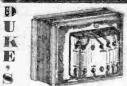

A VERSATILE OSCILLOSCOPE

T

Vol. 23. No. 549 JULY, 1952

EDITOR: F.J.CAMM PRACTICAL WIRELESS



IN THIS ISSUE:

TAPE RECORDING
ELIMINATING HUM IN MAINS
AMPLETIERS
TELEVISION INTERFERENCE

CONVERTING TO PUSH-PULL SURPLUS MERCURY VAPOUR RECTIFIERS SHORT-WAVE SECTION

THE WALL

TRANSFORMERS, Mains (Salvage). 260-0-260, 8.3 v., 3 A., tapped for 250, 210, 110 v. Price 12 6. Post 2/-. Also standard O.P. Trans. at 3/9. Post 1/-.

GRAMOPHONE MOTORS Unused. Made by E.M.I. Need cleaning, but in working order, Complete, but no winder handles. Ideal for building your gramophone, wire reyour gramopaoie, wite 10-corder, saucepan stirrer, wool, cotton or wire re-winders; or anything requiring a strong spring notor. Speed control down to 334. Two main springs alone worth price of 25/9. Post and packing, 2/3.

EXTENSION SPEAKERS New type in baffle stand, with metal fret. 6in., P.M., 19/6. Post 1/-

TELEVISION COLOUR PILTERS. Brand new. By Lee Products. Prices siashed to 6/6 for 9in. and 10in. screens, 8/3 for 12in., and 12/9 for 15in. De luxe models also available, with rubber suction pads for easy fixing

1952 Catalogue available on request (21d. stamp).

SALVAGE RADIO-GRAM CHASSIS. 5 valve superhet, 1952 model. Latest pin-type midget valves (195G series). Reconditioned, tested and guaranteed. Front or end drive controls. From 27/17/8. Post and packing 3/6. Recondinger units also available, Single- and three-speed. From 27/17/8.

SOLDERING IRONS (not guaranteed). Reduced to 9/9. P. & p., 1/-.

C.W.O. O.O.D.

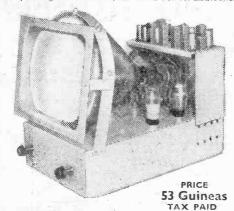
621 Romford Road, London E.12 GRA 6677

Money Rack Guarantee.

A full range is available for Superhet and T.R.F. Mains or Battery. Size only 1in. Ideal for the reliable construction of new sets. also for conversion of the 21 RECEIVER, TR 1196, TYPE 18, WARTIME UTILLITY and others. Aligned and tested with full circuits, etc. Fully descriptive leaflets available.

"Q" RANGE COILS Midget High "Q" ty Superhet and T.R.F. for popular wavebands. Fi with special tags for popular waveoands. Fitter with special tags for easy connection and boxed in new damp-proof containers. Size only lin. high, with variable iron-dust cores and low-loss polystyrene formers. Supplied with leaflet giving full data letails on request. Details on request.

MATCHED COMPONENTS


Various type of OSMOR Dials, Chassis, I.F.s. Speakers, Transformers, etc., etc., to match our coils and coilpacks are listed.

Send 5d. (stamps) for FREE CIRCUITS and full lists of coils, coilpacks. and radio components. (Trade Supplied.)

OSMOR RADIO PRODUCTS LTD. (Dept. P.25) BRIDGE VIEW WORKS, BOROUGH HILL, CROYDON, SURRES Telephone: Croydon 5148/9

The new ARMSTRONG Television Chassis Model T.V.15

incorporating a 12in. C.R.T., is now available for distribution

Also in production

THE NEW ARMSTRONG TELEVISION CHASSIS Model T.V.17F for Fringe Area Reception (similar in appearance to the T.V.15). Price \$75.15.6 TAX PAID

Please send for Radiogram and T.V. list, post free

ARMSTRONG WIRELESS & TELEVISION CO., LTD., WARLTERS ROAD, HOLLOWAY, LONDON, NA. Telephone-NORth 3213.

RADIO EXCHANGE CO.

ERICSSON'S HIGH RESISTANCE PHONES, first grade, 4000 ohms resistance, attractively finished in silver and 4,000 ohms resistance, attractively finished in silver and black; BRAND NEW, in presentation boxes, 17/6 (9d. post)

LOW RESISTANCE PHONES, very sensitive, 5/11 and 7/6.

VIBRATOR PACK 21. delivering approx. 140 v at 40 ma., fully smoothed from 6 v input; 'n NEW condition, 17/6.

ACCUMULATORS, multiplate, 7AH 2 v, in celluloid cases, 31in. x 13in. x 4in., 6 6.

MIDGET AMPLIFIERS. 5in. x 3in. x 3in. ; with two 12SH7's and one 12SJ7, 12/8.

POWER PACK, with 5Z4, VU120 (5 kV), EHT rectifier, two transformers, choke, etc. In new condition with our 200/250 v 50 cps. conversion data to deliver EHT or 450 v 50 ma., 17/6.

60 v BATTERIES, 5/6 each.

NEW RECEIVERS. Type P40/S450B, with 4 EF54's (RF, miver, Xtal Osc. multipliers), EB39's (2.9 mc/s IFs), EB34 (det.), 603 and 606 audio, SC32 Xtal, osc. for 85-95 mc/s. Attractive grey cases measuring Ilijin. x 48'in. x 58'in. ONLY 69'6 with circuit, post 2'.

TRANSMITTER 21. Sending speech CW or MCW, complete with valves, control panel and key. PA coils (not lormers) and relays, stripped by M.O.S.; may easily be replaced with aid of our circuit and instructions. Tune 4.2-7.5 and 18-31 m/s. In first-class condition, $\mathbf{25}$ /-.

CARRON MICROPHONES. In attractive hemispherical black cases with switch; these have an excellent frequency response. NEW and boxed, 5/- (5d. post).

9 CAULDWELL STREET, BEDFORD

Tel : Slough 21381

RADIO COMPONENTS, ELECTRONIC AND TELEPHONE EQUIPMENT

5 HARROW RD., EDGWARE RD., LONDON, W.2.

PADdington 1008/9

The "MINI-FOUR"
4-Station Midget Portable.

(As specified in "Practical Wireless.")

14 suitable condensers. (Inc. 8MFD.)

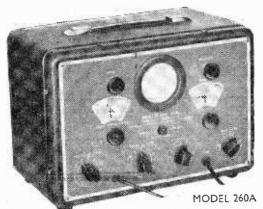
II suitable resistors.

4 B7G VIHolders.

I pair Wearite "800" I.F.T.'s.

I ELAC 38in. P.M. Speaker.

I Speaker Transformer.


1.5 VIC. with DIP. switch.

4 Valves-IR5, IS5, IT4 and 3S4.

All above new and unused.

Offered at £4/12/6 carriage paid.

Send stamps for our 28-page 1952 Catalogue!

THE NEW WINDSOR TELEVISION WOBBULATOR

* Carrier Frequency 5-70 Mc/s. 10-140 Mc/s. (on 2nd harmonic)

* Bandwidth 0-5 Mc/s. total. 0-10 Mc/s. (on 2nd harmonic)

* Sweep Frequency 50 c.p.s. sinusoidal, return trace blacked out automatically

* Output Adjustable from 0-10 mV. approx. Fixed and variable attenuators are fitted. Output impedance 75 ohms

TAYLOR ELECTRICAL INSTRUMENTS LTD.

SHORTAGE OF RADIO & T/V ENGINEERS

The demand of Industry for our trained students is still greater than we can supply—and is likely to remain so for many years.

We offer

FULL TIME DAY COURSE

1 year course in Principles and Practice of
Radio and Television.

Next course commences 25th August.

Write for FREE BROCHURES giving details of the above, of our 3-year course, and of others.

E.M.I. INSTITUTES—the only college which is part of a great industry.

E.M.I. INSTITUTES (Dept. 32A)

10, PEMBRIDGE SQUARE LONDON, W.2. Tel: BAYswater 5131/2. Associated with
"H.M.V."
MARCONIPHONE
COLUMBIA
ETC.

The solder for all HOME TELEVISION CONSTRUCTOR SETS

Designers of television constructor sets know that the efficiency of their equipment depends on the solder used by the constructor—that's why they recommend Ersin Multicore for trouble-free, wastefree soldering. Ersin Multicore, the only solder containing three cores of extra-active, non-corrosive Ersin Flux, is obtainable from all leading radio shops. Ask for Cat. Ref. C.16018, 18 S.W.G. 60/40 High Tin Television and Radio Alloy. The size 1 Carton contains 37 feet of solder, costs 5/-

Montrose Avenue, Slough, Bucks.

Ersin Multicore Solder

CONTAINS & CORES OF

In case of difficulty in obtaining supplies, please write to:

MULTICORE SOLDERS LTD., MULTICORE WORKS, MAYLANDS

JALIA

AVE., HEMEL HEMPSTEAD, HERYS, Boxmoor 3636 (3 lines).

CRYSTAL MICROPHO

High quality models at a reasonable price TYPE MIC 30 "Hand-stand"—a most attractive universal microphone. Frequency response is substantially flat from 50-5,000 cps.

PRICE £4.4.0

TYPE MIC 22 incorporates the famous Acos "Filtercel" insert, giving extreme sensitivity and high fidelity. Response is substantially flat from 40-6,000 cps. The microphone is vibration and shock-proof and is not affected by low frequency wind noises. Two alternative mountings are available for the MIC 22 head :-

MIC 22-1 is for fitting to any British or American type standard floor stand and can also be used as a hand microphone.

MIC 22-2 is supplied as a complete unit incorporating attractive desk stand with side cable entry.

PRICE \$6.6.0 (Either Model)

COSMOCORD LTD., ENFIELD.

STAND

MIDDLESEX. TELEPHONE: ENFIELD 4022

CONDENSERS. TERRIFIC REDUCTIONS. TUBULAR WANED. 500 v.w. 1, 01, 02, 05, 001, 002, 005, etc. 6d. each, 5- doz.

MINIATURE MICA 100, 200, 300, 500 pf, etc. 6d. each, 5/- doz. CERAMIC AND SHAVER MICA All values from 41d. each, 4/- doz.

MINIATURE

J. 01, 001, 05, 02, 002 mfd., etc. 7id. each, 6-doz.

EX A.M. COMMUNICATION RECEIVER TYPE R1155

BRAND NEW IN WOOD TRANSIT CASE. Aerial-tested before despatch. Supplied complete with 10 valves. Circuit: B.F.O. A.Y.C., R.F. Amp., two I.F. stages, magic eye, etc. 5 frequency ranges: 18.5-7.5 Mc/s: 7,5-2.0 M/cs: 1,500-600 Kc/s; 500-200 Kc

LASKY'S PRICE, £12/19/6

Carriage (in wood case), 7/6 extra. Full modification data and circuit details supplied.

SOLON/HENLY SOLDERING Irons. Complete with mains lead. Oval bit. LASKY'S PRICE, 19/-, Postage 1/6 extra.

SPECIAL COIL BUY SUPERHET COILS. For 465 kc/s.

I.F. No. 1 Dual wave, medium and long. Aerial and oscillator. Supplied with circuit. Size of each coil: 11in high, iin. diameter.

LASKY'S PRICE, 2.11 per pair. Post 9d. extra.

No. 2. For short wave. 25-95 metres. Aerial and oscillator. Supplied with circuit diagram. Size of each coil: lilin. high, ilin. diameter. LASKY'S PRICE. 1/11 per pair. Post Oil ayres.

EX.	GOV	ERN	MEN	T VA	LVE	S
KT2				***		3.6
VU111	***	***				3.6
VU120A				***		2/6 ·
APV4 57						12/10
COTT	***					3/6
NGT1		• • • •	***	***	***	2/6
PT25H		• • • •	• • • •	•••		5
MS/PEN			• • • •		• • • •	5'~
E1148						3.6
RK34				***		2.6
MH14		*				4.6.
1D5		***				11
Screen G	rid, 2	volt			.,,	4 6
S130			***	***		4 6
Tungar (harge	er Rec	s. fr	om		12 6
Po	st 6	l. per	val	VA evi	tra.	
	-			·····		

INTER-COM UNIT SCOOP
Manufacturer's surplus.
For 6 station operation, uses 3 valves, 1 each 25Z4, 25L6, and 6J7. AC/DC mains. LASKY'S PRICE. Chassis less valves and indicator buibs, carriage 2/6 extra.
Incomplete chassis, 35/-, Carriage 2.6

Incomplete Chassis, 59. Calliago 2.0 extra. Chassis Cabinets. Light walnut veneer, 18'6. Carriage 2'6 extra. Speaker cabinets. Suitable for use with 3in. speaker. Light walnut veneer. Supplied less speaker, 9/11. Carriage 2/6 ex.

CRYSTAL DIODES
Wire ends. Supplied with circuit. B.T.H.
Type. LASKY'S PRICE, 3/11 each.
Goed. Type
LASKY'S PRICE, 4/6 each. Post 3d.
extra.

370, **HARROW** LONDON, W.9.

ROAD, PADDINGTON,

(Opposite Paddington Hospital.)

(Lasky's (Harrow Road) Ltd.)

Phone: Cunningham 1979 and 7214. Hours: Mon. to Sat., 9.30 a.m. to 6 p.m. Thurs., half-day, TERMS: Pro Forma Cash with Order, or C.O.D. on post items only. Postage and packing extra, unless otherwise stated.

All goods fully insured in transit.

Practical Wireless

EVERY MONTH VOL. XXVIII, No. 549 JULY, 1952 Editor F.J. CAMM

20th YEAR OF ISSUE

By THE EDITOR

COMMENTS OF THE MONTH

The White Paper On Broadcasting

THE Charter granted to the BBC on the 1st January, 1947, and the accompanying Licence, were due to expire soon after the present Government came into power, but to allow time for the conditions of the new longer-term Charter to be examined and considered by Parliament, a short-term Charter was granted for six months to expire on June 30th, 1952.

The Government has now considered the recommendations of the Broadcasting Committee, which sat under the chairmanship of Lord Beveridge, and also the proposals which the late Government set out in a White Paper issued in July, 1951. They have also considered the views expressed in both Houses of Parliament. The Government has now issued a White Paper on the Broadcasting Committee of 1949 setting forth its proposals in regard to the new Charter and Licence. In many instances the Government accepts, as did their predecessors, the recommendations of the Broadcasting Committee, but in some important respects they On the propose alternative arrangements. question of monopoly, the successive Licences, says the White Paper, have not, of themselves, established the BBC as the sole authority for all broadcasting in the United Kingdom. BBC has, in fact, enjoyed an exclusive privilege because successive Governments have decided that, although the Postmaster-General empowered to licence any number of persons to operate broadcasting stations, he should not licence anyone other than the BBC. It is realised that this monopoly has not been abused and that "it has done much to establish the excellent and reputable broadcasting service for which this country is renowned, and that the BBC have become an important part of the structure of our national life. Their services must remain intact and the Corporation should be the only broadcasting organisation having any claim on the revenue from broadcast receiving licences." The new Charter and Licence, which are to come into force on 1st July of this year, will, therefore, provide for the BBC to continue broadly on existing lines. The Government says that it is unwilling to see any change in BBC policy towards sponsoring or accepting advertisements, and the existing restrictions on commercial broadcasting, without the consent

of the P.M.G., will be preserved. Some additional safeguards will be incorporated to avoid the possibility that the Corporation might be subordinated to political ends.

The Government has come to the conclusion that in the expanding field of television, provision should be made to admit some element of competition when the calls on capital resources, at present needed for other purposes, make this feasible. The Government reserves the right to decide the terms and conditions under which competitive television would operate.

recommendations for action Other the Government made in the report are: The licence fee system will be continued to meet the cost of home broadcasting and the B.B.C. is to receive a definite percentage of the revenue. The Corporation will receive 85 per cent. of the net licence revenue for the first three years of the next ten-year Charter. The present division of responsibility between the Government and the B.B.C. for the overseas services will con-. The B.B.C. should have the same position of independence in regard to television for the home as it has in sound broadcasting. The rate of development of V.H.F. sound broadcasting must necessarily be subject to economic circumstances and the control of capital investment. An Advisory Committee is to consider the best methods of introducing higher frequency broadcasting, including the form of modulation to be adopted and consultation with the radio industry will be essential. The Committee is of the opinion that the relay exchanges should be left to private enterprise and that licences should be granted for a term of ten years in the first instance with power to the Government to take over compulsorily then or by two years' notice. There is not to be a Minister for Broadcasting, and the Postmaster-General will continue to be responsible for the exercise of the Government's powers under the general authority and direction of the Prime Minister.

The new Charter will require the Corporation to delegate to Scotland, Wales and Northern Ireland and to the English Regions powers which will afford them a reasonable measure of independence and greater variety and initiative in respect of programmes.—F. J. C.

D of WIRELES

Broadcast Receiving Licences

THE following statement shows the approximate numbers issued during the year ended March 31st, 1952.

Region		Number
London Postal		2,394,000
Home Counties		1,677,000
Midland		1,776,000
North Eastern		1,961,000
North Western		1,660,000
South Western		1,085,000
Welsh and	Border	, ,
Counties		749,000

Lotai	England	and	
Wales		11,302	2,000
Scotland		1,150	,000
Northern	Ireland	213	,000

Grand Total 12,665,000

above total includes 1.457,000 for television, an increase of about 71,000 during the month.

Philips Receivers as Prizes

PRIZES offered by Thomas Hedley & Co., Ltd., in their competition, which is now running, include a number of Philips radio sets.

Philips Electrical, Ltd., point out together with the regrouping and that, by agreement with Thomas modernisation of existing stations Hedley & Co., Ltd., the sets are in the European area. It also not being supplied direct. The promulgated the frequencies, fortunate people who win one of services, power, timing these sets as a prize will receive location of such beacons. it through a local Philips dealer, who will be paid in full on presentation of his account to Thomas Hedley & Co., Ltd.

Radio Beacons for Lighthouses and Light Vessels

TWENTY-WATT duplicate radio beacons for lighthouses and light vessels at over forty locations on and around the coasts of Great Britain, Northern Ireland and the Republic of Eire have been ordered by Trinity House. contract to supply the equipment has been awarded to Marconi's Wireless Telegraph Company, Limited. The equipment will comply with regulations laid down at the Conference for the reorganisation of Maritime Radio Beacons in the European Area held at Paris in April, 1951. The work of this conference resulted in a considerable expansion of the maritime radio beacon facilities.

British Relay Wireless, Ltd.

BRITISH RELAY WIRELESS. LTD., and associated companies announce the appointment of Mr. Barry King as Commercial Manager of the B.R.W. Group of Companies.

Over the past seven years Mr. King has successively occupied the positions of Chief Internal Engineer and Chief Planning Engineer, responsible for the territorial development of the B.R.W. Group and for the development of additional services such as Relayvision, Relaygrams and Set Renting.

Higher Power Transmitter Falklands

THE Falkland Islands, one of Britain's southernmost possessions, is to have a higher power transmitter for broadcast entertainment. A contract to supply a 5 kW. medium frequency installation has been won by Marconi's Wireless Telegraph Co., Ltd. Delivery of the transmitter with associated equipment and spares is scheduled for early summer of this year. The Falkland Islands, a group

of some 100 small islands near the south-east tip of the South American continent, has a population of over 2,000. In 1929 a wired broadcasting system was installed, but it was not until 1942 that its first transmitter began operation, working on a low power of only 45 watts. The new installation, at Port Stanley, will bring the local programme to the entire population.

Liberian Transmissions

THE Government of Liberia is anxious to ascertain whether the Government Broadcasting Station, ELBC, at Monrovia, is sufficiently powerful for trans-missions to be picked up in this country. The transmissions, on a

A plaque in memory of Guglielmo Marconi, the radio pioneer, was affixed to 71, Hereford Road, Paddington, London, recently by the London County Council to commemorate his residence at the house in 1896-97.

wavelength on the short-wave band, are made daily, and if any wireless enthusiasts in Britain would care to assist in this survey they are requested to write to Government Public Liberian Relations Officer (10), 20, Hereford Road, Ealing, London, W.5, who will be glad to forward details of the survey and to refund all postal expenses.

Pye at Oslo Exhibition

AN export radio receiver, manufactured by Pye, Limited, of Cambridge, was chosen for the "Design from Britain" exhibition which opened in Oslo, Norway, on May 3rd. The object of the exhibition, which was sponsored by the Society of Industrial Artists, The British Society of Council and the Council of Industrial Design, was to boost the prestige of British goods by showing examples of good design and quality.

The radio receiver, Model "G" (Pye PE39), was presented in a moulded cabinet, and is a striking example of British craftsmanship. As a receiver in the medium price range, it offers a very high standard of performance and reliability and, being designed for world-wide reception; is "tropicalised" to withstand varying climates. It has six bandspread short-wave bands as well as medium and medium-short waves.

Wenvoe Television Transmitting Station

THE BBC announces that it is hoped to open the new television transmitting station at Wenvoe, near Cardiff, on medium power, on August 15th. Postmaster-General, Earl De La Warr, P.C., has agreed to perform the opening ceremony.

British Wireless Dinner Club

THE 29th annual general meeting and dinner of the British Wireless Dinner Club, founded by wireless officers of the 1914-18 war, took place at the Junior United Services Club on April 25th. Principal guest, Sir John Cockcroft, C.B., F.R.S., the atomic scientist, spoke on the debt that atomic development owed to basic wireless and radar practice.

The president for the ensuing year is Admiral A. J. L. Murray, C.B., D.S.O., O.B.E., who succeeds Mr. G. M. Wright, C.B.E., and the vice-president is Air Vice-Marshal C. W. Nutting, C.B.E., D.S.C.

R.I.C. Guest

THE Duke of Edinburgh will be the guest of honour at the second annual dinner of the Radio Industry Council at the Savoy Hotel, London, on Tuesday, November 25th.

University Broadcasting

ST. ANDREWS UNIVERSITY wishes to run its own broadcasting station and Mr. J. Coatman, formerly North Regional Director of the BBC, and now Director of Research in the Social Sciences at St. Andrews, believes that an important function can be served by university broadcasting.

The broadcasts would be used to make important university lectures widely available and to train students in broadcasting.

The cost of setting up a station at St. Andrews has been estimated at less than £1,000, the reception range being about 30 miles.

"Down with Interference"

THIS is the title of a booklet which is being distributed to radio and electrical dealers and servicemen throughout the country, as a guide to the best way of suppressing interference.

"The increase in the use of electrical appliances, coupled with the expansion of the television service, has resulted in interference suppression becoming a real the problem,'

"Quite soon it may become a matter of legal obligation.

The booklet has been prepared and issued by the Radio and Electronic Component Manufacturers' Federation in co-operation with the Radio Industry Council and contains a list of suppression circuits and recommendations for their use.

The booklet is unobtainable by the public.


First Transmitting Licence

VETERAN marine radio operator "Bill" Davies, O.B.E., of Liverpool, holder of first P.M.G. transmitting licence, is, at 74, still in active service, now on the Liverpool-Douglas route (S.S. Mona's Isle). He was shown the last marine radar equipment on the Cossor research vessel, Blue Coral, at Manchester. The ship, with its crew of seven, battled with heavy seas from Penzance to reach Trafford Docks, Manchester, in time for the Northern Radio Exhibition.

American Relay

IT is understood that arrangements are being made for a link between the U.S.A. and Great Britain for television relays.

The link will make use of both V.H.F. and U.H.F. equipment and that in the course of the relay the definition will be changed from the American system to the English and that the course will booklet says. take the signal via Iceland.

"Bill" Davies being shown the latest Cossor Mk. II Marine Radar display console by radar officer Peter Woodhead in the chart room of the Blue Coral.

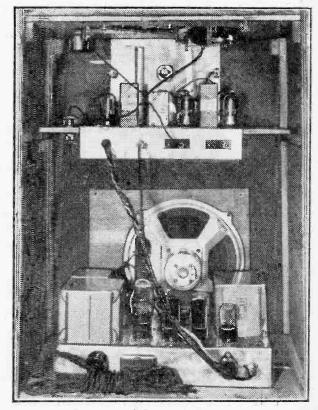
THE FINA 3-SPEED

CHASSIS CONSTRUCTION AND GENERAL ASSEMBLY NOTES

(Continued from page 267, June issue.)

HE first part of the constructional work consists of chassis making, and as already explained, there are two alternatives for the tuner and pre-amplifier unit. As shown on page 266 last month, in the prototype this unit was made on a baseboard so that it could be slid into the cabinet in place of a shelf which was originally there. This can be seen clearly in the illustration below. It will be noted, however, that a strip of aluminium was fitted to the front and rear in the same manner as with a standard chassis, to accommodate controls and socket strips, and the layout was kept within the bounds of these strips so that exactly the same layout could be adopted on a standard type of chassis. In the original the wooden shelf was of metal-covered plywood, but it will be assumed that in the majority of cases a standard chassis will be used and placed upon a shelf or even suspended from the motorboard where a wide type of up-to-date

cabinet is employed.


Full details of the chassis for the tuner will be found on page 296. A sheet of stout gauge aluminium 17in. by 14½in. will be required and it should be cut out round the edges, as shown, the drilling holes for the corners being very carefully marked out to ensure accurate registration. These corners may be either riveted or fitted with nuts and bolts. To accommodate the cord drive for the tuning dial a rectangular opening is required, and this must be carefully positioned to avoid the cord calching on the edges of the chassis.

Chassis Cutting

Many constructors find difficulty in carrying out a professional-looking chassis constructional task. We find that it is desirable so far as possible to do all drilling and cutting whilst the chassis is in a flat state. It can be supported more easily in this way and both sides of the chassis may be used as a working surface. Drill small pilot holes before cutting the large valveholder holes, and open these either with one of the disc cutters such as the Lufbra or a press-type tool such as the Maxi-Q. Cut through until the edges show on the reverse side and then turn over the chassis and complete the work from the opposite side. In this way a clean hole will, be obtained without a rising burr which will afterwards have to be removed. Note that all holes which are not marked on the chassis with a size are of \$\frac{1}{8}\$ in. diameter.

The H.T. positive anchoring point in our case was drilled to §in, and an insulating washer was inserted to carry a short stand-off pillar on the underside. In

place of this, if the constructor desires, a single insulated mounting tag may be used and screwed to the underside, but make quite certain that there is adequate clearance between the "live" tag and the chassis. When all holes have been drilled and the edges cleaned up as necessary the sides of the chassis must be bent over. There is no doubt that the most satisfactory way of accomplishing this is to use a good metal bender, made up either of lin. square iron bars held with bolts at either end, or by clamping a stout wooden board on the bench and sliding the runner part of the chassis under this. For sharp, clean edges the metal clamp is to be preferred, and for the sides a strip of stout timber must be cut to exact dimensions to clear the ends already bent over. The small turned-in edges which clamp the side and end runners together may be bent over by holding in a bench vice.

Rear view of the complete equipment,

Amplifier Chassis

The chassis for the amplifier calls for a little more work, as the mains transformer and chokes which are specified are intended for mounting with the soldering lugs projecting below the chassis. This provides better screening and also reduces the length of connecting leads. For the chokes it is possible to make do with two holes for each or to cut a rectangular slot. Both arrangements are indicated on the chassis details shown below and it is left to the constructor to adopt whichever he finds easier. For the mains transformer, however, in view of the number of connections which have to be made a rectangular hole is essential. The simplest way of cutting this is to mark it out carefully, and then to drill all round just inside the edge of the line with the 1/8 in. drill. If an electric drill is being used this will not take long. chisel may then be used to cut between adjacent holes and the ragged edge afterwards cleaned up with a file. As an alternative, a single hole (fin.) may be drilled exactly in each corner of the opening and cuts made along each edge from hole to hole with an abrasive hacksaw blade. There are no other difficult points on this chassis and the cutting and bending should proceed exactly as in the case of the tuner chassis.

Component Mounting

Before wiring, all parts have to be mounted, and again it is desirable to proceed according to your particular ability. Some constructors prefer to mount everything in its place and then to wire up, while others prefer to mount only the valveholders and very small items first, wire these up, and then add the bulkier parts gradually. This does make

the chassis easier to handle, but whatever system is adopted, systematic wiring is essential to avoid leaving out or wrongly connecting important leads.


Many constructors can wire from a theoretical diagram and full circuits were given in the last issue. Shortage of space does not permit of our giving reduced scale diagrams of the wiring this month, but they will be given in the next issue to assist those who can manage from a rough guide. As already mentioned, a full-size blueprint is available, price 3s. 6d., and this includes all details, including the theoretical circuits and list of parts.

Circuit Correction

For those who wire up from the circuit it should be pointed out that the cathode follower load coil, L1, shown in the tuner circuit, has been connected to the wrong side of R13. The circuit will function with the connection as shown, but improved results will be obtained when it is connected direct to the cathode of the diode side of V3.

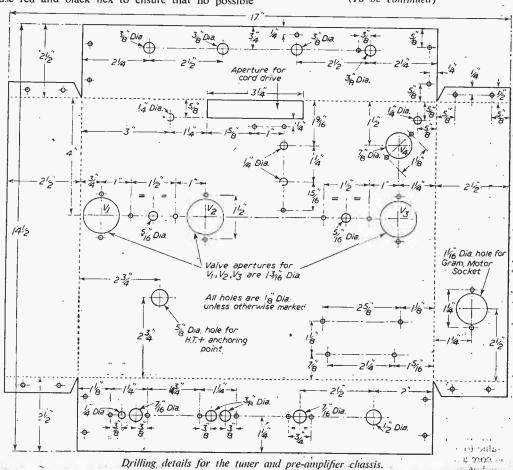
Component Wiring

It is no doubt unnecessary to remind constructors that the electrolytic condensers must be connected with the correct polarity, but some readers have expressed doubts concerning the correct connections for standard tubular condensers. The small 0,1 condensers which are specified for this receiver, and many others which are available, carry a black ring round one end of the condenser casing, and this denotes that the connecting lead at that end of the condenser is joined to the outer foil. This does not have to be earthed, except where it is placed in such a position that one side of that particular condenser

Drilling details for the amplifier and power pack chassis.

is connected to earth. It should, however, be connected to the "cold" side of a circuit, that is, the "earthy" side of a circuit. For instance, if such a condenser were used as a L.F. coupling condenser the outside foil would be joined to the grid of the valve, and the other side to the anode of the preceding valve. Where the condensers are used for decoupling, however, the outside foil connecting lead is taken direct to earth.

Many of the resistors will be found to have leads sufficiently long to enable a portion to be cut off so that they may be connected from point to point without adding any leads. They will be sufficiently rigid to avoid the necessity for using screened sleeving unless it is required to make the wiring look "pretty," but except where long leads pass close together and there is a risk of sagging with resulting short-circuits, sleeving is not really a necessity. Many constructors, again, use coloured sleeving to identify various parts of a circuit—red for H.T. carrying leads, black for "earthy" leads and so on.


Connecting Plug and Socket

When making connections to the multi-point connecting plug and to the strips on the tuner chassis, use red and black flex to ensure that no possible

cross-over arises with disastrous results when the two chassis are interconnected. Preferably use rubber-covered flex for the L.T. and plastic covered for the H.T. The mains leads may be cotton-covered over plastic or similarly identified. Furthermore, when this part of the wiring has been completed make a cross-check by connecting a battery or meter to each end of the separate leads, as it is fairly simple to go wrong and cross over when dealing with eight separate leads, and as the mains supply leads are included the result of a mistake may be quite expensive.

There is only one more point which may be mentioned on the constructional side and that concerns the radio-gram switch. This is actually of the two-pole change-over type, and there are a number of alternative types which may be used. As will be seen from the blueprint, we actually used a Yaxley wafer intended for quite a different purpose, but which lent itself to the use of two poles with two positions. Bulgin make a rotary change-over switch which may be used although it has a short spindle and will call for the use of a connector or some means of extending the spindle so that it lines up with the other controls on the panel.

(To be continued)

TV Interference with Broadcast Receivers

CAUSES AND SUGGESTED CURES

By H. H. Jay

ANY complaints are made by television users about interference with their reception and much time and money has been expended by firms and individuals in moderating this interference. Much less has been heard of the interference caused to broadcast receivers by the television equipment, possibly because the disturbance is only serious at close range. The actual number of listeners affected is small at the moment, but as the number of television transmitters increases so will the interference.

The trouble has two main manifestations. In the first, the broadcast receiver shows an apparent fall in sensitivity, increased background noise and distortion of the received signal when this is of moderate to low strength. In the second form, the set, even on strong local signals, shows distortion and loss of quality, often accompanied by a strong whistle resembling a heterodyne, and a high and variable hum level.

Direct Pick-up

The cause of the first form of disturbance seems to be direct signal pick-up from the transmitter. Not all receivers are affected, but the constants of some input circuits seem to be such that they form an effective grid impedance at TV frequencies and so pass on a considerable voltage to the grid of the first valve. The characteristics of this stage are seldom linear so cross modulation results between the TV signal and the normal broadcast. Sum and difference frequencies are then produced of which a few pass through the I.F. stages to reach the A.V.C. and second detectors. The bias so produced reduces the apparent signal strength of the wanted programme and increases the detector distortion.

In cases where the television signal does not penetrate beyond the first grid, partial rectification can take place and this results in a symmetrical amplification

of the wanted carrier.

1

The cure is a simple wave-trap made as a single parallel tuned circuit and wired in the aerial lead, preferably inside the set and as close to the aerial coil as reasonably possible. A simple plate screen between the trap and the main coil is usually adequate, but the

new coil can be potted if desired.

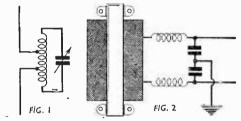
The dimensions and winding of the trap coil are a matter of experiment because the loading of the aerial is a variable factor. A good trial winding is six turns of 14 or 16 s.w.g. wire on a §in. diameter former spaced to a length of §in. This can be tuned by a ceramic semi-variable trimmer of 15 pF capacity. The connections to the circuit should be by the two middle turns, Fig. 1. The coil can be tuned by wiring a crystal detector in series with a microammeter or a pair of phones across the condenser. When set up, provide an iron core from a tuning coil and a short piece of brass rod about §in. diameter.

Start by varying the condenser, using a nonmetallic tool. If no readings are obtained, insert the iron core a short distance into the coil and try again. A reading then indicates that the inductance of the coil

is too low and the turns should be brought closer together. If no signal can be tuned with the iron core, substitute the brass slug. Success then indicates too high an inductance and the coil should be opened out or a turn removed to correct the matter.

Inductive Pick-up

The second source of interference is the line timebase of the television set itself. The trouble tends to be most pronounced on the long waveband because some of the radiated harmonics are close to the frequency of the Light programme. The real cure for this trouble is screening of the television set, its removal to a greater distance and possibly a change in the run of the aerial feed. None of these remedies can be applied without the co-operation of the owner, and when this is lacking other palliatives must be sought.


The first and simplest device is a pair of good condensers of about .5 μ F capacitance and rated for at least 750 volts working. Wire one from each side of the transformer primary to earth. The condensers may sometimes need supplementing with a pair of H.F. chokes, particularly when the receiver is of the A.C./D.C. type. Fig. 2 shows the arrangement. The chokes can be of 650 turns each of 32 to 34 s.w.g. wire wound on a $\frac{3}{4}$ in. diameter mandrel. The axial thickness should be about $\frac{1}{4}$ in.

Where the interference reaches the set through the aerial, the run of the lead in can be changed so as to increase its separation from the television set. Screened downlead with the screen earthed to the receiver earth can be used with advantage. The best material for this purpose is the co-axial feeder stocked by some dealers in surplus material. The screening should extend as far as possible towards the top of the aerial. After such an alteration it is wise to re-trim the first tuning coil.

Another remedy that is sometimes effective is to coat the whole of the inside of the receiver case with graphite in colloidal form. The coating should be bonded to the earth of the set and it will then provide

a surprising amount of screening.

If none of the above remedies prove sufficiently effective, the receiver will have to be moved either to another part of the room or to another room altogether. The type of interference now being discussed usually occurs when receiver and television set are near to one another on opposite sides of a party wall.

Figs. 1 and 2.—Trap coil and mains suppressor circuits.

Tape Recording

PRINCIPLES INVOLVED AND DIFFICULTIES EXPLAINED BY W. J. DELANEY (G2FMY)

HERE is an increasing interest in tape recording and, as may be seen from our correspondence pages, difficulties are experienced in obtaining satisfactory quality. There are three main factors which are concerned here, the actual amplifier which is employed, the speed of the tape, and the type of recording head which is used. Other factors can enter into the question, but it has been found that these are the principal causes of trouble. Dealing first with the recording heads, home-constructed units can be made to give quite good results, but there is difficulty in obtaining a suitable gap. Generally speaking, the high-note response is controlled by the gap, and the manufacturer is usually in a better position to construct a head with a suitable regularlycut gap than the home constructor. The lower frequencies are generally controlled by the speed of the tape. It is appreciated that the record on the tape consists of sine waves, and a high note is a sine wave occupying a minimum of space, whilst the low note is a long-drawn-out wave. Obviously, therefore, if the tape travels at a fast pace past the play-back head it is possible to lose some of the effects of the lower frequencies, and there are set speeds now regarded as standard which should always be adopted, so that tapes may be used on different instruments without change of pitch. If a tape is recorded travelling, for instance, at a speed of 7½ in. per second, which may be regarded as a kind of general speed suitable for either speech or average music, then if it is played back at a faster speed the pitch will rise and vice versa, in exactly the same manner as a gramophone record.

Suitable Speeds

It may be pointed out that the speeds regarded as standard are 3\(\frac{3}{2}\)in. per second for speech only, 7\(\frac{1}{2}\)in. for general use, 15in. for hi-fi results, and in the case of tapes used on broadcasts by commercial concerns the speed is as great as 30in, per second. Obviously, in the interests of economy the amateur uses as slow a speed as possible, the difference in playing time between these speeds being that a 1,200 ft. tape will play for approximately half an hour at 7½ in. per second, but for only a quarter of an hour at 15in. per second. For quality reproduction, therefore, a slow speed is the first requirement, and this means that a really reliable motor must be used to avoid "wow" and other wavering effects. The use of a single motor, with gearing for record and play-back, is not desirable in this connection. Separate motors for each purpose with high-speed rewind facilities should be used, and the amplifier should be designed on the most generous lines. It is possible to use only two valves and carry out all operations by suitably switching the various stages, but this cannot lead to high quality results. Separate play-back circuits are desirable, whilst even the recording output stage and the play-back output stage should be separate. They both operate in a more or less similar fashion, but the introduction of switches to make circuit changes will undoubtedly prevent the best performance being obtained.

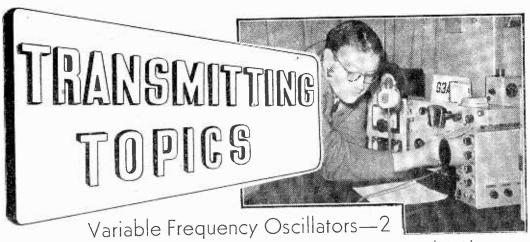
Erase Head

The question, is often raised as to whether it is. necessary to use a separate head for erasing. Why, we are often asked, cannot a permanent magnet be. used? Certain commercial units do, in fact, use a P.M., but it is usually found, even when Alnico or similar high-efficiency magnets are employed, that complete erasure cannot be effected, and the result is a noisy background. If the tape is used for experimental work continued use only results in the background becoming noiser and noisier, until eventually it is almost useless for quiet musical passages. A good erase arrangement with suitable head is, therefore, another "must" for those who are in search of high quality. In the course of experiments with a very well-known make of tape deck it was found that a noisy background became evident after continued use, in spite of the use of a good erase arrangement. After inspection it was eventually found that this was due to a very slight roughness on the recording head which was not visible except under the microscope, and this removed rather more of the surface of the tape than usual. The coating had got into the gap and the application of the usual brush failed to remove all of this. The particular design was such that it was found possible to place a piece of cellophane tape across the head for the recording tape to run over without seriously affecting results, but it cleared up the difficulty of the noise. No difficulty was experienced with the tape "sticking" to the tape.

Dual Tracks

In the interests of economy another feature which is often adopted is the use of twin tracks, only slightly less than one half of the tape being used for the track, and the tape being reversed and lowered or raised so that the return track is made by the side of the first one. Opinions seem to be divided as to whether this is a good arrangement for quality reception. The narrower track, with a suitable head (the position of the gap must, of course, be suitable for the halftrack recording and play-back), can give a miniature form of the normal recording, but it is definitely an economy move and as such is probably to be avoided by the quality enthusiast. We shall be glad to receive details of reader, experiences and experiments in connection with this particular branch of the hobby, and in the meantime we shall be publishing in the next issue details of a high-quality amplifier suitable. for use with a standard tape deck.

NOW READY!

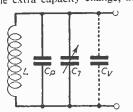

The Entirely New 12th Edition of The Famous Standard Work

THE PRACTICAL WIRELESS ENCYCLOPÆDIA

By F. J. CAMM

Price 21/-, or 21/10 by post from:

GEORGE NEWNES LTD., Tower House, Southampton Street, Strand, W.C.2.



CONSIDERATIONS IN TRANSMITTER DESIGN By O. J. Russell, B.Sc. (G3BHJ)

(Continued from Page 258 June issue)

PREVIOUSLY we considered the effect of slight capacity variations due to the valve upon the stability of the V.F.O. In Fig. 1 we repeat the diagram showing the tuned circuit and associated capacities. C_p represents the padding capacity, which is made up of a fixed capacity deliberately added to spread the tuning range so that C_t, the tuning condenser, just covers the required tuning range, thus giving an open calibration on the V.F.O. tuning dial and facilitating accurately setting to frequency. C_s represents the valve capacity.

There is a very simple rule to remember in considering the effects of capacity change upon the tuned circuit frequency. For small capacity variations, the percentage change in frequency is half the percentage change in capacity. Thus, a 2 per cent change in capacity produces a 1 per cent. change of frequency. This is strictly true only for very small capacity changes, but practically the rule is adequate for normal changes. Thus it enables us to calculate the capacity change necessary to tune over a required frequency range. Thus, if a V.F.O. intended to produce a 7 Mc/s signal is required to cover 7.000 Mc/s to 7.300 Mc/s, the 0.3 Mc/s change in 7.0 Mc/s is near enough a frequency change of 4.3 per cent. As the frequency change is half that of the capacity change, we shall need to produce a capacity change of 8.6 per cent. to produce the required frequency change. To be on the safe side, and allow a little overlap at the band edges, we can provide a little extra capacity change, and if we make this 10

L ... Tuning inductance

Cp Padding and swamp fixed capacitor

CT. Band tuning condenser

C_V. Valve capacitance.

Fig 1.-V.F.O. tuned circuit.

per cent, there will be a comfortable tuning range spread nearly all over the tuning dial. A little simple arithmetic will show that, in fact, there will be about 50 Kc/s additional tuning range. Thus, with a total tank capacity of 1,000 pF. for a 3.5 Mc/s fundamental V.F.O., the tuning capacity if only 40-metre band operation is required will be 100 pF. calculation of coil inductances is not discussed here. for that is a simple application of readily available charts and tables. In fact, a V.F.O. covering 7.000 Mc/s to 7.350 Mc/s, will also more than cover the 14.0 to 14.4 Mc/s band, and will cover the 28 Mc/s band up to 29.4 Mc/s. As the winding of a tuning coil to an exact inductance value is an extremely difficult undertaking, it is much easier to wind the inductance to the nearest convenient size, and adjust the value of padding condenser to bring the frequency to the required value. This may be done by making the padding capacity up to value with a "band setting" variable. Our practical V.F.O. tuned circuit will now look like Fig. 2, with a smaller fixed padder, a pre-set variable to set frequency, and the main tuning condenser. A further refinement sometimes fitted is a "QSY" control to enable very small frequency shifts of a few kilocycles to be made above and below the operating frequency. This can be

Fig 2.—Practical V.F.O. tuned circuit. C_F padding condenser (e.g., 500 pF.); C_P variable padding (band-setter) (e.g., 500 pF.); C_T main tuning condenser (e.g., 100 pF.); C_Y "QSY" control (e.g., 5 pF.); L tuning inductance; C_N optional negative coefficient temperature-compensating condenser (see text).

effected by using a small variable of about 10 pF. in parallel. The alternative to a band-setting condenser, is to adjust the fixed padding by adding small condensers to bring the tuning range to within the limits of the main tuning condenser. This is a task involving a considerable amount of fiddling with various small fixed condensers, but it does eliminate the variable bandsetter. Should a band-setting condenser be accidentally altered, the V.F.O. calibration may be upset, necessitating careful resetting. A fixed padding condenser ensures a stable calibration.

Condensers

Stability being the watchword, all capacitors must

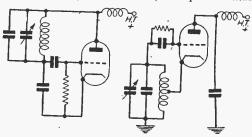
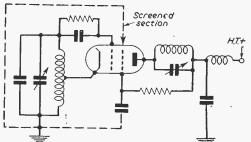


Fig 3. — The Colpitts oscillator.

Fig. 4.—The grounded anode Hartley (so-called "electron-coupled" oscillator).

be of stable types. The tuning capacitors should have rigid thick vanes with wide plate spacing, so that. vibration will not cause any appreciable alteration of capacity. The fixed condensers must be of stable silvered mica or ceramic types. Paper or stacked foil types are not recommended. If it is desired to compensate for temperature changes, part of the padding capacity into details, the experienced amateur will be

able to estimate the temperature drift over a given range and to calculate the equivalent of this in capacity change. Thus, a .005 per cent. frequency change represents a .01 per cent. capacity change. With a total tank capacity of 1,000 pF., this corresponds to a 1 pF. change. A suitable negative coefficient condenser of the right value of capacity and temperature coefficient to produce the same change is thus required. However, it is infinitely simpler to use a "variable temperature coefficient" condenser. This is a trimmer, with a coefficient variable from positive to negative as the screw slot control is turned. The capacity, however, remains constant. It is only necessary to fit such a condenser and adjust it until any temperature effects are reduced as far as possible. In any case the V.F.O. tuned circuit should be enclosed in a ventilated compartment to screen it from heat from valves, and also to screen it from draughts. If this is done the temperature in the screened box will only alter slowly, and renders


temperature compensation unimportant. Failure to screen from draughts on the other hand may cause an annoying phenomena with temperature compensation. The small temperature-compensating condenser can change temperature quickly with draughts, while the large coil only slowly alters temperature. This can cause an annoying fluctuation unless draughts are screened off. Opinions are divided about the value of temperature compensation, therefore, and it is by no means a necessity.

One final word on tuning components. Both coil and condensers should, of course, be rigid and of low-loss construction. However, it is a desirable feature to have a linear frequency scale, so that the tuning dial can be accurately calibrated, and the frequency band is spread uniformly round the dial. With the tuning capacity forming a small part of the total capacity across the coil, as in Figs. 1 and 2, this is not achieved by using a straight-line frequency type of condenser. As we have seen there is a direct relationship between percentage frequency change and percentage capacity change under these conditions. A linear tuning scale is, therefore, obtained by the use of the straight-line capacity type of tuning condenser with the semi-circular vanes. Other types of condenser will produce distorted frequency calibrations and should not be used.

Typical Circuits

Typical popular V.F.O. circuits are shown in Figs. 3, 4, 5 and 6. All these have specific points which

must be carefully watched for optimum results. In Fig. 3, we have a Colpitts type of oscillator. This is capable of good results if intelligently designed, but it has obvious disadvantages. This output is taken directly off the oscillator anode connected to the tuned circuit, so that the following stage may easily disturb the oscilla-tion frequency. The need for an anode choke is a further disadvantage as the quality of the

must be replaced by a Fig. 5.—"Electron-coupled" form of the grounded suitable negative coefficient anode Hartley. The oscillator output is coupled from ceramic condenser. Without the screen-enclosed oscillator section via the electron going into details, the stream, if a fully screened valve is used.

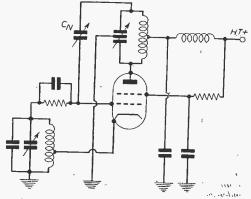


Fig 6.—Neutralised anode circuit form of "electroncoupled" oscillator.

choke can influence the Q of the tuned circuit. It is, therefore, the grounded anode Hartley oscillator of Fig. 4 which is more popular. This circuit is erroneously called "electron coupled," even in the illustrative triode form. The "electron coupling" does not, in fact, refer to the production of oscillation, but to the fact that in the pentode or tetrode form of Fig. 5, the screen grid which plays the role of the triode anode of Fig. 4 is earthed and screens the tetrode anode circuit from the oscillator section. Energy is coupled to the output anode through the fluctuating stream of electrons. Thus, the efficiency with which the oscillating portion is shielded from loading effects in the anode circuit is critically dependent upon the efficiency of the screen grid as a true electrostatic shield. With the old types of screengrid valve in which the screen was flared out and brought right up to the glass envelope, the tuned circuit could be within a completely shielded box, through which the valve protruded with the screengrid flange forming a continuation of the metal shielding. Under these conditions oscillatory energy was literally "electron coupled" to the anode circuit. Modern valves have rather less effective shielding than this, although the skirted construction is now again being employed in transmitting valves of high sensitivity. For V.F.O. use the 6AG7 has good isolation properties. For the interests of stability, the anode circuit is usually left untuned and a choke is employed. However, in V.F.O.s, using a tuned anode circuit, the pulling effects of the anode-tuned circuit may be nullified by employing neutralisation. This with an oscillator valve such as a 6L6 can enable a high output to be obtained, so that for portable or emergency work one could use such a V.F.O. by itself as a transmitter with several watts output. However, for normal purposes, over-running a V F.O. is undesirable, and the plate-neutralised electron-coupled oscillator is mentioned only as an unusual arrangement of value for special applications. (Fig. 6).

Even with the normal electron-coupled oscillator, and with a choke-coupled anode output, there are a number of not so obvious points which seldom receive adequate publicity. Thus the cathode tap is quite critical for the highest stability. Careful adjustment is necessary, with variation of H.T. potential at each adjustment to find the position least affected.

However, before one can do this, the screen circuit must also be adjusted. The screen-dropping resistor is critical. This is because variations in screen potential tend to have the opposite effect to anode Thus by switching in and out a voltage changes. large dropping resistor in the H.T. supply line, a large change in H.T. voltage can be effected. Monitoring will enable the effect of this to be observed. If the screen dropper is now adjusted in steps, a position can be found where the change of frequency due to changing H.T. voltage is at a minimum. This is the optimum screen circuit condition. It is clear that if finally the overall H.T. supply is stabilised, the net stability will be of a high order. However, it is much sounder to obtain maximum stability before applying stabilised H.T., as this will then ensure very high overall stability. H.T. stabilisation is definitely not a cure-all to be applied to make a chirpy V.F.O. produce a passable note, but the final touch of refinement to be added to a well-designed, highly stable V.F.O.

Influence of the Valve

In Fig. 7 we have the cathode condenser tap version of the electron coupled oscillator. The advantage here is that no tap is taken to the coil, and that the effective tapping position can be readily adjusted to any desired value by adjusting the values of the two condensers forming the capacity potentiometer across the tuning coil. This will affect the tuning, of course, but once set for the optimum tap point, a variable band-setting condenser will enable the tuning range to be set to the desired band.

As the influence of the valve upon stability is an important point, it is an advantage to couple it, only loosely, to the tuned circuit. This may be done by tapping it only across part of the tuned circuit. This, in effect, transforms down the influence of the valve, so that variations due to loading, etc., are reduced. As the transformation depends upon the square of the turns ratio, tapping only a third from the top produces nearly a two to one improvement, while tapping half-way down produces a four to one improvement. However, as one taps down the coil, the voltage developed across the valve is correspondingly reduced.

(To be continued.)

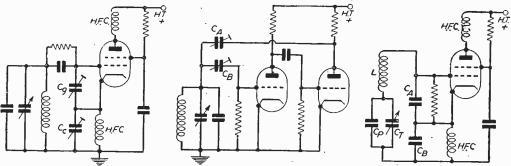
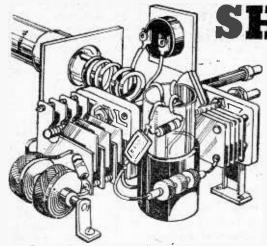



Fig 7.—Condenser tap version of the "electron-coupled" oscillator. This is not to be confused with the similar Clapp circuit. C₂ and C₆ are cathode tapping condensers of, say, 100 pF, and 500 pF, respectively.

Fig. 8.—The Franklin oscillator. C_A and C_B are 0-15 pF. trimmers.

Fig. 9.—Clapp oscillator. Total effective tuning capacity is approximately C_P plus C_T , which may be, say, 35 pF or less. $C_A = C_B$ which may be 500 pF. to 1,000 pF.

EXPERIMENTAL short-wave receiver construction, if tempered with discretion, has a lasting fascination. Some experimenters appear to take pride in the fact that their receivers are most of the time in a partly dismantled state. That sort of thing is a sheer waste of time.

Unsuitability of circuit is often the excuse, but is more likely to be associated with unsuitable modi-

fications.

If on test a receiver is found to be stable in operation, the removal of its existing defects can be taken in hand. Should instability be in evidence, to locate the cause and effect a cure should be the first task.

With limited practical experience this may be difficult. A good book dealing with the fundamentals of radio servicing will help considerably and prove to be well worth its cost.

Those who find that an experimental receiver on test is beyond further improvement are fortunate.

While the maximum all-round efficiency should be the goal, the limitations of the chosen circuit should not be ignored. Once satisfaction is obtained it will prove best in the long run to leave well alone.

This applies equally to battery and A.C. mains type réceivers and associated apparatus. Until one can build successfully the designs of others, personal ideas and modifications should not be attempted.

Unit Construction

The time comes when the owner feels the urge to build something more ambitious. Rather than take the risk of dismantling a perfectly good receiver in cases where component stocks are limited, it is worth while to consider building a number of separate add-on units. R.F. and L.F. amplifiers are two examples. A useful amount of groundwork can be accomplished in this way, and one has the satisfaction of knowing that a satisfactory receiver is the basis of the contemplated experiments.

Should the final tests indicate that it would be worth while going a step further, the receiver and units should be drawn out in combined form for rebuilding on a single chassis of suitable dimensions. In the interests of stability, due attention should be

paid to inter-stage screening.

In the commercial field diecast chassis are favoured in short-wave receiver design. This is without doubt

SECTION

By A. W. Mann

the best type of chassis, but outside the scope of the amateur. Stout gauge aluminium sheet or cadmiumplated steel will, however, be found satisfactory.

The efficiency of the steel chassis is, however, lower than that of aluminium, and because of this it is the practice to cadmium-plate this type of chassis.

Screened Coils and I.F. Transformers

While interstage screening is used to a considerable extent by amateurs, individually screened coils are not. The writer much prefers the former method for various reasons. Should the experimenter prefer to screen plug-in type coils the effects of such screening should be taken into account, and coil screens of comparatively large diameter—that is, when compared with the standard plug-in coil—should be used.

It is as well to bear in mind that interstage screening correctly applied is sound design, while on the other hand to overdo the application of it will result in a

lower standard of efficiency.

Commercial communication type superhets are examples of efficient screening. It should be pointed out to the home-constructor, however, that where screened coils and I.F. transformers are to be used the chassis face should not be depended upon as a bottom screen. An integral screening base should be used, otherwise instability may result.

In addition, special attention should be paid to the mounting of screened components in order to ensure

sound electrical and mechanical contact.

Coil Packs

The choice between plug-in coils and switched coil packs rest with the individual, and is one on which I should not care to advise. There are a number of very efficient units available, the price differing according to the range covered. Constructors are strongly advised, however, to follow the maker's recommendations as to suitable circuits, or build sponsored designs in which the chosen unit is incorporated before attempting to experiment. By doing so one has a basis of comparison.

Certain ex-Service communication receivers, including the R1155, do not incorporate a built-in power supply. Several firms advertising this type of receiver, however, can supply a commercially-produced power unit or, as an alternative, full details and the theoretical circuit of a tried and proved design for home construction. In addition, they are prepared to quote for the complete kit of components, including a

built-in power output stage.

Under the circumstances it is surprising to note that some constructors prefer to build power supplies of their own design. Hum trouble appears to be common. Complete articles have in the past been devoted to this subject, and I do not propose to offer further comment other than to draw the reader's attention to Newnes "Practical Wireless" Sérvice Manual, in which considerable space is devoted to the subject.

Fans at the Northern Show

Y regrets to all those who called at our Stand at the recent Northern Radio Show, but were unable to see me. I gather that one or two of the more rabid protagonists of ridm and cryning (the O.E.D. really should include these two words of mine in their next edition, because they are almost onomatapæic) were after my blood, and I am sorry that I did not meet them because I am quite certain I could have converted them and brought them back into the paths of musical rectitude. My thanks, too, for all those readers who left messages of regard. Perhaps I shall have the pleasure of meeting the disappointed ones at the National Radio Exhibition at Earls Court.

"Unnecessary Amenities"

PRESS cutting dealing with the speech made by the Archbishop of Canterbury at a meeting of the S.P.C.K. surprises me, coming from one who should welcome the fulfilment of some of the prophecies in the Bible. He was referring to the cost of printing which he rightly says is mounting beyond reasonable proportions, and he thinks that as a result we shall become an illiterate people because there will be no money left with which to purchase reading matter. Here he shows himself sadly out of touch with worldly matters. The fact is that the sales of newspapers, periodicals and all types of books, technical, fictional, biographical and travel, are selling in greater numbers than ever before. point, however, he wished to make and which was really the gravamen of his speech was that the moment was inopportune "when, as a nation, we are in extreme financial peril" to increase the unnecessary amenities which are gradually becoming accepted as necessities of modern life. He thought that television is likely to become one of such amenities, and, to some extent, he criticised radio and other mechanical substitutes for the Caxtonian method of conveying information. Would Cantuar like scientific progress stopped? Is not the Bible the world's best seller in spite of radio or perhaps because of it? Radio has brought religion to far more people than the Church has done. Churches nowadays are mostly empty on the day of worship and on the Church holidays. It is said that radio and television are changing the pattern of our national life, and this statement is made as if it were an undesirable thing to change the pattern of our national life. Did not Gladstone's Education Act change the pattern of our life for the better, because it taught everyone to read and to understand for himself? No longer was it necessary to go to Church to hear a parson interpret the Bible for those who could not read. Scientific progress has always been attacked by those who wish to live in the past, people with

machine changed our national life, and so did the stage coach, the bicycle, the motor-car, the aeroplane. the telephone, the gramophone, the cinema. The fact that radio and television are the greatest scientific developments of all times should be welcomed by those whose avowed task it is to spread the Gospel. For one man in front of a microphone can address the world as his audience instead of prating wellknown textual shibboleths from the Bible to a handful of disinterested people. In view of the criticisms of our life so frequently made from the pulpit, Dr. Fisher should welcome the means of addressing a vaster audience and carry his mission beyond parochial bounds. However, whatever Cantuar says, radio and television will continue to advance and exert its beneficient influence. He should remember the motto of the BBC: "Nation shall speak peace unto nation."

New "Fury-Four"

MY paragraph concerning the collection of old sets brought me a number of letters from readers who do not collect them but continue to operate them. I was surprised to find so many readers still working the famous "Fury-Four" in its two versions battery and mains. It may interest them to know that I have the original receiver and, but for very mild replacements, it is practically as it was. Selectivity. of course, is not so good as can be obtained from modern components and circuitry, but the quality is excellent. This prefaces what I set out to say, namely that an entirely up-to-date version of the "Fury-Four" is now on the stocks in the PRACTICAL Wireless laboratory, and it will shortly be described in this journal.

Standardisation

WAS most interested to read John Scott-Taggart's article on standardisation in a recent issue, because I have some decided views about it myself. I do not like the word to start with. It suggests a no-change policy, otherwise where is standardisation? Desirable though standardisation may be, we certainly have not achieved it. We have, in some cases, defeated the very object of standardisation, which was really originated by Whitworth, because every so often an existing standard is scrapped. This means that some firms continue to operate the old standard whilst some operate the new. As B.S.I. standards are not compulsory, but are only recommendations, the position is made even worse. There are far too many standards, anyway.

Sponsored Programmes

AT the moment of going to press it seems unlikely that the Government will approve sponsored radio programmes, and I wonder whether this country really wants them. From correspondence it would appear that the British public is reasonably satisfied with the programmes it at present gets.

Presenting Technical Information

AN ACCOUNT OF EFFORTS TO ACHIEVE STANDARDISATION OF TECHNICAL TERMS, ABBREVIATIONS AND CIRCUIT PRESENTATION

By John Scott-Taggart, M.I.E.E., M.I.Mech.E., F.Inst.P., F.I.R.E. †

(Continued from page 251, June issue.)

THE element which heats an indirectly heated cathode is called simply a heater. Screened pentode is preferred to R.F. pentode. A filament in a valve is a cathode heated by a current which passes through the whole or part of it.

In radar terminology, anti-clutter gain control is preferred to swept gain or temporal gain. Transponder is the device (e.g. in an aircraft) which receives pulses from an interrogator (or from a radar station), and, in response, transmits pulses for recognition purposes. Responder is the receiver for these transmitted pulses. An echo is the R.F. energy received after reflection from an object; the term is also used to describe the effect of the R.F. energy on a radar display. A blip is a momentary deflection, or change of intensity, on a C.R.T. display, produced by the signal from a responsor; in I.F.F. technique this is referred to as a response. Grass is the approved term for deflections from the timebase on a C.R.T. due to electrical noise. Jitter is random departure from temporal regularity of repetition—usually applied to pulse repetition. Snow is the speckled background on an intensity-modulated display, due to electrical noise. Range-amplitude display and range-bearing display are terms for what are also called Type A (if timebase is a straight line) and Type B displays.

Incidentally, the I.E.E. prohibit radar as a noun while admitting radio as a noun; the Inter-Services Glossary encourages the noun radar and subdivides it into primary and secondary radar (the latter involving automatic retransmission from the responding object).

Component Coding

Components in a diagram are identified by coded references which consist of a letter (or letters) followed by a number or letter (e.g. C2, SWB). Some of the coded references will be new to many technicians (e.g. TR, MR, FS, RV, BY) and the addition of letters instead of numbers in some cases (e.g. SWA, SWB, SWC) does not accord with radio custom. Many of the changes are a result of Post Office telephone practice; telephone engineers in the past have used many relays and switches and comparatively few resistors, capacitors and valves, whereas radio engineers have used few relays and switches. Telephone engineers have not used R1, R2, R3, etc., but have coded their resistors YA, YB, YC, etc.; their capacitors were labelled QA, QB, QC, etc.

Confusion became intolerable when electronic and telephone engineers used each other's techniques and so a queer compromise was agreed and is now laid down in B.S. 530: 1948, Supplement 2. The

* Based, by permission, on an article by the same author in the "Naval Radio and Electrical Review,"

† Admiralty Signal and Radar Establishment.

following list shows the more important agreed references. Most letter references are followed by numbers to distinguish them (e.g. C2, FS4, TR2) but switch-like components are, as an exception, given distinguishing letters (A, B, C, etc.); thus several switches in a diagram might be called SWA, SWB, SWC, not SW1, SW2, SW3; similarly, plugs would be labelled PLA, PLB, PLC, not PL1, PL2, PL3. Components distinguished by letters instead of numbers include switches, jacks, test jacks, plugs, sockets and links (including mains voltage selectors). Full-stops should not be inserted between letters

and numbers when coding components; thus, C.3 is wrong. Incidentally, it is CV. 1234 not C.V. 1234.

Mandatory		1
Aerial AE Resistor (fixed) R Capacitor (any) C Inductor L Transformer TR	Rectifier Valve (any) Diode C.R.T Fuse	MR V V FS
Normally Used		
Potentiometer . RV Variable resistor . RV Battery BY Loudspeaker . LS Microphone . MC Headphones . TL Vibrator . VB Piezo-electric crystal . XL Lamp LP (* Followed	Meter Pick-up Switch Plug Socket Jack Test jack Relay Link by letter.)	M PU SW* PL* SK* JK* TJ* RL*

Optional Artificial line .. AL Thermocouple .. TC Attenuator .. AT Thermistor .. TH Blower .. BL Terminal or

Blower . . . BL Terminal or Earth . . E tag post . TP Spark-gap . . SG Terminal strip . . TS

Complicated rules are laid down for ganged wafer switches and full details cannot be given here. The parts of a wafer switch might be called SWAa, SWAb, etc., where "a" represents the wafer side nearest the front panel; a second wafer switch might have parts labelled SWBa, SWBb, etc. If the contacts on both sides of any wafer are the same, the contact pieces extending through the wafer, the entire wafer is designated by the letter that would have been used for the side of it nearer the front panel; thus the wafers in a switch might well be designated SWBa, SWBc, SWBe, etc.

Abbreviations

A distinction may be made between symbols used in formulae (I for current, V or E for electromotive force, L for inductance, etc.) and unit

abreviations such as A for ampere, V for volt, μ for microfarad. There is a tendency (a rule with 1.E.E.) for most symbols to be in italics; thus R is used in a formula and R in a circuit. Some of these abbreviations are often wrongly used. Thus, mf, mF, mfd should be replaced by μ F. The letter m should be used for milli- (e.g. mA for milliampere) meaning millionths. The widely used $\mu\mu F$ (micromicrofarad) is now replaced in the Services by pF (picofarad), which means the same thing. tances marked on diagrams should be in picofarads up to 999pF; above this they are marked in μ F. Thus, .0005 (or 0.0005) μ F should be 500pF.

The abbreviation (in texts) for thousands is k, g, 5kQ for 5000 ohms. Capital K is wrong: e.g. $5k\Omega$ for 5000 ohms. thus, 500Kc/s should be 500kc/s and 30KW should be 30 kW. The abbreviation for millions is M, e.g.

 $5M\Omega$.

Common abbreviations are cm (centimetre), in (inch), ft (foot), lb (pounds), db (decibels-not dB or DB), V (volts), A (amperes). These abbreviations should never have full-stops after them (unless punctuation demands them) and should never be pluralised by adding s; thus, 20lbs, 15dbs, 7ins are all wrong. An exception is "in"; if necessary, a full-stop may be used after it if confusion might otherwise arise. The plural of e.m.f. is e.m.f.'s but units are never pluralised. The abbreviation amp (without full-stop) may be used but only adjectivally, e.g. 5-amp fuse.

There are special rules for diagrams. A capital K is (illogically) to be used for thousands. Resistances below a thousand ohms may be marked, for example, 300Ω or simply 300; a thousand ohms or over is marked by a number and K or by a number followed by K and Ω . Thus, 1 K or 1 K Ω is used. A million ohms or over is indicated by a number followed by M with or without Ω . Thus, 1 M, 1 M Ω , 3.5 M, 5 M Ω are correct. Capacitances up to 999 pF are indicated by a number followed by pF or simply p. Microfarads are indicated by a number followed by μF or simply μ . Thus 20 μF or 20 μ is correct, but not 20; the μ must always appear.

In texts it is always wrong to omit the initial nought in, say, 0.23 or 0.005. It is arguable whether this is necessary in circuit diagrams but the nought is certainly desirable where the first numeral after the decimal point is not a nought; thus, in a circuit 0.5 μF should be used and not .5 μF . The test is whether the omission of the decimal point (in the printing or through a draughtsman's error) would lead to misunderstanding. In mechanical drawings the initial nought before a decimal point is omitted.

Miscellaneous Rules

The following miscellaneous rules should be noted: In scientific papers a comma is not used to indicate thousands; a small gap is used instead. Thus, the popular 250,000 becomes 250 000. This does not apply to page numbers, dates and patent numbers. The abbreviations & and &c are not used, but etc. is permissible. No comma should (says the Institute of Physics) appear after e.g. and i.e. or after namely. Specific quantities should be in figures, e.g. 10 volts, 60 db, 3in. Other numbers up to a hundred should (according to the Institute of Physics) be spelt out, e.g. fifty-seven varieties (despite Heinz), twenty blunders, five stations, a hundred pipers and a and a'; but 101 varieties, 120 valves. (Should Tennyson have written "Into the valley of death

rode the 600"?) The I.E.E. says figures should

start at 10; another society says 25.

Tables should be numbered separately, e.g.
Table 4. Figures are given as Fig. 3 not Figure 3. Photographs are given figure numbers by I.E.E. and are not described as Plates. The solidus (a rich man's oblique stroke) should be reserved for ratios. This washes out D/F, L/T, R/F; the Admiralty retains W/T as an exception to avoid confusion with the abbreviation for watertight. There are some exceptions; thus a 240/480-volt supply means these are alternative voltages, whereas 240-480-volt supply would include intermediate

Should A.C. and D.C. be used in such terms as A.C. current, A.C. voltage. D.C. voltage? The I.E.E. says no, and puritanically requires spelt-out evasions which render these useful abbreviations useless. Most engineers use these terms adjectively to convey an idea, and it is consoling to find the Inter-Services Glossary cheerfully referring to "D.C. or A.C. voltage"; B.S. 1597: 1949 uses these terms repeatedly. One feels that full stops will ultimately dispused. disappear in abbreviations using capitals. Our broadcasting authority calls itself BBC and the Admiralty would appear sometimes to favour HF, DF, LT, etc; meanwhile, full stops are safer.

It is widely agreed that double consonants should be avoided in words like focused, biased, riveted. pivoted, jacketed. Spell viz. namely (which is how it is pronounced). There is a strong tide flowing in favour of -tor instead of -ter as an ending for instruments such as adaptor, convertor; it is to be hoped we never adopt mixor, rectifior or wipor. The plural of henry is henrys, not henries. Roman numerals have lost their gentility and MCMLII is to be avoided (use 1952). Even Service Mark numbers (e.g. Mk. IV) must now use arabic numerals (Mk. 4). The decline and fall of the roman numeral is emphasised by its retention to indicate sub-sub-paragraphs. Only a Greek chorus could do justice to the woe of the classicists. No doubt we shall, in due course, follow the American lead and speak of mathematical formulas and maximums (we already speak of dramas and cinemas).

The various standards committees are rather weak and inconsistent in spelling, partly because spelling, like pronunciation, is always in a state of flux. The various inter-Services Standardisation Committees cannot even standardise the spelling of inter-Services (at least six variants are used).

Diagrams

The more important diagrams are classed as circuit diagram, block diagram, wiring diagram (enables wiring to be traced but does not show the physical layout of wiring), wiring layout (shows physical layout of wiring), component layout (sometimes called component location diagram, as its purpose is to show the whereabouts of various components), functional diagram, servicing diagram (might show waveforms and test-voltages). A simplified circuit is one which shows the essentials for explanatory purposes. The noun schematic is banned (except by I.E.E. who, however, objects to schematic diagram). As an adjective this pretentious word is usually meaningless and almost always wrongly used; it is thought to give dignity to the most naïve and platitudinous diagram.

Diagrams should be drawn so that the main

sequence of cause to effect goes from left to right. Thus, the aerial of a receiver would be on the left, but the aerial of a transmitter would be on the right. The best arrangement of valves in a complicated diagram needs careful thought. The main process must be first clearly visualised. Subsidiary circuits (e.g. a local oscillator or A.G.C. valve) should be drawn outside the main signal chain (preferably below it). There may be no medical term for a "fear of white spaces," but the disease exists; there is no virtue in arranging a circuit so that all the space is nicely filled. On the other hand, a fairly balanced composition can often be achieved without loss of clarity; for example, successive valves in a chain should preferably be of the same size and on the same level. A heavy earth-line (with an earth symbol attached) should usually be drawn, connections to it being drawn not as dots (which would be too large) but as filled-in semi-circles. In general, positive voltage points should be above the earth-line and negative voltage points (e.g. negative bias) below it. Anode, S.G. and cathode resistors are arranged vertically. Earth symbols may be arranged at any angle or even upside-down; this is Post Office practice but rather unusual in radio circuits; "abnormal" earths are useful in cramped or complicated circuits but are usually unnecessary. In H.T. supply circuits where rectifiers are employed, the rectifier devices (e.g. diodes) should preferably be drawn horizontally; several other similar recommendations appear in B.S. 530: 1948.

According to B.S. 530:1948 crossings may be shown either by the lines simply crossing each other—as in Fig. 1 (a)—or by the use of a semicircular bridge (loop)—as in Fig. 1 (g); the bridge is deprecated unless considered essential. The B.S.I. show timidity in admitting this meaningless and unnecessary exception. The bridge is definitely old-fashioned and is no longer used in Admiralty, Army and Post Office diagrams. The R.A.F. are uses bridges, while exceptions; Farnborough Chessington uses simple crossings but In complicated circuit diagrams gaps. with many crossings, bridges look confusing. Admittedly, a little mental readjustment is needed to admit the simple crossing if one has been used to bridges. The chief argument in favour of bridges was that when lines simply crossed, a junction dot might appear either as a result of a draughtsman's error or in the course of printing; what should have been a crossing thus became a junction. A second objection was that it put the reader to too great a strain to scrutinise the diagram to see if there was a dot or not. Neither objection is now valid because of the new rule that a junction should never be shown as in Fig. 1 (j) or (k), i.e. like a crossing with a junction dot; one of the lines should be made to join a short distance away-as in Fig. 1 (c)—or one or more (but not all) lines should join at an angle not a right-angle as shown at (d), (e) and (f). The arrangement at (m) is inadvisable because, if badly drawn, it might be mistaken for a bridge crossing. The arrangement (k) is not permissible because if the dot were missing it would be the same as the crossing (b). The normal four-wire junction is shown at (c) and, though inelegant, it can never lead to misunderstanding. Nowadays, therefore, it is not necessary to look for a junction dot; if such a dot is missing (through a fault of draughtsmanship or printing) no harm is done, because the

position of the lines indicates a junction. A line should never change direction when it crosses another line—as shown in Fig. 1 (h)—because this looks like a junction without a dot. A test question which covers all cases is: "If the junction dot were omitted, could the arrangement be interpreted as a crossing?" If it could, the arrangement is wrong.

The combined weight of the B.S.I., the learned societies and Government departments (not to mention the U.S.A.) is pressing for the abolition of the bridge crossing and the retention of two con-

ventions is clearly undesirable.

Another rule that may be regarded by some as a change of policy is that connecting lines may slope at any angle and may even be curved. The convention that connecting lines must be horizontal or vertical or a combination of both is no longer enforced; clarity is more important than elegance. Nevertheless, this latitude should not be abused; a plethora of lines at various angles can look like a dog's dinner-a professional draughtsman's nightmare. Input and output terminals should, if possible, appear at the edges of the circuit, not buried somewhere in the centre. In most circuits there is no need to insert an H.T. or G.B. "battery" or to join all the H.T. points together; in some explanatory circuits it may be advantageous to do so. There is no need to join wires to a common earth; there is a growing-and commendable-tendency to scatter separate earth symbols wherever this makes for clarity (e.g. in decoupling circuits); the process can, however, be overdone and can complicate rather than simplify the circuit. In general, it is desirable to restrict the number of crossings, especially in simplified explanatory circuits; a little rearrangement of the wires often reduces the complexity of a circuit. A "fear of crossings"—wholesome enough in traffic-must not be allowed to become a phobia. Where several units are to be joined, the wire connections may sometimes be omitted, suitably lettered or annotated arrowheads being provided, usually at an edge of the circuit. Heater connections to valves are nearly always omitted, arrowheads at the valves being lettered (e.g. x, x).

The drawing of a circuit in a way that makes it self-explanatory is often troublesome but always rewarding. Some technicians boast that they really enjoy puzzling out obscure circuits; one wonders whether they would make a salary-rise application

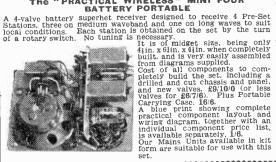
in the form of an acrostic.

If any reader feels the above rules or recommendations are all a "bind," it is consoling to know they are equally binding on and for an F.R.S.

APPENDIX

Some useful reference books are listed below. The B.S. books are issued by British Standards Institution, 24, Victoria Street, London, S.W.I. Technical Terms

B.S. 204:1943—Glossary of Terms used in Telecommunications.


Five supplements:

- (1) Waveguide Technique.
- (2) Radio Propagation.
- (3) Fundamental Radio Terms.
- (4) Radar.
- (5) Piezo-electric Terms.

B.S. 205: 1943—Glossary of Terms used in Electrical Engineering.

(Concluded on page 326)

The "PRACTICAL WIRELESS" MINI FOUR BATTERY PORTABLE


THE "WIRELESS WORLD" 3-VALVE SET

A Midget 3-valve T.R.F. Receiver for operation on A.C. mains, covering long and medium wavebands. We are able to supply all of the components to build this set, as designed, and specified in the Feb. 1950

we are able to supply all o set, as designed, and specified in the Feb. 1950 issue, including the drilled

★ Send 9d. P.O. for our STOCK LIST, showing many KITS OF PARTS for Sets and Battery Chargers and "hundreds" of Wireless Components. When ordering please include 1/6 to cover cost of postage and packing.

STERN RADIO LTD., 109 & 115, FLEET STREET, E.C.4.

Telephone : CENtral 5814 & 2280

SOUTHERN RADIO'S WIRELESS BARGAINS

WALKIE-TALKIE TRANSMITTER-RECEIVER. Type 33 Mark II. Complete with 5 valves. Throat Microphone. Head-phones and Aerial. 7 mc/s. Amateur Band suitable for field use. Powerful Superhet Receiver. Modulated Transmitter. Guaranteed ready for the Air, less batteries. 24/12/6.

TYPE 18 TRANSRECEIVERS, 6-9 mc/s, Perfect, £7 10/-. R109-8 VALVES SHORT-WAVE RECEIVERS, enclosed speaker and vibrator pack for 6 volts 1.8-3.5 mc/s., complete in metal case, £7:15;-.

in mean case, 27/LDF, (A.E.C. WINISCOPE WASGIB, MINIATURE CATHODE RAY OSCILLOSCOPES, 11in, Tube, Time Base, etc., etc. brand New in Maker's Sealed Cartons with Leatherette Carrying Case—215/10/-, plus 5/- carriage.

LUFBRA HOLE CUTTERS. Adjustable from &in. to 3&in. for use on Wood, Metal, Plastic, etc., 5'9. LUFBRA FLY CUTTERS, 14'6.

THROAT MICROPHONES. Magnetic type complete with long lead and plug. 4/6.

PLASTIC TRANSPARENT MAP CASES, 14in. by 10i in. Ideal for Maps. Charts, Display, Photographs, etc., 5'6.
STAR IDENTIFIERS, With Hydrographic Office Modifications AN Type 1. Complete in case, 5'6.
WESTECTORS. Type WX6 and W112, 1'- ea., 11'- doz.
MARCONI AERIAL FILTER UNITS. Type "916" in

MARCONI AERIAL FILTER UNITS. Type "916" in conformity with P.O. Specification. Full instructions for fixing, 4/-

CONTACTOR TIME SWITCHES. 10-hour movement. 2 impulses per second. Thermostatic Control in soundproof impulses per second. Cases, 11/6.

VISUAL INDICATOR UNIT Type 3 (10Q/4), Contains two Moving Coil movements, two Neons, etc. Easily convertible to very efficient M.C. Meters, 11'-. Conversion fully described in 'W.W." Sept., 1951.

RESISTANCES. 100 Assorted values. Wire-ended 1-2 watts, 12 6 per 100.

CONDENSERS. 100 Assorted Tubular and Mica-up to 2 mfd., Full list of Radio Publications, 21d.

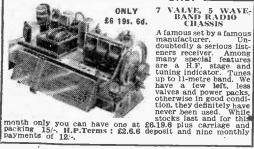
SOUTHERN RADIO SUPPLY LTD., 11, LITTLE NEWPORT ST., LONDON, W.C.2.

GERrard 6653.

radio experience is required to un-derstand the clear circuit diagrams and stage by stage wiring plans.

and materials All barts easily obtainable, mostly without purchase tax. Performance equal to radiograms costing over £100

THE TELETRACER


This booklet Free. Send 3d. stamp to-day.

With the Teletracer, signals can be followed through the T.V. to the tube or Loudspeaker. Similarly, powerful indications can be obtained in and around the sync. separator and time base sections. The Teletracer uses 5 valves and speaker and operates entirely from A.C. and D.C. mains. Send for a free copy of the instruction manual or better still save time by sending 26.10.0, Plus 7/6 post and insurance for the complete outfit.

FOR THIS MONTH ONLY

7 VALVE, 5 WAVE-BAND RADIO CHASSIS A famous set by a famous

manufacturer. Un-doubtedly a serious list-

Orders by post are dealt with by our Ruislip depot. To avoid delay address to E.P.E. Ltd. (Dept. 7), Windmill Hill, Ruislip, Middx. Include extra 2,6 under £2; 1,9

RECISION FOITPMENT

SUB-MINIATURE COMPONENTS
Highly suitable for deaf aids, flying control, or other
midget electronic equipment.

SUB-MINIATURE VALVES—WIRE ENDED pe Fil. Volt Heater Suitability Pric Type Heater Current Suitability Price

1.4 v. 1.4 v. 0.75 v. 0.75 v. CV385 CV387 25 ma. 25 ma. 25 ma. 25 ma. 25 ma. 25 ma. CV386 0.75 v.

Output Pentode Output Pentode Pentode Pentode

59 59 49 49

CV386 0.75 V. 25 ma. Pentoge
SUB-MINIATURE
VOLUME CONTROLS
Type 1.3 meg. with switch probably
the smallest control made, can be 76
used with finger plate removed;
control being effected by an 8 B.A.
screw. Price 3.9 each. Type 2. Again
3 meg. with switch, this one is same
size but cannot be used without the finger plate. Price 3.3.

HEARING AID CASE
Bakelite with lapel clip. Also makes an excellent
case for the crystal microphone below, which would
be equal to any hand crystal microphone being advertised at 5 gns. Price 79.

OUTPUT MATCHING TRANSFORMERS
Ratio approximately 10 to 1 intended to match output
of CV385 or CV387 into crystal earpiece. Price 3 6.

4 Core P.V.C. covered Tinsel Flex Leads
Suitable for L.T. and H.T.—length approximately l
yard. Price 1/3 or complete with L.T. and H.T.
battery plug, 3/9.

CRYSTAL MICROPHONE
Diaphragm driven, extremely sensitive, made for deaf aid but highly suitable for recorder work. 7/9 each or with bakelite case, 14/6.

Highly sensitive, very light weight complete with 1 yard of special P.V.C. covered tinsel flex and silde contacts. Pitte 8/6. Ditto but without flex or contact slide 14

makes excellent microphone, Price 6'6.

0 000 Ĕ

WINDMILL HILL, RUISLIP MANOR, MIDDX. and at 152-153, FLEET STREET, E.C.4.

THIS FREE 104 BROCHURE PAGE describes the Courses of Training offered by E.M.I. Institutes—the only Postal College which is part of a worldfamous Industrial Organisation. CAREERS Aero. Eng. Motor Eng. Draughtsmanship • Elect. Eng. Prod. Eng. • Management Prod. Eng. Management Languages Refrigeration Eng. Civil Service General Cert. of Education Radio TV and Education Radio TV and Electronics University Training • Maths. • Mech. Eng. • Heating and Ventilation Eng. Public Speaking • Police • Telecommunications, etc. etc. Courses for A.M.I.Mech.E., A.M.I.P.E., A.M. Brit. I.R.E. A.F.R.Ae.S., City & Guilds Examinations, etc. Special etc. A.M.I.C.E., Institutes POST cssociated with NOW MARCONIPHONE Post this for a FREE copy of "Successful Careers" to E.M.I. Institutes, Dept. 32, 43 Grove Park Road, Chiswick, London, W.4. COLUMBIA H.M.V. ETC. COURSES FROM Name

PER MONTH

AERIAI ERFECTION

In every way the Original ELECTRON WIRE is still the best aerial. It is a long-range, super-selective aerial, simple to fix without insulators or separate lead-in. The Original ELECTRON WIRE abolished them in 1922.

Do not be prejudiced. ELECTRON WIRE is a combination of ferrous and non-ferrous metals (including tin and copper) which give perfect reception-UNSURPASSED BY ANY OTHER AERIAL. Tests have proved this.

Insulated with vulcanized rubber then braided and compounded-it is almost indestructible.

The CHAPEST and BEST ASK FOR THE ORIGINAL ORIGIN

50 ft. 2/-

100 ft. 3/9

TRY IT AT OUR EXPENSE-then you will know why it is so efficient. We will refund the full retail cost plus cost of return postage to anyone who fails to obtain complete satisfaction,

From Wireless Shops everywhere or direct from us Post Free

The NEW LONDON ELECTRON WORKS Ltd.

(6) EAST HAM LONDON, E.6

Telephone: Grangewood 0044-1363

25 ft. 1/-

Eliminating Hum in Mains Amplifiers

HINTS ON DESIGN AND THE IMPROVEMENT OF EXISTING APPARATUS

By F. G. Rayer

THE hum level of some amplifiers is rather high, and this is particularly noticeable when the amplifier provides a considerable degree of gain, or when the initial cost was an important factor, as a result of which the minimum amount of smoothing was incorporated. Experiments show that it is possible to design an amplifier in such a way that hum is kept at a very low level indeed, without much extra cost. Even with half-wave rectification, background hum may be so much reduced as to be almost wholly inaudible even when no item is being reproduced—a state of affairs which is definitely not so with many moderately priced amplifiers. It is therefore proposed to discuss this desirable result, and to indicate how it may be achieved. Though a detailed circuit is given, it is not suggested that an existing amplifier be abandoned in favour of this new circuit. Instead, the latter may be used to indicate where modifications and improvements are possible in the existing amplifier. On the other hand, there is no reason why this circuit should not be followed exactly if an amplifier is being built. It provides quite a high degree of amplification, with an output sufficient for most ordinary domestic purposes.

Decoupling and Smoothing

Frequently the anodes of the early stage are supplied with current taken from a point also common to the

output valve anode, and where this is so the addition of further decoupling or smoothing can bring about a reduction in hum which is immediately apparent. Fig. 1 shows how this is done. Here, instead of the 25 M Ω anode resistor of the 6J7 and the 100 K Ω anode resistor of the 6J5 being taken directly to the positive high-tension supply line, the 20 K Ω resistors are interposed, with $2\mu F$ condensers returned to chassis. As a result, the H.T. supplied to the earlier valves is almost wholly free from ripple.

The value of the resistors is not critical, and components as low in value as $5 \text{ K}\Omega$ each will bring about a noticeable improvement. Where the anode current of the valves is not high, the values may be increased beyond $5 \text{ K}\Omega$ without causing excessive voltage drop. For average purposes, $20 \text{ K}\Omega$ is suggested. If 4 or 8 μF condensers are to hand, these could be used instead of the $2 \mu\text{F}$ components shown, but increasing the capacity beyond $2 \mu\text{F}$ actually makes little practical difference.

An existing amplifier in which all the anode supply points were common, and which had rather excessive background hum, was found to be enormously improved by the addition of these resistors and condensers.

The circuit also shows how additional smoothing may be arranged by adding a second smoothing choke in the H.T. positive line, with a further smooth-

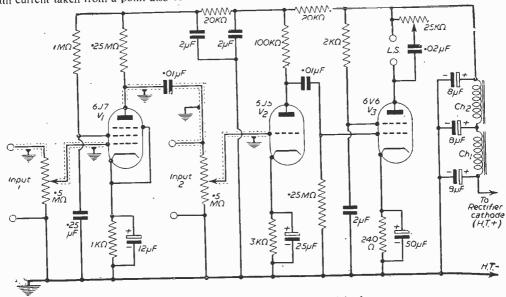


Fig. 1.—Amplifier circuit showing screened leads, etc.

ing condenser returned to H.T. negative. This was found to bring about a slight improvement. If the existing smoothing choke is a fairly good component with a reasonably high inductance, this addition of a second choke should be regarded rather as a refinement. In no case was it found to reduce hum as much as did the introduction of the resistors and condensers previously mentioned. But it is worth considering if the existing choke is of poor quality, or the quietest possible background is to be achieved.

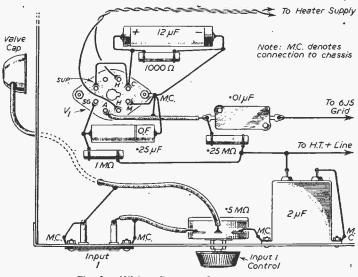


Fig. 2.—Wiring diagram of the 6J7 stage.

8 μF condensers are shown, and increasing these to 16 μ F was found to bring about no worth-while improvement. However, where the H.T. consumption of an existing amplifier is heavy, increasing the value of the smoothing condensers might prove level than the user wishes, the other modifications helpful, if they are at present too small in value.

Besides reducing the voltage to a suitable figure, the two screen-grid resistors, with their condensers, serve to remove ripple from the screen-grid supplies to the 6J7 and 6V6. The condenser and resistor should be wired as near to the valveholder tag as practicable in each case.

Screening Against Pick-up

If any hum is picked up by the earlier valves, or wiring, this will be amplified with the signal, and may reach serious proportions. A careful layout, with grid leads and associated wiring kept away from connections carrying A.C., together with some screening, will take care of hum introduced in this way. The leads which most require screening are shown in Fig. 1. Of these, the grid circuit of the 6J7 is most important. The "Input 1" sockets are intended for low-volume inputs (e.g., microphone); the "Input 2" sockets are for higher inputs (e.g., gramo pick-up). Any hum introduced at the second input point will receive much less amplification than that introduced at the grid circuit of the 6J7, but, even so, it is worth while taking care with the 6J5 grid circuit.

If the leads coming from microphone or pick-up

are at all long, or pass near the amplifier, or near leads carrying A.C., they, too, should be screened. The screening braiding, in common with that actually in the amplifier, is connected to the amplifier chassis. In the event of the amplifier being an A.C.-D.C. unit, with chassis common to one mains-supply lead, screening braiding with an outer insulated covering will be desirable. Failing this, it may be possible to earth the braiding to a separate earthing point in order that no danger of shocks arises when touching it.

Layout Considerations

Fig. 2 illustrates the 6J7 stage of the amplifier in Fig. 1. It is in this stage that particular care is necessary, because of the subsequent amplification given to any hum present. The heater supply leads are kept well clear of anode and grid leads; the screen-grid by-pass condenser (.25 μ F) is close to the screen-grid tag of the holder, as is the resistor. Where the condenser is marked with a ring, or the letters "O.F.," indicate the outside foil, this particular end of the component is best taken to the chassis. The metallising, or screen, of the valve is also taken to the chassis, and the grid lead is screened right up to the top cap. If the valve is of the plain glass type it should type it should be enclosed in a valvescreening can, but this is not necessary with a valve having

metal shell.

It is possible that some of these points will have been attended to in an existing amplifier, unless it is of very simple type. If so, and hum is still at a higher can be tried, and should bring about a considerable improvement. The 25 K Ω variable resistor and .02 μ F condenser in Fig. 1 are the usual top-cut tone control, and not associated with the question of removing hum. Existing tone controls, if any, may be left unchanged.

JOIN THE **PRACTICAL** CROUP

Edited by F. J. Camm

PRACTICAL ENGINEERING,

Every Friday.

For Engineers, Mechanics, Designers and Works Managers.

PRACTICAL MECHANICS, Every Month.

Devoted to Mechanics, Science and Invention

PRACTICAL TELEVISION, 1/-Every Month. 1 Dr - Um

A Versatile Oscilloscope

A 21 IN. C.R.T. TEST INSTRUMENT FOR WORKSHOP OR SERVICE DEPARTMENT

By N. J. Wadsworth, B.Sc.

THE Cathode Ray Oscilloscope described in this article is perhaps slightly more complicated than some, but is very adaptable and gives good results under conditions where many fail.

In order to keep the size of the chassis small, and so save bench space, a 2\(\frac{3}{2}\)in. cathode-ray tube is used. This enables a comparatively low E.H.T. to be used, and removes the need for either an E.H.T. transformer or a multiplier circuit and, at the same time, gives reasonable definition. In order to reduce panel space it was decided to omit shift controls, and in practice this seems to be quite satisfactory. (In the very rare cases when they are required a magnet can be used at a small distance to produce the deflection.) SP61's are used throughout as they are easily and cheaply available on the surplus market.

The Y-axis amplifier is designed to have a good frequency response, coupled with a high gain. In order to preserve the high-frequency response and avoid trapesium distortion, push-pull output was decided on. If the oscilloscope is to have little effect on the circuit under test its input impedance must be at least 2 M Ω . If, however, the input is fed to a 2 M Ω potentiometer as a gain control, considerable distortion of complex waveforms occurs at mid settings of the potentiometer due to the input capacity of the first valve and stray wiring capacities shunting the "earthy" portion of the potentiometer. To overcome this the signal is fed into a cathode follower, with a potentiometer as its cathode load. In this case the input impedance may be kept very high (it is over 10 M Ω in this case) and, at the same time, a lowresistance potentiometer is used as a gain control, thus removing this serious defect of most amateurbuilt oscilloscopes. A one-valve amplifier is used to feed the output stage, and the gain of this is switched to give either a sensitivity of about 8 mV/cm. (3 mV rms. gives a deflection of 1 cm. peak-to-peak) over a frequency range from 3 c/s to about 300 Kc/s, with a useful gain above 1.5 Mc/s, or a sensitivity of 2 mV/cm. (800 μv rms. gives 1 cm. peak-to-peak deflection) up to about 60 Kc/s. This sensitivity is such that if the input is connected across the coil of a crystal set the received signal is shown on the screen. In order to preserve the low-frequency response of the amplifier, unbypassed cathode resistors are used throughout. This is because, as the time constant of the 150 Ω resistor bypassed by a 50 µF capacitor is only 0.007 second, considerable phase shift would be caused at frequencies below 60 c/s. This is another common defect in oscilloscope amplifiers. As it is the phase shift is only 5 deg. at 30 c's, corresponding to a time constant of 1/15 sec.

The timebase shown is a transitron-Miller integrator with a paraphase amplifier, giving sufficient sweep voltage to fill or overfill the tube at all frequencies. A sweep amplitude control is provided. The timebase frequency is switched in five ranges, covering from 2 c/s to 30 Kc/s with considerable overlap between ranges. A sync amplifier and buffer valve is provided and the input taken from a terminal on the front panel. This may be used for external

synchronisation direct, or if internal synchronisation is desired a wire brought out nearby may be connected to the terminal. This feeds the input with a signal of suitable amplitude from the Y amplifier. This arrangement works satisfactorily but if desired a change-over switch could be used. Provision is made to use the sync and paraphase amplifiers as a separate X-axis amplifier when this is required. This is of lower gain and inferior frequency response to the Y-axis amplifier, having a sensitivity of about 300 mV/cm. (100 mV rms. produces 1 cm. trace) and uniform gain between 20 c/s and about 70 Kc,s, and useful gain at 500 Kc/s with the gain control at At the mid position of the gain the maximum. control the upper frequency limit of its response is reduced to about 8 Kc/s. This is typical of amplifiers having this input circuit and shows the enormous advantage of the cathode follower type. It is tolerated in this position as the X-axis amplifier is normally used for audio frequencies, as, for example, when testing amplifiers for phase shift or distortion. At the maximum position of the gain control the phase shift is only a few degrees at 30 Kc/s and effectively zero below 15 Kc/s. Thus it is suitable for use for this purpose, if the gain control can be kept at maximum. This can be arranged by varying either the gain of the amplifier under test or the input voltage.

In order to provide for connection to the deflection plates of signals large enough not to need amplification the four plates are brought out, through coupling net works to remove D.C. voltages, to four terminals on the tube mounting panel. This ensures that the wiring capacity is kept to a minimum. The time constant of the coupling circuit is 0.5 sec, and so its response is only 3 db down at 0.3 c/s and the input capacity is only a few pF greater than that of the tube itself. In normal use the outputs of the X and Y axis amplifiers are connected to these

terminals. The grid connection of the tube is also brought out through a capacitor, and a diode used to prevent the grid being driven positive. This connection may be used to modulate the brilliancy of the trace (Z-axis modulation). One application is the insertion of timing pulses. These are short pulses of exactly known repetition frequency which appear on the trace as bright or dark spots. They may be produced by passing the square wave output of an audiooscillator through a differentiating circuit with a time constant about one-twentieth of the repetition time of the square wave. In this way the repetition frequency may be varied at will and is always accurately known. This technique is useful when the relative timing of two events is wanted very accurately, the oscillator frequency being adjusted until two adjacent bright spots fit on the traces of the two events. The time difference is then the reciprocal of the oscillator frequency.

CIRCUIT

The Y-axis Amplifier

The circuit is shown in Fig. 1. V1 is the cathode

0

0 0

SP61

follower input. R3 is the bias resistor and VR1 the cathode load gain control. The output from this is taken to V2, the main amplifier. With S1 in the position shown, the valve has an anode load of 57 K Ω and hence a high gain. However, the valve and wiring capacities limit the high-frequency response and to improve this S1 may be closed, thus restoring full H.T. to G2 and reducing the anode load to 10 K Ω . In the former position the low-frequency response is limited by C4 and can be improved by increasing this capacity. The output

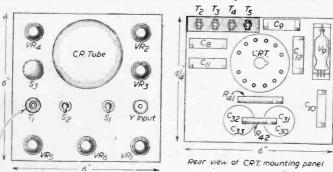


Fig. 3.—Panel and C.R.T. mounting details.

from V2 is fed to the output stage, V3 and V4. These are a cathode-coupled push-pull pair with $10~\mathrm{K}\Omega$ anode loads. This is sufficient to give full deflection without overloading. If it is desired to mix two signals for the Y-axis deflection without interaction, this may be done by feeding the second signal through C7 to the control grid of V4. The

Front Panel

Paxolin

mounting

output from these valves is taken to the Y plate terminals as described above. The voltage for internal synchronisation is taken from the cathodes.

The X-axis Amplifier and Timebase

V6 is' the timebase oscillator. S3 is the coarse, and VR4 the fine, frequency control, while VR5 provides adjustment of the sweep amplitude. When S3 is in the lowest position the timebase is switched off and R34 provides bias. The

grid stopper R32 is essential to prevent parasitic oscillations, resulting in a very short, non-linear sweep. V7 is used either as the sync amplifier, with VR6 acting as the sync control, feeding through C24 to the junction of R34 and R36, or as the input valve of the X-axis amplifier with VR6 acting as gain con-

trol. V5 is a paraphase amplifier used either with V6 to provide sufficient timebase sweep or with V7 as the X-axis amplifier. The gain is determined by R27 and R28 or R29. S2 is used to switch from timebase to X-axis amplifier. When using the amplifier it is neces-

sary to switch off the timebase by S3 as otherwise it acts through the common H.T. supply and produces a deflection.

The Cathode-ray Tube

The focus and brilliance circuit is conventional, the first and third anodes being fed from the main

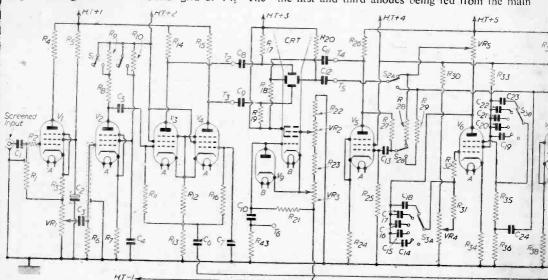


Fig. 1.—Theoretical circuit of the Versatile Oscilloscope,

H.T. line and the cathode from a separate negative supply. In this way the tube receives its 800 v. EHT without a voltage multiplier or special trans-

out a voltage multiplier of special transformer. VR2 is the focus control and VR3 the brilliance control. R21 and C10 provide for the application of modulation to the grid, while V9 acts as a safety device to prevent the grid being driven positive. The value of R21 depends on the grid to cathode leakage of the tube; if it is too large it will not be possible to black out the tube.

hack out the tube.
R43 ensures that
C10 is kept charged
to the potential of
the grid, and so no
large charge flows if
connections are
made to T6 with
the oscilloscope
switched on.

d valve base

CR139A

H,C

OON

0

0

C

0 0

574

4, A3 X1

The Power Supplies

These are quite O conventional. A 350-0-350 volt transformer is used, giving 370 volts across C28. The supplies for the Y-axis amplifier and the timebase are separated to prevent interaction. After one stage of choke capacity smoothing the H.T. is taken to the anodes of the valves. The H.T. supply to the screen grids is passed through a resistor to reduce it to 250 volts. It is, however, necessary to feed V1 and V2 from

separate supplies as, with a large low-frequency input (say a 30 c/s square wave), the large current swing of V1 is enough to affect the voltage of H.T.+2 and produce an unwanted deflection. With the circuit shown there is no effect of this sort, even with V1 overloaded at 30 c/s. The supply for the first and third anode of the C.R.T. is taken

from the reservoir and smoothed separately. In view of the very small current a large resistor may be used, together with a small paper capacitor. The negative H.T. supply is taken from a metal rectifier and smoothed by two 1 μ F capacitors and a 150 K Ω resistor. It is essential that this supply should be well smoothed if the brilliancy is not to be modulated at 50 c/s when T6 is earthed. A separate transformer is used to supply the heaters of V9 and the C.R.T. in view of their high cathode potential.

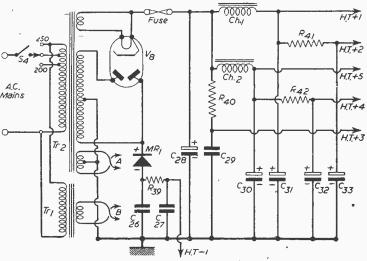


Fig. 2.—Theoretical circuit of the power supply section.

Layout The layout of the main components is shown in the diagrams. The C.R.T. socket is mounted on the tube mounting panel in the middle of the chassis, and the tube face is supported flush with the front panel in the hole shown. This hole should be lined

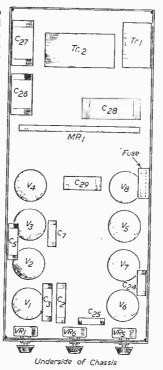
to prevent the tube being scratched on withdrawing,

LIST OF COMPONENTS C6--0.1 μF. C7--0.1 μF. C22-100pF. VR4--25K ₽ R30-41K Ω. R1-2 M Ω. R16--1M Ω . C23-30pF. WW. VR5—25K Ω R31—1M Ω . R2-330 \(\Omega\). R17--5M 2. C8-0.1 µF. C24-0.1 µF. R32—1K Ω. R18-5M Ω . R3---150 Ω. C25-0.1 \(\mu \text{F}. WW. . VR6—2M Ω. C9-0.1 µF. -15K Ω 2W. R19--5M Ω. R33--22K Ω. C26— $1 \mu F$. C10-0.1 µF. R20-5M Ω . R34--150 Ω. R5--50K Ω. C27—1 μ F. S1-DPST. C11-0.1µF. R35-33K Ω. R21--100K Ω. R6 $-1M\Omega$. C28-8µF. C12-0.1 nF. S2-DPDT. -150K Ω. R36—33K Ω. R37—15K Ω1W. R7—150 Ω. R22-C29-0.1 pF. S3-2P6W. C13-0.1 µF. R8---10K Ω1W. R23--80K Ω. C14-0.1 μF. C15-0.03 μF. S4—SPST. C30) $16 + 16 \mu F$. R38—150 \(\Omega\). R24—150 Ω. R9-47K 2 1W C31 Ali can. (Can be on R25--1M Ω. R39--150K Ω. R10-200K Ω. C16-0.002 µF. C17-300 pF. C18-68 pF. C32 \ 16+16 µF. VR3.) R11—1M Ω. R26-15K Ω1W. R40—1M Ω. C33 Ali can. C1-0.1 µF. R12—70Ω. R41-7K Ω2W. R27--47K Ω. C2-8µF. -5K 22W. R28—33K Ω. R29—33K Ω. R42-R13---1K Ω. CH1, CH2, 10H, 50mA. Tr.1, 230VPri., 4V1.5A, insulated to 1,000 V. Sec.; TR2, 230V.Pri., 350-0-350V., 100mA., 5V2A, 6.3 V. 4A Secs.; V1-V7, SP61; V8, 80 or 5Z4; V9, D1; C.R.T., VCR139A; MR1, J50; Fuse 100mA.

All resistors ½W. unless otherwise stated. R43—1M \(\Omega\). R14--10K Ω1W. R15--10K Ω1W. C19-0.05µF. VR1-5K ΩWW. C3-0.1 μF. VR2—100K Ω. VR3—10K Ω. $C20-0.005 \mu F$. C4-0.5 μ F. C21-500pF.

if possible with sponge rubber but failing this thick plastic tape may be used with success. In order to keep magnetic pickup by the tube as small as possible, the large mains transformer and the two chokes are mounted behind the tube and as nearly on its axis as possible; also their axes are placed parallel to that of the tube. In this way the pickup is kept small. The two chokes should be wired so that their

fields are opposite, to reduce the constant field at the tube and so keep the spot central. A mu-metal shield round the tube is an advantage in reducing pickup due to this and other nearby apparatus. The valves are mounted in two rows, one down each side of the C.R.T., keeping the Y-axis amplifier on one side and the timebase and rectifier on the other. In the space below the tube, at the rear, are housed the H.T. smoothing capacitors C30-C33, while that at the front provides room for a tag-board holding the switched timebase capacitors (C14-C23) close to S3. Besides the tube socket and C30-C33 the tube mounting panel supports the H.T. smoothing and voltage dropping resistors, R41 and R42, allowing adequate cooling. V9 is fixed in one corner as shown and the deflection plate coupling capacitors C8, C9, C11, C12, together with R17, R18, R19 and R20 are mounted round the tube socket.


The controls VR1, VR2, VR3, VR4, VR5, VR6, S1, S2, S3, together with the Y amplifier input socket and T1, the X amplifier or sync input terminal, are mounted as shown on the front panel with the C.R.T. face in the centre. S4, the mains on/off switch, can be on the back of VR3, the brilliancy control, in which case care must be taken to screen the mains lead from the input socket, or it should be mounted else-

where. Under the chassis is mounted the metal rectifier MR1 and its associated smoothing com-The rectifier is mounted between two ponents. anchoring posts, with a third supporting the live end of TR1, the heater transformer supplying the C27. C.R.T. and V9, is mounted on one side of the chassis as shown. The fuse-holder is mounted directly below V8. This may be either a commercial design or a tag strip of suitable length with the tags bent over to grip the fuse ends. It is also convenient to mount the reservoir capacitor C28 by V8. C1 and R1 are mounted above the chassis to prevent feedback, and screened top caps used for V1 and V2 to reduce picku). It is advisable to mount a small screen between the timebase capacitors and C1 and the input socket to prevent pickup from the flyback.

The C.R.T. Heater Transformer

It should be noted that the secondary winding of TR1 runs at 400 volts negative with respect to chassis, and thus the insulation between it and the primary must be able to stand about 750 volts peak. This is considerably higher than normal. In order to be on the safe side the author rewound a normal 6.3 v.

1.5 A heater transformer. This proved quite easy-To do it the laminations are taken out and the first layer of insulation on the bobbin removed. This exposes the 6.3 v. secondary. This is then carefully removed taking care to count the turns. The original insulation is now exposed. Two layers of empire cloth are then wound tightly round the bobbin, taking care that they come right to the sides, and then

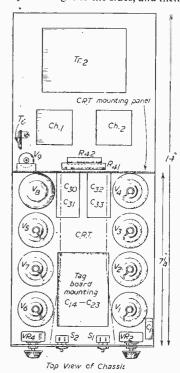


Fig. 5.—Views of the chassis showing layout of essential parts.

fixed with a short piece of plastic tape. The new secondary is now wound on. This may be done with the same wire as was taken off if inspection shows it is not damaged in any way, but it is better to use new wire of the same gauge. The number of turns needed is, of course, 4/6.3 times the original number. The smaller number of turns makes room for the extra insulation. The laminations are then replaced as before and the transformer is complete.

A table of voltages measured to chassis with a 1,000 Ω/V meter is given for guidance, but some variation with components should be expected.

Electrode Voltages

A 220 G2 240 C 50	V2 150 250 2	V3 240 250 22	V4 240 250 22	V5 210 250 2.5	V6 220 200 1	V7 250 250 2
-------------------------	-----------------------	------------------------	------------------------	-------------------------	-----------------------	-----------------------

C26-	C27	C28	C30	C31	C32	C33
320	260 ·	370	350	350	250	250

Radio Receiver Design at V.H.F.—9

By G. P. Lowther

(Concluded from page 262 June issue.)

DE generous with screening. In particular screen the anode and grid circuits of each signal frequency stage from each other by a screen passing across the valve base (chassis mounting) and between the anode and grid pins. Orientate adjacent coils at right-angles to each other. Keep all leads as short as possible; earth leads should preferably be not more than ½in. long. Use valve screens where necessary. Decouple, generously paying particular attention to filament leads which may have to be of screened wire.

Oscillation is best detected by coupling a diode and microammeter to the R.F. or I.F. output and observing whether there is a deflection in the absence of a signal. Remember, however, that if the receiver is sufficiently sensitive, first circuit noise may produce a deflection which, however, usually disappears when the first grid is short-circuited to earth. If a microammeter is not available, the oscillation can be heard through the speaker in the presence of a carrier of suitable frequency.

30pF max ΙΟΚΩ

Fig. 46.— L_2 , L_3 and L_5 are all H.F. chokes, consisting of in Fig. 49 will operate 5-10 turns on a lin. former. satisfactorily up to about

(b) V.H.F. Converters

loudspeaker.

The converter depicted 200 Mc/s. It consists

The circuit of Fig. 48, although not using special

high-frequency valves, will tune from 30 Mc/s—

80 Me/s or 90 Mc/s using

single turn coils in the

signal and oscillator cir-

cuits. A 3 Mc/s I.F. is

 $M\Omega$ potentiometer)

should be of the logarith-

mic type. If desired, a double - diode pentode

may be substituted for the EBC33 to operate a

The gain control (1/2)

of a straight R.F. pentode feeding into a diode frequency-changer, the I.F. being 10 Mc/s-20 Mc/s.

The R.F. chokes L₁, L₂ and L₃ consist of 5-10 turns on a lin. former.

The R.F. choke L₄ consists of 5 turns on a 4in. former.

For use on the 145 Mc's amateur band, signal and oscillator coils of 1-11 turns should be used.

The R.F. stage may be omitted if desired, the aerial being coupled directly to the frequencychanger tuned circuit.

Alternatively, a grounded-grid triode may be used in place of, or in addition to, the pentode (see Fig. 52).

The circuit of Fig. 49 may also be used as the basis for a complete receiver, 1 or 2 I.F. stages being added as in Fig. 48, bút tuning at a higher frequency.

The filament chokes L_2 and L_3 can probably be omitted if only one R.F. stage is employed. In some cases better results may be obtained

by tapping the diode down the previous tuned

The aerial coil is best coupled end on, i.e., along the same axis as that of the grid coils and as tightly as possible. About one turn will be required for a 75Ω input impedance.

The converter of Fig. 50 employs a 12AT7 double triode giving good results up to about 250 Mc/s. Again the unit may be built into a complete receiver or used in conjunction with a normal broadcast set. In the latter case, the I.F. output from the converter is coupled to the aerial input of the normal receiver which is tuned to the intermediate frequency, this being finally adjusted to give freedom from interference. In all the H.F. amplifier stages the cathodes are shown fully decoupled since this is a stable condition. Nevertheless, as explained in the section on valve technique, greater amplifi-cation and decreased noise can be achieved by reducing the value of the cathode decoupling con-

If resonance of anode H.F. chokes proves troublesome (as shown by wide variations in gain with frequency) it may be easily overcome by connecting a $1,000\Omega$ resistor in series with the choke. H.F. chokes are used as anode loads in parafeed coupling in order to avoid both the damping that a low value of resistor would introduce and the reduced anode voltage and consequent decrease in mutual conductance caused by a high ohmic resistance.

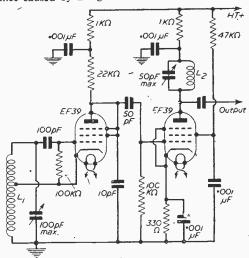


Fig. 47.— L_1 consists of $6\frac{1}{2}$ turns 18 s.w.g. on a $\frac{1}{2}$ in. former, tapped 2 turns from the "hot" end. L_2 consists of 2 turns 18 s.w.g. on a $\frac{1}{2}$ in. former (this coil can be self-supporting).

(c) Straight H.F. and Detector Unit

The amplifier represented in Fig. 51 will operate up to 250 Mc/s and consists of two H.F. stages, the first being a grounded-grid feeding into a diode detector. Series tuning is used and although a wide band cannot be covered a range of about 30 Mc/s at 200 Mc/s is obtained. The tuning condensers

(d) Super-regenerative Receiver (Self-quenched)

As much information is available about superregenerative receivers, two circuits only will be given. In Fig. 53 is shown a single valve circuit operating up to about 300 Mc/s. while Fig. 54 shows a superregenerative transceiver capable of operating at frequencies as high as 500 Mc/s.

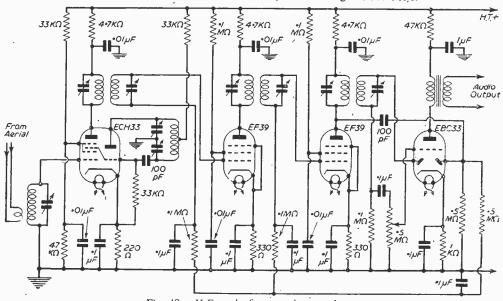


Fig. 48.—H.F. end of a complete receiver.

should be kept as near maximum capacity as possible in order to obtain the greatest amplification.

The tuning inductances L_1 and L_2 require 1-2 turns of about 18 s.w.g. wire. All the other inductances are H.F. chokes consisting of 5-10 turns on a $\frac{1}{4}$ in. or $\frac{5}{16}$ in. former.

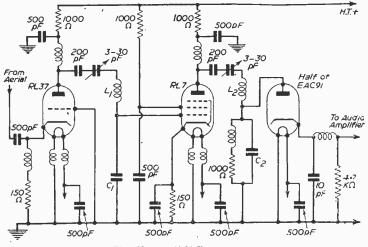
The condensers C_1 and C_2 are necessary to match the stages and thus obtain maximum gain and should

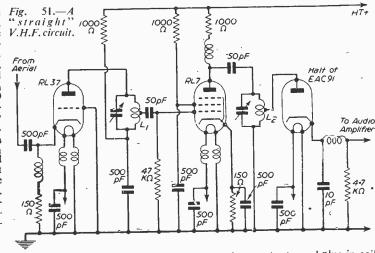
be about 10 pF. and 7 pF. respectively. The actual value depends upon the damping imposed by the valves as explained previously. The H.F. choke and $1,000\Omega$ resistor from the diode anode to earth provide a D.C. return for the diode current, the resistor preventing the choke forming part of a resonant circuit. For reception up to about 170 Mc/s or 180 Mc/s, parallel tuned circuits may be used, the modifications being shown in Fig. 52.

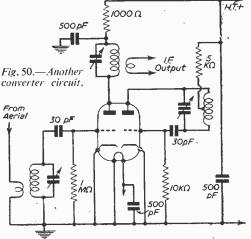
The inductances L_1 and L_2 consist of 1 turn, all other inductances being H.F. chokes as before. The point vat which the tuning inductances are tapped is best found empirically, but will be about one-third of a turn from the "hot" end.

(e) V.H.F. Transceiver

The transceiver uses a separate quenching valve operating at a frequency of about 50 kc/s, which is speech modulated from the microphone. The high frequency oscillator can be used above 500 Mc/s, if an RL18 is used and the inductances consist of short lengths of wire (shape comparatively immaterial). At lower frequencies, i.e., below about



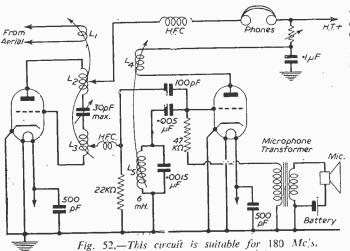

Fig. 49 — A V.H.F. converter.


200 Mc/s., parallel tuning will be found more convenient, as in Fig. 53. It should be noted that the use of a split-stator tuning condenser in this case, though not essential, gives freedom from hand capacity. The inductance L₄ will require about 600-700 turns on a Iin. former (aircored), while approximately 100 turns will suffice for L₄.

The coupling between L₄ and L₅ and that between L₁ and L₂—L₃ must be found by trial and error, as must the tapping points on the high-frequency tuned circuit. The H.F. chokes should consist of 5-10 turns of wire—according to the frequency—on a ¼in. former.

(f) V.H.F. Test Oscillator

The test oscillator in Fig. 55 is very simple, since there is no need to provide modulation (though if required, it may be injected in series with the grid The milliamresistor). meter, although not essential, indicates by a drop in current when the valve is oscillating. If it is not used, care must be taken to keep the coupling between the oscillator and receiver fairly loose, or the valve may cease oscillating. V.H.F. triode-or pentode stapped as triode-may be used, the limiting frequency depending upon the valve employed. A set of



centre-tapped plug-in coils may be constructed for use with the test oscillator. in. copper tube or heavy gauge wire should be used or the calibration will not last long. If no other source of calibration is available, Lecher wires may be used for the purpose. These consist of two parallel wires insulated from earth and from each other and spaced lin.-2in. apart. They are joined by a half or single turn coil at the oscillator end and are open at the other end. Their length must be not less than one wavelength, i.e., 7ft. at 150 Mc/s. When these wires are coupled to the oscillator, standing waves are set up

with current antinodes, i.e., points of maximum current at distances equal to a half wavelength. These points may be determined by soldering short wires to a lowconsumption flashlamp bulb and bridging the wires. The bulb will light at each half-wave current The first point will antinode. appear a half wavelength from the coupling point, but this is somewhat unreliable and the next point should be searched for. The distance between the two will be exactly half the wavelength at which: the valve is oscillating. Thus if the distance in inches between the two points = L, f (Mc/s.) = $5905 \div L$.

To light a bulb the oscillator valve will have to be of reasonably high power, e.g., an RL16, otherwise a valve voltmeter (described below) may be used as an indicator.

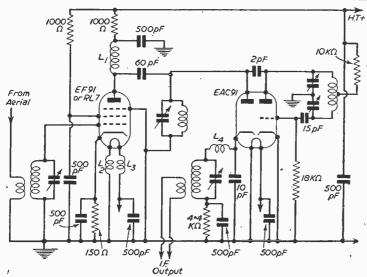
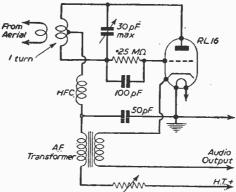



Fig. 54.—Another self-quenched super-regenerative arrangement.

(g) Valve Voltmeter

The circuit of Fig. 56, though perhaps scarcely meriting the title "valve voltmeter," is nevertheless a useful piece of equipment of indicating the presence of a high-frequency signal and even its approximate amplitude. The coupling coil L consists of ½ or ½ of a turn of stiff copper wire from the diode anode to earth in the form of a loop with a total length of about 2in. The valve itself is one section of an EB91 double-diode which has a forward impedance of about will represent an applied voltage of approximately 0.5, this being across the

100 Ω . Full-scale deflection Fig. 53.—One form of super-regenerative circuit. be detected.

low impedance coupling coil L. The actual value of impedance can be ascertained by connecting resistors across as explained previously, and thus the voltage across the high-impedance source may be roughly estimated, though there will, of course, be an appreciable loss due to imperfect coupling. In some cases the diode anode can be connected directly across the tuned circuit (which will have to be re-tuned, the diode adding a capacity of 4 pF or 5 pF) providing there is a D.C. path to earth. Above about 200 Mc/s, the coupling coil will resonate with the diode capacity and so will render measurements invalid.

The scale will be only approximately linear—when peak voltages will be indicated, white the lower end will be approximately square-law—measuring R.M.S. values. If a 0-100 microammeter is not available, a 0-1 milliammeter may be used with a lower value of load resistance: linearity will, however be impaired.

(h) Wavemeter

The wavemeter circuit of Fig. 57 is similar to that of the valve voltmeter and also uses an EB91. As the input impedance of the diode is low, it has to be tapped down the tuned circuit to avoid severe damping. A set of rigid plug-in coils may be constructed and calibrated from a calibrated oscillator or an uncalibrated oscillator and Lecher wires. The phone jack enables modulation to be detected.

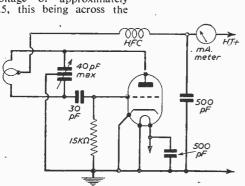


Fig. 55.—A V.H.F. test oscillator.

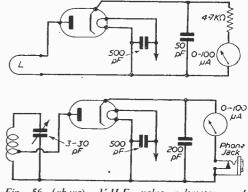


Fig. 56 (above).—V.H.F. valve voltmeter, and Fig. 57 (below).—A wavemeter for V.H.F. work.

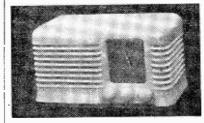
OPEN TILL 6 P.M. SATURDAYS

TELEPHONES: AMBASSADOR 4033 & PADDINGTON 3271/2

THIS IS OUR ONLY ADDRESS (Dept. PW.) 207 • EDGWARE ROAD • LONDON • W2 (THIS IS OUR ONLY ADDRESS)

BALANCED ARMATURE LOW RESISTANCE HEADPHONES, Type 1, 511 pair. Type 2, 8711 pair. HIGH KESISTANCE HEAD-PHONES, 12/6 pair. LIGHTWEIGHT HIGH RESIS-TANCE JIEADPHONES, 14/6 pair. RRAND NEW R1155 RECEIVERS, in original cases, complete with 10 valves, £11/19.6, 10/6 Packing and carriage.

carriage.
THREE FIECE AERIALS—Brand
New.
12ft—3 4ft. screw-in sections of
copper-plated steel, highly flexible
with non-stick screw its. tapering
fin to iin. Brand new in container,
6/9. Also plug-in type, 3,9 Packing
and carriage, 1,6. Insulated Base, 2,6


AVAILABLE ONCE AGAIN!

A.C.R. 2X C.R. TUBES—5jin. Screen. 4 Volt Heater. This Electrostatic Tube is recom-mended as eminently suitable for Television. 15.- plus 5/- Pkg.

for Television. 15.- plus 51- Pkg., Carr. and Ins. V.C.R. 97 C.R. TUBES.—We are once again able to offer this famous tube with the usual PREMHER guarantee of a full screen picture, free from cut-off. Every tube is television picture tested before despatch.

Price \$2/5/-, carriage paid.

PROFESSIONAL-LOOKING BUILD RADIO AT LESS THAN HALF TO-DAY'S PRICE

We can supply all the parts to help you. Bakelite Cabinet (Brown or Ivory), 17'6. Packing and Insurance, 2.6.
Punched Chassis. 3 valve plus rectifier T.R.F.. 3'9
Engraved Glass Dial, 180-550 and 800-2,200 m. with station names, new wavebands. 1/6 6/6 1/6 1/6 4d. 3d. 6d. 2/6

T.R.F. COILS 180-550, 800-2,200 metres, pair Drum (2fin. diam.) Driving Head .. Double Pointer ...

Spring Nylon Cord (yard) ... Dial Front Plate SEND 1/6 FOR EASY-TO-FOLLOW FOINT-TO-POINT DIAGRAMS AND CIRCUIT DIAGRAM, which show you how YOU can build the Receiver illustrated at HALF TO-DAY'S PRICE

illustrated at HALF TO-DAY'S PRICE.
THE COMPLETE KIT to construct a 3-valve plus rectifier TRF Receiver for use on 200'250 v. A.C. mains can be supplied at £8. 9s. 6d., plus 26 packing and carriage.
Each Kit is complete in every detail. mothing has to be made or improvised. Easy-to-follow, point-to-point diagrams are supplied making construction very simple. The bial is illuminated and the Receiver, housed in a Bakelite Cabinet size 12in. X 5in. x 6in., presents an attractive appearance. The valve line-up is 717A—H.F. Pent ode. VR 116—Detector, ATP4—Output, and Metal

Rectifier.
Waveband coverage is for the medium and long bands. Choice of Walnut or Ivory-coloured Cabinet.
EX U.S.A. U.H.F. AFRIAL, with Untuned Detector Stage consisting of VR32 Valve. Brand new 5/-.
CRYSTAL MICROPHONE
An entirely insulated crystal microphone which can be safely used on A.C.ID.C. amplifiers. High impedance. No background noise, really natural tone. The ideal Mike for tape, wire and disc recording and sound projectors. Price 22/6.

WITH ORDER OR C.O.D. OVER £1. Please add 1/- Post for Orders under 10/-, TERMS OF BUSINESS :- CASH 1/6 under 40/-, unless otherwise stated.

NOTE: Prices quoted are those ruling at the time of going to press, and are subject to alteration without notice.

CO presents an IMPROVED ALIGNMENT OSCILLATOR

Here is an INSTRUMENT within the reach of every amateur at the low price of 59/6.

The unit provides modulated signal modulated signal for the alignment of I.F. Amplifiers and associated circuits Two

ated circuits Two standard frequencies of 465 and 1.600 Kc's as witch. Modulation Frequency: 800 cps. Output: 500 M.W. Power Supply: 9v. Grid Blas Battery. Single valve type DL92 is used. Steel case, Black matt finish. Supplied with full instructions.

Obtainable from all reputable radio stockists or in case of difficulty direct from works. For complete details of this and other products send 1.- for General Catalogue.

DENCO (CLACTON), LTD.

357-9, OLD RD., CLACTON-ON-SEA, ESSEX

To FREE **AMBITIOUS** ENGINEERS! This 144-page Book

Have you sent for your copy?

OPPORTUNITIES ' is a highly informative guide to the best-paid Engineering posts. tells you how you can quickly prepare at home on "NO PASS—NO FEE" terms for a recognised engineering qualification, outlines the widest range of modern Home-Study Courses in all branches of Engineer-ing and explains the

benefits of our Employment Dept. If you're earning less than £14 a week you cannot afford to miss reading this unique book. Send for your FREE. copy to-day-

-- FREE COUPON ----Please send me your FREE 144-page ENGINEERING OPPORTUNITIES"

NAME	
DDRESS	
ubject or Exam.	

that interests me . British Institute of Engineering Technology 409B, Shakespeare House, 17/19, Stratford Place, London, W.I

WHICH IS YOUR PET SUBJECT?

Mechanical Eng. Electrical Eng. Civil Engineering Radia Engineering Automobile Eng. Aeronautical Eng. Production Eng. Building, Plastics, Draughtsmanship Television, etc.

GET SOME LETTERS **AFTER YOUR**

NAME! A.M.I.Mech.E. A.M.I.C.E. A.M.I.P.E. A.M.I.M.I. L.I.O.B. A.F.R.Ae.S. B.Sc.

A.M.Brit.I.R.E CITY & GUILDS GEN. CERT. OF EDUCATION etc., etc.

each

ENGRAVED KNOBS. 1¼in. dia. for each ¼la. spindles, available Cream or Brown as follows:— Frous, "Contrast," Brilliance, "Brightness," Brilliance On/Off, "Wavechange," On/Off, "Gunder," Tone, "Vol. On/Off, "Radio Gram," Bass," "Treble, "Record-Play," Also Plain Knobs to match 1/8 RESISTORS VOLUME CONTROLS Sananannannannannannannannannanna. Morganite 100K ohm DOK ohms, † Meg., † Meg., 1 Meg., 2 Meg., all with Single Polc Switch OK † Meg., † Meg., 1 Meg., less VALVES 4/3 2 Meg., 1 Meg., 1 Meg., 1 ss Switch 4 Meg. S.P.S. 2K 1 Meg., 1 Meg., Midget Type 150K ohms All Guaranteed. Majority in Maker's Cartons. 150K ohms. 1 Meg. Log. S.P.S. 1 Meg. D.P.S.. SPECIAL OFFER—1 Meg. S.P.S. 024 6B4 8/8 6SA7GT 9/8 [807 10/6 6B8 6C5GT 6C6 5/-1A5GT 1C5GT 7/9 7/6 7/6 6807 7/9 81)2 4/9 8/6 68H7 954 Short Iin. Spindle Centralab 3/-1G6GT 69.17 9/6 5/-3/3 8/-6/9 6C8 68K7 Meg., 1 Meg., I Meg., with S.P. Switch 9/-7/6 9/-9/6 9/-7/-9/6 1LD5 1R5 ohms 1. watt Size 530 ohms, 30K ohms, 40K ohms, 50K ohms, 100K ohms, 11K ohms, 10K ohms, 2.30 obms, 33K ohms, 10K ohms, 2.30 obms, 33K ohms, 100 ohms, 1.7K ohms, 680K ohms, 100 ohms, 13K ohms, 2.2K ohms, 1.50 ohms, 1.9K ohms, 2.2K ohms, 1.50 ohms, 1.8K ohms, 390K ohms, 530K ohms, 2.3K ohms, 390K ohms, 620K ohms, 750 ohms, 1.5K ohms, 330K ohms, 750 ohms, 1.5K ohms, 330K ohms, 570 ohms, 1.5K ohms, 80K ohms, 68K ohms, 80K ohms, 8K ohms 4'9 68L7 9102 ** 9/6 6F6O 68N7GT 11/6 1/6 6F6M 6F7 68Q7 6U5 184 9003 1 Meg. with D.P.S. .. 9/6 6/6 9/8 12A6 12C8 Egen 10K ohms, 5K ohms, 25K ohms with S.P. Switch 6V6G 6V6GT 6V6M 6F8G 1T4 1U5 9/6 9/-7/9 12U8 12H6 U78 QP22B QP230 QP21 EL91 6G6G 6H6 7/6 9/6 3/6 2A3 215SG 4/6 Dubilier 1 Meg. with Double Pole Switch 5K ohms, 150K ohms less Switch ... 6X5GT 6Z6 6AM6 6J.5G 5/6 5/6 280 5/6 9/-6J5GT 6J7M 8/-9/-11/6 8/8 8/6 Erie 25K ohms, 50K ohms, 1 Meg., 2 Meg. 6AL5 7B6 7B7 31)6 6.17C 8Q4 8V4 9.6 6K6GT 523 6K7G 6/6 9/-ECC35 QP22 6K7GT 6K7GT 6K8G 6K8M 6L6 6L7 6N7 6N7GT MH 1 7C5 7C6 4D1 4/9 8.-9/6 9/-PEN/DD 2530 13 -11 6 9/-20K ohms, 25K ohms, 35K ohms, 50K ohms, 5U4G 7F7 7R7 19 1 Meg. ohms, 5 watt 9/6 9/6 5 Y 202 7/6 7/6 7 Y 4 AZ31 U403 U10 10 ohms, 500 ohms, 1K ohms with Switch 5Z4G 10'6 7/9 9/6 Holme Moss 9/6 7/3 6Q70 6R7 5ZJM 11/6 Double 10K ohms on one Spindle ... 9/-9 Kirk-o-Shotts 9/6 9,6 Midget 400 ohms 10/6 TP25 8/6 EBC83 8/-

RESISTORS

3 watt Size

33K ohms, 1,8 Meg. ohms, 270 ohms,
1,500 ohms, 5 K ohms, 3.3K ohms,
10K ohms, 5 K ohms, 37 ohms,
25K ohms, 30K ohms, 8K ohms,
25K ohms, 100K ohms, 1,000
ohms, 20 ohms, 470 ohms,
330 ohms, 50 ohms, 68K ohms,
330 ohms, 2.2 Meg. ohms, 5,6K
ohms, 1,000 ohms, 100 ohms,
260 X ohms
470K, 56K, 56 ohms, 12 Meg. ohms,
1 Meg., 150 ohms, 4.7K ohms,
1 Meg., 150 ohms, 4.7K ohms,
1 Meg., 150 ohms, 25K ohms,
1 Meg., 150 ohms, 25K ohms,

47K ohms, 200 ohms, 35K ohms, 30K ohms, 8K ohms, 10 Meg. ohms

onms Size 201K ohms, 60K ohms, 25K ohms, 200K ohms, 25K ohms, 1 Meg. ohms, 4 K ohms, 50K ohms, 22K ohms, 27K ohms, 22K ohms, 22K ohms, 27K ohms, 2

8K ohms 150K ohms, 2 watt ... 63 9 d

TELEROD INDOOR AERIAL . .

Full instructions with each

Cash with order or C.O.D. Minimum C.O.D. Fee and postage 2/3. MAIL ORDER ONLY. Postage 6d. to 10/-, 1/- to 20/-, 1/6 to 40/-, 2/- to £5. New list available send 3d. in stamps. 5-6 VINCES CHAMBERS, VICTORIA SQUARE, LEEDS 1,

HOME STUDY backs radio experience with sound technical knowledge

MANY men who wished to link their radio experience with a sound technological background have received successful in-struction by means of an I.C.S. Course. Its value has been proved not only to amateurs but to men who already have a professional interest in radio and television engineering, including those taking qualifying examinations. It is invaluable, also, to Students who wish to prepare themselves for a job in this field. Courses of Instruction include the following:

Complete Radio Engineering. Radio Service Engineers Radio Service and Sales, Advanced Short-Wave Radio Elementary Electronics, Radar, Television Technology Radio

And the following Radio Examinations:
British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators
City and Guilds Telecommunications C. & G. Radio Servicing Cert. (R.T.E.B.)

Write today for our FREE "Radio" booklet, which fully describes the above I.C.S. Courses. Fees are moderate and include all books required. GENEROUS DISCOUNT TO H.M. FORCES

Dept. 170a, International Bldgs., Kingsway, London, W.C.2.

SPARKS DATA SHEETS

THE "CHUMMY "PORTABLE An All-dry 2-Valver which does give good 'Phone sigs. on Med. and Long waves. Selitontained aerial and batteries. Tested in Dorset 70 miles from nearest Regional Station and 115 miles from Droitwich. Size approx. Sin. x 4in. x 24in. Data Sheet, 3/24. Post Paid.

THE, "MIDDY "A 2-Valver which gives amazing results on Med. and Long waves and "Ship-to-Shore" transmissions when used with before aerial. Good Speaker results. All-dry batteries. The dieals of the Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Dishee Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Dorset Lested. Dishee Beside. Caravans, The Den and Yachts. Den and Yacht

L. ORMOND SPARKS (P), 48A, HIGH STREET, SWANAGE, DORSET

"ADCOLA" SOLDERING INSTRUMENTS

Regd. Trade Mark

For Wireless and Television Assembly

The advanced design of the Adcola Instruments meets the modern requirements of Television, Telecommunication and

Radar Engineers

SUPPLIED FOR ALL VOLT RANGES FROM 6/7v. to 230/250v.

3/16in. dia. Bit. Standard Model 22/6

_______iin. dia. Bit. Standard Model 25/-3/16in. dia. Detachable Bit. Model

Sole Manufacturers:

ADCOLA PRODUCTS LIMITED

GENERAL OFFICES & WORKS: CRANMER COURT, CLAPHAM HIGH STREET, LONDON, S.W.4. (MACaulay 4272)

CONVERTING TO PUSH-PULL

ADDING AN EXTRA OUTPUT VALVE TO A RECEIVER OR AMPLIFIER WITH THE MINIMUM OF TROUBLE AND EXPENSE. THE USE OF THE SCHULTZ PHASE-SPLIT CIRCUIT FOR THIS APPLICATION IS EXPLAINED

By James S. Kendall

FTEN the amateur wishes to convert the output stage of a receiver or amplifier to push-pull, with the absolute minimum of extra components, whilst keeping the drive power the same but The Schultz phase-split reducing the distortion. circuit gives the answer to this problem. The basic circuit is shown in Fig. 1. In this the output transformer is changed for one that will handle the pushpull power. The resistance Rk is half that used for the original single valve stage. For instance, a pre-war set using a PenA4 will, before modification, have a bias resistor (Rk) of 150Ω , but when the extra valve is added, the wattage rating must be doubled and the resistance halved, i.e., dropped to 75Ω . resistance Rc should be as high as possible without reducing the H.T. voltage excessively. A value of five times that of Rk is suitable.

It will be seen that the Mullard high-slope valves, such as the PenA4, EL33, and EL41, have a very great advantage over the international types, such as the 6F6, 6K6, 6L6 and 6V6, as the H.T. voltage need only be reduced by about 30 volts. This drop does, of course, cause a slight drop in power. The transformer should be checked to see that it will carry the current. The rating of the smoothing choke should also be checked as, if overrun, hum will occur.

The operation of the circuit is simple. As the grid voltage on one half of the valve is dropped, the anode current falls. As the grid of the second valve is held steady by the condenser to earth, the bias on the valve is decreased, resulting in a rise in anode current which very nearly balances out the change in the driven valve. The larger the combined resistance in the combined cathode circuit, the nearer will be the balance in the two anode currents.

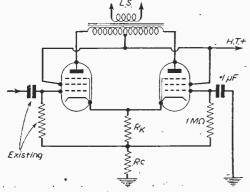
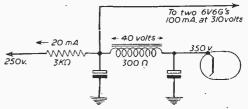



Fig. 1.—Basic circuit of the Schultz phase-splitter.

The most popular valve for the amateur seems to be the 6V6G, as it is so readily available from the ex-W.D. stores. This valve, with 250 volts on both the anode and the screen, requires a bias of 12.5 volts. This is developed across a resistor of 250 Ω . The value of Rk will, therefore, be 125Ω , and the value of Rc at least 650Ω . The wattage rating of these resistors will be "bias voltage multiplied by the anode current," and this latter for two 6V6G is 0.1 amps. so that it will be 12.5×0.1 , say, 2 watts to be on the safe side. Rc will have to be 5×1.25 , say, 10 watts.

There will be a drop in H.T. volts to the valve of over 60 volts, and this will cause a drop in the output power of the stage. According to the maker's figures, a single valve with 250 anode and screen will give an output of 4.5 watts, but, two valves in push-pull with 180 volts anode and screen, will only give an output of 4 watts!!! The voltage fed to the stage must, therefore, be increased. This latter can best be done by reducing the resistance of the smoothing circuit. If the transformer used is a 250-0-250 volt, the voltage at the cathode of the rectifier valve will be just under 1.4 times this, that is 350 volts. If the current drain of the receiver using one valve is 70 mA the resistance of the smoothing circuit would be some 1.400 Ω . If two valves of the 6V6G type are to be used for the output, an extra 50 mA will be required, at a voltage 60 volts higher. A suitable circuit is shown in Fig. 2. In this, the smoothing choke has to be reduced to 300\Omega. If a choke of this resistance is not available one of lower value can be used in series with The values of the a resistance of suitable value. condensers used for smoothing should be such that when multiplied by the choke inductance it is the same value as used in the previous set up. That is, if two 8µF condensers and a 20 h choke was used in the first place, and only a 5 h choke was used in the second, then, in the first case 16×20 equals 320, so in the second the total capacity must be 320 divided by five, equalling 64, and therefore two 32 µF condensers should be used.

It will be seen from the foregoing that the lower the bias required by the valve, the less will be the drop in the H.T. In A.C./D.C. sets where the voltage

'Fig. 2.-H.T. potential divider.

8.0

6.0

12.0

38.0

20.0

8.0

5.0

is limited, it is essential that the valves used should be chosen with care. In the international range the 25A6G is very useful as with a maximum voltage of - 135 on both the anode and the screen there is some. 90 volts that can be absorbed by the coupling resistor and the smoothing circuit. This will usually mean that the coupling resistor will only be three times that of the cathode resistor. On the other hand the 25L6G requires a bias of only -8 volts, but if the circuit is arranged so that there is a 40 volt drop along Rc, the H.T. to the valve will be dropped to about 180 volts. This slight drop from the maximum of 200 will give an output power of about 7 watts, but as the valves will each be taking some 57 mA it will be necessary to use two rectifier valves in parallel to take the total load—that is assuming that the normal 25Y5 or 25Z4G is being used.

For A.C./D.C. Circuits

In the writer's opinion the best valve for use in A.C./D.C. circuits of the type described in this article is the Mullard UL41. This valve is of the high-slope type and with 170 volts anode and screen, a power output of 9.0 watts for a distortion of only 4 per cent. can be obtained. In this circuit Rk would be 100Ω and Rc 500Ω , the output impedance from valve to valve (anode to anode) would be $4,000\Omega$.

To assist those readers who wish to experiment with this type of circuit, the table on the right shows the values of bias and load resistor required for a fairly wide range of valves.

Table of Values of Resistance for Rk and Rc for Various Valves							
			Extra	,			
Valve	Rk	Rc	H.T.	Wo			
6AG6G	75	400	30	7.5			
-6AM5	30	1,400	75	8			
6F6G	220	1,100	100	9.6			
6K6G	250	1,300	90	7.8			
6L6G	150	750	90	20			
6V6G	. 120	600	63	9			
7A3	75	400	30	7.5			
7B5E	250	1,300	90	6.5			
7C5	120	600	63	9			
7D5	220	1,100	100	9.6			
7D6	75	400	30	7.5			
7D8	75	400	30	7.5			
12A6	180	900	63	5.6			
25A6G	220	900	85	4.0			
25L6GT	80	. 400	30	7.5			
35L6GT	95	500	20	5.0			
KT32	50	250	40	7.0			
KT33C	50	250	40	7.0			

1,100

400

500

300

450

900

80

75

90

70

35

130

German Radio Exhibition

KT61

KT63

KT66

EL31

EL37

EL41

EL42

210

100

80

60

90

180

AFTER a lapse of two years the "Grand German Radio and Television Exhibition" will once more be held in Düsseldorf from August 22nd to 31st, 1952. All factories located in the Federal German Republic and in Western Berlin which produce wireless sets, television sets, radiogram attachments and phonograph records, as well as accessories and spare parts, will be represented without exception. They offer a comprehensive exhibition of the new designs in all fields.

There are two fields which will probably interest the wireless specialist most: ultra-short-wave wireless, and television. As is well known, a few years ago Western Germany was forced by the pressure of existing circumstances to build up a network of ultrashort-wave transmitters because the Copenhagen Plan worked out in the autumn of 1948 made only a few relatively bad frequencies in the medium-wave range available to Germany. A virtue has meanwhile been made of necessity, and these emergency measures have been developed into a completely new kind of broadcasting, which to-day covers all parts of Western Germany, including Berlin. On March 1st, 1952, there were already 70 transmitters operating in the ultra-short-wave range, and about 30 per cent. of all wireless owners already had sets equipped to receive the ultra-short-wave ranges. A further 30 U.S.W. transmitters are to begin operations within the near future, whilst the industry is building U.S.W. ranges into all wireless sets intended for home consumption.

The German factories have been able to gain considerable experience, so that a study of the standards reached in the construction of U.S.W. receivers and

transmitters should be of considerable interest to all visitors. The idea of building up a new type of broadcasting, with high-fidelity reproduction and free of interference, with the ultra-short waves forming a valuable supplement to broadcasting on medium and long waves (the latter only in Europe), is also gaining more and more ground in other countries. The radio exhibition in Düsseldorf promises to show many new models of wireless sets whose efficiency in the ultra-short-wave range will be amazing, and whose fidelity of reproduction will be far superior to anything known in the past. The valve factories have meanwhile developed new types of amplifier valves with the aid of which even low-cost wireless sets will be capable of bringing good ultra-short-wave reception. Wireless sets for all frequencies up to 30 Mc/s, with particularly good performance on the short waves, will be supplied for use in the tropics.

Components 1 4 1

Considerable progress has also been reported in all the other fields of electrical engineering. New types of aerial for very short wavelengths, interesting recording devices with magnetic tapes or steel wires and, above all, whole series of precision testing instruments for ultra-short waves and television are expected.

In conclusion, the Deutscher Amateur Radio-Club (DARC—German Amateur Radio Club) is again preparing a large show for its friends in the whole world, with a short-wave transmitter in actual operation, many pieces of equipment built by its members, and the colourful QSL cards. The publishers of technical radio publications and books, as well as the professional organisations of the radio trade and industry, will also be represented.

CONSTRUCTOR'S POL-ISHED CABINET, Size 10 x ISIND CABINAT. Size 10 x 61 x 5in. approx. supplied in fiatted form, grooved and ready to glue together. Complete with plastic front. 5 valve chassis, cadmium plated, size 81 x 4 x 18 in. tuning scale, knob and back. Illustration as it would look when assembled.

POLISHED WALNUT CA BINET. Size 18 x 13 x 8 ln. approx., complete with three wave band scale, size 12; x approx... complete with three wave band scale, size 123 x 4in., scale pan, cadmium plated 5 valve superhet chassis with transformer, valveholder, and 1.F. cubuls size 14 x 61 x 2in... drum and back, 351-, post paid. Knobs not supplied.

Wave-change Switches, 6-pole 3-way, 2-; 3-pole 2-way, 1/2; 4-pole 3-way, 1/9; P. & P. 3d. each.

Pre-Aligned Midget 465 kcs., Q.120, 9/- per pair,
465 kc/s. Midget 1/F.S. Q.120, 5/2 blin. long. lin. wide. sin.
deep. Pre-aligned adjustable fron-dust cores, pair, 12-6.
Valveholders. Pavolin international octal, 4d. each.
Moulded international octal, 7d. each. BF50 ceramic, 7d.
each. Moulded BT6 slightly soiled, 6d. each.
Trimmers, 5-40 pf. 5d.; 10-l10, 10-250, 10-450 pf., 10d.
Twin-gang, 0005 Tuning Condensers, 5.— With tulmmers,
7.6. Midget 00037 dust cover and trimmers, 8/6.

P.M. SPEAKERS with 465 ke/s. Wildect I.F.s. Q.120, 12e 1/1n. long. lin. wide. sin.
46ep. Pre-aligned adjustable iron-dust cores pair. 12.6
vaiveholders. Paxolin international personal personal

	P.M.	SPEA	KER	S	with trans.	less trans.
2in.	***	514	144			13/6
3jin.	***	***	***		154	11/6 11/6
5in.		* ***	***	* * * *	15/-	11.6
8in.	143	200	***		17/-	14.6
toin.	***		/**			16 -

knobs not supplied. 10,-, plus 1,6 post and packing.

RADIO CABINETS. In polished walnut size $19 \times 11 \times 8$ in, approx., complete with scale. These are slightly soiled and require re-touching, 15/- each, post paid.

PERSONAL PORTABLE CARINET in cream-coloured plastic; size 7 x 4½ x 3in. Complete 4-valve chassis. Scale and 3 knobs. Takes militature 90 v. and 71 v. batteries, 94-2; in. P.M. Speaker to fit above. 13/6. Miniature output transformer. 5/- Miniature wave-change switch. 1/6. Miniature output transformer. 5/- Miniature wave-change switch. 1/6. Miniature 2/- Miniature wave-change switch. 1/6. Miniature 2/- Miniature and 0fi, 1/6. 4 BTG valveholders, 2/- Miniature colls in. long x in. wide: complete with 4-valve all-dry mains and battery circuit. 8/6. Condenser Kit. comprising 11 miniature condensers, 3/6. Resistor Kit, comprising 12 miniature resistors, 3/-. The above receiver (less valves and batteries) could be built for approximately 49/-. Point to Point Wiring Diagram 1/-.

COHEN TELEVISION COMPONENTS 23, HIGH STREET, ACTON, W.3.

Hours of Business: Saturdays 9-6 p.m. Wednesdays 9-1 p.m. Other days 9-4.30 p.m.

RADIO MAIL

RALEIGH STREET, NOTTINGHAM

INTRODUCING A RESISTANCE-CAPACITY BRIDGE AT 30/- ONLY

Note the following points

LESS THAN ONE FIFTH THE COST OF A COMMERCIAL INSTRUMENT OF SIMILAR RANGE.

THREE CAPACITY RANGES, CONTINUOUS UP TO 50 MFD. THREE RESISTANCE RANGES, CONTINUOUS UP TO 5 MEGOHMS.

EASILY AND QUICKLY ASSEMBLED WITH THE SIMPLE INSTRUCTIONS AND CIRCUIT DETAILS SUPPLIED.

NO CALIBRATING NECESSARY AFTER ASSEMBLY.

ALL CALIBRATIONS, SWITCH RANGE MARKINGS, TER-MINAL FUNCTIONS, ETC., READY LAID OUT ON A HAND-SOME ESCUTCHEON COVERING THE ENTIRE OPERATING PANEL.

THIS IS THE FIRST TIME THAT AN INSTRUMENT OF THIS CALIBRE HAS BEEN AVAILABLE AT NO AMATEUR OR SUCH A LOW PRICE. PROFESSIONAL NEED NOW BE WITHOUT ONE.

STAMP FOR LIST AND WITH ALL ENQUIRIES PLEASE

GRAM MOTORS & PICK-UPS

MICROGROOVE & STANDARD - RECORDS

"X-ray" view of MU-10

B.S.R. MU-10 motors for 33 & 78 r.p.m. Speed change by reversing drive pulley. 10in. turntable. 100-250v. £3.15s.

HU-14 de luxe model with ROTACAM Instant speed change for 33 45 & 78 r.p.m.

all post free , £6. 10s.

GU-IA Three-speed RADIOGRAM UNIT

Now available for the, home market, this new combined unit uses the popular MU-14-motor on a unit plate with pickup and AUTO-STOP.

The pickup is of the Acos dual purpose type fitted with a sapphire needle. Beautifully finished in mottle enamel. £10.

Jull list including auto chargers on request

ACOS GP-20 pickups, standard 43.11.5 GP-19 LP, microgroove head only 22.3.4.

xenuser ingrisseright

Li.13.10

Type 137 De-luxe lightweight
ditto with AUTO-STOP

Type 150 with adurtable counterweight
for 33 45 or 78 r.p.m. records.

Complete with two sapphires.

£3.11.8

1284

61.15.10

43.19.4

MARCONI Type 14, with matching transformer

DECCA Twin head 'turnover'

CONNOISSEUR Standard Super-de luxe, with two heads

GOLDRING Type 130 standard lightweight

DIO SUPPLY C 15, WELLINGTON ST., LEEDS, 1

Post Terms C.W.O. or C.O.D. No C.O.D. under £1. Postage 1/- charged on orders up to £1; from £1 to £3 add 1/6; over £3 post free. Open to callers 9 a.m. to 5.30 p.m. Saturdays until 1 p.m. R.S.C. MAINS TRANSFORMERS

Fully Guaranteed. Interleaved and Impregnated. Primaries 200-230-250v. 50 c/s Screened.

TOP SHROUDED, DROP THR	OUGH
1 200-U-200 V. 80 ma. 6.3 V 2 a 5 v 2 a	15(0
11 JOU-U-350 V. 80 ma. 6 3 V 2 a 5 V 2 a	17/10
260-0-260 v. 90 ma., 6.3 v. 3 a., 5 v. 2 a	10/0
350-0-350 v. 90 ma., 6.3 v. 3 a. 5 v. 2 a.	01/0
250-0-250 v. 100 ma., 6.3 v. 4 a., 5 v. 3 a	00/11
350-0-350 v. 100 ma., 6.3 v4 v. 4a. C.T.	29.11
0-4-5 v. 3 a.	23/11
350-0-350 v. 120 ma., 6.3 v. 4 a., 5 v. 3 a.	28/11
350-0-350 v. 150 ma., 6.3 v. 4 a., 6 v. 3 a.	29/11
350-0-350 v. 150 ma., 6.3 v. 2 a., 6.3 v.	20 11
2 a., 5 v. 3 a	29'11
CLAMPED UPRIGHT MOUNTIN	G
250-0-250 v. 80 ma., 6.3 v. 3 a., 5 v. 2 a	18/9
250-0-250 v. 100 ma., 6.3 v. 6 a., 5 v. 3 a.,	
for 1355 conversion	26.9
for 1355 conversion 350-0-350 v. 100 ma., 6.3 v. 3 a., 5 v. 3 a.	23/9
FULLY SHROUDED UPRIGHT	
250-0-250 v. 60 ma 6.3 v. 2 a., 5 v, 2 a.	
Midget type 0, 2 2in	
Midget type 21-3-3in 250-0-250 v. 100 ma., 0-4-6.3 v. 4 a.,	17'6
0-4-5 v. 3 a	0510
0-4-5 v. 3 a. 300-0-300 v. 100 ma., 0-4-6.3 v. 3 a.	25'9
	05:0
350-0-350 v. 70 ma., 6,3 v. 2 a., 5 v. 2 a.	25/9
350-0-350 v. 100 ma., 0-4-6.3 v. 4 a.,	18'9
	25.10
350-0-350 v. 150 ma., 6.3 v. 4 a., 5 v. 3 a.	25/9
350-0-350 v. 250 ma., 6.3 v. 4 a., 5 v. 3 a.	33/9
0-2-6 v. 2 a 4 v. 3 a for Electronic	- 1
Eng Tolovicon	
Eng. Televisor	67/6
63 v 4 0 C T 5 v 20 11a.	- 1
Williamson Amplifier, etc	
325-0-325 v. 20 ma., 6.3 v. 0.5 a., 6.3 v.	51/-
1.5 a. for Williamson Preamplifier	2 11/0
2.0 a. 101 williamson Preampliner	17/6
DIT A MUNICIPE SEED A NORMANDERO	- 1

TOP SUPOUDED DOOR	
The surveyer, DROP THROUGH	1 6.3 v. 3a., 10 11; 6.3 v. 6 a., 17/9; 0-2-4-5-6.3 v.
260-0-260 v. 80 ma., 6.3 v. 2 a., 5 v. 2 a 15/9	4a., 17/9; 12 v. 3a., or 24 v. 1.5a 17/9
1 000-0-000 V. 80 ma., 6 3 V. 2 a . 5 V 9 a 1 1 1 a	4a., 17/9; 12 v. 3 a., or 24 v. 1.5 a 17/9
1 200-0-200 V. 90 ma., 6.3 V. 3 g. 5 v. 9 g. 10/0	CHARGER TRANSFORMERS
1 300-0-300 V, 90 ma., 6.3 v, 3 a. 5 v 9 a 91/0	All with 200-230-250 v. 50 c/s Primaries :
# 400°0°200 V. 100 mg., 6 3 V 4 g 5 v 3 g 99/1	1 0-3-13 V. 1.3 A 14/9: (1-9-15 v 3 a 14/0)
0-4-5 v. 3 a 23/11	
350-0-350 v 120 mg 6 2 v 4 s 5 v 2 · · · · · · · · · · · · · · · · · ·	
350-0-350 v. 120 ma., 6.3 v. 4 a., 5 v. 3 a. 28/1	-250 ma. 8-10 h. 50 ohms 16.9
350-0-350 v. 150 ma., 6.3 v. 4 a., 5 v. 3 a. 29/11	
350-0-350 v. 150 ma., 6.3 v. 2 a., 6.3 v.	250 ma. 3 h. 100 ohms 8/9
2a., 5 v. 3a 29'11	
CLAMPED UPRIGHT MOUNTING	100 ma. 10 h. 100 ohms 7/8
250-0-250 v. 80 ma., 6.3 v. 3 a., 5 v. 2 a, 18/9	90 ma. 10 h. 100 ohms 5/9
250-0-250 v. 100 ma., 6.3 v. 6 a., 5 v. 3 a.,	80 ma. 10 n. 350 ohms 5/6
for 1355 conversion 26/9	ELIMINATOR TRANSFORMERS
10r 1355 conversion 26.9	Primaries 200-250 v. 50 c/s 190 v 40 mg 7/11
350-0-350 v. 100 ma., 6.3 v. 3 a., 5 v. 3 a. 23/9	120-0-120 v. 30 ma., 4 v. 1 a 12/9
FULLY SHROUDED UPRIGHT	OUTPUT TRANSFORMERS
250-0-250 v. 60 ma 6.3 v. 2 a., 5 v. 2 a.	Midget Pettern D. A.A.
Midget type 21-3-3in 17'6	Midget Battery, Pentode 66 : 1 for
250-0-250 v. 100 ma., 0-4-6.3 v. 4 a.,	384. etc 3/6
0-4-5 v. 3 a 25 9	Small Pentode, 5,000 ohms to 3 ohms 3/6
300-0-300 v. 100 ma., 0-4-6.3 v. 3 a.	Standard Pentode, 5,000 to 3 ohms 4/9
0-4-5 v. 3 a 25/9	Multi ratio 40 ma., 30 : 1, 45 : 1,
350-0-350 v. 70 ma., 6.3 v. 2 a., 5 v. 2 a. 18 9	60:1,90:1: Class B Push-Pull 5/6
350-0-350 v. 100 ma., 0-4-6.3 v. 4 a.,	Push-Pull 10-12 watts 6V6 to 3 or 15
0-4-5 v 3 a	ohms 15/11
0.4-5 v. 3 a, 25/9 350-0-350 v. 150 ma. 6.3 v. 4 a, 5 v. 3 a, 33/9	Push-Pull 10-12 watts to match 6L6,
350-0-350 v. 250 ma., 6.3 v. 6 a., 4 v. 8 a.	1 PA4, 6V6, etc., to 3-5-8 or 15 ohms 18/0
	Push-Pull 15-18 watts to match 6L6.
0-2-6 v. 2 a., 4 v. 3 a., for Electronic	etc., to 3 or 15 ohm Speaker 22 9
Eng. Televisor 67/6	Williamson type exact author's spec. 77/6
425-0-425 v. 200 ma., 6.3 v. 4 a., C.T.	
6.3 v. 4 a., C.T., 5 v. 3 a., suitable	NEW EX-GOV. VALVES. DI. 1/3; 954.
Williamson Amplifier, etc 51/-	VU120A, 2/9: 12H6 Met., 1/11: 9D2, 2/11:
325-0-325 v. 20 ma., 6.3 v. 0.5 a., 6.3 v.	12SG7 Met., 6J5GT, 12SH7 Met., 5/9; 6SG7
1.5 a. for Williamson Preamplifier 17/6	Met., 6SS7 Met., 6/9; 6K7G, 6J7G, KTZ63,
FILAMENT TRANSFORMERS	12A6 Met., 7/6; 6X5GT, PEN46, MHLD6, 9/6;
All with 200,250 v 50 c/s Primarica + 6 a	5Y3G, EB91, 10/6; 6Q7G, 10/11; ECL80, EF80,
2 9 7/8: 0 4 6 3 v 2 0 7/0: 10 v 1 - 8/11	12/11: MSP4 5/6: EF91, 11/9; UCH42, 11/6;
2 a., 7/6; 0-4-6.3 v. 2 a., 7/9; 12 v. 1 a., 7/11;	UF42, UL41, UY41, 10/11.

SPECIAL OFFERS. Mains Trans. 220-240 v. Primary, 6.3 v. 1.5 a., small. 5/9; Ex. Gov. Block Paper 4 mfd. 600 v., Mansbridge type, 2/9.

P.M. SPEAKERS. All 2-3 ohms, 5 in. F.W. 11/9; 5in. Rola with Trans., 15/9; 6/in. F.W. 13/11: 8in. Plessey. 14/11: 8in. Rola, 17/6; 10in. Goodmans, 27/9.

M.E. SPEAKERS, R.A. (2-3 ohms), Field 600 ohms, 12/9. VOL. CONTROLS (standard spindles). All values, less switch, 2/9; with S.P. switch,

BROWN BAKELITE CABINETS

BROWN BAKELITE CABINETS
(PREMIER), Size approx. 12-61-5iin.
Complete with punched (T.R.F.) Chassis.
Coloured Station Named 2 or 3 wave Glass
Dial, Drive Drum, Cord Drive Head, Nylon
Cord. Spring, and Dial Backplate. 28:6.
T.B.F. Coils, Combined L. and M. wave,
with circuit, 6:6 pair.
MISC. ITEMS, Ex-Govt. (Trop.) Chokes,
50 ma., 50 h. 1,000 ohms, 4:6. Philips Chokes,
50 ma., 50 h. 1,000 ohms, 4:6. Philips Chokes,
50 ma., 50 h. 1,000 ohms, 4:6. Philips Chokes,
50 ma., 50 h. 2;9 each. Cream Masks,
9in. (slightly soiled). 6:9. Suitable Armour
plated glass. 1/11. EF50 Valves (ex. New
Equip.), Perfect condition: 6:6. EF54. 5:9. Equip.), perfect condition: 6/6. EF54. 5/9. ELLECTROLATICS. Tubular 8 mfd. 450 v., 2/3; Can 16 mfd. 450 v., 2/1: 8-8 mfd. 450 v., 4/8; 18-11: 8-8 mfd. 450 v., 4/8; 18-12 mfd. 350 v., 3/3; 16-16 mfd. 450 v., 5/3; 32 mfd. 350 v., 6/8; 32-32 mfd. 450 v., 5/3; 32-32 mfd. 350 v., 6/8; 32-32 mfd. 450 v., 5/3; 32-32 mfd. 350 v. plus 25 mfd. 25 v., 5/6; 32-32 mfd. 350 v. plus 25 mfd. 35 v., 5/6; 50 mfd. 35 v., 5/6; 50 mfd. 35 v., 5/6; 50 mfd. 350 v., 3/11. 250 mfd. 12 v., 4/3; 16-32 mfd. 350 v., 3/11.
FULL RANGE OF STANDARD COMPONENTS AVAILABLE AT KEEN
PRICES. ALL GOODS GUARANTEED
AND NEW, UNLESS OTHERWISE
STATED, QUANTITY QUOTATIONS
GIVEN FOR STANDARD TYPES OR
SPECIALS, S.A.E. PLEASE WITH ALL
ENQUIRIES. FULL STOCK LIST 4d.
SPECIAL LIST FOR TRADE, 4d.

LYONS RADIO

3 GOLDHAWK ROAD Dept. M.P. SHEPHERDS BUSH, LONDON, W.12 Telephone: SHEpherds Bush 1729

MORSE CODE PRACTICE OUTFITS.

—Comprise an adjustable audible adde buzzer and well-balanced morse key mounted on a polished hardwood base, 63in, x 64in, x 4in, with battery-retaining clips and phone terminals. As used by R.A.F. trainess, PRICE 5/9, post 1/3. Optional extras: battery, 2/6: 'phones, 5/9; post free with above.

PRICE 5'9. post 1'13. Optional extras: battery, 2'6; 'phones, 5'9; post free with above.

MAINS TRANSFORMERS,—Fully impregnated, ex-Govt. PRIMARY, 200'250 v. at 30 mA., 6.3 v. at 4 A., 4 v. at 3 A. Overali size, 4tin, x 4in, x 3jin. Windings brought out to clearly marked tag board. PRICE 1'0; Carling and having an output 230 v. 1.C. at 30 mA., wire-wound resistors smoothing condensers, and other useful partial size, 11in, x 8iin, x 4iin, Circuit siagram pasted on the inside of dust cover. Slightly damaged externally but internal condition is good and rotary converter tested before despatch. PRICE 10'-, carriage 3'9.

"ATHODE RAY TUBES, TYPE VR97.—Brand new and unused supplied in maker's original packing crates. All retested by us before despatch to ensure full TV picture obtainable. PRICE 3'66. carriage 5'-. WAYEMETERS, TYPE W1239.—Freenency range 39 to 51 Mc/s. Rectifier type employing 4 valves (1 each of VR92, 6)5. W103 and 6X5). The tuning control is fitted with a Muirhead slow-motion drive and all components and construction are of the highest quality. Built to laboratory standards in copper-lined cases measuring 15 in. x 9in. x 10in. For A.C. mains 200/250 v. 50 cps. operation. In brand new unused condition supplied in maker's transit cases. PRICE 23/19/6, carriage 6/6.

WALTON'S WOLVERHAMPTON

THE 'HAM' SHOP OF THE MIDLANDS

METERS.—Still a Centre Reading Microamp meters 75-0-75, graduated "L.R." only. Flush Flush fitting, brand new, maker's boxes.

10/6 only, plus 6d, post. R.1155 RECEIVERS.—Still a very popular communication Receiver, range 75 Kc/s. to 18 mc/s. First class unused condition. Our price, including transit case and all valves, £12 10s., plus 7/6 carriage. RELAYS .- Ultra light High Speed

Relays. 7/6, plus 6d. post. NUTS, BOLTS, SCREWS WASHERS.—Approx. 1,000 items, mainly B.A. Sizes. 3/6, post 1/-. RIVETS.—1/16in. x 1/4in., mainly

aluminium, 3/6, post 1/-.
No. 19 TANK AERIALS.—Superior screwed sections, 3 lengths approx. 12ft. assembled, complete in strong bakelite case, 6/- plus 2/6 Packing and Carriage.

Send s.a.e. and 3d. in stamps for our latest general list.

LTON'S WIRELESS STORES

48, Stafford Street, Wolverhampton.

CABINETS

To YOUR specification. Send 9d. for illustrated catalogue.

Composents

We hold extensive stocks of radio and television components.

GRAH, MOTORS

All the latest Auto-changers and Pick-ups available.

AMPLIFIERS

Send for details of our latest models.

SPEAKERS

All sizes and types available. We stock the full GOODMANS range.

TELEVISION

All the VIEWMASTER parts are stocked

Send 6d. for complete and latest lists.

LEWIS RADIO CO.

All correspondence to : (Dept. K.15.)

322, HIGH RD., WOOD GREEN, LONDON, N.22

Callers to

120, GREEN LANES, PALMERS GREEN, LONDON, N.13 (Near Bowes Road)

Phone: BOWes Park 6064

Surplus Mercury Vapour Rectifiers

COMPREHENSIVE DATA OF SOME EX-SERVICE VALVES

By E. G. Bulley

MERCURY vapour rectifiers suffer from what may be called "shelf life." This means that they deteriorate when kept for a very long inactive period. This can be attributed to the fact that the mercury present in the bulb contaminates the filament and thus destroys the emissive property. It is therefore essential when purchasing such valves to see that the filament coating is not spattered about the interior of the bulb.

Another important point to remember when purchasing surplus valves of this category is that during the active life of these rectifiers the bulb darkens. This does not, however, indicate that the

TABLE I

S	urplus		British	U.S.A.
	V1072) (RG1-240A	- :
١ ٧	′U72	$\Sigma = \zeta$	GU50	- :
. A	.U6) (MU4250	
<u> </u>	LU2		RG5-500	_ :
· \	T42A	. ==	_	872A
: 6	CV 32	1= {	2V;400A	866A
, ,	. ¥ 3.2	3 — 1	ESU200	· —
(CV5		GU21	_
1 N	1U8		RG1-125	

valve has served its useful life, but that the valve has been in use in equipment at sometime or other, and it will not therefore give the same length of life as a rectifier with a more or less clear bulb.

However, a very important operation must be carried out when one does purchase such valves, and that is, the filament only should be operated at its specified voltage for at least one hour. This will ensure that the mercury will be distributed correctly. This is essential, remembering that these valves have been in store for something like 10 years. Furthermore, failure to do so will result in cathodic sputtering

arc back and the eventual destruction of the rectifier. The presence of mercury upon the anode will result in the anode developing a "hot spot," and if operated under such conditions the contaminated anode area will melt.

It is not the intention of this article to describe the actual operation of these rectifiers, as this has already been covered by the author in the October issue of PRACTICAL WIRELESS, 1948, but to assist the newcomer in using such valves.

Blue Glow

Before proceeding, therefore, it may be as well to mention that a characteristic of these valves is that, when in operation, a blue glow is present within the glass envelope, and this does not indicate that the valve has gone soft as with ordinary types of valve. So much for the pros and cons of purchasing these types of rectifiers, let us now consider the types available on the surplus market.

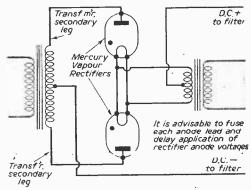


Fig. 1.—Basic circuit of a rectifier unit.

Perhaps the most popular type to the radio amateur is the 866A. This is to be found in a great number of amateur transmitting stations. The surplus number for this type is the CV32. Reference to Table 1 indicates the commercial equivalents to the surplus numbers, whilst Table 2 gives the electrical characteristics.

The rectifiers listed are mainly used by the amateur in what is termed a single-phase full-wave circuit. The basic circuit of this type is shown in Fig. 1 and this will supply the needs of the average amateur.

TABLE 11

	Ef (volts)	1f	P.I.V.	Max. Peak la	Max. Mean la	Condensed Hg Temps.
CV5 CV32 CV1029 VU29 CV2946 CV1072 CV152 CV1355 AU7 AU2 NU8	4.0 2.5 4.0 4.0 14.0 4.0 4.0 4.0 4.0 5.0 2.0	amps. 11 5.0 10 10 10 3.0 7.0 11.5 11.5 11.5	kV 11.6 10 4 4 4.2 13 10 10	amps. 4.7 1.0 2.5 2.5 2.5 1.0 5 3.0 2.5 -0.6	amps. 1.25 0.25 0.6 0.6 0.6 0.25 1.25 .75 .75 0.5 0.125	25°-50°C. 25°-60°C. 25°-60°C. 25°-60°C. 25°-60°C. 25°-60°C. 25°-60°C. 10°-50°C

Much naturally depends upon the rectifiers used. Before proceeding, however, it is as well to mention that there exist "relationship factors." These figures enable one to determine various voltage and current ratings necessary to produce the power pack. These factors do not, however, take into account the voltage drop in the power transformer, the rectifier valves or the drop across the filter, but it does enable the amateur to obtain an approximate value of the voltage that is being fed to the input of the filter.

Referring to the data of the CV32, one will note that these valves have a peak inverse rating of 10kV, and it is from this figure that the transformer secondary voltage can be determined. It may be as well to mention that as these valves have been in store for a fairly long period, to operate them at a lower peak inverse voltage is advisable. However, for the purposes of this article, the rating will be taken as in Table II.

The transformer secondary voltage per leg is equal to the peak inverse rating multiplied by a constant .353. This, when evaluated, is equal to 3,530 volts approximately. This is the R.M.S. value which is fed to each rectifier anode as shown in Fig. 1. Now, from this R.M.S. value one can then determine the approximate D.C. output voltage to the filter. This can be easily calculated by multiplying the R.M.S. value by another relationship factor, namely, 0.9, which becomes 3,177 volts D.C.

Anode Current

Another important characteristic is that of the maximum average anode current, which is the current the rectifier will withstand. Referring again to Table II, one will see that this current value for the CV32

is 250 mA. Now as there are two valves in biphase (see Fig. 1) the maximum average load D.C. is equal to twice the value of one rectifier, namely, 500 mA.

The output from such a pack as shown in Fig. 1 has now been determined, but it must be remembered that there will be a slight percentage change between the values determined which are for no load conditions and those obtained under full load; the latter will be somewhat less. This can be clarified by assuming that as the D.C. voltage output to the filter was 3,177 volts, but, say, under full load conditions this value dropped to 2,777 volts, then the voltage regulation of the power pack in question is as follows:

$$\frac{3177-2777}{3177}$$
=.12=12%

One must remember, however, that these figures used to determine the voltage regulation are only assumed, and are not actual or true figures obtained. The reason being that they were used to emphasise the fact that for a well-designed pack the voltage regulation figure should not be more than 10 per cent.

The reader will appreciate the importance of this figure when he realises that in amateur transmitters it is essential to maintain frequency stability. Nevertheless, the procedure described can be adopted for any of the valves listed so long as one uses the circuit shown in Fig. 1. Furthermore, it may be as well to state that the design of the actual filter section is beyond the scope of this article, but it must be remembered that special attention must be given to this section, otherwise a poor power pack will result.

Presenting Technical Information

(Concluded from page 306.)

B.R. 1897B (Admiralty). E.M.E.R. Tels. A305 (Army). A.P. 2867B (Air Ministry).

This book—issued by each Service under its own reference—is B.S. 204: 1943 without supplements.

B.R. 1897A (Admiralty). E.M.E.R. Tels. A306 Issue 2 (Army). A.P. 2867A (Air Ministry).

This inter-Services book—issued by each Service under its own reference-includes nearly all that is in Supplements (1), (3) and (4) of B.S. 204: 1943.

NOTE: The Admiralty issue B.R. 1897A and B.R. 1897B bound as one volume, B.R. 1897. Service personnel and commercial concerns having contractual relations with the Government will find all except certain radio propagation and piezoelectric terms in the Service books mentioned. Others should use B.S. 204: 1943 plus the Supplements.

Circuit Presentation and Drawing Office Practice

B.S. 530: 1948—Graphical Symbols for Telecommunications.

Two supplements:

(1) Component References.

(2) Waveguide Symbols.

*B.S. 108: 1951—Graphical Symbols for General Electrical Purposes.

B.S. 308: 1943—Engineering Drawing Office Practice. (Under revision.)

B.S. 560: 1934—Engineering Symbols and Abbreviations. Revised edition pending.

B.R. 1079(50), Part 1 (Admiralty). E.M.E.R. Tels. A301 Issue 4 (Army). A.P. 2867 (Air Ministry).

This inter-Services book-issued by each Service under its own reference—covers the same ground as B.S. 530: 1948 and agrees with it, but has Service preferences; it contains B.S. 530: 1948 Supplement (1) and the material in Supplement (2).

NOTE: Service personnel and commercial concerns having contractual relations with the Government will find what they require in the Service books mentioned. Others should use B.S. 530: 1948 plus the Supplements.

Miscellaneous References

Authors' and Printers' Dictionary, by F. H. Collins (Oxford University Press). 7s. 6d.

London School of Printing-L.S.P. Style of the House, 6d.

London Mathematical Society-Notes on the

Preparation of Mathematical Papers. 1s. 0d. Institute of Physics—Notes on the Preparation of Contributions to the Institute's Journals and other Publications. 2s. 0d.

Institution of Electrical Engineers-Handbook

for Authors. 2s. 0d. Royal Society—General Notes on the Preparation

of Scientific Papers. 2s. 6d.

Royal Society—Symbols, Signs and Abbreviations recommended for British Scientific Publications, 1951. 9d.

MODERN ELECTRICS LTD.

164, Charing Cross Road, London, W.C.2

'Phone: TEMple Bar 7587

Immediate delivery from stock Export enquiries welcomed

	£	s,	d.
Motors	22	18	6
Std. and Microgroove		0	8
ACOS, G.P.20 PIU	3	11	5 4
ACOS, LP. and Std. Hea		15	4
33 and 78 speed 33 -45 and 78 speed		8	6

TI	EST	GEA	R			
AVO— Model 7 Model 8 D.C. Minor Uniminor Univ. Bridge	***	***	•••	19 23 5 10 26	10 10 5 10	0 0 0
SIGNAL GEN Wide Band Valve Tester Electronic Te		 ter	•••	30 50 40	0 0	0

TAYLOR. ALL TAYLOR TEST GEAR IN STOCK. Still available on H.P. Send S.A.E. for catalogue and terms.

FARMER IOHN

The following are a few items taken from our 1952 catalogue. A copy is sent free with all orders. Otherwise price 6d. on request. 428. VARIABLE RIBORT.ATS, witewound. (a) 2 ohms, 20 amps., laminated slider, base fitting, 141in. long. 76, 600 to 16, 600 to 30 ohms, 8 amps., 16, post (6, 6) 5.3 ohms, 8 amps., 16, post (6, 6) 5.3 ohms, 8 amps., 16, post (6, 6) 5.3 ohms, 8 amps., 16, post (6, 6) 5.4 ohms, 16, post (6, 6) 5.5 ohms, 8 amps., 16, post (6, 6) 5.6 ohms, 76, post (6, 6) 5.6 ohms, 76, post (6, 762in., da., latest manufacture. 1/3 per yard, 100 yd. colis 55, post 18. 365. CO-AN. CABLE, 73 ohms, 76, post 60. 414. MITTERS, 30-0-30 na. A. mc. 2in. square, panel mounting, provision for scale illumination. Brand new, 12/6, post 6d. 414. MITTERS, 30-0-30 na. A. mc. 2in. scale 2 lin. dia. Brand new, 12/6, post 6d. 13. TRANSFORMERS, pri. 200-220-240v. Secondary 350-0-350v. at 30 m A., 63v. tapped at 4v. at 5 amps., 5v. tapped at 4v. at 2 amps., 5v. cens. Stout. pressed plate clamps with slots. A first class transformer. brand new, 20°, post 13. 390. INSULATION TAFF. lin., 16. post 6d. 329. AERIALS, APW.678, consist of 1051. first stranded copper wire on metals spool, with rolls in sealed tins. 2/8, post 6d. 329.

AERIALS, APW.678, consist of 100tt. fine stranded copper wire on metal spool, with winder and cocking device. 7 6 each, post 12 y headers, var. condensers, pots. coils, condensers, etc. condensers, etc. unused, clean, a real bargain at 10/-, post 1.8.

JOHN FARMER (Dept. A.3), 194, HARBORNE PARK RD., HARBORNE, B'HAM 17

Tel.: HARborne 1309.-

DEPT. P.W. 18 TOTTENHAM CT. RD. LONDON, W.I

MUSeum 4539/2453

MICROPHONES

We have pleasure in announcing that we now stock the complete range of the new RONETTE

stock the complete range of the new start of the complete range of the new start of the complete range of the 8742, Twin Cen, tuponar, red. 3013,000, 29.5.0. R474, 4 Cell fred., 3016,000 eps. £15.15.0. Desk Bases, 15.6. Table ext. Stand, £2.15.0. Heavy Floor Stand, £4.5.0. ACOS Ball Mic. 22 Crystal, complete with Desk Stand, £6.6.0.

ACOR Bull Mic. 22 Crystal, complete with Desk Stand, 86.6.
Grampion 1912. M/Coll Mic. with switch, 1542 Impedance 800/7.300 eps., 26.10.0.
Lustraphone M/O Mic. Low impedance 200/2001.
Lustraphone M/O Mic. Low impedance 200/0002 (Built in TXFMIR), 25.12.6.
Grampohone Equipment. B.S.R., 334-78 RPM Motor Unit, 74/4, plus 1/6. B.S.R., 3-speed Motor Unit, 26.8.6, plus 1/6. Collaro 3-speed Unit, XTAL Heads, 214.9.6. RC 500-78 RPM Changer, 212.33. Collaro 3 RC511, 3-speed, XTAL Heads, 218.16.0.
Decoa XMS P/UP, 27, plus 1/-. Connoiseur STD P/UP, 25.11.8, plus 1/-. S/Light weight, one head, 26.9.0.
LIP Head, 71/8. Trans, 15/-. Fibre P/UP, 24.3.2. Trans, 25/-. Chancery XTAL P/UP, 24.3.2. Trans, 25/-. Chancery XTAL P/UP, 24.3.2. Trans, 25/-. Chancery XTAL P/UP, 24/2. Rustraf Heads. 49. https://dx.dis.com/dx.dis.co

1/-. 3jin. Elac Speaker, 15/-, plus 1/-. 3minature O/P Trans, 4/-. Min i rueg. PO. OP sw., 5/-. R.M.I., 125 v., 60 ma., 4/6, plus 1/-. Type 250 STC 280 v. 80 ma., 7/6, plus 1/-. Denco "C " T.R.F. Colis. Medium and Long wave. 8/- pair, plus 1/-, benco "C " T.R.F. Colis. Medium and Long wave. 8/- pair, plus 1/-. Variable Condeaver.—Midget 2-gang 500 pl., 7/6, with dust cover, 10/6. Standard. 7/6—with Trimmers, 8/6. 3-gang 500 pl., 7/6. All plus 1/- standard. 1/6—with Trimmers, 8/6. 3-gang 500 pl., 7/6. All plus 1/- standard. 1/6—with Trimmers, 8/6. 3-gang 500 pl., 7/6. All plus 1/- standard. 1/6—with Trimmers, 8/6. 3-gang 500 pl., 7/6. The standard 1/6—with Trimmers, 8/6. 2-gang 500 pl., 7/6. The standard 1/6—with Trimmers, 8/6. 2-gang 500 pl., 7/6. The standard 1/6—with 1/3 postage. New Lane Tape Deck.—3 motors, Erase and Pluyback Heads, 218.15.0, carriage 5/-. OCZ 080 Coli, 10/-, plus 6d. Gollaro Tape Deck Kit.—2 Motor, Single Track, 7/1n. SEC., 213.13.0, plus 3/6 post. OSC Coli, 9/6, plus 6d. Collaro Tape Deck Motors.—Left and right hand drive, 42/- each, plus 1/6. Sootch Boy.—EMI—GEC Tape, 35/-, plus 6d. Polished Cabinet.—Counquete with P/IJP Transformer to take EMI vuto Changer, size 141n. x 141n. x 9/61 Mahogany, 3/6, plus 3/6 carriage, Latest Arrivals.—Collaro 3/5/2, 3-speed Mixer Changer—XYAL Heads, 221.30. Collaro AC/DC Motor and Table. 212.2.7. Ivorine 2-speed Stroboscope, 3/11, plus 4/1. 2. 1/6. plus 9/4. V. 2/3, 7/6, plus 9/4. Williamuson Output, 24.10.0. Choke. 27/9, plus 1/-. 20 h. 10 ma., 150.6, 6, plus 1/-. 20 h. 10 ma., 150.6, 6, plus 1/-. 20 h. 10 ma., 5/6, plus 1/-. 2

30 h. 20 ma., 6/6, plus 1/-. 20 h. 10 ma., 5 6, plus 1/-.

plus 11-, 20 d MF, 350 v B E.C., 5'-, 30 ± 30 condess, -0.4 MF, 350 v B E.C., 5'-, 30 ± 30 condess, -0.4 MF, 76, 32 ± 30 condess, -0.4 MF, 76, 32 ± 30 condess, -0.4 MF, 76, 32 ± 30 condess, -0.4 MF, 76, -0.4 MF, 7

FULL MAIL ORDER FACILITIES

(Please Add Postage)
Shop Hours, Monday to Priday, 9-5-20 p.m.,
Saturday, 1 p.m.

TYPE 18 TX CHASSIS, partly stripped. but can easily be put into working order; less valves, 15/9.

NEW UNSPILLABLE EXIDE PO-2 accumulators, 11A.H. 41 x 31 x 21in.,

TRI196 CIRCUIT AND CONVERSION DATA, 1/3. 1147A or B, 1/6. New IN34 CRYSTAL DIODES, 5/6.

P.M. SPEAKERS, 8in. Rola 20/-Goodman 31/6. 5in. Goodman 14/6.

MULTIMETERS, 2½in. Supplied as a Kit with black bakelite cases. 6in. x 4½in. x 1½in. and resistors for ID.C. ranges 0-3, 0-30, 0-150, 0-300, 0-600 volts and 60 m/A. Scale also reads ohms 0-5,000 60 m/A. Scale also reads with 1½ volt Battery, 24/6.

6v, VIBRATOR PACK in black steel case, 7\(\frac{1}{8} \times 5\\ \frac{1}{8} \times 3\\ \frac{1}{8} \times 1. \]
Output 200 v. 40 mA., 22/6.

SELENIUM RECTIFIERS. H.W. 250v. 120 mA., 9/-. F.W. 6 or 12v. 4 A., 26/-; 6.A., 30/-; 3 A., 14/6; ½ A., 5/6. 3-GANG .0005 MFD. VARIABLE CON-

DENSERS, 3/6.

TRANSFORMERS, 200-240 volts, tapped 3-4-5-6-8-9-10-12-15-18-20-24 and 30 volts at 2 amps., 21/6 Post Paid.

SPECIAL OFFER. Famous Type R103A New Communications Receiver 1.7-7.5 m/cs, Internal A.C. Power Pack and 6v. Vibrator Pack. Circuit supplied for easy conversion to M.W. and 14 m/cs. bands. £10. Only few available.

BLACK POLISHED BAKELITE PANELS. 16\(\frac{1}{2}\)in. x 7\(\frac{1}{2}\)in. x \(\frac{1}{2}\)in., 3/-. Red or Light Blue, 3/6. All Post Paid from:

THE RADIO & ELECTRICAL MART 253b, Portobello Road, London, W.11

'Phone: Park 6026.

Rest Buy at Britain's

COMMUNICATION RECEIVER R1155.
Absolutely BRAND NEW and in perfect working order, complete with the data, £11196, plus 16, 6, 1119, 119,

carriage.
SPECIAL OFFER of brand new RI155
power pack and output stage and new
boxed olin. speaker for only £1710.carriage paid.
G.E.C. RESISTANCE AND CAPACITANCE BRINGE M874B. Mains operated.
Our price £6/17/6, plus 2/6 carriage. Absolutely brand new in manufacturer's
wrapping. Send S.A.E. for illustrated
brocchure.

brochure.

POWER UNIT TYPE 529 CHASSIS (less valves) contains a wealth of components and is well worth the price of 10/-, plus 5/-carriage. Size 12in. x 9in., x 6in. in metal

Case.

SYLVANIA RED EF50s. Brand new at SYLVANIA RED EF50s. Brand new at 8.6 each. British types at 5/- each (tested).

SPRAGUE (ONDENSERS. 01 mF. 1,000 volt., 02 mF. 750 volts, at 7/6 doz.; 005 mF. 1,000 volts. at 6/- doz. All metal-cased tubulars. wire-ended. Micamold ditto, 1 mF. 350 volts. at 7/6 doz. Small mica condensers. 001 mF. CM2ON. at 6/- doz.

Send S.A.E. for our New List now available.

CHARLES BRITAIN (RADIO) LTD.

II, Upper Saint Martin's Lane, London, W.C.2, TEM. 0545 Shop hours, 9-6 p.m. (9-1 p.m. Thursday) OPEN ALL DAY SATURDAY

LONDON CENTRAL

SPECIAL OFFER

VCR97 TUBES. 4v. Heater, 2 kv. As new, in original crates, 32/6, 5/- carriage. 4-VALVE TELESONIC BAT-TERY PORTABLE (Fixed Range). Type YA4915. Including three XH and one XP Hivac midget valves. Can be adapted for Deaf Aid or Midget Receiver,

but we do not supply information on this point. Batteries required 3v. L.T., 97v. H.T. In metal case, size 53 x 7 x 2in. Weight Less batteries, 45/-. Carr. 41b.

& pkg. 2/6. 2-VOLT VIBRATORS. Type R76C. 7-pin self-rectifying. Output 200v. at 60 M.A. Made by Electronic Laboratories, Inc., 7/6. NEW BLOWER MOTORS. 24v., 22/6, post & packing 1/6. EX-G.P.O. TABLE MICRO-PHONE with plug and lead, 9/6 each, post & packing 2/-.
NEW NIFE ACCUMULATORS. 2.5v. 21 amp. for 8 hours. 41 in. x

11 in. Flat, 6/6. 9d. post, etc. SELECTOR SWITCHES. Bank, 19/6; 6 Bank, 1 Wipe, 27/6; 8 Bank, ½ Wipe, 42/6; 8 Bank, Full Wipe, 47/6.

PHILCO SETS. Reconditioned. We can still supply as recently advertised by us. These sets are all superhet.

A.C. MAINS 50 cycle. transformers. Tapped 10v., 110v., 140v., 170 to 230v., 18/6.

SELENIUM RECTIFIERS 6x6 x 3½in., 6v. 8 amp., 37/6. ELECTROLYTIC CONDEN-

SERS, 2,000 mfd., 20v. working. Size 2 x 2 x 5in., 6/-. 4 MF, 1,000v. D.C., size $4 \times 4\frac{1}{2} \times 1$ in., 5/6. THROAT MICROPHONES, 3'6

INERT CELLS. No acid or charging required. Suitable for Electric bells, etc., 1.5 v., sets. Electric bells, etc., 1.5 v., 5 x 2 x 2in., 2/10 each. 6d. post-

age and packing. TELEPHONE HAND SETS, 9,6. MOVING COIL VOLT AND AMPMETER, 0-60 amps, 0-30v.

Luminous dial, 15/6.
MOVING COIL VOLTMETER, Luminous dial, 0-30v., 12'6.

WE WANT TO BUY RADIO EQUIPMENT — AM-PLIFIERS TAPE RE-**TELEVISION** CORDERS TEST EQUIPMENT—COMPO-**NENTS**

LONDON CENTRAL RADIO STORES

23, LISLE STREET, W.C.2

Phone/Grams: GERrard 2969

The "Fluxite Quins" at Work

Ten sets to solder ! " cried EH, "Before we pack up for to-day. We soon put 'em right, With the help of FLUXITE. Oh dear! Here's another delay!"

See that FLUXITE is always by you —in the house—garage—workshop—wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all ironmongers —In tins, from 1/- upwards.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure.

Price 2/6, or filled 3/6.

SIMPLIFIES ALL SOLDERING

Write for Book on the Art of "SOFT" Soldering and for Leafets on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 11d. each.

FLUXITE Ltd., Dept. W.P. Bermondsey Street, London, S.E.1.

VCR97's!!

Brand new in crates, tested before despatch. Full picture, 39 6, 5/- carriage. Limited stock.

AMAZING TRANSFORMER BARGAIN!

Due to closing well known mail order stores, surplus 300-0-300 80 mA, 6,3 v, 3 a, 5 v, 2 a, black compounded, store solied, but unused and tested.

Only 10/9 (1/- post). Walte they last!]

VALVES!

VALVES.—NGT1, GDT4C, CV18, E1138, VR92, VR78, 3/9, 6 for £1, KT61, KT66, 7A5gt, 6K7gt, 6K7g, 6N7g, 6SH7, 12SC7, 6SK7g, 7A5gt, 6K1gt, 6k1g, 6k1g, 68H, 128Cf, 8SK7g, 128Gf, KT44, EF22, 6J5gt, EF54, EC52, EF36, 9006, 7S7, 7B7, 7H7, 7R7, 7C6, 14S7, 7Y4, 7/9, X61, 6Q7gt, 6L7, X76, 6SL7, 12SL7, EK32, 6B8, 6L6G, 3B71129, 6BG6, 6CD6, 11/6, 6V6gt, 6AC7, 6K6gt, 6J7g, 12A6, Pen-46, 2A3, 6B4, 6U56, 6SG7, 6K5gt, KT41, 7A3, 12AT7, (500 mc.s double triode F.C.), 12AX7, 9'-. Post 6d. Registered 1 -

LEDGARD HOILE & SON

ELECTRICAL ENGINEERS.

55 UNION STREET, MAIDSTONE, KENT

'Phone: 2812

R1155 COMMUNICATIONS RECEIVER.

-Another quantity of these famous Bomber command Receivers have just become available, and we take pride in offering the command receivers have just become available, and we take pride in offering the command of the command receivers have been being BRAND NEW INM MALE CASES, and in immaculate condition. CASES, 200-200 Kes., 200-275 Kes., and is easily adapted for normal mains use, full details being supplied. Every set aerial tested before despatch. ONLY 211.19.6 (carriage 10:6). A factory-made power pack with output stage, which operates the R1155 immediately can be supplied for £5.10.0. INDICATOR UNIT TYPE 6.—Contains film. C.R. Tube, VCR97, 4 valves EF50. 1 of EB34, and 1 of EA50. The unit recommended for conversion to the "Wireless World General Purpose Oscilloscope, full Carriage and Caperal Purpose Oscilloscope, full Caperal Caperal Purpose Contains in C.R. Tube VCR138. 2 valves EF50, and 2 of EB34. ONLY 45. (carriage, etc., 5:-). MODULATOR TYPE 67.—Contains fully-smoothed normal A.C. Mains power pack transformer being 35 v. 0-345 v. at 200 ma., 6.3 v. 5 a., 6.3 v. 250 ma., 5v. 2 a. Also contains 6 valves SP61, 3 of EA50, 2 of EB34, and 1 of 524. Complete in metal case, size lin. x 381n. X 71n. ONLY 7296 (carriage, etc., 5:-).

IBIN. X 8HIN. X 77IM. ONLY 72/8 (carriage, etc., 5/-).
CHASSIS OF POWER UNIT 529.—
CONTAINS large transformer (not normal supply), 8 valve holders, 3 block condensers, 302 mid. 5.000 v. condensers, 8 other tubular condensers, 14 resistors, potentiometer, chokes, etc. Complete in grey metal case, size 12lm. X 8 in. X 7 in. Brand New. ONLY 10/- (carriage, etc. 3 WHTER.—2in. Flush Mounting. Widely calibrated scale of 15 divisions marked "Yards" which can be re-written to suit requirements. These movements are almost unobtainable to-day, and, being BRAND NEW IN MAKER'S CARTONS, are a "snip" at ONLY 38/5. 50 MICROAWIPS METER.—2in. Flush mounting. Another movement which is in short supply and is also BRAND NEW IN MAKER'S CARTON. ONLY 45/-. VCR97 C.R. TUBES.—All guaranteed tested full screen for Television use. In maker's crates ONLY 36/5 (carriage paid). TUBE.—First grade oil filled. ONLY 26/(postage 2/-). TRANSPORMERS,—Manufactured to our specification, and fully guaranteed. Normal Primaries. 425 v.-045 v. 200 ma. 63 v. 6 a.

The Parks grade oil filled. ONLY 26/COLLAGO STREET STRATES — Manufactured to our specification, and fully guaranteed. Normal Primaries. 425 v. 0-425 v. 201 ma. 63 v. 6 a. 5 v. 3 a. 0.2-4-63 v. 63 v. 6 a. 5 v. 3 a. 0.2-4-63 v. 30 v. 0.0 k. 72 fl. 425 v. -0-425 v. 200 ma. 63 v. 4 a. 63 v. 6 a. 5 v. 3 a. 0.2-4-63 v. 30 v. 0.0 k. 72 fl. 426 v. 200 v. 63 v. 6 a. 5 v. 3 a. 0.2-4-63 v. 30 v. 0-35 v. 160 ma. 63 v. 6 a. 6 a. 6 a. 6 a. 7 v. 3 a. 0 NLY 32 fl. 6 a. 5 v. 3 a. 0 NLY 32 fl. 6 a. 5 v. 3 a. 0 NLY 32 fl. 7 v. 20 ma. 63 v. 4 a. 0-4-5 v. 2a. 0 v. 2 v. 20 v. 2

U.E.I. CORPORATION

The Radio Corner.

138 Gray's Inn Rd., LONDON, W.C.1 Open until 1 p.m. Saturdays. We are 2 mins. from High Holborn (Chancery Lane Stn.) and 5 mins. by bus from King's Cross.

Whilst we are always pleased to assist readers with their technical difficulties, we regret that we are unable to supply diagrams or provide instructions for modifying surplus equipment. We cannot supply alternative details for constructional articles which appear in these pages. WE CANNOT UNDERTAKE TO ANSWER QUERIES

OVER THE TELEPHONE. If a postal reply is required

a stamped and addressed envelope must be enclosed.

Aligning Superhets

SIR,—I would like to help Mr. J. Thomas (N.W.2), who stated in the April "P.W." that the biggest snag of amateurs is the alignment of I.F.s in superhets, Surely a Denco "alignment-oscillator" just the instrument required? This unit provides

two standard modulated frequencies of 465 kc/s. and 1,600 kc/s. at the turn of a switch. DL92 valve is employed and all power supplies are derived from one grid-bias battery. I have used one for the past eighteen months with great success. They may

be connected direct to aerial or intermediate stages of superhets.—ROBERT HANCOCK (Talke, Staffs).

The method of calibrating an audio oscillator by means of a piano cannot be expected to produce laboratory accuracy, but I described it in preference to other methods because the average experimenter is more likely to have access to a piano than to a calibrated A.F. oscillator. The accuracy of the tuning of the

piano and the ability of the experimenter to dis-, criminate pitch are likely to provoke greater errors than a 2 per cent. difference in the frequency taken as the standard. See also Nelson's Handbook of Music and Musicians and Scroggies' Radio Laboratory Hand-

book (Piano as Frequency Standard).-ROBERT D. PATERSON.

Sign of the Times

SIR,—I recently went into six different radio shops in Gloucester for an ordinary volume control with switch. Five shops did not stock them—"no call for them now." The sixth had only one odd midget V.C. at a fantastic price.

One brilliant salesman suggested I should return

the set to the makers!!

I just could not have believed it. Truth is indeed stranger and more bizarre than fiction.—A. J. S. (Gloucester).

Musical Frequencies

SIR,-In your May issue, page 199, Table 2, an error has been made in the frequencies of the notes; they should read: C D E 256 278 323 F 339 364 483 512, etc. 431 -E. WORTHY (West Hartlepool).

[I do not agree with this correspondent, E. Worthy, about the frequencies I quoted for the notes of the piano. It is true there is a standard of pitch in which middle C=256. It is a mathematician's and physicist's convenience based on the idea of a fundamental note C consisting of 1 c/s the octaves of which would be 1×2 , 1×2^2 ; ... 1×2^n . In this pitch system, when n=8 middle C would certainly be 256. According 10 Caxton's New Musical Educator this system is called the Philosophic Pitch, on account of its mathematical origin. But the standard pitch for musical purposes and that to which a piano is almost certain to be tuned is the New Philharmonic Pitch in which middle C=261, as given in my article. The point made by your correspondent is largely academic.

Magnetic Wire Recordings

SIR,—With reference to Mr. V. Morley's letter on magnetic wire recording, although one can only suggest a possible cure for his apparatus I feel that the following may point to the seat of his trouble and perhaps help others.

I have been using, with pleasing success, a tape recording for the past year, the apparatus having a close resemblance as far as one can tell with Mr. Morley's. My first results carried out with a wire recorder were quite poor, and since my winding mechanism was home made I decided to invest in a tape deck, whilst still retaining my amplifier and oscillator. These comprised a conventional amplifier and 6V6 oscillator, oscillating at approximately 30 kc/s, feeding a low impedance head.

I fed my head from the speaker transformer secondary, the return line being through the chassis. At the same time the bias was fed from the oscillator into the head and its return made also through the chassis. The results were poor and with the usual 1 per cent. inspiration and 99 per cent. perspiration, the trouble was nailed down to the bias arrange-

As with Mr. Morley's circuit, the oscillator was not over powerful, but theoretically powerful enough for feeding the head. On redrawing the circuit it became obvious that the recording head was shunted by the secondary winding of the speaker transformer, so that much of the oscillatory current was dissipated in the latter, resulting in the poor quality of reproduction.

The cure was effected by placing an H.F. choke in the lead from the transformer to the head.

I have noted the absence of such an isolating

arrangement in other recorder circuits, and although these may work quite satisfactorily I feel that quite a considerable power saving from the oscillator would result with this small addition to the circuit.—A. P. BIANESS (S.W.17).

SIR,—The letter from V. Morley in the June issue of your valued journal might almost have been written by me! I, too, have been carrying out experiments for over a year along the same lines, but with different, if not better, results. Being more interested in the mechanical side I decided to have an amplifier made for me while I concentrated on the wire mechanism, my purpose being to have a long playing time so that I could record plays, etc., that I would be unable to hear at the time of the broadcast.

I have now completed (up to a fairly satisfactory point) these experiments, and find my three-hour (at 2ft. per second) recorder a great boon. Lately I have been working on the amplifier side, as I too could not get erasure of the wire by means of the oscillator unit, although I got a 25-volt bulb to light. However, I tried different values of condensers in this circuit until I eventually got about 95 per cent. erasure. My practice now is to erase with a strong permanent magnet and to remove the residual noise by means of the erase head at the same time. I use a commercially made erase head, but get better results with a home-made head for record and playback—this head being the result of many weary experiments. I get very good top-note response; but never have I obtained anything approaching a real I have heard several commercial recorders: both tape and wire, and I have never heard the bass notes of any orchestra to compare with that of an ordinary radiogram. I wonder if your correspondent is confusing a real bass with the woofy bump I so far have managed to get by cutting "top" completely?

In my amplifier I have treble lift, bass boost (about 30 times), variable bias control, volumeter, etc. I get best results with cheap wire costing about 4s. for half an hour's playing, wire diameter being

.0036in.

I notice that Thermion is infected with the "tape" bug. However, whatever form of magnetic recording is decided on, the principle is the same, and I join Mr. Morley most heartily in hoping that you will get down to this question and publish articles dealing with this most fascinating subject. There have been many published circuit diagrams for "magnetic recorder amplifiers"; what I feel is most needed would be articles on head construction, screening to avoid hum troubles, kinds of screened cable to use, having regard to the fact that we are mostly concerned with L.F., positioning of components and leads, etc.—BRENDAN LAW (S.W.16).

Balanced Speakers

SIR,—Your correspondent G. Hurrell (N.W.9) is, I fancy, suffering from a prevalent modern complaint. A straight line, hi-fi amplifier is built or bought, at no little expense, and the result is disappointment. Why? The amplifier can only give from its one output source what is put into it, whether it feeds one, two or more speakers. Usually there is a pre-amplifier with tone control giving top cut and boost, and bottom, or bass, cut and boost. The control is set: top boost, bass cut, and the violin is wonderful. Or it is set: top cut, bass boost,

and the organ's pedal notes are in the room; but not both together. Even with two speakers and a crossover network, in the first case, there is little to feed the bass speaker, and in the second vice-versa. For a long while I have held the opinion that to secure a proper balanced output three channels and three separate speakers are necessary. The frequency discriminating network should be in an early stage, each channel having a control to adjust the amount of top, middle and low being fed to each speaker. For the normal room the speakers may be: low, an 8in. speaker with flexible surround, middle, a 5in., and high a 3½in. The latter should be mounted high in the angle of two walls—a flare improves The other two may be in a corner distribution. cabinet, the low being not more than a foot above With single-ended outputs and small speakers the equipment is by no means expensive, while for a large room, or hall, push-pull outputs and large speakers give superb results.

The foregoing is based on over 50 years' experience of sound reproduction.—R. H. Cowtan (Rickmans-

wortn).

Condenser Testing

SIR—I have read with interest the letter from Mr. Coombs in the June issue referring to my mention of condenser testing in the issue for February last. Whilst agreeing that the simple suggestion in my article is capable of elaboration, I am not sure that Mr. Coombs is on the right lines and his letter

may mislead readers.

Lowering the P.D. across the test prods can hardly slow down the rate of flash on pF condensers as well as speed up the testing of large condensers. As a matter of fact the effect of reducing the D.C. voltage available is to slow down the rate of charge and so decrease the speed of flash, but as this fall is exponential it is not a very satisfactory method and as the voltage applied approaches the striking voltage of the neon the striking becomes erratic. If it drops lower than the strike voltage, of course, nothing will happen and the user may get the idea that the condenser is leaky. To slow down the flash rate to permit an estimate of capacity of smaller condensers requires an increase in charging time constant by using a still higher charge resistance or an increase in the discharge time constant by introducing a large resistance in series with the neon. The neon used by Mr. Coombs incorporates a resistance which is operative in the discharge circuit and therefore slows down the rate of flash. It was considered, however, that the testing of larger condensers of the paper type was more important because they are far more likely to be faulty than small mica types and consequently a neon without series resistance was originally specified. It is an easy matter then, if need be found, to add a resistance at the appropriate point.

So far as the supply voltage is concerned it is better to keep this much higher than the striking voltage of the neon so that the charge curve is substantially straight right up to the point of discharge.—R.

HINDLE (Wallasey).

JUST PUBLISHED

TELEVISION PRINCIPLES & PRACTICE Price 25/-. By post 25/8.

GEORGE NEWNES, LTD., Tower House, Southsmpton Street. Strand, W.C.2.

NORMAN H. FIELD, "YOU CAN RELY ON US"

68, HURST ST., BIRMINGHAM, 5, Mail Order Dept. 64-65, CHURCH LANE, WOLVERHAMPTON.

VALVES

At 12.6: 6K8G, 5R4G, ECC32, 5Y3.5Z4, 6V6CT, 6C7, X61, 6SNT, KT66, 6F6, 807, 6K6, At 10)-: 1616, 6SC7, PEM6, 50YG, GT, At 9;-: ARP6, 6XS, KT63, IT4, 184, 1R5, 185, At 8;6: VRE2, EL32, VR55, 12SL7, At 7;6: 77, 6J7, VR150, 6G6/GT, 7C7, VR119, 6Y7/G, 7C5, 0Z4, 12A6, 12AC7, At 7;-: 618, 6B8G, 1G6/GT/C, 1A5/GT, 6K7G, VR33, EFS9, EF36, At 6/6: 6ABT, ARP12, VP23, At 5/6: 6AST, 12J5, RK34, 6SH7, VR91, EFS0, 3D6, TT11, VT501, At 5/-: 6J5, 12SK7, 6SK7/GT, 2A3, VU33, 1625, VT51, 12SK7, 6SK7/GT, 2A3, VU33, 1625, VT51, 4SK7, 6K7G, BK7G, CSK7/G, CSK7/

SPECIAL OFFER! KIT OF VIEWMASTER VALVES AT HALF PRICE £6.4.0

VIEWMASTER

VIEWMASTER

Coil Kits, Holme Moss and Birmingham:
14 Coils and 1 R.F. Choke, 21'6,
14 Coils and 1 R.F. Choke, 21'6,
15 Choke, 21'6,
16 Choke, 21'6,
17 Choke, 21'6,
18 Choke, 21'6,
18 Choke, 29'3,
18 Choke, Please include something for post. Money Back Guarantee.

YOU READ MUSIC?-

Then how about making yourself an electronic organ. Constructional data available—full circuits, drawings and notes. It has 5 octaves, 2 manuals and pedals with 24 stope—uses 41 valves. With its variable attack you can play classics and Swins.

Write NOW for free booklet and further details to C. & S., 10a, Duke Street, Darlington, Durham.

TRANSFORMERS

No. 1. 250-0-250v. 80 ma. 0. 3.5a. 0-4.5v. 2a. 17/No. 2. As No. 1 but 350-0-350v. 17/No. 3. 28v. 2.5a. tapped to give almost any voltage up to 28v. Ideal for chargers, models, W.D. motors, models, W.D. motors, any contract of the cont

16/-.

No. 5. Auto wound: 10 - 0 - 110 - 200 - 230 -250v. 150 watts. For general voltage changing up down, 16.6.

No. 6. 250-0-250v, 100 ma. 6.3v, 3.5 a., 5v, 2a.

22/-No. 7. Television Auto with overwind. 0-200-230-250-290v. 500 ma. 6.3v. 7a. 0-2-6.3v. 2a., 38/6.

All types upright or drop through. No others available. Primaries on 1, 2, 4 and 6 tapped 200-230-250v. Interleaved, Impregnated, Screened, Guaranteed.

C.W.O., C.O.D. or pro forma. Postage 1/6 1 to 3.

HILLFIELDS

8. BURNHAM ROAD WHITLEY, COVENTRY

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

I.F. TRANSFORMERS.—RS/GB, 465 kc/s, 12.6 pair; midget Wearite M800. 21'- pair; super midget, RSRS, 465 kc/s, 21/- pair.

VOLUME CONTROLS.—Standard, less switch, 2.9; with switch, 4.3; Midget types, 3/6 and 5/- with switch; Wirewound types, Colvern preset, 3/6; standard, 5/6. All standard value stocked.

V.A.L.V.E.H.O.L.D.E.R.S.,—Int. octal. 6d.; Mazda octal. 6d.; British 5 and 7 pln. 6d.; loctal. 1.3; B7G. 1/-; EF50 (ceramic), 1/-; UX American. 6d.; B12A (duo-decal), 2/6; Noval (B9A), 1/-; B8A, 1.3.

FILAMENT TRANSFORMERS.—200/240 v. tapped to 6.3 11 amp. midget, 8/6; multi-secondary, 3 v. to 30 v. at 2 a., tapped primary, 24'-.

(Oll.S.—Wearite "P" coils, 3; each full range; Weymouth "H" coils, 3,6; K" coils, 4,9; CT2W2, 10,46 pair; CS3W3, 12.3 pair; MW.LW TRF pair with reaction, 7,6; Viewmaster coils for London, 22; Birmingham, 28; Holme Moss, 28; Electronic Holme Moss coils, 19,6; L9 Viewmaster cohe coil, 2/-,

RECTIFIERS.—WX6, 3/-; WX3, 3/9; 14D36, 11/6; 14A86, £1; 36 EHT 100, 29/-; 5 m/a 12 v., 1/-; 12 v. 1 a., 7/6.

HIGH VOLTAGE CONDENSERS.-Ne T.C.C. 001 6 Kv. 4.6; .001 121 Kv. 7/6; .1 mfd. 5 Kv. 12/6; .01 mfd. 6 Kv. 7/6; .01 mfd. 5 Kv. surplus, 3/6.

HIGH IMPEDANCE HEADPHONES New American surplus, unused, 12/6 pair. CERAMIC TRIMMERS.—50 pf., 9d.; 100 pf., 1/-; 150 pf., 1/-; 250 pf., 1/7; 500 pf., 2/-; 750 pf., 2/3; 1,000 pf., 2/6.

pf., 2/: 750 pf., 2/3: 1,000 pf., 2/6.

SPEAKER TRANSFORMERS.—Standard Pentode, 4/6; Midget Pentode, 4/-; Triode type, 4/6; Super Midget for 184, 384 valves, 5/-; push-pull new transformers. PAX41 for two PX4 in p/pull. 10 watts, 33/-; 15 watt. push/pull. 6L6, primary 5,000 secondary 15, 7.5. 3.75 or 2.5, 42/-; Multi-ratio OP transformers. MR7, 14, 18, 19, 22, 25 to 1, also 26, 36, 33, 44, 66, 100 to 1, centre-tapped, 7-10 watts, 18/9; Wharfedale, Type "P" 30, 45, 60, 90 to 1, 8/6; Elstone multi-ratio, 8/9. 8/6; Elstone multi-ratio. 8/9.

TRANSFORMERS.-SR,350 MAINS MAINS 1KANSFORMERS.—SR, 350 80 m/a 200/230/250 v. to 550/0/350 v. 6.3 v. 4 a. tapped at 4 v., 5 v. at 2 amps. tapped at 4 v., 28/6. SR/250 80 m.a as SR/350, but 250/0/250 v., 28/6. 60 m/a, Trans. 250/0/250 6.3 v. 3 a., 5 v. 2 a., small dimensions, 22/6.

SWITCHES.—4 pole 2 way, 4/-; 3 pole 4 way, 4'-; 2 pole, 6 way, 4/-; 1 pole 12 way, 4/-; 6 pole 3 way, 4/3; 4 pole 4 way, 3/6.

MISCELLANEOUS.—Octal valve cans, 1/6; Viewmaster envelope, 5/-; London, Birmingham, Holme Moss (state which) easy built televisor, 2.6; B.T.H. Germanium crystals, 5/6; Omax cutters, 1lin., 14/6; lin., 11/3; 1lin., 15/6; l

VALVES,—EI.32, 8/-; 6K7, 8/-; 12K8, 10.6; 6U5 Magic Eye, 7/6; 12 AT7, 10 6; KT66, 12 6. TUBULAR CONDENSERS.—.001, .002, .005, .01, .02, .05, .1, 6d.

MICA.-..0001, .0002, .0003, .0005, .001, .002, .005, 6d.

4V. RECTIFIER NEW-EQUIVALENT TO R3, 1W4,350, etc., 10/-.

Catalogue No. 11, now ready, 6d.

RADIO SERVICING CO.

444. WANDSWORTH ROAD, CLAPHAM, LONDON, S.W.8

Telephone: MACaulay 4155. 77, 77A, 168 169 Buses; S.R. Station, Wandsworth Road,

VALVES. 12SL7GT 7/6. 12SH7 5/-. 12J5 6/-. 12SC7 8/6. 12SG7 6/-. 1299A 7/6. 7F8 20,-. 717A 9/6. 1ASGT 7/6. 8012 10/-. GUS0 12, 6. 9002 5/-. 9003 6/6. 1S4 10/-. 6AC7 7/6. 6B8 6.6 6SA7GT 8/6. 6V6GT 10/6. 6L6G 12/6. 6NGT 7/6. 6SNGT 11/6. 6SNTGT 11/6. 6SNTGT 11/6. 6SNTGT 120/-. 6AM6 10/-. 6A/6 10/-. 6A/6 10/-. 6A/6 10/-. 6A/6 10/-. 6B/6 12/6. 6AT6 10/-. 6A/6 10/-. EB/9 110/-. 6A/6 10/-. 2C/9 110/-. EB/9 10/-. 7/6 6A/6 10/-. 2C/9 110/-. EB/9 10/-. FINN 5/9 10/-. FINN 5/9 10/-. AR 6/6. ARP 12/6/6. RKIV 2. 6. PINN 5/6 6SU7GTY 15/-. BFO for 1155 receiver 10/-.

P.O. TYPE KEY SWITCH. 5-pole 2-way

THERMAL DELAY FILAMENT SWITCH 5 volt 6/6.

VIBRATORS, 12 volt 4-pin 5/-.

MAINS DROPPER 717 ohms tapped at 110 ohms .2 amp 2/-. TERMINAL BLOCKS FITTED 6 screw

Terminals 3/-.
TYPE 36 MONITOR. Conta
Power Pack, VCR139A, 9 Contains 230 v A.C.

g6-10-0.

SWITCHES. Rotary Stud type, 2-pole
36-way containing 42 precision resistors:
in equal decibel steps, in metal case, 12/6.
Control unit type 179. Black metal case
approx 4in, x 2in, x 5in, containing 3
switches, condensers, plugs, knob, etc. 3/6.
(ONDENSERS, 4ind 600v wkg D.C. Oil
filled. Approx. 2lin, x 1in, x 4in, high
including 2 terminals. Can isolated. 7/6.
Imfd 6000 v D.C. Oil filled. Approx. 3/in,
x 1iin, x 5in, high, including 2 terminals.
Can isolated. 15/-. £6-10-0. SWITCHES.

SERVICE В.

(BEXLEYHEATH) LTD., 5, MAYPLACE ROAD WEST, BEXLEYHEATH, KENT.

Hours; 9.30 to 6 (Wednesday, 1 o'clock)

104, Brockley Rise, S.E.23. 200 yds. "Chandos" Bus Terminus. Open Saturday ONLY 9 to 6. Mail Order Dept., Bexleyheath. All prices include postage or carriage. Regret no lists,

RUNBAKEN - MANCHESTER

HAVE YOU EVER BUILT A RADIO SET?

Whether you have or not, why not try building the easy SUPACOIL way ?

We supply full simplified instructional details for building sets, units, etc., for a purely nominal charge and as an introduction to our simplified constructional system our latest

CONSTRUCTOR'S **HANDBOOK**

(Price 2/6 only)
Incorporates complete building a details for

CHEAP, HIGH-EFFICIENCY COIL PACK

together with 4 CIRCUITS AND

of Receivers. Amplifiers. etc., which YOU can build.

Lots of other information too! DON'T DELAY Send 2.6 now for our LATEST HANDBOOK

Obtainable only from SUPACOILS MAIL ORDER OFFICE 98 Greenway Ave., London, E.17

L·R·S

Prompt and Efficient Service

CASH or EASY TERMS

We have stocks of the following quality equipment available for cash or on our Revised Easy
Terms.

-LOUDSPEAKERS GOODMANS AUDIUM 60.

Cash £8/12/6 or £3 with order and 6 monthly instalments of 201-. GOODMANS AXIOM 150. Cash £10/5/6 or £3/15/- with order and 7 monthly instalments of 20/-. W.B. CONCENTRIC -EX. Cash £7/15/- or 10in. DUPLEX. £2/12/- with order and 6 monthly instalments of 20/-.

-CONNOISSEUR-

DUAL SPEED GRAMO-PHONE MOTORS, 33\{\} and 78 r.p.m. Full 12in. turntable. 78 r.p.m. Synchronous type motor, dynamically balanced—virtually vibration-less. Cash price £20/19/3 or £7 with order and 8 monthly instalments of 401-. Delivery from stock.

The amazing new
REMINGTON 'CONTOUR 6'
ELECTRIC SHAVER.
14 days' FREE TRIAL on receipt of
25/- deposit (returnable if not satis-

Balance 8 monthly instalments of 201-. Cash £8/19/5.

Illustrated leaflets on request.

THE LONDON RADIO SUPPLY

CO., BALCOMBE, SUSSEX Est. 1925. Telephone: Balcombe 254

WILLETTS STAN 43 SPON LANE, WEST STAFFS. WEST BROMWICH,

R1155 COMMUNICATION RECEIVERS, complete with 10 valves. Brand new. Tested and guaranteed, £10/15/-. Secondhand, otherwise perfect. £9/15/-. Carriage 10/-

TR9 SHORT-WAVE RECEIVERS, 31-80

metres, complete with 6 battery-operated valves, 15'6; less valves 6'9. Post 29. 22MFD. CONDENSERS (U.S.A). Guaranteed brand new, 2'- each, 4 for 6'6. Post 1'extra.

VALVES. New guaranteed, 6K7, 7/6: 6J5, 4/6: 6AM6, 10/6: 6V6, 10/6: 6K8, 12/6: 6SN7, 11/6: 6X5, 8/6: 12H6, 1/9: 12SJ7. 6'6: VU111, 2/6: 2C34, RK34, 2/6: 3D6, 2/9: ATP4, 3/6: EA50, 2/-; 5Z4M, 10/6: 1LD5, 4/6: 3SL6, 10/6. Post extra.
7029 TWIN V.I.R. CABLE, 69/- per 100

Post 4/6. WANTED - Valves, Communication Receivers, Test Meters.

TRANSFORMERS, 50 only.

Input, 200-250 volts. 10 Amps., 211- each. Output, 50 volts Post, etc., 21-. **ACCUMULATORS**

2 volt 7 AH. Ex-Gov. New and Boxed. 7/6 each.

VALVES. SP41 (VR65A), 2/3 each. CONDENSERS

50 μh , 6 volt wkg., 6d. each. 50 μh , 12 volt wkg., 10d. each. 05 μh , 800 volt wkg., 6d. each. .01 \(\mu f.\), 350 volt wkg., 4d. each. .001 \(\mu f.\), 500 volt wkg., Mica, 4d. each. C.W.O. or C.O.D., add 1/3 post, etc. Orders under £2, over, free. Stamp for Lists.

Tel.: St. Albans 5951.

BOLD & BURROWS, 12, 14, 16, 18, Verulam Road, (A5), St. Albans, Herts.

→ If yours is a (RARE) valve problem BULLS are the people most likely to solve it.

" DEMOBBED VALVES"

Manual 2/3

Giving Equivalents of British and American Service and Cross Refer-ence of Commercial Types with an Ap-bendix of B.V.A. Equivalents, and comprehensive Price List. We have still some Valves

still some valves left at PRE-BUD-GET rates which are actually sold at the old price. 1288, 10/6, post 1/-.

E X P O R T

to all parts of the Commonwealth and beyond—safely packed, fully insured (no C.O.D.) and free of tax.

CONDENSER TESTERS AND RECTIFIER UNITS. Plugs straight into A.C. mains, 200/240 v., and is indispensable for examination of condensers. Very slight and intermittent leakages which cannot be discovered by convenient instruments can be traced by this unit. Complete 39/6. Post 1/-. Supplies are becoming limited. Post 1/-. limited.

PIFE ALL IN - ONE RADIO-METER A.C. and D.C., test every-thing in radio. Complete with test profits 27/8. Post 50/10. C. 0-6-30-150-300 v. 0-30 m/a.—300 m/a.—30 m/a.—3 maperes precision M/I movements 50°.

m'a.-3 amperes precision M/I movements 50'-,
1.000 MFD. 12 V. BLOCK CONDENSERS. brand new Surplus. 7:6.
ROD. ANTENNAS, 1-foot sections, interlocking and extending, copper plated steel, 2/6 dozen.
5CP1, 19/6, SU2150A, 9'-9.
A.C.-D.C. NEON TESTER, TYPE 400. This new model is specially designed for one-pole tests on mains, incorporating a highly sensitive neon tubestriking voltage 100/500 v. A.C./D.C. Also suitable for indicating polarity on D.C. current, when the glow of the lower electrode will indicate the negative pole, 11/3.
TAYLOR ON EASY TERMS. EASY TERMS up to 10 months—and very near Cash Price on all TAYLOR METERS.
JUNEERO PATENT MULTI-PURPOSE
TO OL. REDUCED 50%. It punches, bends, shears and threads. Specially

post 1/-. GARRARD Stylus Pressure Gauge for Microgroove Pick-ups, 15/-. TUBES VCR97, £2. 511 12in., £4/10/-. 5CP1, 19/6

(Kindly mark EASY TERMS, 28-page Dury, Riustrated Catalogue 5d. envelope PW7) Stamps.

FIRST-CLASS RADIO COURSES

GET A CERTIFICATE! QUALIFY AT HOME-IN SPARE TIME

After brief, intensely interesting study —undertaken at home in your spare time—YOU can secure your pro-fessional qualification. Prepare for fessional qualification. YOUR share in the post-war boom in Radio. Let us show you how!

FREE GUIDE -

The New Free Guide contains 132 pages of information of the greatest importance to those seeking such success-compelling qualifications as
A.M.Brit.I.R.E., City and Guilds
Final Radio, P.M.G. Radio Amateurs, Exams., Gen. Cert. of Educ., London B.Sc. (Eng.), A.M.I.P.E., A.M.I.Mech.E., Draughtsmanship (all branches), etc., together with particulars of our remarkable Guarantee of

SUCCESS OR NO FEE

Write now for your copy of this invaluable publication. It may well prove to be the turning point in your career.

FOUNDED 1885-OVER - 150,000 SUCCESSES -

NATIONAL INSTITUTE OF ENGINEERING

(Dept. 461), 148, HOLBORN, LONDON, E.C.I

SUMMER SPECIAL NEW BOXED

NEW BOXED

174, 183, 184, 384, 394, 10,- each, 4 for 37,6, 686, 687, 697, 688, 524, 46,- the set.

EF91, 8-6; EB91, 7/6; KT01, 10,6; EL32, 7/6; EF58, 6/-; VU39a, 8,-; 645, 446; 902, 5-; D68, 6/-; KTW01, 8-; KT03, 9-; 6156, 10,-; 516, 10,-; 516, 10,-; 12K7, 10,-; 12K8, 10,8; 68N7, 10,6; 6817, 96; 10C39, 12,-; EF39, 10,6; SR7, 10,6; 64; 68N6T, 8/6; 1235, 4/6; 905 Reac/Cond., 3,6, Grystal Diodes, 29, 6005 Reac/Cond., 3,6, Grystal Diodes, 20, 6005 Re

Volume Controls. Values 10K. to 2 Meg. non/sw, 2.9; SP, 42; long/sp, 10K. to 2 Meg., 3/3; Semi-midget, 10K. to 2 Meg., 3/3; SP/sw, 4/9; 10P/sw, 5/9. Cad/plated Steel chassis 10in. x Sin. x 24in., with S-wave dial. 5-int/cot hidrs, S/M drive and M/dropper, 13/9 post frees.

RADIO UNLIMITED ELM ROAD, LONDON, E.17.

NEW GOODS ONLY
CONDENSERS.—450 v. wkg., 4 mfd, 3/2:
8, 3/4: 16. 4/6: 32. 5/10: 8-8. 4/9: 8-16.
6/-: 16-16. 7/3: 500 v. wkg., 1 mfd, 3-2:
2. 3/3: 4. 3/5: 8. 3/9: 16. 6-2: 32. 9/6:
8-8. 6/6: 8-16. 8/8: 16-16. 9/9: 25 x 25 v.
25 x 50 v. x60 v. 50 x 12 v. 2/3: 50 x 50 v. 26.
Tubulars. 500 v. wkg., up to .0005, 8d.; to .005, 10d.; to .04. 1/d.; to .1. 1/2: 2. 25.
1/6: 5. 2.3. Moulded Mica, up to .0003, 10d.; to .001, 1/6: \$11 Mica, up to .0007, 9d.; to 500 pf., 1/2: 1000 pf., 1/2: 2. 2000, 3000 pf., 1/3:

300: 0500 ft. 1-; to 1.000 pt., 12; 2,000, 3,000 pt., 12; 2,000, 3,000 pt., 14; to 1.000 pt., 12; 2,000, 3,000 pt., 14; CONTROLS.—Long spindles, all values, 3; 2; with sw., 5;3; D.P. sw., 6;4; Semi Midg. tpe, 1, 1, 2, 2, 2, 2, 4; with \$5,00; P. sw., 1, 1, 2, 2, 2, 3, 4; with \$5,00; P. sw., 1, 1, 1, 2, 3, 4; W. 64; 1, W. 84; 1, 1, 2, 3, 4; 1, 3; wire Wound, 5 W. up to 5 K., 2; 10 W. up to 10 K., 2;0

10 K., 2:9. Terms: Orders up to 10/-, post 4d.; up to £1. 6d.; over post free. Cash with Order. Obtain copy of our Lists, 5d., post free. RADIOLECTRON.

22, FRANCES STREET, SCUNTHORPE, LINCOLNSHIRE

ogramme Pointe

By MAURICE REEVE

Y notes, last month but one, on the sup-posedly "organised gloom" in the B.B.C. during the interregnum between the late King's death and funeral, could well have a short postscript dealing with the Easter programmes. Although they took on much of the pattern of former years, they seemed to be too grim, and too conscious of the occasion. Although Easter may be the complement of Xmas in the Christian ritual, they should not be on any terms of equality in the designing of programmes. But not even concert givers are allowed to behave naturally. I was present in the Albert Hall for the B.B.C.'s pre-Easter Wednesday performance of Bach's St. John Passion, where a special announcement through the loudspeaker underlined a printed slip inside the programme requesting the audience to refrain from all applause both before, during or after the presentation. So everyone, conductor, orchestra, audience, ushers, Uncle Tom Cobley and all, groped and stole around like a lot of naughty schoolboys during father's after dinner forty winks. Again, this is customary, but, I add, totally unnecessary and a gross piece of tyranny where tyranny is both unwanted and unnecessary. The artists are just as entitled to their rewarding applause as in the Messiah, or anywhere else.

So much was said and written about the Grand National broadcast fiasco that I will only express the hope that the public will not be asked to endure anything similar to it another year. I regretted that only half the two greatest soccer matches and the greatest rugger game of the year were put over, to wit, Scotland and England in both codes and the Cup Final. It had long been the practice to give the whole of these games, and jolly good broadcasts they make, too.

Folk Songs

Wholly delightful was the collection of "Songs from Country Magazine," a selection of the favourite folk songs culled from this enchanting programme during the past 10 years, selected, arranged and conducted by Francis Collinson with the Wynford Renyolds sextet, and with Heidi Anderson, Robert Irwin, Cyril Tucker, Martin Boddy and Clarence Wright as singers.

Documentary

An interesting and well documented and produced feature was "From Well to Tank." The story

of petroleum and its byproducts traced from the oil fields to the consu-It ranged easily and interestingly from a service station in London to Bahrein in the Persian

Gulf, via an experimental oil well in Lancashire, a tanker at Shell Haven, the Fawley refinery, the Sunbury Research station, and a Worcester depot. Raymond Baxter, Bill Hartley, Brian Johnston, John Arlott, Audrey Russell and James Pestridge entertainingly showed us around.

Another good documentary was "Portrait of an Airman," the story of a famous French pilot and man of letters, Antoine de Saint-Exupery. This was done through the medium of a series of interviews with various persons, each of whom told us something of the airman-writer as he or she had known him. It was a revised version of a previous feature.

Gigli

Gigli, who entertained us one Friday evening, is an artist in complete contrast. Lyrical, debonair, slick: with no apparent roots in the past, possessing a consummate technique and a romantic personality. Unlike Szigeti, Gigli did not test his musicianship in his choice of numbers, for, with two exceptions, his programme was entirely rubbish and of the lowest musical calibre.

Plays

"His Excellency," in Peggy Wells' adaptation of Dorothy and Campbell Christie's West-end success, made a thoroughly satisfactory Saturday-night Theatre. With Norman Shelley forcefully playing the role of the ex-docker occupying Government House to the discomfiture and enragement of most of those concerned, the piece proved very meaty and enter-taining. "Evening Surgery," too, in the Wednesday evening "Curtain up" series, was thoroughly satisfactory. A nicely balanced story of what may be styled the old and the new orders in the medical profession was well rounded off with a happy ending and the balance of the argument tipped slightly in favour of the new. John Sharp and Donald Gray played the doctors well, and were admirably supported by excellent wives, daughters and town councillors, etc.

Editorial and Advertisement Offices:
"Practical Wireless," George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2. 'Phone: Temple Bar 4363.
Telepranus: Newnes, Rand, London.
Registered at the G.P.O. for transmission by Canadian Magazine Post.

Registered at the G.P.U. for transmission by Canadian Magazine Post.

The Editor will be pleased to consider articles of a practical nature suitable for publication in "Practical Wireless." Such articles should be untitlen on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed: The Editor, "Practical Wireless." George Newnes, Ltd., Tower House, Southampton Street, Strand. W.C.z. Oveing to the rapid progress in the design of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patent.

Copyright in all drawings, photographs and articles published in "Practical Wireless" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden. "Practical Wireless" incorporates "Amateur Wireless."

R.S.G.B. Amateur Radio Call Book, 6,000 British Isles Callsigns, 56 pp., 3/9; Transmitting Licence. 32 pp., 1/; Service Valve Equivalents, 32 pp., 1/3; Simple Transmitting Equipment, 52 pp., 2/3; Receivers, 96 pp., 3/9; Valve Technique, 104 pp., 3/9; VH.F. Technique, 96 pp., 3/9; Television Interference, 40 pp., 2/3; R.S.G.B. Bulletin, current issue, 1/6. Five recent issues 2/6. Prices include postage, RADIO SOCIETY OF GREAT BRITAIN, 28, Little Russell St., London, W.C.1.

AMERICAN MAGAZINES, 1 year incl.. "Audio Engineering." 28/6; "High Fidelity." 28/6; Radio Electronics." 32/3, etc. Send for free booklet. WILLEN LTD. (Dept. 40), 101, Fleet St.. London, E.C.4.

BRITISH SHORT WAVE LEAGUE is devoted to the interests of amateur radio enthusiasts. Publishes 12-page "BSWL Review," monthly (members only). Offers many services and activity departments. World wide membership. Founded 1935. Apply for details to: BRITISH SHORT WAVE LEAGUE, 55, Victoria St., London, S.W.1. (Abbey 2384.)

I.P.R.E. TECHNICAL PUBLICATIONS: 5,500 Alignment Peaks for Superheterodynes. 5/9, post free. Data for constructing TV Aerial Strength Meter. 7/6. Sample copy The Practical Radio Engineer, quarterly publication of the Institute, 2/-; membership and examination data 1/-Secretary, I.P.R.E., 20, Fairfield Rd., London. N.8.

TEST PRODS, W/Plugs and leads, 2/6 pr.; Resistors, 25 ass., 2/6; Midget Components and Valves. Lists 4d. CARTEE'S. 578, Washwood Heath Rd., B'ham, 8.

TRF Radio Kits, complete with all parts, Valves and Diagram, less Speaker, AC/DC. £2/10/-, AC, £3; Speaker 12/6 extra. Rim-drive Grammotor and Turntable, AC £2/10/-, AC, £5. Plessey Auto-changer, mixed records. £12/10/-, COOK, "Enham," Old Barn Rd., Christchurch, Hants.

ELECTROLYTIC 8 mfd, 500 v wkg., aluminium case, std. size, guaranteed, 1/9 ea., 18/- dz.; I m/m Sleeving. 1/- dz. yards. Thousands of components available. 3d. stamp for latest list. SUSSEX ELECTRONICS LTD. Princes Works, Brighton.

LTD.. Princes Works, Brighton.

WINWOOD for value. Speakers, 3in. 11/6, 3½in. 14/6, 5in. 12/6, 8in. 13/6, 10in. 19/6; Pent-O/trans.. 3/9; Crystal Diodes, 2/9; .0005 Reac/cond., 3/3. New Valves, 6K7, 6/-; EL32. 7/6; 524. VU39a. 6V6, 6Q7, 1T4. 184. 1855. 1R5, 3V4, 9/- each; 6K8, ECH35. 12K8, 12K7, 35L6, 50L6. 35Z4, 6L6. 6F6. 6SN7, 6SL7. 11/6 each; 6J5, 9D2. VR65. 5/-. Conds.. 450vw. 8 mfd, 2/3: 16, 3/3; Bias 25/25, 1/6; 50/5, 2/3. Semi-midget 500K Controls L/sp. non-sw, 4 for 8/6. Other values in stock. Stamp list. WINWOOD, 12. Carnarvon Rd.. Leyton, E.10.

BUILDING a Signal Generator? H/F
Oscillator units, 100 kcs. to 100 mcs.
± 1%. 59/6; directly calibrated scale,
9/6; pointer, 1/6. Circuit diagrams,
etc. incorporating Line-Frame-AF
Modulation, 4/6. S.A.E. literature.
M. L., 5, Hyde Rd., Maidstone.

"MINI-FOUR" punched Chassis and Panel (round speaker aperture), 4/-, post paid. J. E. CARD, 27, Beamont St., Widnes.

mont St., widnes.

RELIABLE Mail Order Service.—
V/controls, 3/-; Miniature. 3/9; with switch. 5/-; Miniature 5/3; Transformers, 350v. 21/-; Condensers, 8 mid., 2/8: 10pf to .05, 11d. each; all values. Single. 0005 tuning Condensers, 4/-. Television: All Components supplied. Vlewmaster instructions. 7/6. C.T.S. ELECTRONICS, 44, Lower Church St., Croydon.

RATES: 4/- per line or part thereof, average five words to line, minimum 2 lines. Box No. 6d. extra. Advertisements must be prepaid and addressed to Advertisement Manager, "Practical Wireless," Tower House, Southampton St., Strand, London, W.C.2,

Strand, House, Southampton St.,

Strand, London, W.C.2.

EDE'S STUDIOS, Chelsea. HMV
energised Speakers, brand new and
boxed, heavy duty 1,500 ohm field,
Coils and Pentode Trans.. 15 ohm
Speech Coll, 64in. Cone, 17/8, post
2/6; ditto, with Smoothing Conds.
inc., 8 mid and 16 mid 550v Cans,
£1, post 2/6. Components stripped
from used Ecko Chassis; all tested
before despatch. Mains Trans.. 3500-350v 80 m.a.. 4v, 4a, 4v, 1 amp.,
usual prims., 10/6; Rola mains energised Speakers, 165 ohm field for
use on D.C. mains), with Pentode
Trans., 7/6 ea.; 2,000 field with
trans., 10/6, or less trans., 7/6; 110
or 130 kc/s I.F. Trans. and Oscillators Colls in ali. cans with diag.,
3/6 set; 0.005 Tuning Condensers,
with 1 sect. cut-away vanes for 110
kc/s. complete with dial SM drive
and knob. 2/6; twin hum suppressor
Chokes, 2/-; chassis mounting HF
Chokes, 1/6; d. ½ and i
watt Resistors, 1/6 doz. (our selection); ½ meg. volume Controls. with
witch, 1/6 ea.; reconditioned Ekco
Chassis, AC, DC, 2-band reflex Superhet, 4 new valves, 15D2, EB34, 9D2.
12A6, new metal rec. with 8in.
speaker and dial, good volume and
quality for only £3/10/-, carr. 6/-;
plain hardboard Cabinets for the
above. 30/- ea. Special offer: Ekco
type 57 AC Chassis. complete with
speaker, but less valves, for only £1,
6/- carr. Terms Cw.O. or C.O.D.
over £1. EDE'S STUDIOS, 255. Fullham Rd., Chelsea, S.W.3. (Phone:
FLA 5587.) Open all day Saturday.

FLA 5587.) Open all day Saturday.

RESISTANCES, wire-wound, 1 watt, 19. 140, 400, 680. 2d.; vitreous. 2 watt, 45. 100. 3d.; 3 watt. 25, 1.000, 1.500, 4d.; 6 watt, 50, 200, 5d.; 15 watt. 1.500, 10d.; 30 watt, 800. tapped every 160, 2.7, 2.000, 1/3; 55 watt, 2,500. 1/6; double pots. 30K, 1/6; Condensers. paper, 1 mfd, 200v, wkg., 3d.; 8 mfd. 400v, 1/6; electrolytic, 120 mfd, 250v, 500 mfd, 150 v, 6/-; Meters, 250 micro-amp. (temperature scale). 12/6; FW rectifiers, 12v 1A 5/6, 2½A 9/6, 4A 157-, 5A 17/6, 8A 23/-; HW, 320v, 100 MA. 7/6; other ratings quoted for sliding Resistances, 12Å, 1 ohm, 6/-; 6A, 4 ohm, 8/6; 2½A, 22 ohm, 14/-; Transformers. 115/6.3/6.3, 400 cycle, 1/6. Technical queries answered; prices include U.K. carriage; minimum order, 3/-; c.w.o. PARKER, 68, Station WATT hiff amp. P-P opt., potted

10 WATT hifi amp. P-P opt., potted opt. trans. 6 BVA valves var. slope Bass Treble Controls, switch input for 3.378 gram. and radio, £15/5/-; tape drive unit precision assembly, 3 speed, with HD motor. capstan, pressure roller, ready June approx. price £7. P.C. for details. etc. MIDLAND COIL PRODUCTS, 28, Winstanley Rd., Wellingborough.

stanley Rd., Wellingborough.

CLEARANCE BARGAINS. — Mains
Trans., normal tapped prim.,
350-0-350, 120 ma, 6v 4a, 5v 2a;
ditto. 4v 4a, 4v 2a, 17/6 ea.;
Pand P., 1/6; HTR Trans., 6v, 1.5a.,
7/6; 12v Vibrator Trans.
4 pin Vibrators, 6v, or 12v. 7/6 ea.;
pin sync. type, 6v, soiled, 7/6;
H.R. phones, 4,000 ohms, 12/6; with
mike, 17/6; 2v Exide acc., 10 A.H.,
4/9; Solon Iron Elements. 220v, 125v.
5/6. Valves. Speakers, etc. Bargain
lists, 3d. P. and P. 6d. extra; £1
orders post free. T.R.S., 307. Whitehorse Rd., W. Croydon. (Tel.: THO.
1655.)

HANNEY OF BATH offers Collaro Three-speed Autochangers, complete with 2 Hi-Fi crystal heads, type 3CR521 for 7-, 10- and 12-inch records, unmixed. £18/14/1; type 3RC522, specification at 3RC521, but mixed. £21/4/4. Goodmans Axiom 150 Speakers, £10/5/6; Audiom 60, £8/12/6; Rola G12 Speakers, £8/5/-Special:—50-watt potted output Transformers, with tapping plugs, allowing the desired ratio to be selected immediately without soldering: suitable for PX4, 6V6, 6L6 and KT66 valves, 47/3. Viewmaster Televisor: colls now available for all channels including Wenvoe, 30/-Morganite Resistors, 35/3; type Q pots, 5/- each; 6 Colvern Pots, 22/6; T.C.C. Condensers, 147/-; Belling-Lee L707, 8/9; G.E.C. type, G neon, 3/6; W.B. Chassis, 18/6 each type; WB103, 32/6; WB106, 25/6; WB107, 32/6; WB108, 33/6; WB108, 13/6; WB110, 10/-; WB111, 5/9; WB112-9in., 21/-. Complete set of parts for any channel, £31. Kit of 12 Valves exactly to specification, £12/10/4. All makes of CRT in stock, 9in. and 12in. Send for a complete parts list of the "P.W. 3-speed Autogram"; all components in stock. Send 6d. stamp for our complete list; c.w.o. or c.o.d. All goods post free over £2, but 2/- is added to c.o.d orders under £5. L. F. HANNEY, 71. Lower Bristol Rd., Bath. (Telephone;

RADIO SUPPLY CO., 15. Wellington St. Leeds. Chassis, undrilled. 16 s.w.g., aluminium receiver type. 10-5½-2in. 3/9, 11-6-2½in. 4/3, 12-8-2½in. 5/3, 16-8-2½in. 7/1, 16-2½in. 7/1, 16-2½in. 10/11, 20-8-2½in. 13/8; Collaro-3-speed automatic Record Changers. The converse of the converse of

YOU ARE INVITED to call and hear the wonderful "Symphony" range of high-fidelity Amplifiers by N.R.S., with their three channels giving independent control of treble, middle and bass frequencies; 5-watt model 10 gns., 10-watt model 15 gns. Send 2½d. for full list of our nine different models of Single-Record and Autochanging Record Players in rexine portable cases or polished wood table cabinets. Special offers: (1) Carrard 3-speed Gram Units, comprising A.C. motor mounted on motor-board with lightweight counterpoised pick-up arms fitted with two separate Decca XMS hi-fi "D" heads, or, alternatively, the two new Chancery 3-pin plug-in Acos crystal heads, price £12 complete. (2) Rexine-covered Record Player Cabinets, exmanufacturer; internal measure-ments: 14½in. x 12½in. x 5½in., price \$20.00 km, 12½in. x 5½in., price 39/6, carr. and pack. 2/6. (3) Bass Reflex Cabinet Kits, 30in. high, complete to the last screw, set of felts, 8in. speaker model, 85/:; 10in. spkr. model, 97/6; 12in. spkr. model. 107/6, carr. 7/6; ready-bullt, 7/6 extra. Three-speed 9-record Autochangers, complete with hi-fi Acos pick-up head/ £15/10/-. If unable to call to see these bargains, send 2½d. for full catalogue. NORTHERN RADIO SER-VICES, 16, King's College Rd. Swiss Cottage, London, N.W.3. (Primrose: 8314.)

EVERYTHING for radio construc-tors. Condensers, Coils, Valves, Resis-tors, etc. Send stamp for list. SMITH, 98, West End Road, More-cambe. Quick service.

COPPER WIRE, best enamell various gauges available in reels. Write, your requirements WILLIAMS, 16, Colchester F Harold Park, Essex. enamelled:

MICROPHONES. Balanced armature with switch, lead and jack, 2/6, post free. 23. High St., Southall.

AL. PANELS, 16 gauge, 16in. x 12in., 12in. x 9in., 12in. x 6in., 15in. x 11in., 11in. x 9in., 13in. x 10in., 10in. x 9in. Send S.A.E. WILTON RADIO, 30, Giants Grave Rd. Neath.

HOME CONSTRUCTORS, short wave Radio, Television: send for free list; Components, Valves, Kits, Speakers, etc. THE RADIO EQUIPMENT COMPANY (P.W. Dept.), Castor Rd., Brixham, Devon.

TAPE RECORDINGS, ETC.

EMITAPE. Secure your Recording Tape from "His Master's Voice" Showrooms. 363. Oxford St., W.1. Showrooms, 36 (Mayfair 1240.)

Mayfair 1240.)

TAPE RECORDING.—First again with what you have been waiting for; the compact portable battery tape Recorder; so small, can be taken anywhere; running time, ½ hr.; ideal for offlice, travellers, reporters, etc.; Line-a-Tone Recorder and Tape Panel of entirely new design; 3 speeds, single or twin track to order; fast rewind and forward; non-magnetic flywheel; freedom from wow; heavy duty motor; precision finished. Britain's finest Tape Recorder, tape panel, £20; complete unit. £68, Send for further details. MORECAMBE SOUND SERVICE, "Sealand Works," Cross Cop. Morecambe.

VALVES

SENSATIONAL Price Slashing!
Boxed Valves, 2/6; Transformers,
Potms. Coils. 6d.; post extra. S.A.E.
list. ANNAKIN, 25, Ashfield Place.
Otley, Yorks.

A FEW brand new Marconi 2-volt. battery Valves (HL2K), in cartons, bargain: 6/8 each, post free. R. MORTLOCK, Yaxley, Suffolk.

WANTED; Valves, small or large quantities, 6k8, 6v6, 524, 6AC7, 1R5, 185, FW4/500, 6G7, 12K8, 80, VU39, EBC33, 3S4, etc., etc. Prompt cash, WM, CARVIS, 103, North Street, Leeds, 7,

VALVES wanted, types 1R5, 1S5, 1T4, 1S4, 6K7, 6Q7, 6V6, 5Z4, 6K8, 805, 807, 811, 813 and 832; highest prices paid instantly. Box 211, c/o PRACTICAL WIRELESS.

AMATEUR requires Valves and other Radio gear. Box No. 221.

Radio gear. Box No. 221.

STOCKTAKING sale of guaranteed new. boxed Valves. "Viewmaster Valves. as specified, comprising 5 EF50. 1 6P25. 1 KT61. 1 EBC33, 1 EBB1. 2 6K25, 1 6P28. set of 12. special offer. £6/2/6 (postage and insurance 2/-): PL38. 18/6; EY51. 14/6; 6P25. 10C1. 6C9. X78. ECH21. 16/6; 6P25. 10C1. 6C9. X78. ECH21. 10F9. 6P15. EC91. ECL80. 12/6; 50L6GT. UF41. UBC41. 10/6; AZ31. 5Z4G, 7Y4. UY41. U404. U19. APV4. 10/-; KT61. 6V6GT. 9/6. Miniature all-dry Battery types. 155 (DAF91., IR5 (DK91). 1T4 (DF91). 3V4 (DL941. 8/6 each. EF91. 6AM6. 6F12. ZT7. EBB1. 6AL5. 8/6; 7C5. 7C6. 7B7. 7H7. TS7. 7/6; EF39. FF3. KT2. EF50. 7Y. 6KTG. HVR2A. 6/3; 9D2. 4/6. P.M. Speakers. Elac and Celestion. 2½in. and 3½in. Plessey 5in. and Truox 6½in. 12/6; Plessey 8in. 31/6. Postage and packing 3d. per valve extra. C.W.O. READERS RADIO, 24. Colberg Place. Stamford Hill, London. N.16.

SALE.—"P. W." Mags. Complete set from Feb., 1944. Offers? WARE, 22. Charingworth Rd., Bir-mingham, 26. · Complete

EX-W.D. unused Fluorescent Lighting Sets for 12 and 24 volts D.C. input, 230v, A.C. output; Rotary Converter, Choke, P.F. Condenser, Leak Transformer for 85 watt Sodium Lamps; the whole enclosed in metal box; £5 to clear. A. J. PHILPOTT, Fountain Sq., Fenton, Stoke-on-Trent.

FREE LIGHT with the "Lite" Wind-charger: Plans 2/9, Propellors 35/-H. JAMIESON & CO. (Dept. P.W.), Midtaphouse Works, Liskeard, Corn-

SYNCHRONOUS MOTORS, 200-250v. A.C., 50 cycles, clock type, 12/6 each. 1/- postage; suitable for model engineers. UNIVERSAL ELECTRICAL. 217a, City Rd., London, E.C.1.

NEW METERS, Avo Minor, £7/10/-; Taylor Junior, £6; Pifco Radiometer, 25/-; Mains Transformers, 15/-; TABNER, Ickleford. Chassis, 3/-. Hitchin. Herts.

TV SOUND ADAPTOR makes your radio receive TV sound; cheap and simple. Send P.O. 2/6 for circuit and constructional details. LTH RADIO, 18. Mount St., Wigan.

RADIO. 18. Mount St., Wigan.

SPECIAL OFFERS

ALL-DRY MINIATURES.—IL4 (replaces 174) and 3A4 (output pen.), only 6/9 each.

A.C.D.C. RECTIFIERS.—ID5. CYIC. U30. CY31, etc., 3 assorted for 27/-; few only. 8A miniatures. ECH42. UCH42. EF41. UF41. EBC41. UBC41. EL41. UL41. EF42. EL42. 6G. 10P13. U741. U404. U9. 10-0THER BARGAINS.—EL6G. FW/500. 6F7. KT33C. 10'-; EL35. VR150/30. 6SP5. 6AG5. VP2B. 8'8; 6F6. 6X5. 6N7. 7/8. 6JGC. HU2DD. MS/Pen. 6/8; 6J5. 12SC7. 12A6. VP23. PEN220A. 5'-; EA50. 2'-; 6A65. 6K5. EL91. EY51. XF8. 15/-; 6A66. 6F33. 6SN7. 126; 277. EF91. EF92. EY91. 11. 6F83. ENS. 126; 277. EF91. EF92. EY91. The 11/2 finished in Rexine (various colours) with gold loudspeaker grille. Complex with handle. battery compartment (takes all types of small H.T. and L.T. batteries) and dial to suit. Two sizes. Ilin. x8in. x5in. 27/6; and 99in. x7in. x4in. 25'-, plus 26 packing and postage.

Cher orders under \$2 add 1/- postage.

ELECTRAD RADIO

THE POCKET LOUDSPEAKER SET

Using our clear drawings and instructions you can build a midget loudspeaker receiver small enough to fit in the jacket pocket. This receiver is fully self-contained-no aerial, earth, or external power supply being required. The midget batteries used are of the new layer type specially produced by a famous British maker for this class of Only one single-gang midget variable condenser is used for tuning, and the receiver requires no alignment. The midget components chosen are current British production, not surplus or foreign.

Instructions and Drawings, including Theoretical Circuit and Point-to-Point Wiring Diagram.

PRICE 3/6 POST FREE

SWIFT RADIO (W),

137, COTHAM BROW, BRISTOL, 6 · Orders by Post Only.

SERVICE SHEETS for hire. Reasonable terms. S.A.E. for particulars to W. J. HERBERT, 118, Gelli Rd.. Gelii Pentre, Rhondda, Glam.

WALNUT Radiogram Cabinets of distinction; stamp details. R. SHAW: 69, Fairlop Rd., E.11.

WALNUT Radiogram Cabinets. Stamp details. E. WISKER, 501, Hale End Rd., Highams Park. E.4.

CABINETS for Viewmaster, Radiograms, L.S., etc.; special tobs. All enquiries to ASHDOWN, 98, Hertford Road, N.9; (TOT. 2621.)

TELEPHONE EXCHANGE (field or other) required, with or without lines and phones. Full particulars to CHAS. WILKINSON, 8, Cornmarket, Louth. market, Louth.

market, Louth.

WANTED, Crystals for BC 499-500 (SCR. 609-610); full set or odd ones: also Instruction Book (sales or loan for same. Box No. 222.

FOR SALE; rethring. Cost 16 gns., 1 Taylor Sig. Gen. £10; cost 16 gns., 1 Taylor Uni. Meter. £10; cost 25 gns., 1 Roberts Valve Analyser. £12 10/+; cost 7 gns., 1 Solar Con. and Res. Tester. £5. Also Service Manuals. approx. 2,000. and Service Manuals. approx. 2,000. and Service Manuals. (including spare bits and pieces, i.e., resistors, service valves, etc., etc. The above has been used and is ready for immediate use. Offers. 6. Bourne Ave.. Hayes. Mddx. for immediate use. Offe Bourne Ave., Hayes, Mddx.

LOUDSPEAKERS repaired promptly.
MODEL LOUDSPEAKER SERVICE. 34a, Bullingdon Road, Oxford.

VACUUM CLEANERS and Gram. Motors, repairs our speciality. Armature rewinds, new bearings and commutators fitted, also transformers mutators nuted, also transformers rewound, speakers repaired. Competitive prices. Trade enquires invited. 14 days c.o.d. service. Send s.a.e. for price lists to: A.D.S. CO. (V.E.M. Dept.). 261-3. Lichfield Rd., Aston. Birmingham. 6. Est. 1935.

EDUCATIONAL

SEE THE WORLD.—Radio Officers urgently required. We train most in shortest period. Training fees payable after appointments secured. Scholarships available. Boarders accepted 2d stann for Prospectus able after appointments secured. Scholarships available. Boarders accepted, 2d. stamp for Prospectus from Britain's leading college. WIRELESS COLLEGE. Colwyn. Bay. MERCHANT NAVY and Air Radio.—Here is an opportunity to train as Radio Officer. The big liners are open to you, but you must qualify for the P.M.G. Certificate. Day, Evening and "Radiocerts" postal courses. Estd. 30 years; s.a.e. for prospectus from Director, THE WIRELESS SCHOOL, 21, Manor Gardens, London, N.7. ITEL: ARC. 3694.)

THE INSTITUTE of Practical Radio Courses, covering elementary, theoretical, mathematical, practical and laboratory tuition in radio and tele-

retical, mathematical, practical and laboratory fuition in radio and television engineering; the text is suitable coaching matter for I.P.R.E., Service, entry and progressive exams. Tuitionary fees at pre-war rates are moderate. The Syllabus of Instructional Text may be obtained, post free, from the SECRETARY, Fairfield Road, Crouch End. N.8.

Road. Crouch End. N.8.

WORLD TRAVEL and Adventure in the Merchant Navy.—Young men, 15 years upwards, required for training in Marine Wireless and Direction-finding at Sea. (Trainees in forth-coming Registration Groups are eligible for deferment of Military call-up.) Immediate, sea-going positions on completion of training. Suitable candidates will be entered as officers and must be prepared to sail to all parts of the world. Low training fees. Send 1/- P.O. for Prospectus to OVERSEAS HOUSE (Dept. P.W.), Brooks Bar. Manchester, 16. (Tel. MOSs-side 2047.)

-THE MODERN BOOK CO.-

The Radio Amateur's Handbook By the A.R.R.L. Price 30s. 0d., postage 1s. 0d.

Television Engineers' Service Manual. By E. Molloy (ed). Price 42s. 0d., postage 9d.

Amplifiers. By G. A. Briggs and H. H. Garner. Price 15s. 6d., postage 6d. Thermionic Valve Circuits. By E. Williams. Price 21s. Od., postage

T.V. Fault Finding. Compiled by 'The Radio Constructor.' Price 5s. 0d., postage 4d.

Introduction to Electronic Circuits. By R. Feinberg. Price 18s. 0d., postage 6d.

Handbook of Wireless Telegraphy. Volume One, 5s. Od.: Volume Two, 7s. 6d., postage 1s. Od.

78. 60., postage 18. 50.
Sound Reproduction. by G. A. Briggs.
Price 10s. 6d., postage 6d.
Outline of Radio. By R. S. Elven,
etc. Price 21s. 6d., postage 1s. 6d.
The Organ. By W. L. Sumner. Price
30s. 6d., postage 1s. 6d.

Foundations of Wireless. By M. G. Scroggie. Price 12s. 6d., postage 9d. Scroggie. Price 128. 6d., postage 9d.
World-Radio Handbook for Listeners. By O. Lund Johansen. Price
8s. 6d., postage 6d.
Ediswan Mazda Valves, 1949-1950.
Price 2s. 0d., postage 4d.
World Radio Valve Handbook. By
O. Lund Johansen. Price 11s. 6d.,
postage 6d.

Radio Valve Data. Compiled by 'The Wireless World.' Price 3s. 6d., postage 3d.

We have the finest selection of British and American Radio books in the Country. Complete list on application 19-23. FRAED STREET (Dept. P.7),

LONDON, W.2. PADdington 4135.

One coil, 4 circuits. Simple receivers from a crystal set to a 3 valver. Full circuits enclosed.

T.R.I. Coil. 5/- P.P. 6d.

HILLFIELDS RADIO BURNHAM ROAD, WHITLEY, COVENTRY

Amateur Radio Enthusiasts THE INCOMPARABLE -

GLOBE-KING

SINGLE VALVE S.W. RECEIVER

• WORLD - WIDE RANGE 11-100
METRES • GRYSTAI-CLEAR NOISEFREE RECEPTION • ELECTRICAL
BAND - SPREAD TUNING • EXTREMELY LOW RUNNING COSTS
Catalogue Free. Stump for postage.

JOHNSONS (RADIO) 46, FRIAR STREET, WORCESTER

CODE Training MORSE

COURSES for BEGINNERS OPERATORS and also a SPECIAL COURSE for passing the G.P.O. Morse less securing an Trans-Test mitting Licence. Send for the Candler

BOOK OF FACTS It gives full details. Courses supplied on Cash or Easy Payment Terms,

THE CANDLER SYSTEM CO. (Dept. 5LO), 52b, Abingdon Road, Kensington, London, W.8. Candler System Co., Denver, Colorado, U.S.A.

YOUR I S SLIP SHOWING?

Let's be hon-est — we all make slips sometimes, but when it comes to radio construction don't take chances on un-known and unknown and untried circuits. With OUR series of unique LIFE-SIZE, "EASY-AS - A.B.C." CONSTRUCTION SHEETS matched components of the components of the components. p o n e n t s. punched chassis and ALI-GNED UNITS radio assem-bly is really e-a-s-y for the

Home Constructor! If you have average ability you can tackle any, or all, our LARGE RANGE OF GUARANTEED OUTFITS knowing that failure is impossible!

Send 2'6 NOW for your copy of our "HOME CONSTRUCTORS HAND-BOOK." The NEW ISSUE is obtainable by MAIL ONLY from

RODING LABORATORIES (PW7) 301, Hurn Airport, Christchurch, Hants.

COAX, CABLE VOL. CONTROLS | Standard tin. diam. | Midest) Ediswan. | All values. Long | Sp. diam. | Sp.

YALVES.—New, boxed and guaranteed. 6K7 76; 6K8 12:6 | 184 9.6 | EF55 13'6 6X5 9.6 | 6V6 10:6 | 185 9.8 | MU14 10'6 5Z4 96 | 6V7 11:6 | 1R5 9.8 | 35L6 11'6 6J7 90 | 807 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 6J7 9C 12:6 | 174 9:6 | 35Z4 11'6 | 174 9:6 |

ALVES-6K3, 6K7, 6Q7, 6K6, 5Z4, of 5 £2 post free, any two £1 post free. Genuine Bargain Offer This Month Only.

Genuine Bargain Offer This Month Only.

RESISTORS.—I. W. 4d., I. W., 6d., I. W., 8d., 1. W

We have a limited stock of the following RESISTORS AND CONDENSERS 1 watt— 220Ω , 680Ω , $1k\Omega$, $10k\Omega$ 5/6 per doz. 2 watt-8,200 Ω , 47k Ω 1/- each 3 watt-1k Ω , 2k Ω 1/6 each Fixed Wire Wound, 2k 2, 1 watt 9d. each Air Spaced Trimmer, 0-100 ... 1'9 each Volume Controls, 200,000 Carbon. Track, N.S. ... 1/6 each

Tubular Paper Condensers--.0001, 450vt., 4/- doz.; 0.2, 350vt., 6/- doz.; 0.25, 350vt., 6/- doz.; 0.5, 350vt., 8/- doz.

All Osmor Q Range Colls in Stock, 4'- each Test Prods fully insulated pencil type, each prod fused. 4'3 C.W.O. Postage 6d, up to 10/-, 1/- under 20/-.

J. W. PARKER, 66, DALSTON LANE, DALSTON, LONDON, E.8.

G.E.C. & B.T.H. **GERMANIUM** CRYSTAL DIODES

G.E.C. GLASS TYPE 5/16in. x 3/16in B.T.H. LATEST TYPE MOULDED IN THERMO-SETTING PLASTIC Both Wire Ends for Easy Fixing 4/6 each, postage 2½d.

SILICON CRYSTAL VALVE

3/6 each, postage 2½d. Fixing Brackets 3d. extra Wiring instructions for a cheap, simple but high quality Crystal Set included with each Diode and Crystal Valve.

COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ, COTTON, AND SILK COVERED.

Most gauges available. SCREWS, NUTS, WASHERS, B.A. SCREWS, NUIS, WASHERS, soldering tags, eyelets and rivets.
EBONITE AND BAKELITE PANELS.
TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES,
ERIE & DUBILIER RESISTORS.
Latest Radio Publications.
SEND STAMP FOR LISTS.

CRYSTAL SET INCORPORATING THE SILICON :

CRYSTAL VALVE Adjustable Iron Cored Coil.

RECEPTION GUARANTEED Polished wood cabinet, 151-, post 9d. A REAL CRYSTAL SET, NOT A TOY.

POST RADIO SUPPLIES 33 Bourne Gardens, London, E.4

Established over 30 Years

ELECTRADIX RADIOS

RADIO, ELECTRICAL AND MECHANICAL APPARATUS & LABORATORY INSTRUMENTS

Write Debt. G. 214, Queenstown Road, London, S.W.8 Telephone MACaulay 2159

DUAL WAVE COIL
For "Summer All-Dry Portable" (June, 1981, issue "P. W."), 4/3. Duat wave coil with circuits for 1-Valve All-Dry, 2-Valve A.D., and Crystal Receiver, 4/3. TRF Coils for A.D.3 Band 3 (Aug., 1951), 6/6 pair. TRF Coils for A.C. Mains Midget (Oct. Nov. issue "P.W."), 6/6 pair. Standard TRF Coils L. and M.W., 5/6 pair. High "Q. miniature L.F.Ts. 465 kc/s. 13/6 pair. "Viewmster" (components: Width Control. 7/6; Boost Choke, 5/9.
T. G. HOWELL.
29, McWilliam Road, Brighton, 7.

SHORT WAVE H.A.C. EQUIPMENT

Noted for over 18 years for S.W. Receivers and Kits of Quality.

Improved designs with Denco coils Onc-Valve Kit, Model "C" Price, 25/-Two "50/-

All kits complete with all components, accessories, and full instructions. Before ordering call and inspect a demonstration receiver, or send stamped, addressed envelope for descriptive catalogue.

"H.A.C." SHORT-WAVE PRODUCTS (Dept. TH), 11, Old Bond Street, London, W.1.

Practical Wireless BLUEPRINT SERVICE

PRACTICAL WIRELESS

No. of Blueprint

CR	YS	TAL	SETS
-1-4-	_		

Bluepri	nts, 1s.	each.		
,1937 C	rystal F	Receiver	• • •	PW71*
The "	Junior	" Cry	stal	
Set				PW94*

STRAIGHT SETS

Battery Operated One-Valve: Blueprints, 2s. each.

One-

The "Pyramid"

PW93* valver (HF Pen) Two-vaive: Blueprints, 2s. The Signet Two (D & ⁻LF) ... PW76* Three-valve: Blueprints, 2s. each. Summit Three (HF Pen, PW37* D, Pen) The "Rapide" Straight 3. (D, 2. LF (RC & PW82* Trans)) F. J. Camm's "Sprite" Three (HF, Pen, D, Tet) PW87*

Mains Operated

.. PW34C*

Four-valve: Blueprints, 2s. each.

Fury Four Super (SG,

SG, D, Pen) ...

Two-valve: Blueprints, 2s. each. Selectone A.C. Radio-PW19* gram Two (D, Pow) Three-valve: Blueprints, 2s. each.

Double - Diode - Triode Three (HF Pen, DDT, Pen) ... PW23*

Four-valve: Blueprints, 2s. each. ... A.C. Fury Four (SG, SG, PW20* D, Pcn)

A.C. Hall-Mark (HF Pen, D, Push-Pull) ... PW45*

SUPERHETS

Battery Sets: Blueprints, 2s. each. F. J. Camm's 2-valve PW52* Superhet

No. of Blueprint

SHORT-WAVE SETS

Battery Operated

One-valve: Blueprint, 2s. Simple S.W. One-valver PW88* Two-valve: Blueprints, 2s. each. Midget Short-wave Two (D, Pen) Three-valve: Blueprints, 2s. each. Experimenter's wave Three (SG, D, Pow) PW30A* The Prefect 3 (D, 2 LF (RC and Trans)) ... PW63* The Band-spread S.W. Three (HF Pen, D (Pen), Pen) ... PW68*

PORTABLES

Four-valve: Blueprint, 2s. "Imp" Portable 4 (D, LF, LF, Pen) PW86* The "Mini-Four" Alldry (4 valve superhet) PW

MISCELLANEOUS

Blueprint, 2s. S.W. Converter-Adapter .. PW48A* (1 valve) . . Blueprint, 3s. 6d. The P.W. 3-speed Autogram.

TELEVISION

The Practical Television Receiver. (3 sheets) 10/6 The "Argus" (6in. C.R. Tube) 2/6

AMATEUR WIRELESS AND WIRELESS MAGAZINE

STRAIGHT SETS

Battery Operated

One-valve: Blueprint, 2s. B.B.C. Special One-.. AW387* valver Two-valve: Blueprints, 2s. each. A modern Two-valver.. WM409*

Mains Operated Two-valve: Blueprints, 2s. each. Consoelectric Two (D,

AW403 Pen), A.C.

SPECIAL NOTICE

THESE blueprints are drawn full size. The issues containing descriptions of these sets are now out of print, but an asterisk beside the blueprint number denotes that constructional details are available, free with the blueprint. The index letters which precede the Blueprint Number indicate the periodical in which the description appears: Thus F.W. refers to PRACTICAL WIRELESS, A.W. to Amateur Wireless. W.M. to Wireless Magnatine.

W.M. to Wireless Magnatine.

See the property of the Blueprint (stamps of the Blueprint (stamps of the Blueprint (stamps of the Blueprint (stamps of the Blueprint Stamps of the Blueprint Google of the Blueprint Stamps o

No. 0) Blueprint

SHORT-WAVE SETS

Battery Operated

One-valve: Blueprints, 2s. each. S.W. One-valver for America .. AW429* Two-valve: Blueprints, 2s. each.

Ultra-short Battery Two .. WM402* (SG, det Pen) Four-valve: Blueprints, 3s. each.

A.W. Short-Wave Worldbeater (HF Pen, D, RC, Trans) AW436*

Standard Four - valver -Short-waver (SG, D, WM383* LF, P)...

Mains Operated ?

Four-valve: Blueprints, 3s. Standard Four-valve A.C. Short-waver (SG, D, RC, Trans) WM391*

MISCELLANEOUS

Enthusiast's Power Am-

plifier (10 Watts) (3/-) WM387* Listener's 5-watt A.C. Amplifier (3/-) .. WM392* Harris

Electrogram battery amplifier (2/-) WM399*

De Luxe Concert A.C. ' Electrogram (2/-) ... WM403*

HINTS COUPON

This coupon is available until July 7th, 1952, and must accompany all Practical Hints. PRACTICAL WIRELESS, July, 1952

Published on the 7th of each month by GEORGE NEWNES, LIMITED; Tower House, Southampton Street, Strand, London, W.C.2, and printed in England by W. SPEAIGHT & SONS, LTD. Exmoor Street, London, W.1019. Sole Agents for Australia and New Zealand: GORDON & GOTCH (Asia), LTD. South Africa: CENTRAL NEWS AGENCY, LTD. Subscription rate including postage, for one year: Inland and Abroad 13s. 6d. (Canada 13s.). Registered at the General Post Office for the Canadian Magazine Post.

Introducing the "BURGOYNE" MAGNETIC RECORDING KIT

We are now able to offer a complete Tage Recording Kit which includes everything necessary to build a Recorder.

15 -

Carr., pkg. 12 monthly payments of 34 8.

and tested. £31 . 5 . 0

THE KIT COMPRISES:—(a) The Burgoyne Tao: Table already assembled and ready for use. (b) The M.O.S. A4 Magnetic Recording Playback Amplifier Kit. (c) The Burgoyne Oscillator unit, wired ready for use. (d) The Burgoyne Cabinet. (e) A 5in. P.M. Loudspeaker.

\$10/10/0 Deposit. 12 monthly payments of 39/2.

Specifications of main units given below. The only Manual necessary is that on building the A4 Kit, 3.9. All the above Items are also available separately at prices shown.

M.O.S RECORD/PLAYBACK AMPLIFIER KIT, Type 4

In Record position, amplifier has provision for microphone and gramophone inputs, and mixer circuit for fading and balancing between them. Provision is also made for monitoring on headphones. In Playback position circuit is rearranged to form a stable high gain amplifier. Playback pre-amplifier stage uses an BF37A. giving extremely high signal to noise ratio, complete freedom from microphone and

adjustment is given by variable tone control. Microphone circults are included and further tonal adjustment is given by variable tone control. Microphone circult is terminated in an impedance satisfactory for crystal microphones, the Acos Mic 22-2 at \$66.00 being particularly recommended.

Instruction Manual

manual only, 3 9 £6.19.6 or H.P. DEFOSIT £2 and

12 monthly payments of 11/8

"BURGOYNE" THE TAPE TABLE

The table employs three motors, or The table employs three motors of negligible stray magnetic field. The capstan is directly coupled to a heavy balanced flywheel driven by a motor through a system of high elasticity, thus allowing flywheel inertia to maintain absolutely contact revind facilities are provided. Pressure pads are employed to maintain intimate contact hetween tape as tain intimate contact between tape and heads.

£16.10s. H.P. Deposit 26.10.0 and 12 monthly pay-ments of 20/-(cair., pkg. 10/-)

Dimensions 16iin. x 11iin.

Tape speed, 74in., per second, giving running time of 31 mins. As heads are half track, total playing time of one hour is possible. with a single 1,200 ft. reel.

Heads are high impedance and suitable for capacity feed from tape modulator and direct feed into playback pre-amplifier. Frequency response of up to 9 kc. is possible with tapes such as Scotch Boy, etc.

THE BURGOYNE OSCILLATOR UNIT Assembled and wired ready to use,

5" P.M. LOUDSPEAKER Well known makes only 15/- (post and pkg. 16.)

MAIL ORDER SUPPLY CO..

THE PADIO CENTRE 33 TOTTENHAM COURT ROAD, LONDON, W.I. MUSeum 6567

THE BURGOYNE CABINET

Polished walnut of attractive appearance. Strut hinges and £4-10s. (carr., pkg. 5/-) locking clips.

This Month's Bargains

MINI FOUR. All parts from stock. Ready Drilled Chassis Kit, 716. P. & P., 11-.

MIDGET SPEAKERS, W.B., 21in., 1816; Philips, 3in., 151-; W.B., 5in., 161-; Elac, 61in., 1716. P. & P., 11-.

TEST PRODS, for test meters. Red and black, 416 pair. ELAC FOCUS UNITS, for triode and tetrode tubes. P.M. type; List, 301-. Our price, 201-, post free.

SPECIAL TRANSFORMER OFFER. Varley or Woden, 0-250 Tapped Primary. 350:350 80 mA. 4v. 2.5 A.C.T. 4v. 5 A.C.T. 1716 each. P. & P., 116. Limited Quantity. SELENIUM RECTIFIERS, 250 v. 60 m.a. D.C. output. New, 716 each.

New. 716 each. MORSE PRACTICE SETS, with double-action buzzer,

MORSE PRACTICE SETS, with double-action buzzer, output for 'phones excellent key; require only 4½ v. battery. As new, 716. P. & P., 11-.
MIDGET OUTPUT TRANSFORMERS for personal portables, 61-. Standard pen., 516. Mike trans: for M.C. mikes, 21-: for carbon, 113 each.
XTAL DIODES, 319 each. Germanium diodes, 416 each. POTENTIOMETERS. Carbon, 50 k., 100 k., 1 meg. and 2 meg., 116 each. 500 chm H.D. torodial, 316 each. 50 K. W.W. Pre-Set Type, 21- each. 20 K. W.W. Pre-Set, 11- ea.
TWIN FEEDER, 300 ohm H.D. Twin, 5d. yd. Standard K25 300 ohm, 9d. yd. K24 150 ohm, 9d. yd. Coax. T.V. cable, 1in., 113 yd. Packing and postage on cables, 116.

hin, 113 yd. Packing and postage on cables, 116.

SPECIAL VALVE OFFER. Kit of 4 midget 1.4 v. valves, 1 each 155, 185, 174 and 184, 351- or 916 each, separately. Postage free on all orders over £1 except where specifically stated. PLEASE PRINT YOUR NAME AND ADDRESS.

CHAS. H. YOUNG, G2AK

All callers to 110 Dale End, Birmingham CENTRAL 1635

Mail Orders to 102 Holloway Head, Birmingham MIDLAND 3254

VNETT COLLEGI

can help your career through personal postal tuition

in any of these subjects:

Accountancy Exams. * Aircraft Eng. & Radio * Architecture * Auditing * Book-keeping * Building * Carpentry * Chemistry * Civil Service * Commercial Art * Commercial Arithmetic Company Law * Costing * Diesel Engines * Draughtsmanship * Company Law & Costing & Dieser Engines & Draughtsmanship & Electrical; Mechanical; Motor; Steam; Structural) & Jigs, Tools & Fixtures & Journalism & Languages & Mathematics & Mining & Modern Business Methods & Plumbing & Police & Press Tool Work & Quantity Surveying & Radio & Salesmanship & Scoretarial Exams. & Shorthand & Surveying & Telecommunications & Television Works Management * Workshop Practice

and GENERAL CERTIFICATE OF EDUCATION

SUCCESS WILL BE YOURS

As a Bennett College Student your own Personal Tutor will coach you until you qualify, at your pace, with no time wasted. You will learn quickly, easily.

SEND TODAY FOR A FREE PROSPECTUS

TO THE BENNETT COLLEGE, D	EPT. G.104, SHEFFIELD.
Please send me your prospecti	(Subject)
NAME	
ADDRESS	
PLEASE WRITE IN BI	