SERVICING·CONSTRUCTION·COLOUR·DEVELOPMENTS

SIMPLE

ALSO: IMPROVE YOUR TV AUDIO CHANNEL VIDEO LF RESPONSE • SHF RECEPTION

Radio and Audio Servicing Handbook 2nd Edition

Gordon J. King AssocIERE, MIPRE, MRTS.

This book is a practical guide to the servicing of radio receivers and audio equipment of all types, and is intended especially for the service technician. Many others, however, will find it of absorbing interest among their students, hi-fi and recording enthusiasts, amateur experimenters, radio dealers and sound engineers.

0 408 00018 × 284 pages illustrated 1970 £3.00 (60s.)

Radio Valve and Transistor Data 9th Edition Edited by A. M. Ball

First published in 1949 this book has become an indispensible source of information for all those interested in electronic engineering from the home constructor to the research worker. Exhaustively revised and updated, the useful and comprehensive information contained in this new edition will add to the already considerable reputation enjoyed by this highly successful book. 0 592 05796 6 256 pages illustrated 1970 **75p** (15s.)

Television Engineering

祥

Volume 2 Principles and Practice 2nd Edition

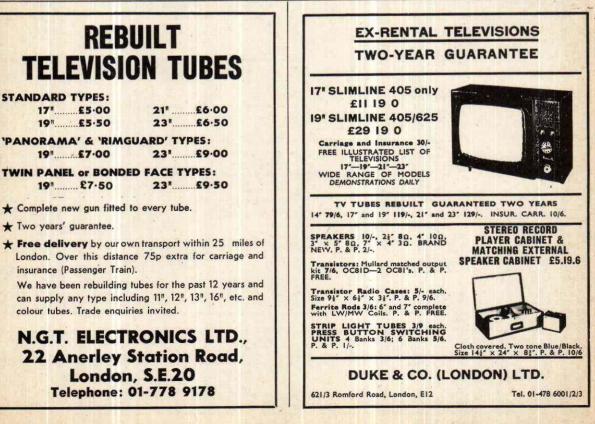
S. W. Amos BSc, CEng, MIEE, D. C. Birkinshaw MBE, MA, CEng, MIEE and K. H. Green CEng, MIERE.

This new edition of the second volume of Television Engineering has been revised to take account of 625-line frequency standards and a new chapter on transistorised tuners has been added. This volume describes the fundamental principles of video frequency amplifiers and examines the factors which limit their performance at the extreme ends of the pass-band. 0 592 05952 9 296 pages illustrated 1970 £3.50 (70s.)

F.M. Radio Servicing Handbook Gordon J. King AssocIERE, MIPRE, MRTS, GradITAI.

This handbook has been written by an experienced radio engineer with the aim of providing the theoretical and practical knowledge of FM radio receivers in a form helpful to all concerned with service work. The book is intended not only for professional service engineers, however, but also for amateur enthusiasts interested in the construction of FM equipment and for radio students. The style is straight-forward and, as far as possible, non-mathematical. 0 408 00023 6 206 pages illustrated 1970 £3.00 (60s.)

Available from leading booksellers or


The Butterworth Group 88 Kingsway London WC2B 6AB

LAWSON BRAND NEW TELEVISION TUBES

SPECIFICATION: The Lawson range of new television tubes are designed to give superb performance, coupled with maximum reliability and very long life. All tubes are the products of Britain's major C.R.T. manufacturers, and each tube is an exact replacement. Tubes are produced to the original specifications but incorporate the very latest design improvements such as: High Brightness Maximum Contrast Silver Activated Screens, Micro-Fine Aluminising, Precision Aligned Gun Jigging, together with Ultra Hard R.F. High Vacuum Techniques.

A21-11W (P) A28-14W A31-18W (P) A47-11W (P) A47-13W (T) A47-13W (T) A47-14W (M) A47-17W (P) A47-26W (P) A459-12W (P)	AW47-91 (M) MW43-64 (M) MW43-69 (M) MW43-80 (M) MW52/20 (M) AW52/20 (M) AW53-80 (M) AW53-89 (M) AW53-89 (M) AW53-90 (M)	C19/AK (M) C21/7A (M) C21/7A (M) C21/AA (M) C21/AF (M) C21/AF (M) C21/AF (M) C21/KM (M) C23/7A (M) C23/7A (M) C23/7A (M) C23/AK (M) C23/AK (M)	CME1902 (M) CME1903 (M) CME1905 CME1906 CME2101 CME2104 (M) CME2301 (M) CME2302 (M) CME2305 (P)	173K (M) 212K (M) 7205A (M) 7405A (M) 7406A (M) 7502A (M) 7503A (M) 7504A (M) 7501A (M) 7701A (M) CRM121 (M) WW31-74 (M)	REBUILT TUBES LAWSON "RED LABEL" CRTS are particularly useful where cost is a vital factor, such as in older sets or rental use, Lawson "Red Label" CRTS are completely rebuilt from selected glass, are direct replacements and guaranteed for two years.						
A59-13W (T) A59-14W (T) A59-15W (M) A59-14W (T) AW36-80 (M) AW43-80 (A) AW43-88 (M) AW43-88 (M) AW43-89 (M) AW43-89 (M)	AW59-91 (M) C17/1A (M) C17/5A (M) C17/7A (M) C17/AA (M) C17/AF (M) C17/FM (M) C17/5M (M) C19/10AP (T)	CME1201 (P) CME1402 (M) CME1601 (P) CME1602 (P) CME1702 (M) CME1705 (M) CME1705 (M) CME1706 (M) CME1706 (M)	CME2306 (T) CME2308 (M) CRM172 (M) CRM173 (M) CRM212 (M) CRM211 (M) 23SP4 (M) 171K (M) 172K (M)	A50-120W/R (P)	12–14" mono (M) 16–17" ,, ,, 19" ,, ,, ,, 21" ,, ,, ,,	Brand New Tubes £4.10.0 £5.19.0 £6.19.0 £7.19.0	Red Label Rebuilt £4. 0.0 £4.12.6 £4.17.6 £6.10.0	Carr. Ins. 10/- 12/6 15/-			
		DAD, Z Tubes train,	YEARS' GU FULL TUBE INSTRUCTIO are despatch road or goods to or customer sat	FITTING ONS ed passenger taking far too	23" " 19" Panorama (P) 23" Panorama (P) 19" Twin Panel (T) 23" Twin Panel (T) 20" Panorama (P)	£7.19.0 £9.10.0 £8.10.0 £11.10.0 £9.17.6 £13.10.0 £10.15.0	£6.12.6 £7. 5.0 £8.19.0	15/- 15/- 15/- ""			

	~			epa	rtment Who	
	e.g. NE	W	19" C.R.T's	5	OUR PRICE £5	.19.0 Plus 12/6 carr
are sho value.	AR CAPACITO 400v. 600/.500v. 600/1500v. 600/1500v. 600v. 600v. 600v. 600v. 600v. 600v. 600v.	headi	sold in packs, quantities ng. Prices are per piece BIAS ELECTROLYTICS 25mfd 25v. 50mfd 25v. 500mfd 25v. 500mfd 25v. 500mfd 25v. 1000mfd 12v. 1000mfd 25v. 2000mfd 30v. 3000mfd 30v. 5000mfd 30v. 5000mfd 30v. 5000mfd 50v.	of each	2mfd 18v. 4mfd 18v. 5mfd 18v. 8mfd 18v. 10mfd 18v. 25mfd 18v. 32mfd 18v. 32mfd 18v. 100mfd 18v.	RADIO/TV GLASS FUSES 1/8d. 1 amp, 1-5 amp, 2 amp, 3 ai 1/8d. Per dozen 3/ 1/8d. 1/8d. 1/8d. 1/8d. 1/8d. 1/8d. 1/8d. 2 amp, 3 amp, 5 amp, 13 ai 1/8d. 2 amp, 3 amp, 5 amp, 13 ai 1/8d. 2 amp, 2 amp, 5 amp, 2 amp, 5 amp, 13 ai 1/8d. 2 amp, 2 amp, 5 amp, 2 amp, 5 amp, 2 amp, 3 a
22 947 92 97 901	1000v. 1000v. 1000v. 1000v. 1000v. 1500v.	1/1d. 1/8d. 1/8d. 2/8d. 3/8d. 1/6d.	100mfd 50v. 250mfd 50v. 500mfd 50v. 2000mfd 50v. 250mfd 50v. SMOOTHING ELECTROLYTICS	2/6d. 3/8d. 4/6d. 9/0d. 10/6d.	RECTIFIERS Silicon Mains (3's) Westinghouse SIOAR2 6/6d. BY127 Mullard 5/3d. BY105 Mazda 7/0d. BY327 5/6d.	CARBON FILM RESISTORS ½ watt and I watt. The following values are packed cartons of six of each value. Prove 2/6d. per carton. 10 ohm 1-2K 11
(3's) D watt ra ropper so 3 5 3 0	Ohm Ohms "	mains 1/9d. 1/9d. 1/9d. 1/9d. 1/9d. 1/9d.	Wire ended, 450v. working Imfd 4mfd 8mfd 16mfd 32mfd 50mfd 8/8mfd	1/6d. 2/3d. 2/6d. 3/0d. 4/6d. 5/0d. 4/0d.	CONTACT COOLED FULL WAVE 12/8d. 100ma 13/8d. 150ma 16/8d.	15 1-8K 22 18 2-2K 27 22 2-7K 33 27 3-3K 39 33 3-9K 43 39 4-3K 47 43 47K 56K 67 56K 66K
57 700 50 20 30 K ·2K ·3K ·7K		1/9d. 1/9d. 1/9d. 1/9d. 1/9d. 1/9d. 1/9d. 1/9d.	8/16mfd 16/16mfd 16/32mfd 32/32mfd 50/50mfd 50/50mfd CANNED ELECTROLY	5/0d. 5/0d. 5/0d. 5/0d. 8/0d. 10/0d.	Bakelite top I0d. Egen metal 1/4d. Single point (car radio) 2/0d. SLIDER PRE-SETS (3's) 1/6d. 100K 1/6d. 1 Meg 1/6d. 2:2 Meg 1/6d.	56 6-8K 82 68 82 10K 1 100 12K 1 120 15K 1 150 18K 2 180 220 270 330
ULSE C Opf 20pf 30pf 50pf ubular t prrection	ERAMICS (3's) 22pf 47pf 68pf cype for use in circuits and	12KV 1/1d. 1/1d. 1/1d.	100/200mfd 200/200mfd 200/200mfd 200/200/100mfd 200/200/32mfd 100/300/100/16 100/400/32mfd 100/400/64/16	12/6d. 16/6d. 18/6d. 18/6d. 18/6d. 18/6d. 21/0d.	JACK PLUGS Chrome standard 4/0d. Standard 3/0d. 3·5mm. metal 3/0d. DIN PLUGS (3's)	390 - 43K 44 430 - 47K 5 470 ' 56K 6 560 ' 68K 6 560 ' 68K 8 680 ' 82K 10 820 ' 100K 12 1K '' 120K 15 All the above values are available both § watt and I watt versions. 100K 12
CERAMI 00pf 80pf 20pf 500pf 500pf 500pf		8d. 8d. 8d. 8d. 8d. 8d. 8d. 8d.	SKELETON PRE-SETS (25K Vertical 50K " 100K " 250K " 500K " 1 meg " 2 meg " 500K Horizontal 680V "	3's) 1/4d. 1/4d. 1/4d. 1/4d. 1/4d. 1/4d. 1/4d. 1/4d. 1/4d.	3-pin 1/10d. 5-pin 2/2d. Sockets 1/0d. DOUBLE DIODE RECTIFIERS (3*s) Bush/Murphy/BRC, etc. Line/frame timebases etc. 3 leg 6/3d. 4 leg 6/3d.	*Special for Philips TV's: 8-2M 2-watt, 4/6d, per pack.

ACOS: GP67/2g. High gain general purpose Mono 16/8d. GP91/SC. Stereo-compatible replacement 22/0d. GP91/SSC. High gain version of above 22/0d. GP94/ISS. Stereo cartridge 33/9d. GENERAL PURPOSE REPLACEMENT FOR TC8's etc. High gain, plenty of output (Jap.) 37/9d.	SERVISOL AND ELECTROLUBE PRODUCTS (Nett trade) Servisol aerosol can Electrolube 2AX aerosol Servisol Freezit Electrolube No. I Snorkel Electrolube No. I Snorkel Electrolube 2GX Grease Servisol Aero-Clene for tape heads Servisol Aero-Clene for tape heads		TC8 4/6d. GC8 4/6d.
--	--	--	------------------------

REBUILT BRAND NEW				BRAN	ID I	NEW	A FEW SAMPLE TYPES, REMEMBER WE STOCK EVERY					
17"	a	£4	14	6	£5	10	0	CME1702, AW43-80, CRM173, MW43-80, MW43-69*, CRM172*, AW43-88, AW43-89, CME1705, CME1703, C17AF, C17SM, etc.				
19"	a	£4	17	6	£5	19	0	CME1903, CME1902, CME1901, AW47-90, AW47-91, A47-14W, C19AH, C19AF, C19A.				
21"	a	£7	5	0	£8	10	0	CME2101, AW53-88, AW53-89, CRM211*, CRM212*, MW53- 20*, MW53-80*.				
23"	a	£7	5	0	8£	19	0	CME2303, CME2301, AW59-90, AW59-91.				
IN STOC	OLOUR TUBES ALL PRICES ARE NETT N STOCK. RICES ON TWIN 19" CME1906 PPLICATION PANELS 19" A47-13W				10"	CME	1906 2	*NEW ONLY. NO REBUILDS £10 1 0 23" CME2306 A59/13W } £16 1 0				

e.g. New VALVES . . . 331 plus 13% plus quantity discounts 6%

RADIO	AND TE	LEVISION V	ALVES SM	ALL SELEC	TION
British m	ade valves	normally sup	plied. EVER	Y TYPE IN	STOCK
DY86/7 DY802 EABC80 EB91 EBC90 EBF80	10/- 9/1 12/8 8/2 10/10 10/10	EY86/7 EZ80 EZ81 EZ90 GZ34 GY501	10/- 10/10 8/2 9/3 13/7 15/9	PCL86 PD500 PFL200 PL36 PL81 PL81A	11/4 31/7 15/9 16/4 13/7 14/6
EBF89 ECC81 ECC82 ECC83 ECC804 ECH81	10/10 10/0 10/0 15/4 14/6	PC86 PC88 PC97 PC900 PCC84 PCC88	14/6 14/6 10/10 12/8 10/0 16/8	PL82 PL83 PL84 PL302 PL504 PL508	10/10 13/8 12/8 13/7 20/- 20/4
ECH84 ECL80 ECL82 ECL83 ECL84 ECL86	12/8 9/6 12/8 13/4 11/4 12/8	PCC89 PCC189 PCC806 PCF80 PCF86 PCF87 PCF87	13/7 13/7 15/9 11/4 13/7 18/1	PL509 PY33 PY81 PY800 PY801 PY82	31/7 12/2 10/10 10/10 10/10 8/4
EF80 EF85 EF86 EF89 EF183 EF184 EH90 EL34 EY51	9/6 12/8 16/4 10/10 12/8 12/8 12/8 13/7 10/0 13/7	PCF801 PCF802 PCF805 PCF806 PCF808 PCL82 PCL83 PCL84 PCL85	13/7 13/7 14/11 13/7 14/11 11/4 13/4 13/7 13/7	PY83 PY500 UABC80 UCH81 UCL82 UCL83 UL41 UL84 UY85	13/7 20/4 13/7 13/7 12/8 14/6 14/6 12/8 9/0

ALL MAZDA/BRIMAR TYPES IN STOCK.

TRADE & SERVICE ENGINEERS ONLY SUPPLIED Cash with order. 10% MAY BE DEDUCTED FROM THE ADVERTISED PRICES EXCEPT FOR NETT ITEMS, C.O.D., OR TUBES

All orders must exceed £5 in value otherwise postage and packing will be charged at 5/0d, per invoice. Components must be ordered in multiples as packed.

COMPREHENSIVE CATALOGUE listing valves, tubes, L.O.P.T.'s components, transistors, including HUGE VALVE EQUIVALENTS LIST. 2/6 in loose stamps, please.

FRAME OUTPUT, SOUND OUTPUT AND MAINS TRANSFORMERS REWOUND

REMEMBER . . . We are the Service department Wholesalers and supply only the Service Engineers' requirements and can therefore carry large stocks, and also we know and understand your problems regarding getting the right spares QUICKLY and the RIGHT PRICE. HOT-LINE ORDERS: LONDON 01-567 5400-2971.01-579-3582. SOMERSET 045-84-2597

4 & 5 THE BROADWAY, HANWELL, LONDON, W.7 *Telephones:* 01-567 5400 01-567 2971 01-579 3582 and at 42 WEST END STREET, SOMERSET 045-84 2597

SERVICING · CONSTRUCTION · COLOUR · DEVELOPMENTS

WHAT'S IT ALL ABOUT?

Two items recently seen in print, although from very dissimilar sources and setting up two independent trains of thought, converged (of course !) at one point in the editorial brooding process, leaving a rather nagging problem.

In Wireless World the editor reminded us of the staggering fact that of the radio frequency spectrum up to 1,000MHz more than 500MHz is occupied by TV broadcasting! Following a discourse on frequency allocations he sets the problem of "How, for example, to weigh 8MHz-worth of Coronation Street against 8MHz-worth of ambulance radio communication?" In short TV takes the lion's share of the most useful part of the r.f. spectrum, but is this justified?

In the London Evening Standard critic Milton Shulman erupted on the TV programme fare offered over the Christmas holiday, establishing an "electronic holiday camp mood" and an atmosphere of "gluttonous festivity and complacent euphoria." "For four days" he wrote "an illusion is created that Britain has been released from the rest of the world and, like some vast balloon, is suspended in a vacuum of festive bonhomie unconcerned and unconnected with the cares and troubles of mankind."

He grumbled that current affairs programmes were banished, news coverage shrunk and that for 11 days we were denied Nationwide, 24 Hours, World in Action, etc. "Television" he concluded "ever more preoccupied with the glib and superficial aspects of mass taste, is letting the nation down."

Much of TV is of course glib and superficial, but the danger of an advocate overstating his case is to create a backlash. Mr. Shulman's tirade served principally to convey the impression that he must be desperately sad and out of touch with the rest of us ordinary, frivolous beings. For to be honest how many viewers wanted depth coverage of depressing world events (which we get all through the rest of the year) during a holiday break? What is wrong with lightening the gloom?

And this is where our two isolated trains of thought come together. What is television for ? To entertain purely and simply or to inform and educate? To form a social service giving a measure of escapism in one's leisure hours, or as a cultural uplift. And once its role in society is decided does it justify its enormous appetite for spectrum space? Let us know what you think.

W. N. STEVENS-Editor

THIS MONTH

Teletopics	150
Build this Simple EHT Meter by E. Trundle	152
by E. Hundle	152
Belmont Service Area Map	154
SHF TV Reception	155
Video LF Response by S. George	156
Service Notebook by G. R. Wilding	160
DC Restorer Mod for Pye-Ekco Sets by M. Pitlock	162
Flashover Protection—Part 2 by E. J. Hoare	163
DX-TV by Charles Rafarel	167
Carmel Service Area Map	167
Improve Your TV Audio Channel by M. A. Harris, B.Sc.	168
by W. A. Hans, D.Sc.	100
Workshop Hints by Vivian Capel	170
Circuit Notes by H. K. Hills	172
Servicing Television Receivers—Baird 620-640 series continued	
by L. Lawry-Johns	175
Colour Receiver Circuits—IF Strip—2 by Gordon J. King	178
Your Problems Solved	182
Test Case 98	186
THE NEXT ISSUE DATED MARCH	
WILL BE PUBLISHED MARCH 8	

© IPC Magazines Limited 1971. Copyright in all drawings, photographs and articles published in "TELEVISION" is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by "TELEVISION" to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press. All correspondence intended for the Editor should be addressed to Fleetway House, Farringdon Street, London, E.C.4. Address correspondence regarding advertisements to Advertisement Manager, Fleetway House, Farringdon Street, London, E.C.4. Address enquiries about back numbers to Back Numbers Dept., Carlton House, Great Queen Street, Lond n, W.C.2.

ISSUE 244

VOL 21 No 4

FEBRUARY 1971

FIRST QUARTER-INCH VTR SYSTEM

A new self-contained videotape recording-playback system, the Akai VT100, has been introduced by The Rank Organisation (Rank Audio Visual, Audio Products Division, PO Box 70, Great West Road, Brentford, Middlesex). The key unit in the system is a 4in. videotape recorder which is smaller than most portable typewriters and is able to both record and playback using its own batteries. The complete system with camera, clip-on monitor and batteries weighs less than 24lb, and can be used slung over the shoulder and under both indoor and outdoor conditions. The system can also be operated from the mains or a 12V car battery. The complete system costs £568 while a spool of tape with 20 minutes playing time costs £4. The package includes a 4:1 zoom lens camera with built-in microphone and through-the-lens viewfinder, 3in. monitor which clips on to the recorder, two rechargeable batteries and a charger unit which can be used to recharge the batteries or operate the machine from the mains-or do both simultaneously. As the system is not intended for domestic use it is not subject to purchase tax

LATEST UHF TRANSMISSIONS

BBC-1 is now being transmitted from Sudbury on channel 51 (horizontal polarisation, aerial group B), Durris (Kincardineshire) on channel 22 (horizontal polarisation, aerial group A), Hemel Hempstead on channel 51 (vertical polarisation, aerial group B), Pendle Forest (Lancashire) on channel 22 (vertical polarisation, aerial group A) and Tunbridge Wells on channel 51 (vertical polarisation, aerial group B). BBC-2 transmissions have started from Fenham (Newcastle upon Tyne) on channel 27 (vertical polarisation, aerial group A) and Londonderry on channel 44 (vertical polarisation, aerial group B).

SMALL MONITOR TUBE

Brimar have introduced a new 1in. instrument tube, type D3-130GH, for such applications as data processing equipment display, sync pulse and dot pattern generator monitoring, frequency drift indicators and modulation monitors. The D3-130GH low-voltage, general purpose oscilloscope type tube features low cost, small spot size, freedom from trapezium distortion, good focus uniformity, high sensitivity so that it is suitable for operation with transistor circuits and operation with an e.h.t. as low as 500V so that power supplies can be kept relatively simple. Focusing and deflection are electrostatic and the maximum overall length is 103-2mm. with a minimum useful screen diameter of 27mm. The maximum diameter is 33.3mm. and the base type B13B. Further details from Thorn Radio Valves and Tubes Ltd., 7 Soho Square, London W1V 6DN.

ITV-1971

The ITA's annual handbook, *ITV 1971—Guide to Independent Television*, is now available at bookshops and bookstalls or from Independent Television Publications Ltd., 247 Tottenham Court Road, London WIP OAU. The theme this year is "do you want to be a television expert?", one of the main objectives being to answer as many as possible of the television questions viewers are likely to ask. The 240 pages with lashings of colour—provide comprehensive information on all aspects of ITV from engineering developments to advertising control. But at 15/-d. (75p) inflation seems to have caught up with it: last year's handbook sold at 10/6d.

UHF FIELD EFFECT TRANSISTOR

An f.e.t. intended for use as a u.h.f. amplifier or mixer has been introduced by Siliconix Ltd. (Saunders Way, Sketty, Swansea). The type E300 is an epoxy-encapsulated low-cost version of the 2N5397, costing 15/6d. for a single device—reducing to 7/-d. for large quantities. The power gain at 450MHz in the commongate mode is 12dB, with a noise figure of 4dB. The noise figure can be reduced at the expense of power gain.

VIDICONS FOR EXPERIMENTERS

We understand from the EMI Electronic Tube Division (Hayes, Middlesex) that the prices of their vidicons for the experimenter have been reduced as follows:

9677Amateur, Low-grade tube for experiments, £12 10667M, Integral-mesh tube, £10.

RTS MEETINGS

Amongst technical subjects to be dealt with at forthcoming meetings of the Royal Television Society are *Colour EVR* on February 18, *Recent Developments* in Colour Tubes on March 4, Low-light TV on March 18 and New Techniques in Video Mixing on April 15. These meetings will be held in the Conference Suite, ITA, 70 Brompton Road, London, SW3, commencing at 7 p.m. Non-members of the Society are admitted to meetings on presentation of a signed ticket obtainable from any member or from the Society at 166 Shaftesbury Avenue, London, WC2H 8JH.

SET NEWS

Two new colour sets have been announced. From Pye comes the CT79 26in. model at £349. This is fitted with their 691 single-standard chassis. From **B** and O comes the Beovision 2600 Colour K, a singlestandard 22in. model at £359 with teak finish and £364 with rosewood finish. The set features external loudspeaker and tape recorder sockets and twin loudspeakers, one at each side of the screen. Deliveries of Japanese-made PAL-standard Hitachi colour receivers are expected to start early in April.

The **Thorn** videocassette equipment mentioned last month is due to be introduced during the first half of 1972.

Mitsubishi in Japan have announced that they have had to cut back colour set production by some 20%because of mounting stocks. About 40% of Japanese households are now equipped with colour sets. If this means that the colour set market in Japan has reached some sort of saturation point at current prices, we can expect to see increased export efforts.

Meanwhile colour set deliveries in the UK remained in November at almost the high level attained in October, according to BREMA. The figure was 55,000, bringing the total at that date for 1970 to 417,000. Monochrome set deliveries during November fell away to 149,000.

IMPORT ESTIMATES

Speaking at the November meeting of the East Midlands Radio Industries Club, Dennis Swannack, general sales manager of Radio and Allied (Sobell-GEC), gave figures indicating the growing penetration of the UK TV set market by imports from the Far East and Europe. Comparing the first nine months of 1970 with the same period in 1969, he said that monochrome imports had increased from 13,000 to 73,000 while colour imports had increased from 1,500 to 12,000. Whilst the totals are not great, he felt that the percentage increases were significant. The figure for portable monochrome TV set imports from Japan during the first half of 1970 was 19,500, an increase of more than six times over 1969.

NEW PRODUCTS

I-Beam Aerials Ltd. (Rothersthorpe Crescent Northampton) have redesigned their Logbeam logperiodic u.h.f. aerial. In log-periodic aerials the elements are mounted alternately on two booms which are insulated from each other, the output being taken from across the ends of the two booms. J-Beam point out that field tests have shown that under adverse weather or atmospheric conditions moisture, snow or soot can build up on the aerial upsetting the insulation between the booms and thus causing a deterioration in performance. The solution adopted with the redesigned Logbeam aerial is to increase the separation between the booms, and the new aerial has been given a triangular shape. The suggested retail price is £4 10s. An improvement in maintaining the gain of the aerial throughout its bandwidth is also claimed for the new design.

The first of a new series of integrated circuits for use in TV sets has been announced by Mullard Ltd. This, the TBA550, replaces the previous TAA700 as a central signal processing device providing video preamplification, field and line sync pulse separation A new pocket-size multimeter, the Multimetrix MX209A, has been introduced by ITT-Metrix and is available through ITT Electronic Services, Edinburgh Way, Harlow, Essex. The meter has a total of twenty nine ranges, selected by a thumb selector, and an extensive range of accessories is available including voltage dividers, a.c. and d.c. high-voltage probes, d.c. shunts and an ohmmeter adaptor.

Olson Electronics Ltd. (Factory 8, 5-7 Long Street, London, E2) have introduced a crosshatch and dot generator at £36. The output is at r.f. on 405 or 625 lines, continuously variable from channel 6-13 in the v.h.f. band and 29-43 in the u.h.f. band. The crosshatch pattern is adjustable from 5 to 25 lines by means of front panel vertical and horizontal controls. A further switch gives blank raster, crosshatch or dots.

The new Shibaden SV-700ED videotape recorder has been introduced by General Video Systems Ltd. (61-63 Watford Way, Hendon, London NW4 3AX). This is a modified version of the SV-700 series equipped with an electronic editing system which enables intermittent recording or the insertion of other material into a prerecorded programme to be undertaken. Other features are still framing and an automatic gain control system.

The first of a new range of solid-state oscilloscopes has been introduced by Metronic Ltd., Birchen Napps Platt, Nr. Sevenoaks, Kent. The MSB100 is a singlebeam instrument with rectangular c.r.t. giving a display area of 5×4 cm. The vertical amplifier response is d.c. to 4-5MHz at 100mV/cm., and an f.e.t. input stage is used. The timebase is calibrated from 10msec/ cm. to 100msec/cm. in six steps with a 15:1 variable control for manual setting. Synchronisation is automatic with a screen deflection greater than 1cm. Price is £56.

ADM Business Systems Ltd. (64-66 King Street, London, W6) are marketing a new Toshiba portable CCTV system which costs £235 and comprises a mini camera (type 2A) with tripod, interphone, 5in. monitor and 10 metres of cable. In the on position the equipment can be used continuously whilst in the stand-by position the equipment will automatically become operational for 40 seconds after the call button on the interphone or monitor is pressed.

A convergence generator has been introduced by Gifkins Electronics (Egerton Works, Egerton Street, Salford 3, Lancs) which provides crosshatch, greyscale and 75% peak white outputs in the v.h.f. channels D-I (8MHz spacing) and the u.h.f. channels 21-68. A 2V composite video output is also provided.

The DTV Group Ltd. (126 Hamilton Road, West Norwood, London SE27) has introduced a range of microresistors with dimensions of approximately $3\cdot3mm \times 2\cdot2mm$, and resistance values in the range 51Ω to $100k\Omega$. The tolerance is 5%, wattage rating $\frac{1}{16}W$ and maximum voltage 100V. They are constructed from metal glaze resistor paste, ceramic bases, solder metal plated copper wires and insulating colour-code paint.

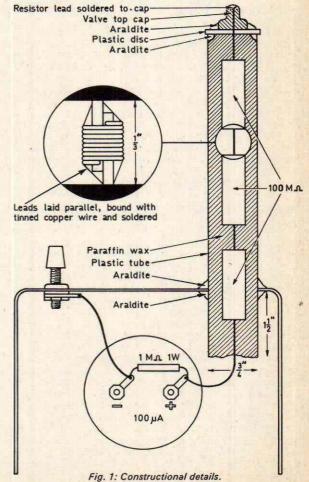
Specification details of over 140 EMI photomultiplier tubes are contained in a new 64-page publication available from the Electronic Tube Division of EMI Electronics Ltd., Hayes, Middlesex. General information on the selection and use of photomultiplier tubes is also given.

BUILD THIS

E. TRUNDLE

In these days of solid-state circuitry and semiconductor e.h.t. rectifiers—especially in colour receivers haphazard spark testing for e.h.t. is definitely out and an accurate and safe method of checking the e.h.t. voltage is indispensable. Commercial instruments are costly so it was decided to try to evolve a cheaper alternative. The design finally produced can be made for less than half the cost of its commercial equivalent. It is important however that the constructional details given below are *strictly adhered to*, especially the multiplier column, if the finished instrument is to be safe at its working voltage.

Multiplier Column


Three resistors are used in the multiplier column, enclosed in a $7 \times \frac{1}{4}$ in. plastic water pipe and impregnated with paraffin wax. The construction is illustrated in Fig. 1. First obtain a $\frac{1}{4}$ in. diameter disc of thin plastic or perspex and drill a small central hole in it. Take a top cap from an old valve such as an EY86-7 or DY86-7 and place this on top of the plastic disc. Then pass the lead from one of the resistors through the hole in the disc and solder it to the top cap, making a nice rounded joint as shown in the diagram.

Cut the resistor leads to $\frac{1}{3}$ in. at the resistor junctions, then wrap them together with tinned copper wire and solder as shown in the insert in Fig. 1. It is important to avoid sharp points on these solder joints in order to prevent corona discharge. When the three resistors have been joined together in this way roll the string of resistors carefully between boards to ensure accurate mechanical alignment. Wipe the resistors down with a cloth soaked in lighter fuel and take care not to touch them again as you insert the string of resistors down through the column. Cement the plastic disc to the top of the plastic pipe and the metal top cap to the disc with Araldite. When these joints are hard the process of impregnation can begin. Melt the paraffin wax (candle grease will not do) and gently heat to drive off air and moisture. Allow the paraffin to cool until comfortable to touch and then pour carefully into the pipe at the same time ensuring that the resistors are central within the pipe. As the wax contracts as it cools, impregnation should be done in four stages. Finally fill flush to the end and leave to solidify.

Final Assembly

The meter housing used is available from Radiospares through dealers and comes with one black and one red terminal. Remove the red one and enlarge the hole to a diameter of $\frac{1}{4}$ in. (this is most easily done by drilling a circle of small holes, breaking the circle out and cleaning up with a half-round file). The column should be a tight fit in the hole. Push it through so that $1\frac{1}{2}$ in. protrudes into the meter housing and cement the case to the column with Araldite.

Wire the end multiplier resistor to the positive terminal of the meter and connect the meter negative terminal to the black terminal on the case. The soldered joints here must be very carefully made because any open-circuit will raise the whole instrument to the full e.h.t. potential. The $1M\Omega$ 1W resistor connected across the movement is there to prevent the full e.h.t. voltage appearing across any break that may occur inside the meter movement.

STEPHENS ELECTRONICS, P.O. BOX 26, AYLESBURY, BUCKS.

SEND S.A.E. FOR LISTS GUARANTEE Satisfaction or money refunded.

GUARANTEED VALVES BY THE LEADING MANUFACTURERS BY RETURN SERVICE

I YEAR'S GUARANTEE ON OWN BRAND, 3 MONTHS' ON OTHERS

10 S																					1000
AZ31	10/-	ECF80/2	9/61	EL803	17/-1	PCC85	8/61	PY83	10/-1	UL41	11/6	6AR5	6/61	6EH7	6/6.1	68G7	6/61	12BE6	6/61	30P18	7/-
AZ50	12/-	ECF86 1	11/-	EL821	11/-	PCC88	14/-			UL84	11/-	6AR6		6EJ7	7/-	68J7		12BH7		30P19	15/-
CBL1	16/-	ECH35 1	18/6	ELL80	15/-	PCC89	12/8	PY500		UM80/4	9/-	6485		6EW6		6SK7				30PL1	15/6
CBL31	17/-			EM34		POC189	12/8			UY41	8/-	6A87G		6F1		68L7GT		12K5		30PL13	18/-
CY31	7/-	ECH81		EM71	12/6	PCF80	10/8			UY85	6/9	6AT6	9/-	6F5	8/-	6SN7GT		12K7GT		30PL14	17/-
DAF91	8/3	ECH83		EM80	8/-	PCF82	10/6	QQV03-10	201	U25	15/-	6AU6	5/9	6F6G	5/-	6807	8/-	1207G		35A3	10/-
DAF96	8/8	ECH84		EM81	8/6	PCF84	9/6	66100-10	25/-	U26	15/-	6AV6	6/-	6F11	6/6	6SR7	7/6	12807		35A5	11/-
DF91	9/-	ECL80		EM84	7/6	PCF86		0702 10		U191	14/6	6BA6		6F12			6/6	12807 12867			18/-
DF96	8/-	ECL82	9/9	EM87	11/-	PCF200/1	16/3	QV03-12 R19	18/-	U191 U193	8/8	6BE6	12/-	6F13	2/0	6T8 6U4GT	12/6	12807 128H7		35B5	7/-
DK91	11/6		11/8	EN91	6/6	PCF200/1 PCF801	12/8	R19 R20	15/-			6BH6	8/6	6F14	12/-	6U8	12/0	128H7 128J7		35C5 35D5	18/-
DK96	11/6			EY51			12/3			U301	17/-						010				
DL92	7/6			EY80	8/-	PCF802		SU2150A	15/-	W729	11/-	6BJ6	8/6	6F15		6V6GT	6/6	128K7		35L6GT	9/6
DL92 DL94					8/-	PCF805	18/-		48/-	Z759	24/6	6BK7A	10/-	6F18	8/-	6X4	0/-	128L7GT		35W4	5/-
DL94 DL96	7/8	EF39		EY81	11/	PCF806	12/8	TT22		OA2	6/6	6BL8	7/-	6F22	6/6	6X5GT	5/8	128N7GT		35Z3	11/-
DL96 DM70	9/8			EY83	11/-	PCF808	18/6		18/6	OAS	9/-	6BN5	8/6	6F23	15/6	6X8	11/-	128Q7		35Z4G	5/-
	6/6			EY86	8/-	PCH200	14/-		18/6	OB2	6/6	6BN6	8/-	6F24		6Y6G	12/-	128R7		35Z5GT	7/8
DY86/7	8/-		8/8	EY87	8/6	PCL82	10/8		15/-	OB3	10/-	6BQ5	5/-	6F25	15/-	7¥4	12/-	1487	16/-	50A5	18/-
DY802	8/6		18/8	EY88	8/6	PCL83	12/8		15/-	OC3	7/-	6BR7	15/-	6F26	7/-	9BW6	8/6	20D1	9/-	50B5	7/-
E55L	55/-	EF89'	8/-	EZ35	0/6	PCL84	10/8		9/-1	OD3	6/6	6BR8	19/-	6F28	14/-	10C2	10/-	20L1	20/-	50C5	7/-
E88CC	8/-			EZ40	9/-	PCL85	10/8			3Q4	8/-	6BW6	16/6	6F29		10D1	8/-	20P1	10/-	50L6GT	8/-
E130L	90/-	EF92	10/-	EZ41	9/-	PCL86	10/8		8/-	354	7/-	6BW7			7/-	10D2	8/-	20P3	12/-	83A1	18/-
E180F	19/-	EF93	9/6	EZ80	5/6	PD500	80/6		6/-1	374	8/-	6BX6	5/-		9/6	10F1	18/-	20P4	20/-	85A2	7/6
EABC80	10/6		15/6	EZ81	5/6	PFL200	14/9		5/-	5R4GY	11/-	6BZ6	6/6	6J5GT	6/-	10F9	10/-	20P5	20/-	90AV	48/-
EAF42	10/-		12/6	EZ90	5/-	PL36	12/9		5/-	5U4G	6/-	6C4	6/-	6J7	8/6	10F18	8/-	25C5	9/-	90C1	12/-
EBC33	11/-		11/8	GS10C	100/-	PL38	18/-		15/-	5U4GB	7/6	6C5GT	7/-	6K6GT	10/-	10L1	8/-	25L6GT	7/6	90CV	25/-
EBC41	9/6	EF184	7/-	GY501	16/-	PL81	10/8		7/-	5V4G	8/-	6CD6G	28/-	6K7	6/6	10LD11	11/-	25Z4G	6/-	807	9/6
EBC81	6/6		42/-	GZ30	7/6	PL81A	12/6	U281	8/-	5Y3GT	6/-	6CA4	5/6	6K8G	6/-	10P13	11/-	25Z6GT	10/-	811A	80/-
EBC90	9/6		20/-	GZ31	6/-		7/8		8/-	5Z3	9/-	6CA7	10/6		10/-	10P14	20/-	30A5	8/-	812A	65/-
EBF80	8/-		20/-	GZ32	9/6	PL83	10/8		11/8	5Z4GT	8/-	6CBC	5/6	6K25	15/-	12AB5	10/-	30AE3	8/-	813	75/-
EBF83	8/-		15/-	GZ33	16/-		8/8		10/-	6/30L2	15/-		28/-	6L6GT	9/-	12AC6	7/8	30C15	15/-	866A	14/-
EBF89	8/-		10/6	GZ34	11/-		16/6		7/8	6AB4	6/6		9/-	6L7	6/6	12AD6	7/8	30C17	16/-	5642	12/-
EB91	5/8	EL36	9/6	HK90	6/6		17/-	U801	20/-		9/6		11/-	6L18	6/-	12A15	8/-	30C18	15/-	6080	27/6
EC53	10/-	EL41	11/-	HL92	7/-	PL505	29/-	UABC80	10/6		7/6		10/-	6LD20	6/6	12AQ5	8/-	30F5	17/-	6146	30/-
EC86	12/-		11/6	HL94	8/-		20/-	UBF89	8/-		10/-		12/6	6N7GT	7/-	12AT6	5/-			6146B	47/8
EC88	12/-		10/-	KT66	27/6		80/9		9/9		5/9		8/-	6P1	12/-	12AU6	15/-	30FL1	15/-	6267	6/6
EC90	6/-	EL83	8/8	KT88	38/-	PL802	17/8		9/8	6AK5	6/-		12/-	6P25	21/-	12AV6	6/-	SOFL2	18/6	6360	25/-
EC92	6/6	EL85	8/6	N78	21/-	PL805	17/8	UCH42	18/9		11/6		8/-	6P28	12/6	12AV7	9/-	30FL13	10/-	6939	42/
EC93	9/6	EL86	8/6	PABC80) 8/-	PY33	12/8		10/9	6AL3	8/6	6DC6	18/6		7/6	12AX7	6/-	30FL14	15/6		15/-
ECC81	8/-	EL90	6/6	PC86/8	10/8	PY80	6/6		10/8		8/8	6DK6	8/6	10.0.		12AY7	18/6	30L1	7/-	7360	86/-
ECC82/3	8/6	EL91	5/-	PC95	7/8	PY81	8/8		12/8		5/-	anoan		6R7G	7/-						
ECC84/5	8/6					I F 1000	8/8		11/-		4/6		12/-	682	8/-	12B4A	10/-	30L15	17/-		25/-
ECC88	11/-	EL95	7/-	PC97	8/8		8/8		7/8	6AQ5	6/6		15/-	684A	11/-		6/6	30L17	17/-	9002	6/6
E880C	12/6	EL360	28/-	POC84	9/8	PY82	7/-	UF89	8/8	6AQ6	10/-	6EA8	11/-	68A7	7/8	12BA7	6/6	30P12	16/-	9003	10/-

SEMICONDUCTORS

BRAND NEW · MANUFACTURERS' MARKINGS · NO REMARKED DEVICES

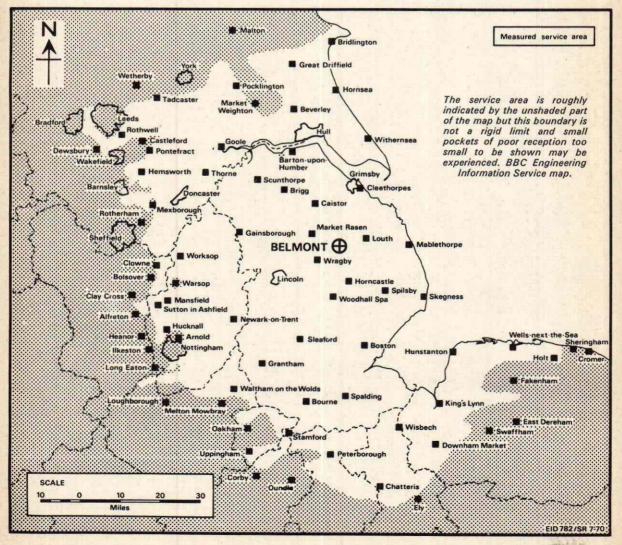
																					1003
2N388A	12/6	2N2193A	10/-	2N3055	15/-1	2N3854	5/8	2N5176	8/-1	40315	9/6	AF106	9/81	BC117	7/91	BCY54	6/61	BF238	6/6 1	BSX20	8/6
2N404	4/8	2N2194A	4/6	2N3133	6/-	2N384A		2N5232A	6/-	40316	12/6	AF114		BC118	6/6	BCY58		BF257		BSX21	7/6
2N696	4/-	2N2217	5/6	2N3134	6/-	2N3855	5/6	2N5245	12/6	40317	9/6	AF115	6/-	BC121	4/-	BCY59		BF22A		BSX26	9/-
2N697	4/-	2N2218	6/6	2N3135	5/-	2N3855A	6/-	2N5246	12/6	40319	18/6	AF116	5/-	BC122	41-	BCY60		BFX12		BSX27	9/8
2N698	5/-	2N2219	6/6	2N3136	5/-	2N3856	6/-	2N5249	18/6	40320	9/8	AF117	5/-	BC125	11/-	BYC70	4/-	BFX13		BSX28	6/6
2N699	12/6	2N2220	5/-	2N3340		2N3856A	7/-	2N5249A	18/6	40323	8/6	AF118	12/-	BC126	11/-	BCY71		BFX29	7/-	BSX60	16/6
2N706	2/6	2N2221	5/-	2N3349	26/-	2N3858	5/-	2N5265	65/-	40324	11/6	AF119	4/-	BC134		BCY72		BFX43		BSX61	12/6
2N706A 2N708	2/6	2N2222 2N2287	6/-	2N3390 2N3391		2N3858A	6/-	2N5266	55/-	40326	19/6	AF124	4/6	BC140	7/6	BYZ10		BFX44		BSX76	4/6
2N709	12/6	2N2287 2N2297	6/-	2N3391A	4/-	2N3859 2N3859A	5/6	2N5267	52/6	40329	7/-	AF125	4/-	BC147	8/6	BCZ11		BFX68		BSX77	5/8
2N718	5/-	2N2368	8/6	2N3392	4/-	2N3860	6/-	2N5305 2N5306	7/6	40344 40347	7/- 8/6	AF126 AF127	4/-	BC148	8/-	BD116		BFX84		BSX78	5/8
2N718A	6/-	2N2369	3/6	2N3393	4/-	2N3866	80/-	2N5307	7/6	40348	12/8	AF12/ AF139	8/6 7/6	BC149 BC152	3/6 3/6	BD121 BD123		BFX85 BFX86	7/- 6/-	BSY10 BSY11	5/6 5/6
2N726	6/-	2N2369A	4/-	2N3394	4/-	2N3877	8/-	2N5308	7/6	40360	11/-	AF178	9/-	BC152 BC157	4/-	BD123 BD124	12/-	BFX87		BSY24	8/-
2N727	6/-	2N2410	8/6	2N3402		2N3877A	8/-	2N5309	12/6	40361	12/6	AF179	9/-	BC158	8/6	BD131		BFX88		BSY25	8/-
2N914	8/6	2N2483	5/6	2N3403	4/6	2N3900	7/6	2N5310	8/6	40362	18/6	AF180	10/6	BC159	4/-	BD132		BFX89		BSY26	8/6
2N916	8/6	2N2484	6/6	2N3404	7/6	2N3900A	8/-	2N5354	5/8	40370	7/8	AF181	8/8	BC160	12/6	BDY10		BFY10		BSY27	8/6
2N918	6/-	2N2539	4/6	2N3405	9/-	2N3901	19/6	2N5355	5/8	40406	14/6	AF186	13/4	BC167	3/-	BDY11		BFY11	8/6	BSY28	8/6
2N929	4/6	2N2540	4/6	2N3414		2N3903	7/-	2N5356	6/6	40408	12/6	AF239	8/6	BC168B	2/9	BDY17	87/6	BFY17		BSY29	8/6
2N930	5/6	2N2613	7/-	2N3415	5/6	2N3904	7/-	2N5365	9/6	40467	16/6	AF279	9/6	BC168C	8/-	BDY18		BFY18		BSY32	5/-
2N987 2N1131	10/6	2N2614 2N2646	6/-	2N3416 2N3417	7/6	2N3905	7/6	2N5366	6/6	40467A	14/6	AF280	12/8	BC169B	2/9	BDY19		BFY19		BSY36	5/-
2N1131 2N1132	6/6	2N2696	6/8	2N3439	26/-	2N3906 2N4058	7/6	2N5367 2N5457	11/6	40468A AC107	14/6	AFZ11 ASY26	6/6	BC169C	8/-	BDY20		BFY20		BSY37	5/-
2N1302	8/8	2N2711	6/-	2N3440	19/6	2N4059	5/-	28005	15/-	AC117	6/-	AST20 ASY27	5/-7/6	BC170 BC171	8/6 8/6	BDY38 BDY60	19/6 36/-	BFY21 BFY24		BSY38 BSY39	4/6 4/6
2N1303	8/6	2N2712	6/-	2N3570	17/6	2N4060	5/-	28020	37/6	AC126	4/-	ASY28	5/6	BC172	8/6	BDY61	36/-	BFY25		BSY40	6/6
2N1304	4/6	2N2713	5/6	2N3572	17/6	2N4061	4/6	28102	6/6	AC127	5/	ASY29	5/6	BC175	5/6	BDY62		BFY26		BSY51	6/6
2N1305	4/6	2N2714	6/-	2N3605	5/6	2N4062	4/6	28103	6/6	AC128	4/-	ASY36	5/-	BC182	4/6	BF115	5/-	BFY29		BSY52	6/6
2N1306	5/-	2N2865	12/6	2N3606	5/6	2N4244	9/6	28104	8/6	AC154	4/6	ASY50	5/-	BC183	4/6	BF117	9/6	BFY30	10/-	BSY53	7/6
2N1307	5/-	2N2904	7/-	2N3607	4/6	2N4245	8/6	28501	5/6	AC176	5/-	ASY51	6/6	BC184	4/6	BF163	7/-	BFY41	10/-	BSY54	8/-
2N1308 2N1309	6/	2N2904A	8/-	2N3662	7/6	2N4254	8/6	28502	5/6	AC187	12/6	ASY53	5/-	BC182L	4/-	BF167		BFY43		BSY56	18/-
2N1507	5/8	2N2905 2N2905A	8/-	2N3663 2N3702	7/6	2N4255 2N4284	8/6 3/6	28503 3N83	5/6	AC188 ACY17	7/6	ASY54	5/-	BC183L	8/6	BF173		BFY50		BSY78	9/6
2N1613	5/-	2N2906	6/-	2N3703	4/6	2N4285	3/6	3N128	18/6	ACY18	5/-	ASY62 ASY63	3/6	BC184L BC187	4/-	BF177 BF178	0/0	BFY51 BFY52		BSY79 BSY82	9/-
2N1631	8/6	2N2906A	6/6	2N3704	4/6	2N4286	3/6		19/6	ACY19	5/-	ASY72	5/-	BC212L	4/6	BF179	14/6	BFY53		BSY90	11/6
2N1632	8/6	2N2907	8/-	2N3705	4/	2N4287	8/6	3N141	19/6	ACY20	5/-	ASY83	5/-	BC213L	5/4	BF180	7/-	BFY56A		BSY95A	2/6
2N1637	8/6	2N29023	8/6		4/6	2N4288	8/6	3N142	19/6	ACT21	5/-	ASY86	6/6	BCY10	5/6	BF181	6/6	BFY75		BSW41	8/6
2N1638	7/6	2N2924	3/6		4/-	2N4289	8/6	3N143	17/6	ACY22	4/-	ASZ20	7/6	BCY12	5/6	BF184	5/-	BFY76	8/6	BSW70	5/6
2N1639	7/6	2N2925	8/6		3/6	2N4290	3/6		22/6	ACY28	4/-	ASZ21	8/6	BCY30	5/6	BF185		BFY77		D16P1	7/6
2N1701 2N1711	32/6 5/-	2N2926	-	2N3709	8/6	2N4291	3/6	R.C.A.:		ACY40	4/-	AUY10	80/-	BCY31	5/6	BF194		BFY90		D16P2	8/
2N1889	6/6	Green	2/9	2N3710 2N3711	A/-	2N4292 2N5027	2/6 10/6	40050 40250	13/6	ACY41	5/-	BC107	8/-	BCY32	7/6	BF195		BFW58		D16P3	7/6
2N1893	8/6	Yellow Orange	2/6 2/6		80/-	2N5027 2N5028	11/6		19/6	ACY44	8/-	BC108 BC109	3/- 3/-	BCY33 BCY34	4/-	BF196 BF197	8/6 6/4	BFW59		D16P4 GET102	8/- 6/-
2N1893 2N2147						2N5029	9/6	40309	8/-	AD140	8/-	BC113	5/6	BCY38	4/6	BF197 BF198	8/6	BFW60	1	GET113	4/-
	14/6	2N3011	6/-	2N3714	85/-	2N5030	8/6	40310	11/8	AD149	11/6	BC114	7/6	BCY39	8/6	BF200	7/4	BPX25	011-1	GET114	4/-
2N2148	12/6	2N3014	6/6		7/-	2N5172	8/-	40311	9/6	AD150	12/6	BC115	6/6	BCY40	7/6	BF224	6/-	BPX29	30/-1	GET118	4/-
2N2160	11/6	2N3053	5/6		22/6			40312	12/6	AD161	7/6	BC116	12/6	BCY42	8/-	BF225	6/-	BPY10	29/-	GET119	4/-
2N2193	9/6	2N3054	11/-	'2N3826	6/	2N5175	10/6	40314	9/8	AD162	7/6	BC116A	7/6	BCY43	8/-	BF237	6/6	BSX19	8/6	GET120	10/6
1000																					

ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES. TERMS, CASH WITH ORDER ONLY. POST & PACKING PAYABLE ON ORDERS UP TO £6, AFTER THAT FREE EXCEPT C.R.T.'s. The MR31 meter used is scaled 0-10 and 0-3: the lower 0-3 scale should be used and this will read directly in tens of kilovolts.

If the reader has sufficient confidence the meter scale can be given a legend $(kV \times 10)$ and a red line drawn on the 25kV mark.

The leads for use with the meter should be about 2ft. long. Careful attention must be paid to the termination of the earth lead (one spade terminal, one crocodile clip) as a break here will have dire results! The e.h.t. lead can be made of stout coaxial cable with the braid and outer covering removed. Choose a coaxial cable with stranded centre conductor and thick plastic insulation. A hook made from a paper clip terminates the c.r.t. end of this lead and hooks under the claw in the "flower" e.h.t. connector of the set under test. A rubber or plastic top-cap connector of the type used on DY87 valves may be connected to the meter end of the e.h.t. cable where it will push firmly on to the column top cap.

BELMONT UHF SERVICES


The unit is accurate to within 5% with the specified components so that calibration is not necessary. When using the instrument avoid coming into contact with any part of the multiplier column and wait until the meter has sunk to zero before disconnecting first the e.h.t. lead and then the earth lead.

Components Required

3 100MΩ 5% 1W resistors (type 3954 obtainable from Welwyn Electric, Bedlington, Northumberland, at 18/9d. each—delivery at present seven weeks)
1 1MΩ 1W resistor
100µA meter type MR31 (Radiospares)
Medium size meter desk stand (Radiospares)
7× ¹/₄in. plastic water pipe
¹/₄Ib. pure paraffin wax (obtainable from most chemists)
Araldite, small piece of ¹/₄in. plastic or perspex, top cap from an old e.h.t. rectifier valve and materials for

test leads as specified in the text above.

Channels: BBC-1 22, BBC-2 28, ITV 25; horizontal polarisation; aerial group A; max. vision e.r.p. 500kW.

MULLARD have recently released information on the research they are at present carrying out on s.h.f. 3000-30.000MHz, 3-30GHz or 10-1 cm.) (i.e. television reception. At these frequencies reception is of course possible only from local line-of-sight transmitters or via satellites, but it is thought that part of Band VI (11.7-12.7GHz) will in the near future be allocated for television broadcasting. Reception at these frequencies presents entirely new problems. It is unlikely that these will have to be faced in the home market for many years however, the main scope for broadcasting at these frequencies in the near future being via satellite to large land areas. The Indian government for example is due to carry out experiments in conjunction with a NASA applications technology satellite in 1973.

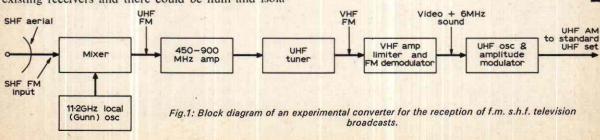
FM Video

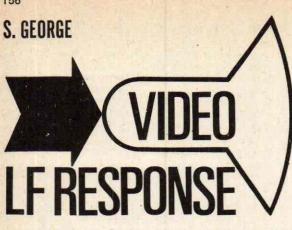
Mullard have been studying the general problems and the development of suitable converters to enable standard sets to receive s.h.f. transmissions. One conclusion they have come to is the advantage of using f.m. instead of a.m. for the video signal. With f.m. the transmitter power can be significantly reduced, the receiving aerial made smaller, the converter noise factor and local oscillator stability requirements relaxed and, of greatest importance, better co-channel performance obtained. The converter is more complex and costly however, having not only to convert the incoming signal from s.h.f. to u.h.f. but also to demodulate it and then remodulate in order to provide a signal which can be fed to the aerial socket of a standard receiver.

Converter Problems

It might seem that the complexity of the converter could be reduced by arranging for it to provide channel selection and demodulation so that its output could be fed to the receiver at video frequency. This however would necessitate modification to existing receivers and there could be hum and isolation difficulties with a.c./d.c. models.

The need to be able to use the converter to feed the aerial socket of a standard receiver thus inevitably increases the complexity of the converter in both circuit configuration and the type of components it is necessary to use. One approach which allows some conventional TV components to be used is to convert the s.h.f. carrier to v.h.f. so that existing commercially available devices can be used in the limiting and demodulation stages. If however in doing this the frequency conversion is made in one step to say 35MHz, the image frequency will be only about 70MHz from the wanted s.h.f. signal.


Experimental Converters


In an experimental converter which has been demonstrated at the Mullard Research Laboratories the image rejection problem was solved by using a double superhet circuit: the s.h.f. is stepped down to u.h.f. and then to v.h.f. before being passed to the limiter and demodulator stages, the resultant demodulated signal being used to amplitude modulate a new u.h.f. carrier which can then be fed to the aerial socket of a standard u.h.f. receiver. The basic arrangement is shown in Fig. 1 in block diagram form.

Preliminary work at the Laboratories has included the construction for experimental purposes of triplate and microstrip mixer-amplifiers consisting of a Schottky-barrier diode balanced ring mixer followed by a low-noise u.h.f. transistor amplifier. For the tri-plate mixer-amplifier the overall conversion gain was about 6dB and the noise factor less than 13dB over the 750-900MHz region, indicating the feasibility of a stripline device to cover the complete 450-900MHz range.

Local Oscillator

In early experiments a klystron local oscillator was used and drift was not a serious problem with this. A klystron however is out of the question for a commercially marketable converter, and attention was turned to solid-state devices such as the Gunn oscillator which can produce directly the few milliwatts of oscillator power required. Attractive though this is, the Gunn oscillator has a temperature stability which at present falls short of the requirements, even on f.m. (For a.m. the temperature stability requirement is very severe, being better than one part in 105 over a range possibly as great as 80°C.) An obvious approach to this problem is to introduce temperature compensation and a.f.c., and experiments along these lines are being undertaken. There is of course also the possibility of making improvements in the Gunn oscillator itself.

So much emphasis is placed-rightly-on the importance of ensuring adequate h.f. response in video stages that the almost equally vital need to maintain correct l.f. video response down to d.c. tends to be overlooked. Good h.f. response provides fine detail resolution while correct l.f. and d.c. amplification ensure that the more slowly changing and large picture areas will be reproduced at correct amplitude, free from shading and streaking. Excessive l.f. amplification is equally as unwanted as inadequate response, since it means that on a picture set for best overall contrast the fine resolution will be reproduced at a paler contrast level than the low frequencies-and furthermore aircraft flutter will be accentuated.

Ideally the video response should, as with a.f. amplifiers, be reasonably level over the entire operational range but in addition with negligible or frequency-proportional phase change. As however the frequency range of a video amplifier is so many times that of an a.f. amplifier its response linearity cannot be expected to approach that of a.f. circuits.

First we shall consider what constitutes l.f., m.f. and h.f. in the video sense. There are no accepted set figures for these broad classifications since they vary with individual receivers and circuits. However, the following points indicate the factors determining the limits. Medium frequencies are those at which the reactance of the load shunting capacitance is too high to produce any noticeable effect on the load impedance while the reactances of the various coupling and decoupling capacitors are so low as to be negligible. High frequencies are those at which the reactance of the load shunting capacitance becomes comparable to or even lower than the resistive load, reducing the latter's effective value. Low frequencies are those at which the coupling or decoupling capacitors offer a comparatively high reactance. This causes signal loss since the reactance of a coupler attenuates the signal because of the signal developed across it while in the case of a decoupler offering a high reactance there is loss through the negative feedback it effectively introduces.

Now the higher the capacitance value of a capacitor the lower is its reactance. Thus to maintain l.f. response capacitors must generally be of high value. This is particularly so in two applications, for signal feed in solid-state circuits where the low input impedance of transistors otherwise results

in heavy l.f. attenuation across the coupling capacitor's reactance, and secondly for valve cathode or transistor emitter decoupling capacitors since the biasing resistors used in these positions are of necessity low in value.

Whether a video output stage is fed from the vision detector, from a video phase-splitter or from a preamplifier, the coupling on 625 lines usually consists of a simple *RC* combination. Now a series RC combination will form-in conjunction with the input impedance of the stage-a signal potential divider, with only the signal developed across the resistor of the RC combination being usable. The video frequencies extend to 3MHz on 405 and to 5.5MHz on 625, and the proportion of the signal developed across the reactance of the coupling capacitor will naturally markedly increase towards the lower frequencies with a consequent reduction in the signal available across the resistor.

Capacitive Reactance

Capacitive reactance (Xc) simply means the opposition or impedance offered by a capacitor to an a.c. signal. This impedance varies with capacitor size and the frequency of the signal. The formula for determining its value is $1/(2\pi fC)$, where f is the frequency in Hz, C the capacitance in Farads and π is of course approximately 3.14. A more useful form however is $10^6/(2\pi fC)$ where C is in microfarads.

Capacitive reactance decreases in direct proportion to increase in applied frequency and increase in capacitance value. Thus if the reactance of a capacitor at a particular frequency is known it is a matter of simple proportion to find its reactance at any other frequency-or the reactance of an easily comparable size capacitor to the first frequency. For example a 2μ F capacitor has an Xc of 1,592 Ω at 50 Hz. Thus by proportion a 100 µF electrolytic will have a reactance of 1/50th of this or approximately 32Ω at 50 Hz, while a 1μ F capacitor has a reactance of 3,184 Ω . And while an 0.1µF capacitor has a reactance of 31,840Ω at 50 Hz a 1µF capacitor has as we have seen a reactance of $3,184\Omega$ at this frequency. At the top end of the video range the reactance of capacitors of value of the order of microfarads falls to only a fraction of an ohm. Clearly this widely varying reactance value will have a vital effect at low frequencies in video circuits.

LF Attenuation

As previously mentioned cathode and emitter decoupling capacitors must be especially large since to be at all effective they must have a reactance well below that of the resistor they shunt. Calculations in this part of the circuit are complicated by the fact that the designer may want to incorporate a limited degree of negative feedback to offset any unwanted increase in gain at very low frequencies approaching d.c. The likelihood of an increase in gain at very low frequencies arises because although the video load consists of the anode or collector components at medium and high frequencies, at low frequencies the reactance of the main h.t. smoothing capacitors rises to an appreciable value and in consequence the "top" of the video load is no longer earthed to these signals. The resistance of the h.t. supply is then to some extent in series with the video load, increasing its value. The overall video circuit design and the component values used must therefore be arranged so as to offset any such rise at very low frequencies, thereby preserving a generally linear response down to d.c.

In many designs this is achieved by a double cathode decoupling arrangement in which two seriesconnected resistors provide the required bias for the stage and are shunted by a small to medium-size capacitor to provide m.f. and h.f. decoupling while in addition one of the resistors is decoupled by a high-value electrolytic to bypass low frequencies: the l.f. signal developed across the other resistor provides the required degree of negative feedback at l.f. A typical example of this arrangement is shown in Fig. 1 and is used in a Pye range of hybrid models. R7 and R8 provide the bias required and R7 is shunted by an 0.01 µF capacitor to provide h.f. decoupling. An 0.01µF capacitor has a reactance of 7.950 at 2MHz and by proportion of 15,9000 at 1kHz, so clearly it is only effective at above 2MHz when shunted across the 180 resistor R7 which thus provides negative feedback at medium to low frequencies. The 200µF electrolytic shunted across the 56Ω resistor R8 has on the other hand a reactance of only 15.92 at 50Hz and so provides a good measure of decoupling down to this low frequency. There will however be negative feedback

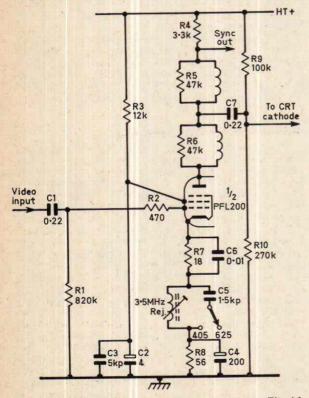


Fig. 1: Typical dual-standard video output stage. The I.f response is attenuated by the partial decoupling of the cathode resistor R7 and, at the screen, the small-value electrolytic C2.

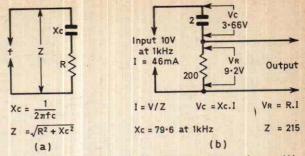


Fig. 2: (a) Calculation of series circuit impedance. (b) Practical example showing individual voltages developed for a 10V input at 1kHz. Xc and Z in ohms.

at very low frequencies.

Some l.f. attenuation is also introduced in this circuit at the screen grid of the pentode, as the electrolytic decoupler at this point is only 4μ F and thus has considerable reactance at l.f. The 5kpF capacitor in parallel with it is to ensure adequate h.f. decoupling since the self-inductance of the electrolytic could possibly resonate at a high video frequency and function as a rejector tuned circuit.

Effect of RC Coupling

There are two other RC combinations which provide a degree of l.f. attenuation in this circuit-C1 and R1 in the grid circuit and C7 plus the parallel combination of R9 and R10 in the output circuit. The junction of R9 and R10 provides the fixed d.c. potential for the c.r.t cathode, brilliance control being effected by varying the c.r.t. grid voltage. R9 and R10 are in series so far as the d.c. drain is concerned but are virtually in parallel to the signal since the h.t. rail is earth to all but the lowest frequency video signals. The combination of C7, R9 and R10 attenuates the lower frequencies to a greater extent than the combination of C1, R1, for although both coupling capacitors are 0.22µF the combination in the output circuit has a lower total resistive value so that the signal loss across C7 is greater at l.f. than that across C1.

Unlike two resistors in series, or two capacitors for that matter, which develop a signal or voltage across each according to their relative values, the total impedance Z of a series RC circuit must be determined vectorially since resistance and reactance are electrically at right angles. This makes computation rather more involved but does not alter the basic fact that the rising reactance of a capacitor at l.f. reduces the usable signal developed across the associated resistor of an RC combination. Fig. 2 shows how reactance and resistance are added in a series arrangement to give their total impedance for any particular frequency. Note that due to their quadrature relationship the sum of the individual capacitor and resistor voltages exceeds the applied potential.

Fig. 3 shows the use of this series RC arrangement as the input signal feed to the video output stage in three modern receivers. It will be seen that the lower the stage input impedance (which for valves at 1.f. equals the grid resistor value) the higher the value of capacitor needed to maintain 1.f. gain. The Bush example (a) with a grid resistor of $270k\Omega$ has

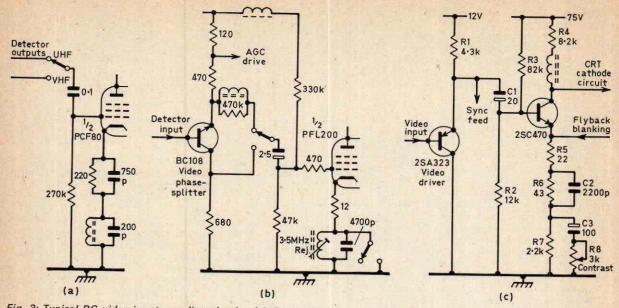


Fig. 3: Typical RC video input coupling circuits, (a) Bush, (b) Pye and (c) Sony. As only the signal developed across the resistor is amplified, the rising reactance of the capacitor at the lower frequencies leads to l.f. attenuation. Capacitor values are therefore large for circuits with a low input impedance.

an 0.1μ F coupling capacitor, the Pye example (b) with a $47k\Omega$ grid resistor has a 2.5μ F coupling electrolytic, while in the Sony transistor circuit, with a $12k\Omega$ base-emitter resistor which is in effect shunted as far as a.c. signals are concerned by the $82k\Omega$ base to supply rail bias resistor and the input impedance of the transistor, the signal is coupled by a 20μ F electrolytic. The emitter circuit of this transistor is noteworthy, incorporating a three-tier resistive arrangement. R5, being without decoupling, introduces slight negative feedback at all frequencies, R6 gives some negative feedback at m.f. and I.f. while R8 varies both gain and I.f. compensation.

Tailoring the Response

In valve video amplifiers it is common to use the cathode and/or screen circuits to tailor the response at l.f. Cathode decoupling is necessary since the signal developed across a cathode resistor follows the grid signal in phase and if completely undecoupled would result in the net grid input equalling Vg - Vk. Partial cathode decoupling, with careful choice of split resistor values, is usually employed to attenuate the l.f. response to the required extent while leaving the vital h.f. response unimpaired.

Where the video amplifier valve screen grid is fed via a resistor—the usual practice—the input at the control grid will result in an amplified but opposite phase signal appearing at the screen. As the anode current is determined by both the control and screen grid potentials, unless the screen grid is completely decoupled there will as a result be negative feedback and consequently a reduction in gain. Naturally the higher the value of the screen resistor the larger the screen grid voltage variations will be and therefore the greater the attenuation introduced. For effective operation the screen grid decoupling capacitor must be sufficiently large to "absorb" these signal voltage variations. Viewed from this angle it is easy to see why a larger capacitor is necessary to absorb l.f. than h.f. variations: the duration of voltage changes—rises or falls—persists for a longer period at l.f., thus increasing the net charge or discharge per half-cycle. In many designs, as in Fig. 4(b), the screen grid is only partially decoupled, by a small to medium size capacitor which although offering a low impedance path to h.f. signals is largely ineffective as an l.f. decoupler when its reactance rises to a substantial value, giving l.f. attenuation through negative feedback action.

Screen-Anode Combinations

Some models take this idea a step further and take the screen grid supply from a point in the anode circuit of the pentode instead of from the h.t. rail, as in the case of the two examples in Fig. 4. In the Philips circuit the single cathode resistor is fully decoupled by a 250μ F electrolytic while the screen is supplied from the junction of R1, R2 and R3 in the anode circuit and decoupled by the 20µF electrolytic C1. At high and medium frequencies C1 earths both the screen grid and the resistive junction in the anode load so that R3 in series with the parallel combination of R4 and L1 constitute the video load. At low frequencies however the reactance of C1 rises to an appreciable figure. R1 and R2 then become to some extent part of the video load, increasing the gain, while as the screen grid is no longer fully decoupled there is screen grid negative feedback and thus a tendency for the gain to fall. These two actions are not completely in opposition however and their combined effect as determined by the individual component values used tailors the l.f. response exactly as required by the designer.

The KB/RGD circuit, Fig. 4(b), is rather more involved. Let us first look at the cathode circuit. On 405 the cathode bias is developed across R6 and

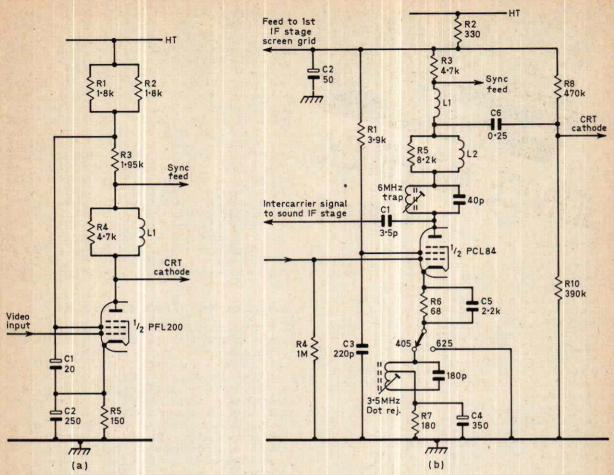


Fig. 4: Tailoring the I.f. response by taking the screen feed from a decoupled point in the anode circuit. (a) Philips circuit, (b) KB-RGD circuit.

R7, the latter being fully decoupled by a 350μ F electrolytic C4. On system change to 625 R7, C4 and the 3-5MHz dot rejector circuit are shorted out to leave only R6, 68Ω , in circuit. The resulting bias reduction is necessary to adjust for the change from a positive-going direct-coupled video input on 405 to an a.c. feed on 625 since the latter requires that the valve is biased for class A operation (in the Philips circuit the 625-line a.c. coupled signal is d.c. restored at the grid, so that no change in biasing between systems is necessary). On both systems in the KB/RGD circuit there is considerable negative feedback developed across R6 at low frequencies.

The first point to note in the screen grid circuit is that the decoupler is only 220pF, so clearly negative feedback will develop here at a comparatively high frequency. The second point to note is that the screen grid supply is taken from the junction of R1 and R3 in the anode circuit and is decoupled by C2, 50μ F. This capacitor fully decouples the junction of R2 and R3 down to low frequencies so that R3 and L1 form the main load components. When however at very low frequencies the reactance of C2 rises to an appreciable figure R2 is no longer fully decoupled and forms part of the video load and also varies the screen grid voltage in similar phase. In addition the voltage at the junction of R8 and R10, which forms a d.c. potential divider for the c.r.t. cathode, is varied. The total net effect of this is that the response is shaped as required over the entire l.f. end of the video range.

159

Servicing and Experimenting

As well as maintaining gain and stability the decoupling components in these video circuits also fulfil a vital role in response shaping. When defective therefore they must be replaced by exact equivalents.

Experimenting on an old test receiver to see the effects that different capacitor values produce on the l.f. response gives real insight into video stage operation and underlines the importance of circuit impedance when choosing component values. To demonstrate the action of circuits such as those shown in Fig. 4, insert a resistor of a few hundred ohms between the top of the video load and h.t., decouple the junction to chassis with an electrolytic, and feed the screen grid from this point instead of from the h.t. line. Then ring the changes on decoupling component values while leaving the actual video load unchanged.

No Raster

THERE was no raster but normal sound on an elderly Decca 17in. model. Naturally our first move was to check for e.h.t. and by holding the blade of a wooden-handled screwdriver close to the EY86 anode we were able to draw a sizeable blue corona even without removing the top-cap insulator. The rectifier's cathode appeared to be glowing normally and by transferring the screwdriver blade close to the valvebase we obtained good thin sparks. So it appeared that e.h.t. was being rectified and was plentiful. (Rectifiers can develop anodecathode shorts.)

Our next move was to short-circuit the c.r.t. cathode and grid, pins 6 and 7 on the B8H base, to see if that restored a raster. On these bases the grid is also connected to pin 2 but it is more convenient and safer momentarily to short pins 6 and 7 when making this test: it avoids risk of shorting an h.t. carrying pin to either or both of the heater pins 1 and 8.

There was still no raster so it appeared that there was either no first anode voltage or an internal disconnection inside the tube. We were just about to check for the former when after wiping the c.r.t. neck we realised that the cathode was not glowing. Now a complete short across a tube heater is very rare so we next checked to see if any other valves were failing to warm-up, indicating a partial short across the heater chain due to a valve's heatercathode breakdown. All the valves were normally lit however and remained so even after removing the c.r.t. base. It was obvious therefore that the short-circuit was only across the c.r.t. supply.

On unhinging the chassis and tracing the course of the brown (unearthed) c.r.t. heater lead we found that its insulation had been pierced at one spot by an earthed sharp-pointed soldered joint on a valveholder. Wrapping a little insulation tape round the damaged area and rerouting the lead restored a normal picture.

Ragged Verticals

THERE were ragged verticals on a 23in. RGD receiver unless the fine tuner was adjusted "spoton" and as the line hold was edgey the impression was of line sync trouble. After a few moments we noticed that the picture width was intermittently varying by a $\frac{1}{2}$ in. or so. Replacing the PL36 and PY801 failed to effect a cure but on replacing the DY86 e.h.t. rectifier we obtained constant width with complete freedom from the ragged verticals and with normal line lock.

While it is easy to appreciate that an intermittent fault in this rectifier—such as a partial heater shortcircuit—can vary the width by varying the load imposed on the line output stage it is rather more difficult to see how it can affect the line generator. The reason is that in modern sets with flywheel line sync a reference pulse is taken from the line transformer and fed to the flywheel sync discriminator along with the sync pulses. Thus intermittent faults in the line output stage must produce some effect on the discriminator d.c. output.

The three- or four-stick e.h.t. units used in BRC receivers can produce somewhat similar symptoms when defective—mainly only at high brilliance levels —and in extreme cases can make it appear that there are two pictures displaced sideways by about an eighth of an inch. The best cure with defects in these e.h.t. triplers or quadruplers is complete replacement of the unit.

Failure to Lock : Thorn 950 Chassis

THE picture modulation fluctuated wildly across the screen of one of these models and it was impossible to lock the picture although adjustment of the line hold control would momentarily "run through" the correct frequency. Fortunately an accompanying high hum level gave away the cause by indicating almost certain loss of capacitance in one or more of the main electrolytics.

Although not a common fault we have several times come across loss of capacitance in the multiple units employed in these receivers. The reservoir capacitor (C112), main smoother (C113) and two h.t. decouplers (C47 and C91) are all contained in one can mounted on the right-hand side of the chassis. On holding a test 32μ F from C113 tag to chassis we obtained a drastic reduction in hum level and were able to lock the picture normally. Although only this one particular section appeared to be defective we replaced the complete unit to forestall any possible further trouble from this source.

On a test run the 405 results were normal but on changing over to 625 the field hold became weak and subsequently as the set became fully warmed

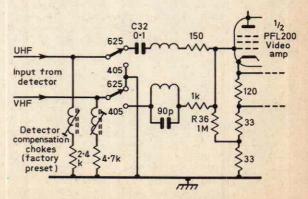


Fig. 1: Video amplifier grid circuit, Thorn 950 chassis.

up the line hold deteriorated. On reverting back to 405 both timebases locked perfectly. As is now fairly well known this is generally due to a slightly soft PFL200 video pentode which draws slight grid current on 625 due to the a.c. coupling from the vision detector but fails to do so on 405 due to the d.c. coupling used in this system with low resistance to chassis.

What is not so widely known, however, is that BRC have a slight modification which can be applied to these receivers should some batches of PFL200s be found to be more susceptible to this fault. The modification consists of changing the value of the 625 signal feed capacitor C32 from 0.1μ F to 0.3μ F and the grid leak R36 from $1M\Omega$ to $330k\Omega$. In our case however replacement of the valve completely cured the trouble and there was no need to make the component changes mentioned.

Another cause of weak field lock on 625 lines only in these models—or more precisely intermittent field tripping—is a defective PCF805 in the v.h.f. tuner. In such cases it is usually found that there appears to be a narrow horizontal bar moving slowly up the screen, tripping the timebase when it reaches the top!

Boxing-up Troubles

QUITE often after servicing a TV chassis and returning it to its cabinet you may find that either the heater circuit has mysteriously gone open-circuit or that the raster intermittently blacks out or jumps to full and uncontrollable brilliance. Not to worry! The first symptom is usually caused by a valve being pushed over in its holder and failing to make contact or mains dropper resistor push-on clips having been disturbed and not making contact. In the latter instance, although the heater circuit may read open-circuit when meter tested the set will probably warm up normally when switched on and the mains voltage will overcome the clip-contact surface resistance.

On other occasions you may find the thermistor defective and the wire ends almost loose from the component body. It always pays to put finger pressure on old ones, especially if there has been a heater-cathode short in one of the valves.

When the raster intermittently blacks out or assumes full brilliance, the almost certain cause will be a disconnected or intermittently shorting lead on the c.r.t. base. On occasions you may even pull the e.h.t. cable away from the c.r.t. anode connector inside the anti-corona cap. The picture will continue however, though with severe screen spots, if the e.h.t. can jump the break.

Crackles on Sound

THERE were intermittent crackles on sound with random small white spots on the screen of a receiver fitted with the Thorn 850 chassis (the convertible, not the dual-standard, version). Tapping the valves as a first move had no effect on the symptoms but on reseating the EF80 sound i.f. pentode V11 which was quite loose in its holder a small ceramic capacitor on the i.f. deck suddenly glowed red. On switching off we found that this component, C123 in the maker's service manual, was a 1,000pF capacitor used as r.f. decoupler from one of the heater pins of the vision i.f. pentode V4 to chassis. We

161

pins of the vision i.f. pentode V4 to chassis. We snipped it out of circuit and obtained normal reception completely free of crackles and screen spots. The symptoms had obviously been caused by

miniature sparks occurring inside the capacitor prior to its complete breakdown which equally clearly had been caused by momentarily breaking the heater chain when refitting V11. As there are only five valves and the c.r.t. in the heater chain between the point to which the capacitor is connected and chassis it would only normally be subject to about 50V r.m.s. However, on breaking the heater chain by reseating V11—one of the five valves—the capacitor would be subject to the full 240V mains voltage which rises to about 336V at peak values.

This demonstrates the strain that is imposed on valve heater-cathode insulation in series heater chains when a valve lower in the circuit is removed although in this one instance the accidental action had located the fault far more quickly than was anticipated! Nevertheless, valves should not be removed from a working receiver although it must be admitted than many service engineers when pushed for time and in doubt about the function of a particular valve often push it over to one side in its holder to see its effect "out of circuit" till cathode temperatures reduce.

Although we have serviced many thousands of receivers this is the first occasion on which we have found a heater circuit decoupling capacitor breakdown. The capacitor was replaced to complete the repair as heater decouplers are important in preserving stability and eliminating the risk of patterning.

Intermittent Field Roll

INTERMITTENT field roll on a KB Model RV70 was found to be due to the field hold control only locking right at one end of its travel. Replacing the PCL82 field timebase valve produced no significant shift in locking position and in such cases we then tend to suspect resistor value change rather than a leak or value change in a capacitor.

As always we first check current-carrying types, these being most likely to alter in resistance value after some years of service. One of the first to attract our attention was the $180k\Omega$ resistor connected from one end of the hold control to chassis this would obviously have great bearing on the vertical locking point.

We shunted our meter on the 400V range across it and moved the locking point practically to the midway position. This action did not of course necessarily imply that the resistor in question was high-resistance—we could be compensating for a value change in a resistor elsewhere. On checking with an ohmmeter however we found this resistor to be about $1M\Omega$ and on replacing it we obtained a perfect central locking position for the hold control.

Shunting a suspect resistor with a meter on an appropriate voltage range—and correct polarity—is a convenient way of seeing what effect resistance value reduction produces. It is especially useful in timebase faults such as the one described.

TO BE CONTINUED

DC Restorer Mod for Pye-Ekco M. PITLOCK

MANY Pye and Ekco receivers-and the models of associated brands-from the period around 1965-6 use a video amplifier stage a.c. coupled to the c.r.t. cathode, with bias for the c.r.t. cathode provided by a simple potential divider across the h.t. line. These models include the Pye 40F recently covered in the servicing series (October-November, 1970), the Ekco T442 series, the 16in. "compact" models and the Pye 36/37 and Ekco T503-T506 groups of models. This form of video coupling results in a picture that is wishywashy in the dark scenes and soot-and-whitewash in bright scenes, particularly on 625-line reception which tends to exaggerate differences in picture brightness.

The modification shown in Fig. 1 comprises the addition of a d.c. restorer to the circuit without the need to make any changes to existing components in the circuit. The additional components required are a Mullard diode type OA202, a $10k\Omega \frac{1}{2}W$ and a $27k\Omega$ 1W resistor. The d.c. restorer diode conducts when the junction of R79 and R79A is driven sufficiently positive (as it is when the sync pulse appears) and short-circuits the signal to the junction of the

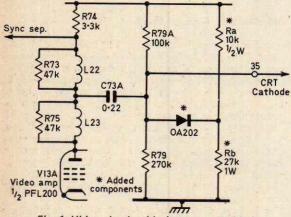


Fig. 1: Video circuit with d.c. restorer added.

circuit

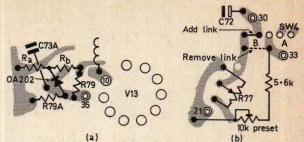


Fig. 2: Positions of the added components. The layout of the complete board-was shown on page 27, October 1970.

added components Ra and Rb. When the video information reappears the voltage at the junction R79 and R79A moves in a negative direction.

The positions of the components added are shown on the layout diagram (Fig. 2). They can be easily soldered on at the back using layed-on joints. The junction of Ra, Rb and the diode (end coded red) may be left in the air or secured to an insulator made from a piece of tagstrip.

When this modification has been carried out it will be found necessary to turn down the brightness control. Some improvement will be noticed on 405 lines but on 625 lines the improvement is quite dramatic, due to the different method of modulation.

Note that in early versions of some of these models R79 was $470k\Omega$ and R79A was omitted. Where this is found to be the case first modify the circuit to the later arrangement.

Contrast Equalisation

After carrying out this modification it will be found that the contrast level on 625 lines is far greater than the 405-line level. Instead of fitting a second contrast control and changeover switch, the further circuit change shown in Fig. 3 was adopted. The positions of the extra components are also shown in Fig. 2. The $10k\Omega$ preset used is a small skeleton rotary type as this is more compact than the sliding type. Again these components, including the new wire link, can be soldered to the back though the original link must be carefully pulled out from the other side. The resistor leads must be sleeved.

Adjustment of the contrast equaliser can only properly be done when a test card is being transmitted on 405 and 625 lines. Switch first to 405 and adjust the contrast to the normal viewing level. Also adjust the brightness until the black squares look black. Then switch to 625 lines and adjust the $10k\Omega$ preset until the test card picture has the same brightness.

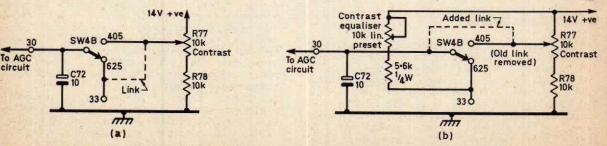
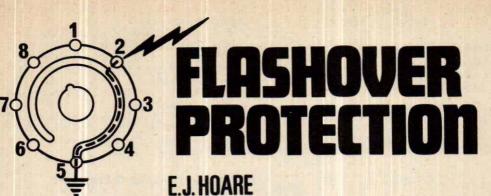



Fig. 3: Modification to the contrast control circuit to equalise contrast on 405 and 625 lines.

PART 2

163

We have so far confined our discussion to the immediate vicinity of the picture tube. This is where the trouble starts and this is the source of the large amount of energy involved. We saw earlier that at the instant of flashover an astonishingly large current of the order of 500-1000A flows, and this generates a pulse voltage of anything up to 8-10kV in the external circuit. Some of this energy has the nasty habit of cropping up in the most unexpected places almost anywhere in the receiver circuitry.

In one receiver known to the author it was not uncommon for about half a dozen transistors to fail simultaneously in widely scattered and unrelated parts of the circuit. It was a complete mystery at first, but the cause of the trouble turned out to be our new found friend—flashover. However with careful design and testing this sort of problem can be avoided.

In Part I we sorted out the techniques for protecting the picture-tube circuits. Now we must do the same for various other parts of the receiver in which a number of rather subtle problems can arise.

Coupling via the Deflection Coils

The line deflection coils are a snug fit on the neck of the c.r.t. and so there is an appreciable amount of capacitive coupling between the coils and the gun structure. Where flashover occurs between the final anode and one of the other electrodes, some of the e.h.t. energy is injected into the line deflection coils. The field coils are on the outside and do not usually receive enough energy to present any special problem.

The energy in the line coils however will travel down the leads to the line timebase and may be distributed via the transformer windings to all sorts of unexpected places. Rectifier diodes will be the first to go, but line output transistors can also be damaged. In some cases secondary flashover will occur between connecting leads and may be coupled into circuits which are apparently unrelated to the timebase.

If one side of the deflection coils can be connected to chassis it is probable that all will be well and no further precautions will be necessary. It is common practice however for the coils to be connected in a configuration balanced about the h.t. line. In this case special care is needed when attempting to bypass the flashover energy. The reason is that you can very easily bypass the line scanning energy as well and place a virtual shortcircuit across the line output transistor with unhappy results.

In view of the special difficulties that can arise in this part of the receiver circuitry it is unfortunately not possible to give useful guidance of a general nature. The precautions that can be taken depend so much upon particular circumstances.

Line Output Transistors

In a valve timebase it is not necessary to take any special precautions to protect the output stage or the boost diode. They are both capable of withstanding quite large overloads of voltage and current for very brief periods. In a transistorised line timebase however the output transistor must be protected against overload because in common with all semiconductor junction devices it is strictly a go/no-go device. Any overload that overheats the junction will destroy it instantly: there is no second chance.

When flashover occurs the e.h.t. capacitance is completely discharged. This means that the line timebase is in effect looking into a short-circuited load. Thus the output stage sees only the leakage inductance of the transformer instead of the normal inductance of the deflection coils in parallel with the inductance of the transformer primary. The result is a large increase of peak voltage and peak current which occur to a decreasing extent every flyback period until the e.h.t. capacitance is recharged. This sort of problem can only be tackled by designing the output stage in a manner which makes it impossible for such large currents and voltages to be generated at all, whatever the load condition.

Adding Series Resistance

The usual way of overcoming the problem is to add on extra series resistance in the h.t. supply to the timebase. This makes the regulation of the timebase sufficiently bad to limit the overload effects adequately, without seriously affecting the e.h.t. voltage regulation to the picture tube. Most home constructors use an off-the-peg line output transformer because the design of this component is a highly specialised art. If however you are being adventurous and doing it all yourself, it is important to bear this flashover problem in mind.

EHT Tripplers

Many all solid-state receivers, particularly colour ones, use e.h.t. tripplers. These operate with an input line flyback pulse of 6-9kV and produce an e.h.t. output of 18-25kV. The trippling action of the diode network requires charging capacitors and these are commonly of about 470pF.

A 470pF capacitor charged up to something approaching 25kV has a large amount of stored energy, and this is released during a flashover. Consequently a large current can flow out of the trippler and is present in the return path—usually an earth connection. This can cause trouble as a result of voltages induced in the earth paths and coupled into other circuits, and the trippler itself may be damaged.

Some tripplers have a series resistance built into the assembly to limit the peak flashover current that can flow and prevent any undesirable effects. If this resistor is not present it is good practice to add two carbon resistors—or a wirewound one totalling about $47k\Omega$ in series with the output lead. Good insulation or adequate air clearance will of course be needed.

Degaussing Coils

In the first part of this article we saw that the external aquadag coating of the tube can develop a pulse voltage during flashover of up to -10kV. Now in a colour receiver the cone of the tube is covered by a metal degaussing shield and the degaussing coils are looped in between. If one side of the coils is connected to chassis and the outside of the tube is at -10kV, what happens? Clearly there are two solutions to the problem. Either the coils are insulated to 10kV a.c., which is expensive, or else they are encouraged to take up the same potential as the tube coating.

Figure 9 shows a convenient way of connecting the degaussing coils so that they are free to float with the aquadag coating when a voltage pulse comes along. Note that the coils must be earthed via the aquadag earth connection. A separate lead to chassis

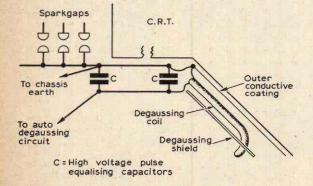


Fig. 9: This method of connecting the automatic degaussing coils leaves them free to float during a flashover, and prevents a secondary flashover between the coils and the shield or the conductive coating on the cone of the c.r.t. would undo the c.r.t. circuit protection that we discussed in Part 1.

The two capacitors C equalise the pulse voltage across the coils and their external circuit connections. Without them a secondary flashover could occur across the coils or between the earthy and live feeds. These two leads should be arranged in a bifilar manner and a good technique is to enclose them in a piece of p.v.c. sleeving to ensure close proximity. The capacitors need to be capable of withstanding high pulse voltages, 470pF disc ceramics of the type used for aerial isolation purposes being a good choice.

Chassis and Lead Clearances

The -10kV on the cone of the tube that we have just been discussing in connection with the degaussing coils has some other implications. The first is fairly obvious but easily overlooked. The degaussing shield is sometimes a convenient place on which to tie a bundle of passing leads on their way to the front control panel, deflection coils, convergence controls, etc. It makes a tidy job, but don't do it! Did you really mean to inject a hefty great flashover pulse into that black-level clamp circuit?

The next point to beware of is the chassis and its contents. How close is it to the aquadag coating? If we assume a maximum pulse voltage of -10kV we need at least half an inch minimum air clearance in order to be quite sure that no breakdown can occur. And of course what we mean here is not just half an inch to the nearest piece of metal work, but to the nearest point of any component, lead, coil screening can, etc.

Chassis Currents and Receiver Earthing

The effects of a secondary flashover from a component or a lead are in general terms obvious enough. What may not be quite so obvious is that a flashover from the chassis itself may in some cases be even more disastrous. Let us see why.

Bearing in mind that an arc has a very low impedance, you can see that when a flashover occurs between chassis and aquadag the effect is to connect the chassis to a large source of energy at -10kV. This causes a large current to flow.

Now although the chassis is commonly regarded as a low impedance earth path, under flashover conditions the small amount of inductance in this path is important. It represents a high impedance (because of the high rate of change of current). As a result a large pulse voltage is developed between the point of flashover and the earth connection at the cold side of the c.r.t. sparkgaps. Fig. 10 shows how this comes about.

If you are building a receiver, particularly a colour one with its large amount of e.h.t. energy, try and follow this argument if you will, because it is the key to many flashover problems of all kinds. The path the flashover takes may be different in particular cases, but the mechanism is similar.

In Fig. 10 the flashover energy can, and does in this case, take two paths. Some of the current flows through the normal flashover protection path as we discussed in Part 1, and some flows through the chassis and other earth connections. Clearly point D is going to take up an instantaneous negative

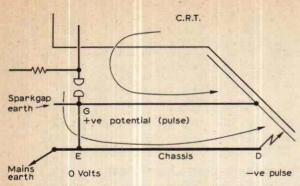


Fig. 10: A flashover to chassis produces a large voltage drop across it.

potential with respect to point E, which is connected to true earth. In passing it should be noted that by the same argument point G will take up an instantaneous positive potential with respect to E, and this will throw a further strain on the protection of the video output stage and other circuits.

Figure 11 shows the effect of this chassis flashover voltage on a perfectly normal circuit arrangement. The h.t. line is not affected by the flashover, nor is the voltage on the base of the transistor: they are both derived from sources tied to true earth. But now look at the emitter of the transistor! It is being pulled negatively by 10s or 100s of volts by the effect of the flashover current. The transistor conducts so heavily that the junction is destroyed instantly. No noise; no puff of smoke. This is the fundamental mechanism by which flashover currents do their damage, and sometimes frustrate the best intentions of circuit designers trying to build a reliable product.

It is important to note that the path E-D does not have to be a foot of steel strip. It may be an inch or two of copper on a printed board. Also the flashover current is not of course always caused by an arc between chassis and aquadag. Any flashover current leaking through the earth paths perhaps from a c.r.t. electrode—will produce the same effect, although probably to a lesser degree. So our half inch of clearance between the chassis and the c.r.t. is very important indeed, but it is not a complete answer to all the sneaky earth path problems. And here is another aspect of the case.

Chassis Capacitance

A vertical chassis placed close behind the cone of a c.r.t. will probably have an air-coupled capacitance

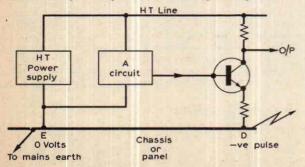


Fig. 11: An easy way of blowing up a transistor! Points E and D are the same as those in Fig. 10.

of a few tens of picofarads to the aquadag. Now if you replace the arc of Figs. 10 and 11 by a small capacitance, you have a very similar state of affairs. The impedance is higher and the flashover currents will be smaller, but the mechanism of the problem is more or less unchanged.

Note, however, that the currents are not confined to earth paths, although these will carry most of the current. It is quite possible for voltages to be developed in transistor base circuits as well, or even on collector heatsinks.

General Precautions

Before we go any further it may not be out of place to offer a word of cheer after this gloomy story of electronic mayhem and disaster. It is true that all these effects can and do happen, and they can be very serious in isolated cases. However if you do two things you will probably never experience any of them. First make sure that the protective measures around the electrodes of the c.r.t. are the best that you can devise. Secondly space the chassis well clear of the c.r.t. About two inches is probably enough in most cases for a colour receiver but the more the better. Blow the slimline styling.

In connection with the second point it is clearly good practice to avoid having large slabs of steel sheet running parallel to the cone of the c.r.t. and providing extra air-coupled capacitance. Don't forget the bulky screening cover of the line output transformer.

CRT Protective Band

The protective steel band round the seal between the cone and the faceplate of the c.r.t. has quite a large surface area. Consequently it has an appreciable capacitance to the internal aquadag coating which is at e.h.t, potential. The band will therefore build up quite a large static charge which could jump out and bite anyone touching the front of the cabinet near the edge of the tube.

This band must always be joined to chassis in order to keep it discharged. As however it is possible for the chassis to be connected to mains "live" in a.c./d.c. receivers, the connection to the band must be made via an isolating network. This may consist of a good-quality $2M\Omega$ 1W resistor in parallel with a 470pF*high-voltage ceramic capacitor. The earthy end of this network should be connected to the external aquadag coating, which in turn is joined to chassis.

During flashover the voltage pulse on the external aquadag coating will be coupled to the metal band. Make sure that it is properly isolated from leads, components, and any metalwork such as screens and trim that pass through the cabinet to the outside.

Earth Connection to the Aquadag

The conductive coating on the inside and outside of the cone of the c.r.t. is not such a good conductor as copper and it is only moderately resistive to wear and tear. Any connection to this coating must therefore have quite a large area of contact in order to keep the electrical resistance low and to withstand the very large flashover currents. Otherwise the coating will be damaged, a bad contact will develop and the protective measures we have discussed will be undone.

An easy way of making a good contact is to stretch a piece of copper braiding diagonally across the cone of the tube. It should be tensioned with a coil spring. Another piece of braiding can then be soldered to the middle and connected to the common earth point at the base of the tube (not the chassis).

Testing a Receiver

This is one of the most frustrating problems facing the home constructor. You can test any other aspect of receiver performance but not this one. You simply cannot afford to go blowing up transistors and diodes to see if they blow up! All you can do it to take all possible precautions, based on some fundamental principles, and then hope that all will be well and that you will not be caught out by a combination of circumstances that you could not forsee.

The chances are that if you apply the various techniques that we have been discussing you will not have any trouble. Then of course you will wonder what all the fuss was about and may even feel vaguely disappointed that your defences do not appear to have been tested. If on the other hand you even hear a sharp crack and the receiver carries on undismayed, you have every right to feel pleased.

Simulated Flashover

Receivers are tested for the efficiency of their flashover precautions by using an external adjustable sparkgap in place of the flashover path inside the c.r.t. One side of the sparkgap is connected to the c.r.t. final anode and the other side to one of the electrodes at the base of the tube. Fig. 12 shows the circuit arrangement. The connection to

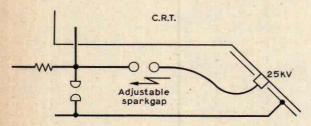


Fig. 12: Each electrode of the c.r.t. is tested in turn with several tens of flashovers. This test should be attempted only by fully qualified engineers. It may of course cause the destruction of a number of expensive semiconductors.

the tube base socket must go direct to the tag and must be neatly done so that no whiskers of lead or solder stick out and cause a flashover to neighbouring conductors.

To begin with the sparkgap is adjusted so that no arc occurs when the receiver is switched on. Then the two sparkgap electrodes are brought closer together until a spark jumps across. The art is to adjust the gap so that the artificial flashover occurs at the rate of several times a minute. If no fault develops in the receiver the test is continued for several tens of flashovers. After this the lead is connected to the next tag on the tube base holder and the test repeated. This process is continued until every tag, including the heater connections, has received its proper quota of discharges.

If a fault occurs in the receiver the flashover path that caused the trouble has to be located and a cure devised which either blocks the energy or bypasses it to earth. When this has been done the test is started again in order to prove that the cure really does work.

Locating the Flashover Path

Finding the exact course of the flashover path can on occasions be quite difficult. Sometimes it betrays itself by the telltale flash of a secondary breakdown somewhere amongst the copper print pattern when the receiver is inspected in total darkness. At other times you really have to get down to first principles, think hard, and deduce where the trouble must be. Then you have to prove it. It is a very time-consuming business and you can burn up quite a lot of perfectly good semiconductors. This is the price you have to pay for playing Sherlock Holmes!

At this point we must remind readers that handling sparkgaps with 20-25kV from a low-impedance source such as a TV receiver is a game to be played only by experts who know the rules. If in doubt don't! Semiconductors can be replaced, but not you.

To the Constructor

If you are building an all-valve receiver you can afford to ignore most of this talk of flashover and sparkgaps. If on the other hand you are making a hybrid or all solid-state receiver you do so at your peril. Some c.r.t.s never flash over: some do so quite often. It is the sort of problem where you never quite know how you stand.

Colour Receivers

It is particularly important to take care with colour receivers. Colour picture tubes are a little more prone to flashover than monochrome ones; there are more flashover paths and the amount of stored e.h.t. energy is greater. Furthermore the transistors used for driving a colour tube tend to have fairly high voltage and power ratings and are consequently more expensive than their monochrome equivalents.

But do not be dismayed. Simple precautions of the kind we have been discussing can make all the difference between freedom from trouble on one hand and having a number of unexplained component failures on the other. Note in particular the importance of correct earthing arrangements for the c.r.t. If you are doing any service work on a TV receiver make sure that you do not alter any earth connections. They may have been very carefully devised.

Acknowledgement /

Acknowledgement is due to A. Ciuciura of the Mullard Central Applications Laboratory who undertook much of the original research into flashover problems and devised the basic protection techniques described in these articles.

Part 1 appeared in our November, 1970, issue.

CHARLES RAFAREL

As expected for this time of the year, SpE DX drifted slowly down to even lower levels of activity during November. There was, however, some SpE DX about and I managed to log something each day. The signals have been of even shorter duration and at weaker levels than in the previous month and this has presented me with very great identification problems. Some possible loggings have "slipped through my fingers" for this reason, which is rather infuriating! The log shows that here stations mainly to the East and North East have been coming in, with the USSR as the best, and with no stations to the South, except Spain.

I recall that in previous years at this time there were different patterns. For example in the past two years it was Italy that was possible when all else failed. So if this year you want to check whether your gear is still OK try USSR R1 between 08.00 and 09.00: that should put your mind at rest!

Now for the SpE log for 1-30/11/70:

- 1/11/70 USSR R1, Poland R1.
- 2/11/70 3/11/70 USSR R1, Czechoslovakia R1, Austria E2a.
- Czechoslovakia R1.
- 4/11/70 Czechoslovakia R1.
- 5/11/70 6/11/70 7/11/70 USSR R1, Austria E2a, Spain E2. Poland R1, Austria E2a. USSR R1, Spain E2.

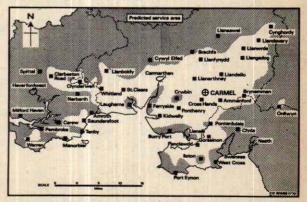
- 8/11/70 USSR R1.
- Poland R1.
- 9/11/70 10/11/70 USSR R1.
- 12/11/70 USSR R1, Poland R1.
- 13/11/70 14/11/70 15/11/70 USSR R1, Austria E2a, Sweden E2, Spain E2. Austria E2a, Poland R1, Spain E2. USSR R1, Czechoslovakia R1.

- USSR R1, Czechoslovakia R1, Sweden E2, Spain E2, Switzerland E2. Pol/MT test card R1 ? Poland or Hungary, Czechoslovakia R1, Sweden E2. 16/11/70
- 17/11/70
- USSR R1, Sweden E2, Spain E2.
- 18/11/70 19/11/70 20/11/70 USSR R1.
- USSR R1.
- 21/11/70 Czechoslovakia R1, Poland R1, Sweden E2, Spain E2. USSR R1.
- 22/11/70
- USSR R1.
- 23/11/70 24/11/70 25/11/70 USSR R1, Czechoslovakia R1. USSR R1, Czechoslovakia R1, Pol/MT test card R1 ? Poland or Hungary.
- 26/11/70 Czechoslovakia R1.
- 27/11/70 28/11/70 Czechoslovakia R1.
- USSR R1, Spain E2.
- 29/11/70 USSR R1.
- 30/11/70 USSR R1.

There was some F2 activity noticeable with the USSR sound only stations on 38-40MHz coming in well almost daily from the 1st to 18th November, and even the USA police were about here on the 3rd. The Trops have been very poor: when a signal build-up occurred the weather soon changed and put paid to it. I am still patiently waiting for a good Trop opening to see how the colour TV performs on West Germany!

I have heard rumours via R. Bunney of the ORF Austria electronic test card being seen on Ch.E3 as well as E2a and E4, so this looks like a new transmitter in service. Has any other DXer seen it? Roger has also provided me with some reports of F2 activity in differ-ent parts of the world: they are enough to make one just green with envy! He has a report from Bill Heusmann of Des Moines USA of his reception of France Ch.F2 sound there and another report from Glenn Hauser at present in Thailand of his reception of BBC-1 Ch.1 on sound and vision and France Ch.F2 sound on 22/10/70. Glenn also reports Japan up to 60MHz via F2 and Arabic on Ch.E2. He thinks that this is Lebanon and says that he has had Korea via F2, and India New Delhi plus Pakistan Karachi E4 via TE. In fact it was quite common from 1/9/70 onwards.

In spite of all this it seems we must be content here with occasional F2 reception of US Paging and Police stations at around 40MHz. There are reasons for this. Firstly our location in the Northern Hemisphere pre-cludes us from getting the better F2/TE that prevails in more tropical areas like Thailand. Secondly, reception in the US of Europe is a little easier than in the reverse direction because the European frequencies for Chs. B1 and F2 are lower than the US counterpart Ch.A2, lower


and F2 are lower than the US counterpart Ch.A2, lower frequencies propagating better than the higher ones. Roger reports US Police radio on 1/11/70, I quote "as high as 42-75MHz, which is as high a frequency I have heard across the Atlantic". This is still a long way l.f. of Ch.A2 in the States with vision on 55:25 and sound on 59-75MHz, so this is the real problem. It means that we need some really good F2 conditions before we can raise the USA via F2. As, however, the US Ch.A2 vision frequency is l.f. of the sound it is the signal we are more likely to receive: it will be easier for us to distinguish a 525-line 60Hz image from a 625-line 50Hz one than to try to identify an American voice line 50Hz one than to try to identify an American voice that could originate either in the States or in Europe. This you may remember was what happened to Maurice Opic and myself with our reception some two years ago of a 525-line 60Hz picture ? origin Brazil.

NEW UHF STATIONS

New u.h.f. stations are as follows: Sweden. Mora Ch.22 1,000kW hor.; Falun Ch.40 15kW hor.; Visby Ch.41 1,000kW hor.; Motala Ch.45 1,000kW hor.; Sunne Ch.50 1,000kW hor.

France. Porto-Vecchio Ch.34 25kW hor. Holland. Arnhem Ch. 50 30kW hor. NOS1; Arnhem Ch.53 30kW hor. NOS2. (Ian Beckett has already logged Ch.53.)

CARMEL UHF SERVICES

The above BBC map shows the predicted service area. The channels are BBC-Wales 57, ITV 60, BBC-2 63. Aerial group C, horizontal polarisation, maximum e.r.p. 100kW.

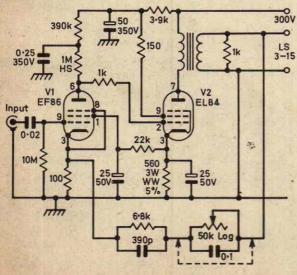
IMPROVE YOUR TV AUDIO CHANNEL M. A. HARRIS B. Sc.

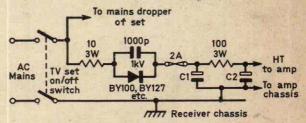
ALTHOUGH the modern TV set gives by and large a fairly good picture, the sound output stages are generally left to their own devices. What with single-ended PCL82s and the like driving tiny side-facing loudspeakers, the quality of the output is poor.

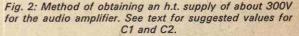
One of the difficulties of connecting a high-fidelity or any other amplifier for that matter to the average TV set is that the television chassis is almost always connected to one side of the mains whereas the amplifier chassis is, or should be, earthed. The electricity boards frown on earthing the neutral supply, and the domestic fuses do not generally stand the live supply being earthed! Isolating capacitors are never very satisfactory since they invariably allow quantities of 50Hz hum into the audio circuitry. The amplifier to be described however is mounted inside the TV cabinet and so does not have these problems, the two chassis being connected together safely.

Amplifier Circuit

The design is based on the well-known Mullard 3-3 amplifier (Fig. 1). As can be seen the amplifier consists of only two valves and so the chassis for it can be made physically small enough to fit into the slimmest of slimline TV sets. The output transformer may be mounted separately from the ampli-




Fig. 1: The basic Mullard 3-3 circuit.


fier chassis on the cabinet side. The bass control $(50k\Omega)$ can be omitted but is strongly recommended to compensate for the lack of bass obtained with a small speaker in a small box.

The circuit incorporates some interesting technical features. The EF86 voltage amplifier is operated with low anode and screen voltages and is directly coupled to the output pentode. This raises the gain of the voltage amplifier to two or three times that obtained under normal operating conditions. With direct coupling the cathode voltage of the output stage is higher than would be required with *RC* coupling. The d.c. conditions of the amplifier are stabilised by supplying the screen of the EF86 from the cathode of the output pentode, thus introducing d.c. feedback.

HT Supply

Since the amplifier chassis is connected to one side of the mains supply through the TV chassis, a.c./d.c. techniques can be used to obtain the 300V or so h.t. required. First identify the wire that goes from the on/off switch to the set's mains dropperi.e. the wire *not* connected to the chassis. This is taken via a 10 Ω 3W resistor (Fig. 2) to a silicon

rectifier across which (to eliminate "spikes" on the mains waveform) a 1000pF capacitor of 1000V rating is connected. The output of the rectifier is fed through a 2A anti-surge fuse to the smoothing and reservoir capacitors. This will give approximately 300V for the amplifier.

The values of C1 and C2 depend on what the constructor has in his spares box. Ideally they want to be something like 100μ F (C1) + 200μ F (C2) at 350V working. More than this may be used but anything less will not give the 300V or so needed. As space is at a premium in most TV sets the main electrolytic can be mounted in a clip on the cabinet

somewhere convenient with the other components built on to a small tagboard or tagstrip soldered to the pins of C1 and C2. The rectifier does not have to be a BY100 or a BY127: any rectifier will do provided it will deliver 60mA and is rated at 800V p.i.v. at least.

Heater Supplies

The next problem is to sort out the heater supplies required for the two valves. A mains transformer could be used but is more likely to be an embarrassment than anything else because of the space required and more important the radiation of a 50Hz magnetic field which could easily distort the picture if the transformer is mounted close to the tube. A much easier way is to make use of the series heater chain that most TV sets have. The valves in the original Mullard design are an EF86 and an EL84. The EF86 requires 6.3V at 200mA. As most TV sets have a 300mA heater chain a 680 1W resistor must be soldered across the EF86 heater pins to bring the total current to 300mA. The EL84 requires 6.3V at 750mA. Fortunately a roughly equivalent valve with 300mA heater is available-the PL84. The author has also tried a PL82, with no apparent difference to the ear. The constructor could use either-whichever is in his spares box. The heaters are of course wired in series.

If the original sound output valve is removed, the heater supply can be picked up using a B9A plug (most output valves have a B9A base). Fig. 3 shows the amplifier's heater chain. If an EF86 and

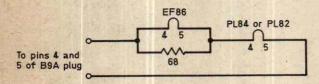


Fig. 3: The amplifier's heater chain.

PL84 are used the heater voltage required will be 21-3V. An EF86 and PL82 will require 20-3V. Audio valves commonly used in TV sets are the PCL82, PCL83 and PCL86 which have 16V, 12-5V and 14-5V heaters respectively. In the worst case an EF86 and PL84 at 21-3V replacing a PCL83 at 12-5V—an extra 8-8V will have to be found. In practice the extra 8-8V means under-running the chain by $(8\cdot8/240) \times 100 = 3\cdot6\%$. This is quite in order although the purists could always drop the heater tapping on the mains selector 10V, i.e. from 240 to 230, and then insert a 10 Ω 2W resistor somewhere convenient in the chain—say in the sound amplifier stage or next to the tube base, both being easy places to get to.

Audio Connections

The audio input to the amplifier is most easily picked up using the B9A plug used for the heater supply. For a PCL82 it is pin 1. Do not connect the braiding (use coaxial wire) at the PCL82 end. Leave it free and insulated (to prevent accidental shorts) but connect it to the amplifier chassis. If it is more convenient the audio can be taken from the slider and earth connections of the volume control. The loudspeaker connections must be removed from the original output transformer if this is not being used for the new amplifier—a larger one is strongly recommended to prevent distortion due to saturation of the core which especially at high volume levels would almost certainly happen with the original—and connected to the new output transformer. The other connections to the old transformer can be left in place. The new output transformer should have a primary impedance of $5k\Omega$ and a secondary impedance suitable for the loudspeaker being used

Constructional Notes

No layouts are given since the space available will depend on the make and type of TV set. The output transformer and power supply can be mounted almost anywhere on the cabinet sides to leave the amplifier chassis very compact.

Setting Up

The only point to watch when setting up is to get the feedback loop correctly phased. Leave the loop disconnected at first. Switch on and allow to warm up, then earth one speaker terminal and contact the feedback lead to the other one. If the hum and noise level drop this is correct and the leads can be permanently soldered in place. If on the other hand a large howl is heard the connections are the wrong way round and need changing over.

The writer has had this amplifier in his domestic television set for well over a year now and is very pleased with the results. One speaker of the highfidelity installation in fact lives next to the TV set and is usually preferred to the set's own speaker.

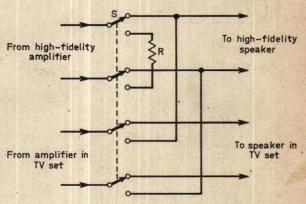
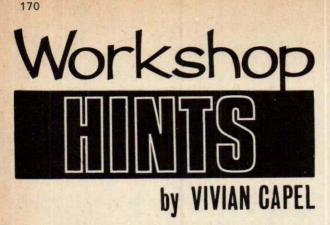



Fig. 4: Changeover switch for switching from the loudspeaker in the set to an external high-fidelity loudspeaker. S is a four-pole changeover switch while R is probably 15Ω and of wattage rating to suit the high-fidelity amplifier.

A changeover switch has been mounted on the back of the TV set with a dummy load for the highfidelity amplifier when the speaker is used for TV sound. If any constructor wishes to copy this arrangement the connections are shown in Fig 4. It will be noted that double-pole switching is used. This is because the chassis of the high-fidelity amplifier is earthed whereas the TV chassis is (or should be) tied to the neutral side of the mains.

Few engineers enjoy dealing with the paperwork that arises during the day-to-day running of a service department. Some firms, particularly the large multiples, seem to take a delight in flooding the workshop with forms, time sheets, tallies, requisitions, permits, progress sheets, job dockets and many others, all of course to be made out in triplicate. So much so that some engineers have been heard to remark that it is more serious to lose a ball-point than a soldering iron! Certainly time spent wading through unnecessary paperwork cannot be spent on benchwork.

Some smaller establishments on the other hand make do with rough and ready systems that are inadequate so that when queries arise much time is wasted in searching for information and sometimes costly mistakes occur. What is needed is a system of paperwork that provides as much information as necessary but with the minimum of time and effort spent in recording it. So we shall now outline a few suggestions which have been used in various workshops with success for dealing with this often irksome but necessary chore.

Progress Book

First some means of checking the progress of a job through the workshop together with an instant means of establishing its present state, i.e. completed, soak testing, awaiting parts or estimate acception, is needed. This can be provided by a progress book.

The progress book needs to be permanent so a hard cover ledger-type book would be most suitable. As soon as a job is brought into the premises it should be entered in the book. This should be enforced as a strict rule, as an intention to do so later can easily be forgotten with the result that there is a job in the workshop for which no record exists.

Job Numbers

Each job must be given a job number to readily identify it and this should be entered first in the left-hand column (see Fig. 1). Other information can then be entered along the same line. This will enable a large number of entries to be made to the page and will facilitate finding information at a future time.

The job number can be just a numerical sequence starting at 1 and progressing indefinitely. Alternatively it could take the form of an invoice number where the final invoice is made out in a numbered duplicate book. But this means checking the next available invoice in the book, reserving it by filling in details such as customer's name and address and then entering the invoice number in the progress book. When a field engineer is bringing in a number of sets for workshop attention this can absorb a lot of time.

Another system which has much merit is to incorporate the date or part of it into the job number. This can be just the month and year, written without hyphen, and then the actual job number. Thus the first job in June 1970 would be 6701, the second 6702 and so on. At the end of the month the numbers would revert to start at 1 again for the following month so that July would start 7701. This has the advantage that in any future reference the approximate date can be immediately ascertained, a useful feature because customers' memories regarding previous service dates are notoriously unreliable! The day could also be incorporated if desired but this could add complications as 112 could mean either the eleventh of February or the first of December. If the day was put after the year then similar confusion could result with the actual job number. If a more precise time location is required a week number could be included. Number 1 would start on the first of the month and subsequent numbers on succeeding Mondays. Thus the first week in June would be 1670. Job numbers could still run the whole month before reverting to 1. Generally however, the month should be sufficient in the smaller workshop as the part of the month can be estimated from the magnitude of the last number.

From time to time it may be necessary to analyse the work load of the workshop to determine which are the busiest or slackest times, or to compare months with previous years. This can easily be done without a lot of research by just consulting the progress book for the last job number in the months concerned. This of course will give the number of jobs received during that month.

Information Entered

After assigning the job number and recording it in the progress book the next entries are the customer's name and address and the make and model number of the set. Serial numbers can be recorded if desired. This is generally not necessary but there have been cases where two sets of the same type have been in for service and the wrong one has been returned to a customer, and also cases where a customer has claimed that a set wasn't his when it actually was. Such difficulties can be resolved by consulting the progress book for the serial number, though such problems are fortunately rare.

	the second se	and the second s
570131	Jones. 14 High St. Ferranti T1024. Poor width	C.D.
570132	Smith. 2 Valley Rd. Decca DM 4. Int. field sync	ST.C.
570133	Brown. 4 Market Place. Ultra 6619. No vision	AP.
6701	James. 9 Beech Close. Philips 1768. Line sync	C.R.
6702	Evans. 102 Main St. Philips TG152A. Tuner faulty	C.D.
6703	Davey (Miss). 3 Hazel View. Dansette R. No LW.	C.
6704	Edwards. 8 Hill St. Pye V14. Tube faulty	E.
		-

Fig. 1: Sample of progress book entries.

A small space can be left for further information to be entered by the engineer doing the job. This can be a standard letter-code such as E estimate, AP awaiting parts, ST soak testing and C completed. There is no need to detail the actual repair as this will be recorded elsewhere and double recording means wasted time. Finally. R can be added when the set is returned to the customer if he collects it or D if it is delivered. This is of course filled in by those concerned. The state of any set in the workshop can thus

The state of any set in the workshop can thus at a glance be discovered, or the history of any previous repair. It can also be seen how many sets are in for repair, how many are held up for various reasons and whether the customer eventually collected his own set or had it delivered. Hence a large amount of information is available with the minimum of time and effort spent in recording it.

Identifying Sets

Once assigned the job number should be fixed in some way to the set so that it can be identified while in the workshop and also on future service calls—in the field or in the workshop—so that the date of the previous repair can be instantly seen. The use of tie-on labels which can be fastened to one of the back ventilation slots is one method. Another is to stick a piece of white p.v.c. tape on the back or on the chassis with the number inscribed on it.

Job Sheet

The next item of paperwork is the job sheet. The necessary information as to the owner's name and address, make and model is obtained from the progress book. These may be made out by one of the office staff or the service manager and put with the set or assigned to a particular engineer, or the engineer may make out his own sheet when he starts work on the job. Which method is used will depend on the existing organisation within the service department and its size. Job sheets can be printed with boxes for essential information, leaving the rest blank for recording work done, parts fitted and time taken. On completion the job sheet goes to the office for costing, invoicing and finally filing.

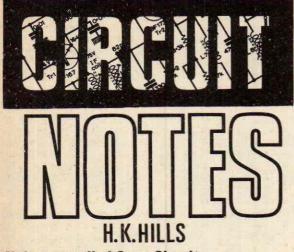
Short Cuts

For smaller businesses there is a short cut which reduces some of the paperwork. A duplicate book is required for this. On completion of the job the engineer fills in the information from the progress book and then details the work done and components used. The top sheet is then used as an invoice, going to the customer with the set, while the carbon copy remains in the book as a permanent record. Further information such as time taken can be inserted on the bottom copy without appearing on the customer's sheet. This avoids making separate invoices and filing individual job sheets. The engineer may cost the job himself after which he tears out the top sheet and puts it with the finished set, or it can be left in the book for the service manager to cost later.

This arrangement lends itself to a further simplification of paperwork involving the payment of accounts. As each bill is paid the bottom righthand corner of the bottom copy can be folded over. It will then be possible to see at a glance without even opening the book whether there are any unpaid accounts remaining. When they are all paid the book can be put away while books containing unfolded pages can be left to hand as a reminder to follow them up.

Recording Faults

Whichever system is used—and there are many variants possible—one important item of information must not be overlooked. This is the specific nature of the fault or the customer's complaint. Without this the engineer can be led on a wild goose chase, especially if the fault is intermittent. How and where this is recorded will depend on the system adopted. If separate job sheets are made out by the service manager when the set is first accepted into the workshop then he can fill in this detail from the customer's first communication. If the engineer makes out his own sheet as he goes then the information must be recorded in the progress book by the field engineer or whoever accepts the job.


Initial Record

On receiving the first request for service an accurate record must be made of the details. Engineers' time is often wasted by calling at wrong addresses. If job sheets are used one can be made out there and then so that all the field engineer has to do is to make out his report on making the call. If the job must be brought into the workshop then the sheet can stay with it to be completed by the inside engineer. This is particularly useful where some work has already been carried out by the field engineer, as this will then have been duly recorded on the sheet.

Alternatively if the field engineer is just presented with a list of his calls he will have to make out his own records, probably using a duplicate book if the same is used inside the workshop. Any work that he might have done on a job before bringing it in can then be recorded in his book, the top sheet staying with the set and work being carried forward on to the final invoice instead of going to the customer as would be done if the job were completed outside. Here again the particular system used and the way it integrates with that of the workshop will depend on the circumstances.

Spares Pad

A very useful item of paperwork which can actually save a lot of time is a spares-pad. This should be kept in every workshop, large or small. Sometimes regular checks are made on the store of spares to see what is in need of replacement. This is often done when a traveller from one of the component firms calls. This too can be quite time absorbing and some items can be overlooked necessitating a later special order or running out of stock of an often-used part. A spares-pad kept hanging near the stores can prevent or at least reduce this possibility. Whenever an engineer uses a part and

Noise-cancelled Sync Circuit

THE only disadvantage with negative picture modulation as used on u.h.f. is that noise pulses from car ignition systems and other sources are in the same (positive) phase as the sync pulses-both rise sharply to a high maximum value. This is the main reason for the general adoption of flywheel line synchronisation since with this the timebase generator is controlled by a d.c. potential produced by the a.f.c. discriminator. The control potential only changesto vary line oscillator frequency-when a sustained disparity exists between the timing of the sync pulses and the reference waveform fed back to the discriminator from the line output stage. Continuous highamplitude noise trains can still however impair flywheel sync performance and several circuits have appeared in the past to remove noise from the video information presented to the sync separator.

In the Beovision 3000 range of colour receivers there is an extremely interesting and ingenious arrangement which uses four transistors and a diode in the complete sync system. The first transistor is simply an RC video stage and being completely conventional is not included in the circuit shown in Fig. 1, simplifying the circuitry to the sync separator Tr1, noise inverter Tr2 and "cut-off" transistor Tr3. The sync separator operates in the usual manner, remaining cut-off during picture content but conducting heavily during the sync pulses, with the result that its collector voltage, fed from a + 30V rail, falls to only +4V during the sync pulses, giving a peakto-peak pulse output amplitude of 26V.

The difference between this transistor sync separator and those used in other receivers is that its emitter is not returned directly to chassis but via the "cut-off" transistor Tr3 which is normally held strongly forward biased by R207 from the +12Vrail. Thus during noise-free reception Tr3 acts only as a low-value resistor grounding the sync separator's emitter.

The noise-inverter transistor Tr2 has no fixed forward bias and is therefore normally non-conductive. A vision i.f. feed taken from a transformer in the last vision i.f. stage however is applied via a 39-5MHz rejector to the noise detector diode D1 whose cathode is connected to the combination R1, R2 and C1 in Tr2's base circuit. As the rejector is tuned to the vision i.f. frequency it removes the video and sync information but as noise covers such a wide bandwidth it cannot prevent this from arriving at the diode which rectifies it and thus develops a small positive potential across C1.

When the positive pulse potential at the junction of R1 and R2 exceeds 0.7V Tr2 conducts so that amplified but opposite-phase noise signals appear at its collector. These negative-going pulses are fed via C208 to Tr3 base, overcoming the fixed forward bias via R207 and momentarily cutting Tr3 off so that the sync separator Tr1's emitter is connected to chassis via a very high instead of a very low resistance. In this way the sync separator is cut off when noise pulses are present and these are thus prevented from appearing at the output of the sync separator, which feeds only noise-free sync pulses to the timebases.

Colour-difference Signal Preamplifiers

TO prevent spurious colour appearing on monochrome (due to noise or video information within the chroma passband) the second chroma amplifier stage in the decoder in most colour receivers is not provided with fixed forward bias. Instead on colour a turn-on bias is produced by rectifying the ident signal (since this is only present during reception of a colour transmission) and this is applied as forward bias to the second chroma amplifier. To ensure that variations in ident signal amplitude do not vary this forward bias and thereby cause changes in saturation level many designs clamp the turn-on voltage by means of a biased diode or diodes.

This bias is often referred to as the colour-killer, but the term can be confusing since of course the voltage is *present* during colour reception only. In

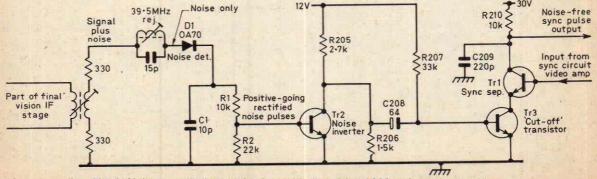


Fig. 1: Noise-cancelled sync circuit used in Beovision 3000 series colour receivers.

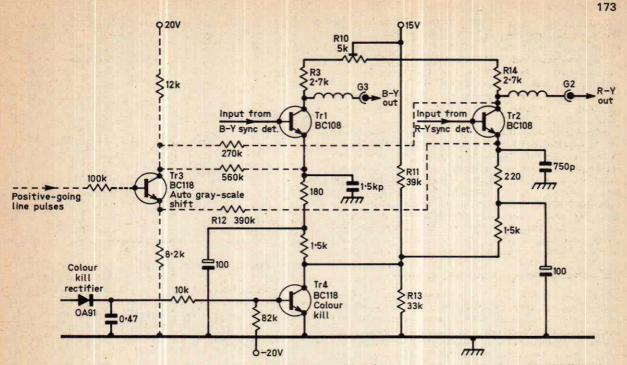


Fig. 2: Colour-difference preamplifiers, colour-killer and (broken lines) auto gray-scale shift circuit used in ITT-KB colour receivers (CVC1 and CVC2 chassis).

most instances therefore—depending on individual circuitry—it is better to regard the turn-on potential as a colour-killer de-activator.

Although the general practice, colour-killing need not necessarily be applied to the second chroma stage and in the KB-11T single- and dual-standard models it is jointly applied to the R-Y and B-Ycolour-difference preamplifiers. These two stages plus the colour-killer transistor and what is termed the "auto gray-scale shift" transistor are shown in Fig. 2 (applicable to the CVC1 and CVC2 chassis).

Following normal practice the output from the R-Y and B-Y synchronous detectors is fed to the respective preamplifiers Tr1 and Tr2. The amplified output developed across R3 and R14 is then applied to the grids of the R-Y and B-Ycolour-difference output pentodes. Feed for the G-Y output pentode grid is obtained by matrixing together correct proportions of R-Y and B-Ytaken from the R-Y and B-Y output pentode anodes (high-level mixing).

Concentrating on preamplifier circuitry however it will be seen that the emitters of Tr1 and Tr2 are returned to chassis via a common 33k resistor R13 instead of by the usual resistor of a few hundred ohms value. R13 is shunted by the colourkiller transistor Tr4. A small negative base potential is applied to this transistor so that on monochrome being an npn type it is completely non-conductive. The l.t. current drain through R11 produces a potential of 6V across R13, raising the preamplifier emitter potentials to this voltage and thereby reverse biasing them to cut-off so that on monochrome reception both preamplifiers are inoperative, completely blocking the chrominance signal path.

On colour reception the ident signal is rectified

to give a positive potential of sufficient amplitude to overcome the negative reverse bias at Tr4 base and drive it into full conduction. Its emittercollector voltage then falls to only 0.2V, virtually short-circuiting R13 and permitting both the preamplifiers to operate at normal gain.

The preamplifier equalising potentiometer R10 linking the collector load resistors R3 and R14 is normally adjusted to give equal-amplitude outputs from the transistors measured at G2 and G3 on a colour-bar test pattern.

The purpose of the auto gray-scale shift circuit is to automatically tint monochrome pictures slightly blue in line with that of a normal monochrome receiver. The circuit operation is somewhat involved and mainly affects the driven triode clamps in the colour-difference output stages.

Positive-going flyback pulses from the line output transformer drive Tr3 into full conduction producing positive-going squared pulses at its emitter and negative-going pulses at its collector. This output pulse polarity develops because when bottomed or saturated the collector voltage of a transistor falls from its normal value (positive in this case) to a little above its emitter potential and is therefore negative-going while the heavy saturation current through the emitter resistor will produce an increased voltage drop across it to raise the emitter voltage providing a positive-going voltage change.

The pulse feed from Tr3 collector to the R-Ypreamplifier collector reaches the anode of the R-Ytriode clamp where the positive peaks are coincident with the normal clamping pulses from the line output stage. The pulses from Tr3 emitter are also fed via R12 to the emitter of the R-Y preamplifier and only partially offset the effect of the negative-going pulse feed to its collector. The B-Y preamplifier is fed with these pulses at its emitter only, from Tr3 collector.

The net effect on colour reception is that due to the selected component values similar amplitude rectangular pulses are presented to the R-Y and B-Y clamp triode anodes and if the gray-scale tracking is correct white will be equivalent to Illuminant D.

When however the preamplifiers are turned off on monochrome by the absence of the colour-killer potential to Tr4, there will be a large positive rectangular waveform applied to the R-Y clamp but none to the B-Y clamp. Due to the action of these triodes, which establish the basic colourdifference levels at the associated shadowmask tube grids, the beam contribution from the blue gun will be increased but that from the red gun decreased. The effect produced is therefore a distinct blue tinting in line with that experienced with monochrome tubes.

"Balanced Tone" Volume Control

WITH most radio and TV receivers, record players and audio amplifiers—except those of clearly defined hi-fi nature—reducing the volume control setting often disproportionately attenuates the lower freqencies. There are many factors involved and the effect may be accentuated by room and aural characteristics.

However, in the Philips G6 colour television chassis the effect is offset in the PCL86 a.f. stage by means of a $lk\Omega$ potentiometer ganged to the volume control and connected in series with the triode cathode lead, its slider being linked to a negative feedback loop fed from a tertiary winding on the audio output transformer. As with most negative feedback loops the effect of the feedback increases towards the higher frequencies. As rotation of the dual control decreases the volume the degree of negative feedback is increased to increase treble attenuation and thereby produce a more balanced output.

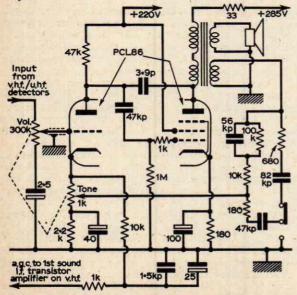
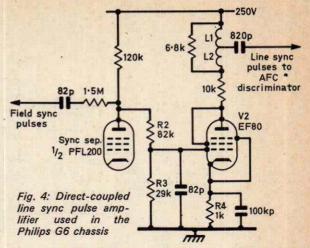
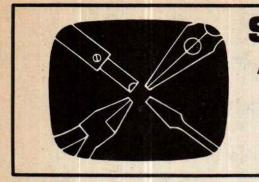



Fig. 3: Audio circuit of the Philips G6 chassis.

The circuit is illustrated in Fig. 3 and also shows the use of the triode cathode potential as the source of forward bias for the first transistor sound i.f. amplifier when the set is switched to v.h.f.: the mean-level voltage variations produced by a.f. signal amplification provide a measure of a.g.c. action. On u.h.f. fixed bias by a conventional dual-resistor potential divider is applied to the first sound i.f. amplifier.

The 3-9pF capacitor linking the pentode and triode anodes provides negative feedback to high frequencies which could cause instability, and augment the action of the $1k\Omega$ grid stopper.


The 33Ω resistor between the h.t. rail and the output transformer is included to protect the primary from excessive d.c. current flow should a short-circuit develop: it will quickly overheat and go open-circuit if subject to excessive current.

Sync Pulse Amplifier

MANY receivers employ d.c. amplifiers to magnify the output voltage from the a.f.c. discriminator before applying it as a control potential to the line generator but in the Philips G6 colour chassis the line sync pulses themselves are amplified by a triodeconnected EF80 before being fed to the a.f.c. discriminator. The circuit is shown in Fig. 4 and it will be seen that while the field pulse output is taken directly from the pentode sync separator anode the input to the line sync pulse amplifier V2 is determined by the ratio of R2 and R3 which also set V2 grid voltage (11V on 405 and 12.8V on 625).

The cathode voltage developed across the $1k\Omega$ cathode resistor R4 automatically adjusts to provide a slight negative bias on both systems: on v.h.f. it is 11.7V, 0.7V greater than the grid voltage, and on u.h.f. 13V, 0.2V greater than the grid voltage from the sync separator anode therefore the EF80 operates with normal effective bias. The pulse output is developed across a high Q coil L1, L2 in the anode lead which rings on both the leading and trailing edges—due to the sudden change in anode current—to produce sharply differentiated pulses which enhance the a.f.c. discriminator action.

TO BE CONTINUED

SERVICING television receivers L. LAWRY-JOHNS BAIRD 620-640 SERIES—cont.

Tuner Units

The v.h.f. tuner uses a PCC189 and a PCF801. A faulty PCC189 can cause loss of signal (partial or total) on v.h.f. only whilst a faulty PCF801 can cause loss of u.h.f. as well as v.h.f. as the mixer section is used as an i.f. amplifier on u.h.f. The aerial sockets are also a weak link, with improper soldered connections sometimes fractured by heavy handedness on the plug or the use of heavy low-loss coaxial feeder which may put too much strain on the socket. Normally the only trouble experienced with the v.h.f. tuner is improper contact between the biscuit studs and the contact springs as mentioned previously.

The u.h.f. tuner can be a little more difficult but servicing should be limited to valve replacement, checking for dry-joints and correct meshing of the tuning vanes. As we said earlier, it is the tuning drive which gives most trouble.

IF Stages

From the 405 point of view there is no common i.f. stage, the output from the tuner being fed direct to the system switch and thence through two small capacitors, one feeding the vision strip and the other the sound (C50 and C52). Both strips consist of two valved stages. The vision stages consist of one EF183 and one EF184 valve while the sound strip uses one EF183 and one EF80.

This is a convenient arrangement for quick servicing: if there is a fault which is affecting both sound and vision the chances are that the fault is in the tuner, whilst if only one side is affected the valves can be quickly swopped to prove a point or the fault narrowed to a small section of the total circuit. Weak links in the vision strip are the valves and the $22k\Omega$ screen feed resistor R34 to the EF183. This can change value on its own or be damaged by a faulty valve or decoupling capacitor. Quite often a faulty EF183 can be replaced leaving a damaged resistor to fail hours or days later.

Once again, it is important to check the goodness of the system switch contacts.

Line Timebase

The line timebase is where the majority of the troubles will be encountered. The symptoms may vary from a no picture condition to lack of width, varying picture size and horizontal hold difficulties.

Starting with the no picture condition, this assumes that there is no illumination on the screen whatever the position of the brilliance control. The first move is to ensure that the set is switched to 405 and to listen for the line timebase whistle. If this is healthily present it is fair to assume that the timebase itself is functioning reasonably well and a quick check at the top of the DY86 will prove whether or not this is so. If this valve is not lighting up the heater could be open-circuit. If the valve is lighting up the e.h.t. is most likely to be in order and attention should then be directed to the tube base voltages at pins 2, 3 and 7. Pin 2 should be at chassis potential, pin 3 at over 400V, while pin 7 should vary with the brilliance control from zero (maximum brilliance) to about 100V (minimum brilliance). If the voltage at pin 7 stays high check C132 which may be shorted.

If there is no line timebase whistle and no e.h.t. check the appearance of the PL500 and PY88 valves. If one or both are overheated the ECC82 could be at

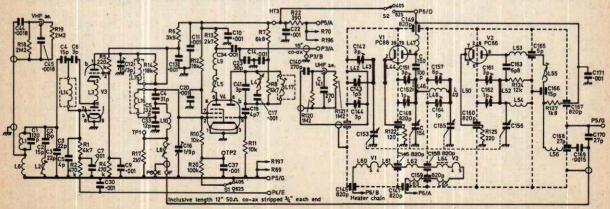
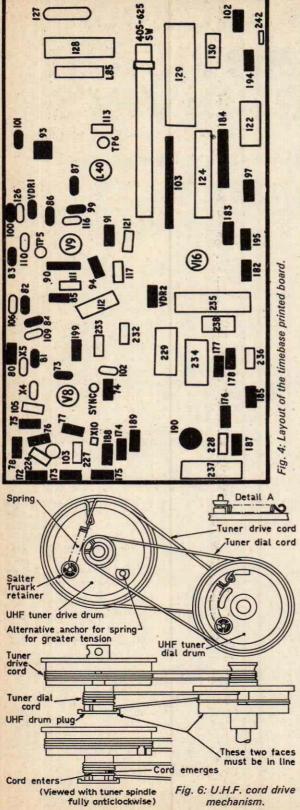
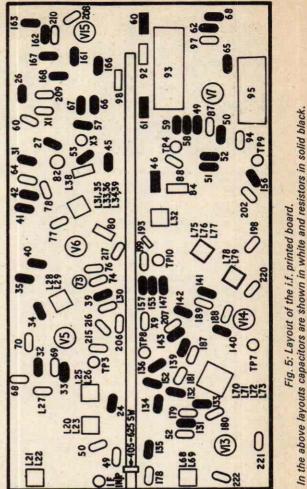




Fig. 3: Circuit diagram of the tuner units. R124 8.2k and R125 180Q in later versions.

fault and a smart tap on this valve may start the line oscillating to prove that this is indeed the culprit. The tap is only exploratory and a replacement should be tried in any case. The trouble could be further back however. If one of the flywheel sync diodes (X4 or X5) is faulty this can render the oscillator inoperative.

There are times when the PL500 may be overheating but not excessively. This can be due to an overload in the line output stage, the line oscillator functioning normally. Such an overload can be due to an internally shorted DY86 (remove top cap), a faulty PY88 or a shorted capacitor associated with the line output transformer. Finally the line output transformer may have shorted turns.

If the PL500 is not overheating, indicating that the line drive is correct (or even excessive) and that the valve is not at fault, try removing the top cap of the PY88. If this restores some degree of line timebase working change the boost reservoir capacitor C129 $(0.25\mu F)$. This capacitor is rated at 750V but an $0.22\mu F$ capacitor rated at 1kV is a fair substitute.

If removal of the PY88 top cap fails to have any effect attention should be directed to the PL500 screen supply (pin 7). The resistor R97 should drop something like 10V across it under normal working conditions. If there is no voltage at all at one end the resistor is open-circuit; if it is cooking C122 could be

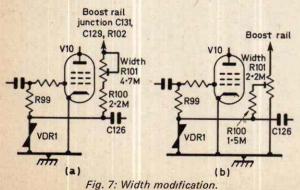
176

shorted. If on the other hand there is little voltage drop across R97 the line drive may be excessive and it is the width circuit which should receive attention. Check the width control, R100 and R99, etc. The writer is not keen to specify voltages in this type of circuit because of the widely differing readings which can be obtained with different types of meter.

As far as the line oscillator is concerned the picture should first be locked on 625 lines with the normal hold control and then switched to 405 and locked with the preset R93. The coil L40 should be adjusted for a floating picture on 405 with the sync shorted or rendered inoperative.

Line hold difficulties can usually be resolved by replacement of the ECC82 and a check of the OA81 discriminator diodes X4 and X5. Other components may give rise to line hold troubles but the writer has not experienced much trouble with the smaller resistors and capacitors in this part of the circuit. We would not however be surprised to find that C110 and R83 could become faulty, giving rise to various line oscillator defects the symptoms of which would vary according to the degree of leakage through the capacitor or change of value of the resistor.

Models in the Series


Models in the series fitted with 19in. tubes are as follows: 622, 624, 626, 628, 640, 642. There are also the following 23in. models: 630, 632, 644, 646 and 648.

Voltage Readings

Typical voltage readings with the system switching in the 405-line position were given in Fig. 1 last month and were measured using an Avo Model 8 (20,000 Ω /V). The mains input was 240V a.c. Readings in the vision and sound sections were taken with no signal input and the contrast and brilliance controls at minimum, those in the sync and timebase stages with a weak signal input, the contrast and brilliance set to low levels and the timebases locked. On 625 the screen voltage of V14 is 40V and the anode and cathode voltages of V7A 89V and 9·3V respectively: most other voltages on 625 are slightly lower than those quoted for 405-line operation.

Modifications

Width circuit modified as shown in Fig. 7 to increase the range of adjustment. C97 changed to 0.01μ F. Aerial socket isolation circuits changed on later models.

NEXT MONTH IN

TELEVISION

HELICAL-SCAN VTRs

An upsurge of interest in videotape recording seems imminent. For amateur and semi-professional use this means the helical-scan v.t.r. Just what are the problems of recording video signals on tape, and why are helical scanning of the tape by the head and frequency modulation used? These points, together with an account of servo techniques for synchronising the tape, will be fully described next month.

DIGITAL ICs

The price of digital integrated circuits has fallen very substantially in recent months. This means that the time is ripe for their exploitation by the amateur constructor. They open up many fresh possibilities but, acting as switches instead of as linear amplifiers and operating with pulse inputs instead of ordinary waveforms, their principles are probably quite new to many constructors. A detailed account will be given of their characteristics, the supplies and inputs needed and their applications.

IN-SITU VALVE MONITOR

In servicing valved equipment it is a great advantage to be able to make voltage and current checks on a stage with the valve in position. The simple devices described enable this to be done. They can also be used in conjunction with an oscilloscope to plot dynamic valve characteristics.

SERVICING TV RECEIVERS

Our series on TV receiver servicing continues with the Decca DR100/101 series of dual-standard models.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

то	(Name of Newsagent)
Please reserve/deliver the TELEVISION $17\frac{1}{2}p$ (3/6), and continue every month t	on sale MARCH 8,
NAME	
ADDRESS	

THE IF STRIP-2

178

We have seen that the front-end and i.f. channel of a dual-standard model differs from those of singlestandard models in that the front-end consists either of an all-band tuner or a pair of tuners, one for the v.h.f. channels and the other for the u.h.f. channels, and that the i.f. channel is basically tuned to yield the required response characteristics for the 625-line standard with the standard-change switch introducing extra filtering on the 405-line standard effectively to narrow the response while also altering the rejector frequencies and characteristics to change from intercarrier sound to the 405-line sound i.f.

The dual-standard i.f. channel has often been regarded as an exercise in compromise! It is of course possible to design such a channel for optimum performance on both standards, but few designers have been given complete freedom in this connection owing to economic considerations. Nevertheless over the years some remarkably efficient designs have been created which at the start of the dual-standard game would have appeared to have been virtually impossible at the price. These are noted particularly in colour models and are a credit to the craftsmanship of the British television industry.

Solenoid System Switching

While many dual-standard monochrome sets incorporate a system of levers coupling the standardchange switch to the band-change button or knob on the fascia quite a few colour models adopt a solenoid for activating this switch, the solenoid being energised when the viewer changes between channels of a different standard. The photograph in Fig. 1 for example shows the i.f. module of the well known alltransistor chassis used in the British Radio Corporation's dual-standard colour models (BRC 2000 chassis). The standard-change switch associated with

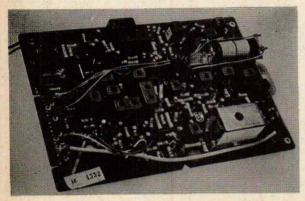


Fig. 1: I.F. module of the BRC all-transistor 2000 series chassis, showing (top right) the solenoid-operated standard-change switch.

RECEIVER CIRCUITS GORDON J. KING

the i.f. chassis can be seen towards the top of the picture coupled to the solenoid at the right-hand side which operates it.

Single-standard IF Input Filtering

With the advent of transistors, i.f. channel design has had to take into account the possibility of crossmodulation arising from a strong tuner signal, for although transistors are in many ways far more desirable than valves in this service they do tend to run into overload more easily. The risk has been minimised by various artifices, including the use of forward a.g.c., transistors which are designed to handle relatively large signal swings without undue non-linearity and by clever filtering between the tuner output and the i.f. channel input.

The idea of the filtering is to reduce the amplitude of unwanted signals at the i.f. channel input rather than filtering them out by means of traps within the channel—the usual technique with valve i.f. strips. Cross-modulation is encouraged of course not only by high-amplitude sound and vision carriers but also by the quantity of signals in the channel. The problems of filtering are significantly reduced in a singlestandard i.f. channel and the main unwanted signals that have to be deleted after the tuner are the sound signal of the adjacent channel below the selected channel and the vision signal of the adjacent channel above the selected channel.

Rejectors

Figure 2 shows one single-standard i.f. filtering circuit as used in recent Pye single-standard colour models. L2, C2, C3, C4 and R1 form a bridged-T rejector. This is tuned to the adjacent channel sound frequency which at i.f. falls at 41.5MHz. A remarkably deep rejection notch is put into the response by this kind of circuit, the depth of the notch being increased and its width reduced by the balancing resistor R1. The adjacent channel vision signal is rolled off by the shunt trap comprising L1 and C1.

The correct attenuation of the in-channel sound signal is provided by the series rejector L4, C7 and C8. This puts a step on the response at the sound frequency to optimise the intercarrier sound performance and in colour to minimise the sound-chroma beat signal though there are other techniques used to keep this latter type of interference at the lowest possible level. Filter L3, C6 and R2 yields the required i.f. bandbass characteristic, all the filters working together of course to secure the net response characteristic.

The colour set i.f. channel must also provide adequate rejection of the adjacent channel chroma carrier. This however is the least critical since if

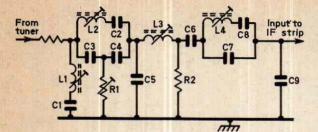


Fig. 2: Filtering at the input of the i.f. channel. This is done particularly to reduce the risk of cross-modulation in transistor circuits.

the other rejectors are working properly and are in correct alignment the adjacent channel chroma carrier should fall well outside the i.f. channel passband. If the adjacent channel sound rejector is mistuned it will affect that part of the response characteristic that deals with the low-frequency video components. This is critical since below-optimum performance in this region is very apparent subjectively, the main symptom being that of smearing.

As already intimated, the in-channel (sometimes called co-channel) sound rejector is also important for keeping the intercarrier beat at the right level and for minimising the beat between the sound and chroma carriers. Maladjustment here could well result in a form of Venetian blind interference at transition points on the display.

Less critical however is the adjacent channel vision rejector, for the job of this is to roll-off the response so that the effective passband is concluded prior to the frequency corresponding to the adjacent channel vision carrier. A quick appraisal of the various rejectors and their positions on the response can be obtained from Fig. 3.

Phase Shifts

Last month it was stated that an important colour set i.f. characteristic is that of delay/frequency. This of course has to do with the phasing of the signal components through the i.f. channel. In normal bandpass circuits where the Q is relatively low serious phase effects are uncommon. However the rejector circuits, owing to their very high Q, can present some complex phase problems. This is not really the place in which such matters can be thoroughly explored but it is worth noting that the rejector circuits employed in colour sets can differ from those used in simple single-standard monochrome models. The differences though are in detail. The basic rejector characteristic will generally be appreciated from the circuit, but additional reactive elements are sometimes employed to reduce the phase shift over the rejector bandwidth. Certain types of rejector circuits, called non-minimum phase circuits, are also

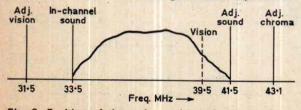
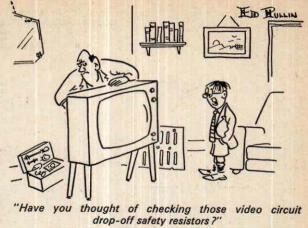



Fig. 3: Position of the various rejector frequencies over the passband.

adopted in colour sets, one example being the bridged-T trap shown in Fig. 2.

Image Response

There is another unwanted response which is well worth considering at this juncture even though to do so we must return for a while to the tuner front-end.

With the majority of channel groups the frequency relationship between the highest and lowest transmissions is only 1MHz from the image frequency of a receiver using the standard 625-line i.f. (i.e. 39-5 MHz). For example, consider the channels assigned to Emley Moor. These are 41, 44, 47 and 51. Here as in most other cases the highest channel is ten channels away from the lowest channel. Since each channel covers a spectrum of 8MHz this means that the frequency between the highest and lowest channel of the group is 88MHz.

The image response of any receiver is displaced from the tuned frequency by twice the i.f. Twice 39.5MHz is 79MHz. Thus it is seen that when a dualstandard or single-standard receiver is tuned to a u,h.f. channel at the end of the local group the passband of the image response will fall within the frequency of the u.h.f. channel at the other end of the group! Whether the image response is above the lowest channel of the group or below the highest channel of the group depends on whether the local oscillator is working above ("high") or below ("low") the incoming frequency by the amount of the i.f. The local oscillator is commonly tuned "high". This puts the image response above the tuned channel so that when a receiver is tuned to the lowest channel of the group the image response appears over a passband acceptable to signals of the highest channel of the group.

This is a dangerous situation as can well be imagined and steps were taken in the early days by BREMA (the association of setmakers) to stipulate a minimum image rejection ratio for British u.h.f. receivers. This is 53dB, a ratio which must be engineered into the tuner circuit design. It is noteworthy that the situation is somewhat less critical on the Continent owing to the smaller density of transmitters and to the use of a standard i.f. of 38·9MHz. The image rejection ratio provided by the tuners in sets destined for the Continental countries is around 45dB.

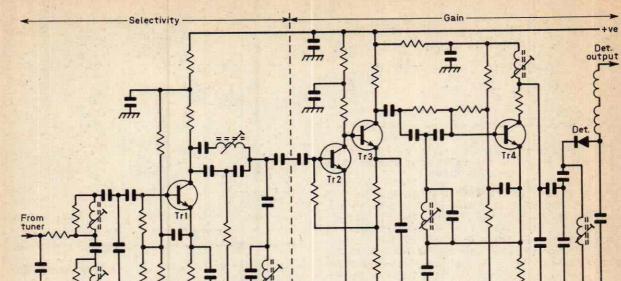


Fig. 4: I.F. channel of the Philips G8 single-standard colour chassis.

Selectivity in the u.h.f. tuner is generally taken care of by three continuously tuned circuits prior to the mixer as was shown in Parts 1 and 2. There is of course always an extra tuned circuit ganged to the pre-mixer circuits for the local oscillator, but this does not come into the selectivity equation.

AGC

The Philips varactor-tuned u.h.f. tuner described in Part 2 and shown in skeleton circuit in Fig. 3 of that instalment embodies these three pre-mixer tuned circuits (quarter-wave lines) plus one for the local oscillator, all tuned by capacitance-diodes. It will be recalled that an extra capacitance-diode (CD5 in the skeleton circuit) is used in this tuner to equalise the oscillator signal amplitude over the tuning range.

In this tuner in particular image rejection is neatly tailored into the aerial input circuit by means of a continuously tuned image rejector located between the aerial socket and the emitter of the r.f. amplifier transistor. The design is such that the rejector frequency always corresponds closely to the image frequency over the entire tuning range.

All u.h.f. tuners carrying three pre-mixer continuously-tuned circuits feature some form of continuous tuning at the emitter of the r.f. amplifier which, in conjunction with the tuned bandpass coupling between the output of the r.f. amplifier and the input of the mixer, provides the necessary 53dB of image rejection. However, the Philips tuner is the only one known to the author where the image rejector itself is tuned to yield the high ratio. The circuit also ensures good coupling efficiency from the aerial to the r.f. transistor emitter, this being necessary for a good signal-to-noise performance.

To AFC

amp

To avoid frequency drift when varactors instead of capacitor-gang sections are used a high degree of voltage stabilisation is necessary relative to the tuning potential, for drift here would of course tend to swing the circuits off tune. This is taken care of by a stabilised supply source and wide pull-in-range a.f.c.

Philips G8 IF Channel

Returning now to the i.f. channel, that in the Philips G8 chassis (the chassis carrying the varactor tuner) is divided into two sections. The first provides the selectivity with a single transistor and numerous

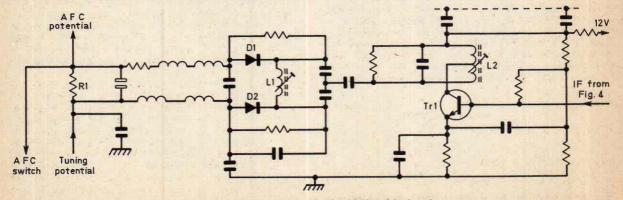


Fig. 5: A.F.C. circuit used in the Philips G8 chassis.

filters while the second section yields the i.f. gain and coupling to the vision detector diode with three transistors and one or two filters. A single detector is used for the sound, chroma and luminance signals, filters in the following stage being used to separate these three components of the composite received signal. The basic circuit of the i.f. channel with detector is shown in Fig. 4. It will be noticed immediately that it is far less complicated than comparable dual-standard i.f. channels. In fact some of the latest single-standard models-even colour ones -seem to be hardly any more complicated (indeed less so in some respects) than the early 405-line only single-standard models before the agony of the dualstandard era! Many designers favour the technique of lumping together all the components concerned with selectivity (rejectors, bandpass couplings, etc.) and then adding the gain later, as in Fig. 4 and as explained in relation to Fig. 2. This logical arrangement lends itself admirably to single-standard design where transistors abound.

AFC Amplifier

Before leaving this month, just a word about the Philips G8 a.f.c. amplifier. This is fed with i.f. signal from the collector of the fourth i.f. transistor in Fig. 4 via a coupling capacitor. The complete circuit of the a.f.c. section is shown in Fig. 5. The i.f. input signal is amplified by Tr1 and the vision carrier is selected by L2. This signal is fed to the discriminator comprising diodes D1 and D2 and their associated networks. The tuning provided by L1 "balances" the discriminator about the selected carrier so that when the carrier frequency coincides with the tuned frequency of L1 the load resistor R1 receives equal strength rectified signal currents from both diodes. Since however the current from diode D1 is flowing through the load in the opposite direction to the current from diode D2 the two currents are effectively cancelled and zero control potential is present across R1. Should the tuning drift the i.f. will shift one side or other of the frequency tuned by L1. This will unbalance the discriminator and one diode will then pass a greater current to the load than the other diode. This causes a potential to develop across the load and it is this which is used to alter the bias of the tuner varactors. The control bias swings, of course, more or less negative as required to correct the tuning error. The tuner part of this function was fully described in the November, 1970, issue.

The a.f.c. system provides a pull-in-range of 1 to 2MHz either side of the correct tuning point and readers now wondering how on earth the required channel is tuned in the first place under the influence of such a large pull-in-range can rest in peace with the knowledge that the a.f.c. bias is automatically shorted by the a.f.c. switch when the tuning button is depressed. This works via the link from R1 going to the a.f.c. switch in Fig. 5. It will be appreciated that the tuning potential is effectively in series with the a.f.c. potential under normal operating conditions.

TO BE CONTINUED

TELEVISION SUBSCRIPTIONS

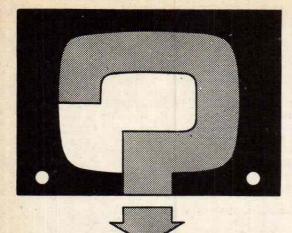
Readers with a year's subscription to TELEVISION will have this automatically extended by one month to take into account the loss of the December 1970 issue.

WORKSHOP HINTS

notices that the normal stock of that part is low he makes a note on the pad. Thus there is no need to do a virtual stock-take every time spares are ordered—merely consult the pad. If an item does not appear there then it can be assumed that there are adequate stocks and no further investigation is necessary. When the item is ordered a note should be made in the pad of the date ordered and the name of the supplier. This will prevent double ordering. On delivery of the spares the entry can then be crossed through. This also enables it to be seen at a glance what spares have been ordered but not received so that these can be chased.

Time Sheets

Lastly we come to the particular bane of many engineers, the time sheet. Many firms insist on keeping time sheets while others do not. Their usefulness is certainly dubious. Time spent on each job should be filled out on the job sheet for costing purposes. The only function of the time sheet then is for overtime payment and for keeping a check on the way engineers spend their time in the workshop. Overtime periods can be added and turned in without accounting for each hour of the working day and with much less time spent in doing so, so this leaves the check on engineers as the only function.


As many engineers who have worked with detailed time sheets will affirm, it is impossible to be gainfully employed the whole time one is on the premises. Clearing up, putting away manuals, answering customers' technical queries, setting up demonstration sets for the shop and many other things bite into time and are almost impossible to list individually. Thus time sheets are invariably fiddled and it is not too difficult to do this. If an engineer is loafing this will soon be apparent to a keen eyed service manager and will be evident from the number of jobs completed over a period compared with the others. Really, then, time sheets are of little use and usually absorb a goodly amount of time themselves in filling and straightening out.

Thus while paperwork can be a nuisance it is also essential and not nearly so bad if confined to the basic fundamentals needed.

FEATURE TO BE CONTINUED

FILM SHOW

Readers are invited to the *Practical Wireless*/ *Television* Film Show which will be held this year at the Caxton Hall, Caxton Street, London SW1 (Great Hall Site) on Friday March 5th, 1971, at 7.15 p.m. for 7.30 p.m. The films this year include *The Electron's Tale* and the lecture, by Ian Nicholson of Mullard Ltd., is entitled *The I.C. Story—Continued*. Free refreshments will be served during the interval. For tickets send s.a.e. to Film Show, Television Editorial, IPC Magazines Ltd., Fleetway House, Farringdon Street, London EC4.

FERGUSON COURIER

This 16in. model fitted with the Thorn/BRC 950 chassis looses line hold about 10 minutes after being switched on. Channel changing also causes the line hold to be lost, and the refrigerator switching itself on has also triggered the line oscillator. I have changed the line timebase and sync circuit valves and tried resetting the preset line hold control according to the manufacturer's instructions.—H. Townsend (Macclesfield).

Check the flywheel discriminator diodes W401 and W402. If these are OK check the anode load resistors in the flywheel d.c. amplifier and line oscillator stages and try modifying their values. Check for insulation breakdown of the blocking oscillator transformer.

SOBELL ST195

The sound does not come on for a long time after switching on and the picture takes a couple of minutes longer to appear. It is very faint at first but gets better the longer the set is on.—L. Titmus (Basingstoke).

The long warm-up time could be due to two things. The first is that the h.t. is slow to appear and builds up over a long period of time. This can be checked by metering and if it is the case the probable cause is the h.t. rectifier. It would be worthwhile replacing this with a silicon type. The second possibility is that the heater chain has gone high resistance at some point so that it takes some time for the heaters to reach their full operating potential. This could be caused by the heater circuit thermistor. Also check the mains adjustment. The first of these possibilities is the most likely however.

KB VV20 VANGUARD

When the aerial lead is plugged in or the contrast control turned up the line timebase ceases to operate with no voltage on the line output valve. As soon as the aerial lead is disconnected the line timebase starts and works perfectly. If the contrast control is turned up just a little the brightness pulsates in and out once every second. There is then some unlocked picture content.—G. Griffiths (Swansea).

The fault you describe seems to be beam limiting,

YOUR PROBLEMS SOLVED

Requests for advice in dealing with servicing problems must be accompanied by a 10p (2s.) postal order (made out to IPC Magazines Ltd.) the query coupon from page 186 and a stamped, addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets or answer queries over the telephone.

the appearance of signal at the c.r.t. cathode causing a severe reduction of e.h.t. The most likely cause is a faulty e.h.t. rectifier (V16, R20) but it is also possible that the line output valve or the efficiency diode is faulty and these should be checked.

PHILIPS 1768U

There are two pictures on the screen with a black bar in the centre and flicker is bad. The field timebase will only lock like this. The line hold is also touchy but will lock with careful adjustment. Any movement of the height and field hold controls will send the picture rolling with flyback lines appearing. I have changed the timebase valves and the 330k Ω resistor associated with the line hold control, also checked all high-value resistors in the field hold control circuit and all electrolytics—all were OK. I have checked the presence of the field sync pulses by means of headphones—they are strong on each side of the sync feed capacitor.—G. P. Beck (Heston).

The field fault gives every indication that boost capacitor failure is the problem. Check this component. The fact that the line hold is also sensitive could indicate a sync separator fault. For this check not only the valve but also its anode load resistors and the screen feed resistor and its decoupling capacitor: also check the grid biasing. If these are OK try replacing the video amplifier valve.

SOBELL TPS180

The fault is no picture. The sound is OK but the e.h.t. very low, with low EY51 heater voltage (1V on Avo 8, 10V range). The 10kHz whistle is present and all line timebase valves have been checked by substitution. I can get a picture by connecting the EY51 heater to a 6V battery. The insulation on the EY51 heater winding looks OK.—A. Holliday (Birmingham).

The fact that you can get a picture by using a separate voltage source indicates that there is almost certainly a shorted turn on the line output transformer EY51 heater winding—this will be most unlikely to show up on a resistance check. We suggest you try putting your own heater winding on to save the cost of a new line output transformer: you will probably get sufficient voltage by putting just two turns around the transformer.

Statement was been and an other statement of the		and the second	
BI-PAK SEMICON	SIL. RECTS. TESTED PIV 750mA 3A 10A 30A	SUPER PAKS NEW BI-PAK UNTESTED Supervision States of the second states o	ADIGI NPN ADIG2 PNP MATCHE PAIRS OF MENTARY PAIRS OF GERN-POWER TRAN- SISTORS. For mains driven output stages of Amplifiers and .Radio receivers.
(TO-5 (TO-66 (TO-48 (TO-48 PtV each each each each PtV each 50 4/6 5/- 9/6 10/6 12/6 52 20/- 100 5/- 6/6 10/6 12/6 50 23/- 200 7/- 7/6 11/6 15/- 100 28/- 400 8/6 9/6 13/6 18/6 200 32/- 600 10/6 11/6 15/6 25/- 400 35/-	50 1/- 2/9 4/3 9/6 100 1/3 3/3 4/6 15/- 200 1/9 4/- 4/9 20/- 300 2/3 4/6 6/6 22/- 400 2/6 5/6 7/6 25/- 500 3/- 6/- 8/6 30/- 600 3/3 6/9 9/- 37/- 800 3/6 7/6 11/- 40/-	U3 75 Germanium Gold Bonded Diodes sim. OA5, OA47 10/- U4 40 Germanium Transistors like OCS1, AC128 10/- U5 60 200mA Sub-min. Sill. Diodes 10/- U6 30 Silicon Planar Transistors NPN sim. BSY95A, 2N706 10/- U7 16 Silicon Rectifiers TOp-Hat T50mA up to 1,000V 10/- U8 50 Sil. Planar Diodes 250mA OA/200/202 10/-	OUR LOWEST PRICE OF 12/6 PER PAIR. UNIJUNCTION UT46. Eqvt. 2N2646 Eqvt. TIS43. BEN3000 5/6 EACH 25-99 5/- 100 UP 4/-
800 12/6 14/- 18/- 30/- 800 80/- PRINTED CIRCUITS EX-COMPUTOR Packed with semiconductors and com- ponents. 10 boards give a guaranteed 30 trans. and 30 diodes, Our price 10 boards 10/-, Plus 2/- p. & p.	1000 5/- 9/3 12/6 50/- 1200 6/6 11/6 15/- 1 TRIACS. VBOM 2A 6.A 10A (TO-1) (TO-66) (TO-88) 100 100 14/- 15/- 22/6 200 17/6 20/- 28/-	U9 20 Mixed Volts 1 watt Zener Diodes 10/- U11 30 PNP Silicon Planar Transistors TO-5 sim. 2N1132 10/- U13 30 PNP-NPN Sil. Transistors OC200 & 28104. 10/- U14 150 Mixed Silicon and Germanium Diodes 10/- U15 25 NPN Silicon Planar Transistors TO-5 sim. 2N897. 10/- U16 25 NPN Silicon Planar Transistors TO-5 sim. 2N897. 10/- U16 10 3-amp Silicon Rectiders Stud Type up to 1,000 PIV. 10/- U17 30 Germanium NP AP Transistors TO-5 like ACV17-22. 10/-	NPN Silicon PLANAR BCI07/8/9, 2/- each, 50- 99, 1/10, 100 up, 1/8 each. 1,000 off, 1/6 each. Fully tested and coded TO-18 case.
EQUIVALENT BOOK A complete cross reference and equivalent book for European, American and Japanese Transistors. Exclusive to BI- PAK. 15/- each.	400 20/- 25/- 35/- VBOM-Blocking voltage in either direction. 2N3055 115 WATT SIL. POWER. NPN. OUR PRICE 12/6 EACH	Org Obs Obs <td>AF239 PNP GERM Siemens VHF transistors. RF Mixer & osc. Up to 900 MHZ. Use as replace- ment for AHTI39 – AFI86 & 100's of other uses in</td>	AF239 PNP GERM Siemens VHF transistors. RF Mixer & osc. Up to 900 MHZ. Use as replace- ment for AHTI39 – AFI86 & 100's of other uses in
TEXAS. CODE D1699 TEXAS. Our price 5/- ea. 120VCB NIXIE DRIVER RRANSISTOR. Sim. BX21 & C407, 2N1893. FULLY TESTED AND CODED J30 // each.	FULL RANGE OF ZENER DIODES VOLTAGE RANGE 2- 167, 400mV (DO-7 Case) 2/6 ca. 1-5W (T Op-Hat) 2/6 ca. 1-5W (T Op-Hat) 3/6 ca. 10W. (SO-10 Study 5/- ca. All fully tested 5% tol. and	 20 Germannin Parity netchiere of a up to 500 FIV. 10/- 1025 25 300Mc/s N PN Silicon Transistors 2N708, BSY27 10/- 1026 30 Past Switching Silicon Diodes like INS14 Micro-min. 10/- 1028 Experimenters' Assortment of Integrated Circuits, un- tested. Gates, Flip-Flops, Registers, etc., 8 Assorted Pieces 20/- 103 20 811, Planar NPN trans, low noise Amp 2N3707 10/- 104 2007 10/- 	VHF. Our special low price:-1-24 7/6 25-99 6/9 each, 100 + 6/- each. CADMIUM CELLS ORP 12 8/6 ORP60, ORP61 8/-
ND120, 1-24, 3/6 each. TO-5 NPN 25 up 3/- each. MULLARD I.C. AMPLIFIERS	marked. State voltage required. BRAND NEW TEXAS GERM. TRANSISTORS Coded and Guaranteed.	U32 25 Zener diodes 400mW D07 case mixed Volts, 3-18 10/- U33 15 Plastic case 1 amp Silicon Rectifiers 1X4000 series 10/- U34 30 Sil. PNP alloy trans. TO-5 BCY26, 28302/4 10/- U35 25 Sil. Planat trans. PNP TO-18 2N2906 10/-	PHOTO TRANS OCP71 type 8/6
TAA243, Operational amplifier, 70/- each, TAA263, Linear AF amplifier, 18/6 each. TAA293, General purpose amplifier, 21/- each,	Pak No. EQVT T1 8<2G371A	U36 25 Sil. Planar NPN trans. TO-5 BFY 50/51/52 10/- U37 30 Sil. alloy trans. SO-2 NP. 0/- U38 20 Fast Switching Sil. trans. NP. 400 Mc/s 2N3011 10/- U39 30 RF Germ. NP trans. 2N303/5 TO-5 10/- U40 10 Dual trans. 6 lead TO-5 2N2060 10/-	MULLARD AFI17 transistors large can 4 lead type. Leads cut short but still usable, real value at 15 for 10/
CA3020 RCA (U.S.A.) LINEAR INTEGRATED CIRCUITS Audio Power Amplifier, 30/- each.	10 3 20343A OC44 17 8 20345A OC45 18 8 20378 OC78 19 8 20395A 2N1302 10 8 20417 AF117 All 10/- esch pack 0	U41 25 RF Germ. trans. TO-1 OC45 NKT72 10/- U42 10 VHF Germ. PNP trans. TO-1 NKT667 AF117 10/- Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked.	FET'S 7/- 2N 3819 7/- 2N 3820 18/6 MPF 105 8/-
BI-PAK = LOW	COST I.C's	BRAND NEW. FULL TO MANUFACTURERS' SPECIFICATION 1-24 BP709 Operational Amplifier, dual-in-line 14 pin pack- age = SN22709 and similar to MIC709 and ZLD709C 10/6 This is a high performance operational amplifier with high inputs and low impedance output.	9/- 8/-
BI-PAK Semiconductors now offer you the popular range of LC's available at these E PRICES. TTL Digital 74N Series fully coded, in-line plastic 14 and 16 pin packages.	XCLUSIVE LOW	TTL. INTEGRATED CIRC Manufacturers' "Pall outs" —out of spec. devices including fr functional but classed as out of spec. from the manufacturers v Ideal for learning about 1.0's and experimental work, on tes perfect.	unctional units and part ery ridged specifications. ting some will be found
BI-PAK Order No. SIM-TYPE. Description BP00 7400N Quad 2-Input NAND GATE		$ \begin{array}{c c} UIC00 = 5 \times 7400 N & .10/- & UIC42 = 5 \times 7442 N & .10/- & UIC42 = 5 \times 7442 N & .10/- & UIC50 = 5 \times 7450 N & .10/- & UIC50 = 5 \times 7450 N & .10/- & UIC63 $	AK No. JUC80 = 5 × 7480 N. 10/- JUC82 = 5 × 7482 N. 10/- JUC83 = 5 × 7483 N. 10/- JUC85 = 5 × 7486 N. 10/-

Order	No.	SIM-TYPE. Description	1 - 24	25-99	100 up
BP00	7400N	Quad 2-Input NAND GATE	6/6	5/6	4/6
BP01	7401N	Quad 2-Input NAND Gate-OPEN COLLECTOR	6/6	5/8	4/6
BP04	7404N	HEX INVERTER	6/6	5/6	4/6
BP10	7410N	Triple 3-Input NAND GATE	6/6	5/6	4/6
BP20	7420N	Dual 4-Input NAND GATE	6/6	5/6	4/6
BP30	7430N	Single 8-Input NAND GATE	6/6	5/6	4/6
BP40	7440N	Dual 4-Input BUFFER GATE	6/6	5/6	4/6
BP41	7441AN	BCD to decimal decoder and NIT Driver	22/6	20/-	17/6
BP42	7442N	BCD to decimal decode (TTL 0/1)	22/6	20/-	17/6
BP50	7450N	Dual 2-Input AND/OR/NOT GATE-expandable	6/6	5/6	4/6
BP53	7453N	Single 8-Input AND/OR/NOT GATE—expandable	6/6	5/6	4/6
BP60	7460N	Dual 4-Input—expandable	6/6	5/6	4/6
BP70	7470N	Single JK Flip-flop-edge triggered	9/-	8/	7/-
BP72	7472N	Single Master Slave JK Flip-flop	9/	8/-	7/-
BP73	7473N	Dual Master Slave JK Flip-flop	10/-	9/-	8/6
BP74	7474N	Dual D Flip-flop	10/-	9/-	8/6
BP75	7475N	Quad Bistable Latch	11/-	10/-	9/6
BP76	7476N	Dual Master Slave Flip-flop with pre-set and clear	11/-	10/-	9/6
BP83	7483N	Four Bit Binary Adder	26/-	22/6	20/-
BP90	7490N	BCD Decade Counter	22/6	20/-	17/6
BP92	7492N	Divide by 12 4 Bit binary counter	22/6	20/-	17/6
BP93	7493N	Divide by 16 4 Bit binary counter	22/6	20/-	17/6
BP94	7494N	Dual Entry 4 Bit Shift Register	22/6	20/-	17/6
BP95	7495N	4 Bit Up-Down Shift Register	22/6	20/-	17/6
BP96	7496N	5 Bit Shift Register	24/-	21/-	18/6
Data i	s available	for the above Series of Integrated circu	its in boo	klet form,	price 2/6


 $\begin{array}{c} U1C03=5\times7403N&...10)-\\ U1C04=5\times7404N&...10)-\\ U1C05=5\times7405N&...10/-\\ U1C10=5\times7410N&...10/-\\ U1C10=5\times7410N&...10/-\\ U1C20=5\times7420N&...10/-\\ U1C41=5\times7441N&...10/-\\ \end{array}$ Packs cannot be split but 20 assorted pieces (our mix) is available as PAK UICX1. Every PAK carries our BI-PAK Satisfaction or money back GUARANTEE. DUAL-IN-LINE LOW PROFILE SOCKETS Order No. TSO14 TSO16 14 pin type 16 pin type 100 up 5/3 7/9 RTL. FAIRCHILD (U.S.A.) I.C's 100 + 5/6 5/6 9/-8/3 DTL. DIGITAL I.C's DTL dual in-line package Type MC844P expandable dual 4-input NAND Power Gate Type MC844P Clocket Fig-flop Type 862 Triple 3-input NAND/NOR Gate FULL DATA SUPPLIED WITH UNITS damatch depart Price .. 10/- each .. 15/- each .. 10/- each Please send all orders direct to our warehouse and despatch department. **BI-PAK SEMICONDUCTORS** DEPT. T, P.O. BOX 6, WARE, HERTS

183

Postage and packing add 1/-. Overseas add extra for Airmail. Minimum order 10/-. Cash with order please.

Contraction			-	-			-				-				-		-					State of the local division of the local div	and the second second
	D	ED				VI		201		67		0		ECC33	1.58	EL32	0.18	1W4/350	PCL82 0-37		0-63	UY85	0-29
1.00	D	EI				1 /	11	:0	U	31		C		ECC40	0-60	EL34	0-53	0.38	PCL83 0.50	QV04/7		U10	0.45
1000	0	01		20			-	01						ECC81	0.19	EL37	0.87	IW4/500	PCL84 0.38		0.75		0.38
	U	UI	< I	- 0	ĸ			0						ECC82 ECC83	0-23	EL41 EL42	0.55	6-38 KT2 0-25	PCL805/85 0.45		0.98	U16 U17	0.75
	-							ARM.						ECC84	0.30	EL81	0.50	KT8 1.73	PCL86 0.43	R17	0.88	U18/20	0.75
100.00	38						R F							ECC85	0.28	EL83	0.38	KT41 0.98	PCL88 0.75		0.50	U19	1.78
12	THE	E VAL	VE	SPECIA	ALIS	is		Te	leph	one 01-	722	9090		ECC86 ECC88	0.40	EL84 EL85	0.24	KT44 1.00 KT63 0.25	PEN45 0.35 PEN45DD		0.33	U22 U25	0-39
0A2	0.30	6BH6	0.43	6SA7G7	C	12AV6	0.28	30L1	0.32	7193	0.53	DK96	0.37	ECC189		EL86	0.40	KT66 0.83	0.75	R52	0-38	U26	0.29
0B2	0.80	6BJ6	0.43	-	0.35	12AX7	0-23	30L15	0.64	7475	0.70	DL33	0.85	ECC804		EL91	0.23	KT74 0.63	PEN46 0.20		0.38	U31	0.80
0Z4 1A3	0.23	6BQ5 6BQ7A	0.24	68A7M 68C7G7		12AY7 12BA6		30L17 30P4ME		A1834 A2134		DL92 DL94	0.29	ECC807 ECF80		EL95 EM80	0.35	KT76 0.63 KT88 1.70	PEN453DD 0.98		0.75	U33 U35	1.48
145	0.25	6BR7	0.79	050701	0.88	12BE6	0.80			A3042		DL96	0.87	ECF82	0.33	EM81	0.42	KTW610-63	PENA4 0.98	TH4B	0.50	U37	1.75
1A7GT	0.87	6BR8		68G7G3		12BH7		30P12		AC044		DM70	0.30	ECF86		EM84	0.34	KTW620.63	PENDD		0.98	U45	0.78
1D5 1D6	0.38	6BS7 6BW6	1.25	6SH7	0.88	12E1 12K5	0.85	30P19/3	0P4 0-60	AC2/PE		DM71 DW4/3	0.38	ECF804 ECH21		EM87 EY51	0.38	KTW630.50 M8162 0.63	4020 0.88 PFL200 0.59	TP2620 UABC80		U47 U49	0-65
1FD1	0.35	6BW7	0.85	68J7	0.35	12K7G		30PL1		AC2/PE		Durio	0.38			EY81	0.35	ME14000.74	PL33 0.38		0.33	U50	0.28
1FD9	0.22	6BZ6	0.83	68K7G	T		0.84	30PL12	0.37			DW/50		ECH42		EY83	0.55	MHL4 0.75	PL36 0.48	UAF42		U76	0.24
1H5GT 1L4	0.35	6C6 6C9	0.19	6SQ7G7		120763	0.28	30PL13 30PL14		AC6PE		DY86/7	0.38	ECH81 ECH83		EY84 EY86/7	0.50	MHLD6 0.75	PL81 0.48 PL81A 0.63	UBC41 UBC81		U78 U107	0-22
1LD5	0.30	6CD6G	1.15	059703	0.38	128A76		30PL15		AC/PE		DY802	0.48	ECH84		EY88	0.43	N78 2.02	PL82 0.38	UBF80	0.29	U191	0.63
1LN5	0.40	6CH6			0.60		0.40		0.50	Alesson and an	0.98	E80F	1.20	ECL80		EY91	0.53	N108 1.40	PL83 0.33	UBF89		U251	0.73
1N5GT 1R5	0.39	6CL6 6CW4	0.43	6U7G 6V6G	0.53	128C7 128G7	0.35		0.75	AC/TH	0.50	E83F E88CC	1.20			EZ35 EZ40	0.25	N308 0.98 N339 1.25	PL84 0.33 PL302 0.60	UBL21 UC92	0.32	U281 U282	0.40
184	0.24					128H7	0-15	35L6GT		AC/TP	0.98	E180F	0.95		0.80	EZ41	0.43	P61 0.50	PL500 0.63	UCC84	0.40	U301	0.58
185	0.22	6F1	0.63	6X4	0.22	128J7	0.23		0.44	AL60	0.78	E182C0		ECL85	0.55	EZ80	0.23	PABC80	PL504 0.68		0.37	U403 U404	0.33
1U4 1U5	0-29			6X5GT 6Y6G	0-25	128K7 128Q70		35W4 35Z3	0.23	ARP3 ATP4	0.35	E1148 EA50	0.58		0.40	EZ81 EZ90	0.24	0-35 PC86 0-52	PL505 1.44 PL508 1.40	UCF80 UCH21	0.42	U801	0.95
2D21	0.35		0.17	6Y7G	0.63	Troduc	0.50	35Z4GT		AZI	0.40	EA76	0.88		0.33	FW4/5	00	PC88 0.52	PL509 1.44	UCH42	0.63	U4020	0.38
3A4	0.20			7B6	0.58	14H7	0-48		0.24	AZ31	0.48	EABCS		EF37A	0.85		0.75	PC95 0.53	PL802 0.75 PM84 0.39	UCH81		VP13C VP23	0-35
3A5 3B7		6F15 6F18	0.65		0.85	1487 19AQ5	1.15	35Z5GT	0.30	AZ41 B36	0.53	EAC91	0.38		0.40	FW4/8	0.75	PC97 0.40 PC900 0.38	PM84 0-39 PX4 1-18	UCL82 UCL83	0.50	VP41	0-38
3D6	0.19	6F23	0.72		0.63	19H1	2-00	50B5	0.35	B319	0.32	EAF42			0.20	GZ30	0.35	PCC84 0.32	PX25 1.18	UF41	0.50	VR75	1.20
3Q4	0.38	6F24	0.68		0.28	20D1	0.65		0.32	CL33	0.98	EB34	0.20	EF42	0.33	GZ32	0.45	PCC85 0.33	PY32/3 0.50		0.60	VR105 VR150	0.33
3Q5GT 384	0.35	6F25 6F28	0.65	787	0.65	20D4 20F2	1.02	50CD6G		CV6 CY1C	0.58	EB41 EB91	0.50		0.98	GZ33 GZ34	0.70	PCC88 0.49 PCC89 0.48	PY80 0.33 PY81 0.27		0-35	VR150 VT61A	
3V4	0.32	6F32	0.15		0.50	20L1	0.98	50L6GT		CY31	0-38	EBC41	0.48		0.28	GZ37	0.75	PCC189 0-49	PY82 0.27	UF86	0.68	VU111	0.44
5R4GY	0.58	6H6GT		9D7	0.78	20P1	0.88		0.45	D63	0.25	EBC81	0.33	EF83	0.48	HABC		PCF80 0.30	PY83 0.29		0.34	VU120 VU120	
5V4G 5Y3GT	0.38	6J5G 6J6		10C1 10C2	1.25		0.90	72 85A2	0.88	D77 DAC32	0.12	EBC90 EBC91	0.20	EF85 EF86	0.29	HL23D	0.45	PCF82 0.33 PCF84 0.40	PY88 0.34 PY301 0.63		0.59	V 01202	0.60
5Z3	0.45	6J7G	0.24		0.50	20P5	1.00	85A8	0.40	DAF91		EBF80			0-25	110200	0.40	PCF86 0.50	PY500 1.08	UL84	0.38	VU133	0.85
5Z4G	0.85			10D2	0.74	25A6G	0.29	90AG	3.38	DAF96		EBF83	0.40		0.17	HL41D		PCF200 0.67	PY800 0.38		0.33	W107	0.50
6/30L2 6A8G	0.58	6K7G 6K7GT	0.10	10F1 10F9	0.75	25L6G 25Y5	0.29	90AV 90CG	3.38	DCC90 DD4	1.00	EBF89 EBL21	0.82		0.13	HL42D	0.98	PCF801 0-35 PCF802 0-45	PY801 0.34 PZ30 0.48		0.53	W729 X41	0.50
6AC7	0.15	6K8G	0-20	10F18	0.35	25 Y5G	0.43	90CG	1.68	DF33	0.39	EC54	0.50		0.65	11.421	0.50	PCF805 0.64	QQV03/10	UU9	0.40	X61	0-29
6AG5	0.25	6L1		10LD11		25Z4G	0.30	90C1	0.80	DF91	0.14	EC70		EF183	0.30	HN309		PCF806 0.64	1.20		0-24	X65	0.50
6AK5 6AK6	0.25	6L6GT 6L7GT	0-89	10P13 10P14	0.65		0.40	150B2 150C2	0.58	DF96 DF97	0.35	EC86 EC88	0.63	EF184 EFP60	0.30	HVR2 HVR2		PCF808 0.73 PCH200	Q875/20 0.63		0.50	XE3 XH(1.5	5.00
6AM6	0.17	6L18	0.45		0.83	30C1	0.40	301	1.00	DH63	0.30	EC88 EC92		EH90	0.38	1W3	0.38	0.62	Q8150/15		0.38	Z329	0.80
6AQ5	0.23	6L19	1.88	12A6	0.63	30C15	0.65	302	0.83	DH76	0.28								-1 00 1	makes m.	-	é busie	
6AR6 6AT6	1.00	6LD20 6N7GT	0.48		0.40	30C17 30C18		303 305		DH77 DH81	0.20	Cash o	r che	the unused	u, Dox	r only. 1	subjec Post/ns	cking 3p per	item, subject i	o a minin	mum	of 9p. Or	rders
6AU6	0.25	6P28	1.25		0.48	30F5		306		DH107	0.90	over £5	post	packing	free.	Same day	7 desna	atch by first cla	ass mail. Any p	arcel insu	red ag	ainst dar	mage
6AV6	0.30	6Q7	0.43	12AT6	0.28	30FL1	0.64	807	0-59	DK32	0.37	in tran	sit for	only 3p	extra	per orde	er. Con	aplete catalogu	e with conditio	ns of sale	price	7p post p	paid.
6B8G 6BA6		6Q7G 6B7		12AT7 12AU6		30FL2 30FL12				DK40 DK91	0.50	We	to not	handle	second	-5.30 p.n is nor rej	i. Sats	. 9-1 p.m. which are often	described as "	New and	Tested	" but ha	ave a

6B26 0 26 6K7 0 05 12A05 0 281 30FL12 0 50 175 0 05 DES 0 285 We do not name seconds nor rejects, which are often described as reveal the 6B26 0 24 6B76 0 35 12AU7 0 283 30FL12 0 36 0 0 30 DES 0 2 0 43 limited and unreliable life. No enquires answered unless 8.A.E. is enclosed for reject.

Amazing Radio Construction set: Become a radio expert for 39/6 A complete Home Radio Course. No experience needed. Parts including instructions for each design. Step-by-step plan, all Transistors, loud speaker, personal 'phone, knobs, oreves, etc., all you need. Presentation box size 14'×10'× 2' 5/6' extra (parts available separately). Send only 39/6 + 4/6 P. & P. Money back guaarnteed.

REAL WORKING ELECTRONIC ORGAN

EAVESDROP ON THE EXCITING WORLD OF AIRCRAFT COMMUNICATIONS. JUST OUT V.H.F. AIRCRAFT BAND CONVERTER only 47'6

CONVERTER Only 4/ 'Co Consistent and the second sec ONLY 47/6 for all parts, including case, nuts, screws, wire, etc. etc. (parts available separ ately). Money back guarantee.

CONCORD ELECTRONICS LTD. (TV12) 8 Westbourne Grove London W.2. (Nr. Bayswater tube) . Callers Wel. 9-6 inc. Sat.

SOBELL T192

There is lack of width (4in. on either side of the picture) with the width control at maximum. I have replaced the line timebase valves. When the brilliance is increased the picture size varies and a dark shadow appears in the centre of the screen.—G. Camshaw (Malvern).

Check the 100μ F capacitor connected in the anode circuit of the boost diode and the line output valve screen feed resistor, also its $680k\Omega$ grid resistor if necessary. We presume you have checked the h.t. supply and found it correct at over 200V. If this is low check the reservoir capacitor C105 (100 μ F).

PHILIPS G22K511

After the normal warming up time the sound and vision are OK. Then thirty seconds latter there is no sound and vision, only a raster. About two minutes later FS1115 goes open-circuit and the sound returns. With the raster only displayed the brilliance control has little affect. The PFL200 was replaced with one of unknown quality. Sound and vision can now be obtained if the brilliance is kept low but is lost if the brilliance setting is advanced. The quality of the pic. ture obtained is very poor.—A. Brown (Southend).

The fault is in the video stage and a known good PFL200 should first be tried. Then check the associated components, especially the cathode resistor and screen decoupling capacitor.

McMICHAEL M75T

The field has collapsed to a $\frac{1}{2}$ in. horizontal line. The field timebase valves have been renewed without changing the situation. The field output transformer is very hot—does this indicate that it is faulty?—G. Turnstile (Newbury).

Check the 0.001μ F capacitor (high working voltage type) wired from the transformer primary to chassis. This is C55 in the maker's circuit.

BUSH TV66

The following intermittent fault may occur a couple of times a night but sometimes doesn't occur for several nights. The picture gradually creeps upwards from the bottom sometimes finishing as a narrow line. Switching off for a couple of minutes and then switching on again produces a full-size picture. — L. Mason (Richmond).

First check the PCL83 field output valve. If you are certain that this is OK change the 0.1μ F coupling capacitor from pin 1 of the triode section to the height control.

GEC BT2155

The picture is blurred and out-of-focus on channel 3 though the set works well on channel 10. Also, is it possible to retune the channel 11 turret coils to channel 9.—J. Doig (Fife).

The blurred picture on channel 3 is presumably due to the local oscillator being off tune on this channel. To retune, set the fine tuner to mid-travel and adjust the core, using a non-metallic trimming tool, for maximum picture definition without sound-on-vision. Access is through a hole in the right-hand side of the tuner unit cover, viewed from the top. On the second point you could probably adjust the channel 10 oscillator section for channel 9 and the channel 11 section for channel 10: there is unlikely to be sufficient pull-in range to be able to tune the channel 11 coil for channel 9. We would point out that the selectivity of the front end of a television receiver is not very high so that if the channel 9 signal is fairly weak in your area it would probably be impossible to completely eliminate the channel 10 signal in the tuning.

PETO SCOTT 738

The fault in this 17in. receiver is that the picture is tapered towards the bottom, i.e. there is full scan at the top of the picture but not at the bottom. I suspected a heater-cathode short in the boost diode but this has been replaced without improvement.— D. Park (Bradford).

The non-vertical edges of the raster means that one half of the line scan coils is faulty. Check for any obvious physical short-circuit in one half of the coils. If there is nothing visible the problem is probably internal shorted turns.

SOBELL 1018DS-T

Sound quality is often poor on v.h.f. with a grating noise developing at the middle frequencies. Occasionally sound-on-vision also appears. A resistor on the front left of the printed panel seems to have heated and discoloured.—L. Jones (Arundel).

The discoloured resistor is the $18k\Omega$ screen feed resistor to the EH90 sound detector. This should be changed, using a 1 or 2W type. Then check the $5.6k\Omega$ resistor in front of the EH90 as this may also have suffered.

MURPHY V689X

There is some trouble in the line output stage. The picture gradually gets darker and darker until it completely disappears. I then have to replace the PL36 line output valve.—G. Harkiss (London N1).

First check for low h.t. and replace the h.t. rectifier if necessary. Then make sure that the two screen grid feed resistors to the line output valve $(1.5k\Omega$ each) have not changed value.

ULTRA V21-70

When first switched on the vision and sound are OK but after two minutes the picture disappears leaving only the raster, with increased sound accompanied by loud buzzing and two vivid horizontal flashes across the screen during the break. After about five minutes the sound returns to normal and a broken picture appears which can be tuned in. The set sometimes functions correctly thereafter all evening or breaks down as previously. During the raster intervals lines sometimes appear on the screen.—D. Black (Buckingham).

The fault seems to be in the vision i.f. amplifier or video stages. The sound comes up because when the signal disappears the a.g.c. brings up the gain of the early stages. The fault is likely to be the result of instability in the vision i.f. amplifier section and this should be checked for a faulty decoupling capacitor, a poor connection or crack in the printed circuit board. Additional decoupling might improve matters.

GEC BT318

After about five minutes the line hold control has to be adjusted but from then on it is satisfactory. The line timebase valves have been substituted without any change in the fault condition.— K. Alton (Penrith).

The line oscillator is type Z749 and a new valve should be tried in this position as it is quite critical in operation. Also check the $360k\Omega$ resistor from pin 2 to the hold control.

SOBELL ST282

The problem is no raster. The line timebase whistle is very subdued and the EY86 heater does not light up. If I remove the boost diode top cap the line timebase whistle starts, the EY86 lights and the left-hand half of the screen lights up.—W. Truscott (Bristol). The boost reservoir capacitor has shorted and must be replaced. It is C97, 0.25μ F.

FERGUSON 308T

The trouble is lack of brightness. When the control is turned up the picture flares up and disappears. The picture is of reasonable quality but can only be viewed in a darkened room. The line timebase valves, dropper resistor and h.t. rectifier have been replaced.—S. Hussey (Redcar).

Change the 0.001μ F coupling capacitor to the control grid of the PL81 line output valve. Check

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

A dual-standard valve set was troubled with severe vision "overloading" when the contrast control was advanced normally to obtain a picture of the proper black-to-white ratio. The condition would occur suddenly at an advanced position of the contrast control and once present could only be cured either by switching the set off or turning the contrast right back to zero, though sometimes this failed to effect a cure. By turning the contrast control up a threshold point could be established at the onset of the condition, but this was generally below the setting required for the correct contrast ratio. If the control was set just below the threshold point an increase in picture white would sometimes precipitate the condition.

The contrast control was tested and found to be in

also that the blocking oscillator load resistor which is between this capacitor and h.t. is the correct value $-47k\Omega$.

GEC BT337

I

I

There is a dark vertical band down the centre of the screen. Sometimes when the set is first switched on the vertical band appears to the right of the screen and slowly travels over to the left and might then even disappear for 10-20 minutes after which it reappears down the centre of the screen. When this happens the fault cannot be cleared by adjusting the horizontal hold control.—H. Durban (Coventry).

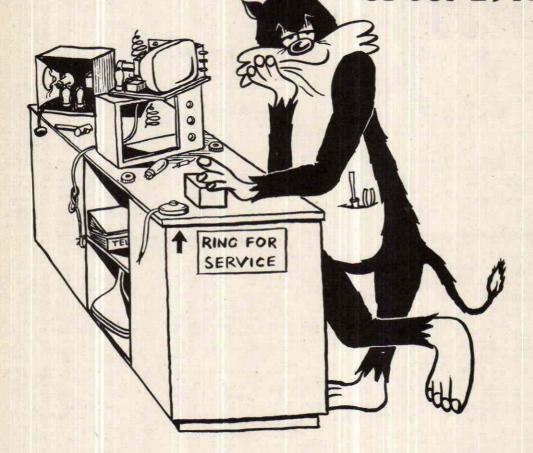
The dark band is probably caused by the switching action of the boost diode. Check this (V13 U349) and the boost capacitor. Also check the scan-correction capacitor in series with the line scan coils (C162). It is also possible that the fault is caused by reflection of the line sync pulse back into the picture. For this, check the video amplifier and sync separator valves.

QUERIES COUPON This coupon is available until March 8, 1971, and must accompany all Queries sent in accordance with the notice on page 182.

Don't forget the 10p (2/-) postal order!

TELEVISION, FEBRUARY, 1971

good condition. What was the most likely cause of this symptom which occurred only on the 625-line standard? See next month's TELEVISION for the solution and for a further Test Case.


SOLUTION TO TEST CASE 97 Page 138 (last month)

The line timebase signal is commonly used for switching actions in the decoder and a very critical switching action is that of the burst gate. A pulse from the line timebase is fed to this via an RC network so that the gate opens only during the periods of the bursts. If something happens to this rather delicate timing the gate will not be fully open during the bursts and the amplitude of the chroma signal applied to the chroma detectors is likely to be affected because the a.c.c. potential is derived from gated and rectified bursts.

Since the colour saturation could be restored by adjusting the line lock control within the locking range of the line generator mistiming was a very strong possibility. In fact it was found that one of the resistors in the network used for processing the line pulses (taken from a tapping on the line output transformer) for the gating circuit had decreased in value. This was causing the gate to open a fraction of a second before the burst, though the error, which was very slight in this case, could be corrected by slightly "misphasing" the line generator (flywheelcontrolled variety). Replacing the resistor completely cured the trouble.

Published approximately on the 22nd of each month by IPC Magazines Limited, Fleetway House, Farringdon Street, London, E.C.4. Printed in England by Fleetway Printers, Crede Hall Road, Gravesend. Sole Agents for Australia and New Zealand—Gordon and Gotch (A/sia) Ltd.; South Africa—Central News Agency Ltd.; Rhodesia and Zambia—Kingstons: Ltd.; East Africa—Stationery and Office Supplies Ltd. Subscription Rate (including postage): for one year to any part of the work {22.554, (£2.55, 064)."Television" is sold subject to the following conditions, namely, that is shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pitchrial matter whatsoever.

Still waiting for spares Tom? You should have phoned 01.567 5400 01 567 2971

Every time you need spares, don't be like Tom, contact the No.1 wholesaler to the service engineer. For quality, price & availability you must try.... WILLOW VALE

4 & 5 The Broadway, Cherington Road, Hanwell, London, W.7. also at 42 West End, Street, Somerset. & Scotland

By Return Despatch

Valves, Tubes, LOPTs, Transistors, Components, Scan Coils Etc.

TELEVISION CLASSIFIED ADVERTISEMENTS

The pre-paid rate for classified advertisements is 4p a word (minimum order 48p), box number 71p extra. Semi-display setting £2.50 per single column inch. All cheques, postal orders, etc., to be made payable to TELEVISION and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, TELEVISION IPC Magazines Ltd., Fleetway House, Farringdon Street, London, EC4A 4AD, for insertion in the next available issue.

EDUCATIONAL

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City & Guilds (Telecoms Techn's Cert. and Radio Amateurs') R.T.E.B., etc. Many non-exam courses incl. Colour TV Servicing, Numerical control & Com-puters. Also self-build kit courses-valve and transistor.

Write for FREE prospectus and find out how ICS can help you in your career.

ICS, DEPT. 560, INTERTEXT HOUSE, STEWARTS ROAD, LONDON S.W.8.

COLOUR TV SERVICING

COLOUR TV SERVICING Be ready for the coming Colour TV boom. Learn the techniques of ser-vicing colour TV sets through new home-study courses specially pre-pared for the practical TV engineer technician, and approved by leading manufacturer. Full details from ICS (D.562), Intertext, House, Lon-don SW8, or 'phone 01-720-1983

HUNDREDS OF top paid jobs in Engin-eering await qualified men. Get a cer-tificate through B.I.E.T. Home Study-Mech., Elec., Auto., Radio, TV, Mech. Elec., Auto., Radio, TV, Draughts., Electronics, Computers, Build-ing, etc. Send for helpful FREE book. B.I.E.T., Department 153K, Aldermas-ton Court, Reading RG7 4PF.

BECOME "Technically Qualified" in your spare time, guaranteed certificate and exam Home Study courses in Radio. TV, servicing and maintenance, R.T.E.B., City & Guilds, etc., highly informative FREE Guide.—Chambers College (Dept. 858K), Aldermaston Court, Reading, RG7 4PF.

RADIO AND TV Exams and Courses by Britain's finest home study School, Coaching for Brit.I.R.E., City and Guilds Amateur's Licence; R.T.E.B., P.M.G. Certificate, etc. Free brochure from British National Radio School, Russel Street, Reading.

GRADUATE C.E.(CB). Certificate awarded to experienced Radio, TV Elec-tronics engineers, Testers and Inspectors. Exemption from the examination poss-ible. Registrar, College of Electronics (Cambridge), IA Carlyle Road, Cambridge.

WANTED

CASH PAID for New Valves. Payment by return. WILLOW VALE ELEC-TRONICS, 4 The Broadway, Hanwell, London, W.7. 01-567 5400/2971.

SERVICE SHEETS purchased, HAMIL-TON RADIO, 54 London Road, Bexhill.

WANTED (continued)

TOP PRICES PAID

for new valves, popular TV & Radio Types

KENSINGTON SUPPLIES (A), 367 Kensington Street Bradford 8, Yorks

WANTED! New valves especially TV types. Cash waiting. Bearman, 6 Potters Road, New Barnet, Herts. Tel. 449/1934.

WANTED: 1963-64 vol. Newnes Radio & TV Servicing. M. C. Daniels, 26 Beaufort Road, Cottesmore, Oakham, Rutland.

FOR SALE

LARGE QUANTITIES of used TV spares for both modern and obsolete models. Lopts, Tuners if strips, scan etc. S.a.e. for quotations, C.W.O. to TV Dismantlers, Foxhole Whitstone, Holsworthy, Devon.

625/405 VHF/UHF IF Panels. B.R.C. 850 series. Ideal for components, IF transformers and switching, P/C Valve bases or repairs to this Thorn receiver. 35/- each plus 4/6 p.p. WILLOW VALE, 4 The Broadway, Hanwell, W.7.

11" MAINS/BAT Transistor Portable TV (Olympic 2) complete with circuits, etc. Working £25, Also Pye VHF/UHF integrated push-button tuner/I.F.S. (Transistor) with circuit, £5. Tel. 051-334 2662.

HEATHKIT. HFW-1, sweep/marker generator, leads and manual. As new, £25 o.n.o. R. A. Lancaster, 70 Blen-heim Rd., Deal, Kent.

MISCELLANEOUS

		Per I Ib. reel
18-22	11/3d	16/6d
23-30	11/9d	17/6d
31-35	12/3d	18/6d
36-40	15/0d	24/2d
		29/6d
Orders de	spatched by return add 1/2 per item P.	
	Supplied by:	
RA	NNER TRANSFO	RMERS
Broo	ks Street Higher	Hillgate
5100	Stocknort Chech	inguite
-	ADE ENIOLUBIES IN	WITED
15	ADE ENQUIRIES IN	ATTED
	S.W.G. 18-22 23-30 31-35 36-40 41-44 Orders de BA Broo	18-22 11/3d 23-30 11/9d 31-35 12/3d 36-40 15/0d

COLOUR TELEVISION fault finding made easier with "The Shadow Slide". Producing an interference pattern with Foundant and interference partern with C.R.T. phosphor dot structure it enables colour faults to be easily identified and traced. "Shadow Silde" complete with instructions and fault finding data only 50p. P. & P. 2 Jp. From D. Condon. 2 Sackville St., Thrapston, Kettering, Northeast Northants.

SERVICE SHEETS

SERVICE SHEETS

(1925-1970) for Radios, Televisions, Transistors, Radiograms, Car Radios, Tape Recorders, Record Players, etc. By return post with

FREE FAULT FINDING GUIDE

PRICES FROM 1/-

Over 8,000 models available. Catalogue 2/6.

Please send stamped addressed envelope with all orders and enquiries.

Hamilton Radio 54 London Road, Bexhill, Sussex

SERVICE SHEETS. Radio, TV, etc. 8.000 models. List 2/-, S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

SERVICE SHEETS with Free Fault Finding Chart, 4/6. S.A.E. Lesmar, 15 Conholt Rd., Andover, Hants. (Mail only).

TRADER SERVICE SHEETS

5/- each plus postage

We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.


Cheques and open P.O.s returned if sheets not available.

OAKFIELD ENTERPRISES LIMITED 30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio /TV
1970 List now available at 2/- plus postage	If list is re indicate	
From		
s.a.e. w	ped addresse /ith enquiries	d envelope)

SERVICE SHEETS (continued)

RADIO, TELEVISION, over 3,000 models. JOHN GILBERT TELEVISION, Ib Shepherds Bush Road, London, W.6. SHE 8441.

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS, CAR RADIOS) FREE. Fault Tracing Guide or TV list on request with order. 25p each, Manuals from 50p plus large S.A.E. (Uncrossed P.O.s please, original returned if service sheets not available.)

C. CARANNA **71 BEAUFORT PARK** LONDON, N.W.11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number/alternative. Mail order only.

AERIALS

AERIALS

UHF: Set Tops 42/-. Outside: 9 ele 25/-, 10 ele 38/-, 11 ele 50/-, 12 ele 51/-, 18 ele 65/-, 20 ele 70/-. Multibeam 46 and Supremes 110/-.

All aerials supplied with clamps. ANTIGHOST: Troubleshooters/Log-

beams 100/-.

FM/VHF: H 45/-, 3 ele 65/-, 4 ele 75/-. Stereo 6 ele 120/-. Motorized Units: Semi Auto £20, Auto

£20. All Aerials by either, "AERIALITE", BEAM, ANTIFERENCE, PREMIE MAXIVIEW. PREMIER,

ACCESSORIES: Sockets, Plugs, Dips, Splitters, Masts, Lashings, etc., etc.

EAGLE PRODUCTS: EAGLE PRODUCTS: All that's best in Electronics: Head-phones, Amps, Speakers, Meters, etc. Send 5/- for Catalogue. COAXIALE: Standard 100 Mtrs 90/-. Low Loss 140/-, or per Mtr. State channels for all TV Aerials/Amps. FM state wide band or channelized. TERMS: CWO, COD, P & P 6/6. Send 6d. stamps for lists. Callers Welcome.

JEFFRIES SERVICES 31 Hambrook St., Portsmouth. Tel. 28354

BAKER AND BAINES UHF Aerials BBC and ITV 625 Colour 10 ele 2-10; 14 ele 2-35; 18 ele 3-25; 22 ele 3-75. BBC 405 Aerials Dipole 1-75; X aerial 2-15; H aerial 2-40; 3 element 5-20; 4 element 6-70. TA 405 Aerials Belement 2-70; 11 element 3-30; Double 5, 8 and 11 arrays available on request. Combined BBC-ITA 405 Aerials Dipole plus 52-70; Dipole plus 8 3-10; H plus 5 4-10; X plus 5-4-50. Loft special Dipole plus 5 2-10. Diplexers, Triplexers—Matched Diplexers UHF/VHF Poles, Lashings, Clamps, Couplers etc. Coax 0.06 and 0-11. Postage paid inland on aerials, Please state channel required when ordering. SAE will bring full list. 11 Dale Crescent, Tupton, Chesterfield.

AERIALS (continued)

AERIAL KITS

Coaxial Cable-VHF I/- and UHF 2/-per yard. Co-ax Plus I/3.

UHF aerials for BBC2, ITA and Colour-IO element 32/-, 14 element 37/-, 18 element with support boom 45/-. All aerials have four reflectors and tilt and roll brackets for up to 2 in. masts. Double 18 with support cradle junction box and bracket 110/-. All aerials post paid mainland.

PLEASE STATE CHANNEL REQUIRED

Every type of lashing kit, wall or chimney bracket, clamp etc., available. We can also supply a wide range of VHF/UHF Diplexers, Triplexers, co-ax outlet boxes, crossover switched boxes, coupling units, poles and other aerial accessories. Postage extra on co-ax and accessories. SAE for illustrated list and occess list and prices.

TRADE ENQUIRIES INVITED. 48 ESSEX ROAD, MALDON, ESSEX.

BELLING-LEE TV Aerials. Band I, III, Combined Band I & III types Less than half price. Aluminium rod, tubing, insulators, clamps, etc. Price List. Cook, 90 Ewhurst Rd., Crawley (23885), Sussex.

LADDERS

VARNISHED TIMBER LADDERS from VARNISHED TIMBER LADDERS from manufacturer, LOWEST PRICES any-where. 154 ft. ext., £5 10s.; 17 ft. ext., £5 15s.; 20 ft. ext., £6 5s.; 214 ft. ext., 7; 244 ft. ext., £8 2s.; 29 ft. ext., £9 5s. 314 ft. Triple ext., £11 2s. 6d.; 36 ft. Triple ext., £14 10s. Carr. 13/6. Free Lists. Also Aluminium Ext. & Loft Ladders. CALLERS WELCOME. Dept. PTT HOME SALES, Baldwin Road, Stourport, Worcs. Phone Stourport 2574.

SETS & COMPONENTS

WITWORTH TRANSFORMERS LTD.

Dept. P.T., 26 All Saints Road, North Kensington, WII. IHQ Telephone: 01-229 9071. 9 a.m. till 5 p.m

TELEVISION LINE OUTPUT TRANSFORMERS

PRACTICALLY ANY MAKE OR MODEL SUPPLIED OR REWOUND

EKCO, FERRANTI, DYNATRON Replacement cases £1-0-0d. each, please state model.

S.A.E. for return of post quotation. TERMS: Cash with order or C.O.D., please add **4s.** for postage.

C.O.D. orders will be charged 6s. Transformers fully guaranteed. (98

SPARES

available from second-hand TVs. Transformers, Valves, etc. S.A.E. your enquiries. Complete 19-in. TVs, untested, from £5 plus 30/- carriage.

LINAVALE RADIO LTD., 48 Hoe St., London, E.17. 01-520-7546.

ASSORTED Capacitors. 150 NEW NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous 4-20 watt, 15/-. Post Free, WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, London, W.13.

SETS & CO (contin	and a second
E5 TELEVI Delivered anywhere	SIONS £5
7" 12 channel. Complete &	tested. Excellent condition
Carriage an	
7" Untested T.V.s 12 channel	. 30/- Carriage £1. All makes
TUBES! Guaranteed	TUBES!
7" & 19" All makes	
9" Bonded	
23" Bonded	

•

3

1

1

2

1

2

Plus 10/- carriage SPEAKERS 3 OHM

PERFECT CONDITION EX T.V. SETS. $t^* \times 3^* 4/6$, $7^* \times 4^*$ Oval 5/6, $4\frac{1}{2}1/6\frac{1}{2}1$ Round. All 6/6 P. & P. on any speaker 3/6.

VALVES EX EQUIPMENT

		Guaranteed	1 6 month	18		
APR12	1/-	PCC84 1/6	PL36	4/6	688	1/-
EB91	3d.	PCF80 1/8	PL81	3/6	68W7	2/-
EBF89	2/6	PCC89 2/6	PY81	1/-	6U4	3/6
ECC82	2/6	PCL85 4/6	PY800	3/-	20D1	2/6
ECL80	1/-	PCL84 3/6	PY82	1/-	20P1	4/8
EF183	2/6	PCL82 3/6	PY33	4/6	20P3	2/-
EF184	2/6	PCF86 3/6	U191	3/6	30PLI	4/8
EY86	3/6	PCL83 2/6	6F23	3/6	30PI2	4/-

30F5 2/3

On 2 valves or more 6d. postage & packing UHF TUNERS TO SUIT MOST MODELS i.e. FERGUSON 850 900 Chassis K.B. G.E.C. etc. 50/-. P. & P. 10/-VHF TUNERS MOST MAKES 20/- delivered. (Discount for quantity)

Dept. T.S.

THORNBURY TRADE DISPOSALS

Thornbury Roundabout, Leeds Rd., Bradford. Tel. 665670

TOWERBY LTD

For Line Outputs and Deflector Coils

We have the Country's largest stock of Manu-facturer's Original (or Authorised Replacement) Line Output Transformers for many "difficult makes, including Ambassador, Baird, Cossor, Decca, Dynatron, Ekco, Ferguson, G.E.C., H.M.V., K.B., Masteradio, Peto-Scott, Philips, Regentone, RGD, Sobell, Ultra, etc. Also deflector coils output and oscillator transformers, inc. Alba, Bush, Murphy, Examples, LO.P.T. Murphy 350/410/540/6539/ 759, 147/-; Bush, TV80, TV95, TV96, 147/-; Cossor 950, 77/6; Ferguson 306/308, 79/6; Philips 1768U L.O.P.T. assembly, 135/-; Ultra 1984-200C, 101/3. Rewind most L.O.P.T., 90/-.

SPECIAL OFFER

Ekco improved type for Models T221, 231, 310, all at 45/-: Ferranti 1474 series inserts, 25/-; Philco 1019/1021, 52/6. Terms: C.W.O. or C.O.D. (316), post/packing 6/-; 2 or more LO.P.T.s post/packing free. All enquiries answered but regret no lists available. Same day delivery on most types.

TOWERBY LTD

MAIL ORDER DIVISION OF T.C.S. LTD. 70 STREATHAM HILL, LONDON, SW2 Tel.: 01-674 2185.

TELEVISION SALES, 77-79 Victoria TELEVISION SALES, 77-79 Victoria Road, Warminster, Wilts., Phone War-minster 8156. Valves, boxed, tested and guaranteed. PCF80, PCC84, PL81, PY81, EY86, EF80, 30F5, EB91, ECC82, PCL83, 30FL1, ECL80, PCL82, PY82, PCL84, 6-30-L2, you select 8 for 20/-, p. & p. 2/-, S.A.E., other types, several CRTs cheap, tested, for callers only.

EX N.E.V. C.C.T.V. Camera and Monitor Circuits, S.A.E. for list. LOWE, 29 Vanner Point, Hackney, London, E.9. SAX.

TELEVISION	TUBE	SHOP
BRAND NE	W TUBE	SAT
	ED PRICE	
A28-14W		£11. 0.0
The second second		£12.10.0 £9.19.6
A47-13W		£11.15.0
		£7.12.6 £10.15.0
A50-120WR		£12.10.0
		£12.19.6 £15.10.0
A59-15W		£9.19.6
	•••••	£14.15.0 £14.15.0
A61-120WR		£15.10.0
		£10.10.0 £5.12.6
AW36-80		£5.12.6
	••••••	£6.17.6 £6.12.6
AW47-90, 91		£7.10.0
AW53-80 AW53-88, 53-89		£8.17.6 £8. 5.0
AW59-90, 59-91		£9.10.0
		£6.12.6 £12.10.0
		£11.19.6
		£10. 5.0
	•••••	£12. 0.0 £6.12.6
CME1705		£7.17.6
		£7.10.0 £12.10.0
CME2101, 2104		£8. 5.0
Constraints and a second second		£8.15.0 £15.10.0
CME 2413		£15.10.0
		£5.10.0 £5.10.0
CRM141, 2, 3, 4		£5.12.6
CRM171, 2, 3		£6.17.6 £8.17.6
MW36-24, 44		£5. 2.6
MW43-64, 69	•••••	£6.17.6

..... £6.17.6 MW43-80 MW53-20 £8.17.6 MW53-80 £8.17.6 7405A £6.12.6 TSD217, 282 £14. 0.0 13BP4 £14. 0.0

All tubes tested before despatch and guaranteed for 12 months.

Fully rebuilt tubes available-prices on request.

CARRIAGE & INSURANCE 15/-

COLOUR TUBES 4013 01

(Carriage & insurance 4	(-)	
A49-11X, A49-191X	£66.	0.0
A56-120X	£72.	0.0
A63-11X	\$77	0.0

TELEVISION TUBE SHOP **48 BATTERSEA BRIDGE ROAD** LONDON, S.W.II. BAT 6859

WE GIVE GREEN SHIELD STAMPS

SETS & COMPONENTS (continued)

DY86/7	8/-	PCF86	12/3	PY82	7/-	20L1	19/6
EB91	5/-	PCF801/2	12/3	PY800/1	8/3	20P4	20/-
ECC82	8/6	PCF805	13/-	R19	13/-	30C15	13/9
ECL80	8/-	PCF808	13/6	U25	15/-	30C17	15/9
EF80	8/-	PCL82	10/3	U26	15/-	30F5	16/6
EF85	8/3	PCL83	12/3	U37	15/-	30FL1/2	12/5
EF183/4	11/3	PCL84	10/3	U191	14/6	30L15	15/3
EH90	10/3	PCL805/85	511/6	U193	8/3	30L17	14/6
EY51	7/6	PCL86	10/3	U251	17/3	30P12	15/6
EY86/7	7/9	PL36/8	12/9	U301	17/-	30PL1	12/9
PC86/8	10/3	PL81	11/6	U801	24/-	30P4MR	20/-
PC97	8/3	PL83	10/3	6/30L2	15/6	30P19	12/
PC900	10/3	PL84	12/-	6AT6	9/9	30PL13	18/
PC84	9/3	PL500	17/-	6BW7	13/9	20PL14	18/6

17/-

8/3

POST FREE OVER £3-LATEST BY100/127 type and 33 ohm 10 watt res. 4/-1 Large bulb Imported PCF80 6/6 ! Note. Ask for separate components lists.

6CD6G

6F23

28/-

15/6

LOOK! Nearly every type in stock now !! **NEW TELEVISION TUBES!**

TWO YEAR FULL REPLACEMENT GUARANTEE

SEE THE DIFFERENCE A NEW TUBE CAN MAKE TO YOUR VIEWING-LATEST SCREENING TECHNIQUES INCLUDING TINTED SCREENS ON MOST 19" and 23" TYPES

Large stocks by Cathodeon and other leading manufacturers so why buy ordinary rebuilds? Colour 25" £491

Special offer ! 19" rebuilds, 2 year guarantee £5 10s. ! 23" £7 10s.

12" £3	(not 110°)) 20" Mullard.	
--------	------------	----------------	--

PCC89

PCF80

12/3

10/3

PI 504

PY81

guarantee	20 100	~~	L7 103.	
	14" to	16"	(not 110°)	£4 15s.
			10" 1014	£7 10c

17" £5 17s. 6d. A50/120W £10 10s. Other 19" mono tubes-all £6 17s. 6d. Carriage all 12s. All 21" mono tubes-£7 17s. 6d., 23" mono tubes £9 10s. Carriage 15s.

RIMBANDS, 19" £8 10s.; 23" £11 10s.

TWIN PANELS, 19" £10 2s. 6d.; 23" £15.

Carriage 20s.

etc. Trade prices

Bulk enquiries welcomed, special terms PAY BY GIRO, Our No. 34,361,4006.

PHILIP H. BEARMAN

(Suppliers to H.M. Govt. etc.)

6 POTTERS ROAD, NEW BARNET, HERTS.

Closed Thurs & Sat afternoons

TEL. 449/1934 & 1935 (Robophone)

	so	OUTH 44 Earl	ERN s Co	I VAL urt Roa	VE d, L	COMP ondon,	W.8	Y (valv specia	e lists)
ALL valv	es boxe	d and main	IY BVA,	all brand n	ewl				
DY87 DY802 EB91 ECC81 ECC82 ECL80 EF80 EF183 EF184 EH90	37p 45p 15p 37p 37p 37p 37p 37p 37p 37p 37p 37p	PC86/8 PC97 PCF80 PCF86 PCF801 PCF802 PCF805 PCF808 PCL82 PCL83	50p 40p 32p 52p 49p 50p 62p 37p 52p	PCL805 PCL86 PL36 PL81 PL84 PL500/4 PY81 PY800 PY801 U25	45p 37p 52p 45p 50p 64p 45p 37p 37p 62p	U193 U251 6/30L2 6BW7 6CD6G 6F23 6F28 20L1 20P4 30C15	35p 62p 57p 50p 95p 67p 45p 95p 90p 50p	30L17 30P12 30PL1 30P4MR 30P19 30PL13 30PL14 etc. NOT	57¢ 72¢ 72¢
EY51 EY86/7	35p 37p	PCL84 PCL85	37p 45p	U26 U191 2 and over.	57p 62p	30FL1/2 30L15	60p 62p	BYIOO/BY equiv only with resist	19p

SETS & COMPONENTS (continued)

AERIAL BOOSTERS 59/- EACH

We make four types of transistorized aerial pre-amplifiers. These take only seconds to install.

- I. L45 625 TELEVISION (U.H.F.).
- 2. LI2 405 TELEVISION (V.H.F.). Please state channel numbers.
- 3. LII V.H.F. F.M. RADIO.
- 4. LIO WIDEBAND RADIO. This covers M/W and S/W to 20 MHz.

PRICE EACH L45, L12 and L11 59/-; L10 39/-. S.A.E. FOR DETAILS MONEY BACK GUARANTEE

VALVE BARGAINS

Any 1-2/-, 5-9/-, 10-14/-.

EB91, EBF89, ECC82, EY86, ECL80, EF80, EF85, EF183, EF184, PCC84, PCC89, PCC189, PC97, PCF80, PCF86, PCF800, PCL82, PC483, PCL84, PCL85, PL36, PL81, PL83, PY32, PY33, PY81, PY82, PY800, PY801, 30FL1, 30F5, 30L15, 30C15, 6F23, 6-30LZ.

TESTED, WITH 3 MONTH GUARANTEE VALVES 4/- EACH

BY100 TYPE RECTIFIERS with Surge-resistor on bracket, 2/6 each.

VELCO ELECTRONICS 62 Bridge Street, Ramsbottom, Bury, Lancs. Tel. 3036

T.V. SPARES

OIL FILLED MURPHY LOPT'S U26 type. Model number not known. 25/- each plus 4/6 p.p.

PUSH BUTTON V.H.F. TUNERS-FERGUSON Piano key type. Less valves PC97 and PCC89, 50/- each plus 4/6 p.p.

BAIRD V.H.F. TUNERS, Uses PC97 and 30CI8 valves. Fits 620 to 650 series models, complete with all coils, supplied less valves. 5/- each plus 4/6 p.p.

U.H.F. TUNERS. Few only, to clear. Sup-plied less slow motion drive and mounting brackets and valves PC86, PC88 type. 35/-each plus 4/6 p.p.

BRC 850 SERIES TIME BASE PANELS. Complete and unused in maker's unopened cartons. 45/- each plus 4/6 p.p.

FERGUSON/EKCO PLUG IN MAINS LEADS. Moulded two-pin connector type. 6 for 50/- plus 4/6 p.p.

6 for 50/- plus 4/6 p.p. G.E.C./SOBELL 196, 197, 1000, 1014, etc. Dual Standard 405/625 I.F.Panels, complete with switching for direct replacement in this popular Radio and Allied receiver, 90/- plus 4/6 p.p. Fits all 1000 and 2000 series.

LINE TIMEBASE PANELS for above series, complete and for direct replacement, 55/- plus 4/6 p.p.

TIMEBASE PANELS to fit Sobell 195, 282, 283, 284, 285, 286, 287, 288 (and DS models), McMichael M1752, 763, 765, P405, Complete and new for direct replacement, 55/- each plus 4/6 p.p.

McMichael, Sobell, G.E.C. 1000 series. New and unused. 55/- each plus 4/6 p.p.

MULLARD COLOUR SCAN COILS. Complete with plug in leads. 110/- each plus 4/6 p.p.

FERGUSON 800/850 series TIMEBASE PANELS, complete and unused in original packing, 45/- each plus 4/6 p.p.

Terms: Cash with order or C.O.D. 3/6 extra. S.A.E. all enquiries. Catalogue of valves, CRT's, LOPT's, components, etc., 2/6.

WILLOW VALE ELECTRONICS LTD.

4 & 5 The Broadway Hanwell, London, W.7 Tel: 01-567 2971 and 5400 01-579 3582

Terms cash with order or C.O.D. 4/6 extra S.A.E. all enquiries. Catalogue 2/6

NEW! Continuous range high-gain pre-Amplifier, 40-900 MHz! Television, Radio, Sterio, all Bands, all Channels, VHF, UHF, Colour! Precision made, built-in power unit, totally enclosed, neat case. Fixed in seconds back of set, no mods, aerial connection only. Superb value at £7.12.6d. post paid to any address in U.K. Send S.A.E. for leaftet: Johnsons (Radio), St. Martins Gate, Worcester, WR1 2DT. WR1 2DT.

R&R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs. Tel.: Rossendale 3152

VALVES BOXED, TESTED & GUARANTEED

EF80 EBF89 ECC82 ECL80 EF80 EF85 EY86 EZ40 EBC41	3331/6/1/6/	PCC84 PCF80 PCF82 PCL82 PCL83 PL83 PL83 PY81	3334454545	PY82 U191 30F5 30L15 30P12 30C15	3/- 4/6 2/6 5/- 4/6 5/-

POST: ONE VALVE 9d. TWO TO SIX 6d. OVER SIX POST PAID.

NEW VALVES Guaranteed and Tested 24 HOUR SERVICE

185 1T4 384 3V4	27p 21p 16p 23p 37p	EBC33 EBF89 ECC81	11p 38p 30p	PCF801 PCF802 PCF805	32p 44p
384 3V4	16p 23p	EBF89			
3V4	23p				64p
	37n		17p	PCF806	58p
10100 m m		ECC82	20p	PCL82	33p
6/30L2	57p	ECC83	23p	PCL84	35p
6AQ5	25p	ECF80	28p	PCL85	42p
6BW7	57p	ECF82	28p	PCL86	40p
6F23	71p	ECH35	27p	PFL200	54p
6F25	60p	ECH81	28p	PLS6	49p
25L6GT	22p	ECL80	33p	PL81	46p
30C15	62p	ECL82	31p	PL82	29p
30C18	63p	ECL86	37p	PL83	34p
30F5	72p	EF39	22p	PL84	30p
30FL1	62p	EF80	24p	PL500	64p
30L15	63p	EF85	28p	PL504	65p
30L17	71p	EF86	31p	PY32	54p
30P4	60p	EF89	23p	PY33	54p
30P19	60p	EF91	12p	PY81	25p
30PL1	61p	EF183	27p	PY82	25p
30PL14	67p	EF184	30p	PY800	350
CCH35	65p	EL33	46p	PY801	35p
DAC32	33p	EL84	24p	R19	31p
DAF91	21p	EY51	35p	U25	68p
DAF96	35p	EY86	31p	U26	63p
DF33	37p	EZ80	22p	U191	60p
DF91	16p	EZ81	23p	U251	70p
DF96	35p	KT61	46p	U329	70p
DK32	33p	KT66	82p	UABC80	30p
DK91	270	N78	850	UBF89	31p
DK92	41p	PC86	49p	UCC85	36p
DK96	36p	PC88	49p	UCH81	32p
DL35	23p	PC97	37p	UCL82	34p
DL92	28p	PC900	35p	UCL83	49p
DL94	37p	PCC84	31p	UF89	30p
DL96	36p	PCC89	46p	UL84	32p
DY86	26p	PCC189	50p	UY85	27p
DY87	26p	PCF80	29p	Z77	18p
EABC80	31p	PCF86	45p		1207000

Postage on 1 valve 5p. extra. On 2 or more valves. postage on 1 vary op, cata. On 2 of postage 3p, per valve extra. Any parcel in: damage in transit 3p, extra. Office address, no callers. GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON

LONDON, N.16

VALVES, VALVES, VALVES

Any ten of your choice 14/6., post 1/-. 100 £5 10s. 0d., post paid.

EF85, EF80, EB91, EBF89, ECL80, EF183, EY86, PCF80, PCC84, PL36, PY81, PCL82, PCL83, PCC89, PY33, PY82, PY800, PY801, PY88, PCL84, 30F5, 6BW7, PY801.

BOB'S.

2 St. James Street, Rawtenstall Rossendale, Lancs. Mail order ONLY.

TELEVISION SPARES. All makes and models, new and used. Send S.A.E. for your enquiries. Used Tested Valves 4/-each. postage 6d. Thriftys, Green Lane Farm, Green Lane, Chessington, Surrey.


TROUBLE GETTING **TELEVISION**?

Some readers report having difficulty in obtaining their copies of Television. We strongly recommend that if this is the case, a regular order should be placed with a local newsagent. If difficulty is still encountered. please write to me direct, giving all the relevant information .-Editor.

Be well-equipped

You need not worry about the painful and lingering minor burns that occur from time to time in leisure pursuits if you keep BURNEZE close to hand. This unique new scientific aerosol cools and anaesthetizes. BURNEZE takes the heat out of a burn in just 8 seconds, then controls the blistering and pain that steal skill from nimble fingers. Be well-equipped-buy BURNEZE, from chemists.

Potter & Clarke Ltd Croydon CR9 3LP

NEW LINE OUTPUT TRANSFORMERS

ALBA 655, 656, 717, 721 75/-, 890-895, 1090, 1135, 1195, 1235, 1395, 1435 118/-, BAIRD. Prices on request. From model 600 quote part no. normally found on TX base plate. (From Model TV123 an alternative Square Tag Panel was fitted on Main Bobbin, please BUSH TV53 to TUG69 40/-. TV91 to TV139 95/-. state if required.) TV141 to TV176 Rewind 90/-. COSSOR 904 to 957 Rewind 90/-. CT1700U to CT2378A 118/-. DECCA DM1, DM3C. (90°) 78/-. DM4C (70°) 78/-. DR1, DR2, DR121 90/-. DEFIANT 7P20 to 7609. Prices on request DYNATRON TV30, TV35 55/6, TV36, TV37, TV38, TV39, TV40, TV41, etc. 80/-. EKCO T231, T284, TC267, T283, T293, T311, T326, T327, T330 55/6, TMB272 68/6, T344, T344F, T345, TP347, T348, T348F, TC347, TC349, TC356, T368, T370, TC369, T371, T372, TP373, TC374, T377A, T393, T394, 433, 434, 435, 436, 437 all at 80/-. 503. 504, 505, 506 95/ FERGUSON 306T, 308T 55/8 each. 406T, 408T, 416, 436, 438, 506, 508, 516, 518, 536, 546, 604, 606, 608, 616, 619, 636, 648, 725, 726, 727, 3600, 3601, 3602, 3604, 3611, 3612, 3614, 3617, 3618, 3619, 3620, 3621, 3622, 3623, 3624, 3625, 3626, 3627 3629 80/-. Jelly Pots, please state colour: red, black or white. RANTI T1001, T1002, T1002/1, T1004, T1005 55/-, T1023, T1024, T1027, T1027F, TP1026, T1071, T1072, T1121, TC1122, TC1124, T1125, TC1126 80/-, 1154, 1155 95/-. FERRANTI T1001. G.E.C. BT302, BT342 62/6. BT454DST-456DST, 2010, 2013, 2014, 2012, 2000DS, 2001DS, 2002DS 85/-. H.M.V. 1865, 1869 55/6. 1870, 1872, 1874, 1876, 1890, 1892, 1894, 1896 80/-KB OV30, NF70, NV40, PV40, QV10, QV30, RV10, RV20, RV30, PVP20 90/-. Featherlight 90/-. Chassis No. VC1-VC2-VC3-VC4 90/-. MASTERADIO 4013 DST, D500 DST, D507 DST 85/-MARCONI VT153, VT156, VT156 55/6. VT157, VT159, VT161, VT163, VT165, VT170, 4611, 4800, 4801, 4803, 4615 80/-. PAM 600S to 822F 80/-. PETO SCOTT. Prices on request. PHILCO 1019, 1020, 2021 82/6. 1029, 1030, 1035, 1036, 1040, 1050, 1060 82/6. PHILIPS 11TG190 to 24T301 118/-. 1768U to 2196U Rewind 95/- (old unit required). PILOT PT450, 452, 455, 650, PT651, P60A, P61 80/-. PYE V200, V400, 200LB, 210, 220, 300F, 300S, 310, 210S, 410, 510, 530, 600, 620, 630, 700 A or D, 710 A or D, 830 A or D or LBA 80/-. 11U Series, 11U-P/NO, AL21003, 21F to 61, Part Nos. must be given when ordering Pye LOPTS 80/-. REGENTONE 197-198. 298. TV402, TV401, TV501, TV502 90/-. R.G.D. 626, 627, 628, 726, RV202, RV302 90/-. SOBELL 1000DS, 1002DS, 1005DS, 1010DST, 1012, 1013, 1014, 1018, 1019, 1020, 1021, 1032, 1033, 1038, 1039 85/-. STELLA T1011U to 2149A 118/-ULTRA 1770, 2170, 1772, 1782, 2172, 1771, 2171, 1775, 2175, 1774, 2174, 1773, 2137, 1980c, 1984c, 100c, 200c, 2380, 2384, 1984, 1985, 1986, 1980, 1980a, 1780, 2180, 2181, 2183, 2182, 1871, 1783, 6600, 6625, 6626, 6628, 6632, 6642 Etc. 80/-. We can rewind most LOPT 95/-Post and Package 4/6. C.O.D. 6/- extra. LINE OUTPUT TRANSFORMER INSERTS ONLY BUSH TV92-TV93, TV94-TV95-TV96-TV97, TV98, TV100, TV101, TV103, TV104, TV106, TV106, TV108, TV109, TV110, TV113, TV115, TV115c, 123, 125, 128, 55/-, Complete with heater windings. TV75, TV85 55/-, DECCA DR95, DR101, DR202, DR303, DR404, DR505, DR606 55/-, EMERSON 2700, E701, E704, E707, E709, E710, E711, Portarama 37/6, ERECUSEN 2047, FERGUSON 204T, 205T, 206T, 214T, 235T, 236T, 244T, 245T, 246T 40/-. FERRANTI 14T2, 14TC, 14T3F, 14T4, 14T4F, 14T5, 14T6, 17K3, 17K3F, 17T3, 17T3F, 17K4F, 17K6, 17SK6, 17T4, 17T4F, 17T5, 17T6, 21K6, 21K6V 37/6. INVICTA T118, T119, T120 50/-KB PV40, MV100, OF100, PV100, NV40, NF70, OV30, QV10, QV30 **40**/- pair. PETO SCOTT 1416, 1418, 1419, 1422, 1423, 1716, 1719, 1720, 1722, 1723, 1724, 1725 **29/6**. PYE V4, VT7, CTM4, TCM7 50/-. REGENTONE 10-4, 10-6, 1021, 17-18, 10-12 35/-, T176, TT7, 191, 192 37/6, R.G.D. Deep 17, The 17, 590, 600, 606, 611, 710, 723 35/-, Guarantee. Post and Package 4/6. C.O.D. 6/- extra. T.V. CANNED ELECTROLYTICS 100-200, 350v, 22/6 each 2.P.P./6. 15 NEW REPLACEMENT L/OP/TX 150-100-100-100-150. 100-200-60. 320v. 200. 350v 39/9 each. P.P. 2/6. 15/- each. P.P. 2/6. MURPH 22/6 each. P.P. 2/6. 300v. 4/6 P.P. 300v. 24/0 each. P.F. 4/9v 100-300-100-16. 275v. 27/- each. P.P. 2/6. 100-400-275v. 19/- each. P.P. 2/6. 100-400-16. 275v. 26/- each. P.P. 2/6. 118/-200-200-100. 350v. 31/6 each. P.P. 2/6. 300-300. 300v. 37/9 each. P.P. 2/6. 125+200+100+32-275v. 28/-. 400+400-350v. 44/3. V310 TO 789 **REPLACEMENT DROPPERS** Phillips Type 30+125+2:85 12(6, P.P. 1/-Ferguson, H.M.V., Marconi, Ultra 800 & 850 Series (Convertible) 37+31+97+254+168. 12(6, P.P. 1/-POWER RESISTOR SECTIONS As above 850 Series (Dual Standard) 14+26+97+173 12/6 each. P.P. 1/-. HIGH VOLTAGE PULSE CERAMICS 10, 15, 22, 33, 68, 82, 100, 120, 140, 155, 180, 220, 250pf, 1/6. P.P. 6d. T.V. CANNED ELECTROLYTICS K Ohms, 2 (-07A) Postage each section 6d. 64-100. 450v. 22/6 each. P.P. 2/6. 100-200. 275v. 18/- each. P.P. 2/6. 4/9 each. WE CAN STILL SUPPLY PARTS FOR THE CONSTRUCTOR

CALLERS WELCOME. But to avoid disappointment please phone to check that the items you require are in stock.

All new components inserts are guaranteed for three months from the date of invoice subject to the breakdown being due to faulty manufacture or materials. S.A.E. all enquiries.

Dept. "R" D. & B. TELEVISION (Wimbledon) LTD. 80 MERTON HIGH STREET, S.W.19 01-540 3513 01-540 3955

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained *thousands* of men at home – equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast – makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION – OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

=WHICH SUBJECT WOULD INTEREST YOUP=

Mechanical A.M.S.E. (Mech.) Inst, of Engineers Mechanical Eng. Maintenance Eng. Welding General Diesel Eng. Sheet Metal Work Eng. Inspection Eng. Metallurgy C. & G. Eng. Crafts C. & G. Fabrication

Draughtsmanship A.M.I.E.D. Gen. Draughtsmanship Dic & Press Tools Elec. Draughtsmanship Jig & Tool Design Design of Elec. Machines Technical Drawing Building

Electrical & Electronic A.M.S.E. (Elec.) C. & G. Elec. Eng. General Elec. Eng. Installations & Wiring Electrical Science Computer Electronics Electronic Eng.

Radio & Telecomms, C. & G. Telecomms, C. & G. Radio Servicing Radio Amateurs' Exam, Radio Servators' Cert, Radio & TV Engineering Radio Servicing Practical Television TV Servicing Colour TV Practical Radio & Electronics (with kit) A.M.I.M.I. MAA/IMI Diploma C. & G. Auto Eng. General Auto Eng. Motor Mechanics A.R.B. Certs. Gen, Aero Eng.

Auto & Acro

Management & Production Computer Programming Inst, of Marketing A.C.W.A.

A.C.W.A. Works Management Work Study Production Eng. Storekeeping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engineering Materials Handling Operational Research Metrication

Constructional A.M.S.E. (Civ.) C. & G. Structural Road Engineering Civil Engineering Building Air Conditioning

Heating & Ventilating Carpentry & Joinery Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture Builders' Quantities General C.E.I. Petroleum Tech. Practical Maths. Refrigerator Servicing. Rubber Technology Sales Engineer Timber Trade Farm Science Agricultural Eng. General Plastics

General Certificate of Education Choose from 42 O' and 'A' Level subjects including: English Chemistry General Science Geology Physics Mathematics Technical Drawing Franch German Russian Spanish Biology B.J.E.T. and its associated schools have recorded well.

successes at 'O' and 'A' level. WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.

Over 3,000 of our Students have obtained City & Guilds Certificates. Thousands of other exam successes.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.

"In addition to having my salary doubled, my future is assured." - Case History H/493.

"A turning point in my career - you have almost doubled my standard of living." -Case History K/662.

"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters – and there are many more on file at Aldermaston Court – speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

Free!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you ... but it could be the best thing you ever did.

Dept 445A Aldermaston Court, Reading RG7 4PF.

(Write if you prefer not to cut this page)

POST THIS COUPON TODAY

	A Aldermaston Court, Reading RG7 4PF and details of your Courses in
Name.	Age
	Occupation

B.I.E.T - IN ASSOCIATION WITH THE SCHOOL OF CAREERS - ALDERMASTON COURT, BERKSHIRE