The
SUPER 6
LONG & MEDIUM WAVE
TRANSISTOR RADIO
A quality radio available as a kit or ready built. The sparkling performance and superb finish of the completed receiver give you value equivalent to a £12. 12.0 commercial model.
- All new parts. 6 transistors and diode. 350mW output.
- Lining up service if required. All parts supplied separately. Write for list. S.A.E. please. 9v. battery required. VTF or P.P.9 (319 with kit).

COMPLETE KIT ONLY
£4.17.6
PLUS 5/- POST
OR FULLY BUILT £6.17.6 Tax & Carr. Paid

V.H.F. Pre-amplifier with high signal-noise ratio and gain of at least 3:1 under average fringe area conditions. Metal container 3 1/2 x 3 1/2 x 1 1/2in. high, with strap for eaves, loft or skirting fixing. 9 volt battery operated, using transistor AF114. Covers all British and some Continental stations. 88 to 108 Mc/s. Order with confidence of improved reception.

ELECTRONICS (Camberley) LTD.
15 VICTORIA AVENUE, Camberley, Surrey
Post orders only please

JACKSON
the big name in PRECISION components
Precision built radio components are an important contribution to the radio and communications industry. Be sure of the best and buy Jackson Precision Built Components.

BALL-DRIVE DIAL
All the 'works' of this dial are inside the knob. No space is wasted behind the mounting panel, and the dial can be fitted directly to the spindles of one-hole-fixing tuning capacitors and potentiometers. Mounting is simplicity itself, and requires drilling only one 4BA clearance hole. (A template is provided.)
- Takes standard 0.25in. spindles. 6:1 ratio. Dial 4in. diameter. Scale 0-100 (Type A) or blank (Type B).
- Powerful: output torque 26oz.—inches min. Low backlash. Made in England Price 27/-

JACKSON BROS. (LONDON) LTD.
(DEPT. P.W.) KINGSWAY-WADDON, CRROYDON, Surrey.
Phone: Croydon 2754-5 Grams: Walflco, Souphone, London

for catalogue apply direct to:—
Sales and Service Dept.
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD, LONDON, S.W.4
Telephones
MACau ay 4272 & 3101
Telegrams
SOLJOINT LONDON SW4
Advanced design and craftsmanship plus an unequalled reputation proved by the many hundreds of testimonials received from CODAR users is your guarantee of complete satisfaction. Only the best.

CODAR—Mullard, Brimar, Jackson, Deneco, Electroniques, Thorn, A.R.I., are just some of the famous names behind the quality that CODAR-KITS are supplied with clear pictorial diagrams and easy to follow instructions—no technical knowledge or special tools are needed.

CODAR-KITS and enjoy peak performance and world wide reception previously possible only from equipment costing hundreds of pounds.

For illustrated leaflets giving fullest details send 6d, in stamps.

CODAR R.F. PRE-SELECTOR. Will considerably improve the performance of any superhet receiver. "Results are amazing." "Well worth the money".

CODAR "Q" MULTIPLIER MODEL R.Q.16. For use with any superhet receiver with an I.F. between 600 and 470 Kcs. Provides fideco considerable increase in selectivity for either peaking or rejecting a signal on AM, CW, or SSB. Both PEAK and NULL functions tunable over receiver I.F. bandwidth. A.S.O. quality included. Size 6h x 5 x 41h. Power requirements 180-250v. H.T. at 5 Ma & 3v. 3 amp L.T. Ready built, complete with cables, plugs and instructions. £8.15. Carr. 3d.

CODAR A.T.12 WATT 2 BAND TRANSMITTER. The newest most compact self-contained transmitter for the amateur who seeks high performance on 80-6 metres, "The tiny TX with the BIG voice". Size only 16h x 5 x 41h. (Base area is less than two-thirds of this page). Includes new type calibrated VFO, 1.2-2.0 Mc/s. Special crystal auto 4 Mc/s expert. Air spaced CODAR coil, PL net output, F.A. Plate current meter plus neon indicator. Plate/Screen modulator. A.M./C.W. switch and Panel key Jack. Plenty of output for 6 or 12 volts heater supply. Ready built £13.10. Carr. 4/. A.T.12 POWER SUPPLY UNITS. Type 105. For 200/250 volt A.C. with standby rectifier and apparatus change-over switch. Included 4 Mc/s supply, neon standby switch. £8.0. Carr. 6/. Type 125/512 volt solid state power supply unit £13.5. Carr. 3/. Type 12/HC Remote Control and Aerial Switching unit £2.7.5. Carr. 3/. (H.P. Terms available).

CODAR COILS AIR-SPACED INDUCTORS. A complete range of low loss air-spaced Inductors developed by CODAR. Over 40 different types from 1 in. to 3 in. diameter suitable for all types of circuit application including VFO, PA, Tuning, Pni-networks, etc. Full data and prices on request.

CODAR RADIO COMPANY

Bank House, Southwick Square, Southwick, Sussex. Tel. 3419

Canada: Codar Radio of Canada, Tweed, Ontario
The practical way to learn Electronics...and save money!

Anyone can build a Heathkit model. The easy-to-follow instruction manuals issued with each kit-set show you how. You will be proud of the professional appearance and performance of your finished model.

A KIT FOR EVERY INTEREST . . . FOR HOME, WORKSHOP, SERVICE & TEST DEPTS.

“AMATEUR” EQUIPMENT

AMATEUR BANDS RECEIVER
£39.6.6 Kit
Assembled £32.10.0

AMATEUR TRANSMITTER
Model DX-100U. Covers all amateur bands 160-10M. 150 w. d.c. input, self contained with power supply. Modulator, VFO
£79.10.0 Kit
Assembled £64.15.0

COMMUNICATIONS TYPE RECEIVER RG-I. A high performance low cost receiver for the discriminating listener. Freq. covers 0.000 kc’s to 1.5 Mc/s and 1.7 Mc/s to 32 Mc/s. Send for details.
£33.19.0 Kit
Assembled £45.8.0

AMATEUR TRANSMITTER
Model DX-40U. Covers 80-10 m. Power inputs 75 w. C.W., 60 w. peak C.C. phone. Output 40 w. to aerial. Prov. for VFO.
£33.19.0 Kit
Assembled £45.8.0

MONEY BACK GUARANTEE

Daystrom Ltd. unconditionally guarantee that each Heathkit product assembled in accordance with our easy-to-understand instruction manual must meet our published specifications for performance or the purchase price will be cheerfully refunded.

TEST INSTRUMENTS

Sin. OSCILLOSCOPE Model 10-12U. Laboratory quality at utility oscilloscope price. Wide band amplifiers essential for T.V. servicing, F.M. alignment, etc. T/B covers 10 c/s-500 kc’s in 5 ranges.
£45.15.0 Assembled £35.17.6 Kit

PORTABLE ‘S’COPE Model OS-I. A compact portable oscilloscope, ideal for servicing and general work. Printed circuit board. Case 7 x 4 x 12 in. Long. Wt. only 10 lbs.
£30.8.0 Assembled £22.18.0 Kit

AMATEUR BANDS Receiver
Model 7P-20U. Transistorised 0-5-50 v. d.c. Up to 1.5 amps. Compact 9 x 6 x 11 in.
£47.8.0 Assembled £35.8.0 Kit

VALVE VOLTMETER, Model V-7A. The world’s best selling VTVM. Measures up to 1,500 volts (d.c. and r.m.s.) and 4,000 pk. to pk. Res. 0-12 1,000 Mc/s. Centre zero dB scale, d.c. input resistance 110M). 4-jin. meter. Complete with test probes, leads and standardising battery.
£19.18.6 Assembled £13.18.6 Kit

DE-LUXE 6in. VALVE VOLTMETER. Model IM-13U. Similar spec. to model V-7A but with improved accuracy. Larger meter. Unique gimbol mount.
£36.18.0 Assembled £18.18.0 Kit

DE - LUXE TRANSISTOR TESTER. Model IM-30U. Many special features. Provides complete d.c. analysis of PNP, NPN transistors and diodes.
£35.10.0 Assembled £24.18.0 Kit

TV ALIGNMENT GENERATOR. Model HFW-I. Covers 3.6 to 220 Mc/s fundamentals.
£47.10.0 Assembled £37.18.0 Kit

RF SIGNAL GENERATOR. Model RF-IU. Up to 100 Mc/s fundamental, 200 Mc/s harmonics. Up to 100 mV output on all bands.
£19.18.0 Assembled £13.8.0 Kit

MULTIMETER. Model MM-IU. Ranges: 0.1 v. to 1,500 v. a.c. and d.c.; 150µA to 15A d.c.; 0.25A to 20M±. 4-jin. in. 50µA meter.
£18.11.6 Assembled £12.18.0 Kit

A wide range of other test instruments available including: R/C Bridge C-3U £10.10.0. AP V/Voltmeter AV-3U £14.10.0. Wattmeters AW-1U, £17.5.0. Capacitance meter CM-1U £15.15.0. Power supplies. Decade boxes etc. Many other instruments available under American Mail Order scheme. Why not send for full details?

LOW-PRICED SPEAKER SYSTEM SSU-I

A practical solution to the problem of a moderately priced speaker suitable for Stereo Mono amplifiers where the equipment has to be compact. Two speakers, balance control, duccted port reflex cabinet.
Horizontal or vertical (with matching legs).
Incl. P.T. £12.12.0 Kit

DAYSTROM LTD
Dept. P.W.-8, GLOUCESTER, ENGLAND

www.americanradiohistory.com
HI-FI AMPLIFIERS

NEW!! DE-LUXE ALL TRANSISTOR STEREO AMPLIFIER, AA-22U
At last, a British transistor amplifier with high power (20 + 20W) at a reasonable cost, capable of delivering full power at all frequencies in the audio band. Handsome fully finished walnut veneered cabinet. New, compact, professional slim-line styling. Send for full specification of this outstanding amplifier. Kit £63.18.0. Assembled £68.16.0.

TAPE RECORD/REPLAY MODELS

MASTER STEREO with inexpensive stereo SPEAKERS FOR spec. "amateur" or short case. Send receiver.

RADIO.

Send for full spec. of any model.

Send for full spec. of any model.

TRANSPORT RECEIVERS

“OXFORD” LUXURY TRANSISTOR DUAL WAVEBAND RECEIVER.
The ideal domestic or personal portable receiver. 10 Semi-conductors. Solid leather case. Send for full details.

Incl. P.T. £14.18.0 Kit

Incl. P.T. £12.11.0 Kit

“MOHICAN” GENERAL COVERAGE RECEIVER. Model GC-1U. Excellent portable or general purpose receiver for "amateur" or short wave listening. See full spec. leaflet.

Assembled £45.17.6 £37.17.6 Kit

SPEAKERS FOR YOUR OWN ENCLOSURE

12” Heavy-duty Bass (Fane 122/12) £7.7.0.
2” Tweeter (Fane 301) £3.1.6.
(both as used in the Cotswold systems).
12” Bass speaker (Audiom-51) £9.12.5.
8” Goodmans General Purpose G8 £1.8.6.
Two Speakers + Cross-over, System SCM-1.
(As used in model SSU-1) with details for enclosure £5.5.0.

ELECTRONIC WORKSHOP KIT. Model EW-1. An outstanding experimental kit. £7.13.6 Incl. P.T.

A WIDE RANGE OF BOOKS ON ELECTRONICS AND RADIO. PLEASE SEND FOR LISTS OR PRICES.

FREE CATALOGUE of the BRITISH HEATHKIT RANGE

Gladly sent on request .

HI-FI TUNERS

TRANSISTOR MIXER, Model TM-1. A must for the Tape enthusiast.

£16.17.6. Assembled. £11.16.6 Kit

SW HI-FI MONO AMPLIFIER. Model MA-5. A low priced amplifier based on the S-33. Printed circuit construction makes it easy to build.

£15.10.0. Assembled £10.19.6 Kit

HI-FI MONO POWER AMPLIFIER. Model MA-12. Ideal for use with Models USC-1 and UMC-1. 0.1 THD at 10W. Wide frequency range.

£15.10.0. Assembled £11.18.6 Kit

£38.9.6 Assembled £28.9.6 Kit

Send for full spec. of any model.

EQUIPMENT CABINETS

A large range, in kit form or assembled and finished, available to meet most needs. Illustrated details on request.

Prices from £7.15. to £44.2.0

Many other models covering a wide range of equipment for HOME, OFFICE or WORKSHOP.
SEND FOR FREE BRITISH CATALOGUE

American Catalogue sent for 1/- post paid

PUBLIC ADDRESS AMPLIFIER, PA-1. 50 w. Amplifier, two heavy duty speakers, variable Tremolo. Ideal for use with guitars, etc. £54.15.0 Kit

£74.0.0. Assembled

50 W POWER AMPLIFIER, MA-50 Ideal for PA work, electronic organs etc. £27.18.0 Assembled £19.18.0 Kit

To DAYSTROM LTD. Dept. P.W.-8, GLOUCESTER ENG.

Please send me FREE BRITISH CATALOGUE (Yes/No) Full details of model(s)...

NAME ..

ADDRESS ..

www.americanradiohistory.com
WE REQUIRE ALL GOODS

NOTE: AU8 6/9
6AK8 5/9 68H7
6Z4 7/6 6P1
304
IDS 6/6
108
 lA5 6/-

16/10 6F8
90/-
8/-
5/8
3/-
8/6 ,6L7GT 6/8
1817 6/3
6LD3
6K7GT
6K70
6270T 7/-
1811A.1.2.8.1 11/
6F12
28/3
12Ì6
11/. 12L50
28/1
14.0124
3/-
8/-
18
128E7
12BH7
12A8
10P13
10D2 11/8 30P1.1
10(.'1
96W6
7D:1
FC116
microphones, etc.
13/6.
E88CX7
DY87 7/6
DM
D1130
DF97
DEWS
EL4I 7/-
EL35
EF37A
EF9 20/6
ECC804
E(.`Ch8
ECC81
EBF83 7/3
EB41 4/9
EB34
..I
4001275v.
Q3,4
Q3,4
3/6. 357.3
3/6
121- B339
5/3
15/. 121- AC2pen11/6
10/6
161-
E88CX7
DY87 7/6
DM
D1130
DF97
DEWS
EL4I 7/-
EL35
EF37A
EF9 20/6
ECC804
E(.`Ch8
ECC81
EBF83 7/3
EB41 4/9
EB34
..I
4001275v.
Q3,4
Q3,4
3/6. 357.3
3/6
121- B339
5/3
15/. 121- AC2pen11/6
10/6
161-
August, 1965

SURTBITON PARK RADIO LTD.

THE PEMBRIIDGE COLLEGE OF ELECTRONICS PROVIDES TRAINING IN RADIO AND TELEVISION

FULL-TIME COLLEGE COURSE IN RADIO AND TELEVISION

Our Course has now been extended to sixteen months' duration to include theoretical and practical instruction on transistor television receivers, U.H.F. television receivers and colour television.

Next course commences 7th Sept., 1965.

This Course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations.

Provides excellent practical experience on valve and transistor radio receivers and all well-known makes of television receivers.

To:
The Pembridge College of Electronics (Dept. PTH)
34a Hereford Road, London, W.2.

Please send, without obligation, details of the Full-time Course in Radio and Television.

Name.

Address.

www.americanradiohistory.com
HIGH-FIDELITY EQUIPMENT

1. Mullard "10 Plus 10" Stereo Amplifier
A high-fidelity design providing up to 10 watts per channel.
KIT OF PARTS £20.0.0
Built and tested £24.0.0 (C. & 1. 7/6)
We can also supply the Main Amplifier for operation with our Dual Channel Pre-amplifier.

2. Mullard Dual Channel Pre-Amplifier
A four-valve design for both Stereophonic and Monophonic operation.
KIT OF PARTS £16.10.0
Built and tested £15.0.0 (C. & 1. 5/6)

3. The "Twin Three" Stereo Amplifier
Based on a recent design by Mullard Ltd. It is ideally suited for use in Portable Record Players.
Built and tested £10.0.0 (C. & 1. 7/6)
To construct a Stereo Portable Record Player, we offer:
- Amplifier with two 5-watt loudspeakers (for £10.0.0.0 (C. & 1. 10/6)

4. Tudor AM/FM Tuner
A four-tube AM/FM long and medium wave band receiver. £12.10.0
Built and tested £14.0.0 (C. & 1. 7/6)

5. Mullard 3-Valve Pre-Amplifier Tone Control
Specially designed for the Mullard range of Stereophonic Power Amplifiers.
KIT OF PARTS £10.0.0
Built and tested £13.0.0 (C. & 1. 5/6)

6. Mullard "5-10" Main Amplifier
For use with Mullard 2- or 3-valve pre-amplifiers with which an undistorted output of up to 10 watts is obtained.
KIT OF PARTS £10.0.0
Built and tested £13.10.0 (C. & 1. 8/6)

7. Mullard "5-10RC" Amplifier
The popular "5-10" complete incorporating Passive Control Unit providing up to 10 watts high quality reproduction with an output of 660 mV.
KIT OF PARTS £12.0.0
Built and tested £18.0.0 (C. & 1. 7/6)
With Partridge Output Transformer £18.0.0 extra.

8. Mullard "3-JRC"
A high quality Amplifier developed from the very popular 2-watt Mullard "2-C" design.
KIT OF PARTS £15.0.0
Built and tested £13.10.0 (C. & 1. 10/6)

9. Mullard Type "C" Tape Pre-Amplifier
Suitable for most 1-track Mono Tape Decks.
KIT OF PARTS £14.0.0
Built and tested £15.10.0 (C. & 1. 7/6)

10. Mullard Tape Amplifier Model HP/T/13
Based on Mullard's Type "A" design and suitable for most 1-track Mono Tape Decks.
KIT OF PARTS £12.10.0
Built and tested £13.10.0 (C. & 1. 10/6)

11. J10 Power Amplifier
Incorporates the latest deodegrafode 2SC196 valves in push-pull, Partridge ultra linear output transformer, Partridge mains transformer and smoothing choke. 10 watts power output, surplus power output, surplus power available for tuner.
Built and tested £13.0.0 (C. & 1. 5/6)

12. Double Feature Power Amplifier
Input for microphone, crystal or magnetic pick-up, output transformer, and built-in power supply. £12.10.0 extra.

Combined Price Reductions
Mullard 5-10 Main Amplifier and 2-valve Pre-amplifier.
KIT £18.10.0 (C. & 1. 8/6)
Built and tested £21.10.0 (C. & 1. 9/6)
Mullard 3-10 Main Amplifier and 3-valve Pre-amplifier.
KIT £18.10.0 (C. & 1. 8/6)
Built and tested £22.10.0 (C. & 1. 9/6)

Price £1 extra.

MULLARD 2-VALVE PRE-AMPLIFIER

Employing a simple 2-valve design, the Mullard Amplifiers are suitable for broadcast receivers, or for any other equipment where a small power amplifier is required.

Kit includes transformers, and variable resistance magnetic types.

* Input: 650 mV.
* Output: 10 watts.
* Frequency response: 10 Hz to 20 kHz.
* Sensitivity: 100 mV.

* input (a) Direct from high output tape head. (b) From tape amplifier or input stage.
* Microphone Channel.
* Sensitive Microphone Channel.
* Wide range RAB and TREBLE controls.

KIT OF £6.6.0 BUILT AND £9.10.0 (Arrt. & Parts)

** Make an ideal combination with the 2-valve Pre-amplifier, plus our "5-10" main amplifier.

Fully descriptive leaflets available on any of the above items.
Instruction Books and Detailed Price Lists are supplied free with Kits of Parts but may be purchased separately if required.

(All items with PARTRIDGE Transformers £1.0 extra.)
LOUDSPEAKERS

We supply a complete range of Goodman, Wharfedale, Pictoria, T&L Speaker Units, and complete systems. A comprehensive leaflet is available on request, this covers technical specifications and prices of nearly 60 types including:

- Celestion £X15 (5ohm) £11.10.0
- Celestion Model £X012 £16.10.0
- Stentorino HP £15 5 watts £3.10.0
- Stentorino HP1052 £19.50
- Goodman Axox 15 9 watts £6.5.11
- Goodman Axox 20 25 watts £16.17.4
- Wharfedale Super 8 RS/12/D £23.10.0
- Wharfedale RS/10/D £23.10.0

Any spool 3 in. 1/3; 4 in. 7/8. FULLY AUTOMATIC POST

7 in. 1,800 ft. Polyester bin. £9.16.2

 forwards.

American Recording Tape

5 in. 600ft. £1 Acetate .. £8.5.11
6 in. 900ft. £1 Acetate .. 10/-
8 in. 1,200ft. £1 Acetate .. 12/-
10 in. 1,800ft. £1 Acetate .. 17/-
12 in. 2,400ft. £1 Acetate .. 25/

Plastic Spool Containers. For spool sizes 5 in. 1/8, 5 in. 3/8, 7 in. 4/8, 7 in. 5/8, and 7 in. 7/8. £1.75 per pkg.

Fully Automatic Tape Splicer

14/6, 1. F. & P. 1/6.

Plastic Tape Cables

9 in. 1/2, 3 in. 1/2, 4 in. 1/2, 6 in. 1/2, 8 in. 1/2, 10 in. 1/2, 12 in. 1/2, 16 in. 1/2, 20 in. 1/2, 20 in. 1/4, and 12 in. 1/4.

Chassis Bargain

A 6 valve Superhet Radiogram chassis of outstanding quality covering MW 160-55 cm. LW 1500-2000 metres, VHF 50-100 Mc. Incorporating internal Ferrite Rod Aerial and the famous Gorton Tuning Heart for VHF pickup input suitable for most modern Record Players. Power output 3 watts, valve line up, £40.00, £50.00, £60.00. £84.00, £63.00. Volume On/Off and Tone Control, attractive black Tuned Dial size 15 x 2 x 1/2 in. with gold lettering and contrasting cream and gold knobs. £22.10. Also 250 in.2, Size 15 x 7 x 1/2 in. PRICE £15.00. P. & P. 6/6. (Terminals available.)

THE TRAVELER Mk. II

CAR RADIO

* MEDIUM AND LONG WAVES

* 12 VOLT POSITIVE EARTH

* Push Button Wave Change

* SIZE 7 x 2 x 7 inch

* TRANSISTORIZED

Only 9 1/2 gns. F. & P. 5/-.

Fully built complete with 7 x 4 in. speaker fitted to baffle fixing brackets, filter unit, all nuts and bolts and fitting instructions.

Optional Features: Chromate plated weatherproof telescopic aerial, Type 1, 12in. 30cm. 19/6, Type 2, 12in. 30cm. 29/6, Type 3, fully retractable and locking 1m. 30cm. Dep't, below wing, 14in. 35cm. all plus, F. & P. 2/6 each purchased separately.

The "HIGHWAYMAN" Car Radio to build yourself. Similar in appearance to above but with unoff push button switch. Complete set of parts only £7.16.6. F. & P. 7/6.

Tuner Units

ARMSTRONG

Mono/Tuner Amp. Model 12TH £26.10.0
Stereo/Tuner Amp. £17.0.0 £37.10.0
AM/ FM Tuner 225 £28.10.0
FM Tuner 224 £39.0.0
Carr. and Ins. 1/6.

JASON

FM/TV Tuner Kit of Parts £8.15.0
FM/TV Tuner Kit of Parts £10.15.0
FM/TV Tuner for Fringe Areas, Kit of Parts £25.0.0
FM/TV Tuner £40.0.0

TRIPLEX TV Tuner 300 £15.14.0
Carr. and Ins. on above 3/6 each.

NEW LOW PRICE COMMUNICATION RECEIVERS

Rec. 4, 550 Kcs±30 Mcs in 4 bands. £18.15.0. Carr. 15/6.
Rec. 5, 550 Kcs±30 Mcs 4 bands. £15.18.3. Carr. 8/6.

Send S.A.E. for fully descriptive brochures.

LEADING AGENTS FOR All B & O and SABA Equipment also SONY Tape Recorders

LONDON

19 Tottenham Court Road, W.1. M'1163 8666. Half Day Saturday.
23 Tottenham Court Road, W.1. M'1163 2431. Half Day Thursday.
50 Edgware Road, W.2. P'1146 2411. Half Day Thursday.

CROYDON

15 Suffolk House, George Street, M'1228. Half Day Wednesday.

BRISTOL

26 Merchants Bridge, Bristol 1. Bristol 20991. Open 6 days a week.

LIVERPOOL

02 Lord Street, Royal 7456. Open 6 days a week.

MANCHESTER

29th Withy Grove, Manchester 5 Blakelands 577/5. Open 6 days a week.

SHEFFIELD

125 The Moor, Sheffield, Sheffield 29903. Half Day Thursday.

Visit your nearest STERN-GLYNE ELECTRONICS CENTRE

www.americanradiohistory.com
Building an Amplifier

Here is a buy for you. Modulator Unit Type 20. Contains parts ideal for building a large output amplifier and all really set out in metal case. To make it, you have four high output valves Type K744, driver valve Type MH41, iron core choke for up to 200 milli-amps. Burns of wire wound and carbon resistors, paper and mica condensers. Terminals and tag panels etc. etc. Three other Items of Interest to everybody and these are, 1. Auto-transformer. 2. Output Transformer. 3. Troubleshooter. A.D. 1 minus and insurance. Price for complete unit is 12/6.

500 M.W. TRANSISTOR AMPLIFIER

4 transistors including two in push-pull input for crystal or magnetic microphone or pickup-feed back loops—sensitivity 5 mV.

Price 19/6

Port and insurance 2/-

50 ohm Speaker. 1/2 in. extra.

Making a Fan Heater

Miniature motor laminated pole. Operates at 300-400 V.D.C. Original cost at least 12 each, 8/6 plus 1/6. Malad model, 1/6 plus 1/6 postage and insurance.

Building a 'Scope

SNIPERSCOPE

Famous wartime 'cat's eye' used for seeing in the dark. This is an improved image converter cell with a silver carbide screen which lights up (like a cathode ray tube) when the electron beam is deflected by the infra-red strike. It follows that as light from an ordinary lamp is rich in infra-red these cells will work better in air, counting cars, smoke detection and the hundred and one other devices as will the simpler type of photo cell. Here then is a golden opportunity for some interesting experiments, price 6/- each. Post 2/6.

Cabinet Snap

This one cabinet as illustrated will take most of your column. A cabinet of this sort is available this month at a special sale price of 12½ plus 2/6 as a special offer. Also 22/6 plus 2/6 post and insurance. Size is 13½ in. height, 4½ in. deep and 11 in. wide, covered in a fine tinte I.C.I. fabric.

Waterproof Heater Wire

16 yrs. length 70 watts, self regulating temperature control, 1½/- post free.

THERMOSTATS

Type 'A' 15 amp, for controlling room heaters, radiators, airing cupboards. Has clip-on element. For push-button knobs quickly adjustable from 300° to 100°, for wall mounting. 5/-, P.A.P. 15/-.

Type 'B' 15 amp, 2½ in. 17 lt. iron core type made by the famous Sunvic Co., designed to adjust this from 50° to 600°F. Internal screw alters the setting so this could be adjustable over 30° to 1,000°F. Suitable for controlling furnaces, over 6½ in. immersion heater or for making flameless or gas heating. 12/6 plus 2/6 post and insurance.

COMPONENT BARGAINS

450 Watts IF Transformers, Standard type, 2/6 each, 6/- doz. 2/2 in. square. 5/6 each, 15/- doz. 10/6.

45 Receiver Tubes, complete except for crystals packed with valves and components, easily buildable into other gear. 19/6, plus 4/6 carriage and insurance. Output Transformer. Standard pentode type 2/6, 24/- doz.

Multil 510. Amplifier chassis complete with mains and accessories, screens enamelled, 7/6, plus 2/6 post and insurance. Pre-amp Whistler Bridge. Opportunity to build 100°, wire wound pot, 15 watt rating. 5/- only. Also 100°, 100 watt Bridge, similar, 6/- 9/- each.

48 Classic Switching circuits, complete except for crystals packed with tubes and components, ideal for DIY work. 15/6, plus 7/6 post and insurance.

Sound Powered Inserts (D.L.R.) as P.A. system, as speakers of microphones, 6/-, 4/- doz.

4 Magn. Potentiometers. Sealed type by Morganite, amongst the best ever made. Standard 1 spindle. 1/2 in. long. 6/6 doz. 3 meg. ditto. 6/- doz. 1 meg. ditto. 6/- doz. 10 meg. ditto. 5/- doz. MF Metal Screen Rnd for American 5 CP1 etc. 5/6 pair for VB7R and other 6in. tubes. 10/- doz. Ditto for 2.5m. tube, 10/- doz.

Trimmer Bank. 5 x 50 p electronic trimmers mounted on metal strip 2½ in. long. Ideal for making constant current-ceramic insulation, 1½ each. 18/- doz.

MAINS POWER PACK

Designed to operate transistors and valves. Adjustable output (9—12 volts for up to 500mA) (class B working). Takes the place of any of the following battery packs; FFP—FPT—FP6—PP6—FPT—PPS and others. Kit complete: mains transformer, rectifiers, smoothing and load resistor 400 and 500 mf condensers, power diode and instruction. Real snap at only 14/6 plus 2½ post.

Electronics (Croydon) Ltd

Dept. P.W. No. 266 LONDON ROAD, WEST CROYDON, SURREY

Post orders to: 43 Silverdale Road, Eastbourne, Sussex
1. 6 VALVE 15 WATT PUSH-PULL AMPLIFIER, 15 x 7 x 12in. A.C. Mains 200/230 volts. Input: 4 inputs with controls for volume and gain and treble lif t controls. Tapped for 2 1/2 crop speakers, Extra H.T. and L.T. for F.M. Tuner supplies etc. Built and tested. 7 gu. P. & P. 10/-.

2. CYLDON A.M. F.M. PERMEABILITY TUNERS FOR ALL TRANSISTOR OPERATION. Size: 14 x 11in. approx. By famous manufacturer, A.M. P. 3.49. 1/2w, 1mF, 1.5mF, M. A. M. coverage from 1670 Kc to 3020 Kc. F.M. coverage 87.5 to 108 Mc. Q.M. coverage 156 Mc to 136 Mc. Complete with Tuner, 1st and 2nd A.M. L.F., 3rd and 4th F.M. P. & P. 4.50 F.H. One pair. A.M. P. 1.20. All the above are the R.F. end of an A.M / F.M. receiver or radio etc. The above items; £1.10.0.

3. AMPLIFIER KIT. 3 to 4 watt Amplifier Kit.

5. FLORESCENT LIGHT FITTING. Twin 40 watt 300/230 v. (two tubes. 35/- P. & P. 1.75.

6. OSCILLOSCOPE for D.C. and A.C. APPLICATIONS. Push pull X amplifier. Fly back storage. Internal Transformer, etc. Is available for external use, pulse output available for checking TV line or TV Transformers, etc. Precision for external or C.E.T. Brightness Modulation. A.C. mains 200/250 volts. £18.10.0. P. & P. 19/-.

7. FULL 12 MONTHS' GUARANTEE INCLUDINO VALVES AND TUBES.

8. A.C. MAINS MOTOR. Can be used for a variety of purposes, silent running, satisfactory in every way. 200/260v. A.C. 8/6. P. & P. 3/-.

9. POCKET MULTI-METER. Size 31 x 74 x 11in. Meter size 31 x 16in. Sensitivity 1,000 o.P.V. on both A.C. and D.C. A.C. and D.C. voltage 0.15, 0.25, 0.50, 0.1000 mA. Resistance 0-100 ohms. Complete w. test probes, battery and full instructions. 3/-6 P. & P. 3/3.

10. FREE GIFT for limited period only. 20 watt electric soldering iron. £1.50 in every purchase of the Pocket Multi-meter.

12. POWER SUPPLY KIT in metal case, size 31 x 94 x 3in. Incorporating mains transformer, rectifiers and condensers. 300/260v. A.C. mains output. £10/6. P. & P. 11/-.

13. B.B.R. MONARCH U414 WITH FULL FI HEAD. 4-speed, plays 10 records, 15in., 10in., or 7in. at 33, 45 and 78 r.p.m. Interchange 7in., 10in., and 12in. records at the same speed. Has musical play position; colour brown. Overhauled: 3/-4/4 of spare required above baseboard 4/-4. below baseboard 2/-4. Fitted with Full FI, turnover crystal head. £18.10.0. P. & P. 7.6.

14. 50 MICRO-AMP METER movement by world famous manufacturer. 8 x 31/10, 2/-6. P. & P. 1.6.

15. 8-WATT 5-VALVE PUSH-PULL AMPLIFIER & METAL RECTIFIER. Size 9 x 5 x 11/10in. A.C. Mains. 200/230v. 8 valves. For use with 8, 10, or 12 records, multiple instruments, all makes of pick-ups and needles, output 8 watts at 5 per cent total distortion. Individual base and total lift controls. Two inputs, with controls for gain and gain. Output transformer tapped for 2 and 4 ohm speaker units. Built and tested. £18.10.0. P. & P. 8.5.

16. 40W FLORESCENT LIGHT KIT incorporating GEC choke size 1 x 11 x 11/10in. 2-pin holders, starter and starter holder, 11/- P. & P. 6.

17. Similar to above. 80W Fluorescent Light Kit incorporating GEC choke size 1 x 11 x 11/10in. 2-pin holders, starter and starter holder 17/- P. & P. 9/6.

18. FIRST QUALITY P.V.C. TAPE. 10in. wide, 500ft. 9/- 6in. wide, 500ft. 12/- 3in. wide, 1200ft. 17/- 3in. wide, 250ft. 3/- 4in. wide, 1000ft. 4/- 4in. wide, 250ft. 6/- 3in. P. & P. on each 15/- 4 or under Post Free.

All enquiries S.A.E. Goods not despatched outside U.K.

Shop hours 9 a.m.—5 p.m. Early closing Wednesday.

www.americanradiohistory.com
COMBINED PORTABLE & CAR RADIO

The Radio with the STAR features

4in. SPEAKER

★ 7-transistor superhet. Output 350mW.
★ Grey wooden cabinet, fitted handle with silver coloured fittings. Size 12¼ x 8½ x 3¼in.
★ Horizontal tuning scale, size 11½ x 2½in. in silver with black lettering.
★ All stages clearly marked.
★ Ferrite-rod internal aerial.
★ I.F. neutralisation on each stage 460 kc/s.
★ D.C. coupled output stage with separate A.C. negative feed back.
★ All components, ferrite rod and tuning assembly mounted on printed board.
★ Operated from PP9 battery.
★ Full comprehensive instructions and point-to-point wiring diagrams.

ONLY £4.4.0

Plus 6½ P. & P. Parts list & circuit diagram 2½. FREE with parts.
★ Printed circuit board. back printed with all component values.
★ Fully tunable over medium and long waveband.
★ Car aerial socket. ★ Full after-sale service.

RADIO & TV COMPONENTS (ACTON) LTD 21C High St., Acton, London W3
Open 9 a.m.—6 p.m. including Sat. Early closing Wed. Goods not despatched outside U.K. All enquiries S.A.E. Terms C.W.O.

FREE TO AMBITIOUS ENGINEERS — THE LATEST EDITION OF ENGINEERING OPPORTUNITIES

Have you sent for your copy?
ENGINEERING OPPORTUNITIES is a highly informative 156-page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio & Electronics Courses, administered by our Specialist Electronics Training Division—the B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

Satisfaction or refund of fee
Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than £3 a week, send for your copy of "ENGINEERING OPPORTUNITIES" today—FREE.

WHICH IS YOUR PET SUBJECT?

- Mechanical Eng., Electrical Eng.
- Civil Engineering, Radio Engineering, Automobile Eng., Aeronautical Eng., Production Eng., Building, Plastics, Draughtsmanship, Television, etc.

GET SOME LETTERS AFTER YOUR NAME!

- A.I.D.E.
- R.E.
- A.M.I.E.R.E. City & Guilds

PRACTICAL EQUIPMENT

- State Practical and Theoretical Courses for beginners in Radio, Electronics, Etc., A.M.I.E.R.E. City & Guilds
- Practical Radio, TV, Radio Servicing, Practical Electronics, Automation

INCLUDING TOOLS!

The specialists Electronics Division of THE B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for details.

B.I.E.T. SCHOOL OF ELECTRONICS

POST COUPON NOW!

Please send me your FREE 156-page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page)

NAME
ADDRESS

SUBJECT OR EXAM THAT INTERESTS ME

SE/21

THE B.I.E.T. IS THE LEADING ORGANISATION OF ITS KIND IN THE WORLD
R.S.C.

MAIL ORDERS TO: 54 WELLINGTON STREET, LEEDS 1

BRADFORD
10 North Parade
(Tel: 22904)

BRISTOL
14 Lower Castle Street
(Half-day, Wed.)

BIRMINGHAM
30/31 Gt. Western St.
(Half-day, Wd. & Th.)

DARLINGTON
13 Post House Wynd
(Half-day)

EDINBURGH
11 Leith Street
(Half-day Wed.)

GLASGOW
4a/6b Oldham St.
(Tel: 2778

LEEDS
57 County (Metca) Terrace
(Tel: 64620)

LIVERPOOL
73 Dale St. (No half-
(Tel: CENtral 3573)

LONDON
238 Essex Rd., N1
(Half-day Thursday)

MANCHESTER
60A-60B Oldham St.
(Tel: CENtral 7788

MIDDLESBROUGH
106 New-
(Half-day Wednesday)

SHEFFIELD
13 Exchange Street
(Tel: 4796)

STOCKPORT
2716

JASON FHT & V.I.B.F.M.T.,
Design, total cost of parts and labour, including tax, in.

each, etc.

THOMAS & TREVOR,完了

R.S.C. MAINS TRANSFORMERS

Interleaved and Impregnated. Primaries 250-250-500 v. 50 c/s, Screened, TREBLE CONTROLS. High Shrouded DROP THROUGH

-250v. 70mA, 6.3v. 4a. 0-6-6.3v. 2a 17/9
-250v. 100mA, 6.3v. 4a. 0-6-6.3v. 2a 19/9
-250v. 150mA, 6.3v. 4a. 0-6-6.3v. 2a 21/9
-250v. 300mA, 6.3v. 4a. 0-6-6.3v. 4a 23/9
-250v. 500mA, 6.3v. 4a. 0-6-6.3v. 4a 26/9
-250v. 1A, 6.3v. 4a. 0-6-6.3v. 4a 28/9
-250v. 1.5A, 6.3v. 4a. 0-6-6.3v. 4a 29/9
-250v. 2A, 6.3v. 4a. 0-6-6.3v. 4a 31/9

FULLY SHROUDED UPRIGHT TYPE

-250v. 70mA, 6.3v. 4a. 0-6-6.3v. 2a 16/9
-250v. 100mA, 6.3v. 4a. 0-6-6.3v. 2a 18/9
-250v. 150mA, 6.3v. 4a. 0-6-6.3v. 2a 20/9
-250v. 300mA, 6.3v. 4a. 0-6-6.3v. 4a 22/9
-250v. 500mA, 6.3v. 4a. 0-6-6.3v. 4a 24/9
-250v. 1A, 6.3v. 4a. 0-6-6.3v. 4a 26/9
-250v. 1.5A, 6.3v. 4a. 0-6-6.3v. 4a 28/9
-250v. 2A, 6.3v. 4a. 0-6-6.3v. 4a 30/9

S.C. BATTERY CHARGER AND KITS

for A.C. Mains 200-250v., 50/60c., ASSEMBLED. Full C.T. charger kit, with 15/6v., 15mA, 6.3v., 3a.

R.S.C. BATTERY MAINS CONVERSION KITS

For any single or auto-change unit. For 200-250v. A.C. mains.

R.S.C. BATTERY MAINS CONVERSION KITS

For any single or auto-change unit. For 200-250v. A.C. mains.
R.S.C. STEREO 20/HIGH FIDELITY AMPLIFIER

PROVIDING 10/14 WATS ULTRA LINEAR PULL-PUSH OUTPUT ON EACH CHANNEL

SUITABLE for "MIKE", GRAM., RADIO OR TV INPUTS INTENDED FOR THE HOME OPERATOR, BUT SUITABLE FOR LARGE HALLS OR CLUBS.

- Four-position tone compensation and input selector switch.
- Will amplify directly from Tape Heads.
- Stereo/Mono switch so that peak musical output of 8 watts can be obtained.
- Separate Bass "+Cut" and "-Cut" and treble "Left" and "Right" controls.
- New panel indicators.
- Handsome Perforated Frontplate.

Send S.A.E. lor illustrated leaflet.

Based on a current Mallard design and employing valves; ROCKS, RELM, ECC88, ECL82, EL84, E821.
Output transformers are high quality sectionally wound to required specification. Output matchings for 3 and 15 ohm speakers on each channel.
Complete set of parts with point-to-point wiring diagrams and instructions or assembled, tested and supplied with our usual 12 month's guarantee for 15 Gns., or DEPOSIT 4 Gns. (Total 20 Gns.)

Audioline HI-FI TAPE RECORDER KIT 25

REALISM AT INCREDIBLY LOW COST, CAN BE ASSEMBLED IN AN HOUR

Introducing the latest Colaros Studio Tape Recorder. The Audioline High Quality TAPE RECORDER provides a high degree of realism at a low cost. A contemporary design based on the latest developments in electronics, it is suitable for use in home entertainment or studio applications. Complete set of parts with fully punched point-to-point wiring diagrams and instructions or assembled, tested and supplied with our usual 12 month's guarantee.

R.S.C. AIO 30 WATT ULTRA LINEAR HIFI AMPLIFIER

A highly sensitive Pull-Push amplifier with different feedback equalisation for each of 3 speeds. The FLUX P.M. Speaker's extra Tape Spool, a reel of nearly 1500 ft. of a Heavy-duty tape and a Heavy-duty Portable Carryall Cabinet tastefully covered in two shades of Resinex and a very high gloss circuit board. Total cost is purchased individually 80 Gns. Performance equal to units in the 200-250 class. S. A. E. lor leaflets.

RADIO FEEDER UNIT

An extra input with a separate volume control, is connected to a second input, such as Gram and "Mike" can be mixed. 200-250-500 c.w. c.c. A . M. output for 3 and 15 ohm speakers. Complete kit of parts with fully punched point-to-point wiring diagrams and instructions or assembled, tested and supplied with our usual 12 month's guarantee.

INTEREST CHARGES REFUNDED

on H.P. and CREDIT SALE Accounts settled in 6 months.

HIGH FIDELITY 12-14 WATT AMPLIFIER TYPE A11

PUSH-PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE CONTROL PRE-AMP STAGES

Two input sockets with associated controls allow mixing of "Mike" and gram., as in AIO. High sensitivity. Inductive 5 valve hf. circuit; 6JQ4, 6L6, 6L6, 6F6, 6L6G. High Quality sectionally wound output transformer specially designed for Ultra linear operation and reliable small condensers of high quality, small reference points for Ultra linear operation and reliable small condensers of high quality. INDIVIDUAL CONTROLS FOR BASS AND TREBLE "+Cut" and "-Cut" frequency response ± 3 dB. 50-30,000 c.w. Six stage feedback loops. Hum level 60 dB down. Only 110 milliwatts input required for FULL OUTPUT.

Suitable for use with all makes and types of pickups and microphones. Complimentary with the very best designs for STANDARD OR LONG PLAYING RECORDS. For MUSICAL INSTRUMENTS such as STRING, BASS, LEAD, or HIFI, etc. NO CUT-OUT with 1.5 volt. 300-250-50 c.w. Output for 3 and 12 ohm speakers. Kit is complete to test. chassis is fully polished. Full instructions and point-to-point wiring diagrams supplied. Only 8 Gns. C.A.

If required lourmetal cover with 2 carrying handles can be supplied for 1/2 Gns. Terms on ASSEMBLED UNITS; DEPOSIT 4 Gns. and 6 months payments of 7 Gns. (Total 118 Gns.). Send S.A.E. lor illustrated leaflet detailing Cabinets, Speakers, Mikes, etc.

R.S.C. STEREO/10 HIGH QUALITY AMPLIFIER

A complete set of parts for the construction of a stereo amplifier giving 3 watts high quality output on each channel (total 10 watts). Impedance is 80 ohm.

Suitable for all crystal stereo heads. Housed in a designed cabinet and employing valves; 6JQ4, 6JQ4, 6F6, 6L6G. Outputs for 2 and 20 ohm speakers. Three-point "+Cut" and "-Cut" and treble "Left" and "Right" controls. Provision is made for use as straight (non-inverting) hi-watt amplifier. Price includes parts and instructions supplied. Send S.A.E. lor leaflet.

Full constructional details and price list 28. Terms; Deposit 2 Gns. and 2 monthly payments of 9 Gns. (Total 15-16 Gns.).

Always In Stock at keen prices SINGLE AND AUTO RECORD PLAYING UNITS, PICK-UPS, CARTRIDGES, MICROPHONES, VALVES, CABINETS AND COMPONENTS too numerous to list.

R.S.C. STANDARD BASS REFLEX CABINET. For 15 in. Speaker, size 18.5 x 15 in. £19.0 Gns.

R.S.C. JUNIOR MODEL. For 12 in. Speaker, size 18.5 x 15 in. £14.0 Gns.

Audioline HI-FI SPEAKER SYSTEMS. Consisting of matched 12 in. 1500 line, 1500 high quality speaker, crossed connected. CR-10 (consisting of EM84, EF86, ECC83, etc.) and CR-10B (consisting of EM84, EF86, ECC83, etc.) with tweeter. Superb smooth response tuned to extended frequency range, from 40 to 20,000 in a startlingly realistic reproduction. Standard 10 in. Speaker, size 18.5 x 15 in. £14.0 Gns.
R.S.C. G100 100 Watt AMPLIFIER

TERRIFIC POWER OUTPUT FOR ALL PURPOSES

For ELECTRONIC ORGAN, LEAD, RHYTHM and BASS GUITAR, and all other musical instruments. FOR VOCALIST, Gram, RADIO and Tape etc.

- Incorporating SIX 12in. PLUS TWO 10in. HEAVY DUTY LOUDSPEAKERS.
- Total Rating, 190 watts.
- Housing in 4 substantial Wood Cabinets of pleasing design and covered in contrasting shades of Rexine and Vynair with gold trimmings.
- Four Jack Inputs in TWO CHANNELS with 4 Independent Volume Controls.
- Separate Bass and Treble Controls on each channel.
- For standard 200-250v. A.C. mains operation.
- Send S.A.E. for full descriptive leaflet, or visit one of our many branches and hear this fabulous amplifier.

FULL RANGE of MICROPHONES in stock. Most makes. Prices from 19/9 to £9. Credit Terms available over £5 or with other equipment.

R.S.C. BASS-REGENCY 50 WATT AMPLIFIER

AN EXCEPTIONALLY POWERFUL HIGH QUALITY ALL-PURPOSE UNIT

For lead, rhythm, bass guitar and all other musical instruments for vocalists, gram, radio, tape and general public address

* UNUSUALLY POWERFUL LOUDSPEAKER COMBINATION consisting of a FANE HIGH FIDELITY 12in. 50 watt unit PLUS A FANE 12in. 30 watt unit with extended frequency response.
* 4 Jack Socket Inputs and two independent Vol. Controls for simultaneous use of up to 4 pick-ups or "mikes".
* Separate cabinets fully covered in contrasting shades of Rexine/Vynair with gold trimmings, for speakers and amplifiers.
* Separate Bass and Treble Controls giving "Boost" and "Cut".

Send S.A.E. for leaflet. Or call at one of our many branches and compare the Bass-Regency units with units at more than three times the cost.

47 Gns.

INTEREST CHARGES REFUNDED

ON H.P. ACCOUNTS SETTLED IN 6 MONTHS

R.S.C. BASS MAJOR 30 WATT MULTI-PURPOSE HIGH FIDELITY AMPLIFIER FOR VOCAL & INSTRUMENTAL GROUPS

Eminently suitable for lead, rhythm, bass guitar and all other musical instruments

- Incorporator the two 12in. 25 watt Heavy Duty High Fidelity Fane Loudspeakers, one with dual cone for high frequencies.
- Robust wood-cabinets with exceptionally attractive covering of Rexine/Vynair with gold trimmings.
- Four Jack Socket Inputs and two independent Volume Controls for simultaneous connection of up to four Pick-ups or "Mikes".
- Separate Bass and Treble Controls.

Send S.A.E. for leaflet or call for demonstration at any branch. £4.30. 12 monthly payments of £3.40 (Total £36). £50. 9 monthly payments of £5.11.0 (Total £46).

30 WATT HIGH QUALITY AMPLIFIER FOR LEAD RHYTHM and BASS GUITAR

and for Vocal or Instrumental Groups

A Four Input, two volume control Hi-Fi unit with separate Bass and Treble "Cut" and "Boost" controls, designed for Vocal or Instrumental groups. For Bass, Lead or Rhythm Guitar. Mullard or Brimar type valves. For heavy or light sound. Separate bass and Treble controls with twin carrying handles. Attractive black and gold Rexine/Vynair with gold trimmings. Sold in strong Rexine covered cabinet with single carrying handles. For 20-250v. A.C. mains. Output for 6 or 15 ohm speakers, Send S.A.E. for leaflet.

or Deposit 2 Gns. and 9 monthly payments of £3.40 (Total £36).

39 1/2 Gns.

R.S.C. GS AMPLIFIER

8 watt high quality output. Incorporating high flux 12in. 10 watt, 12,000 line loudspeaker, High Sensitivity 40 ohm. High preampance jack input. Handsome specially made cabinet of not cardboard, above 10 x 13 x 7in. approx., finished in complementary shades of Rexine/Vynair, 200-250v. A.C. mains. Suitable for Lead or Rhythm Guitar, Vocal, Banjo, etc. £8.19.8 Or DEPOSIT 10/9 and 9 monthly payments of £2.51/6.

or Deposit 2 Gns. and 9 monthly payments of £3.33 (Total £21).

R.S.C. B20 MULTI-PURPOSE AMPLIFIER especially suitable for Bass Guitar, A high efficiency unit incorporating massive 20in. high flux loudspeaker specially constructed to withstand heaviest load conditions. For vocal or instrumental groups. Rating 35 watts. Individual bass and treble controls give ample "Boost" and "Cut". Two Jack socket inputs separately controlled. Cabinet is of substantial construction, attractively finished in two contrasting tones of Rexine and Vynair. Size approx. 35 x 21 x 12ins. Send S.A.E. for leaflet. £29 1/2 Gns.

or deposit 17/6. Credit Terms available over £5 or with other equipment. £3.40. 12 monthly payments of £3.05 (Total £36). £50. 9 monthly payments of £4.21/2 (Total £36). £60. 8 monthly payments of £7.50 (Total £60).

R.S.C. G15 15 WATT AMPLIFIER for Lead or Rhythm Guitar, 'Mike', Gram or Radio

High-fidelity push-pull output. Separate bass and treble "Cut" and "Boost" controls. Twin separately controlled inputs so that two instruments or "mikes" and pick-ups can be used at the same time. Loudspeaker in a heavy duty flux 12in. 20 watt model with cast chassis. Cabinet is covered in contrasting shades of Rexine/Vynair. Size approx. 18 x 18 x 9in. £19. Gns.

or Deposit 2 Gns. and 12 monthly payments of 3/3 (Total 21 gns.).

TRANSISTORISED SOUND MIXER

Enables mixing of up to 4 inputs, i.e. mike, Tape, gram, tuner, etc., into a single output. Compact and completely self-contained, uses standard 9 volt battery. Four standard jack inputs.

PRICE

49/6

294 PRACTICAL WIRELESS

August, 1965

www.americanradiohistory.com
August, 1965

PRACTICAL WIRELESS

295

LAFLAYETTE HA-63 COMMUNICATION RECEIVER

54 Gns. Carr. paid.

STAR SR 40 COMMUNICATION RECEIVER

151 Gns. Carrige 10/-.

OS/88 U OSCILLOSCOPES

High quality Portable American Oscilloscope. 3in. c.r.t. 7/8 in. 30 Mc X Amp. 0-3000 Kc. 40 M. 1.5 A. Power requirements. 110-120v. A.C. Supplied in "as new" condition, fully tested. P.O. Carr. 10/-. Suitable 21v.16. Transformer 15/6.

CLEAR PLASTIC PANEL METERS

Type 3R 30Ø 1 25/20Ø square fronts.
2mA 23/8 7V. DC 29/6
3mA 23/8 9V. DC 29/6
5mA 23/8 12V. DC 29/6
10mA 23/8 16V. AC 29/6
15mA 23/8 30V. AC 29/6
20mA 23/8 40V. AC 29/6
30mA 23/8 60V. AC 29/6
50mA 23/8 100V. AC 29/6
100mA 23/8 150V. AC 29/6
150mA 23/8 200V. AC 29/6
200mA 23/8 250V. AC 29/6
300mA 23/8 300V. AC 29/6
500mA 23/8 500V. AC 29/6
POST EXTRA. Larger sizes available—send for list.
ILLUMINATED "S" METER Pins grade quality. 1Ø square front. Available as units. OV. lamp.
2mA. P.P. 1Ø. Dial 2Ø. inch. square 3/8. P.P. 1Ø.

AVOMETERS

Model 7. 1Ø.10.6. Post & Ins. 2/6.

ERSKINE TYPE 13 DOUBLE BEAM OSCILLOSCOPES

Timebase 2 0.Ø. 1 m. 1.1 m. and 2 m. 0.Ø. X Amplifiers. Up to 2 m. 0.Ø. X Ampliers. 500 Kc. 100 Kc. 1.5 Mc. 100 Mc. 500 Mc. and 1 Mc. P.O. Carr. 22/6 x A.E. Guaranteed perfect. £5.10.6. Carr. 20/-. Post 6/6 extra.

MINE DETECTOR No. 4A

Will detect all types of metal. Fully portable. Complete with instructions. 30/6 each. Carr. 10/-. Battery 8/6 extra.

BEST BUY!

Send 1/ P.O. for full catalogue and lists. Trade supplied.
Open 9 a.m. to 6 p.m. Every day, Monday to Saturday.

C.W. SMITH & CO.
(RADIO) LIMITED

Phone GERRARD 8204/9155
Cables SMITHFESquare

34 LISLE STREET, LONDON, W.C.2

www.americanradiohistory.com
The LINTON is another of the 'new look' loudspeakers developed by Wharfedale and styled by Robert Gutmann, F.S.I.A. The cabinet—made in high density man made timber for reduced panel resonance—is superbly veneered. Back radiation is completely eliminated by special internal treatment. A new 8" cast chassis bass unit has been developed by Wharfedale for the Linton. It has a 12,000 oersteds magnet and is fitted with a flexiprene roll surround giving a fundamental open baffle resonance of only 43 c/s. The linear performance is such that the bass distortion is extremely low. A special version of the world famous Super 3 tweeter is combined with a treble control to compliment the 8" bass unit giving an extremely smooth treble response up to very high frequencies. The result is a well balanced twin speaker system of high performance capable of being driven by relatively small amplifiers to provide adequate volume and fatigue free listening.

- Treble control.
- Special Wharfedale 3" Tweeter unit.
- Sound absorbent B.A.F. wadding completely eliminates back radiation.
- 8" bass unit with flexiprene roll surround.
- Cabinet of high density man made timber for reduced panel resonance.

Free technical folder on the Linton from Dept. P.

Frequency range 40 c/s—15,000 c/s.
Impedance 8-10 ohms.
Power handling capacity 10 watts
(20 watts peak)
Size 19" x 10" x 10" Weight 18 lbs.

Finish zebrano veneers or walnut and oiled teak to special order.

£18.7.4

WHARFEDALE WIRELESS WORKS LTD.
IDLE, BRADFORD, YORKSHIRE.
Tel. Idle 1235/6 Grams: Wharfdel Bradford
REQUIEM FOR A SHOW

IF we had a flag, it would now be at half mast. For the radio and television industry has stood by and doomed to oblivion the 1965 Radio Show, a venture that was hardly allowed to get off the ground.

Since the 1920's the Radio Show has flourished until in recent years it began to flounder, and both public attendance and stand bookings began to decline. No single factor can be pinpointed for the reasons are several, complex and partly intangible.

However, the snowball effect of company mergers progressively reduced the number of potential exhibitors. The increasing cost of buying stand space and of fitting and manning exhibits, also took its toll, and then the broadcasting authorities made less spectacular provision for entertaining the public.

But the death knell for the old-type Radio Show clearly rang out when major exhibitors began staging their own independent trade-only splinter shows. Now this year with most of the big boys opting out, the 1965 Show had little chance.

Whatever the success of these private ventures, however, we do not think they are in the industry's long-term interest. The public may often prove tiresome and exhausting at exhibitions but these are the people who buy the products and keep the manufacturers in business.

Other major industries manufacturing highly competitive consumer goods continue to run successful exhibitions catering for trade and public. The radio industry is the odd man out—and surely it cannot afford to be so insular. Let it have the foresight to organise something worthwhile for 1966.

The Radio Show is dead! Long live the Radio Show!

CONTENTS

News and Comment
Solar-powered Pocket Receiver
Tape Terminology
3 Band Transmitter
On the Short Waves
Practical Substitutions
Two-band Dipoles
Photocell Circuits
Light Programme Receiver
Preparing for the R.A.E.
Practically Wireless
A Direction Finder for Small Craft—Part 2
Books Reviewed
A Basic Moulin Voltmeter
Club News

by C. J. Walton
by H. W. Hellyer
by G3OGR
by John Guttridge and David Gibson, G3JDG
by M. L. Michaelis, M.A.
by F. G. Rayner
by P. Facey
by V. E. Holley
by Brian Robinson
by Henry
by F. C. Judd
by G. H. Meeten

297, 330
300
303
307
315
317
322
324
327
332
341
342
346
349
354

All correspondence intended for the Editor should be addressed to: The Editor, "Practical Wireless", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscription rates, including postage: 20s. per year to any part of the world. © George Newnes Ltd., 1965. Copyright in all drawings, photographs and articles published in "Practical Wireless" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden. THE SEPTEMBER ISSUE WILL BE PUBLISHED ON AUGUST 5TH.
Can Anyone Help

Please can anyone help me? I need a small internal switch for a wireless set issued by R.A.P. Ltd., London, 7634. Apart from this component the set appears to be in good condition. R.A.P. appear to have discontinued this model.

W. M. Stanley.
17 Denton Road,
Wokingham,
Berkshire.

C.W. Standards

As an ex-W.T. operator of 20 years' standing I find after months of listening on the amateur bands that the standard of British operators (c.w.) is fast deteriorating compared with other countries. Many of them seem barely able to work at 10 w.p.m.

At a recent R.A.E. examination centre I met a few of the old ex-Service operators who are all eager to do a spot of operating. These men are excellent operators and quite good mechanics, capable of building their own transmitting and receiving equipment. But these men failed the R.A.E. simply because they were unable to memorise a few formulae. Several lads of about 16, however, passed the test, yet they had not a clue how to operate. Consequently they turn to phone working—too scared to work c.w.

If this state of affairs continues there will be very few British operators working on c.w. in a few years' time.

F. Taylor.
Plymouth,
Devon.

Octal Valves Again!

I disagree with R. A. Packer's comments on I.O. valves (May issue). Manufacturers are all for miniaturisation, as we all know, but need constructors follow blindly along the same path? While I.O. valves are obtainable I consider that the saving in odd shillings far outweighs the sacrifice of that inch or so of not so valuable space.

J. Huet.
Canvey Island,
Essex.

404 LOUDSPEAKERS IN WEMBLEY P.A. SYSTEM

The largest public address system in Britain is that of the Wembley Stadium where no less than 404 loudspeakers are installed. Sixty of these are mounted on baffle boards and the remainder in 86 column enclosures.

The p.a. system was recently installed by Rediffusion technicians in time for the F.A. Cup Final in May, but only after they had solved the formidable problem of the Stadium's acoustics which, when it is empty are very different from when it is packed to capacity.

NEW COMPUTER FOR THE MIDLANDS

Businessmen in and around Birmingham requiring computer services can now make use of a new Honeywell 200 machine recently installed by Midlands Computing Centre Ltd.

The new British-made computer is expected to find ready acceptance by Midland-based firms too small to buy their own computer, yet large enough to warrant the analysis of production, sales and costs which modern equipment can provide.

LOW-COST PORTABLE MADE IN BRITAIN

This portable receiver is British made and inexpensive. In fact, according to the makers, Philips Electrical Limited, it is the lowest-priced British-made portable radio ever.

Known as the "Popmaster", it has been introduced to combat the ever-growing imports of Hong Kong-manufactured portables into the UK and will sell at £7 19s. 6d.

Each set carries a six months guarantee covering spares and labour and also a world-wide service guarantee valid for any service department of Philips companies throughout the world.

The "Popmaster" covers long and medium wavebands and measures just over 5½in. x 3½in. x 1½in. The 6-transistor circuit is powered by four U7 batteries housed in a sealed compartment in the base of the cabinet. Also contained in the base is a fitted earpiece attachment.
OXFORD MOBILE RALLY

On July 11th the Oxford and District Radio Society will hold its tenth anniversary mobile rally. The organisation of this event has been in conjunction with the RSGB.

Talk-in stations on 160m, 80m, 4m and 2m will be operating at the venue in the grounds of the College of Technology, Headington, Oxford. Attractions planned for the day include morris dancing, films, demonstrations, competitions, etc.

TRANSCEIVERS FOR NEW POLICE SQUAD

Radio communications is playing a big part in London’s new 100-strong police patrol group, which began operations recently. The group has been formed to counteract sudden outbreaks of crime by saturating trouble spots with uniformed police.

Contact between the group’s vehicles and Scotland Yard and the P.C.s on foot, is by v.h.f. radio’ each constable in the group carrying a light-weight transceiver.

There are just two women P.C.s in the group; one of them is seen here using one of the fully-portable transceivers.

THE '65 SHOW CANCELLED

The ’65 Show—this year’s planned successor to the National Televison and Radio Show—is off due to lack of support.

The organisers of the Show—Industrial and Trade Fairs Ltd.—announced the complete cancellation of the venture after many of the largest companies in the British radio industry had decided not to take part. The commercial TV companies also dropped out.

The exhibition was to have taken on a new appearance this year, with all parts of the radio, television and home entertainment industry represented. This year too, overseas participation was expected for the first time.

GPO TO HAVE SEVEN COMPUTERS

The first of seven English-Electric LEO 326 computers ordered by the GPO has been installed at Charles House, Kensington, London, where it succeeds a LEO 3 machine which has been operating for nearly a year. The work of producing six million telephone bills a year, calculating repayments of National Savings Certificates, preparing experimental route schedules for mail vans and analysing stores and equipment, which the old machine handled, will be carried on by the LEO 326 at much faster speeds and still provide extra computer time for further developments.

A second LEO 326 computer will be installed at Charles House later this year and another two will go to the POs Savings Department at Lytham St. Annes, Lancashire.

When all seven are installed and operating, the GPO will be the largest commercial computer use in Europe.

more News and Comment on page 330

Bottling Acid

SURELY Mr. Ian Gregory (News and Comment, June, 1965) is a little antiquated in his choice of containers for hydrofluoric acid. In this day and age a polythene bottle would probably be cheaper and more easily obtainable than one of wax or gutta-percha and equally effective.

I. M. Hutchings.

Rugby, Warwickshire.

Correspondents

I AM 27 years of age and studying radio and television servicing with a correspondence school. I would like to correspond with radio and television service men anywhere in the world.

Ernest Tchakanga.

P.O. Box 357, Mufulira, Zambia, Cent. Africa.

I WOULD like to correspond with anyone in South Africa who is interested in radio and motor yachts. I am 14 years old.

Ian Thornton.

13 Adshead Close, Poundswick, Manchester 23, Lancs.

I AM a regular subscriber to Practical Wireless. In addition to being interested in electronics I am a philatelist and would like to correspond with people in England willing to exchange Indian stamps and first-day covers for miniature electronic components not available here.

G. H. D’Cruz.

Sugar Factory, Shimoga, South India.

The Solo Organ

I HAVE located a small error in the transistor solo organ article (April issue, page 1163). The wire from top right-hand tuning resistance tag should go to the lower arm of VR2 and not to the middle arm as shown.

G. W. Hardy.

Poole, Dorset.
THIS is a receiver circuit using the minimum of components, driving a hearing aid type earpiece, and having as its power supply a solar cell. It requires no external aerial or earth. The final circuit was developed from the somewhat standard receiver circuit of Fig. 1, and it is advisable to build this one up first to test reception conditions in your area. If you have already experimented with one and two transistor circuits of the regenerative and reflex types and you know that you are in a good reception area then the final version may be constructed immediately. Otherwise build up the circuit of Fig. 1, e.g., in a “bread-board” arrangement. This circuit should easily, without external aerial or earth, drive the earpiece on most m.w. stations — the local Home (and possibly Light) should be loud and continentals should be fair. If these conditions are fulfilled then the final Mark 3 version is assured of some success. However, some areas of the country, especially those in deep valleys or below high cliffs, provide very low signal levels (and even a standard six transistor superhet has difficulty in these areas) in which case the circuit of Fig. 1 will receive little if anything and the light powered circuit even less. Thus the disappointment of building something doomed from the start to failure is avoided (and the expense of the solar cell is saved).

Tr1 can be any standard r.f. type for this circuit (in fact a number of accepted “low frequency” transistors will function here, e.g., odd specimens of OC71, XB103, and even an occasional “red spot” — however the recommended r.f. types are necessary for the final circuit) and examples tested were: OC44, XA112, OC171, AF114. Slight variation of R1 may be necessary but the results of this reflected-regenerative should be good. The coil may need a few turns adding or removing to cover the entire m.w. depending on the characteristics of the components used. It was considered initially that this type of circuit, providing maximum gain at both r.f. and a.f. with separate detection by diodes, would be the most efficient for a light powered receiver.

Then came the choice of a solar cell. Data was obtained from Ferranti Ltd. (Gem Mill, Chadderton, Oldham, Lancs.) and it became obvious that no single cell had been designed solely as a power supply for an application like this, however it appeared that most could provide sufficient current in average light conditions, all of them appearing to produce a voltage which remained constant at about 0.5V. The type finally chosen was of large (comparatively speaking) surface area: 0.75in. x 0.45in. (19cm. x 1.2cm.), designed for both high and low light levels — type MS2A and appears as in Fig. 2.

The current provided by the cell depends on the light intensity, from zero in darkness to about 20mA in bright sunlight on open circuit. Thus the receiver had to be capable of operating from these power conditions. The voltage supply for the design of Fig. 1 was thus reduced to a single dry cell, i.e. 1.5V, and R1 was likewise reduced to approx. 150kΩ in order to keep the same current — of the order of 1mA — flowing in the transistor. Suitable adjustment of TC1 and VR1 then resulted in a fairly similar performance, at slightly reduced volume, to that of the 9V circuit. At this stage the solar cell was substituted for the dry cell, giving

SOLAR-POWERED POCKET RECEIVER

by C. J. Walton

[Diagram of the circuit of a simple one-transistor reflex receiver which formed the basis of the final design. The coil is wound on a 2in. length of 34in. diameter ferrite rod using 34s, w.g. d.c.c. wire.]
the Mark 1 version of Fig. 3. At this stage it was found that the alloy junction type transistors were not as effective as the alloy diffused types at these low power levels. However the alloy diffused types—OC171, AF114, and a micro alloy type: MAT 121, were all operating quite well. Volume was down from the 1.5V circuit but in my area (Sowerby Bridge near Halifax, in the West Riding of Yorkshire) the Home and Light came through quite well.

With the receiver not tuned to a station as the cell was turned towards a window or other light source, a hissing could be heard in the earpiece signifying that current was flowing in the circuit (and in strong sunlight the hiss was louder than with the 1.5V cell in circuit). Stations became audible just before the hiss commenced, became louder as more light was allowed to fall on the cell, and finally regeneration in the form of whistling was heard. Keeping the light intensity constant and varying R1 the graph of Fig. 4 was obtained. No quantitative measurements were possible, but it can be seen that for regeneration to occur under fairly bright conditions, the optimum value for R1 should be between 10kΩ and 150kΩ approx. A value of 47kΩ was therefore chosen.

Regeneration was, however, difficult to control, occurring either at one end of the band or the other and was very critical, no matter what adjustment was made to TC1 and VR1 the circuit tended to "plop" in and out of oscillation. To try and alter this unsatisfactory situation and as a further experiment, it was decided to operate the circuit as a regenerative detector, i.e. C2, D1, D2 were removed. The results of this were interesting. Output volume was reduced slightly but regeneration was more easily controllable, far less feedback being required to achieve the same effect. In fact the 30pF trimmer used for TC1 had a too high value even at minimum capacitance (approx. 3pF). VR1 and TC1 were thus removed and a length of insulated (plastic coated) wire was connected to point X and another to point Y (see Fig. 3) and these were twisted together to act as a fine trimmer. This is a very sensitive type of control, the value changing at each twist by only a very small amount.

Finally the effect of removing the r.f. choke (i.e. allowing the earpiece to act as its own choke) was tried. Again there was a reduction in volume but this time regeneration was much easier to control and extended more evenly over the entire band with medium light intensity, tailing off at the low frequency end as the light was reduced. This was the final Mark 3 version shown in Fig. 5. Note that only use 8 components altogether. Omitting R1 resulted in very weak reception of the Home Service and nothing else.

Details of Components Used in Final Receiver

Transistors tested included OC171, AF114 (this was the actual transistor used when built into a case) and MAT121. VC1, miniature solid dielectric 300pF tuner.

A small, clear plastic case available from dealers (for from T.S.L., Hudson House, 63 Goldhawk Road, W.12) at 1s., size 2-2in. x 1-4in. x 0-9in. The 2in. length of ferrite rod used as aerial would just fit into the case.

The earpiece used in all the versions is an Ardente ER550. Any good quality magnetic (not crystal) earpiece would be suitable provided its impedance is > 1kΩ. The chassis is a small piece of perforated eyelet board (cut from a 4in. x 2in. piece) which is available, including eyelets, from...
as well as Athlone (Eire) and the northern Caroline. At night some form of artificial light must be used. Any operated from the mains are found to produce an annoying buzz of "mains hum" either at one end of the band or at various points along it as the cell is moved to and from the light source. An ordinary torch is much better, whilst a fluorescent light is useless, producing a continuous buzz. It was found that the set will operate, if held close enough, from a cigarette lighter or even a match. Note that as with all ferrite rod aerials the set is very directional and sometimes a

continued on page 338

Fig. 5: The final circuit of the receiver.

Right: The finished receiver mounted in its plastic case.

Home Radio (Mitcham), Ltd., 187 London Road, Mitcham, Surrey. The ferrite rod is wound with 32s.w.g. enamelled or silk covered wire. Other details are given in Fig. 6. The layout of the finished receiver is given in Fig. 6. The cell was stuck with Sellotape to the inside of the case (loss of light through absorption in the plastic is negligible) and its leads sleeved. If an opaque or coloured case is used the cell obviously will have to be stuck on the outside. Feedback was set for dull daylight and if the light intensity should become too high, i.e. a lot of whistling occurring, then the set must be turned away from the light to reduce current rather than changing the feedback.

Fig. 6: These two views of the completed receiver show clearly the construction and wiring.

Further Details of Operation

The circuit does cover the entire m.w. band but obviously local conditions will determine exactly what the performance will be. In Leeds the Home, Light and Third are all at reasonable volume and in the evening the heterodyning whistles of most of the Continentals are heard. Careful tuning in quiet surroundings has brought in Luxembourg, A.F.N. and Berlin
Tape		Tape	
Tape Terminology	Tape

Part One

NOWADAYS every branch of art and science carries around with it an enveloping cloak of jargon. Although this may be understood by the coterie of enthusiasts many of the terms are quite incomprehensible to the outsider.

Not least among the "specialist fields" is the art (or science, if you insist) of tape recording. Most readers of this magazine are quite aware of the general idea of tape recording and can interpret most of the terms in everyday use. But now and again the need arises to interpret most of the terms of tape recording and can understand just what those impressive specifications mean.

We want to know what a "drop-out" is and how it is caused, not merely be told it exists. More important, when weighing up a possible bargain we want to know just what those terms mean.

The following notes are compiled, more or less alphabetically, to clear up a few of these vague definitions. This is not a complete glossary of tape terms—which would insult the average readers' intelligence—but an illustrated description of some of the special aspects of tape recording.

AUTOMATIC RECORDING LEVEL

The principle of automatic gain control for radio and television is well known. In tape recording there are special difficulties and special circuits. A portion of the amplified signal is sampled, amplified and fed back as bias to a controlled stage whose gain varies with the applied voltage.

The difficulty lies in the long time constant needed with audio frequency signals. The sampling circuit must react quickly to a loud sound, apply the bias and then retain a comparative level of sounds for a reasonable period.

It is hoped to devote more space to a detailed description of how this is done in a future number of Practical Wireless.

AUTOMATIC STOP

A method of halting the tape transport system when (a) the tape breaks or (b) metal foil leader tape, usually at the end of the reel, completes a relay circuit.

The actual method of stopping the spools varies from the simple interrupter switch in the motor supply to relay-operated solenoid which disengages the head and capstan pressure system, applies the brakes and neutralises the mechanism. Fig. 1 shows typical systems.

AZIMUTH ADJUSTMENT

Setting of record, playback and erase heads to bring the gap into the right position at 90° to the tape length.

Correct positioning is important to allow tapes to be played on different machines and to ensure maximum gain and frequency response. Incorrect azimuth setting of the record/playback head causes loss of high frequencies (see Fig. 2).

Normal method of azimuth adjustment is to replay a pre-recorded signal of constant level (see Test Tape) and adjust the playback head for maximum response.
BALANCED INPUT AND OUTPUT

Method of connecting items of equipment by transformer coupling with centre-tapped windings which may be earthed.

Hum and noise are cancelled out to a greater extent by this method and longer leads can thus be used. Normally two-cored screened cable is employed and matching is at low impedance.

BANDWIDTH

In hi-fi work this normally refers to the frequency range covered by the amplifying equipment which is between two extremes that occur where the output is 3dB below that of a standard reference frequency. (Usual reference for this purpose is 1kc/s.)

Bias voltage depends upon the head and tape characteristics and is usually adjustable by a preset control for optimum conditions. Normal adjustment is a little beyond that which produces the maximum output, i.e. over the peak of the curve (see Fig. 3b).

CAPSTAN

Normal method of driving the tape to attain constant speed is by pressing it against a revolving spindle called the capstan. The capstan may be mounted on a flywheel and driven by coupling belts or intermediate wheels from the motor.

The flywheel tends to "iron out" minor speed variations due to its inertia. On some single-motor machines the capstan and flywheel are integral with the motor.

Method of keeping the tape in constant contact with the capstan is by applying a spring-loaded pressure roller or pinch wheel.

CASSETTE

An enclosed spool of tape, usually adapted for automatic loading, either in a complete magazine or as a replacement for a single spool with a free end of tape fed to the take-up spool.

An endless cassette contains a long loop of tape which is wound off the outside and back on the inside of the spool for continuous playing.

C.C.I.R.

See Standards.

Fig. 2: Off-set guides (a) or head (b) cause h.f. loss.

Fig. 3(a): Signal imposed on bias waveform prevents distortion due to "kink" in magnetisation curve. Optimum bias setting (b) is at value which produces a 3dB drop in output beyond peak.

Where the two limit frequencies only are quoted the above standard is understood. (See also Frequency Response.)

BIAS

The non-linear characteristics of the recording medium are overcome by imposing the audio signal on a high-frequency bias before applying the combined waveform to the recording head (see Fig. 3a).

The frequency of the bias should be as high as possible, allowing for heating losses in the head windings. Normally the bias frequency is about four or five times that of the highest frequency to be recorded; 45 to 70kc/s is the range used in domestic tape recorders.

A bias frequency that is too low will cause shrillness of reproduction of heavily modulated signals.

CHANNEL

In stereo reproduction, one amplifier chain.

CHANNEL SEPARATION

The degree of interference between channels must be reduced below 30dB for stereo systems. Parallel track systems require more stringent separation, greater than 50dB.

CROSSTALK

The above interference is known as crosstalk and may be specified at certain frequencies. It is more noticeable at higher frequencies. Overall separation at all frequencies for tape recording systems should be better than 40dB.
CROSSTRAK
A method of mixing the output from one track with the input to another by which a composite signal can be built up without the need for 'super-imposition'. Modern tape recorders may incorporate this under the specified terms multiply or sound-on-sound.

CUEING
Marking of particular places on the tape, visually or aurally. Special controls for 'inching' may be fitted to aid cueing.

DEFLUXING OR DEGAUSSING
Heads and ferrous metal parts such as supports and guides tend to build up a residual magnetism during use. This causes noisy reproduction when it affects the modulated tape. Method of removing this residual magnetism is to apply a strong and varying field with a deflexer and gradually remove this source so that the normal 'random' disposition of magnetic "domains" in the metallic parts is resumed.

The construction of a deflexer is generally based on a solenoid with a projecting pole, shaped to be inserted in the tape path mechanism. Regular defluxing should be carried out to reduce background noise. A pronounced hiss is the usual indication of head magnetisation.

Degaussing of the record/play head can be effected by gradually removing the bias voltage. One method is to switch to "Record" and interrupt the mains supply, allowing oscillations to die away. Repeated several times this can keep a recording head degaussed but will not demagnetise other ferrous parts.

DISTORTION
The difference in waveform between input and output of the amplifier as a whole. This is mainly harmonic distortion and may be expressed as a percentage at a specified frequency at full modulation. (e.g. less than 5%, at 1kc/s, third harmonic distortion at full modulation, may be stated as $\leq 5\%$.)

The signal-to-noise figure may also be stated as that obtained for a certain distortion factor (see Signal-to-Noise).

DOUBLE GAP
Method of achieving more complete erasure by applying an erase field at two successive places along the tape path. Dimensions are such that the delay from first to second gap is a few milliseconds.

DROP-OUT
Short-term loss of signal which may be caused by discrepancies in tape coating or uneven tracking of tape.

DUOPLAY
Name given to the system of feeding two outputs from a tape recorder into a single channel amplifying system.

DYNAMIC RANGE
The separation, expressed in decibels, between the smallest and the greatest signals the system can handle with specified minimum distortion. The limits are imposed by the loudest sounds received at the input having to be recorded without over-modulating, while the quietest sounds are still above the noise level and the balance between is in proportion.

For a domestic machine the dynamic range may be between 40 and 60dB. In practical terms this means that a 1kc/s signal has a ratio of 10,000 or 1,000,000 to 1. Although the actual dynamic range of a full orchestra may be as much as 70dB the above range is adequate owing to the non-linear relationship between loudness and sound power.

DYNAMIC MICROPHONE
See Moving Coil Microphone.

DUBBING
A term used, mainly in editing, to denote the combining of two or more sound sources into a single recording. Also, in ciné work, the adding of a soundtrack to the film.

ECHO
A signal delay produced by feeding back a replayed signal into the recording channel. The time of delay is determined by the physical separation of the heads and tape speed and may be doubled on two-channel machines by using the second channel as an intermediate stage.

An echo chamber can be either a device similar to the above, to produce the echo effect, or an acoustic method of achieving the same end. Note that echo alone is not effective without reverberation for realistic simulation of original sounds.

EDITING
Altering of the signal by cutting and interposing programme material. This can be done physically (see Splicing) or by a form of dubbing, using two machines with the first playing back the original programme, the second recording such parts as are required to be used, and halted meanwhile, or with interposed material recorded during the same operation.

ELECTROSTATIC MICROPHONE OR LOUDSPEAKER
A device which depends on capacitor action for its operation. Fig. 4a shows examples.

Basically a diaphragm is held between perforated plates and charged by an external voltage. Sound signals cause vibration and a change in capacity in the former case and in the latter case set up vibrations of the diaphragm to produce the aural output.

The electrostatic loudspeaker is particularly suited to high-frequency reproduction and is often used as a " tweeter ".

EQUALISATION
Compensation for the rising frequency response of the tape system and for high-frequency loss which occurs in the playback head. Circuits in the playback amplifier "shape" the response to a
Equalisation standards were revised a year ago and it will be noted that there are three distinct sets of standards, the CCIR, DIN and NARTB. The previous standard, generally accepted, for 33in./sec. tape speed was 200 microseconds, now revised to the DIN standard of 140 microseconds, with a turnover frequency at the point where the reactance of the capacitative arm of the attenuator equals the resistance of 1.3 kc/s and a low-frequency roll-off of 3.180 microseconds (at 30c/s).

Fig. 5 shows typical equalisation curves. Low-frequency roll-off is generally recognised nowadays as machines in the domestic class rarely reproduce frequencies below this point.

Replaying tapes recorded to one standard on a machine equalised to another will require some modification to the amplifier response to achieve a "level" output. Thus American tapes, recorded to NARTB standards, replayed on European machines, equalised to CCIR standards, will tend to sound over-brilliant and with some bass accentuation.

Conversely CCIR recorded tapes replayed on machines with NARTB standards, having bass and treble cut to compensate for the recording pre-emphasis, will tend to sound weak in both treble and bass.

Table 1. Equalisation Standards

<table>
<thead>
<tr>
<th>Time Constant (micro-secs.)</th>
<th>Speeds (in./sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>CCIR</td>
<td>35</td>
</tr>
<tr>
<td>NAB</td>
<td>50</td>
</tr>
<tr>
<td>DIN</td>
<td>35</td>
</tr>
<tr>
<td>CCIR</td>
<td>4.5</td>
</tr>
<tr>
<td>NAB</td>
<td>3.2</td>
</tr>
<tr>
<td>DIN</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Fig. 5: Recording and playback curves, showing effect of h.f. loss in recording which must be compensated by a boost during playback. At higher speed the loss is less, 6dB octave curve is ideal response.

ERASE

One virtue of the tape recording medium is the possibility of "cleaning off" a tape for re-use. This is termed "erasure" and consists of destroying the pattern of magnetism on the tape and reverting to the normal random disposition of magnetic domains.

Erasure is effected by the application of a strong and varying field as the tape passes a point prior to the recording head.

The method of applying erasure may be by passing the tape across a permanent magnet, or magnets, or by applying the field from the gap of a d.c. or a.c. energised head. The last-mentioned is preferable, as d.c. or permanent magnet erasure tends to build up a unidirectional magnetism, resulting in a hiss.

The waveform should be symmetrical, and is often derived from the common oscillator used to provide the bias waveform.

Bulk erasure is a method of removing the modulation from a tape in one action by inserting the complete spool in a strong field. Special apparatus for this purpose has been developed and is widely used. The applied a.c. field is made to diminish regularly, to prevent residual magnetism leaving a high background level.

PART TWO NEXT MONTH
3 BAND TRANSMITTER
by G30GR

The 6146 will take an input of up to 60W and the transmitter described here covers the 80, 40 and 20m bands. The building cost is not very great and can be further reduced by simplifications described later if required. The transmitter itself is crystal controlled but it can readily be used with a v.f.o.

Fig. 1. The transmitter circuit complete except for the power supply.
Fig. 1 shows the transmitter circuit. A 6C6H6 is used as an oscillator (V1) which gives high harmonic output when wanted, so that 3.5 Mc/s crystals may be used for the 80, 40 and 20m bands. Some 160m hand crystals are also satisfactory, especially for 80m.

L1 is the oscillator anode coil switched to cover the 80, 40 and 20m bands and tuned by the 100pF variable capacitor VC1, which also allows grid drive to be adjusted to obtain suitable grid current. It was found that more than sufficient grid current was available on all bands, so this capacitor is normally tuned somewhat off the resonant point. This has no effect on oscillator frequency.

The 6L46 (V2) runs with about 2mA to 2.5mA grid current, providing about 45-50V bias developed across the 22kΩ grid resistor R4. This valve has three cathode and beam plate pins each grounded for r.f. by a 2000pF capacitor to chassis (C10-12). For c.w. operation the key plug is inserted in closed-circuit jack J1, the cathodes of both stages being keyed. For 'phone transmission the plug is withdrawn or the key shorted.

L2 is the pi tank coil for three-band coverage and this can work directly into many aerials. L5 is an anti-parasitic choke. Anode current is checked with the anode meter M2. For a 600V h.t. supply the anode current of the 6L46 is listed as 112mA, providing an input of 67W. It is, however, probably as well to restrict the anode current to 100mA. This would give an input of 60W at 600V or 50W at 500V and so on. Good results have been obtained with a 275V h.t. supply or input of 27.5W.

In order to avoid the necessity of providing a large modulator, screen grid modulation is used. A single 6BW6 (V4 in the circuit diagram) will easily supply enough audio power for this type of modulation, excess being dissipated in the 4.7kΩ resistor R15.

When using 'phone it is necessary to reduce the power amplifier (6146) input to about one-half that which can be run on c.w. This is a general rule with screen grid modulated systems. The transmitter thus has an input of up to about 30W on 'phone for average work and 60W on c.w., which is adequate for much DX working.

The modulator section is very straightforward and has enough gain for a crystal microphone of reasonable output. Component values have been chosen to give some treble and bass cut.

Full control switching is furnished by a four-pole, five-way switch S1, the positions of which are shown in Fig. 1. Each "standby" position switches off all circuits but leaves the heaters running. These positions are used while receiving. The second standby position is merely to allow the operator to switch from C.W. to Standby without passing through the 'phone and net positions.

With the switch at "net" h.t. is applied to the oscillator only, allowing tuning up for grid current and netting the receiver on the transmitter frequency. (With a v.f.o. this allows the v.f.o. to be tuned to the receiver frequency also.)

With the switch set for "phone" the modulator is brought into use and h.t. applied to the p.a. anode. Choke modulation of the screen grid is by the 6BW6, with the d.c. potential derived from the modulator high-tension supply.

When the switch is in the "c.w." position the V2 screen grid is supplied from the high-voltage supply through a dropping resistor chosen to allow full input. This resistor can usually be 27kΩ but is selected as described later.

Metering

As grid and anode currents are very important in setting up, two meters are included. A single meter with grid/anode switching is sometimes employed but the use of separate meters avoids the need for repeated switching from grid to anode circuits and avoids errors such as looking for anode current while the single meter is switched to read grid current.

Two "surplus" meters were used and suitable thermo-couple meters can be purchased at very low cost. When the thermo-couple is removed these instruments usually have a full-scale reading of about 2mA to 5mA. They are thus readily shunted to allow suitable scales to be drawn. The latter can be on thin card cemented to the old dial.

For grid current a 5mA meter is suitable. The one used was 2mA full scale, shunted for 4mA full scale. For anode a 100mA, 150mA or 200mA instrument is suitable or a smaller meter shunted to 150mA or 200mA full scale.

Fig. 2: Winding details of the oscillator anode coil, L1.

Oscillator Stage VI

The oscillator anode coil L1 is shown in Fig. 2 and is wound with 26swg enamelled wire on a paxolin or similar former 1in. in diameter and 2½in. long. A space of about ½in. is left between each section. All turns are in the same direction.

Ends A and D are anchored by passing them through holes. Taps B and C are made by barting and twisting the wire and soldering the loop. Switching is so arranged that ten turns are in circuit for 20m. 24 turns for 40m and the whole 59 turns for 80m.
THE "SKYROVER" RANGE

GENERAL SPECIFICATION

7 transistor plus 2 diode superhet, 6 waveband portable receiver, Operating from any 1.5 v. torch batteries. The SKYROVER and SKYROVER DE LUXE cover the full Medium Waveband and have 31 1/2 M. and also have 4 separate switched bandspread ranges, 13M., 16M., 19M. and 20M. with Band Spread Tumblers for accurate Station Selection. The coil pack and tuning units is completely factory assembled, wired and tested. The remaining assembly can be completed in under three hours from our easy to follow stage by stage instructions.

A simple additional circuit provides coverage of the 1100/1050M. band (including 1500 H. Licht programme). All Components and Part 2 are printed in this catalogue. Post Only 10/- extra. This price includes all paper work denoted to announce the opening of our premises at 42 TOTTENHAM COURT ROAD, LONDON, W.1.

NEW 70 SKYROVER Mk III
Now supplied with redesigned cabinet, edgewise controls, black and chrome plastic cabinet. Size 10 x 4 3/8 in. Price $10.19.6 Post 5/-.

The SKYROVER DE LUXE
Tone Control Circuit is incorporated with separate control of each channel. Wood cabinet, size 11 x 9 x 3 3/4 in., covered with a washable material with plastic trim and carrying handle. Car aerial socket fitted. Can now be built for $10.19.6. H.P. Terms: 25/- dep. and 11 mths at 20/- Total H.P. Price $19.5.50.

TEST METER ADAPTOR

Type P.E. 220. Transistorised device which enables any 25 watt valve circuit to be used in place of a valve voltmeter. On the 2.V. ranges an impedance of 2 megohms, on the 5.V. range an impedance of 10 megohms. 7 range range includes connection to Ave 8 but suitable for use with any other ohmmeter, size 6 x 6 x 3 in. New and boxed, List Price 7.5.

LASKY'S PRICE 29.6 post 5/-.

COMMUNICATION RECEIVE KIT MODEL KT 320

Supplied in sub-assemblies for easy building. Covers range from 500 Kc. to 15,000 Kc. Bandspread is provided with a scale for direct reading and can also be hand-spread. A large A.V.C. meter, 2 x 1.5 A.F. meters, 2 x 0.6 A.F. meters, filter coils and a complete A.F. circuit are provided. A suitable crystal set, 2 x 3, 3 x 3, 4 x 3, 5 x 4. A.M. and S.S.B. receiving. Complete with full instructions and operating manual. LASKY'S PRICE 25.5 post 5/-.

INTERNATIONAL TAPe

3in. Message Tape, 1000 ft. 3 6
5in. Message Tape, 1000 ft. 6 3
5in. Message Tape, 300 ft. 7 3
7in. Tape, 300 ft. 300 ft. 15 6
7in. Tape, 1000 ft. Mylar base 17 6
8in. Triple play, 300 ft., Mylar base 7 3
8in. Triple play, 1000 ft., Mylar base 15 6
8in. Long play, 1000 ft., Acetate base 10 3
10in. Standard play, 300 ft. Mylar base 10 3
10in. Standard play, 1000 ft. Mylar base 15 6
10in. Standard play, 1000 ft. Acetate base 10 3
10in. Standard play, 300 ft. Acetate base 7 3
10in. Standard play, 1000 ft. PVC base 18 3
10in. Standard play, 300 ft. PVC base 12 6
10in. Standard play, 1000 ft. PVC base 22 6
10in. Standard play, 300 ft. Mylar base 11 3
10in. Standard play, 1000 ft. Mylar base 17 6
Famous American Brand—Fully Guaranteed

The "REALISTIC" Seven

The REALISTIC Seven DE LUXE

With the same specification as standard PLUS superior wood cabinet. In contemporary styling with full vision circular dial. ONLY 1 EXTRA

LASKY'S FOR D.I.Y. CONSTRUCTION BARGAINS

207 ELGWARE ROAD, LONDON, W.2
Near Praed St. PADDINGTON 3271/2
Both open all day Sat. Early closing Thurs.

207 ELGWARE ROAD, LONDON, W.2
33 TOTTENHAM COURT ROAD, W.1
Nearest Stn., Goosage S. MUSEUM 2605
152/3 FLEET STREET, LONDON, E.C.4
Telephone: Fleet Street 2833

Mail Orders to Dept. X.W., 207 Elgware Rd, W.2. Open all day Thursday. Early closing Sat.

www.americanradiohistory.com
YOU NEED RADIONIC
IF YOU ARE A BEGINNER
YOU WISH TO EXPERIMENT
YOU TEACH RADIO OR ELECTRONICS

Unique and brilliantly simple. Hundreds of educational establishments—Universities, Technical Colleges, Schools, the Armed Forces—are already using Radionic for electronic instruction. Enthusiastic owners range from 9 to 82 years of age.

Selected by the Council of Industrial Design for all British Design Centres. Featured in sound and television broadcasts.

The system is beautifully engineered from top quality British components. No soldering. No prior knowledge needed. Simply arrange components on perforated transparent panel, position brass connecting strip underneath, fix with BBA nuts and circuit works with full efficiency. You can then dismantle and build another circuit. Your results are guaranteed by our Technical Department and News Letter Service. All parts available separately for conversion or expansion of sets.

No. 1 Set £5.15.6. 14 Circuits (Earphone)
No. 2 Set £6.19.6. 28 Circuits (Earphone)
No. 3 Set £10.19.6. 35 Circuits (7 x 6 in. Loudspeaker output)
No. 4 Set £14.19.6. 36 Circuits (Include 6 Transistor and reflex superhet)
Prices (Post Free)

Full details from:
RADIONIC PRODUCTS LIMITED
STEPHENSON WAY, THREE BRIDGES
CRAWLEY, SUSSEX
Tel.: CRAWLEY 20700 Trade Enquiries Invited

WEYRAD
TRANSISTOR COILS
The P50 series remain the most popular and widely used components for Medium and Long-wave Transistors Superhet.

P50/1: AC Oscillator Coil for 176 pF tuning 5/4 ea.
P50/2CC 1st & 2nd I.F. Transformers 5/7 ea.
P50/3CC 3rd I.F. Transformers 6/4 ea.
All mounted in individual cans 1/4 in. diam. x 3/4 in. high.
RA2W Ferrite Rod Aerial 208 pF Tuning 12/6 ea.
LFDT4 Driver Transformers 9/6 ea.
OPTIA Output Transformers 10/6 ea.
PCAI Printed Circuit Panel 9/6 ea.
Constructor's Booklet 2/- ea.

VALVE RECEIVER COILS
Our individual "H" type iron-cored coils are without equal for the construction of a wide range of receivers. For the simplest T.R.F. sets covering one or more wave-bands the Aerial and H.F. Transformer coils are ideal. The standard superhet circuit using the ever-popular triode-hexode frequency change layout would employ the Aerial and Oscillator coils and the coverage can be selected from 7 different bands ranging from 12.5 to 2,000 metres. For a really high-performance receiver an R.F. stage can be added by using the Aerial, H.F. Transformer and Oscillator Coils and a circuit is provided illustrating such a layout.

H Coils 3/9 each.

PLEASE NOTE OUR CHANGE OF NAME
WEYRAD (ELECTRONICS) LIMITED
REGENT FACTORY, SCHOOL STREET,
WEYMOUTH, DORSET
The maximum effective capacitance across the coil is 50pF and tuning should be correct with the 100pF capacitor nearly open for 20m and 40m and about one-half closed for 80m. If 3.5Mc/s and 7Mc/s crystals are used it is not possible to tune this circuit to unwanted harmonics. L3 is a 2.5mH 60mA r.f. choke.

P.A. Tank Coil L2

This is wound on an insulated tube 3¾in. long and 1¼in. diameter as shown in Fig. 3. Beginning about ½in. from one end, the 18 s.w.g. wire is anchored in hole A and ten turns are wound at eight turns per inch. The wire is secured at B. A further ten turns are then wound and a small loop made at C. After 14 more turns the wire is fixed at D.

The aluminium bracket shown in Fig. 3 holds the coil to the switch. It is cut and bent as shown and fitted to the coil with 6BA bolts, S3 already being in the central hole. Stout connections are then soldered to S3. They are as short as possible. S3 has two three-way sets of contacts and they are used in parallel.

The completed tank coil assembly can be attached to the panel by the securing nut of S3 and short connections taken from A to VC1 and D to VC3.

Fig. 4: Above chassis layout where most of the larger components are mounted.
Above Chassis

The chassis measures about 10 x 7 x 2\text{in.}, and the layout is shown in Fig. 4. The crystal holder can be for \(\frac{1}{8}\text{in.} \) or \(\frac{1}{4}\text{in.} \) spacing crystals or both. Valveholders can be located from the dimensions given.

VC2 must have wide spacing to avoid sparking over; a spacing of 0\text{in.} between plates is more than adequate for 600V. For 40 and 20m 100pF will suffice but 150pF is required for 80m and 200pF would be better.

VC3 is a receiver type capacitor and should have a total of at least 1,000pF (two-gang 500pF with sections in parallel). For low impedance aerials on 80m 1,500pF is better (three-gang capacitor) but 1,000pF is easily sufficient for the 20 and 40m bands.

Both capacitors are bolted to the chassis and short earth returns provided for their rotor contacts. A small plate carrying a coaxial socket is bolted to the frame of VC3 and allows a coaxial feeder from an aerial to be plugged in. The socket outer sleeve is common to the chassis. This socket is not placed on the rear of the chassis as complete segregation of the p.a. anode and aerial circuit from other wiring would then be difficult.

The front panel measures 101 x 74in. It can be of hardboard or aluminium. Holes are required for the meters, capacitors and S3. S1, S2 and VC1 hold the panel to the chassis. L4 and C15 are wired together and to VC2 (Fig. 4). The assembled tank coil unit can then be fixed by S3 and a short lead taken from A on the coil to VC2 fixed plates. D on the coil is connected to the fixed plates of VC3. L4 is a 2.5mH r.f. choke rated at 1.50mA d.c.

The anti-parasitic choke L5 consists of five turns of 20 s.w.g. wire with an outside diameter of \(\frac{1}{8}\text{in.} \) and a total length of \(\frac{1}{4}\text{in.} \). When the choke is made R5 is placed inside it and connected to choke and anode cap with the shortest possible leads.

Twin twisted leads from the anode current meter pass through a hole nearly under S3 to C9 and the switch. The grid meter is connected from chassis to C8 as in Fig. 4. The lead from L4 goes through the chassis to C9, which is immediately below.

S3 control knob should have band positions marked. It is convenient to use 0-100 or similar dials for p.a. anode tuning and aerial loading (VC2 and VC3) but control knobs without dials are also perfectly satisfactory. Screening cans should be provided for the 12AT7 and 6CH6.

Underside of Chassis

Positions of components and leads are shown in Fig. 5 and the transmitter may conveniently be
wired in stages. For r.f. circuits 18 or 20 s.w.g. wire is used. Heater and h.t. wiring should run against the chassis and be adequately insulated. It will be helpful to use sleeving or insulated wire of several colours, especially to identify meter, h.t. and switch circuits.

6CH6 Oscillator

Coil L1 is left until wiring is otherwise finished here. C4 and C6 are disc ceramic capacitors. L3 and R3 are anchored to an insulated tag near the crystal holder. Points MC are tags bolted to the chassis in the usual way.

Connections to C7 and C3 should be as short as possible. L1 is held with a bracket bolted about 1 in. from the lower edge of the chassis and 2 in. from the panel.

The oscillator may be tested, if desired, by applying 6-3V a.c. to the heaters and about 250V d.c. to point X (see Fig. 1). With valve and crystal in, current should drop to about 20mA as oscillation commences. The carrier may be detected with a receiver or a tuned wavemeter with bulb indicator will glow if near L1, with S2 and VC1 adjusted for each band.

Power Amplifier

C10, C11, C12 and C13 are disc capacitors connected with very short leads. R4 is clear of the chassis and anchored at a tag providing the grid meter negative connecting point. C8 is a disc capacitor. The meter leads run against the chassis and anode meter leads are clear of the grid meter connections and pass through a separate hole near the function switch S1.

When no plug is inserted in the key jack, L3 and the p.a. cathode circuit are returned to chassis by closing of the jack contacts. Efficient grounding for r.f. by C10, C11 and C12, as shown, is necessary to avoid unwanted oscillation.

Double Triode

C17 and C19 should be mica or of equal quality as any slight leakage will upset bias on the second triode section (V3B) or on the 6BW6 (V4). C18 is displaced in Fig. 5 to show connections but lies over R16.

The microphone has the usual screened lead terminating in a coaxial plug. The inexpensive type of general purpose crystal mike should be satisfactory. It may be necessary to keep the microphone and its lead reasonably clear of the aerial.

6BW6 Output

The 6BW6 audio output stage or modulator V4 is very straightforward. For the anode choke L6, a speaker output transformer is most suitable. The type intended for a mains pentode, rated at 60mA or more and probably with a ratio of about 40:1, is ideal. The secondary is not used.

The optimum load of the 6BW6 is about 5kΩ, but the modulating impedance of the screen grid is much higher and not uniform throughout the audio cycle. As more power is available than required a 4-7kΩ resistor R15 is thus added to supply a stable load. The 6BW6 anode connection runs near the back of chassis and tag strip, clear of r.f. circuits, as in Fig. 5.

The modulator may be tested, if required, by temporarily connecting a loudspeaker to the transformer secondary. R15 may be disconnected.

Speech should be clear and distinct. The microphone must be well away from the loudspeaker to avoid feedback howling.

Function Switch S1

This is four-pole, five-way, but no circuits have to be completed at either extreme position. Two two-pole, four-way wafers were actually used, assembled on a cut-down spindle from an old switch, and with a stop removed so that a second "off" position was obtained.

Fig. 6 shows the wiring for a new switch, consisting of two wafers, each having two-poles with five-ways. Lengths of coloured flex or other insulated wire can be soldered on before mounting the switch in the chassis.

Switching can be checked without supplies and valves. High tension should reach the 6CH6 anode (pin 7) in all but "standby" positions. With the switch at "phone" h.t.+1 should be connected to pin 8 of the 6BW6 holder and through R17 to pin 3 of the 6146 holder. H.T.+2 also goes to 6146 anode. When the switch is at "c.w." h.t.+2 remains connected to the 6146 anode but pin 3 is now fed through R7 from h.t.+2. In no circumstances must switching be such that screen grid voltage is present on the 6146 when the anode voltage is absent.

Power Supplies

The heaters require 3-2A at 6-3V, so a 3½A or 4A secondary will do well. For h.t.+1 a 250V receiver type power pack is ideal. A supply of about 220V to 270V at 60mA is sufficient.

The voltage applied at h.t.+2 depends on the
power supplies which may be available and the input wanted. It is a good plan to make an initial test or tuning up with reduced voltage, such as can be obtained from a 250V supply, or by joining h.t.+2 to h.t.+1.

About 100mA at 450V to 600V falls easily within the rating of a transformer of moderate size and a suitable power supply is shown in Fig. 7. R7 controls the screen grid voltage when working on c.w. and it may be reduced to 10kΩ or less for a 300V supply. The screen voltage of V2 should not exceed 250V or 400V with key open. A screen voltage of about 150V is generally suitable for c.w. current, being about 10mA. Screen dissipation (volts x current) should not exceed 3W.

If there is any doubt the best solution is to begin with a high-value screen grid resistor and reduce this after checking the screen grid voltage and current with a meter. For a phone the screen voltage is much lower as this is necessary for correct modulation.

Tuning Up

First tests should be made with the switch at "Net". A 3.5Mc/s band crystal can be inserted and adequate grid current should be found on each band by adjusting VC1. Grid current should not be allowed to exceed 3.5mA and should generally be between 2mA and 2.5mA. S2 is always switched to the band upon which output is wanted, so that the final amplifier is not used as a doubler.

A 7Mc/s band crystal is useful to check 14Mc/s tuning to make sure the third harmonic of 3.5Mc/s (10.5Mc/s) is not selected by VC1 in error. Or a bulb indicator meter or receiver can be used. The 14Mc/s band should peak up with VC1 nearly open.

An initial test can be made with power delivered into a 60W household lamp connected to the aerial socket and chassis by a few feet of twin flex. With S2 and S3 at 80 close VC2 and VC3 and tune for grid current at "Net". The function switch is then turned to "Phone" and VC2 is immediately adjusted to find the dip in anode current as shown by the anode meter. The current is increased by opening VC3 and retuning with VC2. VC2 is always tuned for minimum anode current, corresponding to maximum r.f. output.

Grid current is readjusted if necessary by VC1. When the p.a. has been tuned to resonance the switch can be turned to "c.w." if wanted (key closed). As loading progresses in the way described the lamp will light with increasing brilliance. For c.w. the anode current may run up to 100mA.

Loading the transmitter into an aerial follows the same method. A coaxial-fed dipole can be fed directly from the transmitter. Various end-fed aerials can also be used in this way with a good earth to transmitter chassis. For resonant end-fed aerials some type of aerial tuner placed between aerial and transmitter will be almost essential.

Crystal Frequencies

Crystals with fundamental and harmonics falling within the band limits may be used on all three bands but some crystal frequencies will not supply harmonics within the bands. For 7Mc/s and 14Mc/s, 7Mc/s crystals may be used, while 3.5Mc/s crystals will do for 3.5, 7 and 14Mc/s. Any 1.75 to 19Mc/s crystals will do for 3.5-38Mc/s also.

"Phone Loading"

For best speech quality with screen grid modulation the p.a. must be heavily loaded. To accomplish this the screen voltage of V2 is kept low by R17 and loading with the pi-tank is continued until the dip in anode current on rotating VC2 has become small. An input of about

—continued on page 321
One station getting its schedule out well in advance is Radio Moscow. Until the end of August English for Europe is aired at 0700—0730 on 11,830/9,710/9,600/9,480/7,240; 1200—1300 on 15,490/11,930/11,830/11,700/9,780; 1900—1930 on 9,710/9,480/7,340/6,050/1,320; 2000—2030 on 9,710/9,480/7,160/7,340/6,050/1,380; 2100—2200 on 9,710/7,340/7,260/6,050/1,490/2200—2330 on 9,710/7,340/6,050/1,490/1,380/1,320. In September/October the following changes are made: 0700—0730, 11,830 dropped: 1900—1930, 2000—2030, 7,280/6,170 replace 9,710/9,480; 2100—2230, 7,280 replaces 9,710.

Frequencies used for several English transmissions were changed by Radio Prague for its summer schedule. Changes are: 0100—0155, 0330—0425 on 5,930/7,120/7,345/9,795/11,900; 0300—0355 on 15,285/15,448/17,825; 0800—0855 on 6,055/9,503/15,235/15,285/21,450. On its QSL, says D. Hill, date, time and metre band are given.

T. Robinson, Liverpool, reports that Radio Nederland (P.O.B. 222, Hilversum) has a DX programme at 1600 on Fridays and a request programme on Saturdays. In London 15,425 gives better reception than 11,730 for the 2100—2150 English transmission but suffers from severe interference from A.F.R.T.S. New York on 15,430.

A. Waddelow, Norwich, has heard the Bonaire relay with Dutch at 2100 on 15,290 giving SINPO 33433. He reports full verification details from Radio Denmark (Radio House, Copenhagen V), Radio Andorra (Roc des Anelletes, Andorra La-Vielle, Andorra—return postage required), Radio Berlin International (Berlin-Oberschoneide, Nalepastrasse 18-50, German Democratic Republic), and Radio Belgrade.

The 1315—1400 English transmission to South-East Asia from Emissoja Nacional de Radiodifusao (Rua Sao Marcel, L.A, Lisbon) is now on 21,495/17,895. The BBC now has an English transmission to East Africa from 1800—1830 on 15,420.

D. Hill mentions two English transmissions from Radio Bucharest (P.O.B. 111, Bucharest) from 1930—2030 on 9,570/9,510/7,225 and 2230—2300 on 7,195/6,190.

Middle Eastern stations reported this month are Radio Ankara, Kol Israel (Broadcasting House, Jerusalem, Israel), Radio Baghdad (Salihiya, Baghdad), Radio Iran (Ministry of Information, Meydan Ark, Teheran), and Saudi Arabian Broadcasting (Ministry of Information, Airport Road, Jeddah). Paul Harris, Elgin, says that English from Kol Israel is now from 2045—2115 on 9,009/9,625/9,725. Ankara now has English at 1930—1945 and German at 1800—1815 on 15,160. A. Waddelow reports English on this frequency at 2200—2230 (SINPO 44444).

E. Conduit, Wolverhampton, has had a QSL with date and frequency only from Saudi Arabia and with frequency only from Baghdad. Although W. Smith had a yellow card giving date and frequency from Baghdad, Alex Bushby, Glasgow, reports a letter giving no details from Iran.

Two African stations, Radio Information de la Republique Democratique du Congo (B.P. 3171, Leopoldville) and the Nigerian Broadcasting Corporation (Broadcasting House, Lagos) are reported by R. Howard, Stockport. The former he has heard between 2030—2200 on 11,795. Nigeria was logged in English between 2130—2205 on 11,900/15,255.

Cairo Radio (U.A.R. Broadcasting and TV, Maspero) has changed the language segments for its transmissions on 17,920 to East and Central Africa. They are now Nianga 1545, Shona 1615, Somali 1645 and English 1745—2030.

According to Paul Harris, Radiodiffusion Televison, Ivorienne (B.P. 2261, Abidjan, Ivory Coast), has replaced its International Network frequency of 11,820 by 6,015. He has heard this frequency at 2200—2400 and presumes it carries the 1830—1900 English transmissions on weekdays.

A. Wildsmith, Manchester, advises those who have written to Radio Ghana (Broadcasting House, P.O. Box 1633, Accra) and have not received a reply not to despair. He has just received a verification after five months.

Conflicting reports on the QSL of All India Radio (P.O. Box 500, New Delhi) from E. Conduit and D. Hill. The former’s card had the date only, whilst the latter’s had all details.

Finally three reports on Radio Pyongyang (Pyongyang, North Korea). Paul Harris has heard English at 1800—1900 on 10,380 and 1900—2000 on 6,540/7,370 with 7,580 being announced as well. According to announcements, he says, other transmissions are 1000—1100, 7,580; 1100—1200, 9,750; 2400—0100, 17,520; 0300—0400, 9,570. M. Clark, Cheltenham, has heard the station on 6,500 at 1900 when it says it is using 7,389/7,595/8,333/10,381. A transmission from 1000—1200 on 6,061/7,353 was also announced.
The Amateur Bands—by David Gibson G3JDG

ONCE more unto the h.f. bands, dear friends, and verily DX shall be thine. Unbelievers should listen on 20m, where thousands of stations from almost everywhere are battling it out.

It is fair to reckon that all those not on 20 are on 15 and this band seems more consistent these days. It stays open for longer and although there is often some QSB it's on the up and up, certainly as regards reliability.

Poor old 10? Not any more—half Europe gets on at the weekends and the African continent shows itself, too. Those with directional antennas on this band should have very full logs.

TWENTY

Let's start with a bang. Here is the pick of the log from BRS26813, of Cheltenham, who uses an S640 and HRO5T with a 90ft longwire. All c.w.: AC4H (Tibet), CN8MH, CR4AE, 4BC: EL2AEG, 2AM: ET3GO, 3USA: DJ1OR (Philippines), FG7XS (Guadeloupe), FM7WH (Martinique), HI4ARM, HK3RO, HP1BR, HZ3TYQ (Saudi Arabia), JA1BZR, IFHK, IDU, IZZ, 7AB, 7ARZ: JT1AG, HK6DSW, FLK, JI, TD, WU; KM6DJ, KP4ARS, LA4EI/P (Jan Meyer Island), LU2DAW, 8EE: OA4EM, OY7ML (Faroes), PY1BTX, 2ON: PJ1CZ, SU1IM, UL4PY, UN1BR, V2C0, VK2EO, 200: VOZNA, VP5BH/AI, 9EP: VS7GW, 2L1: WS1UW/VPR, 6INX: XI6EIO, YV1AD, 4MC, SAAQ, 5ACP, 5BH1: ZD8BC, ZB8TT, ZP5LS, ZS6AJO, 4U1ITU, 4X4HK, MZ, QA: 5A3TT, 5Z4AQ, 6YSMJ, XG: 7X2ARA, 7X3CT, 912GJ.

Which station has that if it emits r.f. then it can be found on 14Mc/s and BRS26813 will hear it! Well done, Bob—when do you sleep?

Norman Ponsford (Devon) found these on his t.r.f. CR45 with 60ft longwire, all on a.m.: HB9VW, K3NHJ, K2YLM, OE3CL, PY7GV, SVOWBB, WA4110, 4X4FA, S2AQR, S2AAQ. Langham (Somerset) got these on a domestic receiver and 75ft longwire: 11UG, L1ZKBD, PA0PAN, U9AKCF, U05KBR, UY6BC, 4X40S, all a.m.

Messrs. McWhirter and Weare are the ops at Derby School Signals Platoon and pulled in these on an R107 with 200ft longwire: K2ZKR/P, SP4AUQ, U2AKBD, VE4SA, W2RKV, WHCPC (all on a.m.), ET3USA, UAI1KBD, UA9MX, UN1BR, UW3FV(? on c.w.

FIFTEEN

Stephen Beale (London), using the P.W. t.r.f. (May, 1964) and a 66ft longwire, got these on a.m.: CR6BY, EA8ER, LA4EI, SV1DL, ZC4MO, 4X4OR, 5A1TK, 5A5TE, 5N2KOB, 9G1MR, 912DT, 9L1WV, 9Q5DL, 9X5RZ.

D. F. Carrington (Derby) pulled in on his HE30 and 68ft longwire with 14ft vertical whip at far end: CT3AQ (Madeira). EL5CG, EA6GL, PY1NBA, PY1AGP, SVOWWO, W9ACU, ZC4KW, 4X4OR, 5A1TK, 9X5WTB and 9Q5's DL, US, AWB, RB, AQ and AD.

Mike Silverstein (London), CR100 and 132ft longwire, hooked. CR6BY, CR7FR, H18BGA, JAI4TN, KZ5BE, OA4OS, PY1BYS, VP4LE, VS9ANR, ZE7JR, 9X5RZ.

TEN

Back in circulation! Why, we have even been getting logs!

George Owen (Bristol), using a five-valve t.r.f. and vertical joystick, leads the field with CE4FB, CR4AO, BC: CT1CN, MZ, ILX, IOF, LIM; EA3PA, EL2L, F2SI, HB9FMA, 11SO, BIW, 11YJ, MTO, FA1, WRR: KC4CKC, OK1ABN, ZD8JC, ZE1JJ, 5A4HR, 5Z4AA, 9Q5AA.

THE L.F. BANDS

Only the real stalwarts stick at it. On 7Mc/s Bob Garvy (Gloucester) had these on his HRO and 90ft longwire, all on c.w.: DJ3ZXA, EI1TF, OK4ADX, PY7AOD, SM7ACR, UA1KAL, VP2LZ, ZS6DF.

On 3-5Mc/s A. Rolfe (Halstead) got DJ8RS, DL2UZ, DL6VU, F2WWW, F3ZK, PA0PAL, SM3YF/MM using an R109 and 12ft whip. And an unsigned log from Preston mentions DJ6OT, DL6ME, EI4R, GC2AZ, OZ1HI, SM7WW, VE11E.

Top hand almost abandoned and the only letter we had was from W. Smith (Staffs) with a large list of G stations heard.

IN GENERAL

The coat-hanger and cuff-link gang are still at it! BRS26325 (Dundee) used a fireguard on 21Mc/s for 5A1TK, CT1JJ, 9M4LP, EA8EH. M. Carter (North Wales) used a ground-floor window frame into an HRO for 14Mc/s s.s.b.: EP2DS, KH6BK, KR6AAC, MP4BCC, OD5BZ, HU6N, HB0AFM, HL9PK, KP4CL, VE6TP, W6VPY, W7MKI, ZS6XB, 5N2AAC, 9M2SR. Anybody thought of the little strip of metal foil around cellophane wrapped cigarettes? (Watch it, they resonate at 947Mc/s!)

ZB1 (Malta) is now 9H1 for sure. The Western Carolines and Kure Islands are on and the calls on to listen for KC6 and KH6 respectively, 4U1TU is the headquarters station of the International A.R.C. located in Geneva. Others rumoured to be squiritting r.f. about are South Georgia VP8, Christmas Island and Cocos Keeling both VK9, ZD8 on Ascension Island. Crete SVOWGG high end of 20 on s.s.b., Willie Island VK4 and Samoa KS6. For Top-band addicts there is a beacon on 1.801Mc/s in South Africa signing ZE1AZD, reports very much appreciated.

What a lot of field days, British, American and now Korean. The Korean effort will be July 3rd-4th on 80, 40, 20 and 15m. Callsigns to listen for are HM and HL. Other activities on in July are: 4th: 144Mc/s portable contests; 11th, three mobile rallies, tenth anniversary rally. South Shields rally and Torbay mobile rally; 17th-18th, 1.296Mc/s tests (you've just got time to wind a set of coils); 25th, 70Mc/s portable contest and Cornish mobile rally. August 1st, SLADE D/F qualifying event. Good hunting and don't forget to drop me a line on what's coming in at your QTH.

www.americanradiohistory.com
The lists of parts for constructional articles are those found satisfactory in the prototypes and available at the time of publication. Many queries which the editor receives show that many beginners regard a published list of parts as being strictly binding down to the last detail.

Whilst this may be true for special projects a considerable latitude normally exists and the informed constructor can use his discretion regarding substitution of components already in his possession or more readily available.

It is the aim of this article to help readers in making on-the-spot substitute decisions if a dealer does not happen to have the exact item desired in stock. The information given will also serve many other useful practical purposes, such as the selection of modern replacements for defective components in obsolete equipment, or just to make better use of items available in the junkbox instead of making new purchases.

Resistor and Capacitor Values

A frequent type of enquiry concerns apparently strange component values, such as "a capacitor of 0.056 µF." Whilst the familiar sequence of preferred values is quite commonplace for resistors, it is less familiar in Britain for capacitors. However, our example of a 0.056 µF capacitor simply bears the same relation to a more familiar 0.05 µF capacitor as does a 56kΩ resistor to an older-type 50kΩ resistor. Such values are mutually interchangeable unless very critical conditions are involved and which the author of an article would point out. Unless otherwise stated, the constructor may assume that a ±20% tolerance is implied for resistor and capacitor component values. This obviously permits mutual interchange of a 0.05 µ F capacitor with a 0.047 µF or 0.056 µF preferred-value capacitor. (The 0.05 µF ±20% could, of course, be anything between 0.04-0.06 µ F.)

If a preferred-value component is outside the tolerance of a near old-type component, one should select a parallel combination of two standard value capacitors or resistor and capacitor component values. Thus, given ±20% tolerance, the correct substitute for a 0.68 µF capacitor is a parallel combination of a 0.5 µF and a 0.2 µF.

Similarly a 50kΩ resistor can generally replace a 47kΩ or 56kΩ resistor, but a 68kΩ resistor requires either a 75kΩ resistor as substitute, or various combinations of two resistors, such as a 50kΩ and a 20kΩ component in series, or two 150kΩ resistors in parallel. Note that the individual wattage ratings of series or parallel combinations of two resistors can be halved only if the individual values are equal or very nearly equal.

In cases where resistor or capacitor substitutions of the kind discussed above lead to a residual discrepancy close to the tolerance limit, e.g. when substituting a 10kΩ resistor for a 12kΩ resistor, it is advisable to measure the actual values. Judicious selection can often lead to a closer approach to the specified value and will avoid additive tolerance errors greater than the tolerance limit. However, a large number of experimental circuits remain uncritical even under the latter circumstances.

The important thing to remember is that, generally speaking, any value within the tolerance of the specified value will be acceptable.

Critical Capacitor and Resistor Values

Resistor values are frequently more critical when they constitute parts of bleeder networks which determine the operating point of a valve or transistor, or when they are parts of calibrated shunts, multipliers, attenuators or other measuring circuits.

Fig. 1: Series and parallel combinations of resistors and capacitors
Capacitor values are critical in tuned r.f. and i.f. circuits and in oscillator padding positions. Even then, substitutions of combinations of two or even more components in series or parallel to make up the exact specified value are generally permissible. Note that capacitors in parallel and resistors in series are added whereas capacitors in series and resistors in parallel are equal to the reciprocal of the sum of the individual reciprocals, see Fig. 1.

ELECTROLYTICS

It is normally permissible to substitute non-electrolytic capacitors of the same value for specified electrolytes, if space permits, but electrolytic capacitors cannot be substituted for paper or foil capacitors when insulation and capacitance stability are important factors.

Thus it is usually unsatisfactory to substitute an electrolytic for a paper or metallised foil component in an anode-grid coupling circuit since leakage of the electrolytic would lead to an intolerable displacement of the operating point of the subsequent stage. Very large metallised foil capacitors in long-period high-impedance timing circuits (minutes or hours) cannot be replaced by electrolytics. However, low-impedance transistorised timing equipment does often use low-voltage electrolytics. The accuracy of such circuits, or at least their long-term stability, nevertheless tends to be inferior.

Electrolytic capacitors are relatively coarse, inaccurate components whose capacitance and insulation may vary greatly during the useful lifetime and according to the length of resting time without applied voltage. Thus even if an electrolytic capacitor is found to function satisfactorily in a critical circuit position at some particular time, that circuit cannot in general be relied upon to function satisfactorily with it at all subsequent times. In valve circuits, electrolytics should normally be confined to smoothing and decoupling functions.

Electrolytics are more widely usable in transistorised circuitry because impedances are generally lower, so that insulation deficiencies are less important. Therefore any slight leakage of electrolytic coupling capacitors leads to much smaller relative displacements of the transistor operating points than in the case of valve circuits.

RF CAPACITORS

It may be unsatisfactory to substitute paper capacitors for ceramic or mica capacitors in r.f. circuits when the operating frequencies are high, although this may not matter so much in long- and medium-wave circuits. On the other hand, ceramic or mica capacitors of adequate voltage rating may be substituted for specified paper ones.

In most r.f. applications it is immaterial whether ceramic or mica types are used. Modern ceramic materials have a greater capacitance in a smaller space, but their voltage ratings are often more limited. Paper capacitors generally have a lower capacitance stability, so that even if they work in local oscillator circuits they should nevertheless be avoided in these stages, otherwise trouble is likely to be encountered with drift. Mica or ceramic components of good basic stability are most desirable, especially for v.h.f. circuits.

Where an author specifies strange combinations of odd-value capacitors with exact details of manufacturer and type number, and with two or more such capacitors connected in parallel at each position, the intention is to achieve mutual cancellation of the individual temperature coefficients. In such cases it is not possible to make straightforward substitutions of other capacitors without impairing the frequency stability of the circuit.

Forbidden resistor substitutions can arise in circuits where the stray inductance of the resistors plays a significant role. This often means that wirewound resistors cannot be used in place of specified carbon resistors in such circuits as the signal amplifiers of oscilloscopes and wideband a.c. valve voltmeters, or in the video stages of television equipment. However, in these same types of equipment wire wound resistors with a definite inductance used as frequency-correcting peaking inductance may sometimes be found.

If such resistors fail and have to be replaced, simple substitution of a carbon resistor or an arbitrary-inductance wire wound resistor of the same wattage and resistance value may lead to unsatisfactory performance of the equipment (generally reduced bandwidth at the high-frequency end).

POWER SUPPLIES

Due to the lack of standardisation in mains transformers, difficulty in obtaining the exact one specified in an article is a common problem.

Other power supply problems concern rectifier substitutions, in particular the conditions under which valve, metal and silicon rectifiers may or may not be mutually substituted. Finally, readers often query possible interchanges of halfwave, fullwave and bridge rectifier circuits if a specified rectifier arrangement is not available.

There are standard rules of substitution which can be applied to most power supply problems.

MAINS TRANSFORMER SUBSTITUTION

Space permitting, it is always possible to use separate heater transformers, either to cater for all heater requirements independently, or to augment the heater supplies available on the transformer which also carries the h.t. winding. If more than one transformer is used, all primaries should be connected in parallel, but never connect secondaries of physically or electrically different transformers in parallel. Series connections of secondaries are always permissible for any combination of transformers, within the insulation ratings, e.g. to obtain higher heater voltages.

If it is possible to obtain a transformer with all the required windings as far as voltages are concerned, but the current ratings are too low, then it is always permissible to wire two such identical transformers in parallel.

All primary and secondary connections should be respectively connected in parallel. The current
rating of each composite winding is then twice that of a single transformer. It must be stressed that such connections are possible only for truly identical transformers.

If, for example, an h.t. current rating of 150mA is specified, there is no objection to using a transformer with a somewhat higher rating, e.g. a 200mA or even 250mA. However, overloading of h.t. windings in the other direction should be avoided, since it leads to severe overheating. Thus if 150mA h.t. rating is required but only a 100mA transformer type is available, two such identical transformers will have to be connected in parallel.

Fig. 2 shows such a transformer substitution. In the example, a 250-0-250V 200mA transformer with two separate 6.3V 2.5A heater windings has been specified (Fig. 2a). This may be replaced by two smaller transformers, each having a simple 250V 100mA winding for halfwave rectification and a single 6.3V 2.5A heater winding.

Provided that the two transformers are fully identical, there is no objection to feeding the two sections of a full-wave rectifier circuit from separate transformers in the manner shown, and the current rating of each transformer need only be one half of the required rectified h.t. current.

But there is one rather important reservation. The two separate windings must be of a type specifically intended for halfwave rectification at their full rated current output. Halfwave rectification always passes a d.c. current component through the secondary winding of a transformer, which magnetises the core and lowers the primary inductance. The primary inductive current therefore increases and the transformer gets much hotter than it would otherwise do.

There is no net d.c. magnetisation of the core when the type of halfwave rectification shown in Fig. 2a is employed, with both rectifiers fed from the conventional centre-tapped h.t. winding on a single transformer.

If the two transformers of Fig. 2b are not designed for halfwave rectification, it is better to change the rectifier arrangement too, using a single transformer with a simple h.t. winding (now rated for the full required h.t. current) feeding a bridge rectifier as shown in Fig. 3.

Provided that the transformer voltages are the same and the rectifier classes of Fig. 2a and Fig. 3 are the same (e.g. in both cases contact-cooled selenium rectifiers, or all silicon diodes), the respective circuits are generally completely interchangeable, whichever one an author should happen to specify.

Fig. 2a: Normal full-wave rectifier circuit.

Fig. 2b: Full-wave rectifier circuit with two half-wave transformers.

Fig. 3: Bridge h.t. rectifier circuit with simple transformer winding.

PROBLEMS WITH HEATER WINDINGS

Unless two or more transformers are absolutely identical, heater windings should not be connected in parallel, but any form of series connection for obtaining higher voltages is permissible. It is inadvisable to connect two heater windings on the same transformer in parallel, even if the current ratings are identical.

If two or more heater windings are required to meet the demands of all valves in a piece of equipment, it is generally best to "common" one side of each winding to chassis and to connect

www.americanradiohistory.com
Fig. 4: Surge voltages in electrolytics C1, C2, C3 (see text).

respective groups of valve heaters independently to the other ends. In most cases the specified heater requirements may be redistributed in any manner within reason.

If rectification of the output from a heater winding is required, keep to fullwave or bridge rectification unless the current drain on the d.c. side is only a small fraction of the a.c. current rating. Otherwise d.c. magnetisation of the transformer core can lead to severe overheating and possible burnout.

Whereas h.t. windings may be fairly generously overrated, e.g. there is little objection to loading a 200mA winding with no more than 50mA actual h.t. current drain, such severe underloading is undesirable on heater windings since it can lead to unduly high heater voltages which would endanger valves.

Check with a multimeter and if necessary insert a low-value series resistor (e.g. a coiled length of stout resistance wire determined by experiment or calculation). Adjust for correct voltage reading at heater pins of valves. Alternatively, connect the primary to a higher voltage tap than the prevailing mains voltage. Slight resulting loss of h.t. output voltage is generally tolerable.

RECTIFIER SUBSTITUTIONS

There is little to choose between conventional metal rectifiers, contact-cooled ("flat") selenium rectifiers and silicon rectifiers as far as normal performance in h.t. circuits is concerned, although the efficiency improves in the order given and the heat dissipations and physical sizes decrease accordingly.

The modern silicon h.t. rectifier is undoubtedly the best component in the semiconductor class of h.t. rectifiers and it can serve as a versatile substitute in most cases where specified metal rectifiers or contact cooled rectifiers are unavailable. Contact cooled selenium rectifiers use a coding such as, for example,

E250 C50= Halfwave (E),
250V a.c. input, d.c. current
(C) 50mA

B450 C200= Bridge (B),
450V a.c. input, d.c. current
(C) 200mA.

Whilst the first example is very common, the second example and similar types often specified for high-power electronic or amplifier designs may be difficult to obtain. Four simple 250V a.c. input silicon h.t. rectifiers connected in a bridge circuit represent a perfect substitute for a B450 C200 and are always easy to obtain.

It is fairly general to use the ubiquitous silicon mains rectifier if any other specified semiconductor rectifier is unobtainable. If the a.c. input does not exceed 250V for non-bridge circuits or 450V for bridge circuits, use a single silicon mains rectifier for each diode section of the substituted rectifier. Otherwise use two silicon rectifiers in series for each diode section if the a.c. input voltage lies between 250V and 500V for non-bridge circuits or between 450V and 900V for bridge circuits.

The silicon mains rectifier has the further advantage that it is generally equally suitable for rectifying low voltages, e.g. heater voltages, although cheaper types with lower inverse voltage ratings are available.

VALVE RECTIFIERS

Whilst it is generally possible to substitute a valve rectifier for a semiconductor h.t. rectifier, if one is willing to go to the trouble of introducing a rectifier heater supply, the converse is not necessarily true. Equipment for which a valve rectifier is specified may well be damaged if a metal rectifier is substituted without due consideration.

Consider the circuit Fig. 4, in which a full-wave valve rectifier circuit feeds a two-stage audio amplifier. If V1 is indirectly heated as shown (e.g. type EZ80), it will not pass any current into the reservoir capacitor C1 until the audio output valve V2b has also warmed up and is able to draw full h.t. output current from C2. The voltage developed across C1 and C2 thus does not rise much above the r.m.s. (a.c.) input voltage from the transformer if the loading is correct.

If a semiconductor rectifier is now substituted for V1, the h.t. voltage builds up immediately across C1 and C2 at switch-on, but there is no output current drain until V2 has warmed up.

The voltage build-up across C1 and C2 will thus initially rise to the peak a.c. input voltage, which is about 1.4 times the r.m.s. input voltage. Electrolytics of correspondingly higher voltage
ratings are then required for C1 and C2.

If the valve rectifier is directly heated (e.g., type 5Y3G), it will deliver h.t. voltage before many of the other valves in the equipment have fully warmed up and are able to draw full h.t. current. The initial h.t. voltage excess will then be less than in the case of semiconductor rectifier circuits, and certainly of shorter duration, but it will often still be significant. Thus beware even of substituting a directly heated rectifier valve for a specified indirectly heated one.

Note that some indirectly heated rectifier valves, e.g., the EZ80, will tolerate the full h.t. output voltage between cathode and heater, so that the rectifier heater may be connected in parallel with the heaters of the other valves, with one side connected to chassis. Other rectifier valves, and of course all directly heated types, will not tolerate this and require a separate rectifier heater winding floating at h.t. voltage on the mains transformer.

If the transformer h.t. winding delivers 250V a.c. or less to the rectifier, a common figure for small amplifiers and receivers, standard 350/380V electrolytics will always be satisfactory for any type of rectifier, whether valve or semiconductor, since this voltage rating withstands the maximum peak voltage which could arise under such conditions. In such equipment there is generally no objection to straightforward substitution of a metal rectifier for a specified valve rectifier.

3 BAND TRANSMITTER

—continued from page 314

50mA should be suitable. If loading is too small speech quality will deteriorate. Excessive loading will reduce r.f. output.

When working with the full anode voltage the p.a. should always be tuned up initially on phone, even when c.w. is required, as this helps keep off-tune anode current down. The p.a. stage must not be left operating off tune or without grid current.

V.F.O.

The voltage stabilised v.f.o. originally described for the 160/80m phone transmitter is satisfactory*. This v.f.o. operates on 1.75Mc/s. The 160m anode coil is replaced by a slug-tuned coil broadly resonant in the 80m band. Tuning may be done by observing grid current, then leaving the coil alone.

It is necessary to short L3 and C1 may be disconnected. Drive to the 6CH6 is on 3.5Mc/s. for all bands. Any other ordinary v.f.o. is likely to be satisfactory.

Simplifications

If 'phone working only is wanted, R3, C5, C10, C11 and C12 may be omitted, the cathode circuit going directly to chassis. R7 is not wanted, nor the "c.w." switch position. For c.w. only the whole modulator and associated circuits can be omitted. It is also possible to use an 807 as the p.a. with useful results and this type of valve is very inexpensive.

* PRACTICAL WIRELESS, March, 1965.
TWO-BAND DIPOLES

CONFIGURATED COAX-FED AERIALS

by F. G. Rayer

A HALF-WAVE dipole, centre fed with a coaxial or twin line, is one of the simplest aerials which can be used successfully without trouble. Most ready-made, kit and home-built transmitters have a pi-output circuit which allows the transmitter to be loaded directly into a 75Ω or similar coaxial line. This method of working is accordingly very convenient.

An ordinary dipole of this type has two disadvantages which sometimes prevent its use. First it needs to be of particular length and enough space may not be available. Secondly the aerial is generally suitable for one band only, which rather limits operating unless another aerial is also available. Both these difficulties can be overcome to a useful extent.

Dipole Length

Requirements for a single band dipole can best be noted first. An aerial of this kind is shown in Fig. 1. The total length is a half-wave at the operating frequency. This can be found from:

Length in feet = \(\frac{468}{\text{Mc/s}} \)

It is usual to cut the aerial for about the middle of the band so that actual coverage includes most of the band. On this basis typical lengths are:

- 80 metre band ... 128ft.
- 40 " " ... 66ft. 4in.
- 20 " " ... 33ft.
- 15 " " ... 22ft.
- 10 " " ... 16ft. 3in.

If particular interest lies at the c.w. end of a band, or any other frequency, length can be adjusted to suit.

A 75Ω coaxial feeder is generally used and can be of any length. It may run against roof, walls or elsewhere and is thus easily brought back to the transmitter.

Practical Construction

A suitable method of making the aerial is shown in Fig. 2. A ceramic dipole "T" piece is most convenient at the middle and the overall length is measured as indicated. Hard-drawn 14s.w.g. wire is most suitable but 7/26 aerial wire is lighter and cheaper. The 14s.w.g. wire can be tightly twisted at insulators but the 7/26 needs knotting, soldering or binding.

The coaxial cable outer braiding is separated with a pointed tool and twisted into a pigtail. This is soldered to one aerial wire. The inner lead is soldered to the other wire. Tape holds the feeder to the "T" piece. If moisture enters the coaxial cable this will upset working. Some spacing material can be melted with the soldering iron to seal the end. Or a sealing compound can be used. Ribbed insulators are generally used. For supporting, polythene line is excellent.

If the aerial is not too long, and supports are rigid, the wire can be drawn taut from the ends. But if the aerial is long (say for 80m) an additional pole or other support at or near the centre is useful to help take the weight of the coaxial cable. The latter should run away at right-angles from the aerial.
Two-band Aerial

Distribution of current in the aerial is as shown in Fig. 1 and current is large and impedance low at the centre. This is why the 75Ω feeder is satisfactory.

On any even multiple a high-impedance point will be found near the centre, so the 75Ω feeder is then unsuitable. But on odd harmonics an uneven number of half-waves exist on the aerial, so that the centre is again low impedance. This is shown for three half-waves in Fig. 3.

As a result, a 7Mc/s dipole can be used on 21Mc/s. The actual calculated length for three half-waves is:

\[
\text{Length in feet} = \frac{492 \times 2 \times 95}{\text{Mc/s}}
\]

It will be found that three half-waves for the 21Mc/s band result in an aerial of about 68ft. Despite this quite good results can be obtained. No other amateur bands can be covered with a single wire in this way.

Fig. 4: This dipole arrangement will work for any two chosen bands.

Double Dipole

A dipole for any two chosen bands can be made as in Fig. 4. Length L1 is for the lower frequency band and L2 is for the chosen higher band. One half of L1 is high impedance at even harmonics, so has little effect on the band covered by L2.

In an aerial of this kind made for 3.5Mc/s (80m) and 14Mc/s (20m) bands it was found convenient to suspend the smaller dipole by 6in. ceramic spreaders as used for open-wire lines. L1 was 120ft and L2 33ft. Three spreaders were used each side the centre "T" piece.

On the first day of testing this two-band dipole the best signal report received was strength 8 to 9 from K4QVK, using 120W a.m. Subsequent results in general seemed about the same as those from a single band dipole cut for 20m. On 80m no change in signal strength compared with an 80m dipole could be found.

From these results it appears that the system is completely practical, though it is clear that the aerial is not one offering any gain in signal strength but merely allowing immediate operating on either of two bands.

It is apparent that if L1 or L2 is operated in the way described for Fig. 3 three-band working is possible. That is, coverage is given for 7Mc/s, 21Mc/s and one other band.

Bent Dipoles

Since the aerial has to be a half-wave this may require a clear span greater than available. This can often be overcome by using some other configuration for the dipole.

Tests show that the conventional arrangement of elements in line can be varied considerably without much loss of efficiency. A dipole with its two wires at about right angles has almost no directivity. Lengthy tests with such an aerial showed no obvious loss at all, compared with the straight dipole. The apex and feeder were supported at the house.

Experiments were made by letting several feet at one end of the horizontal wires drop vertically. This further reduces the space needed, and seems to have little effect on radiation.

It may also be possible to have one half of the aerial in a roof or attic space, with the other half suspended over a short garden. Sloping dipoles were also tried, the angle being from about 30° from vertical to 45°, so that 15m and 20m band aerials could run from a single pole down to an anchor point a few feet from the ground. These all gave good results.

Length Adjustment

When making tests with practical dipoles which were in part near earth or walls, etc., it became apparent that the theoretical length as calculated in the way described was not always best. As a result, it was found that some aerials would load the transmitter in a satisfactory manner near the low-frequency end of the band, but not near the HF end.

This is cured, if necessary, by pruning the outer ends of the aerial. With a 80m aerial, there will probably be no harm in cutting off 2ft. at each end to begin. But with the higher frequency bands, pruning should be correspondingly less, say about 2 per cent of the total, at a time.
FOUR circuits are described, starting with a simple design using the photocell in series with a relay and supply and concluding with a more advanced device using two cells and a transistor logic circuit.

There are several different types of device which are called collectively "photocells". This article is concerned only with one type: the photoconductive cell, which is compact, fairly cheap and suitable for most switching applications. The photoconductive cell is essentially a resistance which changes its value according to the intensity of the light falling on it. Cells are available which give a very large change of resistance with light intensity; a typical change might be from 10MΩ to 300Ω when the cell is exposed to bright, unfocused daylight after being in complete darkness. From this it can be seen that a simple switching circuit need be no more complicated than that shown in Fig. 1.

![Fig. 1: A simple switching circuit employing a photocell.](image)

With the values given the current in the relay when the cell is illuminated will be a little more than 10mA and this should be sufficient to operate many surplus relays.

The values are given simply as an example and are not critical. For instance, the supply voltage could easily be increased to 12V if required. The range over which the supply voltage and relay resistance can be changed is limited by three considerations:

1. The current required in the relay for it to operate. This is determined by the mechanical construction of the relay and will fix an upper limit to the relay resistance for any given supply voltage.

2. The maximum voltage which the cell can sustain across it. If the voltage across the cell exceeds a certain value it will "break down" and become permanently damaged. This maximum permissible voltage is usually about 100V or above.

3. The power dissipated in the cell. This is measured in the normal way by the product of the voltage dropped across the cell and the current flowing through it. Photoconductive cells are not usually capable of dissipating much power and this places an upper limit to supply voltages and a lower limit to relay resistance. The maximum power which a cell can dissipate varies according to the type. For the Mullard ORP12 (which is the cell for which Fig. 1 was designed) the value is 200mW. The circuit must be designed so that this value is not exceeded for any intensity of illumination. The cell is not necessarily dissipating the most power when it is fully illuminated and the current is at a maximum, nor when it is in the dark and the voltage across it is at a maximum. The most power is dissipated when the current flowing is half the value it would have if the cell were short-circuited and the relay placed straight across the supply.

Suppose a circuit is required to operate a 1,000Ω relay which needs 20mA to actuate it. Assuming a maximum cell resistance when illuminated of 200Ω then:

Supply voltage = 20 × (1,000 + 200) = 24V.
Dissipation in cell = 80mW at 20mA current and = 144mW at 12mA (with relay alone I = 24mA). Since these values are within the maximum ratings for the cell (ORP12) the circuit will be satisfactory.

The photoconductive cell is not sensitive to the polarity of any voltage across it. Consequently in the simple circuit of Fig. 1 it is not necessary to use a d.c. supply; a.c. is equally satisfactory. It should, however, be remembered that the values given for a.c. voltages are usually r.m.s.; it is important to consider whether the peak supply voltage (r.m.s. × √2) is going to cause the cell to exceed its maximum voltage rating.

If it is desired to make the sensitivity of the circuit adjustable a variable resistance can be put in series with the other components. As the relay is held on when the cell is illuminated it is best to use a relay with changeover contacts, so that the circuit is suitable for such applications as automatic garage door opening by the headlights as well as detecting intruders or counting people passing through doorways.
The circuit of Fig. 1, whilst it has the merit of being extremely simple and compact, nevertheless has some disadvantages. If the cell is used so that it is normally illuminated the relay will be held on all the time and battery drain will be high. Also the power limitations of the cell mean that relays requiring currents above 30mA or so cannot be used.

CIRCUIT ONE

Fig. 2 shows a circuit which overcomes these disadvantages and uses an OC83 transistor as a current switch operated by the cell. In this circuit the photocell forms part of a potential divider to which the base of the transistor is tapped. When the cell is illuminated the transistor will be cut off and the total battery drain will be substantially equal to the current flowing in the potential divider. This is less than 2mA and so photocells with a low power rating can be used provided they give a suitable change in resistance.

The magnitude of the collector current is determined by the supply voltage, the relay resistance, the current gain of the transistor (α) and the base current. With the values given in the figure and assuming $\alpha=90$ we have:

$$I_C = \alpha \times I_B, \quad I_B = 1.5 \text{mA} \text{ approximately.}$$

$$\therefore \quad I_C = 90 \times 1.5 = 135 \text{mA.}$$

However, since the maximum voltage across the relay is 7.5V and it has a resistance of 60Ω the current is limited to $7.5/60 = 125 \text{mA}$. Any relay that will operate at this current or below will do and the coil resistance need not be exactly 60Ω. If a relay with a different coil resistance is used the 4.7kΩ resistor should be changed accordingly to give a suitable base current. The OC83 can carry a maximum collector current of 500mA but for power dissipation reasons it is necessary to limit the current to a maximum value of considerably less. Currents up to about 200mA should be O.K. The OA81 diode is placed across the relay to short-circuit any induced e.m.f. set up across the relay windings when the transistor switches off. If the diode were not present any induced e.m.f. due to the relay inductance would give rise to a large voltage across the transistor at a time when it is still conducting quite heavily. In other words, the transistor would be called upon to dissipate too much power.

CIRCUIT TWO

Fig. 3 shows a circuit with variable sensitivity using a 100Ω 20mA relay. The circuit can be adjusted to respond to any desired intensity of light above a certain minimum. It will work equally well with a bright focused beam and with the light from a 60mA pea bulb underrun at 40mA from a supply chopped at 10c/s. The circuit has been run under these latter conditions for five hours in daylight with the cell unshielded and placed a few centimetres from the flashing bulb. The relay oscillated in sympathy with the light for the whole period in spite of the changing ambient light level. Since the transistor was continually being switched on and off during this time this trial serves as a good test of power stability. The transistor did not heat up at all.

There is much scope for experiment in the circuits of Figs. 2 and 3. Almost any relay to hand may be tried (with due attention to the power handling capacity of the OC83) and the potential divider adjusted to suit any special requirement. Additional sensitivity to dim light may be achieved by connecting point A to a third supply line, positive with respect to the OV line. (+4±1.5V, OV and -7.5V supplies can readily be obtained from a 9V grid bias battery). Different types of screening, lattice windows and coloured filters can also be tried. Photoconductive cells will respond to most of the visible spectrum and...
Fig. 4: An arrangement for a device to determine the direction of a body passing two cells.

Fig. 5: A practical circuit for the arrangement of Fig. 4.

also to infra-red rays which cannot be seen by the human eye. This is useful for burglar alarms.

CIRCUIT THREE

Fig. 4 is a schematic diagram of a device which uses two parallel beams of light across an entrance with two cells and is capable of determining the direction in which any body interrupting the beams is going. Suppose something is travelling through the beams in the direction of the arrow and that we call the output of the cells "0" when they are illuminated and "1" when the beam is interrupted. The pulse generator in this circuit is a device that only emits a short output pulse when its input goes 1/0. The gate has output 0 only when both its inputs are 1. Fig. 5 is the practical circuit and 1 indicates a potential of OV and 0 a potential of -7.5V when related to this circuit.

Beam A will be blocked first and the output of cell A (Tr3) goes 0/1. The output of gate A is unchanged, since its other input (from P.G.B.) is at 0. The pulse generator A is unaffected since it does not respond to 0/1 voltage steps, but only to negative going steps (1/0). Then beam B is broken and cell B (Tr1) goes 0/1. Gate B is not affected since its other input (from P.G.A., Tr4) is still 0. P.G.B. is unaffected. A little later the body moves out of beam A and cell A (Tr3) goes 1/0. Gate A does not respond since its other input (from P.G.B.) is at 0. P.G.A. (Tr4) now produces a short pulse 0/1/0. Since beam B is still blocked, one i/p to gate B (Tr2) is already at 1 and the gate therefore gives a short output pulse 1/0/1 as P.G.A. goes 0/1/0. When the body moves out of beam B, P.G.B. gives a short pulse, but as cell A (Tr3) is at 0 gate A is unaffected.

As the circuit (Fig. 4) is symmetrical gate A will produce a pulse when something passes through the beams in the opposite direction. If a body only passes through one beam, or is too thin to interrupt both beams simultaneously, the device gives no output. This may be used to discriminate between persons and arms where it is necessary to prevent people from interfering with a counter by moving their arms through the beams or between pedestrians and vehicles. If it is required to detect objects moving in one direction only, half of the circuit can be removed (i.e. to detect objects moving in the direction of the arrow P.G.B. and gate A can be discarded). Fig. 5 gives the circuit of such a unidirectional device; for bidirectional detection Tr3 and Tr4 should be duplicated with associated components.

The width of the output pulse is determined by the time constant CR and will be less than 1mS with the values given. Such a short pulse cannot be detected on a meter and, unless the device is feeding into further electronic equipment, it is necessary to connect the output to some prolonging circuit such as a monostable. In the case of a unidirectional circuit and if the operation initiated

---continued on page 338---
THE design to be described is essentially a simple inexpensive fixed-tuned Light Programme receiver which is fitted into an extension speaker cabinet. By a system of simple switching either the programme on your main receiver, or on this receiver may be selected at the extension position. Construction is simple and there are no problems of alignment or stability: the less experienced constructor may therefore attempt it with confidence.

Circuit Description

Fig. 1 shows the circuit of the prototype. The ferrite rod aerial fitted with a long wave coil L, is fixed-tuned by C1 to 200kc/s. V1, an EF91 high gain r.f. pentode, is a most versatile and inexpensive valve. The arrangement of V1 is conventional, and the stage gain is high and selectivity ample for reception at 200kc/s.

Further r.f. amplification is provided by a second EF91, V2. It must be explained at this stage, that the prototype unit is in service in a locality where the Light Programme is not very well received. In many areas V2 and its associated components will not be required and the amplified signal from V1 may be passed through capacitor C4, direct to the diode detector D1. With only one r.f. stage, the decoupling components R2 and C2 can also be dispensed with. These modifications simplify the receiver considerably. As a guide, the single stage version worked very well in the North-west London area but V2 had to be added for satisfactory results in South-west England.

A GEX34, crystal diode, is used as a detector, and the rectified signal passes via the filter network C7, R8 and C8, and thence to the volume control VR1.

A.F. amplification and output are provided by an ECL82 triode-pentode. Bias for the triode section is obtained through the 10MΩ grid resistor R9, and the cathode can therefore be returned direct to chassis. R10 is the anode load resistor, and C10 couples the audio signal to the grid of the pentode section. R11 and C11 are audio decoupling components. The usual biasing components are included in the pentode cathode circuit, while in the anode circuit, a filter network, comprising R14 and C13 give tone correction. The optimum load for the ECL82 is 9,000Ω and the output transformer should therefore have ratio of about 55:1 for a 3Ω speaker or 25:1 if the speaker is of 15Ω impedance. There will be a voltage drop across the primary winding of the output transformer and resistor R13 ensures that the voltage at the screen grid shall not exceed that at the anode.

Power Supply

The total h.t. current requirement with two r.f. stages is 60mA at 230V, while the valve heaters need 2A at 6.3V. This is provided by a miniature

Fig. 1: The Light Programme receiving circuit.
mains transformer and a 6X4 valve rectifier. Any other arrangement which provides these currents and voltages will be quite suitable, however, if half-wave rectification is used, it will be necessary to double the value of the reservoir capacitor C15. Smoothing is provided by resistor R16 and capacitor C14. Depending on whether there are one or two r.f. stages and upon the transformer-rectifier combination employed, the value of R16 may need alteration to bring the h.t. line voltage within the range 230—250V. A 6.3V 0.3A pilot light is fitted in any convenient position on the front of the speaker cabinet.

Connection to Main Receiver

Switches S1 a, b, c and d, are the poles of a 4-pole, 3-way switch. This is arranged so that, from a central OFF position, rotation in one direction connects the speaker to the main receiver and in the other, to the internal receiver, at the same time switching the power supply as necessary. Switch S1b introduces a dummy resistive load at the positions where the speaker is not connected to the main receiver, so that the loading of the main output stage will not be upset by operations at the extension. If the extension speaker is of 155Ω impedance, the value of R17 should be increased to

Components List

Resistors:

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>150Ω</td>
</tr>
<tr>
<td>R2 (marked 🆗)</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R3 (marked 🆗)</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R4 (marked 🆗)</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R5 (marked 🆗)</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R6 (marked 🆗)</td>
<td>150Ω</td>
</tr>
<tr>
<td>R7 (marked 🆗)</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R8 (marked 🆗)</td>
<td>10MΩ</td>
</tr>
<tr>
<td>R9 (marked 🆗)</td>
<td>6800Ω</td>
</tr>
<tr>
<td>R10</td>
<td>220kΩ</td>
</tr>
<tr>
<td>R11</td>
<td>22kΩ</td>
</tr>
<tr>
<td>R12</td>
<td>470kΩ</td>
</tr>
<tr>
<td>R13</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>R14</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R15</td>
<td>680Ω</td>
</tr>
<tr>
<td>R16</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R17 (marked 🆗)</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R18 (marked 🆗)</td>
<td>22kΩ</td>
</tr>
<tr>
<td>R19 (marked 🆗)</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R20 (marked 🆗)</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R21 (marked 🆗)</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R22 (marked 🆗)</td>
<td>68kΩ</td>
</tr>
<tr>
<td>R23 (marked 🆗)</td>
<td>82kΩ</td>
</tr>
<tr>
<td>All 10% 1W carbon, unless otherwise stated</td>
<td></td>
</tr>
</tbody>
</table>

Capacitors:

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (marked 🆗)</td>
<td>330pF silver mica 350V</td>
</tr>
<tr>
<td>C2</td>
<td>0.01µF paper 350V</td>
</tr>
<tr>
<td>C3 (marked 🆗)</td>
<td>0.01µF paper 350V</td>
</tr>
<tr>
<td>C4 (marked 🆗)</td>
<td>330pF silver mica or ceramic 350V</td>
</tr>
<tr>
<td>C5</td>
<td>0.01µF paper 350V</td>
</tr>
<tr>
<td>C6 (marked 🆗)</td>
<td>330pF ceramic 350V</td>
</tr>
<tr>
<td>C7</td>
<td>330pF ceramic 350V</td>
</tr>
<tr>
<td>C8 (marked 🆗)</td>
<td>330pF ceramic 350V</td>
</tr>
<tr>
<td>C9 (marked 🆗)</td>
<td>0.01µF paper 350V</td>
</tr>
<tr>
<td>C10</td>
<td>0.01µF ceramic 350V</td>
</tr>
<tr>
<td>C11</td>
<td>8µF electrolytic 350V</td>
</tr>
<tr>
<td>C12</td>
<td>25µF electrolytic 25V</td>
</tr>
<tr>
<td>C13 (marked 🆗)</td>
<td>0.01µF paper 350V</td>
</tr>
<tr>
<td>C14 (marked 🆗)</td>
<td>32µF electrolytic 350V</td>
</tr>
<tr>
<td>C15 (marked 🆗)</td>
<td>8µF electrolytic 350V</td>
</tr>
</tbody>
</table>

Inductors:

<table>
<thead>
<tr>
<th>Inductor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 (marked 🆗)</td>
<td>Dual-wave ferrite rod aerial (Denco FRA2)</td>
</tr>
<tr>
<td>RFC1 (marked 🆗)</td>
<td>R.F. choke (Denco RFC7A)</td>
</tr>
<tr>
<td>T1 (marked 🆗)</td>
<td>Output transformer. 55:1 ratio for 3Ω speaker; 25:1 ratio for 15Ω speaker</td>
</tr>
<tr>
<td>T2 (marked 🆗)</td>
<td>Mains transformer. Secondaries: 250-0-250V, 60mA; 6-3V, 2A</td>
</tr>
</tbody>
</table>

Valves:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>EF91</td>
</tr>
<tr>
<td>V2</td>
<td>EF91</td>
</tr>
<tr>
<td>V3</td>
<td>ECL8</td>
</tr>
</tbody>
</table>

Miscellaneous:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI (marked 🆗)</td>
<td>4-pole, 3-way rotary switch</td>
</tr>
<tr>
<td>DI (marked 🆗)</td>
<td>GEX-34 or similar diode</td>
</tr>
<tr>
<td>LP1 (marked 🆗)</td>
<td>6-3V, 0.3A pilot lamp</td>
</tr>
</tbody>
</table>

Three B7G and one B9A valvholders. Lampholder. Tinned copper wire, sleeving, grommets, etc.

These components are not required if there is to be only one r.f. stage.
about 22Ω. The connection to the extension line is made by way of a non-reversible plug and socket as shown in Fig. 2, the "earthy" side of the line being taken to the larger of the plug pins.

Construction

This is not at all critical and the size and shape of the chassis can be varied to suit the cabinet into which it is to be fitted. For the prototype, an 8in. speaker in a cabinet 12 x 12in. offered a narrow space at the bottom and a chassis 10 x 3 x 14in. of 18swg. sheet aluminium was used. Because of the proximity of the aerial, V1 and V2 must be screened and RFC1 must also be enclosed in a screening can. A satisfactory mounting for the aerial can be made from sheet aluminium, cut to shape shown in Fig. 3 and bolted to the rear chassis runner. Fit rubber grommets into the two 5in. holes and pass the aerial rod through them as shown in the illustration.

Fig. 2: A suggested addition to the chassis for mounting the ferrite rod aerial.

Fig. 3 shows all the wiring and the approximate positions of the components on the chassis. Tinned copper wire of 22swg. covered with sleeving, is suitable for all the wiring. Work can proceed in any desired order, but it is convenient to deal with the power, output and a.f. stages first and to fit the aerial last, one lead from L1 being earthed at a convenient point above chassis. The ratings for resistors and capacitors are given in the components list. No special components are required but it is convenient to use a disc ceramic for C10.

Testing and Alignment

When all the wiring is complete, check with a meter between CI5 and chassis to see that there are no shorts in the h.t. circuits. Now connect the power supply and after allowing a minute or so for warming up, advance the volume control and slide L1 along the ferrite rod until the programme is heard. Accurate tuning is obtained by connecting a high resistance voltmeter, positive to chassis, across VR1 and adjusting the position of L1 carefully for maximum indication. Alternatively, the adjustment can be done by ear at very low volume. When the best position for L1 has been found, fix it in position with a little beeswax.
WONDERFUL RESPONSE

You will, I am sure, be pleased to know that my letter, printed in the May issue of Practical Wireless, has more than served its purpose.

I have received a complete set of transformers from a student in Bridlington and a set of slugs from a Londoner. I also received a rather bald request for “the h.f. coil” with no mention of slugs at all! Even then I would have replied, of course, if he had had the goodness to include a s.a.e.

Perhaps the most pleasant result of your publication was a brief note asking me if I was a person the writer knew years ago in... I am indeed, so you have found an old friend for me!

Again many thanks and my best wishes for the continued success of P.W.

G. H. Scholey, G3CDR
Dartford, Kent.

LIKE PRACTICAL TELEVISION

I am a keen reader of Practical Wireless and Practical Television. I think that they are both excellent magazines but I would like to see a Test Case relating to radio in Practical Wireless. I would also like to see a monthly section on Servicing Radio Receivers similar to Servicing Television Receivers in Practical Television.

Wm. G. Hall
Billingham, Co. Durham.

I would be interested to hear what other readers may have to say on the above subject.—Editor.

COMPETENT CONSTRUCTORS

With reference to Mr. R. A. Packer’s letter (News and Comment, May issue). In my view, a competent constructor is one who makes the best possible use of components he already has in stock. Or to put it another way, no sensible person would go and buy a new Mini if there was a perfectly good and reliable large car of somewhat older vintage already in the garage.

H. T. Kitchen
Nuneaton, Warwicks.

SEMICONDUCTOR SUPERMARKET

For the first time in the UK, semiconductor components will soon be available on a self-service basis in a number of centres throughout the country.

Pre-packaged components complete with technical data and information booklets will be displayed in selected retail shops where constructors will be able to help themselves to a range of solar cells, transistors, rectifier diodes, zener diodes, silicon controlled rectifiers, selenium photocells, etc.

The manufacturers of all the products are International Rectifier of Oxted, Surrey, and the first semi-conductor centre opened at Stern-Clyne Ltd. in Holloway Road, London, during May.

All these components have guaranteed performance figures and in the case of such items as transistors, hundreds of American and European equivalents are listed in accompanying literature.

HONG KONG IMPORTS BRITISH RESISTORS

A British electronics firm—Morganite Resistors—is exporting a quarter of a million resistors to Hong Kong every week. According to a recent announcement this is because Japan—a major component supplier to the Hong Kong radio industry—cannot make resistors of the same accuracy within the price range, with a tolerance of better than 10%.

The resistors are mainly used in low-cost transistor receivers.

MINIATURE 18W SOLDERING IRON

This new 18W miniature soldering iron—model “G”—_was announced recently by Antex Limited of Grosvenor House, Croydon.

As in all Antex irons, the heat-source of this model is placed inside the actual bit, which is split to prevent “freezing” to the iron. Extra heat storage capacity is achieved with this particular iron in the heavy shank of all the bits designed to fit it. In fact there is a range of four bits (from 3/8 in. to 2 in.) available for the model “G”.

Complete with bit the iron weighs between two and three ounces (according to the bit used) and costs 32s. 6d.

RADIO TELEPHONES FOR TANKER FLEET

The installation of a v.h.f. a.m./f.m. radiotelephone in the S.S. British Holly this year brings the number of Redifon v.h.f. equipments now in use aboard B.P.’s fleet of tankers up to one hundred. A similar installation was also made in the 100,000 ton British Admiral—the largest tanker ever built in Europe.

Redifon supply two types of v.h.f. radiotelephone—the GR.286 Mk.2 and the GR.289 Mk.2—for use in vessels of all classes. The GR.286 Mk.2 provides complete coverage of all allocated f.m. channels in the International Maritime band of 156–162Mc/s.

The GR.289 Mk.2 radiotelephone provides 11 f.m. channels and covers international distress and safety, inter-ship, port control and radar advice services while also providing public correspondence and private band ship-to-shore channels.
COMMENT

IMPROVED WIRE STRIPPERS

A wire stripper and cutter, more sophisticated than previous models, has been introduced by Multicore Solders Limited (Maylands Avenue, Hemel Hempstead, Herts.).

The tool is in the form of a pair of pliers and is shown in the photograph above. A rotating gauge on the side selects the depth to which the stripper blades cut for any Standard Wire Gauge between 12 and 26, while the blades will also be cut through any wire or flex if required. The price is £5.6d.

ELECTRICAL ENGINEERS EXHIBITION 1966

Over 30,000 sq. ft. of extra floor space will be available to exhibitors at next year’s Electrical Engineers Exhibition. Already the dates for the Exhibition, to be held once again at Earls Court, London, have been fixed as 23rd to 30th March. Increased overseas participation is expected at the larger show.

RADIO/TV LICENCES TOP 13½ MILLION

The total number of combined sound and television receiving licences in the UK now stands at over 13½ million. The actual figures for April just issued, show an increase during the month of 42,722 to 13,295,767.

The number of sound only licences continues to decrease, the April total being 2,788,405, including 630,191 for sets in cars.

TELEGRAMS VIA EARLY BIRD

During June American telegraph companies and selected customers in Great Britain exchanged pictures and data, telex calls and public telegraph messages via the Early Bird satellite. (Before this Early Bird had been used to relay trans-Atlantic television exchanges.

The telegraph messages transmitted, were ones selected at random from normal “traffic”, and were transmitted both by trans-Atlantic cable and by the satellite. Recipients of these received two copies of the telegrams, one clearly marked “Via Early Bird”.

BECAUSE OF THE LARGE NUMBER OF OUTSTANDING “SELL OR LOAN” REQUESTS NOW HELD BY US, WE REGRET THAT FOR THE NEXT FEW MONTHS WE WILL NOT BE ABLE TO ACCEPT ANY LETTERS ON THIS COLUMN.

Sir, I would be grateful if any reader could sell or loan me . . .

- circuit diagram and/or any information regarding the Holland-made radio Type KYS84E “INR 3731” I do not know the brand but there is a symbol showing an orchestra conductor on the cabinet. As soon as I have time, I’ll get a look at it. - G. Braddock, 36 Yard’s Road, Cleethorpes, Lincs.

- modification details (2m) for 19 “L” set. - H. Dresner, Paul’s Hill, Leigh, Nr. Tonbridge, Kent

- a circuit diagram and/or information about the valves used in the “Packard” A00914 four valve superhet m.r. receiver. - E. Jones, 13 Cunie Way, Meadowbridge, Cape, South Africa.

- information on the connections to, or any other data on, the c.r.t. type CV1526. - A. F. Young, 26 Church Road, Kearsley, Bolton, Lancashire.

- the details for a s.s.b. adaptor and a circuit diagram and data of a 60W v.d.o. type transmitter and modulator.

- also, could the reader who very kindly lent me the manual for 3X26 please let me have his address? - S. L. Anand, 107 T.I. Quarters, Kalianpour, Kanpur U.P.

- any information on the crystal controlled oscillator section of the Elco v.h.f. receiver unit AP61357—6124, No. 1597, including the type and frequency of crystal required. - F. Neeson, 34 Bangor Road, Hoywood, Co. Down, N. Ireland.

- circuit diagram and information re Hallicrafters Communications Receiver model 540, frequency range 550kc to 44Mc. - Ainal Ratanagye, Royal Ceylon Air Force, China Bay, Ceylon.

- any information at all on unit R-3/ARR-2X and/or indicator unit type Z6. - D. Bartle, Runnymede. 35 Oaklands Avenue, West Hartlepool

- the handbook for the R220. - J. Freer, 83 West End, Kirkbymoor, York. U. K. - the handbook for the Glove Scout model 65, by World Radio. Also information as to where a stockist for this company exists in Britain. - Denis McCann, 96 Chelmsford, Cowie, Stirlingshire, Scotland.

- the circuit and servicing manual of the Walter Metropolitan tape recorder. - 13 Grange Avenue, Leicester Forest East, Leicester.

- any information on the army set No. 19. - B. Kitcher, 11 Scarborough Road, Blackburn, Lancashire.
10. CRYSTAL OSCILLATORS; FREQUENCY MULTIPLIERS; POWER AMPLIFIERS; TRANSMITTER KEYING; AMPLITUDE MODULATING A TRANSMITTER

10.1 R.F. Oscillator Stability

VARIOUS oscillator circuits were dealt with in a previous article (R.A.E., May, 1965, P.W.) and in each case the frequency of oscillation was determined by an inductance/capacitance combination forming a tuned circuit. (Types of oscillators mentioned included the Tuned Anode-tuned Grid (T.A.T.G.), Colpitts and Hartley.)

In any of these circuits a change in the value of any component in the tuned circuit will result in a change in frequency of the oscillator. For example, if the oscillator valve generates sufficient heat to slightly alter the size of the inductance a gradual frequency drift will occur. Changes in voltages applied to the valve electrodes may also cause frequency changes as different voltages will cause different amounts of heat to be generated. Mechanical vibrations in an oscillator may also cause frequency changes—and can even modulate the oscillator frequency.

An extremely stable oscillator can, however, be constructed which does not use the familiar inductance/capacitance in the grid circuit but instead uses a quartz crystal.

10.2 Crystal Controlled Oscillators

The frequency of an oscillator can be maintained at a constant level by using a quartz crystal as the tuned circuit. The crystal is resonant at a particular fixed frequency and this is determined almost completely by the dimensions of the crystal. In fact the thickness of the crystal is the main controlling factor. In order to make a quartz crystal oscillate, however, feedback from the anode to the grid must be facilitated in much the same way as in other types of oscillator mentioned.

When a crystal oscillator is operating, a small current passes through the crystal, this being determined primarily by the amount of feedback applied. If this current becomes too large, heating of the crystal will occur and slight frequency changes will result. It is important to use as low a crystal current as possible—consistent with easily maintained oscillation.

It can be seen that the power output of a crystal controlled oscillator should preferably be kept low and in this respect it is inferior to the inductance/capacitance controlled oscillator.

10.3 Typical Crystal Controlled Oscillator Circuits

In Fig. 88 is shown a very simple crystal controlled oscillator circuit—this is, in fact, a Pierce oscillator.

In Fig. 88 the amount of feedback is controlled by the ratio of the values of C1 and C2. If the circuit is studied carefully it can be seen that C1 is in parallel with the anode/cathode interelectrode capacitance of the valve and that C2 is in parallel with the grid/cathode interelectrode capacitance of the valve. In order to obtain feedback the interelectrode capacitances of the valve are effectively increased. R is a grid leak and may have a value of 20-100,000Ω. R.F.C. is a radio frequency choke and this prevents r.f. power from the oscillator being dissipated in the power supply or from being passed to another circuit through the power supply circuits.

Shown in Fig. 89 is an oscillator circuit which is basically the same as the tuned anode-tuned grid oscillator dealt with previously. In this case the inductance/capacitance in the grid circuit has simply been replaced by a quartz crystal.

Fig. 89: A grid plate crystal controlled oscillator.

10.4 Frequency Multiplier Circuits

Up to quite recently crystals were only reliable up to a frequency of about 20-30 Mc/s, crystals for higher frequencies being very thin and able to operate at very low powers only. Therefore it was found to be comparatively easy to multiply the frequency of operation of a crystal. Frequency
LEARN - THE PRACTICAL WAY...

The demand for good Electronic Engineers is increasing almost daily throughout the world. Electronics is now the most rapidly expanding of all industries with its applications reaching into almost every sphere of human activity. If you are looking for a new career with new opportunities, then now is the time to choose Electronics. If you are already employed in this field—then now is the moment to seek high qualifications to secure the top jobs which are waiting to be filled. Most of all, the great potential of electronic development means unlimited scope for the future and will ensure a secure occupation for you—unlikely to be affected by possible future recessions in other industries.

The British National Radio School has had 25 years' experience of HOME STUDY coaching for students wishing to master the fascinating subjects of Electronics—whether the object be career or as a hobby or new interest. The School is entirely independent and specialises ONLY in the teaching of electronic subjects. It employs only fully qualified staff to conduct and supervise each individual course taken by a student and it is this close and personal contact between Tutor and Student which we believe makes possible the successful completion of a course of study.

A special feature of our system is that all courses start right from the beginning and no previous knowledge or experience is necessary or expected. Training is carried out in easy step-by-step stages using the most modern methods of tuition. The great advantage of the home study method is that it provides a complete self-contained course giving everything needed for the subject concerned and enabling work to be done in the comfort of one's own home and over any period of time desired.

EXAMINATION COURSES
- CITY & GUILDS TELECOM. TECHNICIANS CERT.
- CITY & GUILDS Full TECHNOCAL CERT.
- A.M.Brit.I.R.E. EXAMINATION
- RADIO AMATEURS LICENCE EXAMINATION
- P.M.G. CERTIFICATES FOR RADIO OPERATORS
- R.T.E.B. SERVICING CERTIFICATES

OTHER COURSES
- MATHEMATICS
- TELEVISION
- TRANSISTORS
- SERVO-MECHANISMS
- COMPUTERS
- ROAR & NAVIGATIONAL AIDS

BUILD AND EXPERIMENT WITH ALL THE ABOVE—AS—YOU—LEARN...

This is a new complete experimental course comprising a mixture of theory and practical work using a very full range of electronic components and apparatus. Starting right from the beginning—or at a later stage if needed—the course enables the student to build up all the basic electronic circuits—amplifier: oscillator: rectifier: detector: etc.—and finally to the design, construction, testing and servicing of a latest design fully transistorised receiver using nine transistors and covering long and medium wave and TWO SHORT WAVE BANDS plus VHF/FM reception. It is of real luxury quality throughout—operates from a 9v. battery and can be used anywhere in the world. Every present-day technique in circuitry is covered and the course also includes multihrange test meter: signal generator and oscilloscope. By the end of the course the student will be able to deal with any type of servicing work with confidence and will also have a very useful workshop of equipment. Nearly 100 interesting and absorbing EXPERIENCES are carried out during this comprehensive course enabling anyone to gain full mastery of electronics.

FREE TO: BRITISH NATIONAL RADIO SCHOOL, RADIO HOUSE, READING, BERKS.

Please send me your free Brochure, giving details of your Courses, without any obligation, to:

NAME
ADDRESS

(We do not employ representatives)

British National Radio School
multipliers are also of use to enable a single crystal of, say, 3-5Mc/s to be used to obtain output frequencies of 3-5, 7 and 14Mc/s, etc.

In a simple form a frequency multiplier could be as represented in Fig. 90. The tuned circuit in the grid of the valve is resonant at the same frequency as the crystal oscillator and the tuned circuit in the anode may be resonant at two, three, four or five times this frequency. The power output from a frequency multiplier can never be as great as when the stage is used as a straight amplifier. Consequently the greater the number of times the frequency is multiplied the less the power output from the multiplier. Bearing this in mind it is not general to use frequency multipliers which multiply the frequency more than five times.

A simpler frequency multiplier does not use a tuned circuit in the grid but is connected directly to the oscillator anode. This circuit is shown in Fig. 91.

Fig. 90: A frequency multiplier circuit.

10.5 R.F. Power Amplifier Circuits

In order to radiate considerable power from a transmitter the signal generated by the oscillator has to be amplified to a very great extent. The function of a power amplifier is, as mentioned, to generate high r.f. powers, but it must also be efficient in respect that harmonic radiation is low. In order to minimise harmonic radiation the Q of the tuned circuits used in a Power Amplifier (p.a.) is made very high.

A simple p.a. is shown in Fig. 92 and L2 may be connected to the aerial or to the next amplifier stage. The load resistance at which the valve operates must be matched to the transmission cable which carries the power to the aerial. For example, the transmission line or feeder may be of, say, 3000 impedance and, as the p.a. load resistance is usually much higher, L1—L2 constitute a step-down matching transformer.

Fig. 92: The circuit of a simple r.f. power amplifier.

In Fig. 92 the r.f.c. is to prevent the power from the driver stage being dissipated in the low impedance bias supply. R.F. power amplifiers are generally operated under Class C or AB conditions. Output circuits will be dealt with further when aerials are discussed.

10.6 Keying a Transmitter

In order to radiate carrier wave (c.w.) signals, using the Morse Code, the output of the transmitter must be reduced to zero after each "dot" and "dash". This is simply a way of saying that in fact the transmitter must be switched on and off in order to radiate the desired signal. This is usually accomplished by using a key. In the interests of safety it is desirable to key the transmitter at a point where high voltages are not present. The key is often placed in the cathode circuit of a crystal controlled oscillator or in the cathode circuit of a buffer amplifier (a buffer amplifier is an amplifier which is used to isolate an oscillator from any higher power amplifier which may follow and it usually operates at the same frequency as the oscillator). In a v.f.o. (variable frequency oscillator) it would be
DESPATCH-TODAY?-PHONE-R.C.S.

TALENTED PLAYERS

DE-LUXE RECORD PLAYER KITS
Autographs 2-1/2
Call 10-3065
$15.00.
Earn 200 points on this order.
2 valve space
2 valve space
2 valve space
4 valve space
Quality output. Volume and tone controls. All
inserts and trimmers are best.

DESPATCH TIMES COMPLETE AS ABOVE
B.S.R. Superlimm
Garrett Asilum
Garrett Asilum
ATC $10.00
ATC $10.00
Garrett Asilum
B.S.R. $5.00

ANTENNAS
Garrett Asilum
Garrett Asilum
Garrett Asilum

CABINETS

Full 12-8 x 16-8 x 8-6

15.6/90

9-

3.6/20

12-

18-

30-

100-

350-

500-

1000-

11-

11-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-

12-
Technical Training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs—they can help you too! Why not fill in the coupon below and find out how!

Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics & Radio Engineers (Brite.I.R.E.)
- C. & G. Telecommunication Techns' Certs.
- C. & G. Supplementary Studies
- Radio Amateurs' Examination
- P.M.G. Certs in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students Coached until Successful

NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5-valve receiver, transistor portable, signal generator and multi-test meter—all under expert tuition. Transistor portable available as separate course

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 171, Intercert House, Parkgate Road, London, S.W.11

Please send me the ICS prospectus—free and without obligation.

(state Subject or Exam.)

NAME

ADDRESS

INTERNATIONAL CORRESPONDENCE SCHOOLS

BRAND NEW AM/FM (V.H.F.) RADIO GRAM CHASSIS AT £13.13.0 (Carriage Paid)

Chassis size 15 x 12 x 5/1n. High. New manufacture. Dial 14 x 4in. in two colours, predominantly cream. £3.00-350v, A.C. only.

15 x 5/1. ELLIPTICAL SPEAKER & free to purchasers of this chassis.

TREMS: £322.0 down and 6 monthly payments of £2.4.0.

Cheats Room Diploma for V.H.F. £24.0. Feeder £4.0. per yard.

AMERICAN BRAND TAPE

FULLY GUARANTEED AT RECORD LOW PRICES

MYLAR BASE

7in. Stand. play. 1,200ft. 12/6

10 in. Stand. play 1,800ft. 19/6

15 in. Double play 1,200ft. 22/6

24 in. Double play 2,400ft. 29/6

7 in. Triple play 450ft. (Plain white) 14/6

10 in. Triple play 600ft. (Plain white boxes) 19/6

15 in. Triple play 900ft. (Plain white boxes) 22/6

24 in. Triple play 1,200ft. (Unboxed) 24/6

ACETATE BASE

7 in. Stand. play 600ft. 8/-

10 in. Stand. play 1,200ft. 11

15 in. Stand. play 1,800ft. 15/

7 in. Long play, 900ft. 10/-

10 in. Long play, 1,200ft. 19/-

15 in. Long play, 1,800ft. 20/-

12 in. Double play, 300ft. 8/-

15 in. Double play, 600ft. 12/-

30 in. Double play, 900ft. 17/-

30 in. Triple play, 450ft. 18/-

Postage 1/- per reel (or more post free)

MESSAGE TAPES

7 in. Stand. play 1,200ft. 9/6

10 in. Stand. play 1,800ft. 20/-

15 in. Stand. play 2,400ft. 25/-

7 in. Long play, 900ft. 12/6

10 in. Long play, 1,200ft. 14/-

15 in. Long play, 1,800ft. 16/-

12 in. Double play, 300ft. 10/-

15 in. Double play, 600ft. 15/-

30 in. Double play, 900ft. 20/-

30 in. Triple play, 450ft. 22/-

Postage 1/- per reel (or more post free)

SELF-POWERED V.H.F. TUNER CHASSIS

Covering 50-92 M. EBU, Thermo-parametric amplifier tuner. Downs. 8 x 6 x 6in. high. 2 valves ECC85 and 2-6F4/E's plus 2 diodes with EZ80 rectifier, Macks transformer. Fully wired and tested ONLY £17.2.0 (carr. paid). Room supper 13/-6. Feeder 6d. per yard.

HIGH GAIN PUSH-PULL OUTPUT AMPLIFIER £5.4.6 (6/- post)

Valves EZ80, ECC83 and 50TUL. 82 giving 8 watts. Chassis 12 x 8 x 31/2in. With O.P. Trans for 3 and 8-ohm speaker, balanced chassis. Bass and treble out. Mike, guitar, radio and crystal pick-up input. Facilities for mixing mike and radio etc. Front panel fixed. Also available as straight 16-watt amplifier with bass, treble and volume controls at £5.8.0. (6/- post). Front panel may be removed on this amp.

4 TRANSISTOR MINIATURE PUSH-PULL AUDIO AMPLIFIER HIGH IMPEDANCE

PRINTED CIRCUIT, 4in. x 31/2in. x 11/2in. over transformers. Output for 8-ohm speaker, suitable for microphone, record player and intercom. 9 volt battery required. Frequency range 100 c.p.s. to 30 Kcps. Push-pull output class E. Instruction sheet fully wired ready for use. Three types, 300W.M. 8-ohm; 100W.M 4-ohm; LOW 878. (P. & T. 216 each).

CM21 CRYSTAL MICROPHONE

With 8.5 mm. Jack plug. £2.5 (Post 1/-).

GLADDSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.

(Closed Wednesday Afternoon)

Regret everyone orders cannot be accepted.

August, 1965

www.americanradiohistory.com
preferable to key the buffer amplifier rather than the oscillator in order to ensure that the signal does not become "chirpy". A chirpy note results when the keying of the transmitter either directly or indirectly alters the frequency of the oscillator.

When the transmitter key is closed a spark may result; this will generate an r.f. signal but this will only be heard in the immediate vicinity of the transmitter.

When key clicks can be detected on a receiver many miles away they are formed in a different way. When the transmitter is keyed and the carrier wave is interrupted almost instantaneously a key click will result. In order to eliminate the key click the components in the keying circuit must be arranged so that the carrier wave is not interrupted instantaneously but fairly gradually. (The time taken for the signal to reach its peak value is, of course, only measurable in microseconds—μs.)

A simple keying circuit which could be used in the cathode circuit of a buffer amplifier is shown in Fig. 93. The radio frequency choke and the capacitor act as a filter to eliminate r.f. clicks.

10.6 Amplitude Modulating Transmitter

Modulation is the superimposing of one type of signal on another, in fact in the cases to be discussed it is the superimposing of an a.f. signal on an r.f. signal. If a carrier modulation is used in a circuit the modulated wave will be of the type shown in Fig. 93. The line AB on Fig. 95 represents the mean value of the modulating signal and the ratio of x to y enables the percentage modulation to be calculated, i.e. percentage modulation

\[
x = \frac{x}{y} \times 100\%
\]

Obviously if x equals y the modulation must be 100%. A carrier modulated to 100% is shown in Fig. 96.

If modulation exceeds 100%, distortion will occur as the signal envelope is no longer the same shape as the modulating signal.

When a carrier is modulated the signal which is transmitted does in fact consist of three components, a carrier, an upper sideband and a lower sideband. If a carrier of 100kc/s is modulated by an a.f. signal of 10kc/s the transmitted signal would consist of three components—100kc/s (the carrier), 100kc/s±10kc/s (the upper sideband) and 100kc/s−10kc/ (the lower sideband). The modulating signal is carried by the sidebands.

10.7 Anode Modulating a Transmitter

A very common method of amplitude modulating a transmitter is anode modulation. The output from an audio amplifier (class A or B and generally push-pull) is passed, via a modulation transformer, to the anode voltage supply of the r.f. power amplifier valve. The modulation of the r.f. amplifier will be 100% when the output of the audio amplifier is such that the voltage appearing at the r.f. amplifier anode varies between 0 and 200% of its d.c. operating voltage.

In order to obtain 100% modulation the same wave audio power output from the modulator
must be at least half of the d.c. power input to the r.f. amplifier.

Readers are advised to study also control grid modulation, screen grid modulation and cathode modulation.

SOLAR-POWERED POCKET RECEIVER

—continued from page 302

compromise between the signal direction and the light direction has to be made.

The total cost of the final receiver was about £3, but this may be reduced considerably by using an International Rectifier B2M solar cell, price 15s.

The effect of adding a second transistor was negligible but further experiments may prove fruitful. The final circuit appears so simple that to many it would appear inconceivable that it works, yet it does. Surely in this circuit the transistor is operating to its capabilities (as they should in all circuits). The field of light operated transistor circuits appears to be almost untouched by experimenters, both amateur and professional (what about Sinclair Radionics Ltd. and others?). The writer would be very interested in receiving details of similar experiments carried out by readers.

PHOTOCELL CIRCUITS

—continued from page 326

by the device has a definite ending (e.g. garage door opening, gate opening, etc.) the output from the gate can be made to set a bistable which controls the opening motor. A limit switch can then be used to reset the bistable when the doors have opened.

No particular transistor is specified for the bulk of the circuit as almost any type will do except surface barrier types.

Fig. 6 shows a suitable relay drive circuit which may be tacked on to any bistable or monostable designed for these supply voltages and with a collector resistance of around 1.5kΩ.

For simple on/off applications the photocell should be mounted in a lightproof box painted matt black inside. A simple lens system using two converging lenses with the cell and lamp filament at the focus will do. The cell lens should be shielded by a tube painted matt black inside.

That light can only enter from sources along the axis of the tube.

The constructor who has some old glass encapsulated transistors which are lightproofed with black paint might like to try making his own photocell by scraping off the paint. The paint can easily be scraped off with a penknife and should be removed from the rounded top end and for about 2mm down the side. The capsule will be filled with blue, white, greyish or transparent grease. Obviously the transparent grease types are best and the blue and white types are no good at all; it is best to repaint them for future use. The scraped transistor will function as a photoconductive cell (emitter +ve) with the base open circuit, but for best results try a resistance between base and emitter. The value will be between 5 and 100kΩ and can be found experimentally. Photocells made in this way will not be as sensitive as proper ones but can be made to work perfectly well by the use of a suitable transistor-amplifier stage.

Fig. 98: A typical superhet circuit which would fulfil the requirements of last month's question. It should be remembered however that there could be many variations to this circuit and therefore many correct solutions.

Question.—Draw diagrams of the type shown in Figs. 95, 96 and 97 to show a carrier wave modulated to—

(a) 50%—let x be denoted by 50.
(b) 75%—
(c) 150%—

Last Month's Question.—A typical answer to this question is as shown in Fig. 98.

PART II NEXT MONTH
NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

ROAMER SEVEN Mk III
5 WAVEBAND PORTABLE OR CAR RADIO

Amazing performance and specification...Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS
○ 9 stages—7 transistors and 2 diodes

Push-pull output for room-filling volume from rich-toned heavy "Celestion" speaker. Air-spaced
charged tuning condenser, Ferrite rod aerial for M. L. Waves and telescopic aerial for S Waves
Real leather-look case with gilt trim and shoulder strap. Size x 7 x 4 in., approx.
The perfect portable and the ideal car radio. (Use PP7 battery available anywhere.)
Total cost of parts now only £5.19.6 P. & P.
Parts Price List and easy build plans 3/6.

TRANSONA 5
○ 7 stages—5 transistors and 2 diodes

Covers M. & L. Waves and Trawler Bands, a feature usually found in only the most expensive
radios. On test Home, Light, 208, and many Continental stations were received loud and
clear. Designed round supersensitive Ferrite Rod Aerial and new type fine tone super dynam-
ic 2½in. speaker, attractive plastic cases with red grille.
Total cost of all parts for £4.2/6 P. & P.
Parts Price List and easy build plans 3/6.

MELODY SIX
○ 8 stages—6 transistors and 2 diodes

Wonderful reception of B.B.C. Home and Light, 208 and many Continental stations. Handsome leather-look pocket
size case, only £9.1/6 approx., with soft speaker grille and supplied with hand and shoulder strap.
Parts Price List and Total cost of all easy build plans 2/-. parts now only £3.9.6 P. & P.

TRANSONA SIX
○ 8 stages—6 transistors and 2 diodes

This is a top performance receiver covering full Medium and Long Waves and Trawler Band, High-grade-
approx. 3in. speaker makes listening a pleasure. Ferrite rod aerial. Many stations listed in one evening
including Luxembourg loud and clear. Attractive case in grey with red grille.
Size x 8 x 4½ in. 1½v (Use PP7 battery available anywhere) Carrying strap 1/6 extra.
Total cost of all parts now only 59/6 P. & P.
Parts Price List and easy build plans 1/6.

SUPER SEVEN
○ 9 stages—7 transistors and 2 diodes

Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with
carrying strap for outdoor use. Completely portable—has built-in Ferrite rod aerial for wonderful reception.
Special circuit, incorporating 2 R.F. Stages, push-pull output, 3in. speaker (will drive larger speaker).
Size x 8 x 4½ in. 1½v. (Uses 9v battery, available anywhere.)
Total cost of all parts now only £3.19.6 P. & P.
Parts Price List and easy build plans 3/6.

All components used in our receivers may be purchased separately. If desired, parts price lists and easy build plans
available separately at fixed prices stated. Overseas post 10/-.
FIVE ACES!

This is a hand that can't be beaten. Five models from our tremendous range of soldering instruments. Superb performance. Amazingly compact. Developed to simplify YOUR soldering. Copper bits for greatest speed. Permatip bits for long life. May we deal you in?

Brochure P.W.10 post free on request

LIGHT SOLDERING DEVELOPMENTS LTD., 28, Sydenham Road, Croydon, Surrey

NOW ADD F.M. RADIO to your MARTIN AUDIOKIT SET-UP

with only 3 easy-to-assemble prefabricated units

The unique and outstandingly successful system developed by Martin Electronics whereby prefabricated transistorised units can be assembled to make your own choice of hi-fi now brings 3 further Units, No. 15, 16 and 17 to enable you to build a modern F.M. Tuner of exceptionally good design and performance, intended primarily for those who have chosen an Audiokit hi-fi set-up, the Tuner may also be used with other good amplifiers if desired. With a few simple connections, you will have a Tuner of excellent appearance to please the most critical ear, yet it is surprisingly inexpensive.

A whole range of Audiokit Units is available which you can assemble to your own choice with ease and complete success. Ask for the Audiokit leaflet.

UNIT 15 F.M. Head & tuning condenser £5.12.6
UNIT 16 I.F. Amp. £5.7.6
UNIT 17 Mounting drive escutcheon & controls £1.17.6

SUPERB QUALITY FOR VERY MODEST OUTLAY
From Radio and Hi-Fi Stockists

MARTIN ELECTRONICS LTD. 154 High Street, Brentford, Middlesex

F.M. Tuner Leaflet • Audiokit Leaflet • Tick as required

Name

Address

Trade enquiries invited

154/5 High Street, Brentford, Middlesex

F.Leworth 1161/2

P.W.8
The Radio and Electronic Component Show was held at Olympia from May 18th to 21st.

The old joke about disposable sets—you know, throw it away when the battery runs out—is coming uncomfortably close to reality.

Of the 300 firms exhibiting, more than twenty were making a thing of micro-miniaturisation. Despite the off-hand attitude of one demonstrator: “Needn’t bother us, old boy. Thing of the future, what?” I was impressed by the strides recently made by some of the firms we have always regarded as stick-in-the-mud reactionaries. Tiny switches, banks of printed-foil circuits, combination components, and everywhere that word Integration. If a circuit is not integrated nowadays, nobody wants to know.

The ultimate seems to be achieved when our old friends Mullard come up with a threestage amplifier about the size of a soldering joint. As one critic said: “What’s the point if the piece of equipment is smaller than the knob which is being used to control it?”

Whatever the PRO boys may tell you, quoting reliability, efficiency, weight-cost factor, serviceability, etc., it boils down to one essential: is the tiny fellow going to be cheaper to produce in quantity than the hand-assembled juggernaut it transplaces? And the answer appears to be Yes. Modern methods have found ways of whistling down capacitors and reducing resistors to strips of etching.

So far, the problem of reducing inductors physically has proved difficult, but the bright lads at Manchester University have been playing about with that one. They have already used computer control on a thin film micro-circuit to prove what can be packed into its 1 square millimetre area and come up with the amazing answer of 100 passive elements. That is equivalent, to save you reaching for the slide rule, to 70,000 per square inch. So, in the space taken up by that coil you can make up practically any R-C combination you wish to supersede it.

Certainly, the modules shown by Erie had quite a few identifiable bits packed into them, and the sub-miniature switches by Elcom and Arrow made one want to hide one’s clumsy fingers.

Who makes these things? we wanted to know. How the dicekens are they assembled? And the answer, as we might have expected, is that magic word “automation”. Cassandra Henry has already commented on the machine that is more reliable than the circuit designer. Here, at Olympia, we saw machines ten times more reliable at fault tracing than any engineer.

Elliott-Automation had an automatic circuit tester that monitors up to 1,000 contact points for continuity and insulation at a rate of ten tests a second. Faster than our apprentice as clocking-off time approaches.

More threatening still, from Solartron we hear of a machine which is programmed to allow the operator to carry out a sequence of tests, or make connections. But if he makes a wrong connection in the sequence, the machine prevents him from making the next move. I was afraid to ask how!

Flexible printed circuits—no, not those from certain portable radios which the makers really intended to be rigid—but genuinely flappable boards, copper-clad laminate that could be bent and shaped without cracks in the foil appearing. That’s another thing on the way—as Formica and Electroprints Ltd. showed us. This seems to promise much fun in the workshop.

Yet another aspect of the modern trend is the increasing use of “precious metals”. There are firms specialising in the plating of switch contacts with not only silver and platinum, but gold, rhodium and palladium.

With memories of the old days, when circuits were laboriously screwed together by hand, when scraping off a resistor was the accepted method of modification, when the nearest approach to integration were those horrible “blocks” of components covered with shiny black pitch, Henry is not at all sure whether he will be able to bring himself to throw away his radio each time the sun goes in and his solar cell runs down.
A DIRECTION FINDER for Small Craft
by F. C. Judd

PART TWO

FULL conctsrional details of this receiver were given in Part 1, together with calibration procedure and notes on the Radio Information Charts which are essential when using the long wave marine radiobeacons. This part deals with a suitable mounting for the receiver and gives further notes on calibration and testing, etc.

Receiver Mounting

The receiver is much easier to handle if it can be rotated through 360° by mounting it on a heavy base as shown in Fig. 8. The base could be made of wood, preferably loaded with brass or lead or, better still, made entirely of brass. A cast-iron base could also be used, in fact the one shown in the photograph in Part 1 is cast-iron. In this case, however, careful checks must be carried out to ensure that it does not interfere with the compass. A 360° protractor, obtainable from most large stationers, should be screwed to the top of the base, for this is most useful when working against the heading of a vessel or when there is no alteration in position, i.e. when the vessel is at anchor. A small pointer is attached to the bottom of the receiver case for use with the bearing scale.

The receiver could, of course, be permanently mounted in a vessel providing it (the receiver) can be rotated through 360°. In this case a compass need not be fixed to the receiver but the bearing scale would have to be used in conjunction with the compass on the vessel.

Calibration of the Tuning Dials

The tuning dials, which are small Data Panel Signs (100° type), require pointers which can be attached to the flanges of the Jackson epicyclic ball drives. These pointers can be cut from thin perspex or stout celluloid and shaped and drilled as in Fig. 9. The tuning control knobs can be left to the discretion of the constructor.

The actual calibration of the tuning dials has already been dealt with but as a further guide the diagram in Fig. 10 may prove useful. It is, however, very important that the exact tuning point of each radiobeacon group frequency is known. As it is difficult to mark the actual spot frequencies on the r.f./oscillator dial it is suggested that a separate calibration chart is compiled, this being mounted on stiff card and protected by a celluloid cover.

Fig. 9: Two of these perspex tuning dial pointers are required.

Testing the Receiver

Preliminary tests and approximate tuning, etc., can be carried out with a long aerial loosely coupled to the ferrite aerial coil via a small series capacitor. This will allow the radiobeacons to come in quite strongly, but as soon as initial alignment has been completed, close calibration, etc., should be carried out with the band switch in position 3 (d.f.) and any other aerial disconnected. Remember, you may not hear a particular radiobeacon if the ferrite aerial happens to be end on (in the null position) to that particular station. When listening for different stations in different
THE LINEAR ‘SUPER 30’ HIGH FIDELITY PUBLIC ADDRESS AMPLIFIER

TECHNICAL DETAILS
SENSITIVITY FOR 30 WATTS
Gram.—50 millivolts-
Mic. 1—6 millivolts-
Mic. 2—150 microvolts-

FREQUENCY RESPONSE
±2 dB. 30 c.p.s. 20,000 c.p.s.

BASS CONTROL
+15 dB to —15 dB at 50 c.p.s.

TREBLE CONTROL
+12 dB to —12 dB at 10 Kc.s

HUM AND NOISE
—60 dB.

HARMONIC DISTORTION
0.5% for 30 watts

VALVES
Mullard ECC83, ECC83, ECC83I, EL24, EL24, GZ34.

NEGATIVE FEEDBACK
50 db.

DAMPING FACTOR
12.

A HIGHLY EFFICIENT
30 WATT GENERAL PURPOSE PUBLIC ADDRESS UNIT
With input mixing facilities and outputs for 3-7.5-15 and 330 ohms (100v line)

RETAIL PRICE 33 Gns.

For operation on standard 200-250v., 50 c.p.s., A.C. mains. 110/120v. models available for export.

Trade and export enquiries invited.

LINEAR PRODUCTS LTD.
ELECTRON WORKS, ARMLEY, LEEDS

JUST ARRIVED!!

NEW EDITION of the famous Home Radio Catalogue

Yes ... just off the press—Reprint No. 11 of our popular Components Catalogue. It's the biggest edition yet ... an extra 17 pages, listing literally hundreds of new items, plus a supplement! It's better than ever too—as you will certainly agree when you examine it. The prices are listed in the separate supplement. Your catalogue will automatically be kept up to date and will thereby have a much longer life than previous editions.

Due to the greatly increased size of this new edition, plus increased costs of printing and paper, we have reluctantly had to raise the price a little. It now costs £1/6, plus 1/- for postage and packing ... but we are retaining the popular feature of including 5 Coupons in the catalogue, each worth 1/- when used as directed. Send off the attached coupon today, enclosing your cheque or P.O. for 8/6.

Please write your name and address in block capitals

NAME... ADDRESS...

HOME RADIO LTD., Dept.PW., 187 LONDON ROAD, MITCHAM
FAMOUS MAKE TRANSISTOR RADIO

THE "STELLA"

7 transistor portable radio. Long, Medium and Short wavebands. Fitted tone switch and sockets for personal earphone and external aerial. Charcoal printed circuit aerial. Uses four 1.5 v. torch batteries. Plastic cabinet in beige and red, size 4 x 7 x 11in. Excellent tone. 3in. P.M. speaker. Comp. with shoulder strap and external aerial. Full guarantee. List price 17s. 6d. WIRECOMP'S PRICE £9.19.6 P. & P. 5/-

NEW SUPER MINIATURE POCKET RADIOS

THE SINCLAIR MICRO-4. Self-contained pocket radio. Size only 7 1/2 x 3 1/2 x 1in. Complete with earphone and detailed construction data. Can be built for only Mercury cell 1/11 extra (2 required).

THE SINCLAIR SLIMLINE. The new 2-transistor pocket radio size only 2 3/8 x 1 1/4 x 1in. Micro alloy transistors and printed circuit. All components available separately, Easy to assemble. Can be built for £4 9/6.

INTERNATIONAL BRAND

MYLAR BASE: Tape—Fully Guaranteed ACETATE BASE

<table>
<thead>
<tr>
<th>3in. Triple play, 600ft.</th>
<th>5in. Double play, 1,200ft.</th>
<th>3in. Single play, 300ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/-</td>
<td>15/-</td>
<td>9/-</td>
</tr>
<tr>
<td>4/-</td>
<td>17/-</td>
<td>4/6</td>
</tr>
<tr>
<td>5in. Double play, 2,400ft.</td>
<td>5in. Single play, 600ft.</td>
<td>3in. Single play, 300ft.</td>
</tr>
<tr>
<td>25/-</td>
<td>10/-</td>
<td>7/-</td>
</tr>
<tr>
<td>6in. Double play, 3,600ft.</td>
<td>6in. Long play, 1,800ft.</td>
<td>5in. Long play, 900ft.</td>
</tr>
<tr>
<td>30/-</td>
<td>15/-</td>
<td>7/6</td>
</tr>
<tr>
<td>7in. Double play, 4,800ft.</td>
<td>7in. Stand play, 1,200ft.</td>
<td>7in. Long play, 1,800ft.</td>
</tr>
<tr>
<td>45/-</td>
<td>10/-</td>
<td>15/-</td>
</tr>
<tr>
<td>8in. Long play, 1,200ft.</td>
<td>8in. Stand play, 600ft.</td>
<td>8in. Stand play, 800ft.</td>
</tr>
<tr>
<td>15/-</td>
<td>8/-</td>
<td>11/6</td>
</tr>
</tbody>
</table>

P. & P. £1 extra per reel. 4 reels and over Post Free.

Also available:

★ INDUCTANCE BRIDGE 66 ... £18. 5.9
★ POWER SUPPLY UNIT 61 ... £6.13.6
★ C.R. BRIDGE 62 £8.10.9
★ R.F. SIGNAL GENERATOR 27 ... £9.15.9

All prices include Battery, Post and Packing. Prompt delivery.

S.A.E. for Technical Leaflets Trade and Export enquiries invited

NOMBREX LTD. Phone: 3515
Estuary House, Camperdown Ter., Exmouth, Devon

323 EDGWARE RD., LONDON, W.2. AMbassador 7115
All Branches open all day Saturday Early closing Thursday

THE "SKYROVER" RANGE

7 transistor plus 2 diode superhet, 6 waveband portable receiver. Operating from four 1.5 v. torch batteries. Cover the full Medium Waveband and Short Waveband 31-94 M and also 4 separate switched band-spread ranges, 600, 1600, 1900, 25 M, with Band Spread Tuning for accurate Station selection.

NEW—THE "SKYROVER" Mk III

THE "SKYROVER" DE LUXE

Tone Control Circuit is incorporated with separate Control. In a wood cabinet, size 11 x 6 x 3 1/2in. covered in a washable material, fitted carrying handle.

Can now be £10.19.6 Post S/. H.P. Terms: 25/- dep. and 11 built in monthly installments at 20/- Total H.P. £12.5.0.

A simple additional circuit provides coverage of the ONLY 1100/1650M. band. This conversion is suitable for 10/- Post FREE both models that have already been constructed.

Prices for Receiver 2E extra. Refunded if you purchase the parcel. Four 12 batteries 3/4 extra. All components available separately:

PAMPHONIC H.F. EQUIPMENT

TYPE 1002B Control Unit/Prelim. List price £2.5.4. WIRECOMP'S PRICE £1.10.0. C. & P. 5/6.

TYPE 7351A Pre-Amplifier. WIRECOMP'S PRICE £7.15.8. C. & P. III.

All fully described in our advertisement in "P.W." April 1965.

378 HARROW RD., LONDON, W.9. CUNningham 9530
Mail Orders to the above address for prompt service.

Any holes in your knowledge of TRANSISTORS?

Whatever your interest in transistor circuitry, you will find the Mullard "Reference Manual of Transistor Circuits" and "Transistor Radios, Circuity and Servicing Book", valuable sources of reference. The former describes more than sixty circuits for both domestic and Industrial applications. The latter is an introduction to the subject and describes the basic properties of semiconductors, their function, elementary circuitry and servicing.

REFERENCE MANUAL OF TRANSISTOR CIRCUITS

U.K. PRICE 12/6

Post extra 1/-

TRANSISTOR RADIOS

Circuity and Servicing

U.K. PRICE 5/6

Post extra 6d.

Get your copies from your radio dealer, or send remittance with order to:

MULLARD LTD - MULLARD HOUSE - TORRINGTON PLACE - LONDON WC1
groups, etc. It is essential to work with the Radio Information Charts, a compass and a protractor, so that whilst calibration is being carried out, maximum signals can be maintained with the ferrite aerial broadside to the station.

Use of the telescopic aerial will alter the tuning of the ferrite aerial slightly, but remember, this aerial is only an aid to finding weaker signals and must not be used when direction finding.

The final calibration of the aerials or the making of a calibration chart requires infinite patience, since it may be necessary to wait for each particular group to operate. It is, of course, only necessary to identify one station in a group working on a particular frequency and it does not follow that all the stations in a group will be heard. These stations use quite low power (10 to 20W) and a good deal depends on propagation conditions as to whether they will be received inland.

D.F. and Compass Checks

On no account should d.f. checks be carried out at night as errors may occur through so-called "night conditions" which cause the signals to arrive by different paths. When, and only when, you are satisfied with the calibration, d.f. and compass checks should the receiver be used under working conditions. On no account should one blindly rely on a radiobeacon d.f. receiver whether made commercially or home constructed. Radio direction finding is a navigation aid, not a method of navigation. Like other navigation aids, a d.f. receiver is used mainly to confirm position as otherwise plotted by compass and charts.

It is interesting to note that whilst we were carrying out d.f. checks with the d.f. receiver in the North Sea and in thick fog at that (see last month's cover), two other small cruisers hailed us to enquire as to where they were. They also requested direction to a particular position on the mainland. This information, confirmed also by our own d.f. fixes, depth finder readings and compass and chart navigation, we were able to give. To our great surprise, however, both cruiser skippers then admitted that neither had even a compass! We pointed into the fog and they went thataway!

The Radio Information Charts

Details of these charts were given earlier, and it must be emphasised that they are not suitable for navigation of any kind. The charts merely show the positions of the radiobeacons on a large scale. The exact position in latitude and longitude of all the radiobeacons is, however, given in the table printed on the charts. These should be used in conjunction with standard navigation charts. The Radio Information charts also give precise details of frequencies, groups and sequences as well as radiotelephone, British Coastal radio stations and Aircraft beacons. The latter can be received with the d.f. receiver but should be used with caution as most of them are inland which may result in serious bearing errors.

Finally, when using a d.f. receiver, it is necessary to be aware of the various reasons for bearing errors. These can be due to (a) night effects when signals arrive at the receiving aerial by two different propagation paths, (b) reflection from high land such as cliff faces, (c) reflection from other aerials or stay wires or even from metal structures on the vessel.

Errors in plotting can also occur, especially when converting magnetic to true bearing or vice versa and in taking into account the heading of the vessel which is usually from magnetic compass. Remember the d.f. aerial will indicate a true bearing and the difference between this and a magnetic compass reading is approximately seven degrees. Up to date navigation charts will show the exact deviation.

Radio on Yachts and Cruisers

The ordinary broadcast receiving licence authorises the reception of programmes sent only from authorised broadcasting stations for general reception. It does not permit the reception of messages from coast stations, ship stations, special service stations and radio navigation stations. If reception of messages etc., from these stations is desired (this includes marine radiobeacons) a special "ship" receiving licence is required. This does, however, cover broadcast station reception as well and can be obtained from the Radio Services Department, W.T.S., G.P.O., London, E.C.1. The licence costs £1 per year.
BOOKS REVIEWED

If you were asked to find the circuits of a 35Mc/s transistor transmitter, a Q-multiplier, a cathode modulator and an electronic T/R switch, it is highly probable that you would have to search through a number of books, and sort issues of magazines in order to find them.

Amateur Radio Circuits Book is a collection of some 150 circuits liable to prove useful to the average ham. Transmitters, front ends, oscillators, power supplies, noise limiters, and a host of other items. There are circuit diagrams only, for the person who needs just this and values.

At first sight this appears most excellent book, but a second more detailed reading brings disappointments. For although the drawings score full marks many details are omitted.

The first page depicts an A.T.U. We are shown how the coils are mounted, informed that the diameter should be 2½ and 3 inches and that 14s.w.g. is suitable. But not told how many turns, or even the inductance.

It is this lack of odd bits of information which spoils the ship. A 15W transistor transmitter has all the information except the transistor types. A d.c. amplifier has no transistor type or voltages specified for the two batteries. And so on.

The idea of having all those useful circuits together in one volume is excellent, but it is to be hoped that when second edition time comes around the editor will have filled in the few remaining details.—F.H.S.

Many books have been written about the uses and applications of the oscilloscope. It is a great pity that these are studied only by the committed reader, the experimenter, would-be constructor, student, etc. The man with his cobwebbed ‘scope, past its first intriguing fascination, hidden in a corner of his den, seldom finds the book to suit him. And the technician who brings his workshop instrument into occasional use often has no idea of its potentialities.

This book does much to remedy the defect. It first appeared in February, 1963, and has already in March, 1964, come out with a healthy reprint. Its virtue is the method of presentation, rather like an amplified operating manual. As such it should appeal both to the inquiring experimenter and the man at the service bench.

The first four chapters are descriptive. Chapter 1 discusses waveforms, laying the ground for later works. Chapters 2 and 3 cover the theory of the cathode ray tube and the principle of sweep systems. In Chapter 4 a more practical approach is introduced. Detailed descriptions of both general purpose and laboratory type oscilloscopes are given with 21 diagrams of the vital portions of circuitry.

From this point we enter the field of application. Chapter 5 is a long one, dealing with alignment. Although it is obvious that precise instructions cannot be given because of variations of circuit design a valiant attempt has been made to cover the many possibilities. Chapter 6, on Oscilloscope Techniques, underlines this practice and could profitably have been juxtaposed. There is much useful information in these 24 pages.

More applications are to be found in the next chapter, dealing with tests and measurements. Audio experimenters and students of electronics would find several points of interest; the “hook-up” details, so often ignored in more technical works, are meticulously outlined. Values of network components, too, are not ignored.

In the final chapter this is carried a step farther by what will be instruction in 16 useful experiments. The man who has ever had the “hook-up” diagram continued in this chapter but by the time this stage is reached the student should be able to cope.

Both as general reading and as a bench-side reference this book is to be recommended.—H.W.H.
HERE COMES THE BIG BREAKTHROUGH IN EDUCATIONAL ELECTRONICS — BASIKITS

YOUR KEY TO THE FASCINATING WORLD OF ELECTRONICS

All circuits are designed around top quality components, not near equivalents. Full size printed circuits with every component position marked. Makes construction extraordinarily simple. No fiddling with microscopic connections — no inspired guesswork called for. A lavish instruction manual not only tells you how to construct your BasiKit but also advises you on its use and explains exactly how your BasiKit works.

AND THIS IS BASIKIT No. 1

A brilliantly devised radio kit that can be put together with ease.

* VOLUME CONTROL
* PRECISE TUNING
* PULLS IN A HOST OF STATIONS
* MORE THAN TWENTY FULL SIZE HIGH QUALITY COMPONENTS

59/- complete for your biggest and best ever opportunity to learn as you build!

ALSO AVAILABLE: The BasiKit mains battery Power Unit which powers all BasiKits. Yours for 42/6. The BasiKit Amplifier that brings real full-voiced power to your BasiKit No. 1 Radio. 57/6 complete.

Watch out for more BasiKits.

ORDER YOUR BASIKIT ON THIS COUPON:

TO: BASIKITS DIVISION, K.L.B. ELECTRIC LTD. 335 WHITEHORSE RD, CROYDON

Please supply
BK1 Radio @ 59/-
BK2 Audio amplifier @ 57/6
BK3 Power unit @ 42/6
Illustrated leaflet on BasiKits (enclose stamped addressed envelope)

From: NAME
ADDRESS

P.O.
CHEQUE P.W.
VOLVES

SAME DAY SERVICE
NEW! TESTED! GUARANTEED!

SETS
1R3, 1R5, 1T4, 284, 34V, DAF91, DAF91, DK91, DL99, DL94.
6 or 4 for 1R3, DAF91, DK91, DL99, 4 for 284.

Height Width Depth No. of shelves Price Extra
71 in. 34 in. 9 in. 6 $61.00 $61.00 $7.50
71 in. 34 in. 11 in. 6 $60.00 $60.00 $7.50
71 in. 34 in. 15 in. 6 $74.00 $74.00 $9.00
71 in. 34 in. 17 in. 6 $86.00 $86.00 $11.00
85 in. 34 in. 13 in. 6 $79.00 $79.00 $9.50
85 in. 34 in. 19 in. 6 $91.00 $91.00 $11.50

Contractors to H.M. Govt. and United Kingdom Atomic Energy
Authority. Exporters of Steel Shelving.

ROCHDALE METAL PRODUCTS
WATERFOOT - LANCS.
Phone: Rossendale 32213

RESEARCH RADIO
24 COLBERG PLACE, and at 85 TORQUAY GARDENS
STAMFORD HILL, N.16, STA 4587
REDBRIDGE, ILLFORD
LONDON, W.3. Tel: ACOrn 0061. Telex: 261383

Cap Tolerance ±20%
Voltage Ratings: Ranges available 63, 250, and 400 volts D.C.
Power Factor: <0.01 at 1 Kc/s at +20°C.

Temperature Rating: Suitable for working at +85°C. without de-
rating. Details of the full range are given in T.C.C. Bulle-
tin 93, available on request.

THE TELEGRAPH CONDENSER CO. LTD.
Electronics Division • NORTH ACTON • LONDON • W.3 • Tel: ACOrn 0061 • Telex: 261383
also at CHESSINGTON, SURREY and BATHGATE, SCOTLAND
A BASIC MOULLIN VOLTMETER for r.f. resonance indication

The instrument to be described was intended for use as an indicator of resonance while making r.f. measurements. Its range is 0.1 to 1V peak, approximately, with a high input impedance. It was felt advantageous to use a circuit giving a known scale law so that no calibration of the movement would be necessary, also making the instrument generally more useful.

To fulfil these conditions the Moullin or anode-bend circuit was chosen. In this simple, well-known circuit a triode is biassed almost to cut-off, and if the V_g-I_a characteristic of the valve is non-linear in this region, partial rectification takes place as shown in Fig. 1.

In particular, if the characteristic can be represented by the relation $I_a = aV_g^2 + bV_g + c$, where a, b, c are constant for a particular value of the anode potential, then analysis shows that when the input e.m.f. to the grid is of the form $v = V_{pk} \sin \omega t$, the mean value of the increase in anode current is $\frac{a}{2} V_{pk}^2$, where V_{pk} is the peak e.m.f. Hence a square-law scale can be produced. This means that true r.m.s. values can be read, independent of the input waveform.

CHOOSING A VALVE

The following valves were measured (all pentodes and tetrodes being connected as triodes) to determine the form of the V_g-I_a curve when using 9 volts anode potential. IT4, EF91, 12AT7, 354, CK503AX. The 354 and CK503AX gave the most promising results when plotting $\frac{dI_a}{dV_g}$ against V_g, which should be a straight line if the V_g-I_a curve is of the required form. The CK503AX is a miniature wire-ended output tetrode. It was decided to use the 354 (a battery powered output tetrode) since it is more readily obtainable. The 354 filament is tapped and, except where stated, half the filament is unused, the valve taking 50mA at 1-4V.

WORKING POINTS

The basic circuit, shown in Fig. 2, is self-explanatory. The potentiometer across the filament ensures that V_b is the true bias on the grid.

It was stated above that the change of anode current, which will be called ΔI_a, was equal to $-V_{pk}^2$, assuming parabolic V_g-I_a characteristics.

In practice there is a best value of V_b for a maximum ΔI_a as the graph of Fig. 3 shows. It was drawn using...
Fig. 3: Illustrating variation of sensitivity and linearity with bias (Vb).

Fig. 4 (right): The complete circuit. Backing-off current is taken from the heater supply cell.

The circuit of Fig. 2 with Vb variable and a source frequency of 50 c/s.

It can be seen from Fig. 3 that although the square-law is true approximately for a range of Vb, it is best when Vb = 1.5V or greater, but the sensitivity falls as Vb increases. A bias of −1.5V is a good compromise between sensitivity and linearity and is also the e.m.f. of a single dry cell. A mercury cell could be used with a little loss of linearity and negligible current is drawn.

It was found that if all the filament of the 3S4 was used i.e. 0.1A at 1.4V, then ΔIa for any given Vb was approximately doubled, but a greater non-square linearity was also incurred. Since the use of dry cells was contemplated the 50mA consumption will be used henceforth.

The complete circuit is shown in Fig. 4. The meter movement is backed off with an equal and opposite current to the standing anode current with no signal which was approximately 80μA.

The values of the resistors and capacitors are not at all critical. The following are the components used in the original:

Fig. 5: Large signal characteristics showing the effect of driving the grid positive.
An integrated hi-fi turntable unit from only 11 gns?

Only Goldring’s 60 years of experience of making gramophone turntables and pick-ups could lead to a unit like this—the ideal integrated turntable, arm and pick-up for do-it-yourself hi-fi aspirants... at such a modest price. Just look at the features of this remarkable G.66 unit:

Silent, specially made Swiss mains motor. Pressed steel turntable on precision bearings evens out mains current fluctuations. Die-cast light alloy arm with full stylus pressure adjustment. Plug-in head shell, wired for mono and stereo, takes alternative pick-up cartridges. Eddy-current speed control (as fitted on some professional units) varies the four standard speeds by ±10%. Pick-up raising/lowering device coupled to on/off switch and idler-wheel disengagement mechanism. Deck size 12½” x 10”.

See the Goldring G.66 at your dealers—or write for descriptive leaflet.

THE GOLDRING G.66

G.66/MX.2 £9.18.8 + £1.12.4 P.T. £11.11.0
G.66/CS.80 £10.10.0 + £1.14.2 P.T. £12.14.2

Goldring Manufacturing Co. (GB) Ltd.,
486-488 High Road, Leytonstone, London E.11
Telephone: Leytonstone 8543
7 VALVE AM/FM RADIOGRAM CHASSIS

NEW 1905 MODEL NOW AVAILABLE

6 VALVE AM/FM TUNER UNIT

Med. and VHF 150-350 MHz, AM Mono-100 Mono, 6 valves and metal rectifier. Full power unit with 15V, 250 v. operation. Magic-eye indicator, 3 push-button controls on/off. Med. VHF diode and high output sockets. With gain control, Med. and VHF diode, and Stereo. Eff. 1/4 x 4 x 4. A recommended Finety Unit for use with Mullard 3/4-3/8-6 amplifiers. Available only at present as built-up units. These are bench tested ready for regular price £12.10.6. cur. 5s. We hope to produce this popular unit in kit form very shortly.

NEW BRITISH RECORDING TAPE

EMPTY TAPE REELS (Plastic): 3m., 1/2, 2m., 21/2, 5m., 1/4, 10m., 11/4, 20m., 1, 30m., 11/2, 50m., 2.

PLASTIC REEL CONTAINERS (Cartons): 3m., 1/2m., 5m., 10m., 15m., 20m., 30m., 40m., 50m., 60m.

JASON FM TUNER UNITS

Designers-approved kits available. £5. 10s. 4 valves. 20/6. £9. 15s. 6 valves. 35/6.

RETURN-OF-POST ON CASH OR C.O.D. ORDERS

AMPLIFIER KITS

We have full stocks of all components for the Mullard S16, Mullard S3, Mullard 2 and 3 Valve Preamplifiers. Please mention the kit number when ordering. Full details of any kit sent on request.

LATEST TEST METER

Credit Terms Total

AVO Model 8 Mark III £24. 0. 0 £41. 16. 0 10 of £26. 15. 6 £218. 15. 6
AVO Model 7 Mark II £19. 10. 0 £34. 8. 6 12 of £18. 6. 6 £218. 10. 0
AVO Multimeter Mark IV £15. 10. 0 £29. 8. 6 12 of £16. 8. 6 £218. 0. 0

R & T TPS. £24. 10. 6 £46. 16. 6 3 of £7. 8. 6 £218. 16. 6
T & R TPS. £29. 16. 6 £55. 16. 6 3 of £15. 6. 6 £218. 10. 0
T & R TPS. £34. 16. 6 £66. 16. 6 3 of £19. 6. 6 £218. 10. 0

TAYLOR Model 197A £23. 10. 0 £44. 14. 6 12 of £18. 6. 6 £218. 0. 0

TAYLOR Model 588 £25. 10. 0 £41. 14. 6 12 of £19. 6. 6 £218. 0. 0

GRAMOPHONE EQUIPMENT

CALLER welcome by appointment

ILLUSTRATED LISTS

Contacted lists are available on LOUDSPEAKERS, TAPE DECKS, TEST-GEAR, GRAMOPHONE EQUIPMENT, AMPLIFIER. Any will be sent free upon request.

WATTS RADIO (Mail Order) LTD

54 CHURCH STREET, WEYBRIDGE, SURREY

Telephone: Weybridge 4756

Please note: Postal business only from this address

CLOSSED FOR ANNUAL HOLIDAYS: August 7th to 30th.
PRACTICAL WIRELESS

August, 1965

200
100
0
Input resistance (MΩ)

0-71 Peak
0-5 RMS
14
10
2-2
1-5
Input EMF at 50c/s

Input impedance at 50c/s

Fig. 6 (left): Illustrating the variation of input resistance with input e.m.f.

Fig. 7: The input capacitance (dotted) in parallel with the potential divider arm.

R1 500 Ω wire-wound
R2 71 Ω wire-wound with filament on/off switch.
R3 100k Ω carbon
C1 0-1μF paper
C2 0-001μF ceramic
Meter 0-75μA, 715 Ω movement.
If a multi-range instrument is used for the detector it should be of roughly constant input resistance from one range to the next or the sensitivity, i.e. the slope of the Vpk² – ΔIab graph will vary.

SQUARE-LAW LINEARITY

The degree of square-law linearity and the effect of bias upon it is shown in Fig. 3. The effect of driving the grid positive is shown in Fig. 5. The grid is made positive when the peak input signal exceeds the standing bias. When the grid is positive, grid current flows, which is equivalent to saying that not all the electrons from the cathode reach the anode. Hence a lowering of anode current change and sensitivity as Fig. 5 shows. The over-all increase in anode current can be explained by the positive grid now attracting more electrons from the cathode than were formerly emitted. It can be seen that the square-law is not quite true for large input e.m.f. even when the grid is negative.

INPUT IMPEDANCE

If the input of the voltmeter can be assumed to consist of an input resistance R in parallel with an input capacitance C then simple measurements can be made, to arrive at an estimate of R if C is known (or vice-versa). If ΔIab is the current change when the voltmeter is fed from a low impedance source, and ΔIac is the reading when the voltmeter grid is connected to the same source by a high resistance R1 ohms, then it can be shown that:

\[R = \frac{R_1}{\sqrt{(n-1)^2 + n^2R_1^2C^2}} \]

where R and C are defined above, ω is the angular source frequency and \(n^2 = \frac{ΔI_{ac}}{ΔI_{ab}} \).

C includes the capacitance of the wiring in the grid circuit and between the grid and other electrodes. An average value is about 15pF. A graph of input resistance R with input e.m.f. is shown in Fig. 6, in which C=15pF is assumed. The decrease of input resistance is due to the increasing number of electrons reaching the grid as it becomes more positive. The input resistance is however still greater than 30M Ω when the grid is being driven positive during part of the input cycle.

CALIBRATION

It should be stressed that permanent calibration of the instrument is not readily obtainable without voltage stabilisation of the supply power. The square law however is valid over a fairly wide range of battery ageing and for many purposes only the ratio of two e.m.f.'s need be known.

FREQUENCY RANGE

The original instrument was used at all frequencies between 25c/s and 25Mc/s; beyond these limits it was not tested. The Moulin instrument of the 'twenties was stated to be useful up to about 30Mc/s.

—continued on page 354
BRADFORD RADIO SOCIETY
Hon. Sec.: J. J. Hunt, G3SAO, 77 Brantwood Road, Bradford 9, Yorkshire.
Meetings are now held in the Bradford Technical College, and the call sign G3BNH has been issued for the Club station, G3OTO.

There was an "inquest" on the N.F.D. on 22nd June.

COVENTRY AMATEUR RADIO SOCIETY
Hon. Sec.: A. A. Wilkes, G3PPQ, 141 Overslade Crescent, Coundon, Coventry.
The Society will be taking part in the N.F.D. event again after an interval of many years.

DERBY AND DISTRICT AMATEUR RADIO SOCIETY
Hon. Sec.: F. C. Ward, G2CVV, 5 Uplands Avenue, Littleover, Derby.

Raymond F. Street gave a lecture entitled "Introductory to Colour Television" on 23rd June, and on the 30th G. D. Kelsey, B.Sc., discussed the problems of Efficient and its Treatment.

On 13th—14th July, the "Breakfast and Pong" weekend event was held, and on 17th July there will be a Garden Party and Exhibition at Heanor Aldecar Secondary School.

HALIFAX AND DISTRICT AMATEUR RADIO SOCIETY
Hon. Sec.: J. Ingham, G3RMQ, Lambert House, Greetland, Halifax, Yorkshire.
On 27th July, G. Drake, G3SIG, will talk on Transmitters, and on 24th August, there will be a lecture by F. Nicholls, G3MAX and a visit from the Huddersfield Radio Society.

HUDDERSFIELD AMATEUR RADIO SOCIETY
Hon. Sec.: R. Highton, 5 Brian Avenue, Dalton, Huddersfield, Yorkshire.
Recently the Society held a lecture and demonstration on Oscilloscopes. The Society operating QTH has proved very good with Q DX in mind, using a 250ft. dipole.

MID-WARWICKSHIRE AMATEUR RADIO SOCIETY
Hon. Sec.: H. C. Loxley, 5 Guy Street, Warwick.
There will be an open meeting on 12th July, when members will be able to discuss a range of subjects.

Meetings are now held on the top floor of 7 Regent Grove, Leamington Spa. These premises are well situated in the centre of the town, close to main bus routes and with ample car-parking accommodation.

NORTHERN HEIGHTS AMATEUR RADIO SOCIETY
Hon. Sec.: R. A. Robinson, G3MDW, Candy Cabin, Ogden, Halifax, Yorkshire.
Recent activities of the Club have been a recorded lecture by the late G3SU who was a founder-member, and the first of this year's demonstrations when the Club call sign was first used.

A novel innovation this year was a mobile car in the Warley Gala procession which was able to report back to the fixed station on the progress of the parade.

Some future events will include, on 21st July a Ragchew and on 4th August, a lecture on D.F. Equipment by G3LGN.

READING AMATEUR RADIO SOCIETY
Hon. Sec.: N. C. Taylor, G3TOQ, 83 Stoneham Close, Tilehurst, Reading, Berkshire.
The first Mobile Picnic of the season was held on 20th June, and a good time was had by all. Talk-in stations were operated by G3TOO on 2metres and G3EIA on 160 metres.

SALTASH AND DISTRICT AMATEUR RADIO CLUB
Hon. Sec.: D. Bowers, BRS 26760, 95 Grenfell Avenue, Saltash, Cornwall.
A "Mobile Rally" was held at Calstock on Whit Monday, 7th June, and on the 18th, there was a tape and slide lecture which was kindly loaned by Northern Heights A.R.S.

An R.S.G. Tape Lecture on Receivers was heard on 2nd July. There will be a Treasure Hunt on 16th July.

SOUTH BIRMINGHAM RADIO SOCIETY
Hon. Sec.: J. R. E. Bristow, 153 Castle Lane, Solihull.
On 17th June there was a demonstration and display of Heathkit Products and transmitters and test gear were on show for members to use.

SOUTHGATE, FINCHLEY AND DISTRICT GROUP OF THE R.S.G.B.
The May lecture was given by G3OLE, who spoke about his "hybrid" mobile transmitter. The next meeting will be on 8th July.

SOUTH SHIELDS AND DISTRICT AMATEUR RADIO CLUB
Hon. Sec.: D. Forster, G3KZZ, 41 Marlborough Street, South Shields.
The Club is making preparations for its 8th Mobile Rally which is to be held on Sunday, 11th July at the Bents Park Recreation Ground, Coast Road, South Shields.

Meetings are held weekly on Friday evenings at 7.30 p.m., in Trinity House Social Centre, Lartigue Lane, South Shields.

SPEN VALLEY AMATEUR RADIO SOCIETY
Hon. Sec.: N. Pride, 190 Raikes Lane, Birstall, Nr. Leeds.
On 24th June there was an Open and Final Meeting of the season. The A.G.M. of the New Session will be held on 8th July.

Meetings are held at 7.30 p.m. at Heckmondwike Grammar School.

WEST KENT AMATEUR RADIO SOCIETY
Hon. Sec.: H. F. Richards, 17 Reynolds Lane, Tunbridge Wells, Kent.
On 9th July, John Gould will give a talk entitled "Seventy C.M.S.," which is aimed at getting all the Club members on 430 M.C.S.

WIRRAL AMATEUR RADIO SOCIETY
Hon. Sec.: A. Seed, G3FOO, 31 Withert Avenue, Bebington, Wirral, Cheshire.
A Tape Lecture was given on 7th July. Meetings are held at Scout H.Q., Harding House, Park Road West, Cloughton, Birkenhead, at 7.45 p.m. on the first and third Wednesdays in each month.

A BASIC MOUILLIN VOLTMETER
—continued from previous page

CONSTRUCTION
No special construction is needed and the constructor may adopt any layout. The only wire that is at all critical is the grid lead. It should be short and well spaced from any other wires to minimise the input capacitance, and very well insulated. The input terminals should be well apart on a panel of insulating material and a ceramic valve-holder should be used. A high input resistance will not be obtained if the above is disregarded although of course the instrument will still work.

RANGE EXTENSION
Although a range of 0-1 to 1V peak is ample for radio-frequency measurements, i.e., measuring Q or self-capacitance of coils, an extension of range would make the instrument more versatile. It is however very difficult to do at high frequencies due to input capacitance. At low frequencies, when the reactance of the input capacitance is considerably less than the resistance of the potential divider in parallel with it, (see Fig. 7) it can be done.

The e.m.f. at the grid is then of the applied R + r e.m.f.
If a non-contributory source of e.m.f. is being used then the grid must be given a d.c. path to earth. This can be done with a high resistance, 5M ohms being a suitable value. The input resistance then drops to slightly below 5M omega, but which is high enough for most purposes.
NOW ANYONE CAN AFFORD TO TRAIN TO BE AN EXPERT IN RADIO AND ELECTRONICS

It's the most exciting news of the year! Just imagine you can get large, fact-packed lessons for little more than 1/- per lesson! The lessons are crystal clear, practical, easy to master and use. Early lessons make fundamentals clear even to the beginner, while other lessons will give you the practical "know-how" of an expert.

Compare favourably with some courses costing ten times as much. You save because you receive all the lessons at one time and are not required to purchase equipment you do not need. This is a real home-study course that has been bound into one giant 8 1/2" lin. 216 page manual. Each page is divided into two columns. A wide column features the text while a narrow column on the side has the instructor's comments, helpful suggestions and additional pictures to simplify the difficult parts.

Everyone can benefit from this practical course. No old fashioned or pseudo modern methods are used here. It's just straightforward, easy to understand, and explanations to help you make more money in electronics.

The price! Only 90p/6 plus postage 1/-, Twenty Whys of course! Complete.

OTHER COURSES AVAILABLE
 RADIO COURSE (price 3/-)
 TELEVISION COURSE (price 3/-)

UNCONDITIONALLY GUARANTEED TO GIVE COMPLETE SATISFACTION

You must be convinced that this is the best value you have ever seen in Electronics, Radio or TV. Training. Otherwise you can return the course for your money refunded if sent with orders after you have examined it in your own home for 14 days.

IF YOU SEND CASH WITH ORDER WE WILL INCLUDE A FREE BOOK VALUED 6/-.

To: Sim-Tech Technical Books, Dept. ET/68, Gaster's Mill, West End, Southampton. Please send the following courses for a full seven days' trial:

 □ No. 1. RADIO COURSE, 37/8, incl. postage, 6/9
 □ No. 2. RADIO & ELECTRONICS COURSE, 41/-, incl. postage.
 □ No. 3. TELEVISION COURSE, 37/8, incl. postage. (Free trial customers tick one only please).

Branch orders work out 1/- extra per copy. Extra postage applies overseas.

FREE TRIAL OFFER —

Pay only 5/- per week if you wish. Clip coupon right here for this special offer.

To: Sim-Tech Technical Books, Dept. ET/68, Gaster's Mill, West End, Southampton. Please send the following courses for a full seven days' trial:

 □ No. 1. RADIO COURSE, 37/8, incl. postage, 6/9
 □ No. 2. RADIO & ELECTRONICS COURSE, 41/-, incl. postage.
 □ No. 3. TELEVISION COURSE, 37/8, incl. postage.

FREE TRANSISTOR CIRCUITS BOOK.

FREE OSCILLOSCOPE BOOK.

Amount enclosed £.

I understand that you will refund this money in full if I am not 100% satisfied. Overseas customers please send full amount (excluding Ireland).

Name ..
Address ..
City ..
County ...

Website: www.americanradiohistory.com
YEARS AHEAD OF ALL OTHER AUDIO SYSTEMS

The Sinclair X-20 enables you to enjoy, for the first time ever, the advantages of using a high power, high fidelity audio amplifier truly in step with today's space age electronics. No longer does power mean problems of heat and size, for the X-20 requires neither heatsink nor special ventilation. It measures only 8\(\frac{1}{2}\)" x 3\(\frac{1}{2}\)" x 1", weighs 4 1/2 oz, and will deliver up to 20 watts R.M.S. into a 7\(\frac{1}{2}\)-ohms loudspeaker—40 watts output by U.S.A. standards! A 3-stage pre-amplifier of exceptional efficiency is included within the above dimensions to ensure an overall frequency from 20 to 20,000 c/s well within \(\pm 1\)dB from input to output. With greatly improved transient response, there is corresponding improvement in the results obtained from other equipment used with the X-20 which itself has an energy conversion factor of better than 95% at the output stage. At no point in the circuitry of the X-20 are components over-run, so that the instrument is both stable and assured of indefinite working life—and it is easier to build and install than any amplifier you have ever owned. Best of all it costs far less.

SINCLAIR

Complete kit of parts inc. transistors and X-20 Manual in sealed carton £7-19-6
Built and tested with X-20 Manual in sealed carton £9-19-6
X-20 Power Pack sufficient to drive two X-20's £4-19-6

SINCLAIR RADIONICS LTD.
COMBERTON, CAMBRIDGE
SPACE AGE!

Illustration shows in block diagram form, the principal stages used in the Sinclair X-20 Pulse Width Modulated Amplifier. Use of the latest types of transistors and high quality components combined with unique circuitry achieve outstanding performance whilst retaining all the operational features of conventional quality amplifier design.

ONLY IN THE X-20 WILL YOU FIND ALL THESE IMPORTANT FEATURES

- Easily built in an evening.
- No. of transistors—12
- Output transistors—Silicon epitaxial planar.
- Pulse repetition frequency—65 to 75 kc/s.
- Energy conversion factor at output—better than 95%.
- Frequency response—20 to 20,000 c/s: ± 1 dB.
- Total harmonic distortion at 10 watts R.M.S.—0.1%.
- Input sensitivity—1 mV into 5-k ohms.
- Signal-to-noise ratio—better than 70 dB.
- 70 watts R.M.S. music power or 15 watts R.M.S. continuous power into 7.5 ohms.
- 15 watts R.M.S. music power or 12 watts R.M.S. continuous power into 15 ohms.
- For use with any type of pick-up, microphone, radio tuner, tape pre-amp, etc.
- Built-in low pass filter cutting off above 10 kc/s makes the X-20 widely tolerant of the load connected to it.
- Ideal for stereo and P.A.
- Ideal as a guitar amplifier, etc.
- Power required—36V d.c. at 700mA.
- Superb quality and reliability.
- The opportunity to connect your own choice of tone control system.

SINCLAIR X-10 P.W.M. SYSTEM

This superb Sinclair integrated P.W.M. amplifier and pre-amp gives you all the advantages of quality and efficiency which makes these Sinclair designs so outstanding in every way, but it has less power than the X-20, and is suited to less spurious listening conditions. Prices are particularly attractive. For 12-15V operation, Tone control system is added to choice.

THE WORLD'S SMALLEST MOST PERSONAL RADIO

SINCLAIR MICRO-6

Build it now for outdoor days

Smaller than a matchbox, this world-famous receiver brings in stations all over the medium wave band with fantastically good quality and volume. It performs with amazing efficiency in cars, buses, trains and steel-framed buildings, yet measures only 1½ in. x 1½ in. x ½ in. complete with self-contained aerial and batteries. The highly stable stable-six stage circuit has A.G.C. and band-spread for Luxembourg. Building this wonderful set is enjoyable for expert and beginner alike.

All parts inc. transistors, case, lightweight earpiece and instructions come to

MALLORY MERCURY CELL ZM 312 (2) required, each £1.11. Pack of six, 10/6.

AND A POWER AMPLIFIER

2" x 2"

SINCLAIR TR750

With built-in switch and volume control. Output 750mW for feeding into standard 25 to 35 ohm speaker. Input 10mV into 2k. Operates from 9V d.c. Designed principally for use with the Micro 6, with which it will make a car, portable or indoor domestic loudspeaker set, this amplifier will also make a mono or stereo record player, an intercom system, baby alarm, etc.

All parts and instructions 39/6 Ready built and tested 45/-

GUARANTEE ORDER FORM

Please send me

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
</tr>
</thead>
</table>

for which I enclose Cash/Cheque/Money Order value £________. P.W.B.

Guarantee

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full and at once without question. Please quote P.W.B should you prefer to write your order instead of cutting out this coupon.
SEVERAL ITEMS ARE AVAILABLE FOR SALE.

FOR SALE

- **800 WATT AMPLIFIER**
 - Drayton Mains Trans., Priv 190W, SGC 160V.
 - Post 6/-. Use in house, min size. £5/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.
 - No mast in maker's section. £8/-.
 - Size 11A, 200mA, 12v. £50/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.
 - 50 Hz - 375 MHz.

DIY GEAR

- **1000 WATT AMPLIFIER**
 - £20/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.

GREAT OFFERS

- **800 WATT AMPLIFIER**
 - Drayton Mains Trans., Priv 190W, SGC 160V.
 - Post 6/-. Use in house, min size. £5/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.
 - No mast in maker's section. £8/-.
 - Size 11A, 200mA, 12v. £50/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.
 - 50 Hz - 375 MHz.

DIY GEAR

- **1000 WATT AMPLIFIER**
 - £20/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.
 - 50 Hz - 375 MHz.

GREAT OFFERS

- **800 WATT AMPLIFIER**
 - Drayton Mains Trans., Priv 190W, SGC 160V.
 - Post 6/-. Use in house, min size. £5/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.
 - No mast in maker's section. £8/-.
 - Size 11A, 200mA, 12v. £50/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.
 - 50 Hz - 375 MHz.

DIY GEAR

- **1000 WATT AMPLIFIER**
 - £20/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.
 - 50 Hz - 375 MHz.

GREAT OFFERS

- **800 WATT AMPLIFIER**
 - Drayton Mains Trans., Priv 190W, SGC 160V.
 - Post 6/-. Use in house, min size. £5/-.

- **TELEPORTIC AERIAL MAST**
 - Tubular steel compound, new. £20/-.
 - No mast in maker's section. £8/-.
 - Size 11A, 200mA, 12v. £50/-.

- **WAVEMETER CLASS D**
 - Freq. 300 kHz to 8,000 kHz. £50/-.
 - 50 Hz - 375 MHz.
FOR SALE

HAMMER FINISH PAINT. The modern finish for electronics. Can be brushed or sprayed. Blue or Silver. (Poor tins 3/6, post: 1 pint 2/6, post 1/2; 1 pint 15/6; post 3/6; Orders over 30 lb. Retailers supplied. Write for details. Amazing results. Return of post service. FINNISANK SPECIALITY PAINTS (W.H.), Mickleby Square, Stockfield, Northumberland.

MORSE MADE EASY!
The famous RHYTHM RECORDED COURSE cuts the practice time down to an absolute minimum. One student, aged 19, took only 13 DAYS, and another, aged 71, took only 6 WEEKS to obtain a G.O.P. pass certificate. If you wish to read Morse easily and naturally please enrol, in stamps or two international reply coupons for full explanatory booklet. To G3OH5S, 45 GREEN LANE, PURLEY, SURREY.

FIVE-TON FACTORY CLEARANCE! Radio; TV Electrical Components in mixed parcels e.g. 201b. mixed parcel £5, p.p. 7/6. Speakers, grilles, valve, filter, transformer, circuit boards, covers, condensers, etc. Hundred other items, S.A.E. list, and postal orders to P. NEWTON, 16 Shaftesbury Crescent, Hatfield, Herts.

CONDENSER BARGAIN! Miniature Paper Condensers (in 2 in. ideal) for transistor sets: .0001, .001, .0002, .003, .005, .006; also small 500µf and 2µf Wax Capacitors. All 7/6 per 100. £3 F MILWARD, 17 Peel Close, Drayton Bassett, Staffs.

NOW READY! A modern way of instrument case assembly using our "Die Strips". The strips have been specially made for us by Birmingham on qty production, for low price to the public. It is made of high strength aluminium and will enable anyone to assemble an instrument case or cabinet in minutes. Full details of these products will be sent free. Please send large envelope self addressed.

88 set transmitter/receiver. Chassis less valves, 20½ each. Post paid.

Copper Laminate Board, single or double sided, 5½ per square foot panels either size 36½ by 4½, 33½.

High Stab Resistors, 5%, 6d.; 2%, 9½d.; 1½%, 1½. Every six packed in 7-compartment linen finish component box.

Speakers 3 ohm P.M. Sin., 5½, 6in., 6½, 7 x 4in., 7½, 8in., 8½, 10in., 12½. Please send S.A.E. for full Lists of other goods on offer.

E. R. NICHOLLS Mail Order and Retail Shop 46 LOWFIELD ROAD off SHAW HEATH, STOCKPORT CHESHIRE

FOR SALE (continued)

TRANSISTORS

1½ each. Red or White Spots.

2½ each. XA101, XA102, XB103, O9A, XA111, XA112, OC430, V10/15.

3½ each. OC44, OC45, OC70, OC71, OC81, OC81D, XA151, XB104, XC111, XC101A, OC169, OC200.

4½ each. AF114, AF115, AF116, AF117, OC170, OC171, XA103, XA116, XB102, XB105, XC121, UX611.

5½ each. OC139, OC140, OC204, ORP60, XA701, XA703, GET7, GET8, GET9, XC141, BY100, OA211.

10½ each. OC19, OC22, OC25, OC26, OC28, OC35, 2503.

ZENNER DIODES

4½v. to 30v., 2½, 1½, 5½, 7½, 6½ each.

Plus many more. Send 6d. in stamps for full list and eq. chart.

B.W. CURSONS

78 BROAD STREET CANTERBURY, KENT

FOR SALE (continued)

RADIO Amateur Packing Up Books, Radios, Televisions, etc. Dead cheap or given away. 185 Hewlett Road, Cheltenham, Glos. Tel. 21069.

WANTED

WE BUY New Valves for cash, large or small quantities, old or the latest. Send details. Quotations for return. WALTONS WIRELESS STORES: 15 Church Street, Wolverhampton.

WE BUY New Valves and Transistors. Amplifiers, Short-wave Receivers and Transmitters. E.G., A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED VALVES ONLY

Must be new and boxed. Payment by return.

WILLIAM CARVIS LTD. 103 North Street, Leeds 7

URGENTLY WANTED, new modern Valves, Transistors, Radios, Cameras, Tape Recorders and Tapes, Watches, Tools, etc. by quantity. S. N. WILLIETTS, 16 New Street, West Bromwich. Staff. Tel. 2392.

A PROMPT CASH OFFER for your surplus brand new Valves and Transistors. R.H.S., Beverley House, Mannville Terrace, Bradford 1.

MISCELLANEOUS

CONVERT ANY TV SET INTO AN Oscilloscope. Instructions and dia- grams 12/6. REDMOND, 45 Dean Close, Portishead, Sussex.

ELECTRONIC MUSIC?

Then how about making yourself an electronic organ? Constructional data available—full circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops—uses 41 valves. With its variable attack you can play Classics and Swing.

Write NOW for free leaflet and further details to L. & S., 39 Maiden Street, Darlington, Durham. Send 2d. stamp.

METAL WORK

METAL WORK. All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD. Chapman St., Loughborough.

CABINETS & CASES CHASSIS

Anything in metal. "One-offs" a pleasure. Send your drawing for quote. Stove enamelled in any professional finish.

MOSS, WATSON

40 Mount Pleasant Street, Oldham Lancs. MAIN 9400.

ELECTRIC SOLDERING-IRON

LEIGHTON Weighted Pistol Grip handle 40 watt. 240/250v.A.C. Solid copper bit. Detachable handle forms cover for iron when not in use. With 4½ Safety 3-core flex. Indispensable for every home handyman. A boon to model makers and a necessity for every workshop. Offered to you at this new amazing price.

C. H. SERVICE, (Dept. P.W.) Lusted Mail Lane, Tatsfield, Kent.

PRACTICAL WIRELESS CLASSIFIED ADVERTISEMENTS

www.americanradiohistory.com

FOR SALE

240 V ELECTRIC POWER ANYWHERE from 12 V CAR BATTERY

DYNAMOTOR UNIT

AMERICAN

HYDRAULIC IRRIGATION EQUIPMENT

NEW Nombres Signal Generator, model 27. £6: Miniature Cathode Ray Oscilloscope with case, 1½-In. screen. £12. HULME, 139 Green Lane, Vicars Cross, Cheshire.

ELECTRIC SOLDERING-IRON

FANTASTIC BARGAIN OFFER

Lightweight Pistol Grip handle 40 watt. 240/250v.A.C. Solid copper bit. Detachable handle forms cover for iron when not in use. With 4½ Safety 3-core flex. Indispensable for every home handyman. A boon to model makers and a necessity for every workshop. Offered to you at this new amazing price.

C. H. SERVICE, (Dept. P.W.) Lusted Mail Lane, Tatsfield, Kent.

WANTED

WE BUY New Valves for cash, large or small quantities, old or the latest. Send details. Quotations for return. WALTONS WIRELESS STORES: 15 Church Street, Wolverhampton.

WE BUY New Valves and Transistors. Amplifiers, Short-wave Receivers and Transmitters. E.G., A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED VALVES ONLY

Must be new and boxed. Payment by return.

WILLIAM CARVIS LTD. 103 North Street, Leeds 7

URGENTLY WANTED, new modern Valves, Transistors, Radios, Cameras, Tape Recorders and Tapes, Watches, Tools, etc. by quantity. S. N. WILLIETTS, 16 New Street, West Bromwich. Staff. Tel. 2392.

A PROMPT CASH OFFER for your surplus brand new Valves and Transistors. R.H.S., Beverley House, Mannville Terrace, Bradford 1.

MISCELLANEOUS

CONVERT ANY TV SET INTO AN Oscilloscope. Instructions and dia- grams 12/6. REDMOND, 45 Dean Close, Portishead, Sussex.

ELECTRONIC MUSIC?

Then how about making yourself an electronic organ? Constructional data available—full circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops—uses 41 valves. With its variable attack you can play Classics and Swing.

Write NOW for free leaflet and further details to L. & S., 39 Maiden Street, Darlington, Durham. Send 2d. stamp.

METAL WORK

METAL WORK. All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD. Chapman St., Loughborough.

CABINETS & CASES CHASSIS

Anything in metal. "One-offs" a pleasure. Send your drawing for quote. Stove enamelled in any professional finish.

MOSS, WATSON

40 Mount Pleasant Street, Oldham Lancs. MAIN 9400.
EDUCATIONAL (continued)

CITY & GUILDS technical, etc., on “Satisfaction or refund of fee” terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, T.V., automation, etc., send for 165-page Handbook—FREE. B.I.E.T. (Dept. 242A), 29 Wright’s Lane, London, W.8.

RADIO OFFICERS training courses. Write: Principal, Newport and Monmouthshire College of Technology.

SITUATIONS VACANT

RADIO AND TV Exam. and Courses by Britain’s finest Home-study School. Coaching for B.I.E.T., City and Guilds Amateur’s Licence, R.T.E.B., P.M.G. Cert. etc. FREE brochure from BRITISH NATIONAL RADIO SCHOOL, Russell Street, Reading.

TV ENGINEERS for Broadmead branches at Tunbridge Wells, Maidstone and Chatham. Very attractive offers made in salary. Phone: Maidstone 52000.

EDUCATIONAL

RADIO OFFICERS see the world. Seagoing and shore appointments. Our many recent successes provide additional trainee vacancies during 1965/66. Grants available. Day and boarding students. Stamp for prospectus. WIRELESS COLLEGE, Cowyn Bay.

THE INCORPORATED PRACTITIONERS IN RADIO AND ELECTRONICS (I.P.R.E.) LTD. Membership Conditions booklet 2/- Sample copy of I.P.R.E. Official Journal 2/- post free. Secretary, Dept. B, 32 Kidmore Road, Oversham, Reading, Berks.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.R.E., City & Guilds (Telecoms and Radio Amateurs’) R.T.E.B., etc. Many unique diploma courses inc. Colour TV, Electronics, Telemetry & Computers. Also self-build kit courses—valve and transistor. Write for FREE prospectus and find out how ICS can help you in your career.

ICS DEPT, 541, PARKGATE ROAD, LONDON, S.W. 11.

SOUND RECORDINGS

A UNIQUE BUY. Recording tape, top brand, 2,400ft., D.P., 25/-; 3,000ft., 1/5/-, P. and p. 1/6 per spool. Bargains in all sizes. S.A.E. for list.

We repair, buy and sell Recorders.

E.C. KINGSTON & Co. LTD., 132 Tottenham Court Road, London.

SERVICE SHEETS

SERVICE SHEETS, Radio and Television. 3/- post paid. VEST AND EMERY, 17 Hollingarth St., Durham.

SERVICE SHEETS, Radio, TV, 5,000 models. List 1/-, S.A.E. inquiries.

TELRAY, 11 Maidland Bank, Preston.

SERVICE SHEETS (75,000) 4/- each. Callers welcome. Always open. 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS 4/- ea., plus postage. We have the largest display of Service Sheets for all makes and types of Radios, Televisions, Tape Recorders, etc., in the country. speedy service.

To obtain the Service Sheet you require please complete the attached coupon.

From: Name: ..

Address: ..

..

..

To: S.P. DISTRIBUTORS

44 Old Bond St., London, W.I

Please supply Service Sheets for the following:

Model No. Radio/TV

Make: ..

Model No. Radio/TV

Make: ..

Model No. Radio/TV

I also require list of Service Sheets at 1/6.

(please delete items not applicable)

Enclose remittance of: ...

MAIL ORDERS ONLY

All: PW

City and County of Bristol Education Committee

BRISTOL TECHNICAL COLLEGE CAREERS IN RADIO AND RADAR

Marine Radio Officers 2-year, full-time course for young men aged 16 upwards; leading to 1st and 2nd Class P.M.G. Certificates and B.O.T. Radar Maintenance Certificate. Conversion Course (2nd Class to 1st Class). R.T. Courses (for Full or Restrict-ed Licence).

Training given on the latest types of Marine and Aircraft Equipment in the newly equipped Laboratories at

THE SCHOOL OF MARINE RADIO AND RADAR

For details write to:

THE REGISTRAR

BRISTOL TECHNICAL COLLEGE

ASHLEY DOWN, BRISTOL 7

www.americanradiohistory.com
EXPRESS ELECTRONICS
32 SOUTH END, CROYDON, SURRY.
Telephone: Croydon 9186
FOR THE FOLLOWING BRAND NEW UNITS

AMPLIFIERS
TRIPLETONE Hi-Fi Major 12 watt £15.10.6
TRIPLETONE CONVERTIBLE 5 watt £6.19.6
TRIPLETONE GEMINI STEREO 3 watt £15.15.0
LINEAR 3 watt £9.6.0
LINEAR DIATOMIC 12 watt £12.12.0
LINEAR CONCORD 30 watt £16.16.0
ADASTA 4 watt £19.9.9
LEAK TL12 14 watt £18.18.0
LEAK VARIOPE PRE-AMP £15.15.0
LEAK TL50 50 watt £23.12.0
QUAD 15 watt £22.1.0
QUAD STEREO/MONO PRE-AMP £25.0.0

LOUDSPEAKERS
GOODMANS AXIOM 10 in. 10 watt £6.6.0
GOODMANS AXIOM 20 in. 15 watt £10.15.0
BADERS 'SELHURST' 3 or 15 ohm JUNIOR 8 in. 8 watt foam £5.5.0
STALWART 12 in. 15 watt £5.5.0
BAKER'S 40 in. TWIN TRANSCRIPTION 20 watt £12.12.0
STANDARD Heavy Duty 12 in. 20 watt £7.7.0
BASS Heavy Duty 12 in. 25 watt £12.12.0
AUDITORIUM 15 in. 25 watt £18.10.0

EXPRESSIONS
GARRARD SRP0 4-speed £4.19.6
GARRARD AUTOSLIM 4-speed £6.7.6
GARRARD AUTO-CHANGER £9.12.0
GARRARD 4HF TRANSCRIPTION £14.17.6
GARRARD A LAB SERIES £17.10.0
GARRARD 3DI LAB SERIES £15.12.0
DECADEC WITH DERM HEAD £14.15.0
BSR TAPED-ECKS PD2 Twin Track £7.9.6

Deluxe record players with excellent sound reproduction incorporating the latest BSR 4-speed autochanger, independent tone and volume controls, high quality speaker. Not in kit form but fitted, made and tested. Finished in most attractive two-tone cabinets in blue-grey, red-grey or charcoal/grey with gift trim. 200-250v. AC. £12.12.0.

Delivered free U.K. S.A.E. enquiries.

HALF PRICE OFFER!!

THE EMPRESS' HI-FI RADIOGRAM

This magnificent radiogram chassis, complete with 10 in. elliptical loudspeaker plus 4 speed auto-changer. At only 23 gns. this is the bargain of the year. Write away for the "Empress" Radiogram today.

- Easily fitted.
- No soldering or technical knowledge necessary.
- Fits almost any cabinet with minimum trouble.
- Modernises your old radiogram.
- Built-in Ferrite rod aerial.
- Piano key switching.
- Luxembourg and Caroline received at full strength.
- Listen to U.S.A., Russia, Africa, Canada and many others.

Guaranteed Lewis Radio 365 day guarantee, even on all the valves. All British make.

SPECIAL terms available of £3.12.6 deposited followed by 18 monthly payments of £1.6.7 (total H.P. £27.11.0) plus postage and packing 13½ extra.

INDIVIDUAL CABINETS SUPPLIED ON REQUEST

THE MODERN BOOK CO.
19-21 PRAED STREET
LONDON, W.2

Phone: PADdington 4185
Open 6 days 9-6 p.m.

LEWIS RADIO
LEWIS RADIO, 100, CHASE SIDE, SOUTHgate
LONDON, N.14. Telephone: PAL 3733/9666

STROUD AUDIO
CASES GREEN ROAD, STROUD, GL9.

GUITAR AMPLIFIERS
WITH TREMOLO

- Jack socket supplied makes half inch tremolo speed and depth controls.
- Separate master gain control.
- Deluxes record players with excellent sound reproduction incorporating the latest BSR 4-speed autochanger, independent tone and volume controls, high quality speaker. Not in kit form but fitted, made and tested. Finished in most attractive two-tone cabinets in blue-grey, red-grey or charcoal/grey with gift trim.

DESCRIPTIVE LEAVES.

CREDIT TERMS ARRANGED.

PRICES
50 watt with tremolo £89.10.0
30 watt with tremolo £19.10.0
50 watt without tremolo £18.10.0
30 watt without tremolo £14.10.0
12 watt with tremolo £12.10.0
12 watt without tremolo £8.11.0

Add carriage 10½ any amplifier. Send S.A.E. for Descriptive Leaflet.
10/14 WATT HI-FI AMPLIFIER KIT

A stylish finish, and monaural and stereo operation with an output of 10 watts from 2 B.R.100 push-pull transistors. 350 ohm output. Reduction of both music and speech hum.

Separate inputs for mike and gram, allows record and announcements to follow each other. Fully shielded section wound output transformer to match 350 ohm speaker and independent volume controls for left and right, and the controls are provided good rigid cut and lift. Valve line-up 2 6J7G BC and 80/60 BC. Simple instructions booklet 1/6. Price with parts.

All parts sold separately. Only 6P. 5/6. Also available ready built and tested complete with standard input sockets. £18.15.0. Carrying Case for above 2/6. P. & P. 7/6.

SPECIAL HARVORSEN OFFER ! ! ! BARGAINS ON OFFER ! ! !

High Gain 4 Transistor Printed Circuit Amplifier Kit Type TAI

- Peak output in excess of 12 watts. All standard British components, one 5625 printed circuit panel 2 1/2 in. 4 generous size driver and Output Transformers. Output Transformer tapped for 3 channels and 15 ohm speakers. £4.50. P. & P. 2/6. Complete with valve, output transformer, bass, treble and volume controls, giving fully variable boost and cut, with minimum interaction loss. Heavy negative feedback loop over 2 stages ensures high output at excellent quality with very low distortion factor. Complete with girdle plate, girdle clips, compatible set and speedometer. £15.00. P. & P. 5/6.

A pair of TAI's are ideal for stereo.

HARVORSEN'S F.M. TUNER MK I

- F.M. to M.T. by hand or fully automatic.
- Guaranteed non-linearity.
- Designed to be as simple as possible.
- Frequency coverage 88-108 M.C.S.
- Stabilization of output.
- Two L.F. stages and discriminator.
- Attractive mason and gold dial (2 in. glass).
- Self-powered using a good quality battery.
- Valve line-up 6G9G BC, 802 and 602 BC.

Also available 1/2 in. version. £3.10. P. & P. 1/6.

QUALITY RECORD PLAYER AMPLIFIER

A top-quality record player amplifier. Size 5in. w. x 2in. d. x 6in. h. This amplifier (which is used in a standard F.M. or E.P. record player) employs heavy duty double wound transformer, ECC83, 6L4, ECC86 valve, bass, treble and volume controls. Complete with output transformer matched for 3 ohm speakers. Ready built and tested complete with unit 79/6 P. & P. 6/6.

QUALITY PORTABLE R/PLAYER CABINET

Cabinet motor board. Will take above amplifier and F.M. or GARRARD Autobootleg or single Record Player unit. Size 18 x 14 x 6in.

QUALITY PORTABLE R/PLAYER CABINET

Cabinet motor board. Will take above amplifier and F.M. or GARRARD Autobootleg or single Record Player unit. Size 18 x 14 x 6in.

QUALITY PORTABLE R/PLAYER CABINET

Cabinet motor board. Will take above amplifier and F.M. or GARRARD Autobootleg or single Record Player unit. Size 18 x 14 x 6in.

QUALITY PORTABLE R/PLAYER CABINET

Cabinet motor board. Will take above amplifier and F.M. or GARRARD Autobootleg or single Record Player unit. Size 18 x 14 x 6in.

QUALITY PORTABLE R/PLAYER CABINET

Cabinet motor board. Will take above amplifier and F.M. or GARRARD Autobootleg or single Record Player unit. Size 18 x 14 x 6in.

QUALITY PORTABLE R/PLAYER CABINET

Cabinet motor board. Will take above amplifier and F.M. or GARRARD Autobootleg or single Record Player unit. Size 18 x 14 x 6in.
3-VALVE AUDIO AMPLIFIER
MODEL HA3N
Designed for Hi-Fi reproduction. Records A.C. or Mains operation. Built on heavy gauge metal chassis size 11 3/4 x 11 1/2 x 5 1/2 in. Includes mid and treble transformers, ELE4, E220 valves. Heavy duty double-matched for 3 ohm speaker, separate Bass, Treble and Gain control. All parts inspected. Output: 40 volts. Profit panel can be detached and mounted on wall to allow easy mounting of amplifier. The HA3N has been specially designed for us and our quantity order enables us to offer complete control panel for 24.50. P. & P. extra. Wired and tested for only 1.50.

BRAND NEW LOUDSPEAKERS
360, 36V; 46 in.; 56 in.; 100 in.; 125 in. 26 in.; 28 in.; EMM 18 x 5 in. with high flux ceramic magnet, etc. 10 in. HIGH FLUX TWEETER. 3 ohm or 15 ohm imp. Famous British make. 12/- P. & P. 4. and 56 in. 64 and 80 in. 15 and 26 in. 4. per speaker.

TAPE DECKS
COLLAR佔50, 2 motors, 3 speed push button control. Up to 7 in. spools. 10/6 0 P. & P. of 5/-.

BRAND NEW BOOM PATRON. Single speed. 31 in. per sec. Simple control uses 5 in. spools. 60 in. plus 760 cm, and 10 in. Tape extra on both.

BARGAIN OFFER CORNER
MAINS TRANSFORMERS
Fully shrouded, can be mounted upright or upside down. Tapped 240, 250, 260, Section 250V. 3,400 at 50 MA and 6,200 at 200 MA, 250 V. 150 in. long 300 in. workers weight 2 lbs. Suitable for photograph testing, sequence switching operations, etc. Each 4.50 and new and unused units offered at a fraction of their true values. Our PRICE ONLY 1/- each. P. & P. 1/- 1/4/- post free. Special quotations for quantity.

HEAVY DUTY NON INDUCTIVE D/C MICRO TRANSFORMERS
150 ma. to 1 amp. 150 ma. to 10 amps. Standard one-hole fixing. Body size 1 in. x 1 in. deep, not terminal lead. Each P. & P. 1/- and 2/- post free.

REEL MATCHER. Approx. 9 x 6 in. 3 ohm Middle regulator plug. 10/6 P. & P. 3/-

VFMARK AND REEL SPEAKER AND CABINET FABRIC. Approx. 48 in. wide. Usually 25/- per yard. Our PRICE 13/- per yard. P. & P. 13/-

T.C.C. SUPPRESSORS. Condensers. 500V, 0.005 to 0.001 x 2. All in tubular can. 110 x 8 in. 63. for 3/- Post free.

TRANSMISSION DRIVER AND OUTPUT TRANSFORMERS. (Tapped 3 ohms and 12 ohms output). Plus 2 available Transformers giving approx. 1 watt output. 3/6 P. & P. 6/6 2-GANG-7000 TUNING CONDENSERS. 7/2, h. x 6 in. daily line plate. 100/300 ma. per band. 36/12 P. & P. 1/2.

MATCHED PAIR OF 25 WATT TRANSISTOR DRIVER AND OUTPUT TRANSFORMERS. Stack size 1 in. x 3/4 in. Output trans. tapped for 3 and 10 ohm output. 12/- P. & P. 19/-

BRAND NEW FLATBAND 12V 4 ph. non-synchronous. Transformer. Type 17 L.45. ONLY 6/6 P. & P. 1/- each.

4-WAY NON-TANGLE TELEPHONE CABLE. Latest spring back coat type. Extends 120 ft. to 51 ft. Complete with rubber boring, black. 4/6 P. & P. 1/2.

Harverson Surplus Co. Ltd.
Technical Aids to help you earn more!

Make your choice—
You can examine one of these sets, by post, FREE for a week.

NEWNES COMPLETE

Lathework

This lavishly-illustrated set provides all the essential information for operating CENTRE, CAPSTAN, TURRET and AUTOMATIC LATHES. It is designed to help you become highly skilled and fully conversant with various types in present-day use.

2 VOLUMES - 560 PAGES
660 PHOTOS, DRAWINGS AND DIAGRAMS
OPERATING DATA, ETC.
PLUS CASE OF 16 DATA CHARTS

Easy no-interest terms if kept after Free trial

Without obligation to purchase, please send:
Complete Lathework

If under 21 your father must fill up this coupon.

Mr.
Mrs.
Miss

Address

Occupation

Signature

(Mr., Mrs., Miss)

Occupation

Address

Without obligation to purchase, please send:

Complete Gas & Arc Welder

If under 21 your father must fill up this coupon.

Mr.
Mrs.
Miss

Address

Occupation

Signature

(Mr., Mrs., Miss)

Occupation

Address

NEWNES COMPLETE

Welder

Written by leading experts it gives you the specialised knowledge that would normally take years to acquire—this means money to you. It explains the theory, methods and techniques used both in repair work and construction.

2 VOLUMES - 544 PAGES
614 PHOTOS AND DRAWINGS
139 DIAGRAMS AND TABLES
PLUS CASE OF 14 DATA CHARTS

www.americanradiohistory.com
Astonishing Radio Bargains from CONCORD

MAKE 5 DIFFERENT TRANSISTOR RADIOS FOR 35/-
No EXPERIENCE NEEDED. No Soldering. Only 8 connections for first radio.

NEW RADIO ANYONE CAN BUILD IN 2-3 HOURS 19/6

EVEN THE OLDER CHILDREN BUILD THEM!...no soldering—over 15 connections! then hear it reach out bringing in station after station, loud and clear. Palm- of-hand size 4½ x 2½ x 1½ in.

AMAZING CIGARETTE RADIO! ONLY 18/6

Yes, a perfectly ordinary packet of cigarettes—but watch your friends astonished when hearing it stationed after station. Loud and clear! Still holds 10 Cigarettes—yet cleverly designed to use low on battery. Even a young boy (can assemble it) under 2 hours. No soldering. No experience necessary. Only 4 connections to make. Ideal for taking to work with you. From our bulking testimonial file. Mr. D.B. of Huddersfield, writes: "...I have fitted the parts, and it works in working order."

READ WHAT SATISFIED CUSTOMERS SAY

R.C. of HARRINGAY writes Received with thanks Skyroma ... Very pleased. Working well.

B.M. of BARROGATE writes I would like to thank you ... It is a real bargain.

L.S. of LONDON W.8 writes ... gave it a good try out and am very pleased with the results.

S.B. OF SOMERSET writes ... delighted with this radio ... glad you could send one more.

D.R. OF GLASGOW writes ... it is a lovely little thing and as clear as a bell.

T.F. OF STEVENAGE writes I would just like to say how pleased my son is with this radio.

W.H. OF MIDDLESEX writes Thank you for my door little radio. It is a real treasure to me.

CONCORD ELECTRONICS

FITTED 2/6 each Speaker for postage and packing and handling charge and please specify the exact requirements—the nearest available will be sent.

SELECTED BARGAINS

Beautifully reared AM/FM 2 gang Converters, 4/6/8 AM/FM I.P.T.S. 4/6 ks and 10,7 Mobs 4/6 pair; Magnavox Crystal Tape Recorder Mikes, 12/½ 3 watt Stereo Amplifiers, complete, ready to switch on; To and Interconnect rectifiers R52D-D-2-1/2, 2/6 each.

DIODES—DA79, QA30, 4G66H, GID9, 3G- each.

220, 250v. and 90v.-50/60c.c.s. Glass, 30m. 3-3G-150k. 3G-5/1. 3G-5/2. 3G-1/1.

2X6 3G-5/1, 10-6 3G-5/2.

2X6 3G-5/1, 10-6 3G-5/2 made by W. H. & W. H. Sold at 3G-5/1 or 10-6 3G-5/2.

10 WATT MONO AMPLIFIER. Complete with built-in pre-amplifier in metal case, plastic veneer covered 6 inches each level. With equilisation each input. 1 input switch selected each level with separate vol. control. A.C. mains. Suitable for H.P.V.S. Separate Bass and Treble. For use on 220-250v. A.C. mains. Case isolated from mains, 5½ Cardboard box in output for low distortion. Suitable all high impedance Microphones and pickups. Mise overall including plastic front—Height 6½, Width 10½, Depth 9½.

READY BUILT & TESTED POST AND PACKING 5/—

£14.10.0

3W-3SW STEREO AMPLIFIER. As above amplifier but 3 separate amplifiers giving full 3 watts each channel. Complete 1 Mono-Stereo, 2 Balancers. 3 Left Vol., 4 Right Vol., 5 Bass, 6 Treble. Input and output sockets at rear. A.C. mains, 220-250v. Case isolated.

READY BUILT & TESTED POST AND PACKING 5/—

£14.15.0

£15.00

TERMS: C.W.O. or C.O.D. 3/6 extra. 7-Day Money Back Guarantee. Mail Order address only.

ROITONE (Dept. P.W.)

61 HIGH STREET, CICHERNOFT, GLOUCESTER
Your complete basic guide
devoid of mathematics and circuitry

BEGINNER'S GUIDE TO COLOUR TELEVISION
by Terence L. Squires, A.M.Brit.I.R.E.

PRACTICAL WIRELESS

PADGETTS RADIO STORES
Dept P.W., OLD TOWN HALL
LIVERSEDGE, YORKSHIRE
Telephone: Cleckheaton 2666

USA Bomb Composers in original transit case, full of
gears, motors, victor counter, gyro, etc. £7/, carriage 1/6.
P.C.R. 12 volt Vibrator pack, in original packing case,£5/6, carriage 6/.
R.A.P. Eight Head Head. Complete with lamp, fare, etc.
No details. Packaged in original metal case, 15/6, carriage 1/6.
Single Phase 240 volt, 1,400 r.p.m., 1 h.p. motor
with pulley, 3/6, less pulley, 2/6, fully guaranteed.
Ex washing machine. Carriage £6/.
One Sixth H.P. Motor. 240 volts 15/6, post 6/.
New Indicator Unit CRT 100, complete with two
tubes, type VCRX330 and VCRX208, plus 21 small
valves, relays restored, 67/6, or less valves, 32/6, carriage 1/6. Sorry no details on the unit.
New 12in. Speakers with built-in tweeter 3 or 12.
cham 28/6, post paid.

P.M. Speakers, all 3 ohms, ex TV sets. 12/6, round
6 x 4in. and 3in., 3/6, post 5/6, for 200/6, post paid.
6in. round, 8/6, post 5/-, 7 x 4in., 8/-, post 9/.

VALVE LIST
Ex equipment. 3 months guarantee
EL91 1/6 1/6 EF40 8/6 PC600 4/6
EL160 3/6 1/6 U901 8/6 PCX144 4/6
EU82 1/6 U284 8/6 PC184 6/6
EU85 1/6 U285 8/6 PCL14 5/6
EL194 1/6 U122 5/6 PCL14 5/6
EY66 1/6 U259 5/6 PCL6 5/6
ERS90 1/8 KT290 5/6 PCL5 5/6
EH91 9d. 5U4 5/6 12AT7 3/6
EL9 1/6 6M6GT 4/6 OCH1 1/8
BF91 1/6 6X5G 5/6 4AR12 1/8
EF1 6/6 6F5G 3/6 EF90 1/6
EF16 5/6 6F4 5/6
HC7 1/6 PY10 5/6
IEF1 1/6 PY10 5/6 240/6
IEF13 1/6 PY10 5/6 6K7 1/8
IEF14 1/6 PL13 5/6 240/6
IEF1 1/6 PL13 5/6 240/6
IEF1 1/6 PY23 5/6 240/6

Breaking up Mark III Type 10 Set. Pointer Knobs 7s.
8d. post 6d. dot 7/6, post paid. Relay type 3X600,
1/3, post 1/6, dot 28/, post paid. Any other spare
send 9/6 plus post to cover.

Reclaimed Tubes, 6 months guarantee, 14in. Mullard
and Mullard. 17/-, carry 10/6. 11in., 36/-, carry 10/-.

"GLOBE-KING"
Amateur Short-Wave Radio
For over twenty years the famous incomparable "Globe-King" single-valve kits have been used by enthusiasts in almost every country in the world who sought a cost but high precision standard equipment was essential and demanded. The wide pleasure in announcing the new transistor version. Model TS1 just two transistors giving a tremendous performance. Send s.a.e. today for interesting free literature on this and other equipment. Enthusiasts note: we despatch to all parts of the world via International Postal Services.

JOHNSONS (RADIO)
ST. MARTIN'S GATE WORCESTER

Please mention "Practical Wireless" when replying to Advertisements

WEBSTER

WAVE TRAP
Price 3/- for any transistor portable radio.
" I IN OAK replaces car aerial" reduces fading.
" I IN HOME boosts distant and PIRATE stations
P.S.P. 1/- extra.
" ON HOLIDAY improves reception in remote areas. A MUST for caravanners.
Attachments to any window.
Supplied complete with FP battery and instructions.
Money-back guarantee.

D.E.W. Ltd., DEPT. P.W.
RINGWOOD ROAD, FERNDOWN, DORSET

www.americanradiohistory.com
DOUBLE-SIDED BLUEPRINTS

- The Strand Amplifier
- The PW Signal Generator
- The Savoy VHF Tuner
- The Mayfair Pre-amplifier
- The Berkeley Loudspeaker Enclosure
- The Luxembourg Tuner
- The PW Troubadour
- The PW Everest Tuner
- The PW Britannic Two
- The PW Mercury Six
- The PW Regency
- The PW International Short Wave Two
- Beginner's Short Wave Two
- S.W. Listener's Guide
- Beginner's 10-watt Transmitter
- Transmitting and Aerial Data
- P.W. "Sixteen" Multirange Meter
- Test Meter Applications Chart
- The Celeste 7-transistor Portable Radio
- The Spinette Record Player
- The P.W. 35-watt Guitar Amplifier
- Transistor Radio Mains Unit
- 7 Mc/s Transceiver

RECEIVERS

- The Tutor*
- The Citizen*
- Dual-Wave Crystal Diode
- Modern One-valver
- All-dry Three
- Modern Two-valver
- A.C. Band-pass Three
- A.C. Coronet-4
- A.C./D.C. Coronet
- The PW Pocket Superhet

MISCELLANEOUS

- The PW 3-speed Autogram
- The PW Monophonic Electric Organ
- The PT Band III TV converter
- The Mini-amp*
- The PT Olympic*
- The PT Multimeter*

QUERY SERVICE

The P.W. Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:

(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.

(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.

(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.

QUERY COUPON

This coupon is available until 5th August, 1965 and must accompany all queries in accordance with the rules of our Query Service.

PLEASE NOTE that we can supply no blueprints other than those shown in the above list. Nor are we able to supply service sheets for commercial radio, TV or audio equipment.
VHF FM TUNER TO BUILD

- 5-transistors, 4-diodes.
- Printed circuit superhet.
- Tuning range 87 to 105 MHz.
- P.F. stage and double tuned I.F.'s. 9 volts 9 mA operated.
- All parts sold separately.
- Output up to 1 volt.
- Size: 4 x 3 x 2 1/2 in.

TOTAL COST TO BUILD £6.19.6

M/W/LW POCKET SUPERHET RADIO TO BUILD

- 6-transistor plus diode.
- Push-pull speaker output.
- Easy printed circuit.
- Slow geared tuning.
- Full MED and long waves.
- Moulded cabinet 5 x 3 x 1 1/2 in.

TOTAL COST TO BUILD 85/-

TWO-WAVEBAND ALL TRANSISTOR CAR RADIO TO ASSEMBLE

- Supplied as factory built assemblies—just interconnect.
- 6-transistor push-pull design—double tuned I.F.'s.
- Push-button wavechange—full tuning range.
- Size 7 x 4 x 2 in.—fits any car—chromed front dial.

TOTAL COST TO BUILD £3.19.6

PUSH-BUTTON TRANSISTOR PORTABLE TO BUILD

- 6-transistor superhet design.
- Easy to build printed circuit.
- Full ferrite aerials, and D.I.T.I.FS.
- Push-button wavechange.
- Full M.E.D./L.W. geared tuning.
- Attractive sturdy cabinet.

TOTAL COST TO BUILD £7.19.6

VHF FM TUNER TO ASSEMBLE

- Supplied as prebuilt and printed, units plus metalwork just interconnect.
- 88 to 108 MHz FM tuning.
- 100 mV to 1000Kohm output.
- 6-transistor printed circuit.

TOTAL COST TO BUILD £12.17.6

10 WATT AND 20 WATT AMPLIFIERS

ALL TRANSISTOR PRE-BUILT AND TESTED UNITS

- **POWER AMPLIFIERS**
 - 10 watts RMS music power output.
 - 10 watts peak.
 - Transistor designs.
 - 40 c/s to 20 Kc/s.
 - 100 mV sensitivity.
 - Unit 1. For 100 watts 8 ohm speakers, 40 volt supply.
 - Unit 2. For 3 to 5 ohms 24 volt.

PRICE £5.19.6 P.P. Unit 1 and 2

SPECIAL PRICE £5.10.0 P.P.

PREAMPLIFIERS—MONO AND STEREO VERSIONS.

- 8 inputs, 1/2 mV to 300 mV at 1K to 500 Kohm.
- Response 30 c/s to 20 Kc/s.

PRICE £10.19.6 P.P.

LOW NOISE—LOW DISTORTION QUALITY DESIGNS

- Enables complete Mono or Stereo equipment to be assembled at a fraction of the cost of a commercial comparable design.

TOTAL AND FOUR TRACK PORTABLE TAPE RECORDERS TO ASSEMBLE

- Prebuilt equipment—6 valves—Collaro studio decks—portable cabinets.
- Complete recording and playback.

SPECIAL PRICE 7/6 P.P.

4 WATT AND 1/2 WATT PACKAGE AMPLIFIERS

- 6-transistor push-pull printed circuit designs.
- Peak output 8 watts and 3 watt.
- Size only 2 1/2 x 2 x 1 1/4 in.
- 4 IF'S.
- For 3 to 5 ohm speakers.
- 7 mV into 1 Klimn, 40 c/s to 15 Kc/s.

PRICES £1 7/6 P.P.

Let us quote for Parts for your circuit. Send a list for quick reply.