


seide

Exide BATTERIES

'Still keep going when the rest have stopped'

THE CHLORIDE ELECTRICAL STORAGE COMPANY LTD. (Exide and Drydex Batteries) Grosvenor Gardens House, Grosvenor Gardens, London, S.W.1. Telephone : VICtoria 2299. Telegrams : Chloridic, Sowest, London

PRACTICAL WIRELESS

September, 1941

ALL - METAL

renewals

ii

USED WHEREVER DEPENDABILITY IS VITAL

FOR RADIO, CARS, MOTOR CYCLES AND COMMERCIAL VEHICLES

YOU, TOO, SHOULD USE DAGENITE AND PERTRIX—

THE DEPENDABLE BATTERIES

HOLSUN BATTERIES LIMITED 137 Victoria Street, London, S.W.1 CONSTRUC-TION FOR RELIABILITY

WESTINGHOUSE

cut out rectifier

You don't need replacements for a Westinghouse Metal Rectifier. It simply doesn't wear out, and a component of this nature goes a long way towards ensuring efficient reception from your receiver. You can use them for H.T. power supply, detection, A.V.C. and battery charging. "The All-Metal Way" tells you how.

Pra. 941.

WESTINGHOUSE BRAKE & SIGNAL CO., LTD., Pew Hill House, Chippenham, Wilts. Please send me a copy of "The All-Metal Way." I enclose 3d. in stamps,

THE DEMETAL WAL

Name

Address

PHONE : BRIGHOUSE 50.

354	PRACTICAL WIRELESS	September, 1941
> PRE	MIER RA	ADIO
Moving Coil Mike. Permanent magnet model requiring no energising. Response 90-5,200 cycles. Output .25 volt average. Excellent reproduction of speech and munic A	Please NoteAll Short-wave Kits include Purchase Tax NEW PREMIER S.W. A.C. RECEIVER in response to many requests we have now produced an A.C. version of the popular Premier short Wave SG3 Kit Circuit ; Pentode H.F. state Pentode Detector, Pentode Output, and F.W. Rectifier. 200-250 v. A.C. Operation. Built-in Power Pack. Hum-free operation. For use with Phones or P.M. Speaker. Complete Kit of Parts with drilled chassis, all components, Plug-in Coils covering 13-170 metres, and circuits	PREMIER 1941 HIGH FIDELITY AMPLIFIER KITS Each Kit is complete with ready drilled chassis, selected components, specially matched valves and full diagrams and instructions. Completely Kit of Parts Wired and with Valves Tested 4-watt A.C. Amplifier £6 16 6 f f 7 13 6 6-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 18 9 f 9 6 0 16-watt A.C. Amplifier £7 23 a. 16-watt A.C. Amplifier £7 23 a. 16-watt A.C. Amplifier £7 23 a. 174 57 9 30 0 180 300 00 v. 500 ma. 4 v. 23 a. 4 v. 23 a. 181 300-300 00 v. 150 ma. 4 v. 23 a. 4 v. 23 a. 181 300-300 60 ma. 4 v. 3a. 4 v. 24 a. 181 300-300 60 ma. 4 v. 3a. 4 v. 25 a. 181 300-300 60 ma. 4 v. 3a. 4 v. 5a.
Tapped primaries. A, 20 and 40:1; B, 30 and 60:1; C, 50 and 100:1, 6/6 each.	ALL ORDERS LESS THAN 5/. 6d. POST EXTRA.	watts, 16/10. 10-15 watts, 21/10. 20-30 watts.
VIE FAULT	e accurate tracing w Me, too!	NOTE : The word " AVO " is our Registered Trade Mark.
The Universal AvoMinor and D.C. AvoMinor provide the serious ama- teur with testing facilities comparable in accuracy with those of the famous "AvoMeter" on which service engi- neers and manufacturers rely for precision testing. Trouble-tracking with the AvoMinor is reduced to its simplest terms, enabling amateur and expert alike to locate faults with ease and rapidity.	THE UNIVERSAL AVOMIN	OR THE D.C. AVOMINOR
In spite of greatly increased produc- tion, most of our output of "AVO" Instruments is being taken by the Services. Delay in delivery of Trade Orders is consequently inevitable, but we shall continue to do our best to fulfil your requirements as promptly as possible. Sole Proprietors and Manufacturers:	ELECTRICAL MEASURING INSTRUMENT 22 Ranges of Direct Readings D.C. Volts A.C. Volts D.C. Millian 0-75 millivolts 0-5 volts 0-5 volts 0-25 million 0-25 , 0-25 , 0-25 , 0-25 , 0-250 , 0-250 , 0-500	ELECTRICAL MEASURING INSTRUMENT 13 Meters in ONE Current milliamps 0- 6 Voltage volts Resistance ohns 0- 6 0- 6 0- 10,000 0- 30 0- 12 0- 60,000 0-120 0-120 0-1,200,000 0-240 megohms 0-300 0-300 0-600 0-30 0-600 0-30 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300 0-300

Sole Proprietors and Manufacturers: AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD., Winder House, Douglas Street, London, S.W.1. Phone: Victoria 3404-7

Complete with instruction booklet, leads, inter-changeable crocodile clips and testing prods.

• Write for fully descriptive pamphlets and current prices.

Broadcast Propaganda Again

RITICISM continues to be levelled at the B.B.C. for its failure to put energy and ideas into the propaganda intended for consumption abroad. The critics point, consumption abroad. The critics point, perhaps with some justification, to the American style of broadcast, as well as to the Russian, where it is said they bring expert propagandists to the microphone in the form of journalists whose lives have been spent in moulding public opinion. The B.B.C., no doubt, has its answer to this criticism, but a point often overlooked is that America and Russia are countries whose national temperaments are somewhat different from ours. We are credited with being insular and phlegmatic as a race, and whilst the B.B.C. style of broadcast propaganda may be correct for home consumption, it does not tickle the palates of foreign listeners.

The B.B.C., however, cannot be held to blame, for during the war it may only read out such information as it is permitted to do by the Ministry of Information, and it is in this direction that improvement is needed. The Ministry of Information has not covered itself with glory on some of the occasions to which it should have risen. Members of Parliament have asked fre-quently that the Ministry of Information should use its imagination, and this sugdent merely elicited the ripost from Winston Churchill that there are certain things which stagger the imagination.

American Comment.

THE matter has been raised again since the famous broadcast of Quentin Reynolds, the American newspaper corre-spondent. We have received many letters of approval of this style of broadcast talk, and it might be worth a trial over here There is one other matter connected with propaganda which needs to be aired. Propaganda does not consist of warping the truth or inventing half-truths, nor in being careless with the truth in order to sway opinion abroad. A simple statement of fact has its own propaganda value, and to endeavour to dress it up or to give it an importance out of proportion to its in-cidence to the war is not only to destroy its propaganda value, but to destroy for ever belief in future statements made over the air. Truth must, therefore, be the first aim of our foreign propaganda. And we do not support the view generally held that we need to indulge in ballyhoo. We want our propaganda taken seriously, for any suggestion that it has been touched up, or any attempt made to render it humorous, would destroy it as propaganda. Unfor-tunately, the word propaganda has taken on a different meaning in the last few years. Publicity experts use the term to describe any methods they may adopt to "put it '-an objectionable phrase savouring of the puffing of an unworthy article.

The point we make is that whatever method is employed we must not blame the B.B.C. for it. If it evolves its own plans they are doubtless sat upon by the Ministry of Information.

Words do not win wars, and as far as one can trace up to the present, none of the broadcast propaganda has had the slightest effect upon the peoples of other The interesting and certainly nations. entertaining broadcast talk of Quentin Reynolds tickled our palates for the time and was eagerly discussed the following day. It is soon, however, forgotten, and Germany gets on with the war.

V for Victory

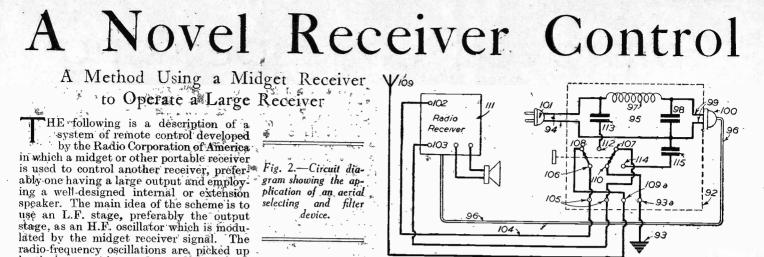
WE do not attach a great deal of im-W portance to what was announced from the B.B.C. as our new war weapon. Apparently the people of the vanquished countries are being encouraged to chalk the letter "V" on walls, and some wag has discovered that the opening bars of Beethoven's Fifth Symphony (reminiscent of Fate Knocking at the Door!) is really the morse equivalent of the letter V. of Fate Now this is entertaining, but we fail to see where it is a weapon of war, nor are we able to discern what possible effect it can have upon the Germans. It may annoy them in much the same way as we are

Editorial and Advertisement Offices : "Practical Wireless," George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2. 'Phone : Temple Bar 4363. Telegrams: Newnes, Rand, London.

Registered at the G.P.O. for transmission by Canadian Magazine Post.

annoyed when small boys chalk rude words on garden gates. We hope that it will in-spire them to revolt against their leaders. Germans are occupying the countries, and it may be that it will inspire the vanquished peoples and buoy them up in the hope that we shall release them from their bondage. If this is the case, it was remiss of this country not to have inspired them before they were overrun. The effort should have been designed to make them resist instead of, as in most cases, to have been passively overrun.

Patents In War-time

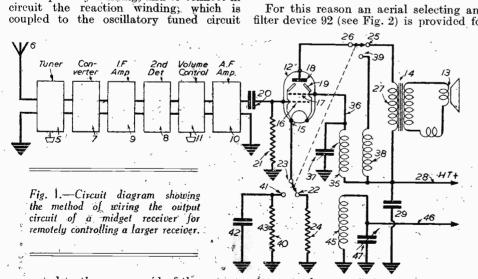

THE war has naturally stimulated the production of inventions relating to munitions and warlike supplies and also inventions relating to articles of public consumption which have come into special demand owing to war conditions or modifications of such articles to meet the new conditions.

The various Government departments are taking an interest in such inventions and they have a special organisation for dealing with inventions. This we believe applies to the Ministry of Aircraft Production, the War Office and the Ministry of Supply. These departments appear to take note of any patent applications filed which from their title appear as though they might be of some interest to the department. When this is the case a formal letter is sent to the applicant, either direct or through his Patent Agent, asking the applicant to submit to the department a copy of his specification together with any particulars and explanation of the invention which would enable the department to consider whether it could be used in the National War Effort.

The Government departments have power to prohibit the publication of the particu-lars of any invention which they consider might be of benefit to the enemy if it should come to their notice. The departments also have the right to take over and use an invention, and they may in some circumstances arrange for the patent to be made secret or to delay acceptance of the application for the period of the war so as to avoid publication, These actions do not abrogate the inventor's rights in his inventions. Although the Government departments are entitled to use an invention for the national benefit, and are not actually obliged by law to make any payment in respect of such use, they do in practice make a suitable payment where an invention has admittedly been used by them. If they are unable to agree with the inventor with regard to the amount of the payment then this may in some circumstances be settled by arbitration.

PRACTICAL WIRELESS

September, 1941


valve serves as output valve and oscillator valve, no switching of the control grid circuit is required, and since in the case of the screen-grid output valve the oscillatory tuned circuit may be maintained in circuit audio - frequency amplification, the for switching is simplified.

Of course, more ambitious oscillatormodulator schemes may be devised, such as the provision of a separate triode as. an oscillator, and the use of the output valve as a choke controlled modulator, using the speaker transformer primary winding as the modulation transformer or choke. In addition, gramophone pick-up terminals may be connected to the midget receiver for use with either a pick-up or a microphone.

While the remote control system will operate satisfactorily in many installations merely by the radiation from the power line being picked up by the normal aerial of the remotely controlled receiver, it has been found that best operation may be obtained if the input circuit of the remotely controlled receiver is coupled to the power line.

Filter Device

For this reason an aerial selecting and filter device 92 (see Fig. 2) is provided for

quite

The

connected to the screen-grid of the output. valve. This tuned circuit is adjusted to a suitable frequency, such as at the lowfrequency end of the medium-wave broadcast band, i.e., about 550 kc/s. A further tuned circuit is coupled to the oscillatory circuit, and is used to inject the radio frequencies into the power line or other cable to the main receiver. It will be seen that the receiving system is operated in a normal manner, whether receiving signals as a complete receiver, or supplying modulated signals as a control unit; the modulations in one case being applied to the loudspeaker, and in the other case being applied to the oscillator. Since the same

by the large receiver and reproduced by the

latter. The volume control of the midget

receiver controls the gain of the signals

Figure 1 shows a method of wiring the

output circuit of a midget receiver for this

purpose. The tuner, frequency converter, I.F. amplifier, a second detector, volume control and first audio-frequency amplifier

normal, and are, therefore, shown in block schematic form. The output valve, which

is of the beam valve type, is coupled to the first L.F. stage by means of the usual.

cathode is connected to a switch which either switches in an un-bypassed cathode resistor for use with the receiver under

normal conditions or, alternatively, a larger

by-passed resistor for the purpose of reduc-

ing the current taken by the output valve

A further switch, ganged to the previous one, is located in the anode circuit, and serves to disconnect the speaker trans-

former primary winding, and to connect in

when operating as an oscillator.

of the receiver are assumed to be

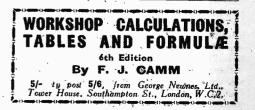
grid leak and coupling condenser.

reproduced by the main receiver.

Output Circuit 🦄

the remotely controlled receiver 111, which enables the user to switch from the standard aerial 109 and the earth connection 93 to the power line 94, to pick up directly the radiated modulated carrier wave from the remote control unit.

The problem of preventing hum modu-lation at the controlled receiver because of the short-circuiting action of the power rectifier device on the H.F. current arises. Accordingly, a filter 95 is included in the device 92, interposed between the power line 94 and the receiver power supply con-nection or cord 96, to isolate the line from the receiver the receiver.

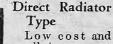

The filter 95 includes a filter choke 97.

in one lead of the power supply circuit and a by-pass condenser 98 across the output The terminal leads 99 end of the filter. of the filter are arranged to receive a plugin connection 100 for the power cord 96 of the receiver. The leads 94 are provided with a plug 101 for the usual power outlet or baseboard power supply connection. The aerial and earth connections on the receiver 111; indicated respectively at 102 and 103, are connected through leads 104 with terminals 105 on the filter unit 92 which in turn are connected with the switch arms 106 and 107. of a suitable aerial selector switch. In the position shown the contact arm, 106 for the aerial connection engages a contact 108 connected with a terminal 109a for the aerial 109, while the arm 107 is connected with a contact 110 having a terminal con-nection 93a for the earth 93. This provides the normal aerial and earth connections for the receiver 111.

Operation of Filter

When the arm 106 is moved to a contact 112, the aerial is coupled through a condenser 113 with one side of the power line on the power line side of the filter choke 97. The switch arm 107 is connected to move jointly with the arm 106 to engage a contact 114 through which the earth connection of the receiver is completed with the opposite side of the power line through a coupling condenser 115. This selective switching arrangement permits the radio receiver 111 to be coupled with the power line to receive the modulated oscillations therefrom directly, while the rectifier system is isolated from the power supply line and the modu-lated oscillations by the filter 95. In practice, the unit 92 is supplied with the remote control receiver for use in connection with any radio receiver for which the receiver

any radio receiver for which the receiver of Fig. 1 may act as a remote control unit. As similar hum troubles arise in the midget receiver, in the circuit of Fig. 1, a filter consisting of a portion of the tapped heater element of the power rectifier and suitable capacities should be provided between the power circuit and the power rectifier, to prevent the rectifier from short-circuiting the power line with respect to radio-frequency signals, or the modulated signals, whenever the rectifier conducts current. The oscillator coupling coil for the power line is connected to the line side of the filter thus provided.


Improved Loudspeaking

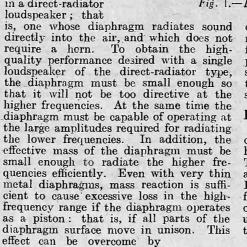
Telephone

Radiator-type Loudspeaker having an Output of Twenty Watts

ANY high-quality sound - producing Such instrument is systems have been constructed in recent years with various loudspeaker elements designed to cover a wide frequency range. For the most part these systems have utilised multiple devices in which two or more loudspeaker units have

required in broadcast monitoring rooms, and in reproducing systems for small rooms.

Low cost and small size are most readily obtainable in a direct-radiator



The new loudspeaking telephone, and its designer.

been used in combination, each component unit reproducing only a part of the fre-quency spectrum. Other systems have been constructed in which a single loudspeaker plays the double rôle of reproducing lower frequencies through a horn connected to one side of the diaphragm, and higher frequencies directly from the opposite side. In some cases, a rather wide frequency range has been produced, and very satisfactory quality has been obtained.

Several factors associated with sound radiation and vibrating systems have necessitated multiple systems for repro-ducing wide frequency ranges. The more important of these are the low-frequency radiation requirements, which demand large amplitudes even when large radiating surfaces are used; the inertia of the vibrating system which results in a loss of efficiency at the higher frequencies; and the directivity of sound radiators at higher frequencies, which is a function of the size of the radiator or diaphragm.

Multiple units generally involve complications, both in the mechanical structure and in the associated circuits. These complications can be overcome by careful design, but the result is an instrument of relatively high cost. For some time a lowcost speaker of high quality, small size, and diaphragm 8ins. in diameter, moderate power capacity has been needed. and a driving coil 4ins. in

using a diaphragm in which all parts do not move in unison parts do not move in unison when operated at higher fre-quencies, and such a dia-phragm will radiate uniformly at all frequencies if properly designed. The problem, then, becomes one of determining the proper diaphragm ma-terial, and shape, to provide the desired high-frequency performance, and at the same time, to permit free viston time to permit free piston vibration at low frequencies where large amplitudes must be provided for.

Thin metallic diaphragms offered the most favourable properties for such a develop-ment as far as the desired ment as far as the desired effects are concerned, but the problem of forming a dia-phragm of this type, which would permit the necessary amplitudes at low frequencies, have the required high-fre-quency performance, and be have the required high-ne-quency performance, and be free from rattles and ex-traneous sounds, required contraneous sounds, required con-siderable experimental work. The development of such a device, however, was finally successful in the Western Electric 750A loudspeaker.

This instrument is a direct radiator with a formed metal

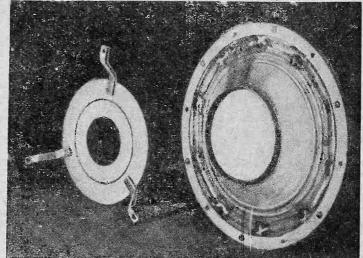
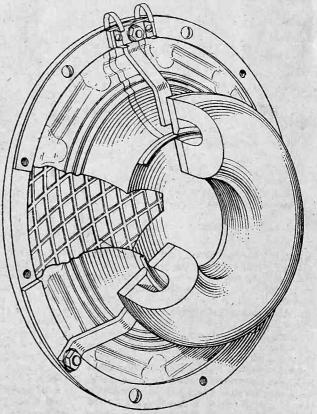


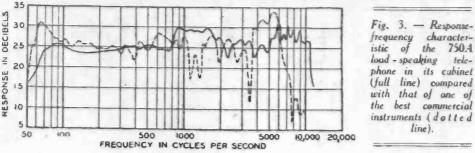
Fig. 1.-The diaphragm and magnet unit.

diameter, which moves in a permanent magnet field. The loudspeaker is intended for mounting in a closed cabinet of the proper design and capacity; when furnished so mounted, the combination is known as the 715A loudspeaker. Any cabinet of suitable design, however, may be used.

Response-frequency Characteristic

A representative response frequency characteristic of the loudspeaker when thus housed is shown by the solid curve in Fig. 3. The sound pressures measured on the axis are relatively uniform from about 60 to 11,000 cycles, a frequency range sufficient for high-quality reproduction. The sound output is somewhat less uniform in the upper frequency range than for some horn-type speakers, but it is adequate for good




Fig. 2.-The driving coil vibrates in a narrow slot in the ring-shaped field magnet.

character-

the 750.4

line).

tele-

For comparative purposes, reproduction. the response-frequency characteristic of the best commercial cone-type dynamic speaker which has come to our attention is shown in dotted line on the same drawing. Identical testing conditions were imposed in measuring the two speakers. One feature of the 750A loudspeaker, the effect of which is indicated on the response curves, is application of mechanical damping which reduces the low-frequency resonance peak so as to eliminate so-called "hang-over" effects.

An inherent limitation in a device of this type, as compared with a more elaborate combination of horn-type speakers, is the inability to control the distribution of the radiated sound. As previously indicated, the reproduction from a speaker of this type is more and more deficient in the higher frequency range as the observer moves away from the axis of the speaker. The best quality is observed within a thirty-degree angle, but satisfactory per-formance over a wider angle is obtained

for many purposes. The diminution of high-frequency radiation is not serious up to an angle of 45 degrees. In rectangular rooms of moderate size a single speaker usually suffices. For larger rooms, or rooms of considerable width, two or more speakers may be required for the best reproduction.

Twenty Watts Output

The efficiency of the new loudspeaker is equal to that of commercially available cone-dynamic speakers of the same size and weight. When reproducing speech or music it is capable of handling the maximum undistorted output of a 20-watt amplifier at single-frequency rating.

The 750A loudspeaker is not intended to replace existing multiple-unit systems, but rather to fill a long-felt need in situations where more elaborate devices are not required or may be prohibitive because of cost or size. In locations where high sound levels are not necessary, and where the angle of coverage is not too great, the instrument will reproduce speech and music with remarkable fidelity.—Bell Laboratories

The British Institution of Radio Engineers

THE annual general meeting of the Institution was held on Saturday, June 28th, at the Federation of British Industries, London, S.W.1.

Giving the annual report of the council, Sir Arrol Moir, Bart., joint president, stated :-

"In its responsibility for conducting the Institution's examinations, the committee now under the able chairmanship of Mr. W. B. Medland, B.Sc., a past president, has done valuable work in providing a means of recognising the ability of students and offering to employers the means of securing qualified The terms of reference of ttee are: 'To formulate assistants. the committee are: schemes for educational study in radio and allied engineering and to co-operate with the educational authorities in the arrangement of courses of instruction, to prepare schemes for and to hold examinations in radio and allied engineering, whether entitling successful candidates to membership of the Institution or otherwise, and to do all those things necessary for the carrying out of these terms of reference.

Sir Arrol Moir also submitted a proposal that a Professional Purposes Committee be established . . . with a view to in-vestigating the progress made by the Institution in gaining independent professional status for the qualified radio and allied engineer. Such a committee would deal mainly with qualifications required for membership and classification of occupations coming within the orbit of our activities. This would assist general acceptance of the Institution's status and would provide for any revision necessary to the articles of association and the general activities of the Institution.

North-western Section

Referring to the inauguration of a North-Western Section of the Institution and the fusion of the British Institution of Radio Engineers and the Institute of Wireless Technology, he quoted a letter from Mr. James Nelson published in August, 1925. In this letter, Mr. Nelson referred to the foundation of a professional radio engin-eering body and stated "It is intended that

The report continued : "The Institutions Appointments Register, as distinct from the Central Register, has been kept in operation, although there have been but few members to submit to employers. Naturally, war needs take priority, but active service and Government appointments have created a large number of 'duration vacancies' which the Brit.

1.R.E. has been able to fill. As further adjustments in industry become necessary. more opportunities of this kind may arise. Meanwhile, the Institution's war effort, referred to in my presidential address in December, 1939, has been continued with marked success. The expressed thanks of the War Office, the Air Ministry and the Ministry of Aircraft Production, besides other Government Departments and large bodies, for our work, indicates the official recognition of the professional status of the Institution's member-

Council's nomination of Dr. C. C. Garrard, Ph.D., M.I.E.E., M.Brit.I.R.E., was unanimously approved by members, and Dr. Garrard therefore succeeds Sir Arrol Moir as president of the Institution.

The meeting concluded with the adoption of a proposal to inaugurate a building fund and an address by T. D. Humphreys

the society shall be called The British (Associate member), of A. C. Cossor, Limited, Institute of Radio Engineers." on "Lesser Known Aspects of Measurement

The election of the 1941-2 general council, carried out by a postal ballot, resulted in the election of the following :

Mr.	A.	L. Beedle	Mr. W. E. Miller
		P. Dalton	Mr. J. F. Paull
Mr.	A.	G. Egginton	Mr. J. A. Sargrove
		Grinstead	Mr. W. D. Sell
Mr.	G.	Lea	Mr H Tibbenham

Officer cadets undergoing Morse code practice under a sergeantinstructor. The young cadet on the extreme left is the third Earl Kitchener of Khartoum, grand-nephew of the famous soldier who raised a volunteer army of over a million men in the last war.

77 ook 111 Circuits of Simple Sets Made by Readers During the War

N response to Thermion's invitation in our June issue to readers to send in ideas for hook-up and simple receivers for use in the present difficult times, we have received many circuits and descriptions of such sets, and we publish a selection of the best ones.

Several readers submitted circuits of one and two-valve sets, and in our opinion the best effort was sent in by A. W. Jump, of Dunfermline, Scotland, who writes as follows :

"I was called upon to construct a set at short notice and within a limited timein a town in which I was a complete stranger. I managed to rig-up a serviceable affair (I refrain from calling it a radio set !) notwithstanding many setbacks. I had no components handy, and a tour of the town's radio shops unearthed

Tuni

250 turns of the D.C.C. wire on to a 'deep' cotton reel. The two switches and the knob of the reaction condenser were the only controls, and these were mounted on the outside of the box. "The aerial was introduced into the circuit

by means of either of the pre-set condensers and the coil tappings. Connections to the coil were made by means of a piece of flex held secure by a small 'paper clip.

One of the condensers was then adjusted until the 'Home Service' could be heard, and the tuning switch reversed. The 'Forces' programme was then tuned by the other pre-set, and by selection of a suitable coil tapping. Thus either programme could be heard at will, simply by operation of the tuning switch. "Results on this set, using a moving-coil

speaker (W.B. Universal) were quite satis-

"The accompanying circuit diagram is of my war-time junk-box set

The H.F. stage was added later in order to increase the volume of the Forces programme. The wave-trap helps to stop that fool Haw-Haw from cutting in on the Home Service programme, and is also used as a volume control. The set is run from an A.C. power jack, the speaker being mains energised from a metal rectifier, but of which I have no details. The L.T. is which I have no details. trickle charged. "This set has been used continuously

since just after the outbreak of war, and has never given the least trouble."

Simple One-Valver

A useful and chcap little one-valve circuit was submitted by M. Lockwood (Wakefield). Here is his description:

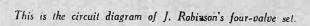
.Circuit diagram of A. W. Jump's two-valver.

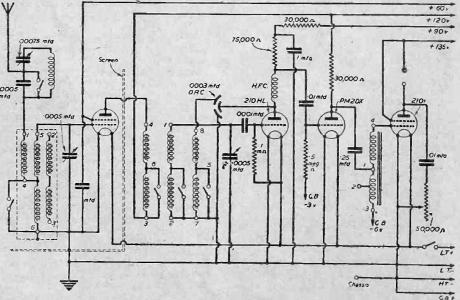
only 11b. of D.C.C. wire (of unknown gauge), one reaction condenser .0003mfd., two pre-set condensers (of unknown capacity!), one fixed condenser .0003 mfd. complete with clip and 2-megohm grid leak, one L.F. transformer (of doubtful make and still more doubtful vintage), and a quantity of wander plugs, together with an old paxolin strip. (Valves and batteries were to hand at my friend's house.) The great snag was valve-holders. Eventually I hit on the idea of cutting the paxolin strip into small squares somewhat larger than a valve base. Holes were then drilled to the dimensions and design of an ordinary B.V.A. triode, but large enough to take the threaded portion of a wander plug. The small ring was screwed right up, and the threaded portion screwed into the holes. The coloured cap was then screwed on and the whole tightened up. (The particular plugs used had small taps, and thus fitted, can be accommodated in the space.) They were then mounted on wooden strips, as

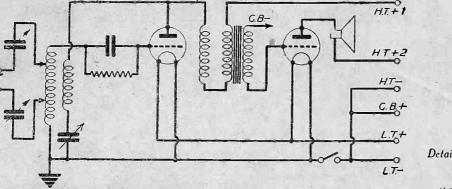
shown in the sketch. "Having overcome the valve-holder difficulty, the next problem was tuning arrangements, as I was without a tuning condenser. wound about sixty turns of D.C.C. wire on a former, making tappings at intervals of 15 turns. (The former used was the cardboard cover of a cylindrical torch battery.) A reaction coil was then wound on the former (45 turns). My friend had meanwhile found two mains-type tumbler switches, one of which was of the '2-way'

type. "A small wooden box about 9in. x 8in. x 6in. was found, and into it I put the components to form a circuit, as illustrated. The H.F. choke was made by turning about

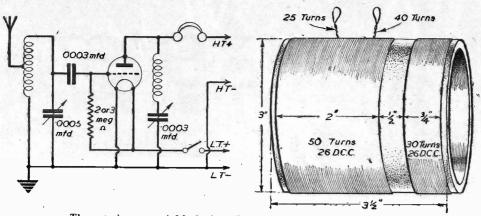
factory, and although located at between fifty and sixty miles from the two 'local' transmitters, this little 'hook-up' pro-vided adequate volume to fill a room 16 ft. square. It has been in use for over twelve months, and my friend has done nothing to it except change the accumulator and the H.T. battery (the latter only once !)"


A Four-valve Circuit


A much more elaborate circuit is that of J. Robinson, who writes as follows :


"The valve used in this simple circuit was a Mullard P.M.1. H.F., and I have received all the English stations (these tests were carried out just before the war) and several continental stations at good 'phone strength.

"It could be coupled to a transformer and/or an R.C.C. stage and used with loud speaker. "The details for the medium-wave coil


are shown in the sketch. The first tapping on the coil (grid winding) should be, in most cases, the one used, but if there are two stations on top of one another the second tapping should be used.

Paxolin Wood Strips Details of an improvised valve-holder.

Theoretical circuit of M. Lockwood's single-valver, and details of coil.

"If a long-wave coil is wanted it is better to fit plugs at the points shown and mount sockets on a strip of ebonite fitted on two blocks of wood.

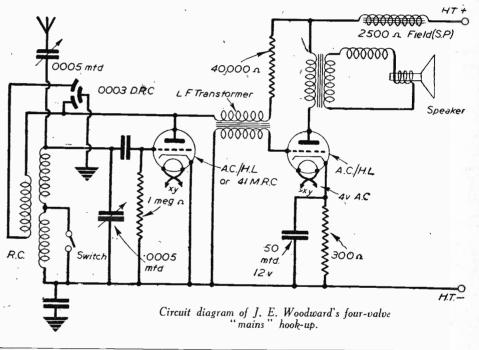
"For a long-wave coil a former of the same dimensions can be used, but 200 turns of No. 34 single silk-covered wire, with tappings at the 100th and 130th turn, are required for the tuning section, and 75 turns of the same wire will be needed for the reaction winding."

Two-valve Mains "Hook-up"

From amongst the circuits of mainsoperated sets submitted, we have selected that of J. E. Woodward (Wolverhampton) as being the best "mains" effort. It is It is quite a useful and reliable "hook-up," and here is Mr. Woodward's description :

"The accompanying circuit diagram is of a very simple two-valve, all-mains set, which is used in the living-room as a standby set. Most of the components are from an old commercial receiver, which I bought (or begged) for 7s. 6d. This is practically the first set I have built, as the previous ones have been single-valve 'phone jobs. The job is in a radio cabinet, but chassis-less, as there are relatively few earth points. The earth leads are soldered to a strip of brass curtain rail, and then the earth proper taken from the rail itself. "Various valve combinations have been

tried, and the valves indicated gave the


best quality, which is extremely good in view of the high impedance of the output value. The correct optimum load should be 8,000 ohms for the speaker in question, and the impedance of the AC/HL is quite a big

percentage of mismatching. The aerial series condenser must be included to receive the Forces programme, the condenser being a variable one, as the selectivity of the single-tuned coil is naturally low.

"Incidentally, I have used no decoupling components, as I was in a hurry to build the set, as my commercial job had ceased functioning.

It may interest you to know that only mains jobs interest me, although I can transcribe a battery diagram to all-mains working, thanks to your instructive journal, which I have taken for approximately four and a half years. I file all the technical articles into their respective categories such as L.F., H.F., superhet, etc., and have cuttings going back to 1936.

"It may be of interest to other readers to know that I am using a P.M. dynamic speaker as a mike, feeding into the L.F. amplifier of a commercial receiver, and it works well. The mike lead is approximately 50ft. of good quality lighting flex, and does not give rise to any interference or crackling."

BROADCASTING WITHOUT MICROPHONE Α

THE problem of developing musical instruments capable of producing powerful yet clear and undistorted sound, audible to audiences of many thousands, has en-gaged the attention of Soviet scientists for some years. The Acoustics Laboratory of the Conservatory of Music, headed by Professor N. Garbuzov, has been working on the development of new electrical instru-ments, a task in which designers and musicians, working in close co-operation, are opening up new paths for the development of music.

In the laboratory stands a highlypolished black instrument outwardly resembling a miniature organ. When the musican raises the lid and strikes the keys, just as with a dummy piano, no audible sound is produced. The various sounds, resembling those produced by a flute, an oboe, or even an organ, issue from the loudspeaker of the receiving set as the keys are pressed. This new electrical instrument, called a companola by its inventor, Igor Simonov, works on the same principle as a piano. Unlike a piano, however, each key is not attached to a hammer which strikes a string, but to a switch resembling

a telephone relay. When the keys are pressed, they throw in contacts, switching in a system of resistances.

Frequency Range

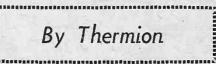
Each of the usual musical instru-ments, such as the 'cello and trumpet, has a limited range of frequencies. The frequency range of this electrical instru-ment, on the other hand, is very broad, including that of many musical instru-ments. By simply changing the resistances the performer instantaneously changes the pitcĥ. The companola may produce a staccato sound like that of a guitar and a drum, or the legato sound of a trombone. In the high registers the sounds produced by the instrument resemble that of an oboe or a flute.

The performer plays only the basic melody; all the remaining effects conceived by the composer, all the colour, are achieved electrically, with the aid of an ordinary audio-frequency oscillator (producing electrical vibrations which, upon passing through the loudspeaker, are transformed into sound), electrical resonators, filters, resistances.

· Moreover, to play the companola does not require as much effort or as complex a technique as to play a piano. Without its amplifier it is no heavier than an average radio set, yet it can produce a sound that can drown a symphony or jazz orchestra. The musician, without exerting himself in the least, can make the instrument sound a "fortissimo" which, for power, is beyond anything so far known in instruments.

One of the usual sights at concerts is the tympanist, in the last row of the symphony orchestra, endlessly tuning his unwieldy instruments. And when he does play, he usually strikes only a few times in an entire number. In the Acoustics Laboratory of the Moscow Conservatory of Music was a small suitcase that resembles anything but a tympany.

The frailest girl may make the most powerful sound issue from your loudspeaker by applying her little finger to this "tympany," Simonov, the inventor, stated. As for tuning it—our "tympany" is equipped with a keyboard. Press the required key and without any tuning the sound you need is produced.


Brains Trust Again

NEED not refer to the many dozens of I letters I have received apropos my comments on the so-called Brains Trust. On the principle that what I write always meets with the approval of my readers I intentionally dislike publishing letters savouring of flattery. Much more potent to publish letters of disagreement and we must admit that on odd occasions there is the other point of view. So from my postbag relating to the alleged Brains Trust I extract a letter written by one Beauchamp, who hails from the salubrious district of Coventry, and this is what he says: disagree with your remarks in their entirety. I appreciate constructive criticism, but are your remarks constructive ? I would refer to your derisive, ribald suggestions as to a better title for the programme. It would appear that you doubt the mental powers of the eminent men taking part in the discussions. In my view the majority of questions asked are difficult to answer and that were you suddenly requested to answer some of them, I guarantee you would fail utterly. In commenting upon the questions you apparently require those which can be answered by a plain Yes or No. This is altogether the wrong idea, for questions of that nature can easily be answered by reference to encyclopædias and text-books. The questions asked are, in the main, those which the public are unable to answer."

Professors

THIS reader is, therefore, agreeing entirely with everything I wrote. I have said that I do not doubt the ability of the Professors in their respective spheres. Perhaps I suffer from some reflex action engendered by my school days in that I ablor professors. To many it is a magic word like the word Editor. To me it merely denotes, as I have said before, a retentivity of mind and the ability to absorb and remember the teachings of others; and I have already pointed out that the many thousands of professors we have had since professorships were first introduced have not contributed anything measurable to Reference. And what is a professor? You have Professors of Conjuring, Professors of Tattooing and Professors of Dancing. Normally, however, the term is taken to mean one who has held a Chair at a University. Readers will excuse me, therefore, if I fail to doff my hat in awe and deference to professors. I have a measure of respect for Professors of Exact Sciences, such as Professors of Mathematics, Professors of Engineering and so on. I am not impressed by Professors of Psychology, nor by Professors of Economics, for they are inexact and very nebulous studies.

Regarding the questions I am quite unrepentant in my criticism. The fact that a professor thinks that love is a form of temporary insanity or that a man exerting effort pulls faces to frighten away his enomies, is of no greater value nor does it add any more to the world's heritage of knowledge than the views of any other member of the public. They are plain, conjectural answers which could be given by anybody. Another point. If a question is asked it should be answered in a positive

way, leaving no room for doubt, and the gravamen of my criticism was that it is easy to propound questions, capable of many equally nebulous answers and providing, as I said, the opportunity for scientific guessing and idle, drowsy, drawingroom back-chat. I agree with my corre-spondent when he suggests it might have been useful to have added Sir Wm. Bragg to the Brains Trust, but whilst there are so many important, scientific questions capable of exact answers which the public ought to know, we should not waste valuable broadcast programme space by such balderdash. I appreciate that the members of the Brains Trust are very much victims of those who set the questions and, left to their own devices, I have no doubt that they could give us a more entertaining half-hour. A further point occurs to me. If we are to have a Brains Trust let us vary the members of it from time to time. As it is, the presumption is that only about four people in the country have brains. suggestion, I add with some asperity, which I strenuously resent! In fact, it is one of my criticisms of the B.B.C. that they select one man to speak on a particular topic and continue with him ad infinitum and often ad nauseum.

Feature Speakers

THIS is particularly true of feature speakers. Variety is the spice of life and the very quintessence of entertainment. Therefore, I adjure the B.B.C. to provide not only variety of entertainment but variety in their variety, if you get my meaning. So, friend Beauchamp, when taking up the vitrolic pen, remember the old quatrain which goes like this:

Ye, who your lips would keep from slips, Three things must you beware, Of whom you speak, to whom you speak, And When and Why and Where.

The usual enjoinder of the critic appeared at the foot of this letter to the effect that if I ignore it he will presume that I am unable to face criticism. Well, I think I have effectively taken the sting out of B.

Our Roll of Merit Our Readers on Active Service-Eighteenth List. H. Eltringham (A.C.2, R.A.F.), London, E.C.

- A. Brewer (Sgt., R.A.F.), Malton, Yorks.
- H. G. Baker (Signalman, S.C.S. Coy.), Jubbulpore, India.
- S. Peers (A.C.2, R.A.F.), Stevenston, Scotland. C. Waywell (A.C.2, R.A.F.), Newton-le-Willows.
- W. L. Young (Capt., R.A.M.C.), Halifax.

THE B.B.C. "BRAINS TRUST" Let us study this title, with logic aright. And with diligence search until we see dight; We may get some reward for our pains. Have we, all along, Been reading it wrong, Does it mean we've to Trust they're got brains? Construing it fous, need there be any fuss? When the critic finds fault and complains, We should gently point out He's at fault, without doubt, It just means we've to Trust they're got brains ! When their culture runs mad makes the rest of us sad And our tears they run down like the rains, Wipe away the sad tear, For now it scens clear, It just means we've to Trust they're got brains ! Though the subjects they tackle, Though the subjects they tackle, And rubbish they cackle, The wise man from hearing refrains, And remarks, with much sense, We'll need fresh evidence, Or we really can't Trust they're got brains !

ELENGTH

TORCH.

Ultra-short Wave Detectoscope

A^N apparatus to "X-ray" opaque objects with ultra-short radio waves, 3-4 cm. in length, has been developed at the Institute of Physics of the University of By employing this apparatus Moscow. it is possible to disclose defects in articles made of wood, porcelain, glass and leather, as well as in bodies which are poor conductors of electricity. Analogous to the X-ray method, the ultra-short wave method is said to have the advantage of being able to disclose bodies which are usually opaque to X-rays-the presence of water in oil or pitch, for instance. A closed box containing articles like photographic films, which usually suffer from the action of X-rays, may now be examined with ultra-short waves, without its contents being affected. By a special device it is also possible to "radiograph-" articles with the ultra-short wave apparatus.

Publications by the Various Ministries

HERE are a large number of pamphlets, booklets and so forth which are issued from time to time by the various Ministries and which it would be useful for listeners to know about. A new monthly feature after the Sunday news at 1.0 p.m. began in July, which will keep people informed on recent publications. Mrs. M. A. Hamilton will be the speaker and two more of these broadcasts are to be given on August 3rd and 31st.

Gray Memorial Trust Award

THE Council of the Royal Society of 1 Arts annually offer a prize of £50 under the Thomas Gray Memorial Trust. the objects of which are the advancement of the science of navigation and the scientific and educational interests of the British Mercantile Marine.

The prize for 1940 has been awarded to Mr. H. C. Walker, of Cheam, Surrey, for a device known as the Portable Valve Lifeboat Equipment, which is a self-contained radio auto-transmitter designed for the purpose of saving life at sea. A similar prize of £50 is offered for 1941. For details apply to the Royal Society of Arts, John Adam Street, Adelphi, London, W.C.2.

maker's literature, and which provides some very useful information. This is the anode current-grid volts curve, as shown in Fig. 5. In this case we have a number of corresponding curves, each drawn for a different value of anode voltage. Provided that there are a fair number of curves it is easily possible to plot $I_a - V_g$ curves from $I_a - V_g$ curves, or vice versa.

We often refer to the slope of anode current-grid volts curves, since this shows an important constant known as the

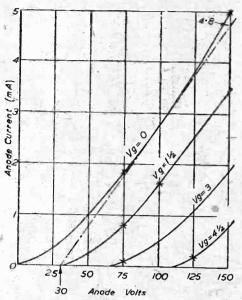


Fig. 4.—Anode current-anode volts curves for a battery triode of the "H.L." type. The chain line is used to find the anode resistance of the valve.

mutual conductance, generally abbreviated as Gm. The mutual conductance is the ratio between a very small change in anode eurrent brought about by a very small change in grid volts, and is taken at 100 volts anode and zero grid volts. It can be obtained from the appropriate curve in Fig. 5 by drawing a normal or tangent to the 100-volt curve at the point where it crosses the zero grid-volts axis. It has been drawn as a chain line in Fig. 5.

As would be expected for the alternative name of "slope," the mutual conductance is found, after drawing the line by dividing the milliamps. indicated at one end of the line by the volts shown at the other. Actually, the line need not be drawn as long as in Fig. 5, but if it is shorter, a triangle should be drawn with the line as the hypotenuse, and the vertical height divided by the base. It can be seen from the example that, at the point defined, a change of 5.1 mA. in anode current is brought about by a change of 5.2 in grid voltage (from -3.2 to +2). It can therefore be seen that the mutual conductance is 5.1/5.2, or about 1.0 mA. per volt.

It was stated above that the mutual conductance is the ratio between two very small changes, and it may now be pointed out that the changes we have considered are by no means small. But since the straight line is normal to the curve, and since it is a ratio with which we are concerned, the result is the same. It would not be practicable to take ratios of infinitely small changes, and the most accurate results are obtained by making the line as long as possible after making quite sure that it is normal to the curve.

Micromhos or mA.-V.

Mutual conductance is sometimes-and more correctly-expressed in micromhos rather than in mA./V. The mho. is the unit of conductance, just as the ohm is the

unit of resistance, and since one ohm equals one volt divided by one amp., it will be clear that one mho. is one amp. divided by one volt. One micromho is, of course, one millionth of a mho. We can therefore convert mA./V. into micromhos by multiplying the ratio by 1,000 (a million divided by 1,000 to change from mA. to amps.). The valve referred to above would thus be said to have a mutual conductance of 1,000 micromhos. The practice of giving the conductance in micromhos is chiefly confined to the conversion conductance of frequency-changers, but this term will be dealt with in the concluding article.

Amplification factor has already been referred to briefly, but having gained an impression of the meaning of internal resistance and mutual conductance we can return to this. The reason is that the amplification factor can be determined by multiplying together the R_a and the G_m of a valve. This is because the μ can be described as the ratio of the powers of

the grid and anode of control-ling anode current, and since mutual conductance is the ratio of anode current to grid volts, while anode resistance is the ratio of anode volts to anode current. If the two ratios are multiplied together, the expressions for anode current cancel out, leaving us with the ratio between a small change in anode voltage and the small change in grid voltage required to produce the same-change in anode current. In determining the amplification factor or μ in this way it is important to remember that the current must be expressed in amps, not milliamps. For example, if a valve had a mutual conductance of 1.5 mA./V. and an anode resistance of 20,000 ohms, the amplification factor would be 1,5/1,000 times 20,000, which is equal to 30.

Voltage Amplification

A point which is often overlooked is that the amplification factor of a valve is not necessarily the amplification which the valve will give when used in any particular circuit. The actual degree of amplification is known as the voltage amplification factor

or V.A.F., and its value is governed not only by the valve constants, but also by the value of the anode load. Thus, for a resistance-capacity coupled amplifier, the amplification factor is voltage found µ times R from the formula : V.A.F. = R plus Ra where R is the resistance in ohms of the anode coupling resistance in online of the from this that the V.A.F. is always less than μ , even if R is made infinitely large. In practice, it is desirable, where possible, to make R between four and ten times R., The actual value of R is largely governed by the amount of voltage which can be "spared" as voltage drop across it.

In passing, it should be noted that stage gain, or the ratio of output to input voltage is even less than the V.A.F., due to the fact that the grid condenser and grid leak in series are virtually in parallel with the anode load resistor, and that these two act as a potentiometer feeding the grid of the following valve.

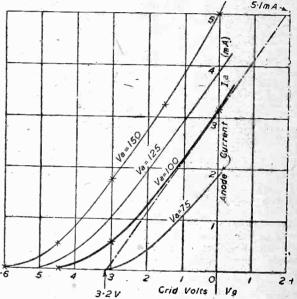


Fig. 5.—Anode current-grid volts curves for a battery triode of low mutual conductance. The latter is found by constructing a triangle as explained in the text.

Some other important valve constants will be explained in a second and concluding article.

(To be concluded.)

WEEK'S GOOD CAUSE RESULTS

T is very gratifying to note that in two months listeners have raised for charitable objects over £26,790. Notwithstanding the manifold calls made at this time on the generosity of a free-giving people, the weekly B.B.C. "Good Cause" appeals still continue to find ready and generous response from listeners.

In March, as a result of five appeals, the total of £16,346 15s. 2d. was raised, and in April, four appeals produced a sum of £10,443 16s. 8d.

The one which registered greatest response was that made on March 23 by the late Lord Stamp on behalf of the National Children's Home and Orphanage. The total subscribed was £6,654 17s. 11d. This money was contributed before Lord Stamp was himself a victim of enemy action.

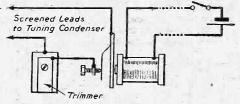
The next largest total recorded in this weekly appeal followed an address given by Madame Chiang Kai-Shek on April 27, supplemented by an appeal by Dr. Gordon Thompson, on behalf of the British

The sum received was £4,627 3s. 10d. Dame Meriel Talbot's appeal on March 16. made in the interests of the Professional Classes and Gentlefolk placed in distressed circumstances as a result of the war, raised $\pounds 3,839$ 15s. 3d. Next on the list comes $\pounds 3,300$ for the Central Council for the Care of Cripples, in whose interest an appeal was made by Emlyn Williams.

Christopher Stone on March 9 managed to obtain £2,214 19s. 5d. for "Seriously Disabled Ex-Service men of the Great War.

A sum of £1,659 15s. 11d. was raised through Cardinal Hinsley's April 6 appeal in the "Huts for the Forces" effort made by the Catholic Women's League. "Comby the Catholic Women's League. "Com-forts for the Army," sponsored in the broadcast by Major-General Williams, raised £2,000.

Mrs. Churchill was instrumental in bringing in £1,637 2s. 7d. to the Y.M.C.A. Fund used for the provision of huts and canteens, and the Norman Birkett appeal Thompson, on behalf of the British on April 13 produced £856 16s. 11d. for Fund for the Relief of Distress in China. Boys' Organisations.

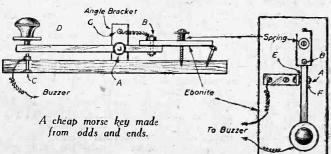

September, 1941

PRACTICAL WIRELESS

Remote Control Switching

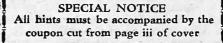
THE device described below was used as 1 a remote control to change from Forces to Home Service stations. A trimmer from an old I.F. is used in conjunction with a sixpenny bell unit. The trimmer is connected so that when current is switched on at the remote control end, the trimmer is switched out of circuit.

To adjust with current on, and trimmer out of circuit, the set is tuned to the Forces programme. Switch current off (trimmer in) and adjust trimmer until set is tuned to Home Service, then by simply

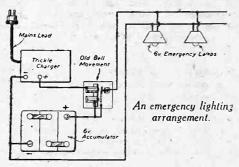


A simple remote control switching device.

switching current on and off the set is tuned from Forces to Home Service as desired. Source of current is a cycle lamp battéry which I have been using for two months, and still works well .-- M. I. HENDERSON (Darlington).


A Cheap Morse Key

THE accompanying sketches give some idea of how I constructed a very efficient morse key for the surprisingly low cost of sixpence. First, I obtained a door spindle with the appropriate holes at each end. In it was bored a hole just sufficiently wide to allow bolt A to fit into it. This square spindle was connected to a piece of ebonite (size 2in. by half inch, approx.), by bolt B and at the other end of the spindle a small cupboard knob was cross-threaded into one of the holes, and the Screw filed and soldered from beneath. To the baseboard (size approx. 7ins. by 3ins.) was fitted bolt C, which was counter-sunk. One of the connections to the oscillator or buzzer is taken from nut D as The metal bracket was then shown. screwed on to the base, and the other connections to the buzzer taken from it. Bolt A is placed into a hole about half inch up the bracket, and nut E tightly screwed up. The spindle is placed on to this bolt, via the hole previously bored into it, and nut F screwed up so that the spindle is free to move up and down, but not sideways. It is advisable to oil bolt A slightly with some thin machine oil. From bolt B to bolt G on the bracket a very flexible piece of wire is connected to ensure an efficient contact. Then, through a hole previously drilled in the ebonite, a fairly long screw is placed. Between its head and the ebonite is a spring, obtained from an old torch. Finally

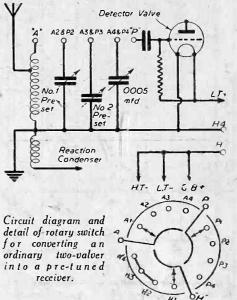

THAT DODGE OF YOURS !

Every Reader of "PRACTICAL WIRE-LESS" must have originated somelittle dodge which would interest other readers. Why not pass it on to us? We pay £1-10-0 for the best hint submitted, and for every other item published on this page we will pay half-a-guinea. Turn that idea of yours to account by sending it in to us addressed to the Editor, "PRACTICALWIRELESS," George Newnes, Ltd., Tower House, Southampton Street, Strend WC 2. Dut your name and address "PRACTICAL WIRELESS," George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2. Put your name and address on every item. Please note that every notion sent in must be original. Mark envelopes "Practical Hints." DO NOT enclose Origination of the statement of the second Queries with your hints.

a round headed screw is placed in at an angle at the edge of the ebonite. Thus. with the aid of a screwdriver, the gap across nut D and the spindle can be adjusted to one's own requirements by this screw. Also, if the tension of the spring is too strong, the long screw enables this tension to be decreased.-D. R. TAYLOR (Hull).

Emergency Lighting NOWADAYS, for "blitz" and other reasons, it is very desirable to have a reliable device for ensuring that one is not "left in the dark" by mains failure, or fuses blowing. The accompanying diagram illustrates a device which is giving every satisfaction. The wiring to lights (three in num-

per) was carried out with wire from old two-pin plug-in coils, and ordinary screw-in dial-light pattern 6 v. bulbs are used. To add to the appearance of the actual lights, they are housed in the "half-hexagon" type shades, which were purchased from a cheap stores. Other details will be seen from the sketch.-B. A. WHEATLEY (Bridgwater).


Rotary Switching

HERE is a dodge for converting the "Rapid Two" receiver into a pretuned model, by the

addition of a rotary switch and two pre-set condensers.

A glance at the circuit diagram of the detector stage and the switch (inset) will show how the connections are made. The alterations shown make the set into an ideal A.R.P. model. The L.T. current, etc., is fed into one pole, which acts as on-off

switch, while the other two poles are connected—one to the grid coil, and one to the grid condenser. These sections give the operator manual tuning and two stations pre-tuned, e.g., Home Service and Forces programme; the whole controlled by one spindle and without the necessity of ganged switches.

The wire from the grid condenser to the grid coil is broken and the two ends taken to the pole feeds marked "A" and "P" to the pole leeds marked A and F respectively. The grid end of each con-denser (1 variable, 2 pre-set) is taken to contacts on "A" pole and "P" pole, as shown.

There is still I pole and 4 ways left. To the pole feed marked "H" is attached the H.T.-, L.T.-, and G.B.+, the single-pole on-off switch being taken out of the The three contacts marked H2, H3 set. and H4 are strapped, and a lead from H4 taken to the earth line.

When each pole's switch-bar is on contact 1 (A1, P1 and H1), it will be seen that the filament circuit is broken and the grid circuit also has no connection with the grid coil or the condensers. As the switch is moved to position 2 the filament current feed and the three strapped contacts. The first pre-set condenant passes to the earth line via "H" first pre-set condenser is brought into circuit and the grid coil and condenser are strapped by the switch. If this condenser is tuned to the Home Service and the reaction adjusted that is one station ready tuned for immediate operation at any time.

When the switch is turned to contacts "3" the second pre-set condenser is brought into circuit, the first one being open-circuited. This second condenser can then be adjusted to the Forces wavelength.

open " In position 4 the two pre-sets are " and the variable condenser is brought in, giving the user normal manual tuning control

It will be seen that in positions 2, 3 or 4 the L.T. circuit is still allowed to close with the earth line-H2, H3 and H4 being strapped.

The switch used for this work is a Midget Rotary Selector 3-pole 4-way switch made by Bulgins, Ltd. (list No. 203). The control is a 14in. diameter ribbed knob (list No. K4), also made by Bulgins. A large ribbed knob like this affords a good grip for smooth switching .- A. S. Long (Horsforth).

PRACTICAL WIRELESS

September, 1941

ROUND THE OF WIRELESS WOR

U.S.A. Television

W/E are informed that as from July 1st, television broadcasting in the United States has been placed on a commercial footing by the Federal Communications Commission. The service will include the nse of 525-line pictures, and the minimum programme service which each station must provide will be 15 hours per week.

Interference Suppressors in Germany

IT has been decreed by the Minister for Transportation in Germany, that all new motor vehicles with combustion motors must be equipped with radio interference suppressors.

Russia's Radio Relay RECENTLY the Russian Government ordered the surrender of all privately-owned wireless sets.

This was a precaution against enemy exploitation of the Russian system of transmitting Government instructions by wireless. Shortly afterwards, Stalin gave his -powerful broadcast. How was it affected by the order ? The answer is that throughout Russia there is a Government transmission received

through an apparatus they term a house set, worked on the lines of the relay system. This service has not been inter-fered with, and the Russian Government's wireless communication with its people is maintained.

Epilogue Carried on During Blitz

MR. J. S. DE LOTBINIERE, B.B.C. West Regional director, told the story recently to the Bristol Rotarians of how the broadcast of a Sunday night epilogue was carried on during the height of a blitz.

of a ontz. The B.B.C. singers could not get to the studio, but Dr. J. W. Welch, Director of Religious Broadcasting; "Paul Beard, leader of the B.B.C. Symphony Orchestra; and Stuart Hibberd, chief announcer, went down to a tiny underground studio made ready by engineers who were in a small emergency control room next door.

While bombs fell and anti-aircraft guns roared outside Paul Beard, kneeling down to be near the microphone, played Bach's "Air on G string" on his violin, while Dr. Welch and Stuart Hibberd sat on the floor to speak the epilogue.

Canada Calls from London

EVERY week a programme entitled "Canada Calls from London" is "Canada Calls from London" is broadcast by the B.B.C. to Canada. This broadcasting period to Canadian listeners consists of two main features; namely, a "Newsletter in French," in which French-Canadians of all military ranks will tell Laccurs DocRaillets of willtary life tell Jacques DesBaillets of military life in Britain to-day; and "Canadians with Wings." This will be a weekly report on the activities of Canadians serving with the Royal Canadian Air Force and the Royal Air Force, and the broadcasts will be given in collaboration with the Canadian Broadcasting Corporation.

To Hear Their Parents

ONCE a fortnight British children evacuated to South Africa will hear their parents' voices in a new series of broad-casts in the B.B.C. South African service. Every eight weeks children will speak to the parents. The illustration on this page shows some of the parents at one of the broadcasts.

record, translate, transcribe and analyse short-wave broadcasts from foreign countries. These new monitoring stations are being set up on the recommendation of the Defence Communications Board.

G.M.T. from Delhi

HE four Delhi transmitters of All-India Radio now broadcast the Greenwich time signal. The B.B.C.'s transmission of the signal is received at the Delhi receiving centre and then re-broadcast. In order to cut out the B.B.C. programme when the time signal is superimposed thereon, as is sometimes the case, of the backback in the case, a filter has been incorporated in the receiving equipment which eliminates all but the frequency of the "pips."

WLW's Altered Time Schedule

STATION WLW, Cincinnati, has altered its operating times a half-hour forward, and now goes on the air at the earliest hour in its history — 5 a.m., E.S.T. The station will E.S.T. The station will sign off at 2 a.m., E.S.T. Previously, the sign-on was at 5.30 and sign-off at 2.30. Under both the old and new schedules,

WLW's operating span is 21 hours a day.

Radio Amateurs Wanted

MEN suitable for training as wireless IVI mechanics are still wanted by the R.A.F. They must have a good standard of education, preferably with some knowledge of radio science—enthusiastic wireless amateurs, for example.

Telling America

WAR queries by Americans are to be answered by experts broadcasting overseas in a new weekly B.B.C. feature called "Answering You." It is expected that Sir William Beveridge, University College, Oxford, Mr. Francis Williams and Mr. T. Harrison will be among the permanent members of the Panel who will answer the American questions every answer the American questions every Sunday at 2 a.m. (British time).

Sales of Sets in Canada

A NEW record for sales of radio sets was set up in Canada last year, the increase over 1939 being 18 per cent. The production of receivers in the Dominion production of receivers in the boundary increased by over 40 per cent., whilst the production of valves rose by 63 per cent. Of the 385,000 receivers sold, 57 per cent. covered the broadcast band only, whilst the remainder covered both the mediumand short-wave bands. The number of receiving licences in Canada is now well over 1,500,000.

Parents in England listening to their evacuee children in South Africa during a recent broadcast.

Receiver Sales in Haiti

TT is reported that approximately 400 radio receivers were sold in Haiti during 1940, 80 per cent. coming from the Short-wave reception is generally U.S.A. good throughout the year in Haiti, but medium waves are satisfactory only from November to April.

New Woman Announcer

HE latest member of the staff of women announcers is Miss Joan Burman, the eighth woman to be officially appointed. Miss Burman was trained at the Central School of Speech and Drama in London. She will be the fifth woman war-time announcer of home programmes. Three others work exclusively for overseas programmes.

400 mc. Record

A RECENT report from America gives news of an amateur 400 mc. record of 20 miles; and a test, at five-minute intervals over a 112-mile path, on 112, 224 and 400 mc., using only 5 watts. No actual contact was made, but the 400 mc. signal was the only one to get through !

Crystal Sets Again!

Crystal Sets Again: THERE appears to be a growing demand for crystal sets and headphones in South Wales. Reception there with a crystal receiver is reported to be quite satisfactory, and several instances are known of such sets having been fitted up the set of the set as stand-by equipment for receiving the news bulletins in case of failure of an ordinary valve receiver.

U.S. Monitoring Stations

THE United States Federal Communica-1 tions Commission recently announced the establishment of "listening posts" to

Valve Constants and Characteristics

How to Understand and Make Use of the Data Supplied by the Valve Manufacturer

EVERY reader has heard and read of such terms as mutual conductance, amplification factor, anode resistance, anode dissipation and voltage amplification factor, but how many are completely familiar with the meanings of these expressions ? It is worth while taking a little trouble to understand them, and the study of elementary valve theory can be very interesting.

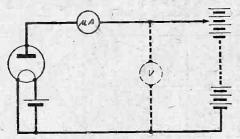


Fig. 1.—Connections to a diode used to obtain figures for plotting a graph of the type shown in Fig. 2. A micro-ammeter is used to measure anode current.

Let us start by considering the simplest type of valve—the diode. This is a valve in the true sense of the word, since it is primarily a "one-way" device, just as is the valve in a cycle tyre. If we connect a heating supply to its filament or, in the case of indirectly-heated types, the heater, and then connect a source of D.C. between the anode and eathode, a current will flow round the circuit provided that the anode is made positive with respect to the cathode. If the polarity of the voltage between the two electrodes were reversed, there would be no flow of current, the valve acting as a very good insulator.

Diode Characteristic Curves

Suppose we refer only to the first-mentioned connections and the circuit shown in Fig. 1; the current flowing round the circuit can be measured by means of the micro-ammeter shown, while the voltage between the electrodes may be measured by means of the high-resistance voltmeter shown in broken lines. If we were to vary the voltage (we may call it H.T. voltage) from zero upward, it would be found that the current shown by the micro-ammeter would rise 'until a certain point was reached, at which "saturation" would occur. If we were to take a careful note of the various voltage and current readings we could draw a graph similar to that shown in Fig. 2, where anode current is plotted against anode voltage. It is of passing interest to notice that the valve becomes quite a good conductor when the anode is given a positive potential. Conduction takes place between the electrodes which are in an evacuated glass bulb, and it is said that electrons (negative electric charges) are liberated by the heated cathode and are attracted toward the positively-charged anode.

The Grid in a Triode

Beyond that point we are not greatly interested in the diode, and we can deal with the more familiar triode, in which a grid is placed between the cathode and We can still vary the current anode. flowing through the circuit shown in Fig. 3 by altering the anode voltage, but we can also do so by altering the voltage or potential on the grid. Thus, if the anode voltage remained constant at any positive value we could increase the flow of electrons toward it by making the grid more positive in respect of the cathode; similarly, we could reduce the flow of electrons by making the grid more negative. It will be well to agree that in all cases the anode is more positive than the grid—as it is in practice—because if that were not the case the main electron flow would be from the cathode to the grid.

By using the simple test circuit shown in Fig. 3 we can obtain some interesting results. One of the most interesting is that the anode current is changed to a very much greater extent by altering the grid potential, or bias, by one volt than by altering the anode voltage to the same extent. In fact, it is often the case that

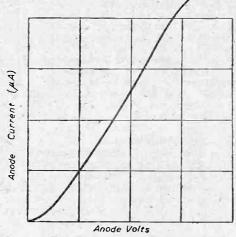


Fig. 2.—The type of anode current-anode volts curve obtained for a diode.

an alteration of one volt on the grid is equivalent, as far as anode current is concerned, to altering the anode voltage by 20 volts or more. It is not difficult to appreciate why this should be so, because the grid is much nearer to the cathode than is the anode, and all the electrons passing to the anode must pass through the grid, so that it has a far greater " controlling force."

It is the ratio of these two voltages which we describe as the amplification factor. This factor—generally indicated by the Greek letter μ —varies according to the actual anode and grid voltages applied to the valve, and therefore it is customary to give the figure applicable to an anode voltage of 100 and a grid voltage of zero.

Triode Characteristics

We will return to this factor later, but it will be better in the meantime to deal with some of the other valve constants. Fig. 4 shows a series of so-called anode current-anode volts curves which are applicable to a small battery valve of the "HL" type. It will be seen that each curve is for a given fixed grid bias from zero to $4\frac{1}{2}$ volts negative, and that the curves vary considerably according to the bias applied to the grid. From Ohm's Law we know that resistance is equal to volts divided by amps.; we can therefore find the cathode-anode resistance of the valve from these curves. Again, however, the figure is dependent upon the anode and grid volts, so it is the recognised custom to take the anode resistance (all these names are used to signify the same property) at 100 volts anode voltage and zero grid voltage. The "shorthand" for these terms, by the way, is V_a or E_a and V_g or E_g, where the small letter set below the capital stands for anode and grid respectively. In a similar manner, anode resistance is often shown as R_a.

Finding the Anode Resistance

Referring to Fig. 4, we find the point on the $V_g=0$ curve directly above 100 volts on the lower scale and draw a straight line which is normal or tangential to the curve at that point. This line is produced to meet the two axes; at the points at which it meets them we take readings. In the example shown it will be seen that the chain line drawn meets the voltage axis at 30 and the current axis at approximately 4.8 milliamps. This tells us that, at the point chosen, a voltage of 120 (150-30) causes a current change of 4.8 mA. through the valve. The R_a of the valve in the conditions laid down above is therefore 120/4.8 multiplied by 1,000; the 1,000 is to change mA. to amps. Thus, the anode resistance of the valve represented is 25,000 ohms.

The R_a for any valve can easily be found if the anode volts-anode current curves are available, but to obtain reasonably accurate results it is necessary to have curves drawn to a large scale, or to re-draw them on a large sheet of squared paper. If -these curves were not available, they could easily be drawn by using the circuit shown in Fig. 2, provided that high-grade voltmeters of very high resistance were employed.

Finding the "Slope"

There is another type of characteristic curve which is generally given in the valve-

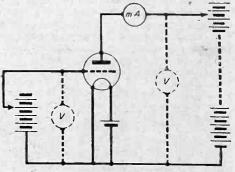


Fig. 3.—How a triode is connected for taking anode volts, anode current and grid volts figures for drawing curves of the kinds illustrated in Figs 4 and 5.

364

maker's literature, and which provides some very useful information. This is the anode current-grid volts curve, as shown in Fig. 5. In this case we have a numberof corresponding curves, each drawn for a different value of anode voltage. Provided that there are a fair number of curves it is easily possible to plot $I_a - V_g$ curves from Ia-Vg curves, or vice versa.

We often refer to the slope of anode current-grid volts curves, since this shows an important constant known as the

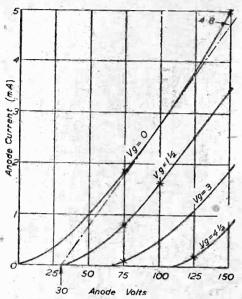


Fig. 4.—Anode current-anode volts curves for a battery triode of the "H.L." type. The chain line is used to find the anode resistance of the valve.

mutual conductance, generally abbreviated as Gm. The mutual conductance is the as Gm. ratio between a very small change in anode current brought about by a very small change in grid volts, and is taken at 100 volts anode and zero grid volts. It can be obtained from the appropriate curve in Fig. 5 by drawing a normal or tangent to the 100-volt curve at the point where it crosses the zero grid-volts axis. It has been drawn as a chain line in Fig. 5.

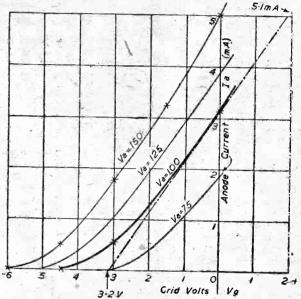
As would be expected for the alternative name of "slope," the mutual conductance is found, after drawing the line by dividing the milliamps. indicated at one end of the line by the volts shown at the other. Actually, the line need not be drawn as long as in Fig. 5, but if it is shorter, a triangle should be drawn with the line as the hypotenuse, and the vertical height divided by the base. It can be seen from the example that, at the point defined, a change of 5.1 mA. in anode current is brought about by a change of 5.2 in grid voltage (from -3.2 to +2). It can therefore be seen that the mutual conductance is 5.1/5.2, or about 1.0 mA. per volt.

It was stated above that the mutual conductance is the ratio between two very small changes, and it may now be pointed out that the changes we have considered are by no means small. But since the straight line is normal to the curve, and since it is a ratio with which we are concerned, the result is the same. It would not be practicable to take ratios of infinitely small changes, and the most accurate results are obtained by making the line as long as possible after making quite sure that it is normal to the curve.

Micromhos or mA.-V.

Mutual conductance is sometimes-and more correctly-expressed in micromhos rather than in mA./V. The mho. is the unit of conductance, just as the ohm is the

unit of resistance, and since one ohm equals one volt divided by one amp., it will be clear that one mho. is one amp. divided by one volt. One micromho is, of course, one millionth of a mho. We can therefore convert mA./V. into micromhos by multiplying the ratio by 1,000 (a million divided by 1,000 to change from mA. to amps.). The valve referred to above would thus be said to have a mutual conductance of 1,000 micromhos. The practice of giving the conductance in micromhos is chiefly confined to the conversion conductance of frequency-changers, but this term will be dealt with in the concluding article.


Amplification factor has already been referred to briefly, but having gained an impression of the meaning of internal resistance and mutual conductance we can return to this. The reason is that the amplification factor can be determined by multiplying together the R_a and the G_m of a valve. This is because the μ can be described as the ratio of the powers of the grid and anode of control-

ling anode current, and since mutual conductance is the ratio of anode current to grid volts, while anode resistance is the ratio of anode volts to anode current. If the two ratios are multiplied together, the expressions for anode current cancel out, leaving us with the ratio between a small change in anode voltage and the small change in grid voltage required to produce the same-change in anode current. In determining the amplification factor or μ in this way it is important to remember that the current must be expressed in amps, not milliamps. For example, if a valve had a mutual conductance of 1.5 mA./V. and an anode resistance of 20,000 ohms, the amplification factor would be 1.5/1,000 times 20,000, which is equal to 30.

Voltage Amplification

looked is that the amplification factor of a valve is not necessarily the amplification which the valve will give when used in any particular circuit. The actual degree of amplification or V.A.F., and its value is governed not only by the valve constants, but also by the value of the anode load. Thus, for a resistance-capacity coupled amplifier, the voltage amplification factor is found 11 times R from the formula : V.A.F. = R plus Ra where R is the resistance in ohms of the anode coupling resistor. It will be clear from this that the V.A.F. is always less than μ , even if R is made infinitely large. In practice, it is desirable, where possible, to make R between four and ten times Ra. The actual value of R is largely governed by the amount of voltage which can be "spared" as voltage drop across it.

In passing, it should be noted that stage gain, or the ratio of output to input voltage is even less than the V.A.F., due to the fact that the grid condenser and grid leak in series are virtually in parallel with the anode load resistor, and that these two act as a potentiometer feeding the grid of the following valve.

oltage Amplification Fig. 5.—Anode current-grid volts curves for a battery triede A point which is often over- of low mutual conductance. The latter is found by constructing a triangle as explained in the text.

Some other important valve constants will be explained in a second and concluding article.

(To be concluded.)

WEEK'S GOOD CAUSE RESULTS

T is very gratifying to note that in two months listeners have raised for charitable objects over £26,790. Notwithstanding the manifold calls made at this time on the generosity of a free-giving people, the weekly B.B.C. "Good Cause" appeals still continue to find ready and generous response from listeners.

is known as the voltage amplification factor

In March, as a result of five appeals, the total of £16,346 15s. 2d. was raised, and in April, four appeals produced a sum of £10,443 16s. 8d.

The one which registered greatest response was that made on March 23 by the late Lord Stamp on behalf of the National Children's Home and Orphanage. The total subscribed was £6,654 17s. 11d. This money was contributed before Lord Stamp was himself a victim of enemy action.

The next largest total recorded in this weekly appeal followed an address given by Madame Chiang Kai-Shek on April 27, supplemented by an appeal by Dr. Gordon Thompson, on behalf of the British Fund for the Relief of Distress in China. Boys' Organisations.

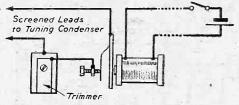
The sum received was £4,627 3s. 10d. Dame Meriel Talbot's appeal on March 16, made in the interests of the Professional Classes and Gentlefolk placed in distressed circumstances as a result of the war, raised £3,839 15s. 3d. Next on the list comes £3,300 for the Central Council for the Care of Cripples, in whose interest an appeal was made by Emlyn Williams.

Christopher Stone on March 9 managed to obtain £2,214 19s. 5d. for "Seriously Disabled Ex-Service men of the Great War,

A sum of £1,659 15s. 11d. was raised through Cardinal Hinsley's April 6 appeal in the "Huts for the Forces" effort made by the Catholic Women's League. "Com-forts for the Army," sponsored in the broadcast by Major-General Williams, raised £2,000.

Mrs. Churchill was instrumental in bringing in £1,637 2s. 7d. to the Y.M.C.A. Fund used for the provision of huts and canteens, and the Norman Birkett appeal on April 13 produced £856 16s. 11d. for

September, 1941

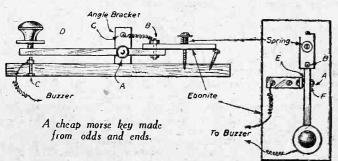

PRACTICAL WIRELESS

Practic lints

Remote Control Switching

THE device described below was used as a remote control to change from Forces to Home Service stations. A trimmer from an old I.F. is used in conjunction with a sixpenny bell unit. The trimmer is connected so that when current is switched on at the remote control end, the trimmer is switched out of circuit.

To adjust with current on, and trimmer out of circuit, the set is tuned to the Forces programme. Switch current off (trimmer in) and adjust trimmer until set is tuned to Home Service, then by simply

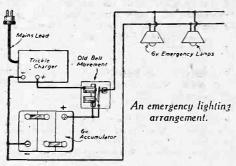


A simple remote control switching device.

switching current on and off the set is tuned from Forces to Home Service as desired. Source of current is a cycle lamp battéry which I have been using for two months, and it still works well.-M. I. HENDERSON (Darlington).

A Cheap Morse Key

THE accompanying sketches give some 1 idea of how I constructed a very efficient morse key for the surprisingly low cost of sixpence. First, I obtained a door spindle with the appropriate holes at each end. In it was bored a hole just sufficiently wide to allow bolt A to fit into it. This wide to allow bolt A to fit into it. This square spindle was connected to a piece of ebonite (size 2in. by half inch, approx.), by bolt B and at the other end of the spindle a small cupboard knob was crossthreaded into one of the holes, and the screw filed and soldered from beneath. To the baseboard (size approx. 7ins. by 3ins.) was fitted bolt C, which was counter-sunk. One of the connections to the oscillator or buzzer is taken from nut D as The metal bracket was then shown. screwed on to the base, and the other connections to the buzzer taken from it. Bolt A is placed into a hole about half inch up the bracket, and nut E tightly screwed up. The spindle is placed on to this bolt, via the hole previously bored into it, and nut F screwed up so that the spindle is free to move up and down, but not sideways. It is advisable to oil bolt A slightly with some thin machine oil. From bolt B to bolt G on the bracket a very flexible piece of wire is connected to ensure an efficient contact. Then, through a hole previously drilled in the ebonite, a fairly long screw is placed. Between its head and the ebonite is a spring, obtained from an old torch. Finally


THAT DODGE OF YOURS!

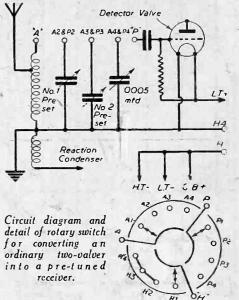
Every Reader of "PRACTICAL WIRE-LESS" must have originated some little dodge which would interest other readers. Why not pass it on to us? We pay £1-10-0 for the best hint submitted, and for every other item published on this page we will pay half-a-guinea. Turn that idea of yours to account by sending it in to us addressed to the Editor, "PRACTICALWIRELESS," George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2. Put your name and address on every item. Please note that every notion sent in must be original. Mark envelopes "Practical Hints." DO NOT enclose Queries with your hints.

SPECIAL NOTICE All hints must be accompanied by the coupon cut from page iii of cover

a round headed-screw is placed in at an angle at the edge of the ebonite. Thus, with the aid of a screwdriver, the gap across nut D and the spindle can be adjusted to one's own requirements by this screw. Also, if the tension of the spring is too strong, the long screw enables this tension to be decreased.-D. R. TAYLOR (Hull).

Emergency Lighting NOWADAYS, for "blitz" and other reasons, it is very desirable to have a reliable device for ensuring that one is not "left in the dark" by mains failure, or fuses blowing. The accompanying diagram illustrates a device which is giving every satis-faction. The wiring to lights (three in num-

per) was carried out with wire from old two-pin plug-in coils, and ordinary screw-in dial-light pattern 6 v. bulbs are used. To add to the appearance of the actual lights, they are housed in the "halfhexagon" type shades, which were pur-chased from a cheap stores. Other details will be seen from the sketch.—B. A. WHEATLEY (Bridgwater).


Rotary Switching

IERE is a dodge for converting the "Rapid Two" receiver into a pre-

tuned model, by the addition of a rotary switch and two pre-set condensers.

A glance at the circuit diagram of the detector stage and the switch (inset) will show how the connections are made. The alterations shown make the set into an ideal A.R.P. model. The L.T. current, etc., is fed into one pole which acts as on-off

switch, while the other two poles are connected—one to the grid coil, and one to the grid condenser. These sections give the operator manual tuning and two stations pre-tuned, e.g., Home Service and Forces programme; the whole controlled by one spindle and without the necessity ganged switches. of

The wire from the grid condenser to the grid coil is broken and the two ends taken to the pole feeds marked "A" and "P" respectively. The grid end of each con-denser (1 variable, 2 pre-set) is taken to contacts on "A" pole and "P" pole, as shown.

There is still 1 pole and 4 ways left. To the pole feed marked "H" is attached the H.T.-, L.T.-, and G.B.+, the single-pole on-off switch being taken out of the The three contacts marked H2, H3 set. and H4 are strapped, and a lead from H4 taken to the earth line.

When each pole's switch-bar is on contact 1 (A1, P1 and (H1), it will be seen that the filament circuit is broken and the grid circuit also has no connection with the grid coil or the condensers. As the switch is moved to position 2 the filament current passes to the earth line via "H" pole pole feed and the three strapped contacts. The first pre-set condenser is brought into circuit and the grid coil and condenser are strapped by the switch. If this condenser is tuned to the Home Service and the reaction adjusted that is one station ready tuned for immediate operation at any time.

When the switch is turned to contacts "3" the second pre-set condenser is brought into circuit, the first one being open-circuited. This second condenser can then be adjusted to the Forces wavelength.

In position 4 the two pre-sets are " open " and the variable condenser is brought in, giving the user normal manual tuning control

It will be seen that in positions 2, 3 or 4 the L.T. circuit is still allowed to close with the earth line-H2, H3 and H4 being strapped.

The switch used for this work is a Midget Rotary Selector 3-pole 4-way switch made by Bulgins, Ltd. (list No. 203). The control is a 11in. diameter ribbed knob (list No. K4), also made by Bulgins. A large ribbed knob like this affords a good grip for smooth switching .- A. S. Long (Horsforth).

September, 1941

A UTOMATIC volume control is extensively used in nearly all types of commercial superhet, but yet many home constructors appear to avoid it because they imagine that it involves "difficulties." That is not true, although there are some versions of the system which do involve the use of fairly complicated circuits; in general, however, such arrangements are suitable, or at any rate necessary, only for very advanced designs of receiver.

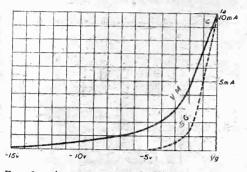


Fig. 1.—A representative Ia-V9 curve for a variable-mu valve. It shows that the "slope" is reduced with increasing negative bias. A broken line shows a corresponding curve for a "plain" S.G. type of valve.

Variable-mu Valves

It may be desirable to run over the principles of A.V.C. before considering the practical details. Automatic volume control depends essentially upon the use of highfrequency and/or a frequency-changer valve of the variable-mu type. That is, the use of valves the amplification of which can be varied over a wide range by altering the standing grid-bias applied to them. Fig. 1 shows in a very general way how a variable-mu valve operates.

• This anode current grid voltage characteristic curve shows that the slope of the curve varies from almost a horizontal line at high negative grid voltages to a very steep one as zero grid voltage is approached. And since the "slope" or mutual conductance gives an indication of the gain or amplification provided, it will be seen that the gain can be controlled by controlling the applied grid voltage. For comparison, the corresponding curve for a non-variablemu valve is shown by a broken line. In this case, anode current ceases when the negative bias reaches 5 volts; in other

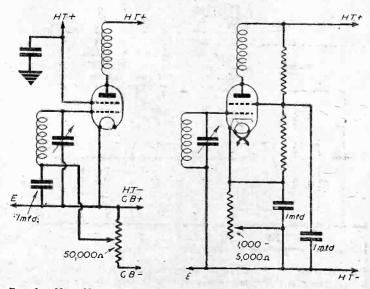


Fig. 2.—How V.-M. manual bias is normally applied to battery and mains V.-M. S.G. valves.

MODERN A.V

words, the valve is inoperative at any voltage in excess of that figure.

Cross-modulation

That is not the only failing of this type of valve, for when the grid voltage exceeds about -3, the valve is working on the lower bend of its characteristic. When that occurs the valve tends to detect instead of, or as well as, amplify. And it must be remembered that the grid voltage is not only dependent upon the D.C. bias applied to the grid, but also upon the amplitude of the signal which is fed on to its grid. Thus, on a strong signal the valve starts to detect, and distortion results.

What is perhaps a more serious fault is that a strong signal from a nearby transmitter may be detected, although the receiver is tuned to another and weaker transmission. When this happens we have what is known as cross-modulation. The effect is that the audio-frequency portion of the local-station transmitter is superimposed upon the carrier of the required station, and we have a form of interference which cannot be prevented by making the tuning circuits more selective.

Manual V.-M. Volume Control

Due to the considerably longer slope of the variable-mu valve, this form of interference cannot happen, since there is a far lesser tendency for detection to take place. All this is rather incidental to A.V.C., but it does show the desirability of using V.-M. valves in a modern receiver; they may be either V.-M. pentodes, V.-M. valves of the S.G. type, or frequency changers. When using variable-mu valves manual volume control is possible by biasing the grid through a potentiometer in the case of battery valves—or by using a variable bias resistance in the case of indirectly heated valves. The connections for these are shown in simple form in Fig. 2.

Requirements of A.V.C.

Now let us look at the A.V.C. question. The primary object is to make provision for the output from the speaker to be maintained at a reasonably constant level regardless of the strength of the incoming

A of the mcoming signal. If this object is attained it follows that variations due to fading will automatically be "ironed out." It is probably true to say that the latter advantage is of chief importance.

How is A.V.C. obtained? By arranging that the V.M. valves in the set (preferably the frequency changer and the I.F. amplifier) receive a negative bias which is proportional to the strength of the a udio signal which constitutes The Methods of Automatic Volu Suitable for Incorporation in Here Explained from the

the output from the second detector. Of course, the "primary" output from this stage is audio or low-frequency, which is used to operate the L.F. amplifier. But if we can rectify a portion of the output and use it as negative bias we meet the requirements set out above.

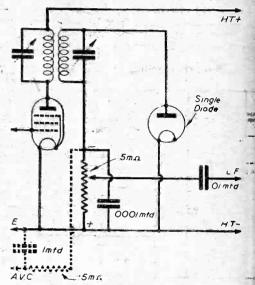
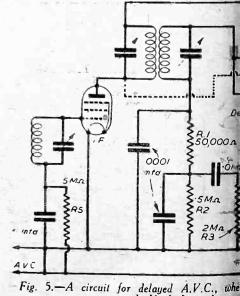
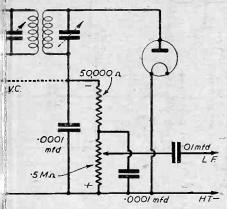



Fig. 3.—A very simple method of obtaining A.V.C. (see broken lines) when using a single diode for g second detection.

The Simplest Form

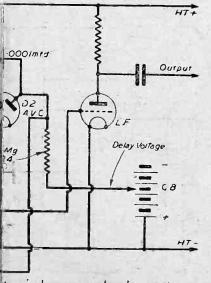
When using a diode type of second detector this is easily arranged, as shown in a simplified diagram in Fig. 3. When the secondary of the last I.F. transformer is a connected to the single diode as shown, there is an audio-frequency voltage developed across the .5-megohm resistor,

double-diode-triode wou


566

SYSTEMS

Control in General Use, and me-constructed Receivers, are actical Point of View


hich is known as a load resistor: rresponds to the anode load used with a fode. As readers will remember from pmentary valve theory, the diode conducts ly when the anode is made positive with e upper end of the I.F. - transformer condary becomes positive in respect to e lower end, electron current flows through e valve. From this it will be seen that e upper end of the load resistor becomes gative in respect of the lower or earthed

Therefore, after feeding the L.F. amplifier

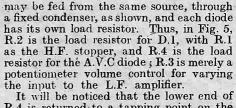
. 4.—A more practical form of the circuit hown in Fig. 3. It includes an H.F. filter.

th the audio-frequency voltages developed oss the load resistor, we can smooth a rtion of the output for use as negative d bias. It is obvious that as the signal plied to the second detector increases in ength, so the negative bias voltage is reased in value. This is precisely what want. We therefore take a lead from e negative end of the resistor, as shown

tery valves are used. In practice a ly be employed.

by broken lines in Fig. 3, pass the output through a smoothing system comprising a high resistance and a fairly high capacity, and use this to feed the grids of the V. M. valves—often referred to as the "con-trolled" valves. This lead takes the place of the potentiometer lead shown in Fig. 1.

Checking H.F. In practice, it is


not quite satisfactory to use the simplest type of circuit shown in Fig. 3, since a certain amount of H.F. may pass into the L.F. amplifier and cause stability. We therefore use an H.F. filter consisting of a resistor of about 50,000 ohms, and a fixed con-denser of .0001 .0001 mfd. or .0002mfd., as shown in Fig. 4. The A.V.C. bias is taken from the upper end of the two series resistors and fed to the controlled valves through condenserresistor filters of the type shown in Fig. 3, using one

resistor-condenser combination for each. This is, at any rate, a workable circuit, but it suffers from one rather serious disadvantage. This is that a certain amount of A.V.C. bias is fed back to the controlled valves whenever any signal, no matter how weak, is received. As a result, weak signals are made still weaker, and there-fore the advantages of A.V.C. are par-tially lost. What we require is a means of

preventing the feed-back of any negative bias until signals of some predetermined strength are tuned in. This gives rise to the very widely-used system of "delayed A.V.C.," with which the signal must reach a certain level before additional control bias becomes effective.

Delayed A.V.C.

One method of providing for this is shown in Fig. 5, where the use of battery valves is assumed. In this case a further modification will be observed in the shape of a doublediode valve, where one diode is used for detection (D.1), whereas the second (D.2) is used only for A.V.C. Both

R.4 is returned to a tapping point on the G.B. battery instead of to the earth line as before. Thus a small (and readily variable) bias is put on the anode of the A.V.C. diode,

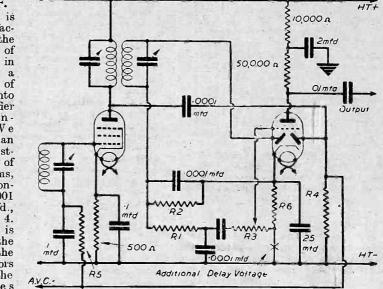
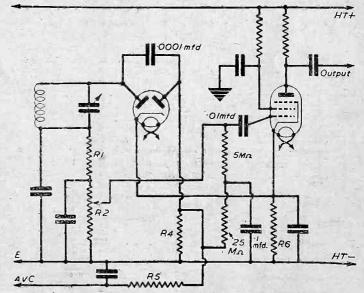
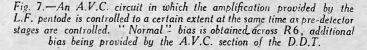




Fig. 6.—An arrangement similar in principle to that shown in Fig. 5, but using mains valves and a double-diode-triode for second detection, A.V.C. and L.F. amplification.

and until the signal voltage exceeds this figure, this portion of the double-diode valve cannot pass any current. When the signal voltage exceeds the delay voltage and the anode becomes positive, anode current flows, there is a voltage drop across R.4, and an A.V.C. voltage is applied to the con-trolled valves. The setting of the delay voltage can easily be done by trial, and will depend upon the number of controlled

(Continued on next page)

DERN A.V.C. SYSTEMS

(Continued from pres " (Continued from previous page) res and the input to the double diode. л the case of a mains set the delay voltage could be obtained across a portion of a potentiometer connected across the H.T. supply, or by making use of the bias resistor of an L.F. valve, as we shall see later.

Improved A.V.C. Action

On further examination of Fig. 5 it will be noticed that the A.V.C. diode anode is shown connected to the anode of the last I.F. valve by means of a broken line. This is an alternative, and generally better connection. The advantage is that tuning is not quite as sharp at the anode as it is at the secondary of the I.F. transformer. This prevents the tendency for the A.V.C. bias to fall off immediately the receiver is slightly detuned; if it did so, full amplification would be given to the sidebands of the transmission and accurate tuning would be made more difficult. And if the set were slightly mistuned in this way, pronounced distortion would be observed.

Fig. 6 shows a more practical and usual version of the circuit shown in Fig. 5. In this case use is made of a double-diode triode valve for second detection, A.V.C. and first-stage L.F. amplification. The valve is indirectly heated, although the same arrangement could be used with a battery valve. This circuit is, in all its essentials, the same as that in Fig. 5, except that the delay voltage is obtained across the usual eathode biasing resistance which serves to bias the triode L.F. am-plifier. Additionally, however, another resistor could be wired in scries at the point marked with a cross if extra delay voltage were required. The value of R.6 voltage were required. The value of R.6 is, of course, dependent entirely upon the valve used, and is generally in the region of 1,000 ohms. The bias voltage is normally about 3, which is generally correct for the delay. In passing, it should be noted that in this example the delay voltage is obtained by making the cathode positive in respect to the A.V.C. anode; this has exactly the same effect as making the anodenegative.

Controlling L.F. Amplification

One other slight objection to A.V.C. is that variations in volume may occur due to the larger output from the diode detector, on strong signals being applied to the L.F. amplifier. One remedy for this is to apply A.V.C. voltages to the first L.F. stage, as well as to the H.F., F.C. and I.F. stages. A method of doing this when using a pentode first L.F. amplifier is shown in Fig. 7. In practice, use would probably be made of a double-diode pentode, but the circuit given is slightly easier to follow than it would be if that type of valve were shown, due to its being rather more "open." It will be seen that both audio, from the second-detector diode, and A.V.C. are fed on to the control grid of the pentode, which receives its normal fixed bias through R.6.

For case in following the circuits given, the same resistor reference numbers are allocated to corresponding resistors in Figs. 5, 6 and 7. It should be appreciated that all values given are average ones, and may require to be slightly modified for certain valves. Makers generally state the values recommended, however, on their literature, so this should not cause any misunderstanding.

In addition to the forms of A.V.C. described, and which are widely used, there is another known as "amplified" A.V.C. A.V.C. But since this is normally used only on the most elaborate of receivers, and where a large H.T. voltage is available, it need not be discussed here. Actually, the H.T. voltage required is about 100 volts greater than that taken by the valves themselves.

More Notes on Members' Activities

A Two-valve Short-waver

HERE is a note from member 462, describing his 2-valve short-wave set, which should prove of particular interest to beginners.

As an old member of the B.L.D.L.C. I have pleasure in presenting an unusual type of short-wave receiver. It can be built for either mains or battery operation. I prefer the battery type, as below 15 metres there is no mains hum. In the accompanying diagram I have shown both positions of the 'phones, Pl is for battery and P2 for mains. Battery bias was used in both

cases. "For the mains version I used a metallised M.H.L. detector and a plain M.H.4 for output, as these were the only two valves 1 had, with cathode to earth in

"The unusual part of the circuit is the reaction. It will be seen that it departs from the usual practice of the H.T.1

feeding the transformer and through the

H.F.C. to the plate and the reaction condenser at the carth end of the 'coil;

it is fed through the transformer to H.F.C. through the reaction coil and to the plate,

and the condenser moving vanes are at earth potential. This makes reaction very

"Winding the Coils .- The grid coils are

constructed from 18-gauge enamelled wire and are shown in a table of coil values

given in PRACTICAL WIRELESS dated July 24th, 1937. The reaction or plate

coils are two-thirds of the amount of turns

as the grid coils. They are on 13in. formers

American superhets—as it is so quiet in operation and so easy to handle."

smooth indeed.

mains operation.

Hotting-up Experiments MEMBER 7,001 writes as follows : "Many thanks for membership certificate for B.L.D.L.C. I will inform you of my experiments, etc., in the near future. At the present I am building a single-valve short-wave set using H.F. pentode, and am hotting it up to get the most out of it.

Before the war I was the holder of an A.A. licence and just about ready for my full ticket, so you will understand my disappointment. I am now concentrating on receivers with a view to getting the best out of them and when the war is over I hope to go on the air as a fully-licensed operator,"

News from India

MEMBER 6,892 (H. G. Baker), who is a signalman, stationed in India, sends the following interesting letter: "Very many

for

for the B.L.D.L.Ç.

and letter; also for

insertion of my request for corres-pondents. Although I am writing this at

my old Q.R.A., i.e., W/T Stn., I have

given you my new Q.R.A. in case I

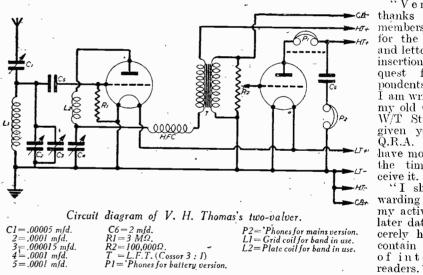
have moved out by

the time you re-

ceive it. "I shall be for-

warding a report of my activities, at a

later date, and sin-

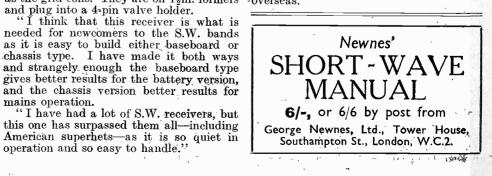

cerely hope it will

contain something

membership

the

card.


P2='Phones for mains version. L1=Grid coil for band in use. L2=Plate coil for band in use.

of interest-to readers. [®] My sparetime is very short nowadays, but I will do my best. I'll ask Reg. Fox, AC4YN, to help, now that he is on the air again, as I work him every day for a weather report."

Contacts Wanted

MEMBER 7,007—J. Dibben, St. Michaels Road, W Pilton, Wareham, Dorset-wishes to get in touch with a young member who is interested in S.W.

Work, and also MW and DX reception. Mcmber 6,770—D. Cox, 25, Carnarvon Road, West Bridgford, Nottingham— wishes to correspond with any reader overseas.

September, 1941

Problems of Amateur Receiverision & RADIO Operating Battery Sets from the Mains; Combined HT OFFE By FRANK PRESTC. and L.T. Trickle Chargers free

battery receiver were discussed. It was shown, however, that dry high-tension batteries are not usually economical when the H.T. current is in excess of, say, 20 mA; even for lower current ratings, it is generally more satisfactory and less expensive in the long run to adopt other means of obtaining the H.T. current.

H.T. Accumulator Units

for discharge rates up to 50 mA or so, but have the disadvantage that charging often. presents a difficulty. Milnes units—banks of nickel-alkali-type cells-are in many respects more convenient than the usual type of lead-acid H.T. accumulator, in that they can be charged from a standard

AST month, the more conventional smoothing the supply-which has a super-methods of supplying power to a imposed ripple which would cause humand of cutting down the voltage to that required by the receiver. For smoothing, an iron-cored choke and a couple of large capacity condensers will suffice, while the inclusion of a resistor will permit of the voltage being dropped to the maximum of 150, which is usual with battery valves.

A.D.C. Eliminators

A circuit for an eliminator is given in High-tension accumulators are suitable Fig. 1, although this also includes provision for charging the two-volt accumulator. The lamp and on-off switch shown toward the right of the diagram may be ignored for a moment while we look at the H.T. supply portion. First, we have two fuses rated at .5 amp., one in each mains supply lead, for safety. Then we have a change-over

switch, which should be of the standard Q.M.B. type. This is followed by a smooth-

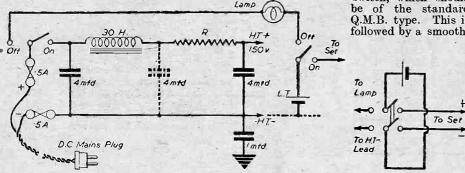


Fig. 1.—Circuit for a D.C. eliminator and trickle charger. Inset are shown alternative connections for the battery-charging switch.

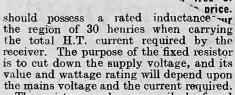
six-volt accumulator. And it is obviously ing choke marked as having an inductance easier to have an accumulator of this type charged. In addition, it is less bulky and easier to transport to the charging station, even if provision for charging is not available in the home.

There are three main types of Milnes H.T. unit, for maximum discharges of 60, 30 and 15 mA respectively. All three are particularly trouble-free and, in general, more convenient than lead-acid types. They have the disadvantage over dry batteries of being rather expensive in first cost; running costs, however, are very small. The principal feature of these units is that they are built into 120-volt assemblies and have a special switching system whereby all the cells may be in series (supplying 120-volts) or in series-parallel for charging from a six-volt supply.

Mains-operated Eliminators

It is not proposed to deal further with the supply of H.T. from accumulators, but instead to explain some methods of taking the high-tension current from the mains. It has never been the policy of this journal to recommend the use of battery sets when a mains supply is available, but there are a mains supply is available, but there are many readers who, for their own reasons, still prefer to build battery sets. In any case, there is no difficulty in obtaining current supply from the mains, provided that reasonable precautions are taken and that the design of the eliminator is suitably unabled out in the fort shows.

worked out in the first place. We may start by looking at the question from the point of view of the reader who is 'on'' D.C. As far as H.T. is concerned, age of not less than all that he needs is a suitable means of 250, whilst the choke


of 30 henries, and by a voltage-dropping resistor. Across the feed we have a couple of 4-mfd. smoothing condensers, which should be of the paper-dielectric type; a third condenser is shown in broken lines, and although it is not essential, it does help still further in ensuring that the supply is really well smoothed. It may be omitted when the unit is first made, and then added later if it is found that some additional smoothing is required. This depends to a large degree on the nature

of the mains supply. It will also be observed that a 1-mfd. condenser is connected between the negative

line and an earth lead. Actually, the lead. earth lead from the receiver should be transferred to this new position. The new position. purpose of the condenser is to prevent any possibility of short-circuiting the mains if the mains plug is inserted wrong way round or if the positive main should be earthed at the supply.

Component Specifications

All condensers should be suitable

The resistance value can easily be found from Ohm's Law, by dividing the voltage to be dropped by the current in amps. Thus, if the supply voltage were 230, and were to be cut down to 150, at 20 mA, the resistor should have a value of 4,000 ohms. For 40 mA in the same conditions the value would be 2,000 ohms. The wattage rating is determined by multiplying the square of the current in amps. by the value of the resistor. Thus, in the first case considered, the rating should be 20/1,000 times 20/1,000 times 4,000, which is 1.6 watts. Consequently, a standard 2-watt resistor would be chosen. In the second case use could be made of a four or five-watt resistor of 2,000 ohms, or of two 4,000-ohm, 2-watt resistors in parallel.

Correct Polarity

The mains plug would, of course, be of a type to suit an existing power or lighting point, and it should be connected to the power unit by means of good quality light-ing flex. Since the correct polarity must be obtained on D.C. working it may be necessary to reverse the plug in its holder when first trying out the eliminator, which will not operate the set if the polarity is wrong. Once that has been done it is worth while to mark the plug so that it can be inserted correctly at any future time. In the case of a three-pin plug, which is to be preferred, the leads should be reversed if they are found to be wrong.

Trickle Charging

Accumulator charging from D.C. is never an economical proposition when only a single accumulator is to be charged from, say, 230-volt mains. This is because 228 volts is wasted. Nevertheless, the convenience of the arrangement may be considered worth while, especially when current is bought cheaply. Tricklecharging can be carried out very simply by inserting any ordinary electric lamp which serves as a voltage-dropping resistor

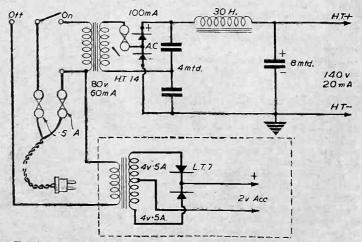


Fig. 2.—A combined H.T. eliminator and trickle charger for A.C. mains. If not required, the trickle-charger portion (enclosed by a broken line) may be omitted.

PRACTICAL WIRELESS

—in series with the accumulator, as shown in Fig. 1. When using a 60-watt lamp the charging rate will be about .25 amp., which is generally adequate if the battery is charged at all times when the set is out of use. In fact, if the L.T. current taken is not more than about .25 amp. it will be sufficient to use a 25-watt or 40-watt lamp. When the L.T. load is more than .5 amp. if might be necessary to use a higher-wattage lamp to ensure that the battery is always fully charged. For a charging rate of about .4 amp. a 100-watt lamp will serve, while a 150-watt lamp will charge at around .6 amp. It may be considered more convenient to use a larger lamp and to charge the battery overnight only once every few days. That is a matter which can best be settled by the individual, once he appreciates the simple principles involved.

Provided that L.T.— is connected to the earth line in the receiver and that the on-off switch is in the positive lead, it will be sufficient to fit a switch in an additional positive lead only, as shown. Where the connections are otherwise it will probably be better to use a double-pole change-over switch, connecting the centre ^{*} pair of terminals to the battery, one pair of outer terminals to the set and another pair to the mains supply, as shown inset in Fig. 1.

Correct Sequence of Switching

In using any eliminator, always switch on the filaments before switching on the H.T., by means of the mains switch indicated; and always switch off the H.T. before switching off the L.T. When employing an arrangement such as that under discussion the method is first to switch the charging switch to the "ore" position, and then to move the H.T. switch to the "on" position; the switch on the set may be left "on." When the set is to be switched off, turn off the H.T. switch and then turn the charge switch to the "off" position if the accumulator is to be put on charge.

A.C. Eliminator and Charger

A.C. mains are more usual than D.C., but the necessary eliminator is slightly more complicated due to the fact that a mains transformer and rectifier are required to step down the mains supply and to convert the A.C. into D.C. Fig. 2 shows a convenient type of circuit where provision is also made for charging the accumulator from a separate transformer and rectifier. The H.T. mains transformer should, of course, be chosen to suit the rectifier to be used, and in Fig. 2 it is assumed that a Westinghouse type H.T. 14 metal rectifier is to be used connected in a voltage-doubler circuit. This provides a maximum output of 140 volts, 20 mA, and the necessary transformer has a secondary wound to provide 80 volts at 60 mA.

Alternative Outputs

Two condensers are required in the voltage-doubler circuit, and these should be of the paper type and need have a working voltage of no more than 200. In addition there is a large smoothing condenser which should, for convenience and economy be of the electrolytic type rated at not less than 350 volts working. If greater H.T. outputs are required alternative rectifiers will be required and the transformer secondary should have an output appropriate to the rectifier chosen. Thus, the following rectifiers used as voltage-doublers (this arrangement is preferred owing to the greater ease of smoothing and lower transformer secondary voltage) require transformers with outputs as stated: H.T.15 for 230 volts, 30 mA-140 volts. 120 mA; H.T.16, for 330 volts, 60 mA-240 volts, 200 mA; H.T.17 for 225 volts 100 mA-150 volts, 300 mA. In the last-mentioned case only the series condensers for the voltage-doublet circuit should have a capacity of 8 mfd. In all cases the voltage-doubler condensers should have a working voltage of two to three times the voltage of the transformer secondary, while the smoothing condenser should be rated at twice to three times the maximum H.T.-voltage.

A.C. Trickle Charging

A very economical method of accumulator trickle charging is possible with A.C., since a transformer can be used to step down the mains voltage to that required to opérate a 2-volt output metal rectifier. The L.T. transformer shown in Fig. 2 has a centre-tapped secondary, each half of which should give 4 volts at .5 amp. The output from the L.T.7 rectifier shown is .25volts at amp. The single-pole 2 volts at .25 amp. The single-pole change-over Q.M.B. switch shown serves to switch on the H.T. unit (in the "on" position) or to bring the accumulator on charge (in the "off" position). If it is not required to charge the accumulator at any time when the receiver is out of use the two transformers can be disconnected by switching off the wall switch or removing the mains plug. As with a D.C. eliminator, switch the L.T. on before the H.T. and off after the H.T. It is not strictly necessary to disconnect the accumulator from the set while it is on charge, but some readers may prefer to do so since the voltage will be slightly in excess of normal while the accumulator is still on charge.

Mains units for A.C. receivers, and power supply for A.C./D.C. receivers will be explained in a later article of this series.

ITEMS OF INTEREST

Ediswan Home Guard

G ENERAL SIR PETER STRICKLAND, K.C.B., recently inspected "A" Company, of the 27th Middlesex Battalion, The Home Guard, at the Ponders End Works of The Edison Swan Electric Co., Ltd. Sir Felix J. C. Pole (Chairman of Associated Electrical Industries, Ltd.) was among those present. The 27th Middlesex Battalion of the

The 27th Middlesex Battalion of the Home Guard is recruited from factories in the vicinity of Enfield and Ponders End, and the Ediswan factory has furnished the full complement of men of No. 2 Platoon, "A" Company. After inspecting the Guard of Honour drawn up at the works gate, General Strickland was joined by Lieut.-Colonel R. M. Hawkins, commanding the 27th Battalion, and Major J. H. W. & Morgan, commanding "A" Company, who accompanied him to the parade ground.

Indian Literary Competition

THE B.B.C. is inviting its listeners in India to write short articles in English or Hindustani (Urdu or Hindi script) of not more than 18,000 words—or poems of not less than twenty lines (ten couplets) in Hindustani (Urdu or Hindi script), on any one of the following subjects : Democracy ; Dictatorship ; Communal Unity in India ; Pen Pictures of a Soldier. The B.B.C. offers a prize of £15 for the best article and £15 for the best poem. Contributions must be original and should reach the Indian Section of the B.B.C. by October 1st, 1941.

New Signature Tune for the B.B.C.'s Empire Service

A^S a regular and most popular broadcaster to the Empire, Big Ben has now a rival in the band of the Grenadier Guards. "The British Grenadiers," a marching tune known all over the world, has become a signature tune for the B.B.C.'s Empire Services. A recording specially made for

the purpose by the Grenadier Guards Band now introduces each of the transmission periods of the day's broadcasting, and each of the announcements periods, "London Calling." In all, "The British Grenadiers" is heard by overseas listeners ten times each weekday and seven times on Sundays.

Used not only by the Grenadier Guards, but by all the Fusilier Regiments, the Royal Artillery and the Royal Engineers, the origins of the march are obscured by its age—both author and composer are unknown. There are six verses in all.

Inspection of Home Guard by General Sir Teter Strickland.

★ GREAT TELEVISION & RADIO EQUIPMENT OFFERS

Every item, new or unused--every item Purchase Tax—every item at lowest possible price. Impossible to repeat when stock is exhausted. Your Impossible to repeat when stock is exhausted. last opportunity until after the War.

COSSOR TELEVISION

Cossor Cathode Ray Oscillographs or Television Tubes. Impossible to obtain through ordinary channels. Electrostatic deflection and focus. Type No. 3244, overall length approx. 10ins., diameter of tube approx. 6ins., \$7. Also Type No. 3221, overall length approx. 20 ins., diameter of tube approx. 7½ ins., \$7/18/6. Collection by purchaser.

Complete time base and sound chassis as opposite, with tube type No. 3244, **£16**: or with table cabinet in walant, the complete instrument, **£17**. (Cabinet 12in, by 21in, by 163 in, supplied separately at **27**/6.) Carriage forward, plus 2/6for maching

separately at 27/6.) Carrige forward, pins 2/6 for packing. Complete time base and sound chassis as opposite, but with tube type No. 3221 (see above), $\mathbf{\$16/15/-}$, or complete in wahnut pedestal cabinet, $\mathbf{\$18/5/-}$. (Cabinet 15in, by 20in, by 36in, also supplied separately at 35/-.) Carriage forward, plus 2/6 for packing.

CHASSIS

Beautifully finished, highly polished, new cad-nium plated chassis. Not the ordinary type, but superbly made. 164in. by 134in. by 4in. Drilled for 6 valves, transformer etc., 4/- each. Also heavy gauge metal chassis, finished battleship grey, 12in. by 54in. by 24in., 1/3 each. Also 9in. by 10in. by 2in., 1/3 each, and 15in. by 9in. by 21in., 1/6 each. All drilled for valves, etc.

SPEAKERS

Ex-Government. Special Horn type projection Speakers. Ideal for Factories, A.R.P. and out-door P.A. Super 6in. P.M. unit aluminium horn 42ins. long with flare 32ins. diameter. Impedance 20 ohms. Few only to clear, £7/18/6. A big parcel of brand new 8in. energised moving coil speakers. Ex famous maker, brand new, one of the most famous speakers made. To clear, less transformer, 5/6 each; with transformer, 8/6.

AMPLIFIERS

AMPLIFIERS Four-valve, five-watt, 220-250 v. A.C. shock-proof, heavy gauge chassis, two triodes giving 5 watt undistorted output for granu and nuke. Ten inch energised speaker. Absolutely complete, brand new. £5/19/6. Three-valve, 3-watt, 220-250 v. A.C. Granno-phone Amplifiers. Made for R.A.F. to Govern-ment specification. Slightly used. Pentode output, three-position tone control, super P.M. Speaker in nahogany cabinet, 99/6. One only. Super heavy duty Amplifier, suitable for cinema, big public halls and outdoor work. Input 200/250 v. A.C. Output 42-50 watts by two DA 30's in Class AB arrangement. Heavy steel chassis, shockproof, enclosed. Output tapped for 1-6 Speakers. Hardly used, in new condition. Price, to clear, £25.

HOUSE & INTER-COM. PHONES

To-callers only, we can offer a big range of house telephones and inter-communication sets. All types—hand microphones and desk loudspeaker scts. Call and see our display.

BUY NOW-CANNOT REPLACE!

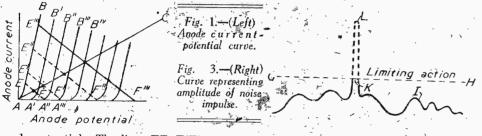
N.B. - Unless items are marked carriage forward or collection by purchaser, sufficient postage must be included with all orders. London readers are invited to inspect our stocks. See also our classified advertisement of sundry components on page iii of cover.

TELEVISION EQUIPMENT

Tube Supply Units. For high voltage 16/15in. Tubes. Approx. 6,000 volts output. Includes B.f. 1 x 1 ufd, 7,000 volt d.c. test condensers with porcelain insulators, transformer and rectifying valve, all shielded in metal case. Again, Brand new, 45/-. (B.I. condenser sup-plied separately at 20/-, and the transformer at 20/-.) Carriage forward. Plus 2/6 for packing.

Vision Units. To fit on Time Base. Consists of 3 Mullard T.S.E.4 and 1 Mazda DI Valves. Approximately 25 resistors ranging from 75-75,000 ohus, and about 30 condensers of varions values, together with Rojector, Grid and various Band Pass Coils, also approxi-mately 10 chokes of various descriptions and W6 Westector. Completely wired and screened. Unused as received direct from the manu-facturer, 40-each. (Complete circuit and service manual available, price 6d. each.) Carriage forward. Plus 2/6 for packing.

Time base chassis. For 8in, Cathode Ray Tube. Time base chassis. For 8in. Cathode Ray Tube. Size 17in. x 14kin. x 2in., containing approxi-mately thirteen fixed resistors, ranging from 15,000 ohms to 1 megohn, five variable resistors, 2,000 to 20,000 ohms, approximately 14 various tubular and electrolytic condensers, also sundry focus and scanning coils and chokes. Frice 30/-each. (Complete circuit, and service manual available, price 6d. each.) Carriage forward, plus 2/6 for packing.


Cathode Ray Tubes (magnetic type). As examples we quote the following prices, all subject to being unsold: Approx. Sin., £4; 10in., £5; 12in., £6. All tubes must be collected by buyer. No responsibility accepted for carriage.

PRACTICAL WIRELESS 372 September, 1941 Noise Suppression Various Arrangements for Dealing with the Problem are **U** 20002 Described in This Article ODERN broadcast receivers capable. If it were not for the amplitude limiting of considerable sound output, and connection the noise impulse would have having a wide frequency response, an amplitude.L are liable to reproduce transient or static crash impulses at uncomfortably high The adjustable tapping 3 on the diode

volume levels, and the purpose of the present article is to describe some arrangements by which such effects may be mitigated. The arrangements to be described operate by controlling the length of the load line of the output valves of the amplifier.

Since the potential drop across the bias-ing resistance in the cathode lead of an amplifying valve varies in direct proportion to the anode current, the curve AC of Fig. 1 represents the locus of the grid biasing potentials as a function of the

load resistance is ganged with the adjustable contact arm 4 of the anode resistance 1, so that movement of the tapping 3 to the upper end of the diode-load resistance to increase the audio output of the amplifier, is accompanied by a corresponding decrease in the value of the anode resistance 1 to effect an increase in the potential supplied to the anode 2 of the amplifier 5. The length of the load line EF is thus auto-The matically increased as the strength of the signal oscillations supplied to the control grid of the amplifier is increased. Where

anode potential., The lines EF, E'F', etc., represent the load lines, the slope of which is a function of the output-circuit impedance determined by the particular valve employed. The anode swing of the valve is limited to the length of the line EF, E'F' (the length of which is a function of the anode potential) being limited at the abscissa axis by the anode-current cut off, and at the line AB by grid current. Thus, the length of the load line may be controlled by adjusting the anode voltage.

L.F. Amplifying Stage

Referring now to Fig. 2, a conventional diode rectifier and low-frequency amplifying stage is shown, and it will be evident that by changing the value of the anode circuit resistance 1, the potential supplied to the anode 2 may be adjusted at will to control the length of the load line EF. E'F', etc., and so limit the maximum amplitude of signal or noise oscillations.

In Fig. 3 the broken line GH represents the maximum amplitude which signal or noise oscillations may have for a particular value of the anode resistance 1. If the amplitude represented by the line GH is so high that the signal oscillations, the envelope of which is represented by the GH, then the signal oscillations will be reproduced in the output circuit. When, however, the input contains a transient noise impulse represented by the curve L, the maximum amplitude of the noise impulse occurring in the output circuit is limited to the amplitude GH as shown at K.

the received signal is subject to fading. the automatic volume control of any preceding HF amplifier should have a flat characteristic for optimum noise reduction.

Automatically-operating Circuits

Figures 4, 5 and 6, show automaticallyoperating circuits. An output amplifier stage in Fig. 4 is constituted by push-pull connected valves 6 and 7, the cathodes of which are connected to the negative terminal 8 of the anode potential supply

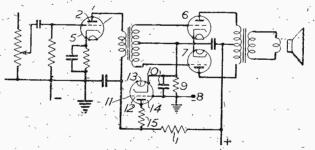


Fig. 4.—Circuit diagram of an output amplifier stage.

through a resistance 9 which is shunted by a condenser 10 having a capacity to provide a low impedance in comparison to that of a resistance at twice the lowest audio fre-guency supplied to the amplifier, and yet to have a high impedance at syllabic frequencies. By syllabic frequencies are meant that range of frequencies from zero to approximately 30 c.p.s which is the frequency range of the occurrence of

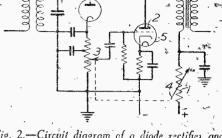
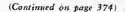


Fig. 2.-Circuit diagram of a diode rectifier and L.F. amplifier stage.


syllables in ordinary speech. An additional valve 11 has its control grid 12 and cathode 13' connected across the terminals of the resistance 9 and the anode 14 is supplied through the resistance 1 and resistance 15.

Bias Control

In operating the arrangement shown in Fig. 4, the potential across the resistance 9 has a D.C. component and an A.C. com-ponent of syllabic frequency. This potential controls the bias of the grid 12 and thus controls the anode current.

The valves 6 and 7 are connected as a Class-B power amplifier, the anode current of which increases approximately linearly with increases of input signal strength. At low signal strength the average anode current is relatively small, and the control grid 12 consequently has a small negative bias. The anode current of the valve 11 at this instant is relatively large, and in flowing through resistance I produces a large voltage drop which in turn greatly reduces the potential supplied to the anode 2 of the The length of the load line EF valve 5. (Fig. 1) for the value 5 is, therefore, greatly decreased during periods of low signal strength. The reduction of the permissignal strength. sible anode swings is thus effected automatically.

As the strength of the audio signal increases, the anode current of valves 6 and 7 ålso increases, giving an increased drop across resis-tance 9, and causing an increase in the negative bias potential applied to the grid 12. The consequential decrease in anode current of the valve 11 results in a decrease in the drop across the resistance 1 so that the potential, on the anode 2 is increased giving a longer load line EF for the valve 5.

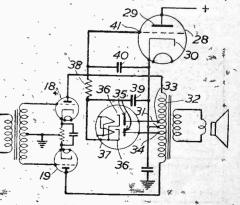
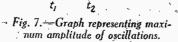



Fig. 6.-A modification of the circuit given in Fig. 5, showing how a high-mu value is incorporated

26

Fig. 5.-An automatically-operated output circuit.

► ELECTRADIX

All sizes. From one cell to large batches. Westinghouse 1, 2 and 4 circuit chargers. R.C.G.1, etc., in stock.

stock. METERS. Weston and Turner mov-ing coil, flush 2in. dial, 0-50 m.a., also 0-200 m.a., new, 3in. dial, moving coil meters, 0-1 m.a. Atlist prices. Elliott Model 108 Ammeter and Rheostat in case, bargain, 37/6. Meters scarce and delivery slow. so send enquiries early.

MORSE KEYS. Type B.I. a strong key. 5/-. Bakelite base, type M., 6/6. A first-class key type P.F., plated fittings, well-balanced. 9/6. The best key available is Type IV, 12/6. Special Government extending folding Fuller Service Key, few only, 17/6.

Type 1V, 12/6. Special of oteriminal states that for the service Key, few only, 17/6. BUZZERS. Bakelite-cased prac-tice buzzers, 3/6. Neat brass-cased Buzzer, 4/6. Heavy type, Bakelite cased, 5/6. D.3 Buzzers, multiple uwindings, no con-tacts, 5/-. Cambridge - Townsend High-Note Model, "T" diaphragm blade, platinum contacts. Smallest Buzzer made, 10/-. RECEIVERS for Signals; powerful L.R. metal-clad receiver, fitted no-fiare horn. Dictograph make, amplifies buzzer 'phone signals. 7/6. TELEPHONES. We are often asked for the modern bakelite handcoms. and can now offer a few of the G.P.O. type in brown at 27/6 and oradle stand, 3/6. Midget L.R. Impedances. iron-cored, 2-coil, phone-type, 2/3. MORSE Inker Tape Recorders for sigs. on paper tape. Have some new captured contraband, latest continental high-speed model. Bargain at 8/10/-.

MIKES. Whetal-clad Mikes, can be used as they are or in a case, 5/-. G.P.O. Mike buttons, specially selected, in a 2/6

RELAYS. Single Pole No. 4A on-off 2-volt 'phone-type, 5/-. No. 6 Relay twin bobbin, 6 volts, 25 m.a., S.P.C.O., 8/6. Relay movements, less contact blade, new, 2/6.

POCKET THERMOMETERS [in metal case, useful in the Service, 2/6. FIELD TELEPHONE CABLE. A few miles left, single

CEILING ROSES, porcelain, with 2 Scruit couplers make good connect. boxes, 6/6 doz.

EDISON STEEL CELLS, A.8, in stock. EDISON STEEL CELLS, A.8, in stock. MAINS MAGNETS, disc type. 2-poles wound, laminated 10 volts or 20 volts; lifts 71bs., 4/6. Hand-drive alternator or magnet bell ringer. P.M. magnets geared. Cives 80 volts, 25 m.a., useful where no A.C. available, 10/6. CONDENSERS. Fixed, G.P.O., 2 M.F. smothing, 2/- Variable air solo forme Condenser. 0005 mfd, boxed in original carton, 2/6. VALVES. General-purpose robust alves at a low price. "Weco" Peanut Midgets, 1-vol, la., 4-pin base, 3/6. Cossor 6-volt Power valves, AT40 6. Both these are Triodes. Neon lamps, standard size, tter Cathodes 230 volts. 2/8.

letter

Dynamo Bargains

Dynamo Bargains 110 volts. 8 to 1 amp., D.C., ball-bearing, semi-enclosed, 1.850 revs., 151b., 6in. x 51n., cheap. Carriage paid, 15(6. 200 volts, 1 amp., 21/-, 200 volts, 11 amp., 36/-. DYNAMOS. Double Current Govt., cost £15. Two com-mutators, D.C., 6-4 volts, 3-5 amps. and H.T. 400-600 volts, 100 mm., 55in. dia., 12in. long, 171bs., 4,000 revs., ball bearings, 25/-. Large size, 500 watts, 18 volts, 20 amps, and 460 volts, 200 m.a. £5. Micro Motors A.C. split phase synchronous motors, squirrel cage

Micro Motors A.C. split phase synchronous motors, squirrel cage rotor, in. dia. Dog-clutch drive to reduction gear from 2,000 revs. to 58 r.p.m. Voltage 15 to 20 volts, 50 cycles, reversible, double shaft, enclosed, laminated, new. Suit model drive, remote control switching. tuning drive, etc., 8/-. Post free. SMALL A.C. MAINS MOTORS. Enclosed, self-start n load. 200 volts, 180 h.p. Type 60, 1,500 revs., 18/6. Split phase, 1/10 h.p., 2,500 revs., 45/-. SMALL D.C. MAINS MOTORS. 1/40 h.p. Type 60, 220 volts K.B. series, 1,750 revs., 15/-. Ditto, 1/12 h.p. Croydon 110 and 230 volts shunt 1,700 revs., 30/-, M.G. for A.C. 220 volts to 100 volts, 1 amp., D.C. 77/6. 100 volts, 15/-. All fully guaranteed.

bits, 15/-. An July Summer Sets Engine Sets 500-watt single cylinder 2-stroke water cooled self-bing Pelanone engine, mag. ign., coupled to 50-70

Please add postage on all mail orders. PLEASE NOTE NEW ADDRESS.

We have left Upper Thames Street, and our new offices adjoin our Works at Battersea. 19. Broughton Street, Queenstown Road, S.W.8, on No. 137 bus route. 2d, fare from Sloane Square.

Lreat yourself to this new radio experience

F it hadn't been for the war, you might to-day be the proud owner

of a new radio-enjoying a fresh thrill from your listening. Well, here's an idea. For a fraction of the cost of a new set you can get one of the latest Extension Stentorian speakers. Install it in

Models from 21/6.

any room you like and then listen The fine balance of tone, critically.

the vivid clarity of reproduction will delight you.

It will give you a fresh interest to your listening and a new pride in your home. Ask your dealer for a demonstration.

tentoria THE PERFECT EXTRA SPEAKER FOR ANY SET WHITELEY ELECTRICAL RADIO CO. LTD. - MANSFIELD - NOTTS.

RADIO RECEIVER CIRCUITS HANDBOOK

By E. M. Squire. A useful guide to circuits for members of the radio industry and radio amatcurs. It deals with the receiver in stages and combines general theory with practical information. Published by Pitman, 4s. 6d. net.

The man who enrolls for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day, radio service work. We train them to be successful!

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 94A, International Buildings, Kingsway, London, W.C.2. Please explain fully about your Instruction in the subject marked X.

Complete Radio Engineering Radio Service Engineers Elementary Radio Television

If you wish to pass a Radio examination, indicate it below. Institute of Radio Engineers

P.M.G. Certificate for Wireless Operators Provisional Certificate in Radio Telephony and **Telegraphy for Aircraft City and Guilds Telecommunications**

Name..... Age..... Address (Use penny stamp on unsealed envelope.)

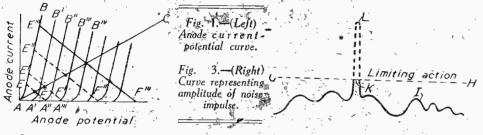


8s. 6d. net.

Published by Pitman.

PRACTICAL WIRELESS

September, 1941



are liable to reproduce transient or static crash impulses at uncomfortably high volume levels, and the purpose of the present article is to describe some arrangements by which such effects may be mitigated. The arrangements to be described operate by controlling the length of the load line of the output valves of the amplifier.

372:

Since the potential drop across the bias ing resistance in the cathode lead of an amplifying valve varies in direct proportion to the anode current, the curve AC of Fig. 1 represents the locus of the grid biasing potentials as a function of the

load resistance is ganged with the adjustable contact arm 4 of the anode resistance 1, so that movement of the tapping 3 to the upper end, of the diode-load resistance to increase the audio output of the amplifier, is accompanied by a corresponding decrease in the value of the anode resistance 1 to effect an increase in the potential supplied to the anode 2 of the amplifier 5. The length of the load line EF is thus auto-The matically increased as the strength of the signal oscillations supplied to the control grid of the amplifier is increased. - Where

anode potential. The lines EF, E'F', etc., represent the load lines, the slope of which is a function of the output-circuit impedance determined by the particular valve employed. The anode swing of the valve is limited to the length of the line EF, E'F (the length of which is a function of the anode potential) being limited at the abscissa axis by the anode-current cut-off, and at the line AB by grid current. Thus, the length of the load line may be controlled by adjusting the anode voltage.

L.F. Amplifying Stage

Referring now to Fig. 2, a conventional diode rectifier and low frequency amplifying stage is shown, and it will be evident that by changing the value of the anode circuit resistance 1, the potential supplied to the anode"2 may be adjusted at will to control the length of the load line EF, E'F', etc., and so limit the maximum amplitude of signal or noise oscillations.

In Fig. 3 the broken line GH represents the maximum amplitude which signal or noise oscillations may have for a particular value of the anode resistance 1. If the amplitude represented by the line GH is so high that the signal oscillations, the envelope of which is represented by the solid line I, do not exceed the amplitude GH, then the signal oscillations will be reproduced in the output circuit. When, however, the input contains a transient noise impulse represented by the curve L, the maximum amplitude of the noise impulse occurring in the output circuit is limited to the amplitude GH as shown at K. the received signal is subject to fading, the automatic volume control of any preceding HF amplifier should have a flat characteristic for optimum noise reduction.

Automatically-operating Circuits

Figures 4, 5 and 6, show automaticallyoperating circuits. An output amplifier stage in Fig. 4 is constituted by push-pull connected valves 6 and 7, the cathodes of which are connected to the negative terminal 8 of the anode potential supply

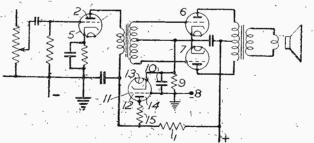


Fig. 4.—Circuit diagram of an output amplifier stage.

through a resistance 9 which is shunted by a condenser 10 having a capacity to provide a low impedance in comparison to that of a resistance at twice the lowest audio fre-quency supplied to the amplifier, and yet to have a high impedance at syllabic frequencies. By syllabic frequencies are meant that range of frequencies from zero to approximately 30 c,p.s which is the frequency range of the occurrence of

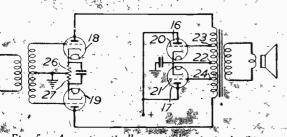


Fig. 5.—An automatically-operated output circuit.

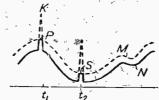


Fig. 7.—Graph representing maxinum amplitude of oscillations.

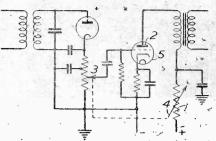


Fig. 2.—Circuit diagram of a diode rectifier and L.F. amplifier stage.

syllables in ordinary speech. An additional valve 11 has its control grid 12 and cathode 13 connected across the terminals of the resistance 9 and the anode 14 is supplied through \mathbf{the} resistance 1 and the resistance 15.

Bias Control

In operating the arrangement shown in Fig. 4, the potential across the resistance 9 has a D.C. component and an A.C. com-ponent of syllabic frequency. This potential controls the bias of the grid 12 and thus controls the anode current. The valves 6 and 7 are connected as a

Class-B power amplifier, the anode current of which increases approximately linearly with increases of input signal strength. At low signal strength the average anode current is relatively small, and the control grid 12 consequently has a small negative bias. The anode-current of the valve, 11 at this instant is relatively large, and in flowing through resistance 1 produces a large voltage drop which in turn greatly reduces the potential supplied to the anode 2 of the valve 5. The length of the load line EF (Fig. 1) for the value 5 is, therefore, greatly decreased during periods of low signal strength. The reduction of the permissible anode swings is thus effected auto-

matically.

As the strength of the audio signal increases, the anode current of valves 6 and 7 also increases, giving an increased drop across resistance 9, causing an and increase in the negative bias potential applied to the grid 12. The consequential decrease in anode current of the valve 11 results in a decrease in the drop across the resistance 1 so that the potential, on the ancde 2 is increased giving a longer load line EF for the value 5.

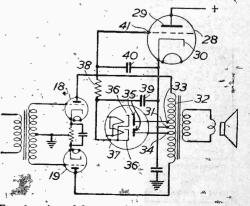


Fig. 6.- A modification of the circuit given in Fig. 5, showing how a high-mu value is incorporated **

All sizes. From one cell batches. Westinghouse 1, 5 circuit chargers. R.C.G.1, ř. stock

stock. METERS. Weston and Turi ing coll, flush 2ln. dial. 0-t also 0-200 m.a., new, 3l moving coll meters, 0-1 m.a. prices. Elliott Model 108 A and Rheostat in case, barge Meters scarce and delivery send enquirics early.

MORSE KE base, type M Type IV, 12/6. BUZZERS. Bakelite constants

BUZZERS. Bakelite-cased prac-tice buzzers. 36. Neat brass-cased Buzzer. 4/6. Heavy type. Bakelite cased. 5/6. D.3 Buzzers, multiple windings, Do con-multiple windings. Do con-

l High-tragm blade, platinum Cambridge - To Note Model, Smallest Buz he² 10

Smallest Buz 10⁻⁻. **RECEIVERS**, uls; powerful L.R. metal receiver, fitte unro hom. Dictograph amplifies buzzer 'phone signals, 7/6. **IFLEPHONES**, We are often asked for the bakelite handcoms, and can now offer a few of the G type in brown at 27/6 and oradle stand, 8/6. L.R. Impedances, iron-cored, 2-coil, 'phone-ty **MORSE** Inker Tape Recorders for sigs. on paper Have some new captured contraband, latest contin high-speed model. Bargain at 29/10/-. MIKERS [Metal-in a case, 5/-. 2/6.

MIKES. Metal-in a case, 5/-. 2/6.

CEILING ROSES, porcelain, with make good connect, boxes, 6/6 doz.

Dynamo Bargains

110 volts. 8 to 1 amp., D.C., ball-bearing, semi-enclosed, 1,850 revs., 1510.. 6in. x 5in., cheap. Carriage paid, 15/6. 200 volts. 4 amp., 21/-, 200 volts. 14 amp., 36/-.

36/-. DYNAMOS. Do mutators. D.C.. volts. 100 mm.. ball bearings. 25 amps. and 460 volts. 200 m.a. £5. Micro Motors

Micro Motors A.C. split phase synchronous motors, squirrel cage rotor, in. dia. Dog-clutch drive to reduction gear from 2,000 revs. to 56 r.p.m. Voltage 15 to 20 volts, 50 cycles, reversible, double shaft, enclosed, laminated, new, Suit model drive, remote control switching, tuning drive, etc. 8/-. Post free. SMALL A.C. MA' VOTORS. Enclosed, self-start on load. 230 volt SMALL D.C. M' VOTORS. 1/40 h.p. Type 60, S20 volts K.B. sci. 'OTORS. 1/40 h.p. Type 60, Crowdon 110 and 230 volts, 1 amp. D.C., 77/6. 100 volts, 15/-. All fully guaranteed. Engine Sets

Engine Sets

Stamped envelope for all replies, please. ELECTRADIX RADIOS 19, BROUGHTON STREET. Queenstown Road, Battersea, S.W. 8.

this 6 experent

HERE

for the e the new 18enjoying a fresh to from your listeni Well, ап іс For a ou can latest tension speakers ll it in

WHITELEY

TU spa be ry-23

engage a couple of small rooms "far the madding crowd," and the restraints society and piano playing.

pieces

E

but surely, he was shedding the f the past and letting his now d genius roam in all its The masterpieces which were the next few years would es of his contemporaries, musician. Certainly, and before the Kreutzer and n written, surable ith

Cabinet Models from 21/6.

PERFECT

CTRICAL RADIO CO. I

THE

The man who e stis for an I. C. S. Redia Course learns idio thoroughly, pletely, practi y. When he carn pletely, practicity, when he could have diploma, he w KNOW radio. We are not content m by to teach the principles of radio we want to show our studen apply that training in ay, radio service work. prachi We trai. .em be successful!

INTERNATIONAL TRESPONDENCE SCHOOLS

Dept. 94A, L rnational Buildings, Kingsw , London, W.C.2. Please explain $f_{\rm c}$ about your Instruction in the subject mark X. Complia Radio Engineering Radio rvice Engineers E ontary Radio elevision If you wish to ass a Radio examination, indicate it below Institute Radio Engineers P.M.G. Certifie for Wireless Operators Provisional Certifice in Radio Telephony and Teler hy for Aircraft City and Gas Telecommunications Name..... Age..... Address

(Use penny st p on unsealed envelope.)

	d.			
R	LOIOL			
E.A.P. schont budas of mes nelves	Are you g hadis Mothanic matio will tail you be the state the tail radio	alers in the		
	Thirst Counce in Wi road provide a work of the exploring Terms of the support of the support first of the support	WORK		
	Rapertestance and know about a Radio Uphrep and revised edition revised edition ready abortis Definitions and for itself. Si Radio Books Lin	Approximation of the provided and the second	ali post 2000 2000 School of	
	RADIO BO			
RA	DIO REC AND N	EIVER	SERVI	CING
" The and s the n mann do an Publi	J. G. Lew book is so to well arran eccessary kn er."-It show d just how f ished by Pit	practical, ged that	eless World so replete the reader work in ice enginee Third Edit	in facts. will Sain a logical r what to
			8	s. 6d. net.

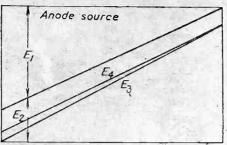
377

Limiting Action

The broken line M in Fig. 7 represents the instantaneous limiting action, and, therefore, the maximum amplitude of oscillations permitted in the output circuit of the valve 5. The extent of the limiting action varies with the strength of the syllabic frequency component appearing across the resistance 9, the envelope of this component being represented by the solid line N. A transient static impulse occurring at the time t_1 is limited in amplitude to the value P. Without the limiting action, this static impulse would appear in the output circuit with the amplitude R. A second transient signal impulse appearing at the time t_2 is limited to a smaller amplitude S since the strength of the syllabic frequencies appearing in the output circuit at the time t_2 is smaller than at the time t_1 .

In the arrangement shown in Fig. 5, the operation is similar to that of Fig. 4, except that the change in anode potential for the limiting audio-frequency amplifier is effected by a valve in series with the anode supply.

Class B Amplifiers


A pair of high mu-type valves 16 and 17, such as are used as Class-B power amplifiers, are employed for this purpose. The anode impedance of these valves changes rapidly with changes in grid potential. Assuming that an input signal produces an increase in the anode current of the valve 18, then the anode current of the valve 19 will decrease, causing the bias potential on the grid of valye 17 to become more positive, thereby decreasing the anode/cathode impedance of this valve. A larger anode current now flows through the valve 17 to supply the increased instantaneous value of anode current required by the valve 18. Similarly, increases in the anode current of valve 19 are supplied through the valve 16.

The average bias on the grids 20 and 21 is determined by the average drop between the points 22, 23 and 24, of the trans-former winding, which in turn depends upon the average current through the valves 18 and 19. The latter is determined by the drop across the cathode resistances 26, 27. Since this potential drop varies at syllabic frequency, the average bias on the grids 20 and 21, and therefore the average impedance of the valves 16 and 17 likewise varies at syllable frequency to produce corresponding variations in the value of the average anode potential supplied to the valves 18 and 19. In other respects the operation is similar to that of the Fig. 4 arrangement.

Potential Drop

In Fig. 8 the average potential drop across the valves 16 and 17 is represented as the potential E_1 , and the average anode potential supplied to the valves 18, 19, is represented by the potential E_2 . As illustrated in this figure, the magnitude of the potentials E_1 and E_2 changes with change of the input signal strength. The sum of the potentials E_1 and E_2 neglecting the small bias voltage drop across the resistors 26 and 27 for a given input signal strength must, of course, equal the potential of the anode source which is assumed constant. The relation between the strength of the output signals, and the strength of the input signals is given by the line E₃ of Fig. 8, while E4 represents the relation between the input signal strength and the maximum output of the amplifier as thus limited.

Fig. 6 shows a modification of Fig. 5, in which a single high-mu valve 28, having similar operating characteristics to the valves 16 and 17 of Fig. 5, has its anode 29 connected to the positive conductor and its cathode 30 connected to the centre-tap 31 of the primary winding 32 of the output transformer. The taps 33, 34 are connected, respectively, through the anode and cathode 35 and 36, respectively, of diode rectifier 37, and through a filter

Audio frequency signal strength Max.

Fig. 8.-Graph representing relative strength of output and input signals.

resistance 38 and condensers 39, 40, to the control grid of the valve 28. The filter 38, 39, 40 is arranged to filter from the potential supplied to the grid 41, all potentials having a frequency higher than the syllabic range of frequencies. The double-diode rectifier 37 has the advantage that it doubles the lowest audio-frequency signal components.

The control potential supplied to the grid 41, through the rectifier 37, controls the anode-to-cathode impedance of the valve 28, so as to adjust the anode potential supplied to the anodes of the valves 18 and 19. The operation of this modification differs only from Fig. 5 in the method of controlling the impedance of the valve 28 included between the positive conductor, and the centre-tap 31 of the transformer winding 32.

This system was developed in the labora-tories of the General Electric Company, Schenectady, New York.

G.E.C. Sound Reproduction

An Improved Version of the "Microgram" Amplifying Equipment

THE General Electric Co., Ltd., recently announced details of a modified and improved version of their "Microgram" amplifying equipment. The new "Microgram" embodies a three-

stage low-frequency amplifier with microphone and gramophone inputs, an induction gramophone motor, a moving-iron armature pick-up, a transverse-current type micro-phone and 50ft. of connecting cable, all within a portable oak table type cabiet, an measuring $20\frac{1}{2}$ ins. by 17 ins. by 13 $\frac{1}{2}$ ins. fidelity model, the polarising current for which is supplied by a special circuit incorporated in the amplifier. Thus the need for external batteries or other external D.C. sources is obviated. Normally, the microphone is resiliently mounted on a neat handgrip, but it is easily detachable, so that if desired it may be used in conjunction with a table or floor type stand. Details of these stands are available on request.

Compact and Portable

Being compact, portable and particularly bust, the "Microgram" is ideal for robust. robust, the Microgram is ideal for installation in factories, public halls and the like, where rough usage is likely to be the rule rather than the exception. A leaflet (No. BC. 9330), giving fuller details is available from The General Electric Co., it description of the second second second second second second the Magnet Heuse Kingswar. London Ltd., Magnet House, Kingsway, London, W.C.2.

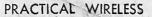
Problem No. 423

Problem No. 423 BAXTER'S three-valve mains receiver, using an A.C./ Pen. in the output stage, suddenly stopped functioning. He checked the anode current consumption of each valve in turu and found that no current was being taken by the output valve, although a meter connected from the anode of this valve to H.T.— indicated that maximum anode voltage was being applied. He therefore suspected the valve, but when this was tested it was found to be in perfect order, and further tests indicated that the heater voltage was normal. What was the trouble? Three books will be awarded for the first three correct solutions opened. Entries must be addressed to The Editor, PRACTICAL WIRELESS, George Newnes, Ltd., Tower House, Southamp-ton Street, Strand, London, W.C.2. Envelopes must be marked Problem No. 423 in the top left-hand corner, and be posted to reach this office not later than the first post on Monday, August 18th, 1941. 18th, 1941.

Solution to Problem No. 422

H.F. oscillation was occurring in Roberts' receiver owing to inadequate screening of the H.F. com-ponents. It is difficult to provide sufficiently effective, screening when an efficient H.F. pentode is used, however, and the best remedy is to provide a grid bias volume control so that the efficiency of the first valve can be controlled. The following three readers successfully solved Problem No. 421, and books have accordingly been forwarded to them: J. R. Pearce, "The Lord Nelson," Silsoe, Beds; H. J. Warren, 139, Rectory Road Grays, Essex; J. Marland, 14, Pole Street, Preston, Lance.

The new G.E.C. "Microgram" 14-watt amplifier.


The amplifier employs a MH41 resistance capacity coupled to a MH4, which is transformer-coupled to two PX25 arranged in push-pull in the power stage. The H.T. rectifier is an MU14. All are Osram valves.

Dual input circuits permit the use of either microphone or pick-up, either in-dependently or mixed, and both inputs can be independently controlled by volume controls located on a small panel let into the front of the cabinet. The only other control is the mains switch.

Power Handling Output

The maximum power handling output is approximately 14 watts, and the output circuit is so arranged that low impedance speakers of either 15 ohms or 7.5 ohms may be used. The microphone is a new high

September, 1941

The Choice of Critics

BULGIN

FOR

KNOBS

The largest and most extensive

range in the world. Over fifty models from which to choose. All sizes and shapes, for differ-

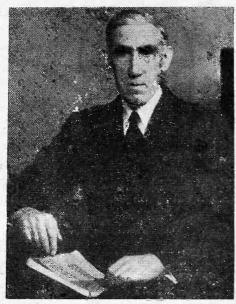
ent classes of work or operation. Nearly every type has brassinsert, steel grub-screws are fitted, well sunk. For 0.25 in. Φ

shafts and other sizes. Finely

moulded and highly polished.

The highest class Instruments

use Bulgin Knobs exclusively.


COMMUNICATIONS DEPEND

Sir Frank Gill, K.C.M.G., O.B.E., M.I.E.E., who had conferred upon him the honour of Knight Commander of the Order of St. Michael and St. George in the King's Birthday Honours List, was invited by the Postmaster-General to a small reception at the General Post Office recently, in honour of his knighthood. Several distinguished guests were present.

It is interesting to recall some of the principal features of Sir Frank Gill's long and distinguished career in the telephone industry. He joined the staff of the United Telephone Company in London at the age of 16, and rapidly rose to the important post of Engineer-in-Chief of the National Telephone Company.

This post demanded not only high scientific attainments and engineering ability, but abundance of tact, patience and diplomacy. Before its transfer to the Post Office the National Telephone Company had to withstand strong competition, and at the same time to weather many storms owing to frequent changes in Government policy.

Sir Frank Gill.

In fact, the only constant factor in the situation was the Government's determined and consistent deduction of 10 per cent. from the company's earnings. On that point alone there was no vacillation or change in policy.

After the transfer to the Post Office Sir Frank visited extensively what are commonly called "furrin" parts. He travelled as a consulting telephone engineer in the U.S.A., South America, Portugal and Turkey.

But perhaps his greatest achievement came after his Presidential address to the Institution of Electrical Engineers in 1922. In that address he outlined the far-reaching international scheme whereby long-distance telephone circuits would be made possible throughout the continent of Europe.

Barry Kay has, for the time being, relinquished his position as radio sales manager of E. K. Cole, Ltd., in order to join the Board of Trade. - Mr. Kay has been appointed Deputy Controller of Factories and Storage Premises for the South-western Area, and he took up his new duties at the beginning of June.

ON SMALL PARTS....

IN countless instances quite intricate pieces of apparatus are wholly dependant on the proved reputation and reliability of their component parts.

All products from the House of Bulgin are pre-eminent for superior design and workmanship, and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.


That is why every manufacture of national importance incorporates Bulgin components.

Let us send you

Our new 128 pp. Catalogue No. 164-PW, fully illustrated and with technical and dimensional data. A valuable and comprehensive reference list.

Price 9d., post free.

ALWAYS DEPEND ON

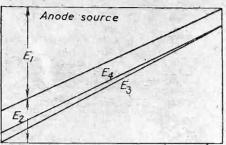
TEL. RIPFLEWAY 3474 (4 lines).

Limiting Action

The broken line M in Fig. 7 represents the instantaneous limiting action, and, therefore, the maximum amplitude of oscillations permitted in the output circuit of the valve 5. The extent of the limiting action varies with the strength of the syllabic frequency component appearing across the resistance 9, the envelope of this component being represented by the solid line N. A transient static impulse occurring at the time t_1 is limited in amplitude to the value P. Without the limiting action, this static impulse would appear in the output circuit with the amplitude R. A second transient signal impulse appearing at the time t_2 is limited to a smaller amplitude S since the strength of the syllabic frequencies appearing in the output circuit at the time

 t_2 is smaller than at the time t_1 . In the arrangement shown in Fig. 5, the operation is similar to that of Fig. 4, except that the change in anode potential for the limiting audio-frequency amplifier is effected by a valve in series with the anode supply.

Class B Amplifiers


A pair of high mu-type valves 16 and 17, such as are used as Class-B power amplifiers, are employed for this purpose. The anode impedance of these valves changes rapidly with changes in grid potential. Assuming that an input signal produces an increase in the anode current of the valve 18, then the anode current of the valve 19 will decrease, causing the bias potential on the grid of valve 17 to become more positive, thereby decreasing the anode/cathode impedance of this valve. A larger anode current now flows through the valve 17 to supply the increased instantaneous value of anode current required by the valve 18. Similarly, increases in the anode current of valve 19 are supplied through the valve 16.

The average bias on the grids 20 and 21 is determined by the average drop between the points 22, 23 and 24, of the trans-former winding, which in turn depends upon the average current through the valves 18 and 19. The latter is determined by the drop across the cathode resistances 26, 27. Since this potential drop varies at syllabic frequency, the average bias on the grids 20 and 21, and therefore the average impedance of the valves 16 and 17 likewise varies at syllabic frequency to produce corresponding variations in the value of the average anode potential supplied to the valves 18 and 19. In other respects the operation is similar to that of the Fig. 4 arrangement.

Potential Drop

In Fig. 8 the average potential drop across the valves 16 and 17 is represented as the potential E_1 , and the average anode potential supplied to the valves 18, 19, is represented by the potential E_2 . As illustrated in this figure, the magnitude of the potentials E_1 and E_2 changes with change of the input signal strength. The sum of the potentials E_1 and E_2 neglecting the small bias voltage drop across the resistors 26 and 27 for a given input signal strength must, of course, equal the potential of the anode source which is assumed constant. The relation between the strength of the output signals, and the strength of the input signals is given by the line E₃ of Fig. 8, while E4 represents the relation between the input signal strength and the maximum output of the amplifier as thus limited.

Fig. 6 shows a modification of Fig. 5, in which a single high-mu valve 28, having similar operating characteristics to the valves 16 and 17 of Fig. 5, has its anode 29 connected to the positive conductor and its eathode 30 connected to the centre-tap 31 of the primary winding 32 of the output transformer. The taps 33, 34 are connected, respectively, through the anode and cathode 35 and 36, respectively, of diode rectifier 37, and through a filter

Audio frequency signal strength Max.

Fig. 8.-Graph representing relative strength of output and input signals.

resistance 38 and condensers 39, 40, to the control grid of the valve 28. The filter 38, 39, 40 is arranged to filter from the potential supplied to the grid 41, all potentials having a frequency higher than the syllabic range of frequencies. The double-diode rectifier 37 has the advantage that it doubles the lowest audio-frequency signal com-

ponents. The control potential supplied to the grid 41, through the rectifier 37, controls the anode-to-cathode impedance of the valve 28, so as to adjust the anode potential supplied to the anodes of the valves 18 and 19. The operation of this modification differs only from Fig. 5 in the method of controlling the impedance of the valve 28 included between the positive conductor, and the centre-tap 31 of the transformer winding 32.

This system was developed in the labora-tories of the General Electric Company, Schenectady, New York.

September, 1941

G.E.C. Sound Reproduction An Improved Version of the "Microgram" Amplifying Equipment

THE General Electric Co., Ltd., recently announced details of a modified and improved version of their "Microgram" amplifying equipment. The new "Microgram " embodies a three-

stage low-frequency amplifier with microphone and gramophone inputs, an induction gramophone motor, a moving-iron armature pick-up, a transverse-current type micro-phone and 50ft. of connecting cable, all within a portable oak table type cabinet, measuring $20_{\frac{1}{2}ins}$. by 17ius. by $13_{\frac{1}{2}ins}$. fidelity model, the polarising current for which is supplied by a special circuit incorporated in the amplifier. Thus the need for external batteries or other external D.C. sources is obviated. Normally, the microphone is resiliently mounted on a neat handgrip, but it is easily detachable, so that if desired it may be used in conjunction with a table or floor type stand. Details of these stands are available on request.

Compact and Portable

Being compact, portable and particularly bust, the "Microgram" is ideal for robust, installation in factories, public halls and the like, where rough usage is likely to be the rule rather than the exception. A leaflet (No. BC. 9330), giving fuller details is available from The General Electric Co., Ltd. Magnet House, Kingsway, London Ltd., Magnet House, Kingsway, London, W.C.2.

Problem No. 423

Problem No. 423 BAXTER'S three-valve mains receiver, using an A.C./Pen. in the output stage, suddenly stopped functioning. He checked the anode current consumption of each valve in turn and found that no current was being taken by the output valve, although a meter connected from the anode of this valve to H.T.— indicated that maximum anode voltage was being applied. He therefore suspected the valve, but when this was tested it was found to be in perfect order, and further tests indicated that the heater voltage was normal. What was the trouble? Three books will be awarded for the first three correct solutions opened. Entries must be addressed to The Editor, PRACTICAL WIRELESS, George Newnes, Ltd., Tower House, Southamp-ton Street, Strand, London, W.C.2. Envelopes must be marked Problem No. 423 in the top left-hand corner, and be posted to reach this office not later than the first post on Monday, August 18th, 1941.

Solution to Problem No. 422

H.F. oscillation was occurring in Roberts' receiver owing to inadequate screening of the H.F. com-ponents. It is difficult to provide sufficiently effective screening when an efficient H.F. pentode is used, however, and the best remedy is to provide a grid bias volume control so that the efficiency of the first valve can be controlled. The following three readers successfully solved Problem No. 421, and books have accordingly been forwarded to them : J. R. Pearce." The Lord Nelson," Silsoe, Beds; H. J. Warren, 139, Rectory Rond Grays, Essex; J. Marland, 14, Pole Street, Preston, Lauce.

The new G.E.C. "Microgram" 14-watt amplifier.

The amplifier employs a MH41 resistance capacity coupled to a MH4, which is transformer-coupled to two PX25 arranged in push-pull in the power stage. The H.T. rectifier is an MU14. All are Osram valves.

Dual input circuits permit the use of either microphone or pick-up, either in-dependently or mixed, and both inputs can be independently controlled by volume controls located on a small panel let into the front of the cabinet. The only other control is the mains switch.

Power Handling Output

The maximum power handling output is approximately 14 watts, and the output circuit is so arranged that low impedance speakers of either 15 ohms or 7.5 ohms may be used. The microphone is a new high September, 1941

The Choice of Critics

BULGIN

FOR

KNOBS

The largest and most extensive

range in the world. Over fifty models from which to choose. All sizes and shapes, for different classes of work or operation.

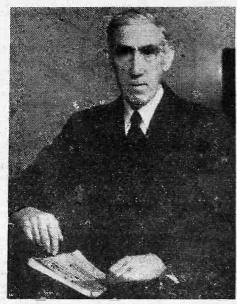
Nearly every type has brassinsert, steel grub-screws are fitted, well sunk. For 0.25 in. Φ

shafts and other sizes. Finely

moulded and highly polished.

The highest class Instruments

use Bulgin Knobs exclusively.


COMMUNICATIONS DEPEND

Sir Frank Gill, K.C.M.G., O.B.E., M.I.E.E., who had conferred upon him the honour of Knight Commander of the Order of St. Michael and St. George in the King's Birthday Honours List, was invited by the Postmaster-General to a small reception at the General Post Office recently, in honour of his knighthood. Several distinguished guests were present.

It is interesting to recall some of the principal features of Sir Frank Gill's long and distinguished career in the telephone industry. He joined the staff of the United Telephone Company in London at the age of 16, and rapidly rose to the important post of Engineer-in-Chief of the National Telephone Company.

This post demanded not only high scientific attainments and engineering ability, but abundance of tact, patience and diplomacy. Before its transfer to the Post Office the National Telephone Company had to withstand strong competition, and at the same time to weather many storms owing to frequent changes in Government policy.

Sir Frank Gill.

In fact, the only constant factor in the situation was the Government's determined and consistent deduction of 10 per cent. from the company's earnings. On that point alone there was no vacillation or change in policy.

After the transfer to the Post Office Sir Frank visited extensively what are commonly called "furrin" parts. He travelled as a consulting telephone engineer in the U.S.A., South America, Portugal and Turkey.

But perhaps his greatest achievement came after his Presidential address to the Institution of Electrical Engineers in 1922. In that address he outlined the far-reaching international scheme whereby long-distance telephone circuits would be made possible throughout the continent of Europe.

Barry Kay has, for the time being, relinquished his position as radio sales manager of E. K. Cole, Ltd., in order to join the Board of Trade. - Mr. Kay has been appointed Deputy Controller of Factories and Storage Premises for the South-western Area, and he took up his new duties at the beginning of June.

ON SMALL PARTS....

IN countless instances quite intricate pieces of apparatus are wholly dependant on the proved reputation and reliability of their component parts.

All products from the House of Bulgin are pre-eminent for superior design and workmanship, and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

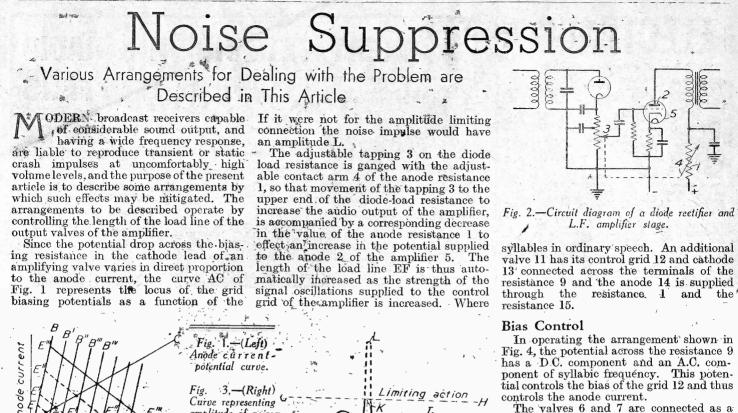
That is why every manufacture of national importance incorporates Bulgin components.

Let us send you

Our new 128 pp. Catalogue No. 164-PW, fully illustrated and with technical and dimensional data. A valuable and comprehensive reference list.

Price 9d., post free.

ALWAYS DEPEND ON



375

PRACTICAL WIRELESS

Séptember, 1941

the

anode potential. The lines EF, E'F', etc., represent the load lines, the slope of which is a function of the output-circuit impedance determined by the particular valve employed. The anode swing of the valve is limited to the length of the line EF, E'F' (the length of which is a function of the anode potential) being limited at the abscissa axis by the anode-current cut-off; and at the line AB by grid current. Thus, the length of the load line may be controlled by adjusting the anode voltage.

potential

Curve representing

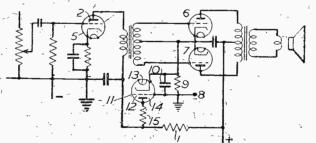
amplitude of noise

impulšę.

Δ

Anode

372


L.F. Amplifying Stage Referring now to Fig. 2, a conventional diode rectifier and low-frequency amplifying stage is shown, and it will be evident that by changing the value of the anode circuit resistance 1, the potential supplied to the anode 2 may be adjusted at will to control the length of the load line EF. E'F', etc., and so limit the maximum amplitude of signal or noise oscillations.

In Fig. 3 the broken line GH represents the maximum amplitude which signal or noise oscillations may have for a particular value of the anode resistance 1. If the amplitude represented by the line GH is so high that the signal oscillations, the envelope of which is represented by the Solid line I, do not exceed the amplitude GH, then the signal oscillations will be reproduced in the output circuit. When, however, the input contains a transient noise impulse represented by the curve L, the maximum amplitude of the noise impulse occurring in the output circuit is limited to the amplitude GH as shown at K.

the received signal is subject to fading, the automatic volume control of any preceding HF amplifier should have a flat characteristic for optimum noise reduction.

Automatically-operating Circuits

Figures 4, 5 and 6, show automaticallyoperating circuits. An output amplifier stage in Fig. 4 is constituted by push-pull connected valves 6 and 7, the cathodes of which are connected to the negative terminal 8 of the anode potential supply

through a resistance 9 which is shunted by a condenser 10 having a capacity to provide a low impedance in comparison to that of a resistance at twice the lowest audio freresistance at twice the lowest audio ire-quency supplied to the amplifier, and yet to have a high impedance at syllabic frequencies. By syllabic frequencies are meant that range of frequencies from zero to approximately 30 c.p.s which is the frequency range of the occurrence of

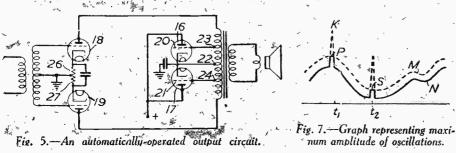
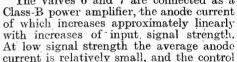



Fig. 5.-

The valves 6 and 7 are connected as a

current is relatively small, and the control grid 12 consequently has a small negative bias. The anode-current of the valve 11 at this instant is relatively large, and in flowing through resistance 1 produces a large voltage drop which in turn greatly reduces the potential supplied to the anode 2 of the valve 5. The length of the load line EF (Fig. 1) for the value 5 is, therefore, greatly decreased during periods of low signal strength. The reduction of the permis-sible anode swings is thus effected automatically.

As the strength of the audio signal increases, the anode current of valves 6 and 7 also increases, giving an increased drop across-resistance 9, and causing an increase in the negative bias potential applied to the grid 12. The consequential decrease in anode current of the valve 11 results in a decrease in the drop across the resistance 1 so that the potential, on the ancde 2 is increased giving a longer load line EF for the valve 5.

(Continued on page 374)

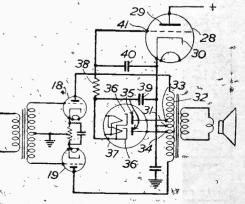


Fig. 6.—A modification of the circuit given in Fig. 5, showing how a high-mit value is incor-Fig. porated.

Fig. 4.—Circuit diagram of an output amplifier stage.

ELECTRAD

All sizes. From one cell to large batches. Westinghouse 1, 2 and 4 circuit chargers. R.C.G.1, etc., in track

stock. METERS. Weston and Turner mov-ing coil, flush 2in. dial, 0-50 m.a., also 0-200 m.a., new, 3in. dial, moving coil meters, 0-1 m.a. At list prices. Elliott Model 108 Ammeter and Rheostat in case, bargain, 37/6. Meters scarce and delivery slow, so send enquiries early.

Signal Gear MORSI: KEYS. Type B.I. a strong key. 5/-. Bakelite base, type M. 6/6. A first-class key type P.F., plated fittings, well-balanced. 9/6. The best key available is Type IV. 12/6. Special Government extending folding Fuller Service Key, few only, 17/6.

The service Key, few only, 17/6. BUZZERS. Bakelite-cased prac-tice buzzers, 3/6. Neat brass-cased Buzzer, 4/6. Heavy type, Bakelite cased, 5/6. D.3 Buzzers, multiple (windings, no con-tacts, 5/. Cambridge - Townsend High-Note Model, "T" diaphragm blade, platinum contacts. Smallest Buzzer made. 10/-. RECEIVERS for Signals; powerful L.R. metal-clad receiver. fitted no-fiare horn. Dictograph make. amplifeb buzzer 'phone signals; 7/6. TELEPHONIS. We are often asked for the modern bakelite handcoms. and can now offer a few of the G.P.O. type in brown at 27/6 and cradle stand, 3/6. Midget L.R. Impedances, iron-cored, 2-coil, 'phone-type. 2/3. MORSE Inker Tape Recorders for sigs. on paper tape. Have some new captured contraband, latest continental high-speed model. Bargain at 28/10/-. MIKES, Weala-cladj Mikes, can be used as they are or in a case 5/-. G.P.O. Mile buttons cnealing waterd

MIKES. Metal-clad Mikes, can be used as they are or in a case, 5/-. G.P.O. Mike buttons, specially selected, in a 2/6.

RELAYS. Single Pole No. 4A on-off 2-volt. phone-type,
 Si. No. 6 Relay twin bobbin, 6 volts, 25 m.a., S.P.C.O.,
 8/6. Relay movements, less contact blade, new. 2/6.
 POCKET THERMOMETERS [in metal case, useful in the Service, 2/6.

FIELD TELEPHONE CABLE. A few miles left, single

CELLING ROSES, porcelain, with 2 Scruit couplers make good connect. boxes, 6/6 doz.

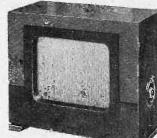
EDISON STEEL CELLS, A.8, in stock. EDISON STEEL CELLS, A.8, in stock. MAINS MAGNETS, disc type, 2-poles wound, laminated 110 volts or 220 volts; lifts Tibs., 4/6. Hand-drive alternator or magnet bell ringer. - P.M. magnets geared Gives 80 volts, 25 m.a., useful where no A.C. available., 10/6. CONDENSERS. Fixed. G.P.O., 2 M.F. smoothing, 2/-. Variable air solo Formo Condenser, .0005 mid., boxed in original carton, 2/6. VALVES. General-purpose robust valves at a low price. "Weco "Peanut Midgets, 1-vol. fila., 4-pin base, 3/6. Cossor 6-volt Power valves, AT40 4/6. Both these are Triodes. Neon lamps, standard size, letter Cathodes 230 volts, 2/6. Dynamo Bargains

G

Dynamo Bargains 10 volts. 8 to 1 amp., D.C., ball-bearing: semi-enclosed, 1.850 revs., 151b., 6in. x 5in., cheap. Carriage paid, 15/6. 200 volts, 1 amp., 21/-, 200 volts, 1; amp., 38/-DYNAMOS. Double Current Govt., cost £15. Two com-mutators, D.C., 6-8 volts. 3-5 amps. and H.T. 400-600 volts, 100 mm., 5in. dia., 12in. long, 17lbs., 4.000 revs., ball bearings, 25/-. Large size, 500 watts, 18 volts, 20 amps. and 460 volts, 200 m.a. £5. Micro Motors A.C. split phase synchronous motors, squirrel cage frotor, fin. dia. Dog-clutch drive to reduction gear frotor, fin. dia. Dog-clutch drive to reduction gear frotor, eversible, double shaft, enclosed, faminated, new. Suit model drive, remote control switching, tuning drive, etc., 8/-. Post free.

new, Shit model unve, runned with the state of the state

PLEASE NOTE NEW ADDRESS.


We have left Upper Thames Street, and our new offices adjoin our Works at Battersea, 19. Broughton Street, Queenstown Road, S.W.8, on No. 137 bus route. 2d. fare from Sloane Square. Stamped envelope for all replies, please.

Lreat yourself to this new radio experience

F it hadn't been for the war, you might to-day be the proud owner

of a new radio-enjoying a fresh thrill from your listening. Well, here's an idea. For a

Models from 21/6.

any room you like and then listen critically.

entor'

THE PERFECT EXTRA SPEAKER FOR ANY SET

The fine balance of tone, the vivid clarity of reproduction will delight you.

It will give you a fresh interest to your listening and a new pride in your home. Ask your cealer for a demonstration.

RADIO RECEIVER CIRCUITS HANDBOOK

By E. M. Squire. A useful guide to circuits for members of the radio industry and radio amateurs. It deals with the receiver in stages and combines general theory with practical information. 4s. 6d. net. Published by Pitman.

Are you going to help?

R.A.F. Radio Mechanics and everybody who knows about radio will tell you that these books are the best bookstogive you up-to-date radio knowledge. Thousands of men are studying them to-day and equipping them-selves for useful radio work immediately.

First Course in Wireless (Gives the beginner a good groundwork) 5/- net. Wireless Terms Explained (Everybody's book

Wireless Terms Explained (Everybody's book explaining radio jargon) 2[6 net.
Introducing Radio Receiver Servicing (No frills; good sound book about first prin-ciples and practice) 6[- net.
Superheterodyne Receiver (R.A.F. men must know about superhets) 4[6 net.
Radio Upkeep and Repairs for Amateurs (New recized edition of this most popular book ready shortly) about 6[- net.
Definitions and Formulae — Redio (Speaks for itsef). Slips viuto the pocket) 6d.
Radio Books List (30 books) FREE.

RADIO BOOKS YOU'LL NEED From booksellers or Pilman's, Parker St., W C.2

RADIO RECEIVER SERVICING AND MAINTENANCE

By E. J. G. Lewis. "Wireless World" says: "The book is so practical, so replete in facts, and so well arranged that the reader will gain the necessary knowledge to work in a logical manner."—It shows the service engineer what to do and just how to do it. Third Edition. Published by Pitman. 8s. 6d. net.

373

The man who enrolls for an I. C. S. Radio Course learns radio thoroughly, com-pletely, practically. When he earns his diploma, he will KNOW radio. We are not content merely to teach the prin-ciples of radio, we want to show our students how to apply that training in practical, every-day, radio service work. We train them to be successful!

INTERNATIONAL CORRESPONDENCE SCHOOLS

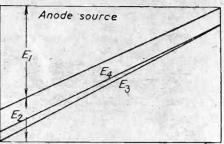
De	pt. 94A, International Buildings, Kingsway, London, W.C.2.
Ple	ase explain fully about your Instruction in subject marked X.
	Complete Radio Engineering
	Radio Service Engineers
	Elementary Radio
	Television
If ind	you wish to pass a Radio examination, icate it below.
	Institute of Radio Engineers
Pro	P.M.G. Certificate for Wireless Operators visional Certificate in Radio Telephony and Telegraphy for Aircraft City and Guilds Telecommunications
Na	me Age
Ad	dress
•••	(Use penny stamp on unsealed envelope.)

Limiting Action

The broken line M in Fig. 7 represents the instantaneous limiting action, and therefore, the maximum amplitude of oscillations permitted in the output circuit of the valve 5. The extent of the limiting action varies with the strength of the syllabic frequency component appearing across the resistance 9, the envelope of this component being represented by the solid line N. A transient static impulse occurring at the time t_1 is limited in amplitude to the value P. Without the limiting action, this static impulse would appear in the output circuit with the amplitude R. A second transient signal impulse appearing at the time t_2 is limited to a smaller amplitude S since the strength of the syllabic frequencies appearing in the output circuit at the time

 t_2 is smaller than at the time t_1 . In the arrangement shown in Fig. 5, the operation is similar to that of Fig. 4, except that the change in anode potential for the limiting audio-frequency amplifier is effected by a valve in series with the anode supply.

Class B Amplifiers


A pair of high mu-type valves 16 and 17, such as are used as Class-B power amplifiers, are employed for this purpose. The anode impedance of these valves changes rapidly with changes in grid potential. Assuming that an input signal produces an increase in the anode current of the valve 18, then the anode current of the valve 19 will decrease, causing the bias potential on the grid of valve 17 to become more positive, thereby decreasing the anode/cathode impedance of this valve. A larger anode current now flows through the valve 17 to supply the increased instantaneous value of anode current required by the valve 18. Similarly, increases in the anode current of valve 19 are supplied through the valve 16.

The average bias on the grids 20 and 21 is determined by the average drop between the points 22, 23 and 24, of the trans-former winding, which in turn depends upon the average current through the valves 18 and 19. The latter is determined by the drop across the cathode resistances 26, 27. Since this potential drop varies at syllabic frequency, the average bias on the grids 20 and 21, and therefore the average impedance of the valves 16 and 17 likewise varies at syllable frequency to produce corresponding variations in the value of the average anode potential supplied to the valves 18 and 19. In other respects the operation is similar to that of the Fig. 4 arrangement.

Potential Drop

In Fig. 8 the average potential drop across the valves 16 and 17 is represented as the potential E_1 , and the average anode potential supplied to the valves 18, 19, is represented by the potential E₂. As illus-trated in this figure, the magnitude of the potentials E_1 and E_2 changes with change of the input signal strength. The sum of the potentials E_1 and E_2 neglecting the small bias voltage drop across the resistors 26 and 27 for a given input signal strength must, of course, equal the potential of the anode source which is assumed constant. The relation between the strength of the output signals, and the strength of the input signals is given by the line E₃ of Fig. 8, while E4 represents the relation between the input signal strength and the maximum output of the amplifier as thus limited.

Fig. 6 shows a modification of Fig. 5, in which a single high-mu valve 28, having similar operating characteristics to the valves 16 and 17 of Fig. 5, has its anode 29 connected to the positive conductor and its cathode 30 connected to the centre-tap 31 of the primary winding 32 of the output transformer. The taps 33, 34 are connected, respectively, through the anode and cathode 35 and 36, respectively, of diode rectifier 37, and through a filter.

Audio frequency signal strength Max.

Fig. 8.-Graph representing relative strength of output and input signals.

September, 1941

resistance 38 and condensers 39, 40, to the control grid of the valve 28. The filter 38, 39, 40 is arranged to filter from the potential supplied to the grid 41, all potentials having a frequency higher than the syllabic range of frequencies. The double-diode rectifier 37 has the advantage that it doubles the lowest audio-frequency signal components.

The control potential supplied to the grid 41, through the rectifier 37, controls the anode-to-cathode impedance of the valve 28, so as to adjust the anode potential supplied to the anodes of the valves 18 and 19. The operation of this modification differs only from Fig. 5 in the method of controlling the impedance of the valve 28 included between the positive conductor, and the centre-tap 31 of the transformer winding 32.

This system was developed in the labora-tories of the General Electric Company, Schenectady, New York.

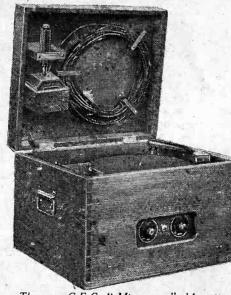
An Improved Version of the "Microgram" Amplifying Equipment

THE General Electric Co., Ltd., recently announced details of a modified and improved version of their "Microgram" amplifying equipment. The new "Microgram "embodies a three-

stage low-frequency amplifier with microphone and gramophone inputs, an induction gramophone motor, a moving-iron armature pick-up, a transverse-current type micro-phone and 50ft. of connecting cable, all within a portable oak table type cabinet measuring $20\frac{1}{2}$ ins. by 17 ins. by $13\frac{1}{2}$ ins. fidelity model, the polarising current for which is supplied by a special circuit incorporated in the amplifier. Thus the need for external batteries or other external D.C. sources is obviated. Normally, the microphone is resiliently mounted on a neat handgrip, but it is easily detachable, so that if desired it may be used in conjunction with a table or floor type stand. Details of these stands are available on request.

Compact and Portable

Being compact, portable and particularly bust, the "Microgram" is ideal for robust. installation in factories, public halls and the like, where rough usage is likely to be the rule rather than the exception. A leaflet (No. BC. 9330), giving fuller details is available from The General Electric Co., Ltd., Magnet House, Kingsway, London, W.C.2.



Problem No. 423

Problem No. 423 BAXTER'S three-valve mains receiver, using an A.C./Pen. in the output stage, suddenly stopped functioning. He checked the anode current consumption of each valve in turn and found that no current was being taken by the output valve, although a meter connected from the anode of this valve to H.T.— indicated that maximum anode voltage was being applied. He therefore suspected the valve, but when this was tested it was found to be in perfect order, and further tests indicated that the heater voltage was normal. What was the trouble? Three books will be awarded for the first three eorrect solutions opened. Entries must be addressed to The Editor, PRACTICAL WINELESS, George Newnes, Ltd., Tower House, Southamp-ton Street, Strand, London, W.C.2. Envelopes must be marked Problem No. 423 in the top left-hand corner, and be posted to reach this office not later than the first post on Monday, August 18th, 1941.

Solution to Problem No. 422

H.F. oscillation was occurring in Roberts' receiven owing to inadequate screening of the H.F. com-ponents. It is difficult to provide sufficiently effective screening when an efficient H.F. pentode is used, however, and the best remedy is to provide a grid bias volume control so that the efficiency of the first valve can be controlled. The following three readers successfully solved Problem No. 421, and books have accordingly been forwarded to them: J. R. Pearce, "The Lord Nelson," Silsoe, Beds; H. J. Warren, 139, Rectory Road Grays, Essex; J. Marland, 14, Pole Street, Preston Lancs.

The new G.E.C. "Microgram" 14-watt amplifier.

The amplifier employs a MH41 resistance capacity coupled to a MH4, which is transformer-coupled to two PX25 arranged in push-pull in the power stage. The H.T. rectifier is an MU14. All are Osram valves.

Dual input circuits permit the use of either microphone or pick-up, either in-dependently or mixed, and both inputs can be independently controlled by volume controls located on a small panel let into the front of the cabinet. The only other control is the mains switch.

Power Handling Output

The maximum power handling output is approximately 14 watts, and the output circuit is so arranged that low impedance speakers of either 15 ohms or 7.5 ohms may be used. The microphone is a new high September, 1941

The Choice of Critics

BULGIN

FOR

KNOBS

The largest and most extensive

range in the world. Over fifty models from which to choose. All sizes and shapes, for different classes of work or operation.

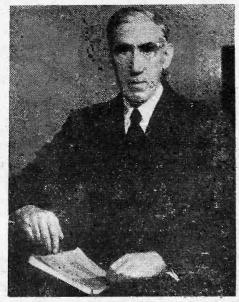
Nearly every type has brassinsert, steel grub-screws are fitted, well sunk. For $0.25in. \Phi$

shafts and other sizes. Finely

moulded and highly polished.

The highest class Instruments

use Bulgin Knobs exclusively.


COMMUNICATIONS DEPEND

Sir Frank Gill, K.C.M.G., O.B.E., M.I.E.E., who had conferred upon him the honour of Knight Commander of the Order of St. Michael and St. George in the King's Birthday Honours List, was invited by the Postmaster-General to a small reception at the General Post Office recently, in honour of his knighthood. Several distinguished guests were present.

guests were present. It is interesting to recall some of the principal features of Sir Frank Gill's long and distinguished career in the telephone industry. He joined the staff of the United Telephone Company in London at the age of 16, and rapidly rose to the important post of Engineer in Chief of the National Telephone Company.

This post demanded not only high scientific attainments and engineering ability, but abundance of tact, patience and diplomacy. Before its transfer to the Post Office the National Telephone Company had to withstand strong competition, and at the same time to weather many storms owing to frequent changes in Government policy.

Sir Frank Gill.

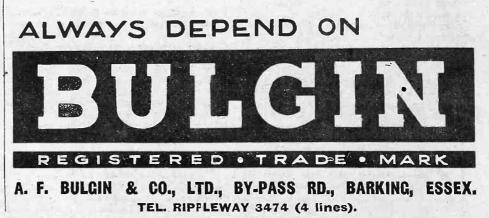
In fact, the only constant factor in the situation was the Government's determined and consistent deduction of 10 per cent. from the company's earnings. On that point alone there was no vacillation or change in policy.

¹ After the transfer to the Post Office Sir Frank visited extensively what are commonly called "furrin." parts. He travelled, as a consulting telephone engineer in the U.S.A., South America, Portugal and Turkey.

But perhaps his greatest achievement came after his Presidential address to the Institution of Electrical Engineers in 1922. In that address he outlined the far-reaching international scheme whereby long-distance telephone circuits would be made possible throughout the continent of Europe.

Barry Kay has, for the time being, relinquished his position as radio sales manager of E. K. Cole, Ltd., in order to join the Board of Trade. - Mr. Kay has been appointed Deputy Controller of Factories and Storage Premises for the South-western Area, and he took up his new duties at the beginning of June. ON SMALL PARTS....

IN countless instances quite intricate pieces of apparatus are wholly dependant on the proved reputation and reliability of their component parts.


All products from the House of Bulgin are pre-eminent for superior design and workmanship, and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

That is why every manufacture of national importance incorporates Bulgin components.

Let us send you

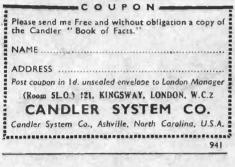
Our new 128 pp. Catalogue No. 164-PW, fully illustrated and with technical and dimensional data. A valuable and comprehensive reference list.

Price 9d., post free.

375

PRACTICAL WIRELESS

September, 1941


376

A Candler trained operator now serving in the R.A.F. says :--

". . . I should like to thank both yourself and the company for the great start which I obtained through taking your Junior Code Course. The experience which I gained from that, has kept me' miles in front' of others who relied on obsolete means of learning code,"

Post Coupon for full details of Candler Code Courses. JUNIOR Scientific Code Course for beginners. Teaches all the necessary code fundamentals scientifically. ADVANCED High-speed Telegraphing for operators who want to increase their w.p.m. speed and improve their technique.

Courses supplied for Cash or on Monthly Payment terms

RADIOLOCATION

T^{EN} thousand radio enthusiasts are urgently needed for vital "Radiolocation" duties.

If you are keen on radio, here is a wonderful opportunity for you to get into a highly specialised job and gain experience which can be of tremendous value to you after the war.

More men are also wanted for radio service with the R.A.F. Or, if you are not liable for service, there are excellent opportunities for you to earn good money from spare-time radio work.

Never before has there been such a demand for trained radio men.

We have already successfully trained many hundreds of men, and we can train you. Even if you know notbing about radio, you can study at home in your spare time, and become a qualified Radio Technician.

Now, more than ever before, the outstanding success of our method of tuition is being proved. Remember, we specialise in Radio, and our Courses are praised and approved by leading Radio Authorities.

If you wish to learn modern radio or radio mathematics thoroughly, waste no time, but bost coupon at once for free details of our Home-Study Courses.

T. & C. RADIO COLLEGE 29, Market Place, READING.

	(post in unsealed envelope, 1d. stamp) Please send me free details of your Home-Study Radio Courses.
1	NAME
	ADDRESS
	P. 19.

Open to Discussion The Editor does not necessarily agree with the opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

Children's Broadcasts from America

SIR,—In view of the considerable number of parents of children evacuated overseas who have written to the B.B.C. complaining that they have no receiver capable of picking up the weekly S.W. children's message programmes from Canada and America, I would like to suggest to amateur radio clubs who have the necessary accommodation, that they offer to arrange reception of these stations each week, on a reliable receiver in their "headquarters," in order that local parents may not miss the few seconds which are of so great a sentimental value to them.

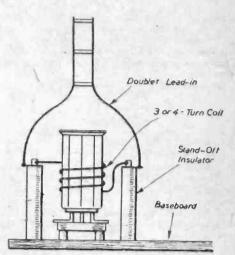
I am sure that the local evacuation authorities would co-operate wholeheartedly in passing the necessary information to the parents concerned.

I understand that Messrs. Chappell, of London, have kindly adopted this scheme, but, naturally, this is available only to those parents who can conveniently reach London.

Amateur radio fans who carried out this plan, at negligible cost to themselves, would be "doing their bit" in a highly commendable way, and I am sure that the general public would be grateful for this service.—PETER JACKSON (Letchworth).

Using a Doublet Aerial with a 4-pin Coil

SIR,—In past issues of PRACTICAL WIRELESS I have seen numerous suggestions for adapting a doublet-type aerial for use with a 4-pin short-wave coil. The following method I have used will be of interest to fellow short-wave experimenters.


First obtain a foot or two of 14 gauge tinned copper wire, and from this wind a three or four-turn coil, the diameter of which will allow a jin. clearance when the 4-pin coil is inserted in its holder. Next, two ceramic stand-off insulators, 1 jin. high (Eddystone, cat. No. 1029) are mounted, one on either side of the coilholder. To these two insulators, the 3 or 4-turn coil is mounted (as shown). To complete the device the doublet leads are taken to the terminals of the insulators. This idea saves the former from being drilled, and possibly split as in other suggestions I have tried. The coils are easily changed, by slipping through the fixed coil and plugging into the holder.—JOHN HUNTER (Leigh, Lancs.)

Our Useful Handbooks

SIR, -I am now a radio-mechanic attached to the R.A.F., and I owe a lot to PRACTICAL WIRELESS for the numerous articles, etc., from which I picked up a lot of the experience I now have.

While in Northern France and Belgium during the early part of the war, my wife used to send my copies of "P.W." over, and through these I kept in touch with my old hobby. Your radio publications appeal to me very much, and up to now I have "Radio Engineer's Vest-pocket Book," "P.W. Service Manual," "Practical Mechanics Handbook," "Short - Wave Manual," and "Television and Short-Wave Handbook," this latter one being published some years back. I must compliment Mr. F. J. Camm on the very clear and well-illustrated chapters in the "P.W. Service Manual." The others are squally well written, and form part of my regular reading matter.

Wishing PRACTICAL WIRELESS continued and deserved success.-W. E. WILLIAMS (Rhyl).

Method of using a doublet aerial with a 4-pin coil, as described by J. Hunter.

S.W. Station Identification

SIR,—With reference to Mr. Whaley's letter, and also to John Parkin, I have to inform them that the station referred to is the N.B.B.S. (New British Broadcasting Station).

It is German controlled, and situated, to the best of my knowledge, in the Black Forest.

The programme starts by playing "Loch Lomond" and ends by a sadly untuncful rendering of "God Save the King." The times and wavelengths have been verified, and originally this station operated on 50.63 metres, changing to 25.05 metres on May 25th, 1940. Since that date it has been increased by the two additional wavelengths of 30.77 m. and 41.07 m. I hope this information will be of use to your correspondents.—Jon's N. ELLIS (Esher).

Correspondents Wanted

C. WAYWELL, 10 Fern Avenue, Newtonle-Willows, Lancs, would like to correspond with any readers interested in S.W. work.

G. Packman, Morton Cottage, Fernhill Heath, Nr. Worcester, wishes to get in touch with a young medium wave enthusiast.

S. B. Gardiner, Cheam School, Headley, Newbury, Berks, who is a beginner in radio, wishes to get in touch with another young beginner.

Outline of Musical History-23 By Our Music Critic, MAURICE REEVE

A^T this point we can pause to consider how Beethoven's great misfortune of deafness affected him.

He was just thirty, the idol of Viennese society, financially well off, and the great hope of the musical world. How magnificently he wrestled with the awful problem must for ever be his greatest glory. From the moment that he first took counsel with himself, so his music, little by little, took on that strain of nobility, resignation, and finally sublime revelation, which became his monument and our heritage.

On October 6th he feels the end is approaching, so he writes what is known as the Heiligenstadt Will—meant for his brothers.

It must not be imagined that Beethoven had become some sort of permanent invalid. So far as we can tell for certain, he was more or less deaf in one ear, from now onwards. This meant, of course, the utmost concentration of thought if he was to continue practising the art of music. It necessarily drove him right in on himself, so that he had his own thoughts and images as his chief companion. He has to abandon piano playing as a profession, making just an occasional appearance in a new work of his, if his health at the time permitted.

A New World

He entered into a new mental and spiritual world, and, no doubt because this, the works poured forth faster, and became greater. We cannot describe them all here, or even refer to them all, opus by opus. The piano Sonata in A flat, op. 26, is, in my opinion, eminently more suited to form a landmark in his creative style than op. 22. It is altogether a great work and original to a degree. He defied convention by placing the scherzo second in the order of the movements instead of third. The first is a theme and variations, and the third a splendid funeral march. Op. 27 contains two more piano sonatas, the second being the "Moonlight." Both the second being the "Moonlight." Both re labelled "quasi una fantasia." The first movement of op. 27, No. 2, whose quiet serenity and atmospheric suggestion not only impelled the publisher to dub it "Moonlight," but must also have inspired Debussy and his school a hundred years later, is a masterpiece of philosophical reflection and economy of treatment.

Then there are the two Sonatas for piano and violin, op. 23 and 24. Quintet for two violins, two violas and 'cello, op. 29; three Sonatas for piano and violin, op. 30. "Pastoral" piano sonata, op. 28, fifteen variations for piano on a theme from "The Men of Prometheus," and the second Symphony in D, op. 36, written in the close of 1802 and first performed on April 5th, 1803. These are the chief works of the period; there are many others in smaller forms, of which examples, such as the seven Bagatelles. op. 33, are famous to-day.

" The Mount of Olives "

Nor should his vocal works be omitted. The oratorio, "The Mount of Olives," was written at this time. It was based on the

New Testament story of Christ in the Garden of Gethsemane. Beethoven intended it to be "modern," consequently it is rather a forced hybrid and lacks the master's true spirit. It had great success on its first production. but is little known now. There were also Masses and Cantatas and numerous soli, together with large collections of settings of Scotch, Irish and Welsh folk tunes to the order of the Edinburgh publisher, Thomson. The songs "Adelaide" (1795), "Ah, Perfido!" (1796), and "In Questa Tomba" (1807) are still widely sung.

All these works, to a greater or less degree, tell of the man who has taken certain resolutions and momentous decisions for the future regulation of his life, and of his changed outlook on things. Whereas the joy of living and the winning of success seem to pervade his first pages, we are now face to face with the realisation of stern facts and the taking of enormous 'T resolves. The spirit of his own words, will grapple with fate; it shall never drag me down," and "I will as far as possible defy my fate . . ." are in every note. His slow movements have obtained that poignant loveliness that have made them so justly famous, and his allegros and rondos that turbulence and restlessness which typify the struggle which he was perpetually waging with destiny. And so we come to the end of the "first period" with the production of the second Symphony in D, op. 36.

It received its first public performance at a concert in the theatre "an der Wien," and the programme also contained the "Mount of Olives" and the third piano Concerto in C minor, op. 37, with himself as soloist. Difficult as it may be for us to imagine—we who hear all his symphonies several times every year, and with the ability that naturally gives us of comparing them in the light of historical perspective —the critics thought it inferior to the first.

We cannot be expected to prefer it to any of the mighty sequence that began with the production of the next one, but popular opinion would probably rank it as more original, if not so lovable as its forerunner. The slow movement, larghetto, is exquisite in every way, and the scherzo, its most significant movement, clearly foreshadows the one to come in the 9th.

Country Life

Mention has been made of Ludwig's love of the country and how he sought it for some of his noblest inspirations.

Several summers were spent at Hetzendorf, a picturesque village near the Imperial summer palace of Schönbrunn, where his first patron, the Elector, had found peace and quiet after having left Bonn in the tumult of the French advance. There he would forget his worries, his deafness and his loves, and wander with his sketch book in hand. Years later he visited the scene with Schlinder and pointed out his favourite scat between two leafy boughs of an old oak tree. He would seek the solitude of the forests and the glades, with which the countryside around Vienna then abounded,

and engage a couple of small rooms "far from the madding crowd," and the restraints of society and piano playing.

Masterpieces

Slowly, but surely, he was shedding the influences of the past and letting his now fully matured genius roam in all its spaciousness. The masterpieces which were to be produced in the next few years would place him, in the eyes of his contemporaries, as the greatest living musician. Certainly, even at that early date, and before the Eroica Symphony or the Kreutzer and Appassionata Sonatas had been written, there was no one living within measurable distance of him. The great names with which we now associate him had either gone or were not yet born. J. S. Bach and Handel had been dead fifty years—long enough for them to have become historical figures as we think of them. Mozart went ten years back, Schubert was five or six. Wagner, Liszt, Schumann, Chopin and Mendelssohn were still to come. Haydn alone, amongst those whom we, to-day, rank as the great musicians, was alive and he had but a few more years left. These few dates will serve to show to a remarkable degree the bridge that Beethoven formed between the classicists of the eighteenth, and the romanticists of the nineteenth, centuries.

Meeting with Czerny

About this time a youth was introduced to Beethoven who was destined to achieve fame as the bane and nightmare of five generations, to date, of piano students one Carl Czerny. He was presented by Krumpholz the violinist, and many distinguished musicians were there. Beethoven has now entered the "second"

eriod of his creative musical life. Although hitherto influenced by his forerunners, notably Mozart and Haydn, he has shown unmistakable signs of his own individuality. Whilst some of his works at this stage might almost be mistaken for theirs, more especially some melodies and passage work, there are others which no one but he could possibly have written. These may be said to include the Sonatas in A, op. 2 No. 2, E flat, op. 7, D, op. 10 No. 3, C sharp minor, op. 27 No. 2, the scherzos of the first and second Symphonies and the finale of the latter. From here onwards he journeys viâ the three piano sonatas op. 31, the violin and piano sonata in A, op. 47, the Concerto for piano sonata in A, op. 47, the Concerto for piano and orchestra in C minor, op. 37, to the third Symphony in E flat, the "Eroica," op. 55. To quote the writer in "Grove's Dictionary of Music and Musicians," "This splendid and truly astonishing second period contains the opera of 'Leonora-Fidelio,' with its four overtures; the Mass in C; six symphonies (Nos. 3 to 8), the overture to 'Coriolan'; the 'Egmont' music; the piano concertos Nos. 4 and 5 in G and E flat; the violin concerto; the Rasonmowsky quartets and those in E flat, op. 74 and F minor, op. 95; the three later piano trios; the 'Liederthe three later piano trios; the 'Lieder-kreis'; and last, but not least, a dozen piano sonatas.'

Replies to Queries

Faults in a Superhet

"I have a commercial set which has a 6A8G frequency-changer. It has a simple tuning stage, and the values are freq. chg., H.F. pen, D.D. triode, pentode output, and

"If the set is tuned to the medium and "If the set is function in the rushing sound and an intermittent whistle similar to morse. There is silence on the short waves. If I put my finger on the top cap of the 6A8G there can be heard very faintly one or two stations. This latter effect was only stations. This latter effect was noticeable after replacing the valve.

"Can you advise me as to the cause of the trouble?"—A. T. Bullock (Rochester). T is very difficult to give an accurate diagnosis of the fault in your superhet without having more complete details or making a few simple tests, but it would appear likely that the coils or wave-change switching arrangements are at fault. On the other hand, the anode or screening-grid circuits of the frequency-changer could be disconnected, in which case they may give the indications you described.

We suggest that you test for voltage between earth and the anodes and grids of this valve, and also check the current flowing to each of these electrodes. You might also make a careful examination of the wave-change switches and test for continuity of the coil windings-including continuity through the switches.

Make especially sure that there are no breaks in the aerial-tuning and input circuits to the first detector, since it is likely that an open circuit will be found somewhere in this region.

QSL Cards

"Being a new S.W.L. to DX I am unacquainted with QSL cards. Could you please furnish me with information about them? "-T. Russon (Dudley).

OSL cards are acknowledgments sent by transmitting stations, both commercial and amateurs, of reports sent to them of their transmissions, etc. At the present time it is no longer legal to send such reports overseas. Brief essential items are required, i.e., type of receiver, weather, time, strength and quality of signal, inter-ference and type of aerial in use. Normally a report is sent on logging a station. International Reply Coupons should be sent to cover the cost of reply.

All-wave Tuner

"While looking through your back numbers, I noticed in an issue of P.W. dated 7-10-33, an article headed 'All About All-wave Tuners.' Suggestions and diagrams are embodied for an L.M.S. coil. but no length or gauge of wire was speci-fied. Can you supply me with these particulars as I should like to wind my own unit?"—L. West (Penge).

THE gauge of wire, number of turns, and the size of the former all depend upon the wave-ranges required from the tuner. There are no long-wave stations at the moment, but we presume you wish to wind a tuner to cover what may be termed the usual ranges, the short-wave band covering from 15 to 50 metres; medium waves from about 200 to 550; and the long waves from 1,000 to 2,200 metres. The tuning condenser

would be a standard .0005 mfd., but should be of good design in order to give a good performance on the short waves. former should be 21 in. in diameter, and about 6in. in length, and if you can obtain an ebonite tube and turn slots in it, so much the better. Failing that, use a Paxolin tube and make artificial slots by sticking narrow strips of paper round the tube, winding the coil in the spaces left between the strips.

For the short-wave grid winding use 20 S.W.G. tinned-copper wire, 4 turns, spaces about 1/32in. The S.W. reaction winding should be 15 turns of 28 D.S.C.; the S.W. aerial winding 2 turns of the 20-gauge wire; the medium-wave grid

RULES

We wish to draw the reader's attention to the fact that the Queries Service is Intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on general wireless matters. We regret that we cannot, for obvious reasons— (1) Surphy airwith discussion in the complete

- Supply circuit diagrams of complete multi-valve receivers.
 Suggest alterations or modifications of receivers described in our contem-
- poraries. (3) Suggest alterations or modifications to
- commercial receivers.
- (4) Answer queries over the telephone.
 (5) Grant interviews to querists.

A stamped, addressed envelope must be enclosed for the reply. All sketches and drawings which are sent to us should bear the name and address of the sender. Requests for Blueprints must not be enclosed with queries as they are dealt with by a separate department.

Send your queries to the Editor, PRACTICAL WIRELESS, George Newnes, Ltd., Tower House Sonthampton Street, Strand, London, W.C.2. The Coupon must be enclosed with every query.

winding 45 turns of the 28 S.W.G.: the reaction winding next on the former being 100 turns of a finer gauge, say 32. The spacing between this and the M.W. coil may be found critical, as the reaction winding has to act on both medium and long waves. About $\frac{1}{2}$ in. or $\frac{3}{4}$ in. should therefore separate them, and turns taken off if it is found that reaction is too fierce on medium waves. The long-wave winding should be slipped into three sections, using the 32-gauge wire, and putting 50 turns into each section. These turns may be piled up haphazard, but the M.W. grid winding should have the turns laid careinto each section. fully side by side-after the manner of cotton on a cotton-reel. Use a good type of low-capacity switch (or switches) for wave-changing.

Microphony in S.W. Converter

"I recently made a short-wave superhet converter, operated in conjunction with a 5-valve mains receiver. It has operated perfectly as regards sensitivity, and I have received stations from all over the world. Its main fault about which I should like your advice, is a certain amount of instability in the form of microphony when the volume is increased.

"I have used the converter in conjunction with other receivers, and in all cases microphony has resulted on turning up the volume. None of these receivers show any signs of microphony when used on other wavebands even on full volume. The fault therefore points to a microphonic detector

valve in the converter, but padding or gripping this valve does not appear to have any effect on the fault. Can you please advise me?"—H. Varley (Darlington). IT is quite possible for microphony to be experienced when receiving short ways experienced when receiving short waves. in spite of the fact that such trouble is absent on medium and long waves. This is due to the higher frequency and the general characteristics of short wave detection. The interference need not be confined to

the detector valve, although this is the most common source; variable condensers should also be suspected, and, if necessary, be mounted on rubber buffers. Excessive anode volts on the detector can produce adverse effects; therefore, in addition to the usual precautions, make sure that detector operating conditions are correct, and that the oscillations generated are not too powerful.

Amplifier Modification

"I have built an amplifier, using direct coupling with a PX4 triode as output valve from a circuit you published some time ago. I was wondering if the excellent quality obtained with this arrangement could be further improved by using two PX4's in push-pull.

The only way I can see of doing this is to tap off the inverse phase from the bias resistor of the driver valve, but I do not know if the signal amplitude applied to the grid valve fed from the driver cathode would be the same as that of the other valve. Will you please let me have your opinion on the matter?"-L. McGee (Bristol):

WE cannot advise from experience on the suggested amplifier modification you propose, but we do not consider that it would prove very satisfactory. There would be many practical difficulties in balancing the output valves, and even if the method could be made successful we should anticipate that a good deal of experimental work would be necessary. We should be more inclined to favour

the use of parallel output valves-with suitable provision for loading themor a complete change-over to a paraphase arrangement.

Resistance of Headphones

"I want to make some experiments with crystals and a crystal set I have just made. Does it make any difference what resistance the headphones have? 2,000 and 4,000 ohms seem to be used indis-criminately."—Howard Gomerville (Oxford). PHONES of 2,000 or 4,000 ohms are quite satisfactory. The latter are more sensitive, but less robust from the point of view of current carrying capacity. With a crystal receiver, this does not enter into the question, as the rectified signal is minute and no standing current-as in the case of a valve-is present.

Fitting Tone Control to Oscillator .

"I am desirous of putting a tone control on my L.F. oscillator. Will you please advise me how I can do this ? "-D. Doland (Norbury).

THE tone can be varied by fitting a small condenser across the grid and L.T. negative. Values must be determined by tone required. A similar effect can be obtained by fitting a filament rheostat in one lead to the filament of the valve. A value of 6-10 ohms will be satisfactory.

The coupon on page iii of cover must be attached to every query

Practical Wireless BLUEPRINT SERVICE

PRACTICAL WIRELI	ESS	No. of
	Issue.	Blueprint.
CRYSTAL SETS Blueprints, 6d. each.	3.1	Dillet
1937 Urvstal Receiver	27.8.38	PW71 PW94
STRAIGHT SETS. Battery	Covate	d.
One-valve : Blueprints; 1s. each.		PW31A
	19.2.38	PW85
The "Pyramid " One-valver (HF Pen)	27.8.38	PW93
Two-valve : Blueprint, 1s.	9	
The Signet Two (D & LF)	24.9.38	PW76
Three-valva: Blueprints, 1s. each.		
Selectone Battery Three (D, 2 LF (Trans))		PW10
Sixty Shilling Three (D, 2 LF (RC & Trans))	. <u></u>	PW34A
Leader Three (SG, D, Pow) Summit Three (HF Pen, D, Pen)		PW35 PW37
Summit Three (HF Pen, D, Pen) All Pentode Three (HF Pen, D (Pen), Pen)	1	PW39
Hall-Mark Three (SG, D, Pow) Mall-Mark Three (SG, D, Pow) Mall-Mark (adet (D, LF, Pen (RC)) F. J. Camm's Silver Souvenir (HF	_	PW41 PW48
F. J. Camm's Silver Souvenir (HF		
Pen, D (Pen), Pen) (All-Wave Three)	-	PW49
Cameo Midget Three (D, 2 LF (Trans))		PW51
1936 Sonotone Three-Four (HF Pen, HF Pen. Westector, Pen)	_	PW 53
Battery All-Wave Three (D, 2 LF (RC))	12-	PW55
The Monitor (HF Pen, D, Pen) The Tutor Three (HF Pen, D, Pen) The Centaur Three (SG, D, P)	-	PW61 PW62
The Centaur Three (SG, D, P) F. J. Camm's Record All-Wave	- 21	PW64
Three (HF Pen, D, Pen)	1 <u>—</u> 1	PW69
Three (HF Pen, D, Pen) The "Colt" All-Wave Three (D, 2 LF (RC & Trans)) The "Rapide" Straight 3 (D, 2 LF (RC & Trans)) F. J. Camm's Oracle All-Wave Three (HF Inet Ran)	18.2.39	- PW72
The "Rapide" Straight 3 (D, 2 LF (RC & Traus))		PW82
F. J. Camm's Oracle All-Wave Three (HE Det Pen)		PW78
1938 "Triband" All-Wave Three	1.15	PW84
Three (HF) Det, Pen) 1938 "Triband " All-Wave Three (HF Pen, D, Pen) F. J. Camms "Sprite" Three (HF Pen, D, Tet)	26.3.38	PW87
	20.0.08	
(SG, D (Pen), Pen) F. J. Camm's "Push-Button"		PW89
Three (HF Pen, D (Pen), Tet)	3.9.38	PW92
Four-valve : Elueprints, 1s. each. Fury Four (2 SG D. Pen)	1	PWII
Fury Four (2 SG. D, Pen) Beta Universal Four (SG, D, LF, Cl. B)		PW17
Nucleon Class B Four (SG, D		PW34B
(SG), LF, Cl. B). Fury Four Super (SG, SG, D, Pen)	- 21	PW34C
Ballery Dan-Mark + (DD Len,	÷	PW46
D, Push-Pull) F. J. Camm's "Limit" All-Wave Four (HF Pen, D, LF, P) "Acute" All-Wave 1 (HF Pen, D	-	PW67
"Acme" All-Wave 4 (HF Pen, D (Pen), LF, Cl. B) The "Admiral" Four (HF Pen, HF Pen, D Pen (RC)	12.2.38	PW83
The "Admiral" Four (HF Pen,	3.9.38	PW90
IIF Ten, D, Ten (10)	0.0.00	1 11 50
Mains Operated. Two-valve : Blueprints, 1s. each.		DUCTO
Two-valve : Blueprints, 1s. each. A.C. Twin (D (Pen), Pen) A.CD.C. Two (SG, Pow) Selectone A.C. Radiogram Two (D Pow)	-	PW18 PW31
Selectone A.C. Radiogram Two (D, Pow)	1	PW19
Three-valve : Blueprints, 1s. each Double-Diode-Triode Three (HF		
Pen, DDT, Pen)		PW32
D.C. Ace (SG, D, Pen)	Ξ.	PW25 PW29
A.C. Leader (HF Pen, D, Pow) D.C. Premier (HF Pen, D, Pen)	7.1,39	PW35C PW35B
Donne-Mole Finde Tinde (III Pen, DT, Pen) D.C. Ace (SG, D, Pen) A.C. Three (SG, D, Pen) A.C. Leader (HF Pen, D, Pen) D.G. Premier (HF Pen, D, Pen) Unique (HF Pen, D (Pen), Pen Armada Mains Three (HF Pen, D, (Pen)		PW36A
(Pen) K. J. Campu's A.G. All-Wave Silver		PW38
F. J. Camm's A.C. All-Wave Silver Souvenir Three (HF Pen, D, Pen) "All-Wave" A.C. Three (D, 2		PW50
LECREN		PW54
A.C. 1936 Sonotone (HF Pen, HF Pen, Westector, Pen) Mains Record All-Wave 3 (HF	-	PW56
Mains Record All-Wave 3 (HF Pen, D, Pen)	· · ·	PW70
the second s	. 19	
Four-valve : Blueprints, 1s. each. A.C. Fury Four (SG, SG, D, Pen) A.C. Fury Four Super (SG, SG, D,	. —	1 W 20
Pen) A.C. Hall-Mark (HF Pen, D,	-	PW34D
Push-Pull) Universal Hall-Mark (HF Pen, D,	-	PW45
Push-Puli)		PW47

-			10	السياق ا
	CIIDI	ERHETS.		1.1
Bat	tery Sets : Blueprints	. 1s. each.	1.1	PW40
F. J	. Camm's 2-valve Suj	pernet		PW52
A.C D.C	ns Sets : Blueprints, . £5 Superhet (Three- . £5 Superhet (Three-	valve) valve)	Ξ	PW43 PW42
Uni	versal £5 Supernet	(Infee		PW44 PW59
F. J F. J	Camm's A.C. Super Camm's A.C. Super Camm's Universal : et 4 malitone'' Universal]	£4 Super-	=	PW60 PW73
	r-valve : Double-side		, 1s. 6d.	1 11 10
Pus Pus	h Button 4, Battery h Button 4, A.C. Mai	ns Model	22.10.38	PW95
One	SHORT-WAVE SE -valve : Blueprint, 1		ry Operate	
Sin	ple S.W. One-valver	•••••	23.12.39	PW88.
Two Mid The	o-valve: Blueprints, lget Short-wave Two "Fleet" Short-w D (HF Pen), Pen)	(D. Pen) ave Two		PW38A PW91
The	ee-valve : Bluearints	. 1s. each.		
11	sG. D, Pow)		+ /	PW30A
1	Prefect 3 (D, 2 LF rans)) Band-Spread S.V			PW63
The	HF Pen, D (Pen), Per	n)		PW68
The	POR POR	TABLES.		
F.	ee-valve : Blueprints J. Camm's ELF TI Portable (HF Pen, D,	Pen)	_	PW65
Par	vo Flyweight Midget SG, D, Pen)	Portable	3.6.39	PW77
For	r-valve : Blueprint.	1s		
" I. (mp'' Portable 4 (D Pen))		-	PW86
Biu	corint, 1s.	LLANEOU	5.	PW48A
	V. Converter-Adapter		ELESS MA	
- Ritt	ATEUR WIRELESS CRYS eprints, 6d. cach.			
For	r-station Crystal Set		23.7.38	AW427 AW444
150)-mile Crystal Set			AW450
On 13, 1	STRAIGHT SE e-valve : Blueprint, 1 B.C. Special One-valv	S.	ry Operate	d AW387
Tw	o-valve : Blueprints, lody Ranger Two (D, ll-volume Two (SG dd	1s. each. Trans)		A W388
Fu	ll-volume Two (SG de cerne Minor (D, Pen)	et, Pen)	Ξ.	AW392 AW426
A .	Modern Two-valver	•• ••		WM409
£5 La	ree-valve : Blueprint 5s. S.G. 3 (SG, D, Tra cerne Ranger (SG, D, 5s. Three : De Lux	ans) Trans)	= .	AW412 AW422
1.) (1.)	SG. D, Trans) cerne Straight Thre	e (D. RG.	19.5.34	AW435
r	(rone)			AW437 WM271
Sir Ec	ansportable Three (SG, nple-Tune Three (SG, onomy Pentode Thre	D, Pen) ee (SG, D	- T.	WM327
	V M ' 1934 Standa	rd Three		WM337
£3	SG, D, Pen) 3s. Three (SG, D, Tr 35 £6 6s. Battery T	ans)	_	WM351 WM354
19	D, Pen)	n)		WM371 WM389
Ce	D, Pen) P Three (Pen, D. Per rtainty Three (SG, D nitube Three (SG, D, I-Wave Wigning Thr Pen)	, Pen) Trans)	Oct. '35	WM393 WM396
Al	l-Wave Winning Thr Pen)	ce (SG, D,	-	WM400
Fo	ur-valve : Blueprints	rans)	ch.	AW370
2E Se	ur-valve : Blueprints s. Four (SG, D, RC, 1 IF Four (2 SG, D, Pe If-contained Four (S	G, D, LF.		AW421
L	Cl. B)	r (SG. D.	Aug. 55	WM331
£5	LF, Trans) 5s. Battery Four (H. ie H.K. Four (SG, SG ie Auto Straight Fou	F, D, 2 LF)	Feb. '35	WM350 WM381
T) T)	ie H.K. Four (SG, SG ie Auto Straight Fou HF Pen, DDT, Pen)	r (HF Pen,	Apr. '36	WM384 WM404
	ve-valve : Blueprints per-quality Five (2)	, 1s. Ed. ea		
	Trans)		1 1 1 1	WM320
	ass B Quadradyne (2 Class B) ew Class B Five (2 S		7	WM344
	Class B)	·· ··		WM340

11.99		
N'60	Mains Operated. Two-valve : Blueprints, 1s. each.	
W73	Mains Operated. Two-valve : Blueprints, 1s. each. Consoelectric Two (D, Pen) A.C. — Economy A.C. Two (D, Trans) A.C. — Unicern A.C. D.C. Two (D, Pen) —	AW403 WM286
W 95	CHICOIN A.C. TNO, INO (D, I (n)	WM304
	Three-valve : Blueprints, 1s. each. Home Lover's New All-Electric	
	Home Lover's New All-Electric Three (SG, D, Trans) A.C Mantovani A.C. Three (HF, Pen,	AW383
W88.	D. Pen)	WM374
	£15 15s. 1936 A.C. Radiogram (HF, D, Pen) Jcn. '36	WM401
38A	Four-valve : Bluenrints, 1s, 6d, each.	
W91	Four-valve : Blueprints, 1s. 6d. each. All Metal Four (2 SG, D, Pen) Harris' Jubilee Radiogram (HF, Mou '35	WM329
	Pen D, LF, P)	WM386
	SUPERHETS.	
30.A	Battery Sets : Blueprints, 1s. 6d. each. Modern Super Senior	WM375
W63	"L'argitar Four	WM395 WM407
W68	1035 Super Five Battery (Superhet)	WM379
	Mains Sets : Blueprints, 1s. each. Heptode Super Three A.C May '34 "W.M." Radiogram Super A.C	WM359
	"W.M." Radiogram Super A.C	WM366
W65	PORTABLES.	
W77	Four-valve : Blueprints, 1s. 6d. each. Holiday Portable (SG, D, LF,	
	(II	AW393
	Family Portable (HF, D, RC, Trans)	AW447
W86	Two H.F. Portable (2 SG, D,	W.M363
	QP21) Tyers Portable (SG, D, 2 Trans)	WM367
48A	SHORT-WAVE SETS. Battery Operat	ted.
ZINE	One-valve : Elucprints, 1s. each. S.W. One-valver for America 15.10.38	AW429
	Roma Short-Waver	AW452
V427		
V444 V450	Two-valve : Blueprints, 1s. each. Ultra-short Battery Two (SG, det, Pen)	WM402
	Home-made Coil Two (D, Pen) — Three-valve : Blueprints 1s. cach.	AW440
	World-ranger Short-wave 3 (D,	1 71-07 -
N387	RC, Trans) Experimenter's 5-metre Set (D, second	AW355
V388	Trans, Super-regen) 30.6.34 The Carrier Short-waver (SG, D, P) July '35	AW438 WM390
V392	Four-valve : Blueprints, 1s. 6d. each.	11 21000
W426 M409	A.W. Short-wave World-beater (HF, Pen, D, RC, Trans) -	AW436
	Empire Short-waver (SG, D, NC,	
W412 W422	Trans) Standard Four-valver Short-waver	WM313
W435	(SG, D, LF, P) P.W. 22.7 3	9 WM383
	Superhet : Blueprint, 1s. 6d. Simplified Short-wave Super	WM397
W437 M271	Mains Operated.	
M327	Two-valve : Blueprints, 1s. ezch. Two-valve Mains Short-waver (D.	
M337	Pen) A.C.	0 AW453
M351	Pen) A.CP.W. 13.1.4 "W.M." Long-wave Converter –	WM380
M354	Three-valve : Blueprint, 1s. Emigrator (SG, D, Pen) A.C —	WM352
M371	Four-valve : Blueprint, 1s. 6d. Standard Four-valve A.C. Short-	
M389 M393	standard Four-valve A.C. Short- waver (SG, D, RC, Trans)	WM391
M396	MISCELLANEOUS.	
M400	S.W. One-valve Converter (Price	
	6d.) Enthusiast's Power Amplifier (1/6) —	AW329 WM357
W370 W421	Listener's 5-watt A.C. Amplifier	
	(1/6) Radio Unit (2v.) for WM 392 (1/-) —	WM392 WM398
M331	Harris Electrogram battery am-	WM308
M350 M381	plifter (1/-) Do Luxe Concert A.C. Electro	
M384	gram (1/-) New Style Short-wave Adapter	WM403
M404	(1/-)	WM388 AW462
	Short-wave Adapter (1/-)	AW 456
M320	Superhet Converter (1/-)	AW457
	(1/-)	W M 405 W M 400
M344	The W.M. A.C. Short-wave Con-	
M340	verter (1/-)	WM40

Classified Advertisements

ADVERTISEMENTS are accepted for these columns at the rate of 2s. per line or part of a line. Minimum charge 4s. All advertisements must be prepaid. Each paragraph will commence with the first word in bold face capitals. All communications should be addressed to the Advertisement Manager, "Practical Wireless," Tower House, Southampton Street, London, W.C.2.

CABINETS

A CABINET for every radio purpose. Send measure-ment of chassis, etc., and say what kind of cabinet required. Stamp for reply. Inspection invited. H. L. SMITH AND CO., LTD., 289, Edgware Road, W.2. Tel.: Pad. 5891.

COMPONENTS FOR SALE

A.C. ELIMINATORS, as new, 25/-. We pay carriage. -Bunton, 12, Yewcroft Avenue, Newcastle-on-Tyrne, 5.

LITERATURE, MAPS, etc.

AMATEUR Radio Handbook. Second edition on sale. 328 pages, price 4s.-Radio Society of tion now y of Great on sale. 328 pages, price 4s.—Radio Society Britain, 16, Ashridge Gardens, London, N.13.

WEBB'S Radio Map of the World. Locates any station heard. Size 40" by 80", 4/6, post 6d. On linen, 10/6, post 6d. WEBB'S Radio Globe-12" model. Radio prefixes, zones, etc., 27/6.--Webb's Radio, 14, Soho Street, London, W.1. 'Pluone: GERrard 2089.

MISCELLANEOUS

RADIO SOCIETY OF GREAT BRITAIN invites all keen amateurs to join. Reduced war-time subscriptions. Send 1s. for current issue "T. & R. Bulletin" and details .- 16, Ashridge Gardens, London, N.13.

24-HOUR Service on all makes, particularly home-constructed sets; also American multi-tube receivers. --R. A. Radio, 62, The Broadway, N.W.7. 'Phone: -R. A. Radi Mill Hill 4313.

PUBLIC APPOINTMENTS

WIRELESS TECHNICAL INSTRUCTORS REQUIRED

IN ARMY UNITS Emoluments.—Pay Ss. 9d. per day (7 days a week). Clothing, rations and accommodation or, if this cannot be provided, allowances at authorised rates. If married and otherwise eligible family allowance payable in respect of wife and children, subject to allotment from pay. Candidates should preferably be under 35 and over 94 and—

24 and-

(a) Hold one of the following qualifications: Graduateship of the Institution of Electrical

Engineers. Final (Grade III) Certificate of City and Guilds of London Institute Examination in Radio Com-

National Certificate in Electrical Higher

Higher National Cortain Engineering. Certificate of City and Guilds of London Institute in Radio Service Work. OR

(b) Be able to pass an examination on the following syllabus :

syllabus: Simple algebra, including quadratic equations; simple trigonometrical ratios and identities; vectors. Properties of electrical currents; heating of conductors; magnetic fields; unit of current; Ohm's Law; resistance in series and parallel; potentiometers. Magnetic effect of current; fields due to parallel wires; field due to a solenoid; electro-magnets. Meters.

Meter

Induction ; effect of rotating a coil in a magnetic field

Mutual and self induction and inductance; fect of inductance on growth and delay of effect current.

current. Capacity; charging storage and discharge of condensers; through resistance and inductance. Alternating currents; vector diagrams; effect of resistance variation; effects of L and C in A.C. circuit; phase difference of currents; resonance in a series circuit; parallel circuit of L and C; Q

factor. Elementary knowledge of valves; simple theory of amplifiers; oscillators and detectors; general

Suitable Candidates will be interviewed at local centres, and, if successful, will be enlisted and appointed Acting Sergeant Tradesman. For those who are on the Schedule of Reserved Occupations, special arrangements will be made to enable them to be enlisted. In the event of any applicant found to be reserved under Schedule of Reserved Occupations special application will be made for relaxation of the Schedule. No guarantee can be given that this application will be successful.

Application Forms may be obtained by post card from the Under Sceretary of State. The War Office (A.G.Gc), Whitehall, S.W.1.

RADIO CLEARANCE, Ltd.

LOW-LOSS Cetamic Valve Holders. J Hi-Q., baseboard and chassis, 7-pin, 1/-Lissen Hi-Q., baseboard and enassis, 7-pin, 17- cach. LOW-LOSS Short-wave Condensers, variable Ceramic insulation brass vanes, Lissen Hi-Q minimum capacity 20 mfd. List, 5/6 each; our price, 2/6 each. PUSH-PULL Switches, Lissen 2-point, 4d. each. each

YAXLEY type Switches, Lissen 2-point, 4d, each. YAXLEY type Switches, 6-bank, 3/- each. YAXLEY type Switches, 9-bank, 3/6 each. MIDGET SPEAKERS, Goodmans Energised, 600 ohms field, including transformer, new, boxed, 10/6 each.

STRAIGHT LINE 3 wave-band Dials, 1/11 each-MAINS TRANSFORMERS, 300-0-300v. 100 m.a. 5v. 2 amps., 6.3 5 amps. Drop-through chassis type, 12/6 each.

MAINS TRANSFORMERS. Wearite 100 watt, auto transformers, 100-110v., 200-200v., revers-ible, 14/11 each.

MAINS TRANSFORMERS, 250-0-250v., 80 m.a. 4v. 1 amp., 4v. 4 amp., 200-250 mains, new, boxed, 12/6 each.

MAINS TRANSFORMERS, 350-0-350v, 4v. 5 amps., 500-0-500 4v. 1 amp., 6.3v. 4v. 2 amp., 5 amps., 50 12/6 each.

CHASSIS Mounting Valve Holders, English Clix type, 4-5-7pin, 3d. each. CENTRALAB Volume Controls, midget type, 1,000, 2,000, 5,000, 25,000, 50,000, 100,000 ohms, less switch 2/9 each.

4-WAY Push-button Switches, 1/3 each.

DROPPING Resistances, for all purposes. Total resistance 535 ohms. 5 taps in steps of 50 ohms. Standard for Pye, Lissen, Ever-Ready, etc., 3/6 each. 10FT. Coils Connecting Wire, 4d. each, glazed, Red or White.

BRAIDED Screened Cable, Single and Twin, 9d. per vard.

PUSH-ON Pilot Lamp Holders, 3d. each

PLESSEY Single Gaug. 0005 Variable Condensers, 1/11 each. 2-gang .0005 Variable Condensers, with Vernier Control, 1/11 each.

SOLID Dielectric Condensers, by well-known maker, .0005 Tuning and .0001 Reaction Differential, 6d. each.

B.I. Wire-end Bias Electrolytics, 50 mfd., 12v., 1/6 each.

TUBULARS, wire-end non-inductive paper condensers. All sizes up to .01, 5d. each; .1, 7d. each.

T.C.C. 2 mfd. Electrolytic Condensers, 200v. working, 1/3 each.

CONDENSERS, .0005 triple, 1/9 each. DOUBLE FUSE HOLDERS. Complete with 2

1 amp. fuses, 1/6 each.

R.I. Parafeed L.F. Transformers; 2/- each. GOOD assortment of Mains and Filament Transformers, L.F. Chokes and Alum Chassis, ote

MAINS ENERGISED SPEAKERS, by well-known makers. 6,000, 2,000, 3,000, 2,500, 1,500 and 1,000 Ohms. 12/6 each, complete with transformer.

PHILLIPS all-wave chassis. Battery, A.C., and universal, from 15/- each.

All orders must include SUFFICIENT POSTAGE

TO COVER. Hours of Business: Weekdays, 9-4.30. Saturday, 9-1 p.m. PLEASE WRITE YOUR NAME AND ADDRESS IN BLOCK LETTERS.

We cannot undertake to answer enquiries unless postage is included (2½d.).

RADIO CLEARANCE, Ltd., 95, HIGH HOLBORN, LONDON, W.C.1.

Telephone: HOLborn 4631.

LOUDSPEAKER REPAIRS

LOUDSPEAKER repairs, British. American, any make, moderate prices.—Sinclair Speakers, Pulteney Terrace, Copenhagen Street, London, N.1.

MORSE EQUIPMENT

FULL range of Transmitting Keys, practice sets and other equipment for Morse training.—Webb's Radio, 14, Soho Street, London, W.1. 'Phone: GERrard 2089.

MORSE TRAINING

FREE. "Book of Facts," tells you all about The Candler System of Code training. Courses for Begin-ners and Operators.—Write: Candler System Co., (LO), 121, Kingsway, London, W.C.2.

NEW LOUDSPEAKERS

3,000 Speakers, P.M. and energised, 4in. to 14in., in-cluding several Epoch 18in.—Sinclair Speakers, Pulteney Terrace, Copenhagen Street, London, N.1.

September, 1941

RECEIVERS AND COMPONENTS

"RADIO Bargains." Few brand new 1940/1 models in makers' sealed cartons with guarantees, and used models at reduced prices, also valves. State require-ments.—"Radio Bargains," 261-3, Lichfield Road, Aston, Birmingham, 6.

COULPHONE RADIO, New Longton, Preston.-Tungsram and American valves. Latest type P.M. Speakers, with transformer. Sin. Goodmans, 18/6. 10in. Rola, 22/6. Electrolytics, 500v. 8 mfd., 2/9; 8+8 mfd. (4 leads), 4/9; 16+8 mfd., 6/3; 50 mfd. 50v., 2/9. Goldring Pick-ups, with volume control, 17/6. Erie and Dubilier 1-watt resistors, 6/6 doz. Volume controls with switch, 4/3. Tubulars, valve holders, etc. S.A.Jé. new list.

GALPINS ELECTRICAL STORES

ELEC. LIGHT CHECK METERS, small, late type, good makers, fue condition, electrically guaranteed, 200/230 volts 50 ey. 1 ph. A.C. 5 anp., 10/-; 10 amp., 12/6; 20 amp., 15/-; post free. D.C. ELEC. LIGHT CHECK METERS, 200/250^v. 5

D.C. ELEC. LIGHT CHECK METERS, 200/250v. 5 and 10 amps., 7/6 post free. VOLTAGE CHANGING TRANSFORMERS, auto wound, 100/240 or vice versa, 1,000 watts, **£3 2s. 6d.** PRESS BUTTON UNITS, 8-way 7 x 6 x 1³/₂, fitted capacitators, condensers, etc., for three-gang tuning, 5/6 post free.

THREE-WAY press button switches, fitted paxolin

terminal strip, 2/- post free. H.T.8 METAL RECTIFIERS, secondhand, but in perfect working order, 7/6 post free. AUTO: CHARGING CUT OUT AND VOLTAGE REGU-

AUTO: CHARGING CUT OUT AND VOLTAGE REGU-LATOR, ex-R.A.F., suit any dynamo up to 20v. at 15 amps, fully adjustable, with wiring instructions, complete in metal case, 3/6, post 9d. WIRELESS CHASSIS (bour) surplus), containing many valuable modern components shortly unobtainable, late type only, sitisfaction guaranteed, 7/6 and 12/6 each; carriage paid. SOLID BRASS LAMPS fitted small B.C. double contact holder and 12 volt bulb mine 3/- post free.

holder and 12 volt built, price 3)- post free. **10 VOLT D.C. MOTOR**, totally onclosed, rated at 8 amps., ball bearing, in new condition, make good slow-speed dynamo, weight approx. 75lbs., price 45j-carriage forward carriage forward.

carriage forward. FLOODLIGHTS, 12in. dia., multi mirror, margin reflector in centre, take any bulb, 15/- carriage paid. ONE DOZEN A.S.S. wire end resistances and tubular condensers, all guaranteed sound, 2/6 per doz. post free.

GALPINS ELECTRICAL STORES, 21, WILLIAM STREET, SLOUGH, BUCKS. Cash or C.O.D.

FRED'S RADIO CABIN 75, Newington Butts, S.E.11. 'Phone : Rodney 2180. THE SPOT FOR KEEN BARGAINS. MORE MONEY-SAVING BARGAINS FROM THE CABIN. SUPPLIES ARE GETTING DIFFICULT. LAY IN A FEW SPARES WHILE THE GOING'S GOOD. GRYSTAL and catswhisker in tin box. New stock, lower price, 6d. each. Very useful to experimenters. Also Lucerne permanent crystal detectors, 1/6 each. PLESSY 3-gaug.0005 mfd. Superhet screened vari-able condenser, 3in. long, 3in. wide. A really mar-vellous line at the ridiculous price of 1/3 each. VARIABLE CONDENSERS. Parcel of 5 gross to clear, solid job, first-class condition, 2-gaug, .0005 mfd., 9d. each. GRYSTAL Replacements for permanent crystal detectors. Brand new, 1/- per-set. TRIMMERS. New 200m.mfd. on Frequentite ceramic base. A beautiful line, 4d. each. DUAL-RANGE COILS. A new line and a fine job, too. Manufactured by one of the best coil makers. Fully screened, a real bargain to clear at 1/- each. SUNDRY ITEMS. New lines collected from all sources to be cleared at very low mices:-

boo. Maintifictured by one of the best con makers.
Fully screened, a real bargain to clear at 1/- each.
SUNDRY ITEMS. New lines collected from all sources to be cleared at very low prices:— MAIN CHOKES. Big quantity available, 60 m.a., 350 ohms. 2/- each.
EKCO mains dropping resistances. Total resistance 700 ohms, with 3 tappings. 2/6 each.
L.F. TRANSFORMERS by Lotus. Brand new.
I/- each.
DUAL-RANGE COILS. Five only, Varley square peak. new, in original boxes, complete with circuit. Listed at 15/-, our price 4/-. Also 6-pin brand new, complete with circuit, 2/- each.
SIX ONLY Lotus 2-gang .0005 mfd. complete in boxes, with drive knob and escutcheon. Brand new, listed at 14/-, to clear 4/-.
PUSH-PULL Switches. 2-pt., 3d. each, 2/6 dozen.
LOW-LOSS Coil mounts, 2-pin, 3d. each, 2/6 dozen.
C. 6d. each.

etc. 6d. each. VALVE HOLDERS. 7-pin Chassis mounting, brand new, 3d. each, 2/6 dozen. TWIN Binocular H.F. Chokes, brand new, to clear

SLOW-MOTION Drives, 50-1 ratio, ideal for short-wave work. 9d. each. EKCO Twin HLF. Mains Filters, 1/6 each. NEW Supply of Resistances and Condensers. Paxolin stripped carrying approximately 8 resistances and 4 condensers of useful values, 1/3 complete. WE HAVE NOT BEEN BLITZED AND ARE STILL GOING 100 PER CENT. SEND YOUR ORDERS WITH EVERY CONFIDENCE. "THE CABIN" KEEPS GOING ! Postage must be included with all orders. Regret cannot accept C.O.D. orders. FRED'S RADIO CABIN FOR BARGAINS, 75, Newington Butts, S.E.11. 'Phone : Redney 2180:

at 54. each. SLOW-MOTION Drives, 50-1 ratio, ideal for short-

September, 1941

ECEIVERS AND COMPONENTS

ICLAND'S GREATEST BUYERS OF SURPLUS ADIO AND ELECTRICAL GEAR. STOCKS SEMBLED FROM GOVERNMENT, GJP.O., ARMY, A.F. AND PROMINENT RADIO AND TELEVISION ANUFACTURERS. ALL TO BE SOLD AT LOW PRICES, FREE OF PURCHASE TAX.

ELEVISION diode values. Surplus quantity to clear low price. Unused Mullard Type EA59, midgot pe, size 69 m.m. x 12 m.m. overall. 6.3 v. heater at amp., 10/6 each.

amp., 10/6 each.
 NDENSERS.-Special offer of metal cased paper indensers, 300-v. working. Made by big and well own government contractor. All brand new and nsed. 2 mfd. 1/9: 1 mfd. x 1 mfd., 1/9; 1 mfd., -; .5, .25 and .1 mfd., 86.

UBULAR condensers, papertype 186. .5 mfd. 450 v. .C. working, to clear, 5/6 doz.

ESISTORS, 10 watt, 100 ohm vitreous enameiled ains resistors, 1/3 each.

Mins resistors, 1/3 each. **DRN-TABLES.**—Bargain line to clear stocks. Gin. Ik-bearing bakelite turn-tables, cheap 1/3 each. **X-BARD**. Paxolin squares, 23in. x 2iu., to clear, 9d. a. Wax impregnated cardboard panels, 103in. x 0in., 3 doz. 30 ohm volume controls, wire wound, 1/3 tch. Short-wave coil 7.23 metres mounted on ceranic jmmer, 1/- each. A big range of volume controls, b ohms, 1/9; 200 ohm, 1/-; 1,000 ohm. 1/3; 2,000 hm, 1/-; 5,000 ohm, 1/6; 1 megohm, 2/3. All above ems are high quality television components, new and nused. mised

LEXIBLE DRIVES. Well made, shielded cable drives r remote control. Ideal for radiogramophones. pprox. 2' long. To clear, 4/- each. LECTRO-MAGNETIC COUNTERS. Resistance

LECTRO-MAGNETIC COUNTERS. Resistance in ohms. Counting from 1-12,099. Size 44" x 2" x 14". r-G.P.O. Invaluable for countless purposes, 9/6 ch. A smaller type, 1-1,099, size 44" x 14" x 14", 6. Cannot be repeated, and doubtful if they can be irchased brand new to-day.

urchased brand new to-day.
MALL MECHANICAL COUNTERS, with striker im registering up to 9,999. Heavily constructed to and any amount of hard wear. To clear, 3/6 each.
ALVEHOLDERS. Belling-Lee special H.F. 5-pin, hassis mounting in black bakelite, 6d. each, 5/- doz.

LESEY Small block type condensers, two tappings, 005 and 0.1 mfd., 350 v. test, 1/- each, 10/6 doz. NGLE Earpieces. A good line for experimenters the flexible metal sheathing, chromium-plated. Only few to clear. 2/6 each.

ARIABLE CONDENSERS. Well made heavy 3-gang iperitet condensers. Die cast frames in first class molition. Low price to clear stock 1/3 each.

iperhet condensers. Die cast frames in first class mdition. Low price to clear stock 1/3 each. MALL REVERSIBLE A.C. MOTORS (as used for notorbuning). 25-30 volts A.C. Built-in reduction gear indle. Speed about 60 r.p.m. A first-class job with undreds of applications. 8/6. UDAK PICK-UP HEADS. High resistance coil, and by the famous Audak Company of New York. Steusively used in sound recording and laboratories deal for gramo turn-table amplifiers, 6/6 each.

UDAK CUTTING HEADS. Heavy duty type. 3-5 hm ceil. A really high-class instrument, 17/6. AXLEY type switches, 2-way, 1/-; 2 bank 4-way, 2/-.

CREENING shields in aluminium, 63in. x 5in. x 51in., rand new ard unused, 2/6 pair.

101LS of wire. Approx. 30 gauge stranded sleeved tre. in coils weighing 123 oz., 2/-. Also scanning coils, imilar gauge, 91 oz., 1 6. Also 17-gauge stranded otton and rubber covered, 2 lbs. 11¹/₂ oz., 4/-.

ULGIN 250 v. 5 amp. socket with plugs mounted on racket, unused, 1/- each.

BITPUT TRANSFORMERS. Esimary 800 ohms D.C. accondary 5 ohm D.C. Brand new, manufacturer's ype, 4/6. Also new chokes, 3 henry, 150 ohms, 3/- each. Fig. 4, b. Also new choice, 5 heing, 150 dinks, 5 Fearh. **ESISTANCES**. Assorted values and makes, frie, P.O.C. American, etc. Resistances are in short supply —geta dozen or so while you can. Low price of 1/6 doz. **FAPPED** mains resistances. Another good line, for 2 amp. valves. Tapped at 200, 230 and 250 volts. To tear. 4/- cach.

dear. 4/- each.
WESTINGHOUSE Rectifiers. The popular type H.T.S. Slightly used, but guaranteed in good condition and working order. Only 8/6 each.
B.I. CONDENSERS. Block type oil filled in metal rascs with terminals. High quality components. 4 mfd. 5% v. d.c. test, 3/6 each. Also 1 mfd. 1,000 v. d.c. est, 2/6 each and 0.25 mfd. 1,000 v. d.c. test, 2/6 each.
ELAYS. Small relays for operation on 2 v. D.C. with 6-way make and break switches. Brand new, many useful applications, 5/- each.
REIMERS. Twin trimmers on certamic base. brand

TRIMMERS. Twin trimmers on ceramic base, brand ew, to clear 6d. each, 5/- doz.

THE ALSO OUR DISPLAY ADVT. ON PAGE 371. Sufficient postage must be included. Regret no c.o.d. orders accepted.

LONDON CENTRAL RADIO STORES, 23, LISLE ST., 'Phone: Gerrard 2969 LONDON, W.C.2.

SOUTHERN Radio's Wireless Bargains. Most lines previously advertised still available. New list to be advertised shortly. Bouthern - Radio, 46, Lisle Street, London, W.C. Phone: Gerrard 6653.

RECEIVERS AND COMPONENTS GEE GEE GEE GEE GEE GEE 15, LITTLE NEWPORT STREET, W.C.2. THE HOUSE FOR FIRST QUALITY COMPONENTS

PRACTICAL WIRELESS

AT LOW, COMPENITIVE PRICES.

AMERICAN AND BY.A. VALVES. These are getting vory short. We have many types available at keenost-prices. Send us your lists for a quotation. SPEAKER TRANSFORMERS. Now available, now stocks of a superior line. Soundly constructed, brand new, manufacturer's type, penitode output, 3/- each. SOLDER. Very best quality resincore solder, 50 per cent. tin, 12 gauge, 6d. a length.

VARIABLE CONDENSERS. 3-gang, 0005 mfd. A fine job with die-cast frame and solid aluminium vanes, 2/6 each.

MAINS TRANSFORMERS. Manufacturer's type. Input 200/250 v. A.C., tappings for 5 v. restifier, 6.3 v. platers, 350-0-350 v. Not new, but in perfect condition, 9/6 each.

RESISTORS. Enormous purchase enables us to make an amazing offer to servicemen and experimenters. Genuine Erie, brand new, 1 wattresistors. All various useful and practical values, in approximately 18 sizes, 4/- dozen, 40/- gross.

Hold large stocks of the above, can quote extremely low terms for large quantities. Postage extra. GEE ELECTRIC, 15, LITTLE NEWPORT ST., W.C.2.

READERS' BARGAINS

OFFERS: 2-v. S.W. set, valves and parts.-Jordan Ecclesalt Vicarage, Sheffield.

AVOMINOR, in case, complete as new, £2/5,0. New Premier, S.W. A.C. Kit, as delivered, with extra coils, 55/5/0.-E. Evans, 15, Church Road, Shirley, Diminication Birmingham.

SHORT-WAVE EQUIPMENT

"H.A.C." Short-wave Receivers.—Famous for over 8 years. Improved one-valve model now available. Complete kit precision components, accessories, full instructions, no soldering, only 16s., postage 6d. Immediate despatch. Illustrated catalogue free.— A. L. Bacchus, 109, Hartington Road, S.W.S.

TUITION

"RADIOLOCATION."—Students of both sexes trained for important war-time Radio Appointments. Also for peace-time careers in all branches of Radio and Tele-vision. Boarders accepted. Low inclusive fees. College in ideal peaceful surroundings. Prospectus free.— Wireless College, Colwyn Bay.

PRACTICAL Postal Radio Courses; coaching for I.P.R.E. exams.; qualifying for R.A.F. and A.I.D, posts; booklet free.-Secretary, I.P.R.E., Bush House. Walton Avenue, Henley-on-Thames.

MEN FOR RAD (0-LOCATION

THE R.A.F. WANTS

HERE ARE THE BOOKS YOU NEED

RADIO TRAINING MANUAL FOR THE SERVICES AND THE TRADE

Edited by F. J. CAMM. A complete course on the principles and practice of radio. Fully filustrated. 61- net (by post 616)

-> THE PRACTICAL WIRELESS ENCYCLOPEDIA

By F. J. CAMM. A complete guide, in a lot abetical order, to the construction, operation, repair and principles of every type of wireless receiver. Illustrations include complete series of circuits. 10/6 net (by post 11/-)

> THE MATHEMATICS OF WIRE-LESS

By RALPH STRANGER. Deals with : Arithmetic, Algebra, Powers and Roots. Differential Calculus. In-tegral Calculus. Trigonometry. The Slide Rule, Curves and Graphs in Wireless. 61- net (by post 616)

-> NEWNES SHORT-WAVE MANUAL

By F. J. CAMM. Deals thoroughly with special problems underlying the design of short-wave apparatus, special circuits which yield the best results, and designs for re-ceivers based on those circuits. 61- net (by post 616)

-> PRACTICAL WIRELESS SERVICE MANUAL

By F. J. CAMM. Chapters on Choice and Types of In-struments, Fault Tracing Without Instruments, Measur-ing Resistance, Trimming and Aligning Receivers, Testing Valves, Distortion, Interference, etc. 8/6 net (by post 9/-)

Of all Booksellers, or by post fram GEORGE NEWNES, LTD. (Book Dept.), Tower House, Southampton St., London, W.C.2.

~~~~

Just Out! RADIO ENGINEER'S VEST POCKET BOOK By F. J. Camm

Contains in easily consultable form nearly every fact, figure, and formulae which service engineers, students, circuit de-signers, radio-operators, transmitters, con-structors and manufacturers require. 3/6 net (by post 3/9)

DICTIONARY OF RADIO AND TELEVISION TERMS

#### By Ralph Stranger

This is an unusual type of Dictionary in that it not only covers Radio and Television as such, but also gives a large number of selentific terms of subjects allied to these two sciences. This will enable quick reference, not only by scientists, but also by the man-in-the-street who is interested in science. 7/6 net (by post 8/-)

Of all Booksellers, or by post from GEORGE NEWNES, LTD. (Book Dept.), Tower House, Southampton St., London, W.C.2.

葡



After months of intensive effort and research we are pleased to announce that the new edition of our handbook, "ENGINEERING OPPORTUNITIES," is now out of the

publishers' hands and ready for *free distribution*. Containing 208 pages of practical guidance, this book is, beyond argument, the finest and most complete handbook on Successful Engineering Careers ever compiled. It is a book that should be on the bookshelf of every person interested in engineering whatever his age, position or experience.

The Handbook contains, among other intensely interesting matter. details of B.Sc., A.M.I.C.E., A.M.I.Mech.E., A.M.I.E.E., A.M.I.A.E., A.M.I.W.T., A.M.I.R.E., A.M.I.P.E., CIVIL SERVICE and other important Engineering Examinations ; outlines courses in all branches of CIVIL, MECHANICAL, ELEC-TRICAL, AUTOMOBILE, RADIO, TELEVISION, AERONAUTICAL and PRODUCTION ENGINEERING, DRAUGHTSMANSHIP, TRACING, GOVERNMENT EMPLOYMENT, BUILDING (the great after-war Career), R.A.F. MATHS., etc., etc., and explains the unique advantages of our Employment Department.

WE DEFINITELY GUARANTEE



Special rapid Homestudy courses in the essential branches of Mathematics.\* For full details of this scheme apply or write

B.I.E.T. (Dept.) M409 17, Stratford Place, LONDON, W.1.

If you are earning less than £10 per week you cannot *afford* to miss reading "ENGINEERING OPPORTUNITIES." In your own interests, we advise you to

write (or forward the coupon) for your copy of this enlightening guide to well-paid posts -NOW. There is no cost or obligation of any kind.

#### BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY Principal : Professor A. M. Low.

To B.I.E.T., 409a, SHAKESPEARE HOUSE, 17, 18 & 19, STRATFORD PLACE, LONDON, W.1. Please forward, Free of cost or obligation of any kind, your 208-page Handbook, "ENGINEERING OPPORTUNITIES."

TEAR OFF HERE

Name .....

Address .....

409a, SHAKESPEARE HOUSE, 17, 18 & 19, STRATFORD PLACE, LONDON, W.1.

Published on the 7th of each month by GEORGE NEWNES. LIMITED. Tower House. Southampton Street. Strand. London. W.C.2. and printed in England by THE NEWNES & PEARSON PRINTING CO., LTD., Exmoor Street, London, W.10. Sole Agents for Australia and New Zealand. GORDON & GOTCH, LTD. South Africa: CENTRAL NEWS AGENCY, LTD. Subscription rates including postage: Inland 7s. 6d, per annum, 3s. 9d, for six months : Abroad 7s. per annum, 3s. 6d, for six months. Gordon, W.C.2. and printed in England by THE NEWNES & General Post Office for the Canadian Magazine Post. General Post Office for the Canadian Magazine Post. first given, be lent, resold, hired out or otherwise disposed of by way of Trade except at the full retail price of 6d. : and that it shall not be lent, resold, hired out or otherwise Hisposed of in a mutilated condition or in any unauthorised cover by way of Trade : or affixed to or as: part of any publication or advertising, literary or pictorial matter whatsoever.