4 and 5. Lead screw construction

MOTOR

SPINDLE

A PRINT RECORDER continued

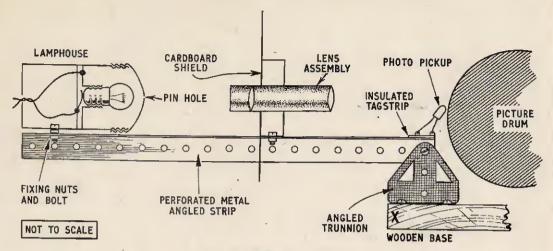


Fig. 6. Optical assembly

While holding the drum horizontally thread a 6½ in Meccano axle A through the fourth hole from the bottom of strip C. Next, thread it into the bush wheel on the closed end of the picture drum and clamp it with the fixing screw provided.

Now attach a Meccano pulley with rubber tyre to the end of axle A. Loosen the clamp at the other end of the base and move the bolt up and down in the clamp until axles A and B are parallel. Tighten the clamp again. An 11½in Meccano axle B is threaded through the top holes of the two angled trunnions.

On the prototype a small spring D (removed from a gramophone brake system) was hooked into an upper hole of perforated strip C (Fig. 3) and the other end was screwed to the base. This assisted to provide good frictional contact between the wheel and axle B.

The electric motor used to drive the prototype was an old Collaro AC34 with a working speed of 78 r.p.m. (Reduction gears inside case.) The motor was attached to drive axle B by means of a small piece of rubber sleeving E. This was slipped over the end of axle B and the motor spindle providing an efficient flexible coupling.

OPTICAL ASSEMBLY

The beam lamp, spot lens and pick-up are all mounted on a 12½ in Meccano angled perforated strip. The beam lamp LPI is mounted in a tin (such as that used for storing 35mm film, see Fig. 6).

One hole, as small as possible, is drilled in the centre of the screw-on lid. Another hole, big enough to accommodate a Meccano screw, is drilled in the side and a third hole in the bottom of the tin is made adequately large, say in, to accommodate two thin wires. The bulb is mounted in a standard round paxolin lampholder, which is then wired and fitted inside the tin and firmly fixed with adhesive. The lead wires are taken through the hole in the bottom of the tin.

The lamp housing is attached to the angled strip with a Meccano nut and bolt threaded through the

second hole from the end of the angled strip as in Fig. 6.

In the author's model the lens was removed from an old film-strip projector and was the twin type with two lenses mounted in a small cylinder lin long and in diameter. The whole lens assembly is mounted in the lid of another film can. A large hole made in the centre of the lid accommodates the lens barrel and a smaller hole made in the threaded side takes the fixing nut and bolt. The lens should fit tightly in the holder. The whole lens unit was fixed with a Meccano nut and bolt half way between the lamp and the drum.

The distance of the lens from the lamp housing depends on its focal length and has to be found by experiment. Fine focusing may be achieved by sliding the lens back and forth in its mount. A cardboard shield was fitted to the lens mounting on the side nearest the lamp to prevent unwanted light bypassing the lens and upsetting the light image reflected from the drum. The shield is about 3in square with a hole cut in the middle to take the lens barrel. A slot should be cut in the bottom of the shield to accommodate the angled strip.

The angled strip containing the optical assembly was attached to the top hole of the trunnion using a Meccano nut and bolt (Fig. 6). One bolt was used so that the arm could be hinged up and down to obtain the best results from the pick-up. An angled trunnion is screwed to the baseboard attached in position X on the base (Fig. 6) so that it is in line with one end of the drum when the drum is at the end of its travel.

A piece of tagstrip with two tags should be bolted to the angled strip close to the drum so that the tags are insulated from the metal strip.

TR1 is soldered to the two tags with the sensitive side facing the drum. The wires of TR1 should be held with a pair of pliers to act as a heat shunt while soldering. Two wires are connected between the tags and the modulation unit.

TR1 should be repainted matt black on the surface which is *not* facing the drum, so that it will pick up light reflected from the drum and not from the optical

assembly. The light beam from the optical system should strike the drum just above TR1. On no account should the beam fall directly on TR1 or the performance will be severely upset.

RECORDING A PRINT

A piece of printed paper such as newspaper can be wrapped round the drum and fixed with adhesive tape. Plug the output of the modulation network into the MIC socket of the tape recorder. Turn S1 to the "record" position, likewise the tape recorder should be switched on and set to "record". Now adjust VR1 so that when the pick-up is darkened no signal reaches the recording indicator, and when it is lit a good signal appears at the indicator. The room should be dark so that spurious light does not interfere with the instrument.

Cut a strip of bromide enlarging paper (hard) the same size as the original printed matter. Wrap it tightly round the drum and fix with adhesive tane. Switch the recorder and S1 to the "play" position and attach the appropriate wires from the machine to the external loudspeaker terminals of the recorder.

Start the machine first, then start the tape recorder and turn up the volume control until a reasonable degree of light is obtained from the lamp when the recorded signal is applied. Leave the machine until it has scanned the whole paper and then stop the recorder before stopping the machine.

Remove the bromide paper from the drum and immerse it in a developer solution specified for the paper. After the desired image has been obtained wash the paper in water and immerse it in a fixing solution (sodium thiosulphate) for 10 minutes. After

"fixing" the print it may be examined in the light.

COMPONENTS

MODULATOR COMPONENTS

Resistors

RI. R2 680 R5 lk 3-3k

All 10%, ½W carbon unless otherwise stated

Potentiometer

VRI 500k log or linear

Capacitors

 5μ F 50V elect. Henry's Radio 3μ F 50V elect.

Transistors

OC7I (see text) TRI

Any npn transistor for working voltage above 9V TR2

Miscellaneous

6.3V centre-tapped heater transformer 3.5V m.e.s. bulb

LPI

2-pole, 2-way rotary switch

10-way tagboard

Plugs to suit tape recorder microphone and loudspeaker sockets

9V battery; connecting wire; knob; solder

Batten lampholder (m.e.s.)

MACHINE PARTS

Meccano List

No. 2a 4½ in perforated strips (2)

3in perforated strip

124in angle girder

-13 Iliin axle rod

14 64in axle rod

20a 2in diam pulley with boss

24 lain diam bush wheel

126 Angled trunnions (4)

142a Motor tyre (for 2in pulley)

37 Nuts and bolts $\frac{7}{38}$ in (pkt of 24)

Miscellaneous

4in of 4 BA studding and 4 BA nuts

Wooden baseboard (see text)

35mm film can and two screw lids

Lever or screw top can (see text)

78 r.p.m. motor (e.g. Collaro AC34)

\$in round head wood screws

Rubber tubing to fit axle and motor spindle

Small spring

A switch, connected in the mains line to the motor and TI, should be used to control the motor and electronics. Start the tape recorder and then start the print recorder drive motor. When the scan is completed stop the tape recorder and switch off the drive motor.

REPRINT THE RECORDED COPY

Wind the tape back to where the signal started and return the drum to its starting position. This may be done by disengaging the coupling (E in Fig. 3), and spinning the drum by hand. If a reversible motor is used it can be arranged to be switched to a reversing condition to return the drum.

The next process must be done in RED light as it involves the use of photosensitive paper.

Wash the print well in running water for about 5 minutes. The finished print will be a negative reproduction of the original.

VARIATIONS

Many readers who intend constructing this simple device will probably wish to improve its performance or modify it to their own requirements. Obviously, the finer the thread of the scanning screw, the more detailed will be the final reproduction. A larger drum may also be used provided allowance is made for adequate clearance between the drum and other nearby parts. If the drum is made larger in diameter a larger driving wheel is required. If the drum is made longer, the axles and screw should be longer. \star

Precision Decimal Step PRE-AMPLIFIER

Continued from page 115 of last month's issue

by M. L. MICHAELIS, M.A.

THE factors determining the input impedance are somewhat involved, yet their understanding is essential for making correct adjustments to the unit.

If the decimal step pre-amplifier is to be used for metric purposes between the probe and the input socket of an oscilloscope or valve voltmeter, the input impedance must be equal to that at the input socket of the oscilloscope or voltmeter, and the output impedance must be very much less; the latter condition is automatically satisfied by TR7 and therefore requires no further consideration.

If the input impedance differs from that of the oscilloscope Y-amplifier input, then the attenuation factor of the probe is correspondingly abnormal and it delivers a different signal voltage to the pre-amplifier than it would, under exactly the same conditions, deliver to the oscilloscope Y-amplifier input. Although, of course, the decimal step gain of the pre-amplifier with respect to the signal input voltage it actually receives is not affected, the oscilloscope voltage calibration is then, nevertheless, disturbed if the probe is incorrectly matched to the pre-amplifier input.

The primary determinative component for the input impedance at PL1 is R9 (470 ohms). This reflects an impedance β times as great in parallel with R8, where β (approximately 20) is the current gain of TR3. The combined impedance at the emitter of TR2 is thus about 3 kilohms. This reflects in the same way, multiplied by the current gain of TR2 (again about 20) in parallel with R6, i.e. about 60 kilohms reflect in parallel with R6 as emitter impedance of TR1, which is equivalent to about 20 kilohms. This 20 kilohm net impedance at TR1 emitter reflects once again in the same manner at about 20 times this value, i.e. about 800 kilohms, in parallel with R3.

As far as a.c. signals are concerned, the series combination R4 and VRI also acts in parallel with R3 (via C2). Finally, the series combination of these

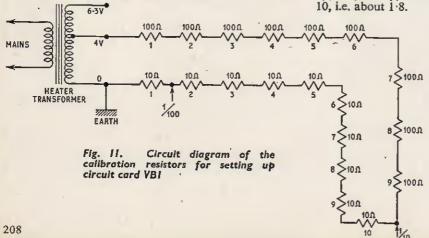
three parallel impedances on the one hand and R1 on the other hand is the ultimate input impedance presented to PL1. As already mentioned in last month's article, this is equal to 135 kilohms in the prototype, to match the Y-amplifier input of the author's oscilloscope.

If the pre-amplifier is to be used with any other oscilloscope, the resistors on VB1 and, if necessary, TR3 must be suitably modified to match the input impedance to that of the oscilloscope Y-amplifier.

As a typical example, we will discuss the modifications for 1 megohm input impedance, a quite common figure for many commercial oscilloscopes. Modification to any other impedance figure will be along similar lines, though it will be difficult to get above 1 megohm (which should not normally be required anyway).

Since the ratio of R9 to VR2 determines the ultimate gain, it is not possible to increase the value of R9 indiscriminately in order to reflect correspondingly higher impedances back to PL1, without having to increase VR2 correspondingly in order to maintain gain. But increase of VR2 increases the high-frequency shunting effects of stray capacities at S1 and associated wiring to VB2. Another method of increasing impedance is to replace TR3 with a different type of transistor having higher current gain. Yet two further methods of increasing impedance are to increase the ratios of R3 and R6 in relation to the respective parallel reflected impedances.

We thus have a total of four ways of increasing impedance and it can be shown that optimum results are obtained if the required change of impedance is


distributed equally between all four.

With respect to TRI base, we require an impedance increase of about 10 times in our example, to reach an impedance of I megohm at PLI. Each of the four methods of impedance increase must therefore be applied, ideally, to a factor equal to the fourth root of 10, i.e. about 1.8.

Accordingly, increase R9 by a

Accordingly, increase R9 by a factor of 1.8, making it 820 ohms (nearest preferred value). Increase VR2 by the same factor, i.e. replace by a 20 kilohm linear preset potentiometer. Replace TR3 by a different transistor with nominally 1.8 times the current gain of the OC303; this is, near enough, the OC304.

By the same calculation as previously, these changes now lead to about 30 kilohm reflected impedance in parallel with R8. The simplest way of calculating the necessary modification to R8 is to consider that the new net emitter

impedance for TR2 must be greater by three factors of 1.8 compared to the former value (3 kilohms), i.e. it must now be about 17 kilohms. The new value required for R8 must thus be such as to give 17 kilohms when taken in parallel with the reflected virtual 30 kilohms. The nearest preferred value is 33 kilohms, for satisfying this condition. Accordingly,

replace R8 by a 33 kilohm resistor.

The resulting 17 kilohm net impedance at TR2 emitter reflects some 20 times as large, i.e. about 340 kilohms, in parallel with R6. These reflected 340 kilohms, in parallel with the required new value for R6, must now lead to 10 times the former emitter impedance for TR1, because all four changes have therewith been completed. The former impedance at TR1 emitter was 20 kilohms, so that R6 must now be chosen to make it 200 kilohms. In other words, R6 in parallel with 340 kilohms is to be equal to 200 kilohms, making the nearest preferred value for R6 equal to 470 kilohms. The 200 kilohm net impedance at TR1 emitter now reflects as usual some 20 times as large (current gain factor of TR1) to the base of TR1, in parallel with R3.

If R3 is now replaced by a 3·3 megohm resistor, R4 by a 1·5 megohm resistor and VR1 by a 1 megohm linear preset potentiometer, the combined parallel impedance will be just about the required 1 megohm. Any slight final correction can be made subsequently by altering the value of R6 alone, after adjusting VR1 for correct d.c. operating point (350mV d.c. voltage drop

across R10 in this case).

SETTING UP CIRCUIT CARD VBI

The first step is to set the d.c. operating point. Connect across R10 a high impedance multimeter or valve voltmeter (sensitivity at least 20 kilohms per volt) set to a range of about 1 or 2 volts d.c. f.s.d. Adjust VR1 until the meter reading is 600mV (for the given case with component values as in Fig. 1 (of last month's blueprint) and 135 kilohm input impedance at PL1; otherwise reading to be less by the same factor as used in each of the four steps to change to a different input impedance as described).

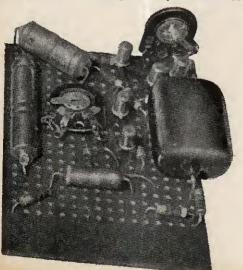
Now connect ten 10 ohm resistors and nine 100 ohm resistors all in series across a 4 volt heater winding on a mains transformer (Fig. 11), earthing the end of the winding at which the 10 ohm resistors are situated. Connect the voltage across all ten 10 ohm resistors straight to the Y-amplifier input of the oscilloscope

with which the pre-amplifier is to be used and adjust the height of the c.r.t. display to a convenient size.

Having previously adjusted the input impedance of VB1 to near the required value (equal to the oscilloscope input impedance) as described above, connect the input of VB1 across only one of the 10 ohm calibration resistors. Connect the output from PL2, with the preamplifier set to gain 10, to the oscilloscope Y-amplifier input, having disconnected the latter from the ten 10 ohm calibration resistors without disturbing the settings of the oscilloscope controls. Now adjust VR2 with a screwdriver until exactly the same height of trace as previously is obtained. The gain of VB1 between connections 16 and 8 is then exactly 10.

Now connect the probe of the particular oscilloscope (so far not used in these adjustments) to the Y-amplifier input, and the prod of the probe to the full 4 volts applied to the calibration resistor chain. Again adjust the trace to a convenient height. Then move the probe connection to the input PL1 of the pre-amplifier set to gain 10, taking the output from PL2 to the oscilloscope Y-input directly. Connect the prod of the probe and the earth clip across all ten 10 ohm calibration resistors. Adjust the value of R6 until the display on the c.r.t. is of the same height as previously.

Now return right back to the beginning of this sequence of adjustments, re-adjusting VRI to obtain the stipulated d.c. reading across R10, followed by repeating all subsequent adjustments in the same order.


Repeat the entire sequence until mutually correct settings are observed to have been achieved, i.e. until nothing needs altering any more on an entire runthrough. VB1 is therefore properly adjusted to have a gain of exactly 10 between connections 16 and 8, and its input impedance exactly matches that of the oscilloscope Y-amplifier input.

ADJUSTMENTS TO CIRCUIT CARD VB2

It is absolutely essential to have completed adjustments to VB1 before proceeding to adjust VB2.

The actual adjustment of VB2 is very much simpler than that of VB1, because this can be built with the component values as shown in Fig. 1 under all circumstances, whatever the input impedance actually required at PL1. The exact values of input and output impedance of VB2 are relatively unimportant.

continued on page 214

Photograph of VBI showing component layout and positioning of VRI and VR2

Photograph of VB2 showing component layout and positioning of VR3 and VR4

BETACHED PARTICLES

POWER WITHOUT WIRES

THE other day I was enjoying a quiet interlude strolling around the National Gallery in central London. Coming face to face again with the works of those great landscape artists Constable and Turner, I was reminded of the fierce controversy that arises whenever the Electricity Board proposes to build a generating station or wishes to run a new high voltage grid line over some part of the countryside.

Why should modern structures such as these be considered an intolerable intrusion upon the natural scene, when Constable was happy to paint man-made structures such as mills and lock-gates. Indeed, buildings like these are prominent features of some of his most admired landscapes. Why does an old brokendown mill have charm to our eyes, and why does a contemporary engineering work offend?

Consider the nuclear power stations. Each of these shows thought and consideration for the local amenities. Well designed outlines and the use of local stone wherever possible for cladding the outer surfaces have produced quite aesthetically pleasing results.

But it is mainly the transmission system that offends. It is a question of scale. In the vast mountainous regions of North Wales or Scotland

AR 1700.

Actually , , , it's an abstract

even the super grid cannot predominate over nature. However, when these networks reach the flatter (and more heavily populated) parts of the country the gargantuan towers and the aerial fence strung between them overwhelm the surrounding scene for miles.

The national grid system is the country's life-line and demands for electrical power are ever increasing. But is there no real alternative? We are told that the cost per mile of an underground cable is very nearly .15 times that of an overhead system. It is apparent that overhead cables there must be—at any rate until the transmission of power by radio or light waves becomes a practical proposition.

Power by "wireless" has been talked about for years past. I believe many of the early pioneers considered this the next logical development following successful attempts to communicate over long distances by radio waves.

Will this remain just a pipe dream for another 50 years or more? Or will visitors to the National Gallery in 2064 stand enthralled in front of landscapes painted by their contemporaries that owe much of their "old world" charm to the long disused pylons standing sentinel on the distant hill tops?

NON-CONDUCTOR

S the familiar cry "all fares please" soon to become extinct—soon to be numbered among the street cries of bygone days?

I started musing on this subject after reading reports of electronic ticket reading machines now being brought into service on conductorless buses in Manchester.

The scheme operates apparently like this. The intending passenger buys a special ticket with a metallic inset from a vending machine at the bus stop. When boarding the vehicle the ticket is pushed into a slot and is examined by the ticket reading machine which then cuts off the metal portion, thus preventing its further use. If a phoney ticket is offered to the machine a bell rings

and the culprit stands exposed (blushing furiously, I hope) and the driver is thus alerted to repell this particular boarder.

Electronic means for ejecting passengers who try to stay on beyond their proper fare stage have yet to be invented. In the meanwhile, this part of the operation remains exclusively in human hands (well, let's be quite fair about this—inspectors are human you know).

In case Mancunians think this is one more example of what Manchester Does Today etc., may I mention that in the greatest conurbation of all, London Transport has been trying out a number of electronic devices all with the intent of speeding the flow of its million per day commuters.

CONTROLLED ENTRY

N fact, an electronic ticket inspector has been on duty at one of London's Underground Railway Stations for several months now—but he is still only on probation.

The passenger places his ticket into a slot by the entrance gate, the ticket is scanned by an electronic device and, if in order, the gate is released and the passenger picks up his ticket as it emerges from another slot adjacent to a second gate which admits him to the platform.

What exactly happens should one attempt to pass off an out-of-date or phoney ticket, I have not had the courage to find out! The thought of being trapped between locked gates to the possible accompaniment of ringing bells and flashing lights is a sufficient deterrent to yours truly!

This ticket barrier heralds the arrival of automation on the London Underground Railway System. Let us hope no fuses are blown during rush hour.

Incidentally, further applications of this kind of device intrigue me. How about an electronically operated letter box for the home? This could be programmed so that bills, soap powder vouchers and other undesirable communications are promptly rejected from the front door. Well, it's a thought anyhow.

HIGH IMPEDANCE VOLTMETER

continued from page 177

SI AND THE MULTIPLIERS

First wire into circuit R9 and BY1. The latter should preferably be a slightly used D23 battery (use one to feed a torch bulb for a minute or two) so that the open-circuit voltage is near to 1.5—a new cell will have an open-circuit voltage greater than 1.5. R9 should be quite accurate, say 5 per cent or closer, and can be a 10 per cent type with a suitable series or parallel resistor to bring the value closer to 15 kilohms.

Resistor R1 can be wired into circuit and should be a 5 per cent or 10 per cent type suitably adjusted with other resistors. The meter is then switched on with S2, brought to zero with VR2 (S3 may need opening or closing), and then switched with S1 to "Cal.". VR1 should then be adjusted to obtain f.s.d. on the meter.

If the scheme in Fig. 1a is being used, S1 is turned to position 2 (1V) and the resistor to be used for R2 is then temporarily connected in series with the negative test lead. The test leads are then connected to a source of which the potential is known (a used, but not exhausted, dry battery, for example) and the value of R2 adjusted, with the aid of series or parallel resistors, to give the correct deflection on the meter M. This procedure is then used to determine the other multipliers, each being soldered into position when the correct value has to be obtained. Note that the resistors must be determined in the order R2 to R8.

If the scheme in Fig. 1b is being used, each multiplier is adjusted individually and it is not essential to proceed from position 2 of SI to position 9 in that order.

Reference potentials for ranges over, say, 50V can normally be found in the h.t. circuits of amplifiers and radio receivers. Calibration should be carried out by measuring the potentials with an ordinary multimeter connected in parallel with this instrument.

USING THE INSTRUMENT

First, the unit is switched on with S2 and set to one of its eight ranges. The meter will probably not read zero, so VR2 should be adjusted until zero reading is obtained (it may be necessary to open or close S3 which is used to compensate for the variations in standing current through TR1 due to alterations in the ambient temperature). Having obtained a zero reading, S1 is now switched to "Ca1." and VR1 turned to obtain f.s.d. on the meter. The instrument is now set up ready for use, but the adjustments may need to be repeated if it is used for long periods, particularly if the ambient temperature changes.

The meter will be found particularly useful for measuring a.g.c. potentials, limiter-grid potentials in f.m. receivers, and anode voltages where anode loads are high in value. If instability results from connection of the unit to the circuit under test, a 4.7 kilohm or 10 kilohm resistor can be used in series with the "live" test lead, right at the end, and will give rise in most cases to negligible error.

P.E. DATA BOOKLETS

THE pull-out supplement in the centre of this issue forms the middle section of Data Booklet 2, pages 5 to 12 inclusive. The outer section was included in last month's PRACTICAL ELECTRONICS.

Remove these supplements by pulling smartly from the magazine. Fold each supplement in half and cut along the top edges of the pages.

Data Booklet [

Attention is drawn to certain amendments that should be made to Data Booklet I presented with our first issue.

This booklet contains formulae of fundamental importance and it is much regretted that a few inaccuracies crept in during its compilation and printing. In order to avoid any confusion arising from its use at a later date, it is suggested that the following points be recorded immediately on the appropriate pages of your copy of Data Booklet 1.

page 2

Resistance is inversely proportional to area $\frac{1}{2}$

thus
$$R \propto \frac{1}{a} \times l$$
 and $R = \rho \frac{l}{a}$

Note: $\frac{1}{a}$ (figure 1 not l in first two cases)

page 3

Multi-plate Capacitor formula should read:

$$C = \frac{EoEr(n-1)a}{d}$$
 Farads
$$n = \text{number of plates}$$

pages 4 and 5 w should read ω page 5

Second formula should read: or using j notation Z ohms = $R - j/\omega C$

Third formula should read:

$$= \cos^{-1} \frac{R}{Z} = \cos^{-1} \sqrt{\frac{R^2 + \left(\frac{1}{2\pi/C}\right)^2}{R^2 + \left(\frac{1}{2\pi/C}\right)^2}}$$

page 6

Basic Magnetic Formula. Equation (1) should read:

$$\therefore \quad \frac{\phi}{a} = \mu_0 \mu_I \frac{I.N}{I}$$

Note: I not figure 1 and μ_0 should read μ_0

page 10

First formula should read:

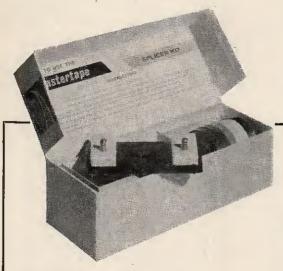
power factor
$$\phi = \cos^{-1} \frac{R}{Z} = \cos^{-1} \frac{R}{\sqrt{R^3 + (2\pi f L)^3}}$$

page 11

Geometrical Progression. Add under formula: for r = <1 multiply top and bottom of right-hand side of equation only by -1.

Also add note: r =common ratio

page 12


Trigonometrical Identities. Last line but one should read:

$$\cos 2A = \cos^2 A - \sin^2 A$$

Sine and Cosine Laws (for any triangle). Second line should read:

$$a^3 = b^4 + c^4 - 2bc \cos A$$
 Cosine Law

NEW PRODUCTS

Good Recording
Vidor Ltd., West Street, Erith, Kent.

Alfred Imhof Ltd., Ashley Works, Cowley Mill Road, Uxbridge, Middx.

One of the blueprints in last month's issue contains details of a home or office intercom.

Readers desirous of obtaining a truly professional finish will be glad to learn that a suitable cabinet finished in stove enamel either blue, silver or dark grey hammer tone on all internal and external surfaces is available from Imhofs.

The cabinet is made from 20 s.w.g. aluminium and is of two-piece design allowing maximum space for installing components. Our photograph shows type VM 4060 which costs £1 2s 6d.

Ideal for tape enthusiasts are two recently announced products by Vidor Ltd., and manufactured by M.S.S. Recording Ltd. These are a "Mastertape Splicer Kit" and a low cost triple play tape called "Mastertape."

The kit contains five different coloured rolls of leader tape and one roll of metallic strip and jointing tape—as well as a newly designed splicer. The complete kit which retails at 21s is shown on the left.

The new tape is available on standard spools containing 600ft to 3,600ft, price ranging from £1 Is 0d to £4 19s 0d. A polyester film 0.0005in thick is used for the base material and is covered by a new oxide with low friction finish which reduces recording head wear.

Contact Cleaner

Electrolube Ltd., Oxford Avenue, Slough, Bucks.

The efficient functioning of electrical and electronic equipment is often impaired by the effects of corrosion and tarnish on contacts.

Electrolube Ltd. produce a range of solvents especially to deal with the above mentioned problems. The most commonly used is Electrolube Nos. 1 and 2, which are available in handy 2oz "snorkel" bottles or pen dispensers.

Electrolube No. 1 is recommended for dirty or worn contacts on potentiometers (wire or carbon track), valve or plug pins and sockets, and push-button or wafer switches. Since the solvent does not evaporate quickly it may carbonise if used on contacts where sparking can occur. For treating and lubricating all clean arcing and non-arcing contacts, surfaces and mechanisms free from mineral or other lubricants and grease, No. 2 is recommended.

Our photograph shows the solvent being applied to valve pins to improve sensitivity and signal to noise ratio.

NOW ANYONE CAN AFFORD TO TRAIN TO BE AN EXPERT IN RADIO. TV. AND ELECTRONICS

Auyone can afford these amazing courses—anyone can understand this practical training— No complicated mathematics to hold you back—No old fashioned, obscure explanations to frustrate you!

The lessons are CRYSTAL CLEAR, PRACTICAL, EASY TO MASTER AND USE—Early lessons make fundamentals clear even to the beginner, while other lessons will give you the lessons make fundamentals clear even to the beginner, while other lessons practical "know-how" of an expert!

Compares favourably with some courses costing very much morel By creating a mass market through large volume sales and eliminating individual letter writing we are able to pass on these savings directly to you!

Each course is printed on extra large quarto size sheets and bound into one manual to simplify handling and distribution.

simplify handling and distribution.

Please select the course most suitable for your requirements from the following:

Mo. 1. RADIO COURSE. Fundamental facts—Electrons—Conductors and Jusulators—
Radio Batteries—Circuits—Magnetism—Ohm's Law—Resistor Colour Code—Charte—
What resistor to use—Electro-Magnetism—Ohm's Law—Resistor Colour Code—Charte—
What resistor to cons—Electro-Magnetism—Ohm's Law—Resistor Colour Code—Alternating Curren
Radio Capeletors—The Farad—Dielectriac—Capacity Transformers—Radio Coloure
Radio Capeletors—The Farad—Dielectriac—Capacity Code—Alternating Curren
Theory & Filters—Research and Resistance—Charts to calculate Capacity Frequency
and Indicators—Handlare—Handly Radio Formshine—Fraction Aspects of Radio Servicing—Radio

And Indicator—Transistor Theory—N Type Germanlum—F Type Germanlum—Diode Action—Transistor Theory—N. Type Germanlum—Frace of Radio Servicing—Radio

Transistor Theory—N Type Germanlum—F Type Germanlum—Diode Action—Transistor Theory—No. Stabilization—Transistor Bias Adjustment—Fr. Amplification—Supericing—Signal Generators and Signal Tracers—Colour

Transistor—Transistor Theory—No. Stabilization—Transistor Bias Adjustment—R. Amplificator—Transistor Theory—No. Stabilization—Transistor Bias Adjustment—R. Amplificator—Transistor Theory—No. Stabilization—Transistor Bias Adjustment—R. Amplification—Supericing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signal Tracers—Colour

Valve Tester—Point or Mail Servicing—Signal Generators and Signa

Obtain Radio Jobs. Price for the complete course. ONLY 38/s. Plus postage 1/8.

No. 2. ELECTROMAG COURSE. Includes most of the above lessons plus L.C. and R. Combhed Circuits.—Resonance Phenomenon—Behaviour at Resonance—How Meters. Work—Making a Voluncier—Ohm meter Connections—Vaives—Electron Behaviour—Triode—Churacleria—Denover Supplies—Audio Amplifices—Microphones. Resistance Compling—Obtain—Prover Supplies—Audio Amplifices—Decetion—Resistance Compling—Obtain—Resistance Mapplices—Audio Amplifices—Allectronic Oscillators—Greedver Circuits—Results of Pransit of Valuation and Training—Lines. Antennas and Radiation—Test Equipment—Englis Compass—H.F. Heating—Electronic Shaping Circuits—Photo-Cell Equipment—Radio Compass—H.F. Heating—Electronic Shaping Circuits—Photo-Cell Equipment—Englis Compass—Alf. Heating—Electronic Shaping Circuits—Techniques—Servicing Printed Circuits.

Recholques—Servicing Printed Circuits.

Prins for the complete course. ONLY 39/S. Pins postage 1/S.

Graduates of the Electronics Course an unality for a certificate—details sent with each order.

No. 3. TELEVISION COURS.

Bervice adjustments—Circuit Factor of Mis-adjusted controls—Fictures of various faults—
Bervice adjustments—Circuit Factor of Mis-adjusted controls—Fictures of various faults—
Negative Picture—Interference—Antenna Principles adjustments—Circuit Factor—Finding Rad Valves
Negative Picture—Interference—Antenna Principles and Course—Intercorrier I.P. System—Negative Picture—Interference—Antenna Principles and Course—Systemoticing Separators—T.V. Interference Alds—All about Cathode Ray Twork—Systemoticing Gain Control Circuits—Oscillators—Deflection Colle—Automatic Prequency Control Circuits—Oscillators—Deflection Colle—Automatic Prequency Control Circuits—Analysis of Stager Tuned I.P. Receiver—Analysis of Three Inter-Carrier Type Receivers—The Vertical Deflection Circuit—The Horizontal Deflection Circuits—Wave-forms—Schematics of various sections of a T.V.—U.H.F. Converters and Tuners—T.V.

Test Equipment and Alignment—Analysis of Various Problems.

Price for the complete course. OMLY 38/-. Plus postage 1/6.

Price for the complete course. ONLY 36/-. Plus postage 1/6.

UNCONDITIONALLY GUARANTEED TO GIVE COMPLETE SATISFACTION You must be convinced that this is the best value you have ever seen in Electronic, Radio or T.V. Training, otherwise you can return the course for have your money refunded if sent with order) after you have examined it in your own home for a full seven days.

IF YOU SEND CASH WITH ORDER WE WILL INCLUDE A FREE 70-PAGE BOOK.
Tick on the coupon one book for each course ordered with full cash.

RADIO SERVICING FAULT FINDING BOOK. TELEVISION FAULT BOOK. OSCILLOSCOPE BOOK.

These free books are authoritative, and loaded with information. Would cost at least bl- each you reduce book-keeping and other costs, which savings we pass back to you!

= = FREE TRIAL OFFER

Pay only 5/- per week if you wish Clip coupon right now for this special offer To: Sim-Tech Book Company, Dept. ELS., Gater's Mill, West End, Southampton, Hants. Please send the following courses for a full seven days' frial.

No. 1. RADIO COURSE. 37/6, incl. postage.

No. 2. ELECTRONICS COURSE.

41/-, incl. postage.

No. 3. TELEVISION COURSE. 37/6, incl. postage.

(Free trial customers tick one only please).

If not delighted, I may return the course post-paid without further obligation on my part. Otherwise I will pay cash price OR h/- weekly until purchase price plus 2/6 service thange has been paid.

Tick here if enclosing fully purchase price.

Please send me [] FREE. RADIO FAULT FINDING BOOK.

☐ FREE T.V. FAULT FINDING BOOK. ☐ FREE OSCILLOSCOPE BOOK. Amount enclosed £.....

I understand that you will refund this money in full if I am not 100% ratisfied. Overeens customers please send full amount (including Ireland).

NAME ADDRESS

City..... County.....

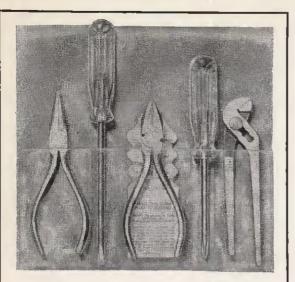
MULTIMINOR MA

The newly improved model of this famous AVO pocket size multi-range instrument has been enthusiastically acclaimed in all parts of the world for its high standards of accuracy and dependability as well as for its modern styling, its highly efficient internal assemblies and its resistance to extremes of climatic conditions.

It is simple to use, one rotary switch for instant range selection, only one pair of sockets for all measurements, and a 23-inch clearly marked scale-plate. It is supplied in an attractive black carrying case complete with interchangeable test prods and clips, and a multi-lingual instruction booklet.

multi-lingual instruction booklet.

RESISTANCE: 0-2MS in 2 ranges, using 1.5V cell SENSITIVITY: $10,000\,\Omega/V$ on d.c. voltage ranges $1,000\,\Omega/V$ on a.c. voltage ranges


to send you a full specification of this great little instru-ment. It measures only 7½ × 4 × 1½ ins. and weighs only 24 ozs.

ALYO LID

AVOCET HOUSE . 92-96 VAUXHALL BRIDGE ROAD - LONDON S.W.;

Telephone: VICtoria 3404 (12 lines)

213

Tool Pack

W. K. & C. Peace Ltd., Templeborough Works,

A new kit of small hand tools, suitable for electronic enthusiasts, model makers, radio repairers etc., is now being marketed by the

The kit consists of three of the most commonly used pliers (combination, radio and multi-grip), two screwdrivers (one conventional and one Phillips recessed head type), and a card of 5, 10 and 15 amp fuse wire completes the pack. The kit is housed in a roll-pack wallet and retails at 28s 6d.

This new kit should prove to be a handy addition to the tool box, but we feel we must point out that the pliers do not have insulated handles and should never be used in "live"

circuits.

Transformer Design Kits

The Belclere Co. Ltd., 385-387, Cowley Road, Oxford.

Readers who find it necessary to wind their own transformers for prototype electronic circuits should find the transformer kits of the above firm helpful. They now supply 51 different kits which offer a wide selection of bobbins and clamps, if needed, together with the required amount of laminations in a choice of materials.

PRECISION DECIMAL STEP PRE-AMPLIFIER—continued from page 209

The factors governing internal impedance relationships within VB2 are the same as for VBI.

Having completed adjustments to VBI, switch the pre-amplifier to "gain 100" with S1. Connect the oscilloscope probe directly to the oscilloscope and the prod and earth clip thereof across the entire chain of calibration resistors in the same arrangement as previously. Adjust for convenient height of display on the c.r.t. (Y-amplifier gain). Disconnect probe from the oscilloscope and connect to input PL1 of the preamplifier, having first adjusted VR3 for 600mV reading on a high impedance voltmeter across R20. Connect prod and earth clip of probe across one single 10 ohm calibration resistor at the extreme earth end of the chain. Adjust VR4 to bring the height of the trace on the c.r.t, to the same value as previously.

Adjustment of VB2 is now complete, as is that

of the entire pre-amplifier.

SIGNAL-TO-NOISE RELATIONSHIP

With the oscilloscope probe connected to the input of the pre-amplifier, conditions are virtually those of an open circuit. In the author's set-up about 25 microvolts of noise were observed to be developed at the base of TR1, leading to 2.5 millivolts of noise at the output terminal PL2. The resulting "grass" on the trace of the c.r.t. when everything is set to full.

gain is well under one millimetre wide.

If the pre-amplifier is connected to the Y-input, again with Y-gain full up and pre-amplifier gain set to 100, and input signals to the pre-amplifier are fed in directly without a probe, then the noise level will be less than the normal trace width on the c.r.t. as long as the input signal source impedance is less than 10 kilohms. In other words, noise will be quite unnoticeable on the c.r.t. under these conditions,

If the signal source impedance is even less still, as will mostly be the case for electroacoustic applications where the effects of residual hiss would be most serious, it is advisable to remove R1, connecting PL1 straight through to C1. The impedance presented to the base of TR1 by most gramophone pick-ups or microphone arrangements, with or without transformers, is then so small that the hiss level is hardly audible in the final loudspeakers following a subsequent main amplifier of any normal design. It is, however, essential to retain RI if there is any danger of d.c. surges being applied to PLI under any working conditions, though the value of R1 may be reduced to 10 kilohms to strike a compromise.

If the pre-amplifier is intended to be used equally frequently for electroacoustic and for metric purposes, with great importance attached to optimum signal-tonoise ratio in the former case, it is advisable to build VBI without RI, taking PLI straight to CI. RI must then be built into the coaxial connecting cable reserved for metric applications, always taking care to use this cable and no other one when making quantitative measurements and/or when high d.c. components may be present in the signal source. R1, of course, has some influence on the effective gain of VBI, so that the exact adjustments should then be made including the metric cable with built-in R1.

The gain without the metric cable, for low-noise electroacoustic work, will then be very slightly higher, but this is unimportant in such cases.

For the Finest Value and Service to the HOME CONSTRUCTOR AND

TRANSISTOR PORTABLES

THE SKYROVER RANGE

GENERAL SPECIFICATION

GENERAL SPECIFICATION
7 truncitor plus 2 diede superhet, 6 waveband pertable seelen.
The SKYROVER and SKYROVER DE
LUXE cover the full Medium Waveband
and Short Waveband 31-54M, and also 4
separate switched bind-spread ranges,
17M, 19M and 25M, with Band Spread
Tuning for accurate Station Selection.
The coll pack and tuning heart is completely
factory assembled, wired and tested. The
remaining assembly can be completed in
under three hours from our easy to follow,
stage by stage instructions. Superhet, 470
Ke/s. All Mullard Transistors and Diote.
Uses 4-12 betterles. Sin. Ceranico Magnet P.M.
The SKYROVER Mk H. The SKYROVER DALL MAGNET
The SKYROVER Mk H. The SKYROVER DALL MAGNET

The SKYROVER Mk H. The SKYROVER DALL MAGNET

The SKYROVER Mk H. The SKYROVER DALL MAGNET

THE SKYROVER DALL

The SKYROVER Mk II. The SKYROVER De Luxe

(Illustrated), Now supplied with redesigned cabines, edgwise controls. New colour tuning scale and cabinet in Siera Tan, Controls: Waveband Selector, Volume Control with onloff switch, Tuning Control. In plantic cabines, issee 10 x 0 \(\frac{1}{2} \) x 3\(\frac{1}{2} \) L, with metal trim and currying handle. Can now \$8.19.6 \(\frac{5}{5} \), extrus

H.P. Terms: £1 deposit and H.P. Terms: 25/- deposit and 11 monthly payments of 16,6. 11 monthly payments of 20/-. Pata for each receiver; 2/6 extra. Refunded if you purchase the parcel. Four U2 batteries 3/4 extra. All components available separately.

Tone Circuit is Incorporated, with separate Tone Control in addition to Volume Control. Tuning Control and Waveband Scientor. In a wood cabinet, size 113×65×3n. covered with a washable material, with plastic trim and carrying handle. Also car aerial socket litted.

Can now £10.19.6 P. & P. oxira.

LONG WAVEBAND COVERAGE IS NOW AVAILABLE FOR THE LONG WAVEBAND COVERAGE IS NOW AVAILABLE FOR THE SKYROVER and SKYROVER DE LUXE. A simple additional circuit provides coverage of the 1101/1950M band (including 1500 M. Light programme). This is in addition to all existing Medium and Short wavebands. All necessary components with construction data. Only 10/- extra Post Free. This conversion is suitable for Skyrover and Skyrover De Luxe receivers that have already been constructed.

REALISTIC SEVEN

Fully tunable long and medium bands. Uses 7 Mullard Transistors; plus Diode OA70. STAR features;

Can be built for

£5.19.6

REALISTIC SEVEN DE LUXE

P. & P. & J. & S.

By popular request a De Luxe Luxe version of the well-known Realistic Seven now available. With the same electrical specification as standard model—PLUS A SUPERIOR WOOD CABENDET IN CONTEMPORARY STYLENG covered in attractive washable material, with super-chrome tria and carrying handle. Also a full vision circular dial, externally mounted to further enhance the pleusant styling. ONLY 21 EXTRA

Both models: Battery 3/9 extra. (All components available separately.) Data and instructions separately 2/6, refunded if you purchase parcel.

TWO SINCLAIR SUPER MINIATURES

THE MICRO-6 Self-contained pocket radio, Size only 14/3×13/10×2 in. A marvel of modern miniaturisation—truly amazing performance. Without a doubt the most advanced firmisistor circuit ever offered to home constructors—yet may be built in an evening. Complete with earphone and detailed construction data. Can be built for only Self-6 All parts sold Mercury cell 1/11 extra (2 required).

THE SLIMLINE The new amazing performance 2-transistor pocket radio size only 23in, × 13 × 13in. Micro alloy transistorised and printed circuit, Easy to assemble. CAN BE BUILT FOR 49/6 All components available separately.

NEW! ANOTHER SINCLAIR SUPER MINIATURE THE XIO 10 watt power amplifier fitted with integrated pre-amplifier. Requires only 1 mV, for an output of 10 watts undistorted. Frequency response is fint 1 dB from 5 c/s. to 20 M c/s. Size only 6 × 3 × 3 m. Weight 5 oz. Built on printed circuit. Operates from 12 v. D.C. at 75 mA. quisscent. Circuit HTT £5.19.6 Post uses 7 M.A.T.s and 4 RF power transistors.

AVAILABLE READY BUILT, TESTED AND GUARATTEED, \$6.19.6 Post Free. 3 pots. for volume, Bass and Treble, 7/8 the 3 extm. Mains power pack if required, 54/s.

CONSTRUCTORS BARGAINS

The "Sixteen" Multirange

METER KIT

This outstanding meter was featured by Practical Wireless, In the Jam. '64 issue. Lasky's are now able to offer the com-plete kit of parts as specified by the designer.

plete kit of parts as specified by the designer.

RANGE SPECIFICATION:

D.G. volts; 0-2.5-225-50-250-30 at 20.000 QfV.

A.G. volts; 0-2.5-225-50-250-30 at 10.000 QfV.

D.G. current; 0-504A, 0-2.5-50-250 mA.

Resistance; 0-2.50-225-50-30 at 1.

Rasistance; 0-2.000Qf). 0-200KQf). 0-20 MQf.

Rasis movement; 1944 K.s.d. moving coll. With universal shunt full scale deflection current is 504A.

Size/Budsh; Black phastic case—3/2 x 5/2 x 17m.

Controls; 12 position range switch; separate silde switch for A.C. volts—D.C. chuns; ohus zero adjustment pot, mater; H.P.

meter zero. External connections; Two 4 mm, sockets for test lead plugs.

Power requirements: One 15v. and one 1.5v. batta. Complete with all parts and full construction details.

LASKY'S PRICE £5.19.6 P. & P. 5/-.

Terms: deposit and 5 monthly payments of 21/-. Data and circuit availrefunded if all parts bought. Pair of batteries 2/- extra.

BUILD A HIGH QUALITY TAPE RECORDER Using the famous Collaro "STUDIO" deck and MARTIN pre-assembled amplifiers 2- or 4-track models.

COLLARO STUDIO TAPE DECK.

LAIST TOUR TAPE DECK.

Laist troub! 3 rpeed, 3 motors. Take 7in. ruels. Flitted with half-track heads,

LASKY'S PRICE £10/10/-. New and Unused. Carr. & Pack. 7/6.

COLLARO STUDIO TAPE DECK. As above but fitted with the latest
quarter-track heads. LASKY'S PRICE £13/10/6. Carr. & Pack. 7/6.

MARTIN TAPE RECORDER AMPS. Designed for use with Collaro

Studio Tape Deck. In sub-assemblis for immediate Installation. 6-valve circuit. Comprehensive instructions make than basembly as simple as possible. Everything supplied

Equipment of the property of the prop

PRICES 4-track Model \$11/11/-. 4-track Model \$12/12/-. P. & P. 2/6. Portable carrying case designed to take the Collaro Studio Tape Dock and the Martin Tape Amplitier. Fitted with 9 x bin. speaker. Price complete with speaker £5/5/-. P. & P. 5/-.

TRANSISTORS
ALL BRAND NEW
AGET SI, GET S6, GET S6 2/6; 873A, 874F 3/6; OC45, OC71, OC81D 4/6; OC 44, OC 79, OC 79, OC 81 5/6; (match pair 10/6); AF 17, OC 75, OC 170, OC 200 6/6; OC 92, OC 42, OC 47, OC 78, OC 27, OC 200 13/6; OC 201 13/6; OC 92 5/4/6 OC 28 24/B

TRANSFILTERS By BRUSH CRYSTAL CO. Available from stock.

TO-01B 465 kc/s. ± 2 kc/s. TO-01D 470 ke/s, ± 2 ke/s, TO-02B 465 ke/s, ± 1 ke/s.

TO-02D 470 ke/s. ± 1 ke/s. 6/6 EACH TF-01B 465 kc/s. ± 2 kc/s. TF-O1D 470 kc/s. ± 2 kc/s.

FROM PRE-AMP TO 20 WATT HI-FI STEREO

ASSEMBLY BY BUILDING WITH MARTIN AUDIOXITS—
Using specially developed circuits, the very latest transitators and printed circuits—
these kits are all fully checked and tested before leaving the factory. Although the kite
are basically designed for use together the pre-unpelliter and maker stages may be used
to great advantage with existing valve or transistor equipment.

KIT 1. 6-stage Matching Input Selector Unit. LASKY'S PRICE 47/6.

KIT 2. Pre-amplifier with volume control

LASKY'S PRICE 47/6.

KIT 3. 3-Channel Mixer with playin adaptors for
individually matching each circuit. Adaptors

8 6 each LASKY'S PRICE 79/6.

SPECIAL INTEREST ITEMS!

READY BUILT TEST METERS All brand new-com
 READY BUILT
 I ES I
 METERS test leads and batts.

 HAIKI 20,000 O.P.V.
 LASKY'S PRICE
 25 19

 TMK-506 SO,000 O.P.V.
 LASKY'S PRICE
 21 18

 200-H 20,000 O.P.V.
 LASKY'S PRICE
 28 17

 P-1 2,000 O.P.V.
 LASKY'S PRICE
 25 2

 P-2 4,000 O.P.V.
 LASKY'S PRICE
 42 2

 P-3 4,000 O.P.V.
 LASKY'S PRICE
 44 2

 MT-955 59,000 O.P.V.
 LASKY'S PRICE
 41 2

 MT-955 59,000 O.P.V.
 LASKY'S PRICE
 51 19

 Also complete range of Avo and Taylor Meters and Test Equipment in stock.
 Batters eliminates for parts.

THE HARROW POWER PACK Battery similation for portable tery radio to A.C. mains, Replaces 41 v., 6 v. and 9 v. batts. Size only 3fm, 22lim, 22 tery radio to A.C. mains, Replaces 41 v., 6 v. and 9 v. butts. Size only 3(n. ×21in. × 21in. State voltage required when ordering.

LASKY'S PRICE 29:6 P. a P.

207 EDGWARE ROAD, LONDON, W.2. Near Praed St. PADDINGTON 3271/2

BOTH OPEN ALL DAY SAT. Early Closing Thurs.

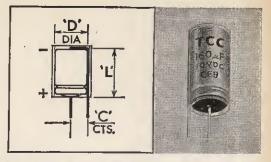
33 TOTTENHAM COURT ROAD, W.I.

Nearest Stn., Goodge St. MUSEUM 2605 Mail Orders to Dept. P.W., 207 Edgware Rd., W.2.

152/3 FLEET STREET, LONDON, E.C.4.

Telephone: Fleet Street 2833 OPEN ALL DAY THURSDAY. Early Closing Sat.

SPEEDY FOR MAIL ORDER


Sub-miniature **Electrolytics** for Transistor Circuits

This range of shorter capacitors has been introduced to meet the ever increasing demand for smaller electrolytics to be used in miniaturised transistor circuits in both industrial and

T.C.C. TYPE	Case Size in inches				Maximum D.C. Wkg. Voltages and Cap. (μF)						
NO.	D	L	С	3A	67	97	107	127	157	257	50Y
CE.2VorH	i i	1/2	0.07	8	6	4		3	2	-	-
CE.3YorH	3 16	7	0.1	25	20	15	-	10	6	4	
CE.4VorH	16	1/2	1.0	40	30	20		15	8	6	
CE.5VorH	4	7	0.14	50	40	25	-	20	01	8	_
CE.6YorH	-[4	1/2	0.14	80	60	40		30	15	12	_
CE.7YorH	<u>5</u> 16	1/2	0.18	100	75	50	-	40	20	15	
CE.8YorH	4	જોવ	0.14	100	80		60	-	40	25	8
CE.9VorH	3 8	3	0.2	250	200	-	160	-	100	60	20

V == Vertical mounting

H = Horizontal mounting

commercial electronic applications. Each type is available for either horizontal or vertical mounting and preference should be indicated when ordering by inserting V or H after the T.C.C. type number.

★ -20°C to +60°C operating temperature range.

* WELDED CONNECTION WIRES for low resistance contact, with solder-coating for ease of assembly. Standard wire length is 12"; but for vertical mounting the wire is cropped to 3".

* INSULATED SEAMLESS ALUMINIUM CASES

sealed with a synthetic rubber bung. * CAP. TOLERANCE OF -20% to+100% of the rated capacitance.

LEAKAGE CURRENT: for CE.2-7 may be determined from the following: I (μ A) = .01 C.V. + 10 at applied working voltage and at 20°C.

For CE.8-9 it is determined from: 1 (μ A)=.02 C.V. + 20 at applied working voltage and at 20°C.

TELEGRAPH CONDENSER CO. LTD. THE

Electronics Division . NORTH ACTON . LONDON . W.3. Tel. ACOrn 0061 Telex: 261383 also at CHESSINGTON, SURREY and BATHGATE, SCOTLAND

AMERICAN TRANSISTORS

200 TYPES, ALL NEW AND GUARANTEED

HIGH POWER HIGH FREQUENCY: 2N1907 PNP 2Nt046 PNP 50/-HIGH POWER AUDIO FREQUENCY: 2N443 PNP 17/6

MEDIUM POWER AUDIO FREQUENCY: PNP 19/6 2N1294 NPN 2N342 NPN 9/6 2N343 NPN 14/-

LOW POWER HIGH FREQUENCY: 2N2048 PNP 2N1109 PNP 7/6

Plus many, many others

MODULES (All solld state)

Record Player Amplifier 42/~ Code Oscillator

Data and circuits with all items. Send 1/for complete reference estalogue

J. & J. ELECTRONICS

15 Kensington High Street London, W.8

BASIC ELECTRONIC CIRCUITS, Pc. 2. Compiled "Tech, Press". 18/-. Postage 1/-.

ELECTRONICS POCKET BOOK, by J. P. Hawker and J. A. Reddihough. 21/-. Postage 9d.

UNDERSTANDING ELECTRONICS, by J. Bendick. 13/6. Postage 9d.

101 WAYS TO USE YOUR SIGNAL GENERATOR, by R. G. Middleton. 18/-. Postage 9d.

THE TRANSISTOR RADIO HAND-BOOK, by D. L. Stoner and L. A. Earnshaw. 44/-. Postage 1/-.

ELECTRONIC **FUNDAMENTALS** AND APPLICATIONS, by J. D. Ryder. 55/-. Postage 2/-.

INTRODUCTION TO SEMICON-DUCTOR DEVICES, by M. J. Morant, 18/-. Postage 9d.

AN INTRODUCTION TO COUNT-ING TECHNIQUES AND TRANSISTOR CIRCUIT LOGIC, by K. J. Dezn. 25/-. Postage 9d.

ELECTRONIC AND RADIO ENGIN-ERING, by F, E, Terman, 60/-, Postage 2/s.

ELECTRONIC TEST INSTRUMENTS HANDBOOK, by J. A. Risse. 35/-Postage I/-.

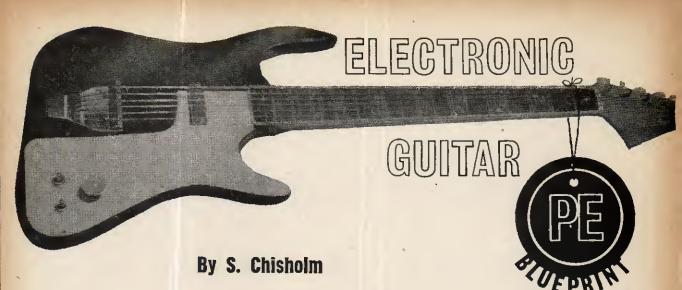
COMPLETE CATALOGUE, 1/-.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books

> 19-21 PRAED STREET LONDON, W.2

> > Phone: PADdington 4185 Open 6 days 9-6 p.m.

PADGETTS RADIO STORES OLD TOWN HALL, KNOWLER HILL, LIVERSEDGE,


Telephone: Cleckheaton 2866

Telephone: Cleckheaton 2866
Single Phase 230 V. 1400 r.p.m.; h.p. motor with pulley, 28/-. Less pulley, 24/-. Fully guaranteed ex-washing machine. Carr. 8/6.

One Sixth R. Motor 15/-. Post 6/6.
Sorry 10/-. Sorry 10/

Ex squipment. 3 months guarantee.

All Post Paid						
EL91	1/6	20Pa	4/-	PL82	3/-	
ECL80	2/-	20P4	8/6	PL83	3/-	
ECC82	37-	20P1	4/-	PL33	3/-	
EY51	2 6	30P4	6/-	PYSt	3/-	
EY86	6/- :	U801	8/6	PY82	3/-	
EBF80	4/6	U231	5/-	PCF80	4/-	
EB91	9d.	U232	6/-	PCC84	4/-	
ELSS	5/	U329	5/-	PCL82	0/8	
EF91	. be	KT36	- 5/-	PCL85	8/6	
6F1	1/-	KT66	8/-			
6F14	5/-	6V6GT	4/-	VR150/90	3/-	
6F15	5/-	6B8	1/6	IT4	1/9	
6LI)20	5/-	6K25	5/-	12AT7	3/-	
1002	5/-	6P25	3/6	6CH6	1/8	
10F1	1/-	6U4	5/-	6X4	3/-	
10213	5/-	PY33	6 6			
16P14	5/	PLS1	4/-	R18	3/6	
20101	2/-	PL3S	8/-	ARP12	1/0	
20L1	5/-	PY80	3/-	807	5/6	
Timeo 11	don el .	erry a fe	1 001	anco a late		

THE tenor guitar described in this article is intended for use with the electronic guitar amplifier, details of which will be published in the February issue of PRACTICAL ELECTRONICS. The guitar includes the following controls:

(1) Continuously variable volume control.

(2) Preset tone control giving bass boost, normal response or treble boost, all conditions being volume compensated.

(3) Optional preset two-speed vibrato selection. Tremolo is not provided but can be included by a changed design of bridge assembly and the addition of a lever mechanism.

GENERAL CONSTRUCTION

The body of the guitar (see Fig. 1 on blueprint for overall view) is formed of two close-grained hardwood plates, channelled to hold the pick-up, controls, sockets and internal wiring. The stem is also of a sound close-grained hardwood (preferably oak) with no grain curvature in any direction and well seasoned so that the stem will not bend under string tension. The fretboard on the stem is of softer material (fine mahogany) and screwed firmly to the stem. The frets are made from standard commercial fret wire.

The head is also of oak, dowelled and glued to the stem. A steel plate holds the head at the correct angle for string tensioning and prevents the head from rising under tension. The string winders are commercial items. The bridge is made from hardwood and set on the tailplate (of heavy gauge brass) secured to the face of the body. Two pressure screws provide adjustment at the tailplate to set the strings at the optimum height above the pick-up.

The pick-up cover is of thin sheet brass, clamped into position when the pick-up adjustment has been carried out. The pick-up uses Eclipse button magnets and is designed for easy construction, simple adjustment, and for ample sensitivity. If correctly made it cannot burn out, or go open-circuit. The low impedance output is passed to a transformer housed within the guitar body, then through a volume control

to the output socket for connection to the amplifier.

The controls are mounted on a removable finger-board cut from a sheet of Formica, under which the transformer is housed, making it easily accessible.

BODY

The body should be tackled first. Obtain two pieces of hardwood approximately $18in \times 13in \times \frac{3}{4}in$ thick. Mark out the surface of one piece (A) in accordance with Fig. 1 to take the matching transformer (e), the recess for the pick-up (b), and the recess for the volume control and two switches (c). (Note that dimensions for the transformer recess are not given as these will depend on the size of the component used.) Cut out these areas completely, then cut shallow channels on the underside to link (b), (e) and (c)-as shown.

Place the second piece (B) under A. Mark B through the apertures in A. Remove A, then chisel out sufficient of B to provide the required depth of recess to take the toggle switches, volume control, and transformer (the measurement will, of course, allow for the thickness of A). Note that the switches must be of shallow construction in order to clear the control socket beneath them.

Drill a 16 in diameter pilot hole in the centre of circle (d) within the volume control recess in B. Turn B over and, using this pilot hole, cut out the lin diameter hole (d) to accommodate the control socket.

The shape of the body may now be marked out on A, then clamp A and B together, ensuring that the holes in A align with the recesses in B. Using a fine padsaw or similar tool, cut around the body outline. Round off the edges of the two pieces to provide a pleasing contour and smooth off with fine garnet paper any roughness on the front and back of the body which might spoil the enamelling process. The finished job should be rounded off smoothly to meet the outline of the pattern for the fingerboard.

The two pieces may now be glued together taking great care to secure accurate alignment. After glueing, hold the parts in position with clamps. It is worthwhile to cover the jaws of the clamps with scrap wood or thick rag to protect the workpiece.

PICK-UP

The materials required are three $\frac{1}{2}$ in diameter Eclipse button magnets, three $\frac{1}{2}$ in 8 BA countersunk head screws with nuts and washers, an aluminium strip approximately $3\frac{1}{2}$ in $\times \frac{3}{4}$ in $\times \frac{1}{10}$ in thick, about 30ft of 30 s.w.g. enamelled wire, a piece of sponge

rubber approximately $2in \times \frac{3}{4}in \times \frac{1}{4}in$, two brass woodscrews 2in No. 4, some adhesive tape (see later), and about 12in thin plastics coated flexible wire.

Bend the aluminium strip to the shape shown in Fig. 2, then drill as shown. Check that the pick-up mount is a nice sliding fit in the pick-up aperture on the body, then fit all three magnets to the pick-up mount so that the channel in each magnet will be along the length of the body when the mount is fitted.

Around each magnet limb wind one turn of the adhesive tape making sure the ends overlap. Polyester thermosetting or electrical tapes (Sellotape Products Ltd.) should be used. Ordinary packaging tapes are not recommended as the adhesive may remove the enamel from the wire and impair insulation. The

pick-up is now ready for winding.

Cut the plastics coated flex into two lengths (6in each); bare one end of each length for about \$\frac{3}{6}\$ in. Bare the end of the enamelled wire for about \$\frac{3}{6}\$ in. Twist these bared ends together as shown in Fig. 2, then neatly solder the connection. Carefully pass the free end of the flex through the mount as shown, then lay the connection on the outer limb of the first magnet. It is worthwhile insulating the soldered joint with tape or sleeving. Wind on 30 turns of 30 s.w.g. enamelled wire as neatly as possible so that the coils will not slip off the magnet limb; take care not to scrape the wire on the tips of the limb.

Having reached the 30th turn, carry the wire diagonally across the channel as shown in Fig. 2, then wind 30 turns on the remaining limb. Note that the direction of winding is S-shaped round the two limbs.

When 30 turns have been wound on the second limb, carry the wire, without a break and without tension. diagonally across the space between the first and second magnet, then wind 30 turns on the nearest limb. The winding direction is now the same as that on the first limb of the first magnet. Proceed as with the first magnet, then wind the third magnet similarly, When 30 turns have been wound on the last limb, cut off the surplus and bare the ends of the wire and the plastics coated flex, as described earlier, and make a connection which will lie on the outside of the last limb wound. Insulate this soldered joint with another piece of tape or sleeving. Pass the free end of flex, together with the original flex, through a larger piece of sleeving and feed the wires and sleeve through the mounting for external connections later.

Bare the free ends of the lead-in wires and if an ohmmeter is available, check continuity to ensure the connections are still quite sound. The pick-up can be tested audibly if an amplifier is available. To do so, connect the pick-up leads to the low impedance terminals of the matching transformer and the high impedance terminals of the transformer to the input of the amplifier. Switch on the amplifier, turn up the volume control (the amplifier will probably hum because the pick-up is being handled) and gently tap the pick-up limbs with a steel object. A definite click should be heard from the amplifier as each pick-up limb is tapped. Judgement may be difficult, but if one limb sounds much weaker than another, the turns on that limb may be short-circuited; it is advisable to rewind, using new wire.

When satisfied that the pick-up is in good order, carefully smear each limb with Scotch glue to secure the winding; it may then be fitted into the pick-up housing as follows. File around the edge of the countersunk heads of both brass screws to be used to

secure the pick-up, until the head diameter is little more than that of the holes through which they will pass. The heads will then clear the windings on the pick-up. Insert the sponge rubber into the pick-up housing to provide a resilient seat for the pick-up then fit the pick-up mount to straddle the rubber seat, first guiding the pick-up wires into the channel provided.

Drill through the mount, and the sponge rubber, until the drill bites into the wooden body to provide a starting hole for the fixing screw. Screw down the pick-up but do not over compress the sponge rubber, as adjustment of pick-up height has to be made later. Solder the two pick-up leads to the low impedance terminals of the microphone transformer. Fit the transformer into its housing, leaving the free terminals accessible. Pieces of sponge rubber should be packed into the receptacle to absorb any vibration that may occur, as some transformers themselves act as microphones and will transmit the sound of mechanical shock. The fingerboard will eventually hold the transformer and rubber protection in place.

STEM

The stem is cut from a length of fine grained oak $19\text{in} \times 2\frac{1}{2}\text{in} \times \frac{3}{4}\text{in}$. Dimensions of the finished piece are given in Fig. 3. Rounding off the back of the stem should be carefully done to give a pleasing final appearance and comfortable handling while playing. The finish must be very smooth. If correctly done, the polyurethane coating will present an appearance indistinguishable from french polish.

FRETBOARD

This is a piece of mahogany of dimensions as shown in Fig. 3. It may now be prepared up to the point where the frets are required, fitted for size on the stem, then removed for the present.

HEAD

Dimensions and drilling marks for the head appear in Fig. 4. The material must be very sound hardwood as there is a considerable and continuous strain exerted on the winders attached to it. Thus the material must not yield under the tension of the strings.

Having cut out the piece and drilled for the winders, drill the butt as shown, to accept two \$\frac{1}{2}\$ in dowels with at least \$\frac{1}{2}\$ in insertion. Note the shallow angle at the butt of the head where it will meet the stem; the dowels are fitted at right angles to the butt, and not parallel to the face of the material as one might expect. Groove the dowels along their length to allow surplus glue to escape, then glue them in position. Allow ample time for the glue to set firmly, then cut the dowels so that they protrude by \$\frac{1}{2}\$ in.

HEAD STIFFENER

The stiffener is preferably a piece of mild steel of the dimensions shown in Fig. 5. Cut a recess in the head at the area shown in Fig. 4 so that the stiffener fits firmly into it. Drill the stiffener (this is best done after bending the stiffener, otherwise the metal tends to bend slightly near the holes) and assemble it to the head. Mark the head through the holes in the stiffener, then drill the head to accept §in No. 8 countersunk head wood screws. The winders should now be fitted; one will have to be shaped slightly to allow room for the stiffener plate.

Jason tuners and test equipment offer a wide choice of models designed to meet present-day requirements and are a delight to build.

FMT1 F.M. Tuner, less valves 45, 19s. 0d.

MERCURY II Switched tuner less valves £9. ISs. 4d.

ARGUS Transistor m.w. tuner, complete £7. 10s. 0d.

OGIO Oscilloscope, less c.r.t. £18, 10s. 0d.

WII Wobbulator, complete £14, 19s. 0d.

EM10 Valve voltmeter, complete £23.0s.0d.

SB26 Tape deck (built only) ½ track mono 31 gns. 4 track stereo 39 gns.

JTV2 SWITCHED TUNER, All BBCf.m. transmissions and BBC-I and ITV television sound channels at the turn of a switch. All components including turret and coil plate but less four valves—£14, 0s. 4d.

JTL TAPE PREAMPLIFIER designed to suit any tape deck or head. Will simultaneously record and playback stereo or mono using two or four track heads. All components including valves £22, [s. 0d. Ready built and tested £30, 9s. 0d.

FMT2 F.M. TUNER covering 88-108 Mc/s. Built-in power supply. All components, less four valves £9, 9s. 0d. (less power supply £7, 15s. 0d.),

FMT3 TUNER similar to above, but for fringe areas. All components, less valves £10, 9s. 0d. (less power supply £8. 15s. 0d.).

AGIO AUDIO GENERATOR. Excellent stability with constant output over entire range. Tunes from 10 c/s to 100 c/s in four switched ranges. All components, including valves £15. 19s. 0d.

Write for descriptive leaflets and name of nearest stockist.

VISIT OUR NEW
WEST END SHOWROOM

18 TUDOR PLACE, TOTTENHAM COURT ROAD, LONDON, W.I MUSeum 4666.8

THE COMMON

CORE SERIES

BASIC ELECTRICITY (5 parts) BASIC ELECTRONICS (6 parts) BASIC SYNCHROS & SERVOMECHANISMS (2 parts) BASIC ELECTRONIC CIRCUITS (2 parts)

WHAT READERS HAVE SAID ABOUT THEM-

"... Thank you for sending BASIC ELECTRONICS. I read the first part last night and was more amazed as I read further. After reading the section on Filter Circuits once, I understood more about them than I have been able to find out in a whole year from the obscurities of other text books and manuals. Thank you for a really first class work..."

- "... I think the Basic Books are the best I have ever read, and I've read a hell of a lot ..."
- "... A truly excellent publication, not in the least complicated by endless mathematics..."
- "... The books are excellent and contain the information I have been seeking for years ..."
- "... Your books seem to explain things much more easily, I wish they were on sale when I had to learn radio ..."

C	OU	PO	N-	SE	ND	NO	W!

OR ASK YOUR BOOKSELLER

To THE TECHNICAL PRESS LTD. 112 Westbourne Grove, London, W.2.

Please send me your FREE prospectus describing THE COMMON-CORE SERIES

Name.....

Address

RETURN-OF-POST SERVICE

We offer a really efficient Mail Order Service on all items stocked. All cash orders are dealt with on the day of receipt.

Hire purchase orders are subject to slight delay but this is kept to the absolute minimum.

SPECIAL OFFER!! STEREO CARTRIDGES RONNETTE 105 Stereo/Mono Cartridge. Complete with fixing bracket and styli. List 59/4. OUR PRICE 23/6. Post Free.

ILLUSTRATED LISTS

Illustrated lists are available on LOUDSPEAKERS, TAPE DECKS, TEST GEAR, GRAMOPHONE EQUIPMENT, AMPLIFIERS. Any will be sent free upon request,

AMPLIFIER KITS

We have full stocks of all components for the Mullard \$10, Mullard 3-3, Mullard 2 and 3 Valve Pre-amp. Mullard Stereo, Mullard Mixer. Fully detailed list on any of these sent upon request, Instruction Manual: All Mullard Audio Circuits in "Circuits for Audio Amplifiers", 95. Post free.

• LATEST TEST METERS

				Hire	: Purcha	SE
			Cash Price	Deposit	Mchly/	Prote.
AVO Model 8 Mark III	4		£24. 0.0	£4.16.0		61.15.2
AVO Model 7 Mark II			£22. 5.0	£4. 8.0		€1.12.9
AVO Multiminor Mark	4		€9,10,0	£1.18.8	12 of	14/4
T.M.K. TP10			€3.19.6	£1, 3,6	3 of	£1.2.0
T.M.K. TP5S		1	45.19.6	£1.15.6		
T.M.K. Model 500			£8.19.6		3 of	£1.11.4
TAYLOR MODEL 127A	**	* 1		£1.15.6	12 of	13/8
Evil details of sour of about		1.25	£10.10,0	£2. 2.0	12 of	15/8
Full details of any of the al	ove suppli	red tre	e on request	t.		
The AVO models 7 and 8 at	re both late	est mod	els from cur	rent brodu	ction—n	ot to be
confused with Government S	urbius,					

• TAPE RECORDING FOUIDMENT

ALL CARRIAGE FREE	ash Price	Hire Deposic	Purchase Mthly/Pr	nts.
Two track, Bradmatic Heads	£10,19,6 £17,17,0	£2, 3,6 £3,12,0	12 of 12 of	16/4

MARTIN TATE OF THE ACT OF THE ACT

We stock complete kits and all separate components for the Mullard Tape Pre-Amplifier. Fully detailed list available.

MARTIN AUDIO KITS

MARTIN AUDIO KITS

High quality, easy to assemble Hi-Fi Units. Fully Transistorised for mono and stereowirking. All units are assembled and tested and the constructor has only to link track and the constructor has only to link track available. The following mono units are available. The following Unit I Input selector 47/6.

Unit 2 Pre-amplifier with volume control 37/6.

Unit 3 Pre-amplifier 10 wats, 3 ohm output 65.12.6.

Unit 4 Pre-amplifier 10 wats, 3 ohm output 65.12.6.

Unit 5 Main Amplifier 10 wats, 15 ohm output 65.12.6.

Unit 7 Main Amplifier 10 wats, 15 ohm output 65.12.6.

Unit 8 Power Unit for Unit 5 55/6.

Unit 9 Power Unit for Unit 7 55/6.

Unit 9 Power Unit for Unit 7 55/6.

Unit 1, 2, 3 and 4 are available for stereo working at twice the prices shown. Smart plastic escutcheons are available free.

JASON F.M. TUNERS

We stock all parts needed for the construction of these excellent tuners. All parts an bo supplied separately but we can offer attractive reductions in price if all items are purchased at same time as follows:

FMT2 (less power), £7.15.0; FMT2 (with power), £9.12.6. FMT3 (less power), £9.9.6; FMT3 (with power), £11.7.6. FMT1, £6.12.6.; Mercury 2, £10.14.6.; JTV/2, £14.12.6. Hire Purchase Terms available. Ask for list,

HI-FI LOUDSPEAKERS

© MIR-RI LABULDSFEARMERES

GOODMANS: Axiette 8in, £5.5.7; Axiom 10in., £6.5.11; 12in. Axiom 201, £10.17.4; 12in. Axiom 301, £15.4.6; 12in. Audiom 51 Bass, £6.2.8; 12in. Audiom 61 Bass, £1.4.7.8; Trebax Tweeter, £6.10.2; XO5000 Crossover unit, £2.0.1; WHITELEY: HF1016 10in., £7.7.0; HF1012 10in., £4.12.0; HF816 8in. £6.6.0; T816 8in., £5.19.6; T10 Tweeter, £4.12.0; T395 Tweeter, £1.2.3; CX300 Crossover unit, £1.13.3; CX300 Crossover unit, £2.2.0, H.P. Terms available on all speakers.

OUTPUT TRANSFORMERS

GILSON: W06968, 6016, post 2/6. W0892, 75/-, post 2/9. W0767, 31/6. post 1/6. W0892, 75/-, post 2/6. W01932, 32/6. post 3/-. W0767, 2/6. W0767, post 2/6. W01932, 32/6, post 3/-. PARTRIDGE: P3667, 75/-, post 2/9. P4131, 75/-, post 2/9. P4171, PARTRIDGE: P3667, 75/-, post 2/9. P4131, P4131

MAINS TRANSFORMERS

GILSON; W0741A, 75/-, post 4/-; W0839, 58/6, post 2/9; W01328, 69/6, post 3/6; W01288, 69/6, post 3/6; W01288, 69/6, post 3/6; W01288, 69/6, post 3/6; W01388, W01388,

post 2/-. PARMEKO: P2631, 37/-, post 2/9; P2630, 57/3, post 3/3; P2644, 80/-, post 4/-; P2930, 43/-, post 3/-; P2931, 59/6, post 3/3.

WATTS RADIO (Mail) LTD

54 CHURCH STREET, WEYBRIDGE, SURREY

Telephone Weybridge 47556

Please note: Postal business only. Callers welcome by appointment.

**TERMS OF BUSINESS

Cash with order or C.O.D. We charge C.O.D. orders as follows: Up to £5 minimum of 4/2. Over £5 and under £10, 2/8. Over £10, no charge. Postage extra on CASH order under £5 except where stated. Postage extra on overseas orders irrespective of price.

**HIRE PURCHASE TERMS AVAILABLE*

Smart waterproof cover to give complete protection to your tape rocorder. Made from rubberised canvas in navy, wine, tan, grey and bottle green with white contrasting pipings, reinforced base, handy zip microphone pocket and name

Grundig TK.1 49/6	Telefunken 75/15 &	Stella ST458 79/-
,, TK.5 55/-	76K 55/-	ST459 84/-
., TK.6 67/6	Philips 8108 57/6	[Cabo 42]
,, TK.8 63/-	3548	Elizabethan FT.1 66/-
,, TK, 14 &	,, 3534 87/-	FT 2 751
23 & 18 59/6	., 3459 79/6	1229 75/-
., TK. 20 52/6		E E 2 15 E
TK. 24 55/-		Billiathia America . Berlie
,, TK, 25 55/-	. EL3536 70/-	Clarion (with strap) 52/6
TK. 30 60/-	613616 6914C	
., TK. 35 63/-	CONCALUE COME	2 1 10 10 1
TK. 40 & 41 66/-		F DDG 4 64 004
., TK. 46 82/-	for set of a	Dalada DV 2
TV KK 621 0		Por a la l
TH 44	1/01 /01	Fetrograph 88/-
		Sony 521 90/-
Cul. DEL 6	1604 79/-	Revox 84/-
Talatuation OF CEA	1605 84/-	Optacord 414 + 412 63/-
Telefunken 85 65/-	Stella 57455 63/-	
95 69/6	., ST454 57/6 l	*Without Porket

A. BROWN & SONS LTD.

(Dept. P.E.) 24-28, GEORGE STREET, HULL TEL: 25413, 25412

'SUPER SIX'

LONG & MED. WAVE TRANSISTOR RADIO KIT NOW ONLY £4.17.6 (post 5/-)

When you have assembled this set, you will have value equivalent to £12. |2.[0 commercial model.

- All new parts.
- 6 transistors and diode.
- 350mW output.
- Superhet circuit, Ferrite rod aerial.
- Weymouth Radio printed circuit
- Component positions and references printed on back of board.
- Nicely styled wooden cabinet, 11 × 7½ × 3½in.
- Vinyl covered in various colours.
- 6 × 4in. speaker giving good bass and treble response.
- Full instruction booklet 2/-. Free
- .F. frequency 470 kc/s.

Lining up service if required.

- All parts supplied separately. Write for list. S.A.E. please.
- Set can be supplied fully built for £6.17.6 tax and carriage paid.
- 9v. battery required. VT9 or P.P.9 (3/9 with kit).

MINOR" RECORD PLAYER WITH "MAJOR" PERFORMANCE fully built, rexine covered, $10 \times 7 \times 5\frac{1}{2}$ in. 4 transistor amplifier. Good volume. 7 in. records 45 & 33 r.p.m. £6.7.6 amplifier. Good volur (Post 5/-). Battery 3/9.

TRANSISTORS

Packet of 3 coded RF transistors (equivalent of OC44/5) 7/6 post paid. Set of 6 transistors and diode with circuit diagram. Neatly packed in foam-lined box; useful for presentation. 15/- post paid. Trade Supplied.

> **ELECTRONICS** (Camberley) Ltd. 15 Victoria Avenue, Camberley, Surrey.
> (Closed Saturday)

FITTING THE HEAD TO THE STEM

Offer up the head to the stem and mark the position where the dowels will fit into the stem. Drill the stem and ensure that the dowels fit snugly. While the head is still in position, turn over the stem and head, fit the stiffener into the head as far as it will go, then mark the outline of the stiffener and fixing holes where it lies on the stem. Remove the stiffener and the head, then cut out a recess in the stem to take the stiffener. This must be an accurate and flush fit, otherwise the stiffener will be a permanent nuisance when playing. Drill the stiffener holes for §in No. 8 countersunk head screws.

As the string separator will be part of the stem assembly when glueing, it should be prepared now from

the details shown in Fig. 3.

Warm the mating surfaces of the head and stem, apply glue to the dowels and mating surfaces, then fit

the head to the stem.

Carefully fit the stiffener plate before the glue has set, then drive home the wood screws in the head and stem. The string separator is also glued into position at the head of the stem.

FITTING THE STEM TO THE BODY

On most guitars, there is a critical angle between the upper surface of the fretboard, and that of the body. This angle determines the sensitivity of the electromagnetic pick-up and the clearance between the pick-up and strings when pressing the strings on frets low down on the stem. In this particular instrument three adjustments are provided in order to minimise the need for high accuracy. These are:

(a) adjustable pick-up assembly.

(b) adjustable tailplate,

(c) adjustable angle of stem. This adjustable stem, once set, is left as a permanent

fixture. It is fitted as follows.

On the face of the body (Fig. 1) cut away the area (a) sin deep. Drill three holes in the stem for 11 in No. 6 countersunk head wood screws. Provide one or two pieces of hin plywood or similar material shaped to the recess, for use later. Lay the stem snugly into the recess and mark through for entry of the wood screws. Drill on these marks and assemble the stem to the body. but do not tighten fully yet. The fretboard is fitted later.

BRIDGE

The bridge tailplate is formed from 1 in sheet brass. Bending may require the assistance of a tinsmith with

the necessary equipment.

Mark out the material as shown in Fig. 5. Shape and drill accordingly, remembering to cut keyholes to catch the beads on the strings. Prepare the bridge block from hardwood; the shape is shown in Fig. 5.

Slotting of the block will be done later.

On the underside of the tailplate solder a 4 BA nut at both pressure screw holes. (Hold the nuts with a pair of pliers; brass gets very hot, very quickly.) Allow the tailplate to cool, then position it on the guitar body below the pick-up (see Fig. 1). Lay the bridge block on the tailplate so that one long side lies flush with the edge of the tailplate nearest the pick-up.

The next step is critical and assistance should be obtained. Lay a tape measure with its zero end lying exactly on the junction of the head and stem, then mark the body exactly 25in from this junction. Set the assembled plate and bridge so that the hump of the bridge lies over the 25in mark. If this is not accurately done, the instrument cannot produce the correct notes at the frets. Mark the guitar body around the edge of the tailplate below the bridge block and a little way down both sides. Remove the tape measure and the

bridge block.

At the tailplate, mark through the holes for the securing screws and pressure screws, then remove the tailplate. At the pressure screw marks, channel out an area $2\frac{1}{2}$ in $\times \frac{3}{8}$ in to a depth to accommodate a similarly dimensioned slip of hin brass. The depth is not critical. Fit the tailplate in its marked position, and fit the securing screws so that the plate is just held without free movement. Fit a 4BA round head screw in each of the pressure holes and check that. when they bear on the pressure plate, the front of the tailplate tilts upward, with the assembly pivoting on the securing screws. The bridge block is fitted later. If upward movement is difficult, the securing screw holes should be elongated on the pick-up side.

FRETWIRES

The fret wires may now be fitted to the fretboard. Mark off the positions of the frets as shown in Fig. 3. then make a fine sawcut at each one, using a fretsaw blade or a junior hacksaw to accept the fretwire. When marking off, measure down both edges of the fretboard to ensure accuracy, otherwise the tuning of the instrument will not be correct. Use Araldite to glue the frets into position, then place a weighted board on top of the assembly and leave overnight in a warm atmosphere to harden. When set, fit the fretboard to the stem and tighten firmly. Use 1 in not 3 in screws.

SLOTTING THE BRIDGE BLOCK

This task is combined with positioning of the wires above the limbs of the pick-up. To do both, fit the two outer strings by passing the wires through the tailplate and over the bridge block (placed on the extremity of the tailplate), then into the outer grooves of the string separator at the head of the stem. Attach the wires to the relevant winders and tighten until just taut. Set the bridge block accurately in position, hold it firmly, then move one wire outward until it lies along the centre of the outer limb of the outer magnet. It is advisable to seek assistance to mark on the bridge the point where the wire crosses. Ease off the wire, move it into the next inner groove of the separator, tighten the wire and position it over the inner limb of the same magnet, ensuring the bridge does not drift. Mark the block bar where the wire crosses. Proceed in this way for the remaining four positions, rememberng to change to a more convenient wire as necessary. When all six positions have been marked on the bar, slacken the wires, remove the bridge, and cut notches to accept the wires. The depth of cut for wrapped strings should be slightly less than for the others.

SETTING THE PICK-UP

The horizontal balance of the pick-up is made at its securing screws, as follows. Tighten the two outer strings to approximately their correct notes. Note that the bridge block should remain in the correct position if the strings are each tightened a little at a time. Adjust the tailplate pressure screws to lift the bridge block about % in. Depress the No. 1 string halfway down the fretboard and check the string lies approximately parallel to the pick-up. If the angle between string and pick-up is excessive, unscrew the brass screw on the affected side of the pick-up assembly and tighten the other. Check the No. 6 string similarly, and re-

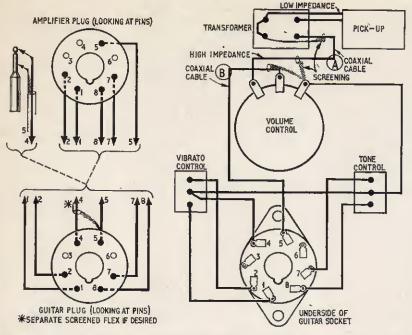


Fig. 6. Wiring details of the guitar components and connecting cable for the amplifier. Note the pin connections of the plugs and socket from underneath

adjust the pick-up as necessary. If clearance is unobtainable, see "String assembly and stem adjustment" later. When the pick-up angle is satisfactory, check that the bridge pressure screws provide adjustment to decrease and increase the gap.

PICK-UP COVER

The pick-up cover is made up from thin sheet brass cut as shown in Fig. 2, and with the inside of all four corners held by solder. When assembled, remove the strings from the guitar and fit the cover in position securing it by small countersunk head brass screws. (Complete measurements of the cover cannot be quoted here as the height of the cover will depend on the projection of the pick-up above the body.)

FINGERBOARD

The fingerboard plate may now be prepared to the pattern shown in Fig. 5, and the components assembled. The switches must be quite shallow in order to clear wiring to the connection socket.

Temporarily fit the plate, noting that the top edge slides under the end of the fretboard and that the cutaway surrounds the pick-up cover. When assured that the plate fits neatly, remove it and connect the volume control and both switches as shown in Fig. 6; connect wires about 4in long on the switches and control for connection to the socket. The screened lead to the transformer should be long enough to follow the channel to the transformer. Connect the pick-up and transformer as shown (the choice of pick-up lead and transformer terminal is immaterial so long as the low impedance terminals are used). If one transformer terminal is connected to the case, this must also be the terminal connected to the screen of the lead from the volume control.

Connect the remaining leads from the volume control and switches to the connector socket, ensuring that the wiring will coil down when the fingerboard plate is fitted.

Fit the plate and check that the wiring lays in the channels. When satisfactory, the plate may be screwed down using \$in No. 2 plated screws.

STRING ASSEMBLY AND

Stringing may now be completed as described earlier. Check that the strings just clear the pick-up when depressed at the highest fret and plucked. If this is not so, slacken all strings and stem securing screws. Insert a shim of single plywood into the junction of stem and body, and on the body side of the two securing screws at the extremity of the stem; tighten up and check again for string clearance. Alternatively, if the clearance was found to be excessive, the shim should be positioned on the head side of the single securing screw. The shim will set up an angle to correct the string height, whereupon the securing screws are

finally tightened. Any error consequent on final tightening is taken up by the tailplate pressure screws.

The guitar may now be tuned and will then be ready

The guitar may now be tuned and will then be read for use as an acoustic instrument.

FINISH

The prototype was finished in black gloss enamel on an undercoat of matt black. The stem was stained to deepen the natural colour of the oak, then treated with polyurethane varnish. The fretboard was stained, but not treated further. White Formica was used for the fingerboard, this providing a pleasing contrast to the glossy black body. The tailpiece is of polished brass, treated with polyurethane to provide a lacquered finish. The pick-up cover was similarly treated, but the bridge was simply polished after smoothing with the finest silicon abrasive paper obtainable. A leather support strap is attached to the body by domed mirror screws. Users will possibly have other ideas on finish.

CABLE ASSEMBLY

The connector plug is of the type which will fit an international octal valveholder (see Fig. 6). The required leads are bared to the full length of the pin, lightly tinned, then inserted and soldered at the tip. Excess wire is snipped off. Do not allow surplus solder to set round the outside of the pins.

Grip the plug between two pieces of thick rag set in the jaws of a vice. Suspend the cables so that they are in a straight line with the plug. Melt some beeswax in a tin and fill the interior of the plug. Leave the assembly to harden and similarly treat the other end of the cable. If using a completely enclosed cable, remember to separate the signal input leads for connection to the input plug.

Next month: a description of a guitar amplifier with special tone and vibrato controls.

BRAND NEW AM/FM (V.H.F.) RADIO GRAM CHASSIS AT £13.13.0

(Carriage Paid)

Chassis size 15 × 6½ × 5½ in. high. New manufacture. Dial. 14½ × 4in. in 2 colours, predominantly gold. 209-250v. A.C. only. Pickup. Ext. Speaker, Ae. E., and Dipole Sockets. Five push butions—OFF, L.W., M.W., F.M. and Gram. Aligned and tested. O.P. Transformer. Tone Control. 1000-1000 M; 200-550 M; 88-98 Mc/s. Valures Ex26 rect.; ECRSI, EFSS, EABCRO, ELA, ECCSS. Speaker 8 × 5in. and Cabinet to fit chassis (table model), 47;6 (post 5/-). 10 × 6in. ELLIPTICAL SPEAKER 25/- to purchasers of this chassis. FERMS; (Chassis) 23.10.0 down and 5 monthly payments of £2.40. Cheap Room Dipole for V.H.F., 12/6. Feeder 64, per yard. ALTERNATUE DESIGN. L.W. 1000-1900 M;; SW. (9-15 Mc); M.W. 190-475 M; V.H.F. 87-100 Mc/s; Gram position, Otherwise similar to above chassis. Price 215.15.0 (carr. paid). TERMS: £3.10.0 down and 6 monthly payments of £2.4.0. Circuit diagram 2/6.

PUSH-PULL O.P. AMPLIFIER


£5.5.0 (6/- Carr.)

Brand new 200-240 A.C. mains Bass, treble and vol. controls, with valves EZ80, ECC83 and 2-EL84 giving full 8 w. Chassis 12 x 3 k 38 in. With o.p. trans for 2-3 ohm speaker. Front panel (normally sorewell to chassis) may be removed and used as "flying panel".

FULLY GUARANTEED AT RECORD LAFAYETTE BRAND TAPE MYLAR BASE 5in. Double play, 1,200ft. 5in. Double play, 1,800ft. 7in. Stand, play, 1,200ft. 7in. Long play, 1,800ft. 7in. Double play, 2,400ft. ACETATE BASE 5in, Stand, play, 600ft. 5in. Long play, 900ft. 10/-53in. Long play, 1,200ft. 12/8 7in, Long play, 1,800ft. TRIPLE PLAY MESSAGE TAPES 12/6 22/6 42/6 55/--75/--3in. 450ft. 4in. 900ft. 5in. 1,800ft. 5in. 2,400ft. Sin. Stand. play, 150ft. Sin. Long play, 225ft. Sin. Double play, 300ft. 2/6 4/11 7in. 3.600ft. (unboxed)

REALISTIC" 'SEVEN'

Translator Superhet, 350 Milliwatt output, 4-boh speaker. All components mounted on a single printed circuit board size 5] x 5|1a. in one complete assembly. Plastic cablent with carrying handle, size 7 x 10 x 3|1a. External socket for car aerial. Perrite rod aerial. Price for the complete parcel including Transistors, Cabinet, Speaker, etc. and full Construction Data: 25.19, 8, P. & P. 4/6. PPD Battery 3/9. Data and instructions separately 2/8. Returned if you purchase the parcel. Any parts supplied separately.

SINGLE RECORD PLAYER USING EMI DECK AND PICK-UP

4 speed, 200/240 v A.C. Valves, rectifier and ECL82, Cab. size 12 × 11 × 54 in attrac, coloured imitation leather finish. Takes 10 in attrac, coloured imitation leather finish. Takes 10 in The REGORD FLAXER available, using ESR CUY motor and pick-up on one picks. Valves UY83 and UCL82, Cab. size 13 × 13 × 51 in., red or blue rexine. Takes 12 in. records. Price \$3.6,6 carr. paid.

4-TRANSISTOR MINIATURE PUSH-PULL AUDIO AMPLIFIER HIGH IMPEDANCE

PRINTED CIRCUIT. 4in. × 2½n. 1½in. over transformers. Output for 3-ohm speaker. Suitable for microphone, record player, guitar and intercom. 3 voit battery required. Frequency range 100 cps. to 25 Keps. Push-pull output class 8. Instruction sheet provided. Fully wired ready (or use. Two types. 200 mw. 29/61 watt. 41/-. F. & F. 2/6.

4-SPEED AUTOGHAN	GERS
Carr. 5/- each	
BSR-UA14	25.19.8
GARRARD AUTOSLIM	\$6.10.0
STEREO	27.5 0
AUTOSLIM DE LUXE AT6	\$10,19.6
STEREO	#11.10.0

21-WATT AMPLIFIER

Our price ONLY 39/6 (post 5/-); a few only; valves EF91 and ECL82 with metal rectifier: 6 × 4 × 1fin. high (Sin, over ECLS2). Mains trans, and o.p. with vol. and tone controls; on-off; co-ax, input.

TAPE RECORDER AMPLIFIER

Fully built, Front panel 12 \(\) \(

ALL ITEMS ARE NEW AND FULLY BUILT UNLESS OTHERWISE STATED, TESTED BEFORE DESPATCH. Delivery by return.
Terms available on Rems over 25, Send 6d, (stamps will do) for 20-page illustrated catalogue. C.O.D. 27-extra


logue. C.O.D. 2/- extra ALL ITEMS GUARANTEED 12 MONTHS. Regret overseas orders cannot be executed. VALVES & MONTHS

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.

(2 mins, from Station and Buses),

(CLOSED WED.)

MASTER THE THEORETICAL SIDE

From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE

ICS show you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:

Radio/T.V. Engineering and Servicing, Colour Television, Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.

NEW! Programmed Course on Electronic Fundamentals.

EXPERT COACHING FOR:

INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS CITY AND GUILDS TELECOMMUNICATION TECHNICIANS CITY AND GUILDS SUPPLEMENTARY STUDIES

R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

And there are practical "learn as you build" radio courses as well.

Member of the Association of British Correspondence Colleges.

FOR	FREE HANDBOOK POST THIS COUPON TODAY	
	I.C.S., Dept. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11	
NAME .	444-44-44-44-44-44-44-44-44-44-44-44-44	
ADDRES	S The state of the	
	TIONAGE	
MITER	NATIONAL CORRESPONDENCE SCHOOLS	

Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3.5.0 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

TAPE RECORDERS, TAPES, ETC.

FOR QUALITY consult our sixty-page (photographically illustrated) latest Hi-Fi equipment catalogue (4'6d.). Unbiased advice, preferential terms to members, LP's from your precious tapes. AUDIO SUPPLY, 10 Clifford Street, London W.I.

OPEN UP YOUR OWN TAPE STATION and speak to the world. "WORLDWIDE TAPE-TALK," Harrow, Middlesex.

TAPE TO DISC RECORDING. 10in LP, 42/-; 12in LP, 48/-; 7in EP, 21/-, S.A.E., Leaflet, DEROY SOUND SERVICE, 52 Hest Bank Jane, Hest Bank, Lancaster, Tel.: HB.2444.

SITUATIONS VACANT

RADIO TECHNICIAN

A number of suitably qualified candidates will be required for training, leading to permanent and pensionable employment. (Normally at Cheltenham but with opportunities for service abroad or appointment to other U.K. stations).

Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. They must offer at least "O" level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19 £722, at 25 £929 (highest pay on entry) rising by four increments to £1,067.

Prospects of promotion to grades in salary range £997-£1,634.

Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days.

Normal Civil Service sick leave regulations apply.

Apply
Recruitment Officer (RT/54)
Government Communication Headquarters
Oakley
Priors Road
Cheltenham

MISCELLANEOUS

CONVERT ANY TV SET into an Oscilloscope. Diagrams and Instructions, 12/6. REDMOND, 42 Dean Close, Portslade, Sussex.

HAMMER FINISH PAINT. The modern finish for electronics. Can be brushed or sprayed. Blue or silver, 2½02 tins 3/6, 4 pint 7/6, 1 pint 15/-. Post 6d; on any order. Trade supplied. FINNIGAN SPECIALITY PAINTS, (PE), Mickley Square, Stocksfield, Northumberland.

METAL WORK

CABINETS • CASES CHASSIS

Anything in metal. "One-offs" a pleasure Send your drawing for quote Stove enamelled in any professional finish

MOSS, WATSON

40 Mount Pleasant Street, Oldham Lanes, MAIN 9400

EDUCATIONAL

HOME STUDY COURSES in Practical Electronics. Free Brochure without obligation from: BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. I.E.R.E. City & Gullds, R.T.E.B., etc. Also Practical Courses with equipment. All books supplied. Write for FREE Prospectus stating subject to I.C.S. (Dept. 577), Intertext House, Parkgate Road, London, S.W.11.

A.M.I.MECH.E., A.M.I.E.R.E., City & Guilds, G.C.E., etc., bring high pay and security. "NO PASS—NO FEE" terms. Over 95% successes. For details of Exams and courses in all branches of Engineering, Building, Electronics, etc., write for 156-page Handbook—FREE. B.I.E.T., (Dept. 152), London, W.S.

TRAINING

Full-time courses in RADAR and RADIO-TELEGRAPHY for prospective marine Radio Officers. Govt. approved exam. centre.

Also courses in basic ELECTRONICS, RADIO, TELEVISION and PRACTICAL SERVICING.

Apply:--Director, British School of Telegraphy, 20 Penywern Road, Earls Court, London, S.W.5

EDUCATIONAL

(continued)

B.Sc.(ENG.), A.M.I.MECH.E., A.M.I.E.R.E., City & Guilds, etc., on "NO PASS—NO FEE" terms. Wide range of guaranteed Home Study Courses in Electronics, Computers, Radio, T.V., etc. 156-page Guide—FREE. Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, 151 College House, Wright's Lane, London, W.S.

SERVICE SHEETS

SERVICE SHEETS for all makes of Radio and TV 1925-1964. Prices from 1/- with free fault-flading guide. S.A.E. inquiries. Catalogue of 6,000 models, 1/6, Valves, modern and obsolete. Radio/TV Books. S.A.E. lists, HAMILTON RADIO, Western Road, St. Leonards, Sussex.

SERVICE SHEETS

4/- each, plus postage.
We have the largest display of Service Sheets for all makes and types of Radios, Televisions, Tape Recorders, etc. in the country, and can supply by return of post.

To obtain the Service Sheet you require, please complete the attached coupon:

From:

To: S.P. DISTRIBUTORS
44 Old Bond St., London, W.1
Please supply Service Sheets for the following:

I also require list of Manuals at 1/(please delete items not applicable)
I enclose remittance of
MAIL ORDERS ONLY

Practical Electronics Classified Advertisements

CONTINUED

SERVICE SHEETS

(continued)

GENUINE SERVICE SHEETS, Radio/TV/T Recorders. S.A.E. with enquiries: RED-WATT ELECTRICAL, 41 Denmark Street, Wakefield, Yorks.

SERVICE SHEETS, Radio, TV, etc.; List 1/-, S.A.E. Enquiries; TELRAY, Maudland Bank, Preston.

STATE MODEL NO. Radio 2/-. TV 2/6. S.A.E. DARWIN, 19 George Street, St. Helens, Lanes.

WANTED

NEW VALVES WANTED Any type, or quantity CASH PAID

R.S.T. Valve Mail Order Co. 211A Streatham Road Mitcham, Surrey Telephone: MITCHAM 6202

FOR SALE

TRANSISTORS UNMARKED UNTESTED. 40 for 10/-, P. & P. 1/-. 4 packets post free. Relays, thousands of types, special catalogue free. General Catalogue of Mechanical & Electrical Gear, Tools, etc., 5,000 items, free. K. R. WHISTON (Dept. PET), New Mills, Stockport.

RELAYS, EX-GOVERNMENT. 23 for 12, our selection, post paid. WALTONS WIRELESS STORES, 15 Church Street, Wolverhampton.

VENNER TIME SWITCHES reconditioned, 14-day clock, once on, once off every 24 hours, jewelled movement, fully guaranteed, 5 amp., 32/8; 1 amp., 26/-, P. & P. 2/6. A. R. BATCHELOR (P.E. Dept.), 4 Park Road, Bromley, Kent.

U.S.A. RELAYS

24 volt totally enclosed and hermetically sealed relays removed from unused U.S.A. computers. These relays are a fine example of modern electronic design. 240 ohm coil rated at 26-5 volts shey will operate cleanly down to 12 volts, 6 pole change-oper contacts rated at 5 amp D.C. or 4 pole rated at 1 amp.

5/e each, P.P. 1/e, Four for £1 post paid.

HAXTED MILL, EDENBRIDGE, KENT

5-70N FACTORY CLEARANCE, Radio, TV Electrical Components, in mixed parcels. Example: 28lb. mixed parcel 21, pp 7/6d. Speakers, grilles, valves, bases, i.f.s. covers condensers, etc. Hundred other items. S.A.E. List and Postal Orders to P. NEWTON, 16 Shalcross Crescent, Hatfield, Herts.

SONDENSER BARGAIN! Miniature paper condensers, in × in. Ideal for transistor sets, 0001, 001, 002, 005, 02, 04sf. Your choice, 7/84, per 100 or \$3 per 1,000. G. F. MILWARD, 17 Peel Close, Draytou Bassett, 8taffs.

TRANSFORMERS

ROTARY TRANSFORMERS £6,000 BULK PURCHASE **BRINGS PRICE REDUCTION**

TV from your OWN Car Battery

NEW, but store soiled ... 21/VIBRATOR POWER-PAK. Step 12v. up
to MAINS output. For Universal AC/DC
razors, small fluorescent fittings, 32/6
LARGE ROTARY TRANSFORMER. 12v. input, over 1,200v. output. New. 25

Send NOW-Delivery by return JAMES WALKER, ELECTRONICS DIVISION 36 Alexandra Street, Thurmaston, Leicester

RECEIVERS AND COMPONENTS

TRANSISTORS TESTED

All new, few equivalent. OA202

1/- each, Red or White Spots.

2/- each, XA101, XA102, XB103, OA90, OC430, XA112, XA111.

3/- each, OC44, OC45, OC70, OC71, OC81, OC81D, OC200, GET16.

4/- each, AFI14, AFI15, AFI17, OC170, OC171, SX658, XU611.

5/- each, OC72, OC139, OC140, OC204, ORP60, BY100, GET8.

10/- each, OC35, OC26, OC28, GET57, 2SO13. All new, few equivalent.

ZENER DIODES 4.7 v. to 33 volt \(\frac{1}{4}\) watt, 3/6 each. 1.5 watt, 5/- each, 7 watt, 6/- each.

Send 3d. stamp for Full Price List and Free Equivalent Chart.

B. W. CURSONS 78 BROAD STREET CANTERBURY, KENT

RECEIVERS AND COMPONENTS

(continued)

TRANSISTORS! Give-away price. NKT124/5
Power Type. 6 for 10/-. 2SO17 4W, up to
60mc/s, 5/- each. Post free, G. F. MILWARD, 17 Peel Close, Drayton Bassett, Staffs.

RESISTORS! You can't resist this! ½W, 1W, 2W Polythene wrapped on cards of 10. Mixed values and wattages. 22/10/- per 1,000. G. F. MILWARD, 17 Peel Close, Drayton Bassett, Staffs.

A.1 POST FREE BARGAINS. Guaranteed reclaimed valves. Send for full list to: Dept. MO/E, A.1 RADIO COMPONENTS, 14 The Borough, Canterbury, Kent.

COMPLETE RANGE of Mullard Miniature Polyester and Electrolytic Capacitors in stock. S.A.E. for Itemised price list of these and other Mullard Amplifier Components. AJAX ELEC-TRONICS, 18a Rumbold Road, Fulham, 18a Rumbold Road, Fulham, London, S.W.6.

MULTIMETERS HALF PRICE! High grade. Send S.A.E. for details. COOPER, 10 Fowler Street, Nechells, Birmingham 7.

TELEVISION TUBE SHOP

FOR

Unused, Guaranteed Tubes OVER 2,000 IN STOCK

All prices from 50% to 75% of List Price

All tubes tested before despatch and Guaranteed for 12 months

CARRIAGE 10/- via B.R.S. or 15/- via passenger train

TERMS £2 down (plus carriage) and £1 per month

See our advertisement in PRACTICAL TELEVISION for exact prices, or write for details

48 BATTERSEA BRIDGE ROAD LONDON, S.W.II. **BAT 6859** OPEN ALL WEEK AND SATS. UNTIL 4 p.m.

CONTINUED OVERLEAF

(continued)

PRINTED CIRCUITS Practical Electronics Designs. Didjeridoo. V.H.F. Receiver, Prac-tical Wireless, Wireless World and Radio Constructor Designs. S.A.E. Details. J.E.S. ELECTRONICS, 32 Peneraig, Llangefni, Anglesev.

R. & R. RADIO & TV SERVICE

44 Market Street, BACUP. Tel. 465

6F13 4/6 10P14 5/- PL82 3/6 20P4 6/6 6L18 4/6 20P5 6/6 U801 7/6 30P16 5/-EF80 1/6 30P4 7/- 10F1 1/6 PCC84 4/-ECCS2 6F15 5/- 20F2 5/6 PCL83 5/-ECLS0 EB91 1/- 30FL1 5/- PY81 3/6 30F5 5/- EF85 5/- PY32 6/- U301 6/-PL38 6/- EF37 6/- GU4GT 10P13 5/6 20P3 6/- 6F1 1/6 20D1 1/6 PCF80 PL81 5/- 30PL1 6/- EC81 3/- 30P12 6/-PZ30 5/- PL36 6/- EV86 4/- PY82 4/-U329 5/- PC182 5/-

Post 6d, per valve, 3 or more post free. Speakers ex T.V. 5 inch round 3/6, 6 by 4 inch 3/6, 8 inch round 6/-, post 2/-. Ex T.V. printed circuit panels, containing valve holders, resistors, condensers, etc., 5/6, post 2/-.

post 2/-. Assorted mains droppers ex T.V. 2/6 each, 10 £1. Pre-set controls £1 per doz. assorted values, post 1/-. Resistors, New; ½ watt 3½d., 1 watt 5d., 2 watt 9d., all 10%. Silver mice, paper and electrolytics in stock. New Mullard transistors und condensers also in stock. S.A.E. with all enquiries. All goods subject to satisfaction or money refunded.

TRANSISTORISED SIGNAL INJECTOR. plete kit of components and circuit of injector for testing and amplifier or radio, 7/6 only. Post free. G. F. MILWARD, 17 Peel Close, Drayton Bassett, Staffs.

RCA AR88D. RECEIVER (Brand New)
Freq. 540 Kc/s-32
Mc/s, 6 waveband,
Mechanical Band

Special price for quantities.
CREED TELEPRINTERS, 7B Used condition.

CREED TELEPRINTERS, 7B Used condition, 112/10/. Carr. 30/.
141/10/. Carr. 30/.
144 Mk. 11 & III. Dipole and rod aerials 30/. per sec, P. & P. 5/. Microphone with connecting plug. 15/6, P. & P. 2/. Battery input and phono plugs, 5/- each, P. & P. 16/. Per 16/. Per

makers cartons. 39,0 conquiries invited.)
TRANSMITER. 175-16 Mc/s., 3 wavetransmitter, 175-16 mc/s., 175-16 mc/s., 175-16 mc/s., 175-16 mc/s.

Thomas Transmitter, 175-16 mc/s., 175

RECEIVERS AND COMPONENTS

(continued)

RECEIVERS AND COMPONENTS

(continued)

Key Switch, 3 position, centre off, 3 c/o + 4 0/0. 6/-

Ferox Cubes LA12, wound, 5/-

Panel Lamps, Min, Liliput screw, White Bezel. 3/-

DLR5 Headphones, with plug and socket, 12/6 Min. Liliput screw bulbs, 12 volt, 1/6 High Speed Relay, c/o 1,000 + 1,000 ohm, 6/6

400 ohm P.O. Relay, 1B, 5/-; 1B 1M, 6/-2,000 ohm P.O. Relay, 1M, 5/-; 1M IB, 6/-G.P.O. Hand Sets, with Press to Talk in handle, 15/-

G.P.O. Jack Plug, with lead, 3/-

Isolated Jack Socket, 2/6

Breast Set Mike, with fittings, 6/-

500 Micro Amp Meter and Meter Switch, 15/-Toggle Switch, SP on/off, 2/6

Push Button Switch, DP on/off, on when press only, 2/6

Power Supply and LF Amplifier, N/O 1, 15/- for N/O 38 set

6 core min. Cable, 3 amp screened PVC outer, 3/- yard; 12 core ditto, both fitted with Plessey plugs and sockets, in 10 yard lengths only

New range of High Stability Resistors, 5% to 1%, 1 to 5 watt, send for full lists. Telescopic Drawer Slides, 171in, to 29in., 12/6 pair

Copper Laminate Board, single or double sided, 5/- sq. ft., or 3ft, by 4ft. panels, 33/-

Jones Plugs and Sockets, 4-12-18-24-32 way, 5/- pair

Plessey Plugs and Sockets, 2-4-6-12-25 way, 5/- pair

31 way P.O. Cable, 2/- yard. Minimum 5 yards.

Ever Ready Batteries, 90V + 71V, 4/6 or 12 for 30/-

Mallory Mercury Cells, 6.75V, 3/6 8 Tag Panels, with 150 Resistors, Condensers,

Diodes, 10/-2ft. 9in. Mobile Aerials, 6/6

30 meg. Oscillator Unit, 3 valve tunable to 27 meg., 12/6

Parcel of ex-Government valves, 20 for 10/-Small Component Boxes, 7 divisions, 60 for

Printed Circuit Preset Pots, 10K, 2/-115 volt Western Electric Magslips, 50/- each 230 volt BTH Magslips, 90,- each Electro Magnetic Counters, P.O. 4 digit, 4/6

Mu Metal Screen for 5UP7 tubes, 6/6 30 + 30 pF Variable Condensers, 4/-1 amp Fuses, 5/- per 100, 11in. × 1in.

Mic. Jacks, 3 for 3/-

Small Instrument Cases, 5in. × 5in. front, 4in. deep, with grey plastic front, 6/each. Rack to house two of these, side by side, 7/6

Transformer PL1101, output 7 volt at 4 amp, three times plus 7 volt at 125 mA, 18/-

H.T. Transformers, 1,800 volt plus 1,800 volt at 500 mA, and 600 volt plus 600 volt at 500 mA, 60%

PARMEKO NEPTUNE TRANSFORMERS
115 volt or mains input. Output 450-0-450
at 260 mA; 275-0-275 at 45 mA; 132 volt
at 20 mA; 30 volt at 30 mA; 6-4 volt at
16 amp; 6-4 volt at 4-5 amp; 6-3 volt at
1-2 amp; 5 volt at 6 amp. These are oil filled, packed in own drum, 70/- each

PARMEKO NEPTUNE CHOKES OIL FILLED 10 henry at 260 mA, 22/-; 15 henry at 45 mA, 12/6; 5 henry at 20 mA, 6/6

PAPER BLOCK CONDENSERS

MFD	Volts	Price
	wkg	
1.	350	1/3
1	500	1/6
1	600	2/-
ī	800	2/6
1 1 1	1,200	4/-
ĩ	3,400	5/-
2	350	5/- 1/9
. 2	700	3 -
- 5	1,000	4/~
2 4 4	400	4/-
- 7	600	4 6
- 7	800	5/-
4 4	1,200	7/6
7	2,000	8/-
8	400	5,6
		6/-
-8	600	4/*
10	250	7/-
10	700	1/,"
0.5	5,000	9/-
2	2,000	14/6

ON ALL ORDERS UNDER 20/- PLEASE ADD 2/- POST AND PACKING

SIIPER BREAKDOWN UNIT

Remote Control Unit Type F. New in sealed cartons, containing P.O. Relay 2,000 ohms Resistance, 100 volt Plessey Hand Generator, Telephone Ringing Bell A.C. 8 amp Morses Key on base, 2 D.P. D.T. Key Switches, Double Phone Jack, moulded, 5 position 6 pole Yaxley Switch, Induction Coll tapped. 1-17-33 ohms, 7 Brass Screw Terminals on panels, plus Resistors, Condensers, Pointer Knobs. All in a handy metal box with hinged lid and side fasteners. Also web carry strap. Size 10 Jin. x 10in. x 7in., 25f-, post free. Or items may be purchased separately. Relay 5/-, Hand Generator 7/6, Bell 5/-, Morse Key 4/6, Key Switches 5/- pair, Double Phone Jack 2/6, Yaxley Switch 2/-, Ind Coil 2/-, Terminals 7 for 2/-, all post free.

Also available Key Switches. 4 pole 2 throw 3/6 each or 3 position D.P. plus D.P. centre off 5/- or rotary switch 6 pole 3 way 3/-.

Speakers, 3 ohm P.M. 5in. 5/-, 6in. 6/-, 7 × 4in. 7/-, 8in. 8/-, 10in. 12/6.

U.K. ONLY

E. R. NICHOLLS

Mail Order and Retail Shop:

46 LOWFIELD ROAD off SHAW HEATH STOCKPORT, CHESHIRE

R.S.C. (Manchester)

54 WELLINGTON STREET, LEEDS I. Terms C.W.O. or C.O.D. No C.O.D. under £1. Postage 2/9 extra under £2. 4/6 extra under £5. Trade Supplied, S.A.E. with all enquiries please. Personal shoppers welcomed at any of the branches below. Open all day Saturday.

BRADFORD 54 Morley Street. Nr. Alhambra Theatre (Half-day Wednesday)

BRISTOL (Haif-day Wednesday)

BIRMINGHAM 30-31 Gt, Western Arcade, opp. (No half day) Snow Hill Station

DERBY 26 Osmaston Rd., The Spot (Half-day Wednesday)

DARLINGTON 13 Post House Wynd (Half-day Wednesday)

EDINBURGH 133 Leith Street (Half-day Wed.)

GLASGOW 326 Argyle Street

HULL SI Savile Street (Half-day Thursday)

LEICESTER 32 High Street (Half-day Thursday)

LEEDS 5-7 County (Mecca) Arcade (No half-day closing)

LIVERPOOL 73 Dale Street (No half-day closing)

LONDON 238 Edgware Road (Half-day Thursday)

MANCHESTER

Large new store now open at 60A/60B Oldham Street

MIDDLESBROUGH 106 New- Rd.

(Half-day Wednesday)

SHEFFIELD 13 Exchange Street, Castle Market Bidgs. (Half-day Thursday)

EX. GOV. 2 V. ACCUMULATORS. 16 A.H. Size 7 x 4 x 2in. Brand new, 4/9 each. Three for 12/6, carr. 5/-.

Jason FMT1 V.H.F./F.M. Radio Tuner design. Total cost of parts including valves, Tuning dial, Escutcheon, etc., £6.19.6.

R.S.C. G5 GUITAR AMPLIFIER

S.S.C. GS OCHIAR AMPLIFIER
Swatt high quality output. Incorporating
high flux 12in. 10 watt 12,000 line loudspeaker.
Sensitivity 50 mx. High impedance juck input.
Handsome strongly made cabinet (size 14×14×
7in. approx.) finished in complementary
shades of Rexine/Tygan. 200-250 A.G. mains.

49.19.6 Gr DEPOSIT 22:3 and unouthly
payments of 22:3. Carr. 776.

BASS-MAJOR 30 WATT GUITAR AMPLIFIER A MULTI-PURPOSE HIGH FIDELITY, HIGH OUTPUT UNIT Eminently suitable for bass, lead or rhythm guitar and all other musical instruments

Incorporating two 12in, heavy duty 25-watt highflux (17,000 lines) loudspeakers with 2in, diameter speech coils, Designed for efficiently handling full output of amplifier at frequencies down to 25 c.p.s.

★ Dual Cone in second speaker re-produces frequencies up to 17,000 c.p.s.

Heavily made cabinet of convenient size 24 × 21 × 14in. has an exceptionally attractive covering in two contrasting tones of

* For 200-250 v., 50 c.p.s., A.C. mains operation.

Four jack socket inputs and two independent volume controls for simultaneous connection of up to instrument pick-ups

four instrument pick-ups or microphones.

X Separate bass and treble controls providing more than adequate "Boost" or "Cut".

LEVEL frequency response throughout the audible range.

SUPERIOR TO UNITS AT TWICETHE COST.

39 Gns. Send S.A.E. for leaflet OR DE-POSIT of £43.00 and 12 monthly payments 43.9.11. Carr. 17/6,

(Or factor

HIGH FIDELITY 12-14 WATT AMPLIFIER TYPE ALL

PUSH-PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE CONTROL PRE-AMP STAGES

TONE CONTROL PRE-AMP STAGES
Two input sockets with associated controls allow aixing of "mike" and grain, as
in Ald. High sensitivity. Includes 5 valves, ECCS3, ECCS3, ELS4, ELS4, EZS4,
High Quality sectionally wound output transformer specially designed for Ultra
Linear operation and reliable small condensers of current manufacture. INDILinear operation and reliable small condensers of current manufacture. INDILinear operation and reliable small condensers of current manufacture. INDISTORMAN OF THE STATE OF THE STATE OF THE STATE OF THE STATE
Prequency response—3 dB 30.30,000 c/s. Six negative feetback loops. Hum
level 60 dB down. ONLY 23 millivoit INPUT required for PULL OUTPUT.
Suitable for use with all makes and types of pick-ups and microphones. Comparable with the very best designs for STANDARD or LONG PLAYING
RECORDS. For MUSICAL INSTRUMENTS such as STRING BASS, LEAD OR
RHYTHM GUITARS, etc. RHYTHM GUITARS, etc.

OUTPUT SOCKET with plug provides 360 v. 30 mA, and 6.3 v. 1.5 s. for supply of a RADIO FEEDER UNIT. Size approx. 12 x 9 x 7 in. For A.C. mains 200-220 v. 30 c.p.s. Output for 3 and 15 ohms speaker. Kit is complete to last nut. Chassis is fully punched. Full instructions and point-to-point wiring discremes supplied. If required lowered metal cover with 2 carrying handles can be supplied for 18/9. TERMS ON ASSEMBLED UNITS, DEPOSIT 24/9 and 9 monthly payments of 24/9. Send S.A.E. for illustrated leatlet detailing Cabinets, Speakers, Microphones, etc., with cash and credit terms. 8 Gns. built 51/-extra)

LINEAR L45 MINIATURE 4-5 WATT QUALITY AMPLIFIER. Suitable for any record playing unit and most microphones. Negative feed-back 12dB. Separate Russ and Treble Controls. For Mains 200-250v. Sucks. Output for 2-3 ohm speaker. Mulbard valves EZS0. ECC83, ELS4. Size only 7 x 5 x 52 in high. Guaranteed 12 months.

Send S.A.E. for leatlet. Terms: Deposit 24/9 and 5 monthly payments of 24/9. ONLY 6 Gns.

LINEAR TREMOLO PREAMP, UNIT, LINEAR TREMOLO.PREAMP, UNIT. Designed for introducing the Trenucle effect to any amplifier which is fitted with a reserve power supply point for smoothed H.T. and 6.3 v. A.C. L.T. This applies to practically all amplifiers of our manificature, and to those of several other reautifacturers. The unit plugs into power supply point and any must socket or amplifier. Controls are Speed (frequency of interruptions), Depth (for heavy or light effect), Volume and Switch. Three sockets are for two inputs and Foot Switch.

R.S.C. CORNER CONSOLE CABINETS

JUNIOR MODEL. Size 20 × 11 × 8in, for

Handsome appearance, Ensures superb reproduction for only \$3.19.8 in. For vertical or horizontal use \$5.19.6. Set of legs with home formula, 198 15 × 13in. For ver brass ferrules, 19/6.

AUDIOTRINE HI-FI SPEAKER SYSTEMS. Consisting of matched AUDIOTRINE HIS-FISPEAKER SYSTEMS. Consisting of matched 12in. 12,300 line, 15 ohm high quality speaker, crossover unit (consisting of choke, condenser, etc.) and Tweeter. The smooth response and extended frequency range ensure surprisingly realistic error of the state of the st

ich. Three sockets are for two inputs.

R.S.C. 30-WATT ULTRA LINEAR

HIGH FIDELITY AMPLIFIER A10

A highly sensitive Push-Pull high output unit with selfcontained Freaunp. Tone Control Stages. Certified
performance figures compare equally with most expensive
amplifiers available. Hum level 70 did down. Fredesigned seatings of the second of the se

R.S.C. SENIOR 15 WATT LEAD or RHYTHM **GUITAR AMPLIFIER**

HIGH AR ABIP LIFTER Migh-fidelity push-pull output. Separate basy and treble "out" and "boost" controls. Twin separately controlled inputs so that two instruments or "niske" and pick-ups can be used at the same time. Loudspeaker is a heavy duty high flux 12in. 20 watt model with cust chasels. Cabine is well made and finished as Junior. Model. Size approx. 18 & 18 x 50 nly 9 Gns.

Send S.A.E. for leaflet, Or DEPOSI

Send S.A.E. for leaflet, Or DEPOSIT 39/11, and twelve monthly payments of \$3/4,

ARMSTRONG RADIOGRAM CHASSIS.

All models available, Cash or Terms.

A highly efficient unit incorporating a massive 15in, high flux buidspeaker specially constructed to withstand heaviest land conditions. Rating 25 watts. Individual bass and treble controls give ample "boost" and "cut". Two high impedance fack socket injusts are separately controlled. All controls are conveniently positioned in a recess on top of the cabinet. Cabinet is of substantial construction and attractively finished in two controsting lones of Resine and Vynair. Size approx. 24 × 21 × 13in. Operation from 200-250 v. 50 c.p.s. A.C. mains.

292 Gns. Send S.A.E. for leaflet. Or Deposit \$3.2.6 and 12 monthly payments of 51/8. Carr. 17/6.

R.S.C. B20 BASS GUITAR AMPLIFIER

FANE HEAVY DUTY HI-FI SPEAKERS All with Cast Chassis and exceptionally robust 2in diam, voice coil assemblies, 12in, 15 ohms. 15in. 15 ohms,

122/10 20 watt, 5 gps.
122/12 20 watt, 5 gps.
122/12 20 watt, 5 gps.
122/14 20 watt, 5 gps.
122/14 22 watt, 5 gps.
122/14 22 watt, 5 gps.
122/14 25 watt, 511.17.8
122/14 25 watt, 511.7.8

"A" indicates dual cone type, 30-17,000 c.p.s. Send S.A.E. for leaflets, Terms available.

12in. 10-WATT HIGH QUALITY LOUDSPEAKER, In

ITY LOUDSPEAKER, In walnut venerred cabinet Gaussi 2,000lines, Speech coil 3 othus or 15 ohns. Only 24,13.6. Carr. 5/Terms: Deposit 1123 and 3 monthly payments of 18,11 LOUSPELKERS IN CABINETS. Size 18 × 13× 10 monthly payments of 19 monthly payabove. Terms: Deposit 17/8 and 9 monthly pay-ments of 17/9. Only £7,19.6. Carr. 8/6.

FANE EXTRA HEAVY DUTY LOUDSPEAKER 15in. FAND EXTRA HEAVY DUTL LOUDSFEAREN SOM TYPE 153. 40 watts. Total Flux 375,000 lines. Voluc Coil sin. Din. Impedance 15 ohms. Extremely high sen-sitivity. Only 18 grs, or Deposit 37/6 and 12 monthly payments of 31/6. 18in. Type 183. 60 watts, 24 gas. Deposit \$2,11.0 and 12 monthly payments \$2.1.6.

152/12A 20 watt, 13 gas. 152/14A 27 watt, 15 gas. 152/17A 35 watt, 17 gas,

HAVE YOU EVER SEEN T.V. TROUBLES?

That is "Pin-Point T.V. Troubles in 10 minutes" we mean! Thousands of Practical Television readers already own and use "T.V. Troubles" every day, Designed for use by amateur or expert, this amazingly practical manual shows you how to find the trouble in any T.V. circuit FAST!

A simple cross-index tells you where you'll find cause of trouble, handy check charts then help you accurately locate the EXACT trouble spot! You will eliminate hours of aggravation, cut out waste time because this new Coyne system will help you get right down to the heart of the trouble in minutes.

Over 700 trouble spots are covered in the 340 cross-index pages. Included are 50 time saving check charts as well as 290 diagrams and photos together with explana-tions of circuits and designs.

YOU CAN USE THIS BOOK RIGHT ON THE JOB—NO NEED TO MEMORISE!

This Pin-Point Book was designed especially for on-the-job trouble shooting. You simply turn to the indexed section, locate the circuit description and check-charts, and in minutes you have the trouble spot located and ready for repair.

NO COMPLICATED THEORY OR MATHE-MATICS. Just practical circuit description, service methods and trouble shooting techniques to help you make faster T.V. repairs,

N AN EXPERT CAN SAVE TIME BY USING "T.Y. TROUBLES"

Here is a way to reduce "thinking time."

All the logical reasons for each problem are stated in black and white—you use your skill to take it from there!

Don't miss out any longer. Time wasted now locating T.V. faults could be saved by quick reference to this lightning fast T.V. problem answer book. Send for your trial copy now, then when you decide to keep it (as we are sure you will), pay only 5i- per week until completed.

The price? Only 39/6 plus postage.

ELECTRONIC DATA HA HAND-FREE

IRONCLAD GUARANTEE

This book must be able to earn you more than its cost within two weeks or your money refunded! Free 88 page oscilloscope book will be included if you send cash with order.

FREE TRIAL OFFER!

TERMS ONLY 5/- PER WEEK

To SIM-TECH TECHNICAL BOOKS Dept. ETV3

West End, Southampton, Hants.

☐ Please send "T.V. Troubles" for a full seven days' free trial. If not delighted I may return the manual, post paid without further obligation on my part. Otherwise I will pay cash of 5/- weekly until paid.

☐ Tick here if enclosing full price of 41/- (which includes 1/6 postage). You get free Oscilloscope Book. Same 7-day money back guarantee. Overseas customers please send full amount (including Ireland).

Name		***************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Address	\$120244 100 501	4.01 P > 1 0 × 0 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		haa
	***********	.p. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	,,y 4 ***	
City		County	****************	***********

BLANK CHASSIS

Precision made in our own works from commercial quality half-hard Aluminium. Two, three or four sided. SAME DAY SERVICE of over 20 different forms made up to YOUR SIZE.

Order EXACT size you require to nearest 1/16" (maximum length 35", depth 4"). Specials dealt with promptly, SERN FOR ILLUSTRATED LEAFLETS or order straight away, working out total area of material required and referring to table below, which is for four-glided chassis in 18 a.w.g. (for 16 a.w.g. add §th)

48 sq. in. 4/-176 sq. in. 8/- 304 sq. in. 12/- 80 sq. in. 5/- 208 sq. in. 9/- 335 sq. in. 13/- 112 sq. in. 6/- 240 sq. in. 10/- 385 sq. in. 14/- 144 sq. in. 7/- 272 sq. in. 11/- and pro rata $P_1 \approx P_2 \approx P_3 = P_4 \approx P_3 = P_4 \approx P_4 \approx$

FLANGES (1", 2" or 1") 6d, per bend.

STRENGTHENED CORNERS 1/- each corner.

PANELS. The same material can be supplied for panels, screens, etc., at 4/3 sq. it. (16 s.w.g., 5/3) plus P. & P. (over £2 post free)

H. L. SMITH & CO. LTD.

287-289 EDGWARE ROAD, LONDON, W.1 PAD 5298/7595

2 METRES 4

The thrills of VHF Amateur Radio can now be yours for as low as 42/6 complete kit (by post, carringe and packing, 2/6 extra). Tuning range 70-109 Mr/s. Stamped addressed envelope for free copy of literature and full details. Newcomers to Short-Wave Kadio ask for details of the famous "Globe-king "kit sand receivers. Bome and Overseas Sales.

JOHNSONS (Radio) St. Martins Gate. Worcester

AN EXTRA ROOM IN YOUR LOFT

Make your loft usable. Fit a Benson disappearing loft ladder. Rigidly con-structed. Folds out of sight. Closes trap automatically.

Write now for illustrated brochure, floor strengthening details and terms—all post free.

ONLY £12-19-6 carr. paid

Handrails 25/- each extra ALL TYPES OF LADDERS SOLD

BENSON (LOFT) LADDERS

(Dept. P.E.), Pontefract Ave., Ponte-fract Lane, York Road, Leeds 9 Tel. 34918 (2 lines)

MULTIMETERS

Type EP10K. Big Scale (nearly 3"). 10,000 o.p.v. AC and DC. Ranges 0.5, 25, 100,500, 1000V. AC/DC. 0-100μA, 0-250mA DC. 0-30KΩ, 0-3 Meg, Decibel scale. Complete with test leads, battery, instructions NEW LOW PRICE 67/6 post 1/6. Illus. leaflet available of this and other multimeters.

In the North CE. 9/8 post 1/0. Intake leaflet available of this and other multimeters. Multimeters RtT

Type 18K. 18,000 o.p.y. AC and DC.
Weston 50μA meter.
Ranges 0-0-25, 2-5 V DC, 10, 25, 100, 250, 500, 1000V AC/DC. 0-250μA, 2-5, 25, 250mA DC (2-5A 4/- εκtra). 0-10 Meg, 0-10 KΩ. Decibel scale. Basic kit (no case, leads, batteries) 65/with instructions, circuit. 1% Multipliers, ½% Shunts. The cheapest accurate wide range multimeter available. S.A.E. details.

Instrument Rectifiers Saiford Bridge ImA or 5mA 8/6 post 9d. M3 (5mA) 3/6, W112 (Mod.), 50μA to 100μA 3/6.

1% High Stab Resistors ½W 2/-.

PLANET INSTRUMENT CO.
25(E), DOMINION AVE., LEEDS 7

INSULATION TESTERS (New)

500 volt, 500 megohms. Price £21, carriage paid.

SOLENOID, Overall length 3½in., stroke in. to in. Maximum push 8 oz. 12-24V, D.C. operation. D.C. resistance 35 ohm. Price 8/6. P. & P. 1/6.

TRANSISTORISED FULLY AUTOMATIC ELECTRONIC KEYER. 230V. A.C. or Battery operated, Incorporates built-in monitor Oscillator, Speaker, and Keying Lever. Adjustable speeds, Keying either auto., semi-auto. or hold. 4 diodes, 7 transistors. Price £16/10/- Plus 4/6 P. & P.

SPECIAL REVERSING 24 VOLT D.C. QUAD-RANT MOTOR 2 AMPERE. Quadrant moves 90 degrees with limit switches, ideal for opening doors, etc. Price 32/6. P. & P.

3/-.

CARPENTER POLARISED RELAY. Type
5A/3 (2) 2 × 7,600 curns at 1,000 chms. New 22/6
P. & P. 1/-.
Bases for above 3/6 each.

Bases for above 3/6 each.

LATEST HIGH SPEED MAGNETIC COUNTERS, 4 figure, 10 impulses per second. Type 100D, 41 ohm coil, 3-6V. D.C. operation. Type 100A, 500 ohm coil, 18-24V. D.C. operation. Type 100A, 500 ohm coil, 36-48V. D.C. operation. Any type 15/- each, plus 1/6 P, & P.

RESETTABLE HIGH SPEED COUNTER-3 figure, 1,500 ohm coil, 40-50V, D.C. operation. Brand new. 50/- each, plus 1/6 P, & P.

BUILD AN EFFICIENT STROBE UNIT
FOR ONLY 37/6
The ideal instrument for workshop, lab, or factory, This wonderful device enables you to "freeze" motion and examine moving parts as stationary. We supply a simple circuit diagram and all electrical parts including the NSP2 Strobe tube which will enable you to easily and quickly construct a unit for infinite variety of speeds, from 1 flash in several seconds to several thousands per minute. New modified circuits bring price down to 37/6 plus 3/- P. & P.
NSP2 CV2296 STROBOTRON FLASH-TUBE made by Ferranti, brand new, I.O. base. Price 15/-. P. & P. 1/-.

VARIABLE £4.10.0 VOLTAGE

TRANSFORMER Post Paid

Input 230v. A.C. Output 0-260v. at 1 amp., fully shrouded, new. Also available 2.5, 5, 8, 10, 12, 20, 37.5 and 50 amp. Write for details.

SIEMENS SEALED HIGH SPEED RELAYS H96A, 2.2±2.2 ohm. H96B, 50±50 ohm. H96C, 145± 145 ohm. H96D, 500±50 ohm. All above 12/6 H96E 170±170 ohm. ex-equip, 16/6

14-DAY CLOCKWORK TIME SWITCHES USED but guaranteed 5 amp. type, 35/6, P. & P. 2/6.

Supplied absolutely complete, including accessories for carrying out a number of interesting experi-ments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations. Price 26.6.0, plus 4/-P. & P.

LIGHT SENSITIVE SWITCH
Kit of parts, including ORP .12 Cadmium Sulphide,
Photocoll, Relay, Transistor and Circuit, etc., price 25;
plus 2/6 P. & P. ORP .12 including circuit, 10/6 each,
plus 1/- P. & P.

ULTRA VIOLET BULBS

Easy to use source of UV for dozens of practical and experimental uses.

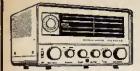
12 voit 36 watt AC/DC SBC 8/6, P. & P. 1/-.

12 voit 60 watt AC/DC SBC 8/6, P. & P. 1/-.

12 voit 60 watt AC/DC SBC 8/6, P. & P. 1/-.

12 voit 12 voit A.C. 36 watt, 16/6, P. & P. 2/6. Input 200-240 A.C. Output 12 Voit A.C. 36 watt, 16/6, P. & P. 2/6. Input 200-240 A.C. 12 voit A.C. 60 watt, 22/6, P. & P. 3/6.

Set of four colours FLUORESCENT Paint. Grange, Yellow, Green and Red, in joz. tins, Ideal for use with the above Ultra Violet Bulbs, 9/6, P. & P. 1/6.


SERVICE TRADING CO.

All Mail Orders also callers

47-49 High Street, Kingston on Thames Personal callers only

Off Leicester Square)

Little Newport Street, London, WC2
Tel: GER;ard 0576

LAFAYETTE HA-63 COMMUNICATION RECEIVER

7 valves plus Recifier. 4 Bands, 550 kc/s-31 Me/s. "8" Meter—BFO—ANL—Bandspread Tuning, 200/250v. A.C. Brand New \$27/10/0. Cart. 10/-.

LAFAYETTE HE-40 COMMUNICATION RECEIVER

Bands, 550 kc/s—30 Mc/s. "S" Meter— O—ANL—Bandspread Tuning—Built-in caker 200/250v. A.C. Brand New 18 Gns. Carr. 19/-.

LAFAYETTE HE-30 RECEIVERS 9 valves. 550 kc/s-30 Mc/s. Form, £27.10.0, Carr. 10/-.

MODEL DA-1 AUTOMATIC ELECTRONIC KEYER Fully translatorised. 28thv. A.C. or 6 or 12 volt operation. \$16/10/0. Carr. 4/6. Semi-Automatic Bug seys, \$4/10/0. P. & P. 2/6. A.C. or 6 or 12 volt D.C.

> - 18

RCA AR.88 RECEIVERS

LF. Model 75-550 kc/s and 1.5-30.5 Me/s-Guaranteed Perfect Order, 235. Carr. 30/-. D. Model 550 kc/s—32 Me/s. Guaranteed "As New Condition", \$65. Carr. 30/-.

3000

MULLARD OC81-TWO FOR 5/-

LAFAYETTE TE-20A R.F. SIGNAL GENERATOR

120 kc/s-390 Mc/s on 5 ranges. Variable R.F. and A.F. outputs. Large clear scale. Size 73' × 107' × 4\$'. 220/250', A.C. Operation. Brand New \$12/19/8. Carr. 5/*.

LAFAYETTE TE-18 GRID DIP METER

Covers 360 kc/s--220 Mc/s. True one hand operation. All colls supplied, operates from 200/250v, A.C. Brand New. Guaranteed. \$12/10/-. Carr. 5/-.

COLLARO STUDIO Tape Transcriptors. 2-track £10.10.0. 4-track £13,10.0. Post Paid.

59μA 100μA 200μA

500μA 50-0-50μA

CLEAR PLASTIC PANEL METERS

First grade quality, Moving Coil panel meters, available ex-stock. S.A.E. for illustrated leaflet. Discounts for quantity. Available as follows: Type MR. 36P. 1 31/32in.

1A D.C. 29 6 5A D.C. 28 6 3V D.C. 22 6 10V D.C. 22 6 20V D.C. 22 8	300V D.C 22/8 500V D.C 22/6 750V D.C 22/8 15V A.C 22/8 50V A.C 22/8 150V A.C
100V D.C. 99 8	300V A.C 22/6 500V A.C 22/6
	1A D.C. 22/6 5A D.C. 22/6 3V D.C. 22/6 10V D.C. 22/6 50V D.C. 22/6 50V D.C. 22/6

POST EXTRA Larger sizes available—send for lists.

ILLUMINATED "S" METER. 1 \$\frac{31}{32}\$ in, square front. Cal. in \$ units. 6V. lamp. 29/6. P. & P. 1/-. Ditto 2 5/16in. square 39/6. P. & P. 1/-.

TE22 SINE SQUARE WAVE AUDIO GENERATORS

Sine: 20 cps to 200 kc/s. Square: 20 cps to 20 kc/s. 200/240v. A.C. Brand New Guaranteed. \$15. Carr. 5/-.

LAFAYETTE 'PRECON' AMATEUR PRESELECTOR CONVERTOR

tor-20-15-10 metres. Preselector-80-40-20-15-10 Crystal controlled—2 R.F. Stages. 200/250v. A.C. on. Brand New, 19 Gns. Carr. 7/6.

LONDON AGENTS FOR CODAR EQUIPMENT

VOLTAGE STABILIZER TRANSFORMERS

Input 80-120v. and 160-240v. Constant output 110v. or 220v., 250 watts. Brand New Guaranteed. £10.10.0.

Cart. 7/8.
RKI40 STEREO TAPE
DECK WITH BUILTIF PREAMPLIFIER

IF PREAMPLIFIER

4 Transistors—4 Valves. Will record or play-back 1 Track Steree or Mono at 75 or 33 IPS,

7 spool size. Twin mater level indicators,

4 inputs. Output 500 MW. 40-18,000 CPS,

response. Size 15°×10°×63°, 200/250°, A.C.

Operation. Brand New 42 Gns. P. & P. 15′.

12v. D.C. D.P AERIAL C/o RELAYS-CERAMIC INS .-- 10/6. P. & P. 1/8

VARIABLE VOLTAGE

VARIABLE VOLTAGE
TRANSFORMERS
Brand New Guaranteed—Fully
Shrouled, Input 230v. 50/80 c/s.
Output 0-250 Volts,
1 Amp-#4.10.0, 10Amp-#18.10.0,
2.5.4mp-#5.17.6, 12Amp-#28.2.10.0
5 Amp-#9.10.0, 20Amp-#28.2.10.0
2.5 Amp Portable—Metal Case
with Meter-Fuses, etc. £9/17/6.

ARMY FIELD TELEPHONES TYPE F
Generator Bell Ringing, 2 Line Connection. With Wood
Carrying Case, Fitted Batteries, Supplied Fully Tested,
24/19/8 pair. Carr. 6/2-. Supplied Fully Tested.

LAFAYETTE HI-FI STEREO HEADPHONES

16()—25-15,000 Cycles. Air Cushioned Headband with cables and overload Junction Box. Brand New Guaranteed. 82/6. P. & P. 2/6.

TS-76 20,000 O.P.V. PUSH BUTTON MULTI-

PUSH BUTTON MULTI-TESTER Large clear plastic scale, simple operation. D.C. volts up to 1,000v. A.C. volts up to 1,000v. Resistance up to 10 meg-ohm. Current up to 250 mA. Decibels 20 to + 36 db. 8ize 6in. x 4 ½ in x 2½in. Complete with leads, batteries and instructions. Only 25/5/-. P. & P. 2/-.

AFAYETTE TE-46 RESISTANCE CAPACITY

ANALYZER 2 PF-2,000 MFD. 2 ohms-200 Mcgohms. Also checks impedance, turns ratio, insulation 200/230v. A.C. Brand New \$15. Carr. 5/*.

V.H.F. RECEIVERS R.1949

Aircruft version of S.27. 3 bands covering 27—143 Mc/s. FM or AM fitted 'S' meter—BFO—AN'1, etc. Power requirements 250v. H.T. and 6-3v. L.T. Supplied fully tested and checked. £17.10.0. Carr. 10/-.

RECORDING HEADS

Reuter: } track	Set of 219/6	
Alla flux: } track	Set of 3	
Braumatic: tra	ck. Set of 2	
Po	ost Extra.	

HEADSETS

DLR5 Lov	Imp.			10/6
BCA Lov	Imp.			15/6
Chamois pa	added Mo	ving Co	il with	Jack
Plug, 22/6	. Dit	to with	Mic,	25/-
ALL N	EW -	POST	EXTRA	

MULTI-METERS

Brand New-Fully Guaranteed-Lowest ever prices Supplied with leads, batteries, instructions

MODEL PT-34. 1,000 O.P.V. 6/10/50/250/500/1,000 v. A.C. and D.C. 0/1/100/500 MA. D.C. 0/100 k Ω_* 39/6. P. & P. 1/6.

MODEL 500. 30,000 e.p.v. 0,5/1/2.5/10/25/100/250/500/1 D.C. 0/2.5/10/25/100/250/500/1,000V. A.C. 0/50 μ A/5/50/51 2 amp. D.C. 0/50K/6 Meg 50 Meg Ω . \$8/17/8 Post Paid.

MODEL NH-400 10,000 O.P.V. 0/3/3/30/120/300/00/1.200 v. D.C. 0/12/60/ 120/300/300/1.200 v. A.C. 0/12/60/ 120/300/1.200 v. A.C. 0/12/60/ 120/300/300 MA. D.C. 0/2/K/200K/20 Meg. D. 100 PF.—2 MFD 79/8. P. 2/6. 2/6. MODEL AR-520 20,000 O.P.V. 0/10/50/250/50/0/1.000 v. A.C. and D.C. 0/500/LA/10/250 MA. 0/10/60/250/50/1.000 v. A.C. and D.C. 0/500/LA/10/250 MA. 0/10/60/250 MP. 0/500/LA/10/50/MP. 0/500/LA/10/50/MP. 0/500/LA/10/50/MP. 0/500 Henrys 92/6. P. & P. 2/6. MODEL NH-201 30,000 O.P.V. 0/.25/1/10/50/250/ 500/1,000 v. D.C. 0/10/50/ 250/500 v. A.C. 0/50/A/ 10/250 MA. 0/5K/500K/ 5 MegΩ. 89/8. P. & P. 2/6.

MODEL 0.P.V. 20,000 0.P.V. 2,500 v. D.C. 0/10/26/26/25/0/500/1,000 V. A.C. 0/30/A/25/250 mA. D.C. 0/60/K/6 Meg. \(\text{QL} \) .01-3 Mep. 82/6. \(\text{P.} \) \(\text{R} \) \(\text{P.} \) 2/6.

\$\tilde{\Omega}\$. \$8\)17/6 Post Pald.

MODEL TE-12 20.000
0.P.V. 0f.06[6/30]20/600f
1.200/3.000/6.000 v. D.C.
0/6/30/120/000/1.200 v.
A.C. 0f60µA/6/60/600 Mec.
0f. P.F.-2 MFD. 25/19/6.
P. & P. 25/19/6.

MODEL 2507, 2.000 0.P.V.
0/10/10/300/2.500 V.A.C.

0/10/50/500/2,500 0/10/50/500/2,500 0/2 Meg \(\text{Meg } \) 0/250 mA. - 20 to + 36 db. 84,6, P.P. 2,0.

	SILICON RECTIFIERS	
ĺ	250 v, P.LV, 750mA,	
	400 v. P.L.V. 3 amp.	Ä
	200 v. P.I.V. 6 amp 5/0	
	1,000 v. P.I.V. 650 mA 7/6	ä
	800 v. P.I.V. 560mA 5/6	
	200 v. P.I.V. 200 mA. 3/	3
	Day Day Day	:
	95 v. P.I.V. 3 amp 5/6	5
	70 v. P.L.V. 1 amp 3.0	j
	150 v. P.I.V. 165mA 1/-	•
	Discounts for quantities. Post extra	

2 WAY RADIOS

New Improved Lafayette Model 9 Transistor—Range up to 5 miles. £21 pair. sistor—Rang P. & P. 3/6.

MINE DETECTOR No. 4A

Will detect all types of metals. Fully portable. Complete with instructions. 39/8. Carr. 10/-. Battery 8/8 extra.

BEST BUY!

Send I/- P.O. for full Catalogue and Lists. Open 9 a.m. to 6 p.m. every day Monday to Saturday. Trade supplied.

Phone: GERRARD 8204/9155 Cables: SMITHEX LESQUARE

3-34 LISLE STREET, LONDON, W.C.2

MAINS POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output 6 v.—9 to 12 volts for up to 500 mA. (class B working). Takes the place of any of the following batteries. PPI-PP3-PP4-PP6-PP7-PP9 and others. Kit comprises: mains transformer-rectifier, smoothing and load resistor 5,000 and 500 mfd. condensers, zener diode and instructions. Real snip at only 14/6, plus 2/6 post.

OUR BARGAIN OF THE YEAR

Complete kit of parts to build this 6-transistor 2 wave superhet receiver at only 39/6 point and ins.

"CORONET" Mk. III

It fully covers the medium-wave band and that part of the long-wave band to bring in B.B.C. Light. The circuit includes a highly efficient slab aerial and 2½° P.M. speaker. Overall size approximately $4\frac{1}{3} \times 2\frac{1}{2} \times 1\frac{1}{2}$ in. Supplied complete with carrying case.

MOTOR BARGAIN

Silent running mains motor by very famous maker. Ideal for gramophone, tape recorder, fan, etc. etc. 200-250 votts. A.C. shaded pole start. Size approximately 2\frac{1}{2} \times 2\frac{1}{3} \times 1\frac{1}{3} \times 1\frac{

YAXLEY SWITCHES

POLES 1 2 3 4 6 8 10 12 14	2/8 3/3 3/11 4/6 5/9 8/- 10/- 12/-	3 WAY 2/10 8/8 4/6 5/4 7/- 8/8 10/6 12/6	4 WA1 3/1 4/1 5/2 6/2 8/3 10/4 12/5 14/6	7 6 WAY 3/6 4/11 6/9 7/10 10/9 13/8 15/9 19/8 22/6	8 WAY 4/- 6/- 8/- 10/- 15/- 18/- 22/0 27/6	10 WAY 4/6 7/- 9/6 12/- 17/- 22/- 27/- 32/-	11 WAY 4/6 7/- 9/6 12/- 17/- 22/- 27/- 32/-	12 WAY 4/8 7/6 10/3 13/- 18/6 25/- 30/- 36/-
14 16	14/- 16/-	14/6 16/6	17/-	22/6 25/6				
	1 pole 3/6	2 pole		24 WAY 1 p	ole 15/	2 pole 2	2/6	

Speaker Bargain

12in. High fidelity loud-speaker. High flux High flux permanent magnet type with 3 ohm

up to 10 watts. Brand new, by famous maker. Price 27/6, plus 3/6 post and

Adjustable Thermostat

Suitable for Industrial or domestic purposes such as controlling furnace oven, immersion heater, etc. Can also be used as a famestat or fire alarm. Made by Sunvic these are approximately 17in, long and anjustable over a range 0 to 550.7°. The contacts are rated at 15 amps, 230 voits, and the adjustment spindle, which comes to the 10p, can be fitted with a flexible drive for remote control or just a pointer knob for local control. Listed at 23 or 24 cach, these are offered at only 8/6, plus 2/5 postage and Insurance.

Timer Kit

Special offer of all components except nets) box to make mains operated interval timer for photography, etc., 12/8 plus 2/6 post.

Waterproof Heater Wire 16 yd, length. 70 watts. Self regulating temperature control, 10/- post free.

Building a Scope?

3in, oscilloscope tube. American made type No. 3FP7, base 6.3 v. 6 amp. heater elec-trostatic deflection, brund new and guaran-teed, with circuit diagram of scope, 15/-each plus 2/6 post and insurance.

Ice-Stat

This is a small thermostal which cuts on and off at round freezing point. Has many uses, one of which could be at fee warning device to be fitted under your motor car. Price 7/8. Post 1/-.

Simmerstat Heater Regulator

Suitable to control elements, heaters, soldering irons and bolling rings up to 2,500 watts. Complete adjustable, normal price 55/- each, special saip price 12/6, plus 1/6 postage and insurance.

Siemens High

Twin 250 ohm coils adjustable clession change over contacts—platinum points 7/6. Post 1/-.

BARGAINS

Air Spaced Trimmers, good length its, spindle 0-5upi, but easily converted down to 0-0 pf. 2/8 eu., post 1/-. Ditto but 2 gang for F.M. Tuners etc., 4/8 eu. Post 1/-. 500 MW Amplifer. Uses 3 transistors, 2 of which are in Class B push-pull for battery economy. Ideal little unit for baby alarm, record player, intercome, etc., etc., 19/8. Speaker 12/8 extra.

Trimmer. Assortmant. 3. dov. postore.

Speaker 12/8 extra.

Trimmer Assortment. 3 doz. various sizes and types including doubles and ceramic air spaced. Retail list value over 45, all new and unused 10-40 r 30. Post 2;—Motor Generator, 6 v. input gives 12 v. output, suitable to run 12 v. car battery radio off 6 v. battery 17/8, post and insurance 3/10.

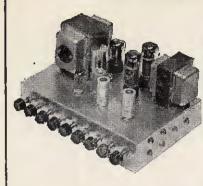
Hadder 3/6, Midget 3/6, P.M. Loudspeaker 3 ohm, 12/6, 8 shm, 13/8. Midget 208 pF+176 pF two-gang Tuning Condenser with trimmers for transistor set. Price 9/-.

Post Office Type Key Switch. 3 position 10 change over contacts 7,6, post 1/-.

Reclifier Valves. 4 pin 4 v. 120 ma, full waves replace MU12 etc. 4/6. P. & P. 1/-. 40/- per doz. Post free.

Double Trimmers. Ideal for making preset station receiver 100 pf. plus 100 pf. 6/- per doz. Post 1/-.

Mica Condenser. 100 pf. 200 pf. 300 pf. 500 pf. 1,000 pf. 3 doz. assorted list value £2. 36 for 5/-. Post 2/-.


Litz Wire for coll winding. Normally over 40/- per lb, from makers, 11b, reels 20/-ea. Post and packing 2/-.

Hours Elapsed Meter. Fine American make unused but ex-equipment 35/- ea., post 2/-. 12 v. 10 amp. Rectider. 84in. eq. plates 19/6, post 2/-.

(CROYDON) LTD. ELECTRONICS 266 LONDON ROAD, WEST CROYDON, SURREY

Post orders to: SILVERDALE ROAD, EASTBOURNE, SUSSEX

GUITAR AMPLIFIERS WITH TREMOLO

Five jack socket inputs, four with separate mixing volume controls, and volume controls, and one input "struight through". All inputs are of very high sensitivity only 10 millivolts input is required for full output, making them suitable for all types of mitters and microof guitars and microphones. Separate Bass and Treble controls, giving a wide range of lift and cut. Separate master gain control. Tremolo speed and depth controls. Jack socket for remote

socket for remote tremolo switching.

Outputs for 3 and 15 ohms speakers. Valves used in the 30 watt and 50 watt amplifier ECC83, ECS3, EL34, EL34, GZ34. In the 15 watt amplifier ECC83, ECS3, EL84, EL84, EL84, EL84. An extra valve ECC83 is used in the tremolo circuit. The chassis is complete with baseplate and is solidly made of 18 gauge steel, finished silver grey hummer.

Size 12 × S × 6½ inches high.

PRICES-

50 watt with tremolo	£20.10.0
50 watt less tremolo	£19.10.0
30 watt with fremolo	£15.10.0
30 watt less tremolo	
15 watt less tremolo	

Add carriage 10/- any ampiliter. Send for free descriptive leaflet.

STROUD AUDIO

PAGANHILL LANE, STROUD, GLOS.

Stroud 783

HEAVY DUTY SHROUDED AUTO TRANSFORMERS, 240-

AUTO TRANSFORMERS, 240110 V. Fitted with 2 pin American sockets or terminal blocks. State which type. Brand new and Guaranteed. 1,000 watts. £4,150, carr. 4/2: 300 watts. £27,6, carr. 3/6: 150 watts, £1,17.6, carr. 3/2: 2 KV. In metal case, with handle, 2 American socket outputs. £9,100. Carr. 7/6: 2 X-MINISTRY 1N-DUSTRIAL TYPES. Tapped 250, 240, 230, 220, 120, 115, 110, 105 voits 10 KVA, £29,100. 5 KVA £19,100. Exwarehouse. Both types enclosed in heavy metal case.

metal case.

L.T. TRANSFORMERS

L.T. TRANSFORMERS

Pri. tapped 200-260 v. Sec. tapped 28, 29, 30, 31 v. 25 amps, conservatively rated, £6,19.6, carr. 101-27, ri. tapped 200, 225 v. 7 amps, pri. earth shielded, £5,17.6, carr. 7/6; Pri. tapped 200, 225, 240 v. Sec. tapped 21, 18, 24, 30, amps of Low ansformers, tage Transmoothing the complex of Low ansformers, tage Transmoothing the complex of Low ansion that the complex of Low ansio

SAMSON'S ELECTRONICS LTD.

Tel. PAD 7851

9-10 CHAPEL STREET LONDON, N.W.I.

Tel. AMB 5125

HIGH QUALITY TAPE AMPLIFIER KIT

Suitable for use with tape decks having a high impedance record head and a low impedance erase head. Magic eye recording level, 3 ohm 4 watt output. 2 inputs with tone control. Provision for monitoring. Simple point to point wiring instructions. This tape amplifier is also available completely built and tested. Ideal for use with Collaro and B.S.R. decks.

Kit Price £7,10.0 Ready Built £9.17.6

ELECTROSURE LTD., Fore Street, Exeter

FANE HIGH FIDELITY LOUDSPEAKERS

Full Range of Heavy Duty Types for All Purposes

CAST ALUMINIUM CHASSIS. EXTREMELY ROBUST 2in. DIAMETER VOICE COIL ASSEMBLIES

Model	Cone	Prequency response c.p.s.	Impe- dance ohms	Main resonance c.p.s.	Power bandling watta R.M.S.	Flux density gaues	Total flux Maxwells	Voice coil winding	Diam. of Chassis	Baffle Hole	Net weight lbs.	Retail Price
122/10	Single	25-5000	15	.32 or 75	20	10,000	100,000	Copper	12in.	11in.	6?ba.	5 gns.
122/10A	Dual	10-15000	15	32 or 75	20	10,000	100,000	Aluminium	12in.	llin.	6ths.	6 gns.
122/12	Single	25-5000	15	32 or 75	20	12,000	160,000	Copper	12ln.	Ilin.	6lbs.	7 gns.
122/12A	Dual	30-15000	15	32 or 75	20	12,000	160,000	Aluminium	12in.	11in.	6lbs.	8 gns.
122/14	Single	25-5000	15	32 or 75	22	14,000	186,000	Copper	12in.	11in.	7lbs,	9 gns.
122/14A	Dual	30-15000	15	32 or 75	22	14,000	186,000	Aluminium	12in.	llin.	7lbs.	10 gns.
122/17	Single	25-6000	15	32 or 75	25	17,000	226,000	Copper	12in.	11in.	10±ibs.	211/17/6
122/17A	Dual	30-17000	15	32 or 75	25	17,000	226,000	226,000 Aluminium 12in		llin,	104lbs,	\$12/17,6
152/12	Single	25-3500	15	30 or 75	20	12,000	160,000	Copper	15in.	I3lin.	8lbs.	12 gns.
152/12A	Dual	30-15000	15	30 or 75	20	12,000	160,000	Aluminlum	15in.	134in.	Slbs.	13 gns.
152/14	Single	25-3500	15	30 or 75	22	14,000	186,000	Copper	15in.	13lin.	9lbs.	14 gns.
152/14A	Dual	30-15000	15	30 or 75	22	14,000	186,000	Aluminium	15in.	13lin.	91bs.	15 gns.
152/17	Single	25-4000	16	30 or 75	25	17,000	226,000	Copper	15in.	13lin,	1247bs.	16 gns.
152/17A	Dual	30-17000	15	30 or 75	25	17,000	226,000	Aluminium	15in.	13jin.	12½lbs.	17 gas.

EXTRA HEAVY DUTY TYPES WITH 3in. DIAMETER POLE PIECES

153	Single	30-3500	15	40 or 75	40	14,000	375,000	Copper	15in.	13lin.	201bs.	- 18 gns,	1
183	Single	20-2000	15	30 or 75	60	14,000	375,000	Copper	18in.	16jin.	221bs.	25 gns.	

AVAILABLE THROUGH ALL SOUND EQUIPMENT STOCKISTS

Manufacturers' enquiries to:

FANE ACOUSTICS LTD. HICK LANE . BATLEY . YORKS Sale distributors to Wholesale and Retail Trade: LINEAR PRODUCTS LTD. ELECTRON WORKS . ARMLEY . LEEDS

For Discerning Enthusiasts

Quality Transistors and Components

UHF Amplifier Transistors (BBC.2, etc.): AF139, 36/9: T2028 (2N2398), 53/9: GMO290, 31/6. Tunnel Diodes: 1N3712 (TD-1) ImA, lpk 2,300 Mc/s, 50/3; 1N3720 (TD-5) 22mA, lpk 1,600 Mc/s, 52/-. VHF Power Transistors: 2N3036 60V, 5W, f₁ = 100 Mc/s, silicon planar, 15/-; AUY10 70V, 4.5W, f₁ = 120 Mc/s, germanium alloy-diffused, 53/-; BUY10, silicon pn epitaxial planar, 40V, 10W, f₁=90 Mc/s (typ.), 45/-. Audio Transistors, matched pairs: OC81Z, 16/- pr.; AD140, 50/- pr.; OC35, 36/- pr.

Other Devices: 2G102, 36/-; OC171, 9/-; MAT101, 8/6; OC71, 6/6; OC72, 8/-; OC81, 8/-; OC202, 24/6.

PROMPT SERVICE. C.W.O. PLEASE. POSTAGE 6d. PLEASE SEND I/- (STAMPS) FOR REFERENCE CATALOGUE

J. WILLIAMS & CO.

BIRMINGHAM 16

T615 PORTABLE 12v. TRANSISTOR **AMPLIFIER** 15wt. OUTPUT INBUILT MICROPHONE PRE-AMPLIFIER

Details and Nearest Stockist from:

Messrs. E. K. ELECTRONICS (I.A.) LTD. BROTHERTON HALL, BROTHERTON KNOTTINGLEY, YORKSHIRE

RES/CAP. BRIDGE 39/6

Checks all types of resistors, condensers 6 RANGES Built in I hour.

Direct reading READY CAUBRATED
Stamp for details of this and other kits

RADIO MAIL (Dept. CC) Raleigh Mews, Raleigh St., Nottingham

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: 9v; 6v: 4½v (single output) 39/6 each. P. & P. 2/9. 9v + 9v; 6v + 6v; or 4½v + 4½v (two separate output) 42/6 each. P. & P. 2/9. Please state output required. All the above units are completely isolated from mains by double wound transformer ensuring 100% safety.

R.C.S. PRODUCTS (RADIO) LTD. Il Oliver Road, London, E.17

KEY BOOK paperbacks

HI-FI AND AUDIO

Modern Designs for the Amateur Constructor, High Sensitivity Amplifier, Two-valve Pre-amp and Equaliser, Mains Gramophone Amplifier, Output Transformers and Loudspeakers, Crossover Networks for Loudspeakers, Seven-wait Quality Amplifier, Pive-valve Steree Amplifier, Design for a Bass Reflex Cabinet, Radiogram Cabinet Design, etc.

SIMPLE RADIO CIRCUITS

SIMPLE RADIO CIRCUITS
by A. T. Collins
A Complete 'Build Your Own Radio' Guide,
Simple Majas Short Wave Receiver, Medium
Wave Transistor Receiver, Dual Wave Onevalvet, Broadcast Bands Receiver, Two-valve
Short Waver, Amateur Bands Hyrid, Transistor
Superhet Tuner, Battery-operated Short Wave
Converter, Five-transistor T.R.F. Receiver,
Four-valve Superhet Portable.
3s. 6d. FROM ALL BOOKSELLERS...
or, in case of difficulty, 4s. by post from George
Neumer Lia, Tower House, Southampton Street,
London, W.C.2.

"PRACTICAL ELECTRONICS" -CONSTRUCTIONAL DESIGNS

All specified 1st grade Components, complete Metalwork, full range of Materials, engraved Panel Plates, Ancillary Equipment and Assembled Units. Comprehensive lists available for each "P.E." Constructional Article.

"Please send 6d in stamps for each design

MALVYN ENGINEERING WORKS

7 CURRIE STREET, HERTFORD, HERTS TELEPHONE: MERTFORD 2264

DUKE & CO. (LONDON) LTD. 621/3 Romford Road, Manor Park, E.12 ILFord 6001-2-3

T.V. TUBES 17in. — 35/-

14in. -- 15/-Most makes and types available. Set Tested, Guaranteed good picture. Ex Rental Service Depts. Stock. Carriage 5/- extra STAMP FOR LATEST FREE LIST

Z & I AERO SERVICES LTD.

Retail Shop: 85 TOTTENHAM COURT ROAD, LONDON, W.1. Tel.: LANgham 8403

Head Office and Warehouse: 44A WESTBOURNE GROVE, LONDON, W.2.

Tel.: PARK 5641/2/3

OA2	8/-	SYSGT	5/-	6C4	2/6	68J7	8/-	12B4A	8/-		11/8	CBLI	25/- [EABC80		EF54	6/-	EYSI	71-	PCL84	7/-	U191	11/-
OB8 OB3	6/-	5X4G 5Z3	8/-	6C5G	5/-	88K7G		12BA6	8/-	35C5	6/6	CBL31	10/~	EAF42	8/6	EF55	8/-	EY70	12/6	PCL85	8/	U251	12/5
OC3	6/- 6/-	5Z4GT	8/	6090	12/-	68L7GT		12BE6	5/-	351.6G1		CL33	9/-	EB41	5/-	EF80	5/-	EY81	8/-	PCL86	9/-	U281	13/-
OD3	5/-	6/30L2		6C31		68N7GT	9/6	12BH7	8/-	35W4	5/-	CY31	6/6	EBC33	7/-	EF83	10/-	EY83	9/6	PL36	8/6	U282	14/-
IA5GT	5/-	6A3	10/-	6CB6	5/-	6U4GT		12BY7	10/-	3523	10/-	DAC32	2/-	EBC41	7/-	EF85	6/-	EY86	6/-	PL38	16/-	U301	12/-
1A7GT	8/-	6A6	4/-	6CL6	17/-	6U8	7/8	12E1	20/-	35Z4G	4/-	DAF91	4/6	EBC81	6/6	EF86	6/-	EZSS	5/6	PL81	7/-	U403	7/-
IAD4	7/-	6A8	8/-	6CW4	9/-	ABU8	9/-	12F5GT		85Z4GT		DAF92	0/-	EBF80	6/6	EF89	4/6	EZ40	5/6	PL82	5/6	U801	18/-
1B3GT	2/-	6AB4	6/6	6CY5	12/-	6V6 6V8G	9/-	12J5GT		35Z6G7		DAF96	8/-	EBF83	7/8	EF91	4/-	EZ41	6/6	PL83	6/-	U4020	7/8
106GT	2/-	6AB7	4/-	6D3	7/6	6V6GT	7/6	12J7GT 12K7GT		42	5/-	DC70	8/-	EBP89	6/8	EF93	4/9	EZ80	5/6	PL84	6/6	UABC80	
1H4GT	-6/-	6AC7	3/-	6D4	15/-	6X4	4/-		10/-	50B5 50C5	7/-	DCC90	7/-		14/-	EF94	6/-	EZ81	4/6	PL500	15/-	UAF42	8/-
INSGT	7/-	6AF4	11/-	6DK6	6/-	GX5GT	5/6	120761		50CD60	8/6	DET12 DF33	40/-	EBL21 EC80	11/-	EF95	5/8	GZ30	8/8	PY33 PY81	9/-	UBC41	6/6
1L4	2/8	6AG7	6/-	6D84	15/-	GY6G	8/-	12SA7	7/-	50L6G7		DF66	8/-		8/- 12/-	EF98 EF188	10/-	GZ32 GZ34	10/-	PY82	6/8	UBC81	7/-
1L6	17/-	6AH6	10/-	6E5	2/-	7D8	7/-	128G7	4/-	83	8/-	DF72	7/-	EC90	2/6	EF184	8/-	GZ37	9/-	PY83	6/-	UBF80 UBF89	6/5
1N5GT	8:-	6AK5	5/8	GEV5	12/-	7K7	10/-	12SJ7	4/-	85A1	25/-	DF73	2/-	EC91	5/-	EFP60	10/-	KT66	16/-	PY88	8/6	UBL21	11/-
1Q5GT	8/-	GAKG	2/-	6F6	8/-	7R7	12/-	128K7	5/-	85A2	8/6	DF91	7/- 3/-	EC92	6/6	EL33	12/6	KT88	20/-	PY800	8/6	UCC84	8/-
1R4	6/	6AM6	2/6	6F7	5/-	787	16/-	123 Y7	8/-	85A3	5/8	DF92	2/6	ECC31	5/-	EL34	10/-	LP2	7/6	PX25	10/-	UCC85	6/6
1R5	5/-	6AM6	4/-	6P8G	5/-	9BW6	7/-	13D3	6)-	150B2	12/-	DF95	8/-	ECC32	4/-	EL35	5/-	MU12/1		QQ V02-6		UCF80	9/6
184	5:-	6AN5	30/-	6F11	6/-	10CL	10/-	19AQ5	5/-	15033	8/-	DH63	6/- 6/-	ECC40	9/-	EL36	9/-	N78		QQVO3/		UOH21	8/6
185	4/6	6AQ5	8/-	6F13	6/-	10C2	12/-	19G3	25/-	807	9/-	DK32	8/-	ECC81	4/-	EL37	17/6	NSPt	25/-	24 . 00)	35/-	UCH42	7/5
1T4	3/-	6AQ6	8/	6F23	9/6	10D1	7/-	19G6	15/-	829B	60/-	DK40	11/-	ECG82	5/~	EL38	17/6	NSP2	22/-	R2 "	8/-	UCH81	7/-
1T5GT	6/-	6AR5	6/-	6F24	11/-	10F1	14/-	2012	15/-	832	20/-	DK91	11/- 5/-	ECC83	8/-	EL41	7/8	OCP71	24/-	RIO	15/-	UCL82	8/-
1U4	5/-	GARG	6/-	6F28	10/	10F3	8/-	20L1	14/-	954	5/-	DK92	9/-	ECC84	6/6	EL42	8/-	ORP12	12/-	R17	8/-	UCL83	20/-
1U5	6/-	6A86	5/-	6F33	6/-	10F9	10/-	20P1	14/-	955	3/-	DK96	7/6	ECC85	6/6	EL81	8/6	ORP60	10/-	R19	2/-	UF41	2/6
1X2A	2/-	6AB7G	22/6	674	9/-	10F18	9/-	20P3	12/-	956	2/-	DLSS	12/-	ECC88	10/-	EL83	7/-	PC86	12/-	RL18	12/8	UF42	7/6
1X2B 2CW4	201	GAT6	4/-	6J5G	4/-	10L1	7/6	20P4	14/-	957	5/-		10/-	ECF80	7/6	ELS4	5/-	PC88	12/-	8130	12/6	UF80	8/6
2D21	12/	6AU6	0/-	6J6	3/6	10LD11		20P5	12/-	958	4/-	DLU9	12/6	ECF82	7/6	EL85	8/-	PC97	9/-	SU2150.4		UF85	7/-
3A4	0/-	6AV6 6B7	8/-	6J7G	5/-	10P13	12/6	25A6G	5/-	959A	8/-	DL70	7/-	ECF86	11/-	EL86	7/6 6/-	PCC84	5/8	TH41	10/-	UF86	10/-
SAS	75 / m	6B8	5/- 5/-	6J7GT 6K7	7/6	10PI4	12/-	25C5	10/-	2050	12/6	DL73	12/-		10/-	EL90	6/-	PCC85	7/-	TH233	- 6/-	UF89	6/-
3B7	5/-	6BA6	4/9	6K7GT	5/-	11D3 11D5	7/-	25L6GT 25Z4G		2051 5696	6/-	DL75 DL92	10/-		12/-	EL91	2/6	PCC88	10/6	TH2321	7/-	UL41	7/6
3D6	4/-	6BEG	5/-	6K8	8/-	12AC6	8/-	25Z5	7/-	5763	12/-	DL93	4/-	ECH42 ECH81	8/-	EL821 EL822	8/-	PCC80 PCC189	10/-	TP22 TP25	5/~	UL84 UM4	6/-
304	6/6	6BF6	8/-	6K8GT	8/-	12AH7	5/-	25Z6GT	8/6	6060	8/-	DL94	5/8	ECH83	7/8	EM4	10/-	PCF80		TP2620	7/6	UM86	10/-
3Q5GT	6.8	6BH6	7/-	6L1	8/-	12AH8	11/-	27M1	60/-	6080	25/-	DL95	6/8	ECL80	6/6	EM31	5/-	PCF82	7/-	TT15	35/-	UU5	8/-
384	5/-	6BJ6	8/-	6L6G	8/-	12AQ5	7/-	28D7	7/-	6146	27/6	DL96	6/-	ECL82	7/6	EM34	9/6	PCF84	8/-	TT21	82/-	UUIO	8/-
8V4	5/6	6BK7A		6L7	5/-	12AT6	B/-	29C1	20/-	9002	5/6	DM70	5/-	ECL83	9/-	EM80	6/6	PCF86	8/-	TT22	32/-	UY21	8/-
4D1	4/-	6BN6	7/-	6L18	8/-	12AT7	4/-	30C15	10/-	9003	9/-	DY86	8/-	ECL86	9/-	EM81	7/6	PCF801		TZ40	40/-	UY41	5/6
4THA	14/-	6BQ7A	8/-	6N7	8/-	12AU6	6/-	30C17	12/-	A2293	15/6		14/-	EF36	4/6	EM84	8/-	PCF802		U12/14	8/-	UY85	5/-
5R4GY	9/-	6BR7	11/6	6P1	21/-	12AU7	5/-	30F5	9/-	ACRLI		E90CC	12/-	EF37A	-8/=	EM85	9/-	PCF805	10/6	U22	8/-	W81M	8/-
5 T 4	8/-	6BR8	5/-	6Q7G	- 6/-	12AV6	6/-	30FLI	11/-	AZL	9/-	ESTH	12/-	EF39	5/-	EM87	7/-	PCF806		U25	11/-	X65	5/6
5U4G	5/-	6B87	16/-	65A7	8/-	12AV7	8/=	30L17	13/-	AZ12	9/	E92CC	7/-	EF40	9/-	ENSL	10/-	PCL81	9/-	U28	11/-	X66	8/-
5U4GB	6/8	6BW6	9/-	68C7	9/-	12AX7	6/-	30P12	10/-	AZ41	6/6	E18000		EF41	7/6	EN32	10/-	PCL82	6/6	U50	5/-	X79	18/-
5V4G	8/-	GBW7	9/-	6SG7	6,-	12AY7	10/-	30P19	14/-	010	5/-	E180F	15/-	EF42	6/-	EN92	6 /-	PCL83	8/3	U76	4/-	Z66	10/-
				Min	Hard T	'mnsistar						12.0	A TR	ANSISTO	PS. 4	28/410 (0	C465	1/8 · 9NJ	12 (0)	(184) 2/8			

matched OC76 OC171 OC204 OC81 and 1 10/6 OC81D 12/6

All our valves carry three months' guarantee. Any faulty item replaced free of charge.

Write for full Catalogna of Valves and Tobas

E.C.A. TRANSISTORS: 2N410 (OC45), 3/6; 2N412 (OC44), 3/6. G.E.C. TRANSISTORS: GET115, 7/-; GET573, 20/-, 35/- matched pair. MICRO-ALLOY TRANSISTORS: MAT101 (60 Mo/s) 8/6; MAT121 (120 Mc/s) 8/6. DIODES: OAS1, 2/-: BYZ10, 7/8: GJ3M, GJ5M, GJ7M, 3/6: BY800, 7/-,

Please add 2/6 in 8 for postage. Minimum charge 1/6. No C.O.D. Orders Accepted. Please address all correspondence to the Head Office.

JOY'FUL NEWS No. 3

"CQ", the Radio Amateur's Journal, reviewed the "JOYSTICK" V.F.A. In their July, 1964 issue. The following extracts are quoted:—

extracts are quoted:—

I tried the JOYSTICK out with HB9ACN's help and found that it performed remarkably well with JOYSTICK out with HB9ACN's help and found that it performed remarkably well with JOYSTICK was mounted high on the JOYSTICK was mounted high on the outside of an apartment house. A little drop-off in signal was noted when the antenna was laid against the wall on the inside. For transmitting, the antenna will take a KW.

When you write to the manufacturer for full information he will send you testimonials from many hams who have nothing but praise for the JOYSTICK, among these will be a number from U.S. hams especially WocJW and KSGDH.

I recommend that if you buy a JOYSTICK

I recommend that if you buy a JOYSTICK you also buy a tuner. Actually the antenna could be used for mobile work* too without much trouble.

COMPLETESYSTEM FOR RECEIVING, comprising Standard JOYSTICK and Type 3 1 OYMATCH for complete coverage of the Short Wave bands—will suir ANY Short Wave Receiver—£5.11.0d, including carriage and packing.

DITTO, With DE-LUXE "JOYSTICK" (all copper R.F. elements), £6.11.0d, including carriage and packing.

COMPLETE SYSTEM FOR TRANS-MITTING, comprising Standard JOY-STICK and Type 5 JOYMATCH for 6 amateur bands, £4.12.0d, including carriage and packing. Add £1.0.0d, for DE-LUXE JOYSTICK,

MOBILE HARNESS* for use with STAN-DARD JOYSTICK only 25/- post free.

FULL INSTRUCTIONS INCLUDED FULL MONEY-BACK GUARANTEE TESTIMONIALS GALORE !!

PARTRIDGE ELECTRONICS LTD.

(Dept. PEI

7 SOWELL STREET, BROADSTAIRS, KENT

MAKE

DIFFERENT TRANSISTOR RADIOS for 35 |-

Amazing Radio Construction Set! Become a radio expert for 35/-. A complete Home Radio Course. No experience needed. Parts include instructions for each design, Step-by-Step plan, all Transistors, loudspeaker, personal phone, knobs, screws, etc., all you need. Box size 14' × 10" × 2" (parts avail, sep.). Originally £6. NOW 35/- + 3/- P. & P. (3/- C.O.D.)

ASTONISHING CIGARETTE **RADIO 18/6**

Yes, a perfectly ordinary packet of

cigarettes! - but watch your friends astonishment on hearing it fetch in station after station, ment on hearing it fetch in station after station, loud and clear 1 Still holds 10 Cigarettes—yet cleverly conceals highly sensitive, fully transistorised circuit (including tiny battery). Even a young boy can assemble it in under 2 hours. No soldering. No experience necessary. Only 16 connections to make, Ideal for taking to work with you. From our bulging testimonial file, Mr. D.B. of Huddersfield writes:—"... I have fitted the parts in and it is working wonderfully ..." ALL PARTS including Semi-Conductors, A.B.C. Plans, etc. ONLY 18/6d. plus 1/6d. post, etc. (C.O.D. 1/6d. ex.)

CONCORD ELECTRONICS F

(DEPT. P.E.13)

9 Western Road, Hove

BBC2 (625 LINE) TV AERIALS

MAST MOUNTING ARRAYS, 9 element 45/-; wide spaced high gain, 11 element 55/-; lefoment 25/6 MI (16 element 25/6 MI (16 espaced high gain, 11 element WITH TILTING ARM 62/6; 14 element 70/-, ALL HIGH GAIN UNITS HAVE SPECIAL MULTI-ROD REFLECTOR, LOW LOSS CO-AXIAL CABLE 1/6 yd.

BBC + ITV + F.M. AFRIALS

B,B,C. (BAND I). Telescopic left 21/-. External S/D 30/-.

2.T.V. (BAND 3), 3 Element loft array 25/-. 5 element 35/-. Wall mounting, 3 element 45/-. 5 element 45/-.

COMBINED B.B.C./I.T.V. Loft 1+3, 41/3; 1+5, 48/9. Wall mounting 1+3, 56/3; 1+5, 63/9. Chimney 1+3, 63/9; 1+5, 71/3.

F.M. (BAND 2). Lo't S/D, 12/6. "H", 30/-, 3 element, 52/6. External units available. Co-ax. cable 8d. yd. Co-ax. plus, 1/3. Outlet boxes, 4/6. Diplex-Crossover Boxes 12/6. C.W.O. or C.O.D. P.P. 3/-, Send 6d. stamps for illustrated lists.

K.V.A. ELECTRONICS (Dept. 2) 3b, Godstone Road, Kenley, Surrey. CRO 2527