

-			_		
	TTL * * 7400 10p 74109 25p 7401 10p 74118 75p 7402 10p 74120 00p 7403 10p 74121 25p	LINEAR AY38500 450p NE556 90p CA3039 70p NE552B 400p CA3046 60p SAD1024 1500p CA3060 225p SL917B 651p	TRANSISTO AA113 10p BC17 AA217 30p BC17 AC121 30p BC17 AC122 30p BC17	11 12p BDX42 50p BU208 220p 12 12p BDY10 100p BY100 25p 77 15p BF115 20p BY126 15p 78 15p BF120 50p BY127 15p	MURATA ULTRASONIC TRANSDUCERS 40kHz Type MA40 LIS Transmit. Type MA40 LIR Receive. £2:00 each, £3:50 pair. Data 10p.
l	7404 12p 74122 35p 7405 12p 74123 40p 7406 25p 74125 35p 7407 25p 74126 35p 7408 12p 74128 60p 7409 12p 74130 120p	CA3065 200p SN76003N 150p CA3076 250p SN76013N 110p CA3080 75p SN76013ND 125p CA3084 250p SN76013N 110p CA3084 250p SN76013ND 125p CA3085 85p SN76023ND 110p CA3086 60p SN76023ND 15p	AC127 200 BC18 AC127/01 250 BC18 AC128 200 BC18 AC151 250 BC18 AC153 300 BC18 AC153 400 BC18	12p BF123 45p BY164 50p - 13 10p BF125 45p BYX94 8p 33 12p BF127 50p C1120 30p 34 10p BF137 35p C1164 20p 34 10p BF137 18p E100 42p	ROTARY SWITCHES BY LORLIN 1 POLE 12 WAY. 2 POLE 6 WAY. 3 POLE 4 WAY. 4 POLE 3 WAY. All at 40p Each.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CA3088 1900 SN76227N 1600 CA3089 1600 SN76627AN 1600 CA3090 AQ 3600 SN76622AN 1800 CA3130 1000 TAA300 1000 CA3130 1000 TAA300 1900 CA3130 1000 TAA350 350 LF356 800 TAA570 2200 LF357 800 TAA661 B 1400 LM300TR5 1700 TAA700 3500 LM301AN 300 TAD100 1500 LM301AN 300 TAD101 1500 LM301AN 300 TAD101 1500 LM301AN 300 TAD101 1500 LM304 C2000 TAD101 3500 LM304 C2000 TAD101 3500 LM304 N00 TBA120T 650 LM304 N00 TBA120T 650 LM304 TO 5100 TBA120T 650 LM304 TO 5500 TBA120T 650 LM304 TO 5500 TBA500 2000 LM311TO 5500 TBA500 2000 LM314 TO 5500 TBA500 2000 LM314 N000 TBA500 2000 LM314 N000 TBA500 2000 LM314 N000 TBA500 2500 LM314 N000 TBA500 2500 TBA500 2500 LM314 N000 TBA500 2500 TBA500 2500 LM314 N000 TBA500 2500 TBA500 2500 2500 LM314 N000 TBA500 2000 LM314 N000 LM314 N000 LM314 N000 LM314 N000	A C154 30 B BCt8 A C154 30 B BCt2 A C187 20 B BCt2 A C188 20 B BCt2 A C188 20 B BCt2 A C188 20 B BCt2 A C188 20 B BCt2 A C198 20 B BCt2 A D143 150 B BCt2 A D143 20 B BCt2 A D161 20 B BCt2	Math String BF161 18p Eain 60p 18p 51 12p BF173 22p Eain 180p 12p 11p BF173 22p Eain 12p 14p BF173 22p Eain 12p 121 11p BF178 25p Eain 12u 12p BF180 30p MPSA05 32p 121 12p BF180 30p MPSA05 32p 11a 12p BF181 30p MPSA05 32p 131 12p BF181 30p MPSA05 32p 11a 13p BF183 25p TIP29 A0p 35p 314 13p BF184 20p TIP30 35p	OPTO ELECTRONIC CORNER SPECIAL SCOOP OFFER 95 or 0:2 Inch RED LEDS 15 prach. 10 for £1:00, 100 for 50, 1000 for £6:00, 100 for 50, 1000 for £6:00, 100 for Anode Displays: Character Height 0:6" £2 00 each. FND500 Seven Segment Common Cathode Displays. Character Height 0:5" £1:30 each. 4:07 £5:00. 2NS777 Photo-Darilngton 80 each. 0:425 or 0:2" Yellow and 60 for £12:00, HP5002. 70 fob. HP5002-7750 fob, ORP12 Japanese 75p each. Millar £1:25 each.
	7445 65p 74165 75p 7446 50p 74167 160p 7447 50p 74170 100p 7448 50p 74171 80p 7450 12p 74176 60p 7451 12p 74176 60p 7453 12p 74176 60p 7453 12p 74176 50p 7454 12p 74177 50p 7470 25p 74180 90p 7472 20p 74180 90p 7473 25p 74181 30p 7474 25p 74184 120p 7476 25p 74184 120p 7476 25p 74184 120p 7475 25p 74184 120p 7480 40p 7489 30p 7481 85p 74191 70p 7481 85p 74192 60p 7485	LM351 225 TBABIO 1005 LM707 540 TBAB20 1005 LM7107 55 405 TBA820 2805 LM7107 55 405 TBA820 2805 LM7101DL 659 TCA2700 2805 LM7231D5 405 TCA2705 2205 LM7231D1 405 TCA2705 205 LM723 1220 TDA103 3055 LM741 205 TDA108 3055 LM744 405 TDA108 3055 LM744 405 TDA108 3055 LM748 405 TDA108 3055 LM3080 755 XR320 23055 LM3909 655 XR320 23055 LM3909 K105 XR320 2555 MC1315F 3205 XR320 2555 MC1315F 3205 XR320 1555 MC1315F 3055 XR320 1555 MM5316 4505 XR4212 1555 MM5316 4505 XR4212 1555 MM5316 4505 XR433 1555	AU110 180p BC4 BA114 12p BC5 BA121 12p BC5 BA154 12p BC5 BA154 12p BC5 BA154 12p BC5 BA157 15p BC5 BAX16 5p BC5 BAX16 5p BC5 BAX16 5p BC5 BB105 35p BC5 BB105 35p BC5 BB105 35p BC5 BB106 15p BC5 BC108 15p BC5 BC109C 15p BC7 BC109C 15p BC7 BC114 15p BC7 BC116 15p BC7 BC116 15p BC7 BC116 15p BC7 BC117 BC BC1 BC117 BC7 BC118 12p BC1 BC118 25p BC1	61 35p BF271 25p TIP41B 75p 16 35p BF274 30p TIP47C 80p 17 35p BF274 30p TIP42A 80p 17 35p BF334 30p TIP42A 80p 47 12p BF336 35p TIP42C 90p 48 12p BF451 25p TiP19255 70p 48C 14p BF367 25p TiP3055 50p 44C 14p BF364 35p TiS91 25p 571 13p BF458 50p IN4014 5p 578 15p BF596 50p IN4002 5p 38 100p BF896 30p IN4003 5p 58 18p BFW60 25p IN4005 5p 576 15p BFW88 30p IN4006 6p 70 15p BFW89 30p <t< td=""><td>DECODER BOARD CONTAINING 18 × 74155 2 × 7409 1 × 74150 1 × 711932 2 × 60 WAY EDGE CONNECTORS Few only left of this unrepeatable bargain £3 • 50 each XTAL MIC Inserts 75p each. 5° Scopetubes SE5J (for callers only £15 • 00 each. Bias Rejector coils 50 • 100 KHZ 65p each 1MHz Crystals £3 • 00 Push to Make Switches 20p each. Chokes 100 H 35p each</td></t<>	DECODER BOARD CONTAINING 18 × 74155 2 × 7409 1 × 74150 1 × 711932 2 × 60 WAY EDGE CONNECTORS Few only left of this unrepeatable bargain £3 • 50 each XTAL MIC Inserts 75p each. 5° Scopetubes SE5J (for callers only £15 • 00 each. Bias Rejector coils 50 • 100 KHZ 65p each 1MHz Crystals £3 • 00 Push to Make Switches 20p each. Chokes 100 H 35p each
	7491 40p 74199 100p 7492 35p 74293 90p 7493 30p 7LS00 18p 7494 70p 745112 80p	ELEC CAPACITORS	BC126 20p BD1 BC134 15p BD1 BC136 16p BD1 BC137 16p BD1 BC138 30p BD1	36 35p BFX85 30p 2N1308 50p 37 40p BFX87 25p 2N1711 22p 39 40p BFX88 25p 2N1219A 25p 40p BFX88 25p 2N1219A 25p	100uH 65p each 100uH 65p each Futaba 5LT02 Non-Multiplexed 4 Digit Phosphor Diode Display With A. M./P.M./Colon £5:00
	7496 45p 7497 120p 7805 100p 74100 80p 7812 100p 74104 40p 7812 100p 74105 40p 7815 100p 74107 25p 7818 100p	0.47/25 7p 47/10 8p 1/16 7p 47/16 8p 1/25 7p 47/25 8p 1/50 7p 47/35 8p 2.2/25 7p 47/35 9p 2.2/35 7p 100/10 8p 3.3/25 7p 100/16 8p	BC140 30p BD1 BC141 30p BD1 BC142 30p BD1 BC143 30p BD1 BC144 30p BD1 BC145 30p BD1 BC147 10p BD2 BC148 10p BD2	44 160p BFY19 100p 2N2906 16p 81 100p BFY50 20p 2N3053 20p 82 100p BFY50 20p 2N3053 20p 88 130p BFY51 20p 2N3054 50p 807 70p BFY52 20p 2N3055 60p 202 65p BFY53 25p 2N3702 11p	PRE SET POTS MICRO BLOCK 100mw Horiz/ 2102 250 Nano-Sec Vertical S0R-IM Static RAM (1024 x 1) Ohm 8p Each
	7824 100p POWER SUPPLY CAPACITORS 2200/16 35p 4700/63 120p 2200/100 150p 1000/10 100p 3300/63 90p 1500/10 135p 4700/10 50p 10000/15 150p 4700/10 55p 22000/10 100p 85p 10000/15 150p 22000/10 90p 15000/15 150p 2200/101 150p 4700/025 50p 22000/125 200p 22000/25 200p ENQUIRIES FOR ANY OTHER TYPES 1000 1000 1000	3:3/25 Tp 100/16 8p 4:7/10 Tp 100/50 8p 4:7/16 Tp 100/50 8p 4:7/25 Tp 100/63 16p 4:7/50 Tp 220/16 12p 10/10 Tp 220/16 12p 10/10 Tp 220/50 22p 10/10 Tp 320/51 18p 10/50 Tp 330/50 20p 22/64 Tp 470/10 14p 22/10 Tp 470/25 18p 22/16 Tp 470/50 24p 22/16 Tp 470/50 24p 22/25 Tp 100/16 27p 22/25 Tp 100/16 27p 22/25 Tp 100/16 30p 33/64/3 Tp 1000/25 35p 33/16 8p 1000/40 40p	BC149 10p BD2 BC153 16p BD2 BC157 16p BD2 BC157 10p BD2 BC158 10p BD6 BC158 10p BD6 BC169 10p BD6 BC169 15p BD7 SPECIAL QU/ ★ ★ ↓ IN4148 DIODES BY ITT/ TEXAS 100 for £1-50.	33 S0p BR101 33p 2N3704 12p 33 S0p BRY39 35p 2N3704 12p 352 S0p BRY39 35p 2N3705 12p 352 S0p BRY39 35p 2N3705 12p 352 S0p BRY39 35p 2N3705 12p 352 S0p BSY20 20p 2N3705 12p 357 BX20 20p 2N3705 12p 20p 357 S0p BSY95 20p 2N3810 25p 358 80p BSY95 20p 2N3865 35p 359 BU105 200p 2N3665 35p 350 80p BU105 200p 2N3665 35p 432 200p BU133 180p 2N6027 50p ANTITY PRICES 2N5777 60p	4 for £8:40 MULLARD POT. CORES LA3 100-S00KHZ 75p LA4 10-30KHZ 100p LA5 30-100KHZ 100p LA7 <10KHZ
I	CMOS 4000 12p 4047 80p 4001 12p 4048 50p 4002 12p 4048 25p	33/10 Bp 1000/63 50p 33/40 Bp 1200/63 60p 33/50 9p 2200/10 30p	Please note, these are full spec de- vices.	Sok Lin 100k LOG BC148 100k Lin 250k Lin BC157 250k Lin 500k LOG BC157 500k Lin 1M LOG BC158	400mw OV7-33V 10p each MM5204 E. Rom £8:00 each
	4006 80p 4020 25p 4007 14p 4054 100p 4009 30p 4055 130p 4011 12p 4056 120p 4012 12p 4060 100p 4013 30p 4066 35p 4015 50p 4069 12p 4016 30p 4066 35p 4016 30p 4071 12p 4018 55p 4072 12p 4018 55p 4072 12p 4018 4074 12p	POLY CAPS 1000 PF 5p 0.1 uF 6p 3300 5p 0.32 uF 9p 4700 5p 0.47 uF 12p 6800 5p 1.0 uF 20p 0.01 uF 5p 2.2 uF 25p 0.022 uF 5p 4.7 uF 35p 0.032 uF 5p 4.7 uF 35p	Texas TIS 88A V.H.F. F.E.T. 10 for £2:30 100 for £20:00 555 TIMER 10 for £2:50 741 O.P. Amp 10 for £2:00	Ink Link Zm Link Link BGT59 ted GANGED POTS BF194 & 65-50p SK+5K LIN or LOG BF197 10K+10K LIN or LOG NIXIE TUBES 50K+55K LIN or LOG S9533 100K+10K LIN or LOG CD43 250K+55K LIN or LOG CV4523 50K+50K LIN or LOG GN44	BRIDGE RECTIFIERS 1 AMP 50V 8212 8 Bit In/out Port £3.00 each 1 AMP 200V 900 each T 8080 AN MPU (CPU) 1 AMP 200V 35p 1 AMP 600V 6080 AN MPU (CPU) 8831 TriState Line Driver £2:00 each 2 AMP 50V 40p 2 AMP 100V 55p 2 AMP 200V 8833 TriState Trans Transceiver £2:00 each
	4020 50p 4082 12p 4022 50p 4093 70p 4023 12p 4510 60p 4024 40p 4511 70p 4025 f2p 4516 65p 4026 80p 4518 65p 4027 30p 4520 65p 4028 45p 4528 80p 4029 50p 4533 70p 4030 30p 50p 50p	0.047 uF 5p 10 uF 60p TANT. BEADS 0.1/35V 14p 3.3/16V 14p 0.15/35V 14p 4.7/16V 14p 0.22/35V 14p 4.7/25V 14p 0.33/35V 14p 4.7/25V 14p	MODULES LP1152 100p LP1153 400p LP1165 400p LP1166 400p LP1168 400p LP1193 400p LP1181 400p	Im + Im Lin of LOG GN9A 125p Zm+2m Lin of LOG Vx9181 70p All at 80p Each. XC25 S0p DLL SOCKETS XFW47 70p 8 PIN 13p XFW47 50p 14 PIN 14p XNP12 I25p 16 PIN 15p XNP28 I25p	Bit State R.C.A. TRIACS 8835 Tri State 400V 8 AMP £2:00 each 400V 15 AMP AY5-1013 U/ART £1:20 6:00
	4032 800p ★ ★ 4033 100p ★ ★ 4040 60p ★ ★ 4046 90p ★ ★ FERRITE RINGS	0 - 47/10V 14p 6 - 8/5V3 14p 0 - 47/35V 14p 6 - 8/35V 14p 0 - 66/35V 14p 1 - 0/35V 14p 1 - 00/10V 14p 22/15V 21p 1 - 0/35V 14p 37/16V 25p 1 - 5/35V 14p 47/15V 25p 2 - 2/25V 14p 47/16V 25p 2 - 2/25V 14p 10/3V 25p	LP1400 400p EP9000 280p EP9001 280p EP9002 280p High quality Trimmer Caps		HIGHBURY CORNER
	O/D 12mm, 1/D 6mm 10 for 70p TOGGLE SWITCHES		Min-Max 2·5pF-6pF All 3·5pF-13pF one 7·0pF-35pF price	LONDON N1 01-226 14 BARGLAYCARD	MON - FRI 9 - 5.30 pm SAT 9 - 4.30pm NEAR HIGHBURY
	SUB MIN Single Pole C.D. 65p Single Pole C.O. Biased 85p RESISTORS 1/3RDW	2000uF 35v 40p 100/£30 REED INSERTS One Price 26MM Long 10 for 51 000	FERRITE BEADS 6MM long OD 3MM ID 1MM 3p each 100 for 52:00		AND ISLINGTON STATION
	100 of 1 type £1.00p E12 only	50MM Long £1.00p	£2.00	ALL PRICES INCLUDE	TOOT AND TAT

actica BRITAINS IFADING JOURNAL FOR THE RADIO & ELECTRONIC CONSTRUCTOR

JULY 1979 VOLUME 55 NUMBER 7 **ISSUE 869**

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH151JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on com-mercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.

Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at £10.60 per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at 75p each. including post and packing to addresses at home and overseas.

Binders are available (Price £2.85 to UK addresses or £3.45 overseas, including post and packing) each accommodating one volume of PW. Please state year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

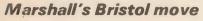
COPYRIGHT

C IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.

All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

	NEWS & VIEWS
20	Editorial
	Opinion
20	PW Personality Charles Molloy
21, 3	1 News News News
27	Special Product Report
	Logic Probe kit, Continental Specialties Corporation
30	RAE Reprint Announcement
32	Production Lines
	Information on the latest products
52	Kindly Note
	PW "Imp" Beginners Receiver, May 1979
55	Radio Special Product Report
	FRG-7 Communications Receiver, Yaesu Musen
61	Hotlines
	Recent developments in electronics
	FOR OUR CONSTRUCTORS
22	AM/FM Frequency Readout
22	Do away with mechanical tuning-scale drives
28	Ideas Department
20	Workbench Amplifier. Tachometer/Dwell Meter. TTL Snap Indicator
38	Selective Sound Operated Switch
30	Control equipment with a hand-clap
44	VMOS Top Band Transmitter J. R. Green
. spep	A design for the 160m band, using power f.e.t.s
62	Inexpensive AF Electronic Voltmeter
UL	A high-impedance, wide-band instrument
_	
	GENERAL INTEREST
34	Numbers Without Tears
34	An educational toy for children of $2\frac{1}{2}$ years and upwards
50	Changes in Broadcast-Band Listening on Short Waves
50	A look at the international broadcasting scene Jonathan Marks
66	On the Air

Amateur Bands					Eric Dowd	eswell
MW Broadcast	Bands				. Charles /	Nolloy
SW Broadcast	Bands			 	. Charles /	Nolloy
VHF Bands						
VHF Personality						
		, -				


We regret that Part 2 of the PW "Trent" has had to be held over, due to production difficulties

OUR COVER The object looking rather like a ventilation grille is in fact a much-enlarged view of the "works" of a power f.e.t. Photograph courtesy Siliconix Ltd.

Our August issue will be published on 6 July (for details see page 43)

Subsequent to the recent publishing of Marshall's 1979 product range catalogue their Bristol retail shop has moved.

From 24 April 1979, the new shop will be in larger premises at 108A Stoke's Croft, Bristol. This new location is approximately 5 minutes walk from the main shopping centre of Bristol.

At the same time they announce that they have been appointed sole specialist distributors to the constructor market for the new Mullard 'Teletext' chips—SAA 5000, 5010, 5012, 5020, 5030, 5040 and 5050. These will be available shortly.

Further information from: Mardata, Kingsgate House, Kingsgate Place, London NW6 4TA. Tel: 01-624 0805.

Conferences

An IERE/RSGB colloquium is to be held on Tuesday, 5 June 1979 starting at 2 pm at The Royal Institution, Albemarle Street, London W1.

The subject for discussion will be amateur work on microwave propogation and techniques over the last five years, which have made the professionals look hard.

There has been some fascinating work, particularly in the UK, e.g. "s.s.b. at 10GHz" and the colloquium will describe these great developments which are currently going on.

Further details from: *The Conference* Secretariat, IERE, 99 Gower Street, London WC1. Tel: 01-388 3071.

The programme for the Consumer Electronics Symposium, announced by the Society of Electronic and Radio Technicians (SERT) last autumn, has now been finalised, and is to be held at the University of Essex between 8 and 10 July 1979.

Copies of the programme/registration form are being widely distributed and applications from nearly 100 potential delegates have already been received.

As can be seen from the programme, there is a wide representation of authors from industry, broadcasting authorities and servicing organisations who are providing an extremely varied programme of lectures and discussion covering all aspects of electronics in the consumer field.

Further details from: SERT, Faraday House, 8–10 Charing Cross Road, London WC2H OHP. Tel: 01-240 1152.

Club News

The North England Radio Club has a national and European membership, with the heart of the club on Mersevside.

NEWS.

They publish a monthly magazine called 'Spectrum' and meet monthly, usually at The Sports Centre, Grange Road West, Birkenhead.

New members from anywhere in the world would be very welcome. A copy of 'Spectrum' and club information may be obtained for two $9\frac{1}{2}p$ stamps, in the UK, or two IRC's from abroad.

The man to contact is: Norman Monti, 66 Chesnut Grove, Birkenhead, Merseyside L42 OMZ.

TI 9900 data book

A self-teaching microprocessor design manual—written for beginners and experts alike—is now available from Texas Instruments.

The soft-cover "9900 Family Systems Design and Data Book", will offer in more than 1000 pages a comprehensive selection of educational and applications information that can help users develop a deeper understanding of the complex technology and tremendous potential available in microprocessors.

Combining hardware and software information, the data book should assist both the engineer doing advanced m.p.u. design work and "interested" people who simply want to know more about the subject. It is a complete reference book containing the basic knowledge and data a novice might need to become better acquainted with m.p.u.s—and it carries that knowledge through into complete technical and systems design data needed to use TI's 9900 family of 16bit microprocessor and microcomputer circuit boards.

The "9900 Family Systems Design and Data Book" costs £8.00 plus P&P, and is available from: *The Modern Book Co., 19–21 Praed Street, London.*

SERT

The Society of Electronics and Radio Technicians is pleased to announce that Mr T. Bryce McCrirrick has become a Vice-President of the Society.

Mr McCrirrick has recently been appointed Director of Engineering to the British Broadcasting Corporation in succession to Sir James Redmond.

The current President of SERT is Air Vice Marshal Alec Morris and the other Vice-Presidents are Mr Michael Clark (Deputy Group Chairman of the Plessey Company) and Sir Edward Fennessey.

NEWS.

Rally Dates

The Royal Naval Amateur Radio Society's Mobile Rally, will take place at HMS Mercury, Petersfield, Hampshire, on Sunday, 17 June 1979. It will be open to the general public between 1000 and 1700 hours.

The rally is intended as an outing for the whole family, with stands, arena events and displays of interest to all ages. There will also be the usual trade stands.

Further details from: Wally Walker G4DIU, 9 Woodstock Road, Bedhampton, Havant, Hants PO9 3HX.

The "East Suffolk Wireless Revival" Amateur Radio Mobile Rally will take place on Sunday, 3 June, 1979, at the I.A.C.S.S.A. Sports ground, Bucklesham, near Ipswich. Commencing at 1100hrs and admission will be 40p, which includes a free raffle ticket.

In addition to talk-in stations on 2m, 70cm f.m. and 80m s.s.b., there will be trade stands, technical displays (featuring Prestel, RTTY and m.p.u.s), refreshments and a licensed bar.

Further details from: C. P. Ranson G8LBS, 67 Tranmere Grove, Ipswich, Suffolk IP1 6DU.

"Nunsfield House Community Association Amateur Radio Group" of Derby, hold their 10th Rally, at Elvaston Castle Country Park, on Sunday, 10 June 1979.

It is expected to be their largest rally yet, with over 50 trade stands, along with many other attractions of interest to all the family.

Talk-in stations will be available on callsign GB2ECR, on 2m f.m. Ch. 22, and 70cm f.m. Ch.s SU8, SU20.

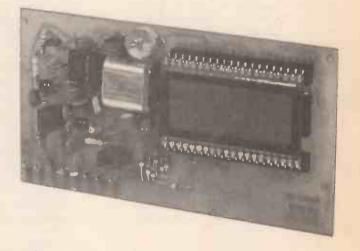
Further details from: Chris Wallace G8PTW, QTHR. Tel: Derby 752358.

"Bangor & District Amateur Radio Society" hold their mobile rally on 24 June 1979, at the Castlewellan Forest Park. There will be all the usual events including trade stands and a "bring and buy" stall.

Further details from: W. H. Langtry GI4AMM, QTHR. Tel: Bangor 65394.

OM/FM. Frequency readout

William POEL


If you can think of an application for an arrangement of c.m.o.s. logic with a potential sale of a million plus, then the chances are that some enterprising manufacturer of l.s.i. has got a dedicated chip either on the drawing board, or in the market place. The application described here is an ideal candidate, since it is yet another instance of ageold analogue technology being swept aside with digital technology. For a long time past, an accurate readout of a radio receiver's tuned frequency has only been available with large amounts of logic, and large amounts of patience to work out the various i.f. offset programming steps. Such systems have also cost considerably more than the best analogue arrangements, and have consequently been restricted to the very expensive exotica in both consumer and communications applications.

Just as Intersil have revolutionised the concept of the instrument type counter with their ICM7216, OKI Electric of Japan have introduced a family of c.m.o.s. for consumer and communications digital frequency readouts which render all other approaches now quite simply obsolete. For in a 40-pin l.s.i. the counter gives both a.m. and f.m. frequency readout, plus straight kHz frequency count (no offset); drives an l.c.d. directly with no r.f.i. to the radio in question and all this with a current consumption of 4mA with the prescaler off, or 15mA with it on. The unit described here is conceived and designed as a universal readout for long wave through medium wave to a maximum a.m. count of 2.999MHz, including the popular marine DF band where digital readout is almost essential for reasonable operation in congested waters. The f.m. range operates from about 20MHz to 200MHz (with SP8629 prescaler) with a resolution of 100kHz—e.g. a typical readout is 88.1MHz. In the direct mode, the display shows kHz from the a.m. input, and 100s of kHz from the prescaled input.

Purists will complain that 100kHz is insufficient for f.m. resolution—but the display flicker brought about by further resolution is very tedious, and the small number of stations not on 100kHz channels makes the exercise rather pointless for the nuisance involved. And not many f.m. receivers would show up too well from the point of view of oscillator drift.

The Circuit

The full circuit (Fig. 1) reveals a remarkably simple overall approach compared to previous endeavours to produce this type of unit. Nearly all functions are carried

on within the MSM5526 i.c.-and the few remaining peripheral components are included as an extra for maximum flexibility. On f.m. the divide-by-100 prescaler is an obvious essential, but the input sensitivity of both the SP8629 and the MSM5526 is such that, if the unit is wired into many receivers directly, the pre-amps are not required. However, with these pre-amps using the high f. BF274 type of transistor, typical sensitivities of $800\mu V$ on a.m. and 10-15mV on f.m. can be achieved-thus permitting connection of the digital display with the barest minimum of coupling. In the case of one portable radio tried by the author, it is sufficient simply to couple in via a single-ended wire loosely draped around the relevant oscillator section for either a.m. or f.m. So, even if your set doesn't possess specific local oscillator drive, a small piece of wire poked into the oscillator section will work in almost all applications.

The SP8629 has a very useful 6.3V Zener on-chip, permitting a simple but adequate 5.5V stabiliser stage to be built with an external pass transistor. The National Semiconductor equivalent DS8629 does not incorporate this facility, and a separate external Zener must be used. The stabiliser stage has an 82Ω resistor in the output and this is the result of a mistake when assembling the prototype, since 8.2Ω should have been used. However, the whole circuit worked perfectly when switched on—and it was only when a check was made on the current drain, that this error was discovered, since the unit took a sur-

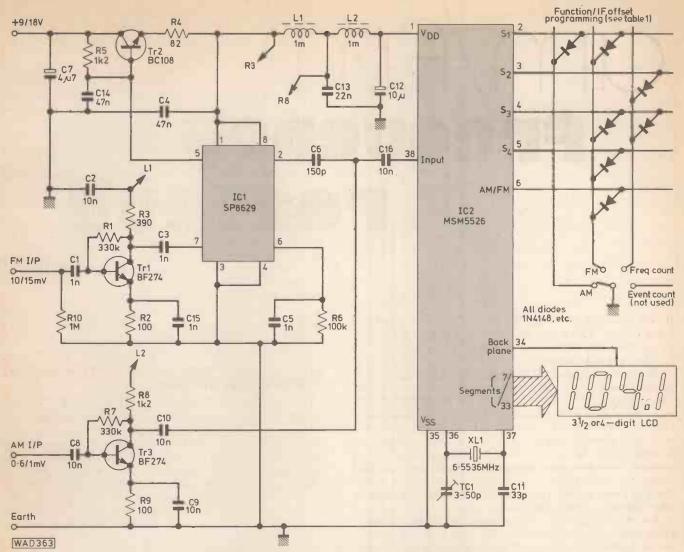


Fig. 1: Complete circuit diagram of the a.m./f.m. frequency readout based on the OKI MSM5526 i.c.

	LCD 3	¹ / ₂ Digit			LCD	4 Digit	
PIN		PIN		PIN		PIN	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Back Plane - Bar b_4, c_4 nc nc nc DP3 e_3 d_3 c_3 DP2 e_2 d_2 c_2 DP1 e_1 d_1 c_1 b_1	40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 25 24 23 22 21	Back Plane IBar Over Range nc nc nc nc g ₃ f ₃ a ₃ b ₃ DP4 (colon) g ₂ f ₂ a ₂ b ₂ g ₁ f ₁ a ₁	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Back Plane nc nc e_4 d_4 C_4 DP3 e_3 d_3 c_3 DP2 e_2 d_2 c_2 DP1 e_1 d_1 C_1 b_1	40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21	Back Plane nc g_4 f_4 a_4 b_4 nc g_3 f_3 a_3 b_3 DP4 (colon) g_2 f_2 a_2 b_2 g_1 f_1 a_1

T				100	
	2	n	Öh I		
- 21	10.1	2.0	 G		

Display Select	Input conditions AM/FM S1S2S3S4	IF offset value				
АМ	H H H H X H L H H X H H L H X H L L H X H H H L X H L H L X	-452.5kHz -454.5 -456.5 -465.5 -467.5 -469.5				
FM		$\begin{array}{c} +10.68\\ +10.71\\ +10.75\\ +10.79\\ +10.82\\ -10.58\\ -10.60\\ -10.61\\ -10.62\\ -10.63\\ -10.65\\ -10.65\\ -10.66\\ -10.69\\ -10.70\\ -10.72\\ -10.73\end{array}$				
direct	H HLLX	none				
event counter	HLLLX	impulses				
"H" = open (or Vdd) "L" = ground (Vss) "X" = either						

prisingly low 15mA from a 9V source. The SP8629 is rated at a typical 30mA—so investigation with a voltmeter revealed that both prescaler and display i.c. were happily clocking away with only a 3.8V rail—as a result of the 82 Ω mistake. A second unit was built with the same values, and worked just as well—and so it is assumed that most others will too—but if faulty counting is experienced, this 82 Ω should be gradually reduced until the circuit settles.

The input to the counter i.c. is common for both a.m. and f.m. count, and the drives from the f.m. prescaler and a.m. pre-amp may be simply paralleled. The output of the SP8629 settles either high or low, depending where the last count cycle left it—and so whilst the outputs were originally paralleled via 10nF capacitors, the f.m. coupling capacitor has to be reduced to 150pF—otherwise the a.m. signal can easily be shunted through the prescaler output stage when it has settled to the low state. A value of 150pF is still quite enough to pass the very fast edges of the logic output of the prescaler, since counting of the l.s.i. occurs on edges, the actual waveform (which looks quite distorted) is immaterial.

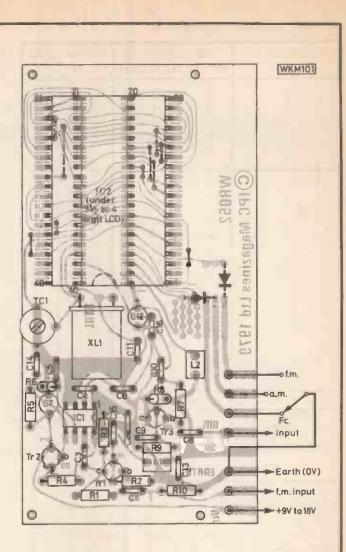
The input to the 8629 must be disabled when reading a.m., and it is important to follow Plessey's application advice, and the unused differential input down via a $100k\Omega$ resistor to ground, to prevent spurious oscillation occurring under no-input conditions.

The i.f. offsets are all pre-programmed via a diode matrix, set according to Table 1. Just about every standard offset is available, although occasional 500Hz compromises are called for, e.g. $454 \cdot 5$ kHz not 455kHz. With an a.m. resolution of 1kHz, and an average i.f. filter tolerance of 1kHz, this sort of error is unlikely to be at all significant.

The functional setting is likewise matrix controlled, enabling selection via the simplest of all devices, a groundto-operate switch. As well as the three modes available on this board, a straightforward event counter is also available for batch counting to a maximum of 2999 units, but this feature is not used in this instance.

Had this been a description of a "discrete" approach c.m.o.s. unit, the circuit description would have just about reached the oscillator stage, but instead, there is nothing more to say!

Construction method


The printed circuit board layout, Figs. 2 and 3, employs a useful technique when using direct drive to l.c.d.s from l.s.i., namely placing the i.c. under the display. This technique saves space—and cuts the only marginal area of possible interference (from the l.c.d. backplane strobe) to a bare minimum. Construction on anything but the properly made p.c.b. is not really feasible. Fixing holes for mounting are provided so that the unit may be fitted directly behind the receiver front panel. The c.m.o.s. MSM5526 is not a particularly fragile device, but the usual care should be taken when soldering, to avoid static damage, caused by poorly earthed soldering implements, or earth leakage currents. The p.c.b. is laid out for either HC13 or HC18 style crystals, and since 6.5536MHz is a standard binary frequency, the supply is not generally a problem.

Great care must be taken when mounting liquid crystal displays, since these are not only costly, but very fragile if pressure is applied unevenly. A socket must be used to raise the l.c.d. above the rest of the components, and either socket strip or a 40-pin d.i.l. socket cut in half is suitable for the purpose. Molex i.c. pins are not a good idea since in strips of 20, it is very difficult to accurately locate the pins of the display. The electrical contact is also somewhat more chancy at this sort of length, since a small displacement of one pin can cause a lot of trouble.

> The MSM5526 is mounted directly on the board and the liquid crystal display is mounted over it, using i.c. sockets to space it from the p.c.b. (see text)

> > Practical Wireless, July 1979

CIPC Magazines Ltd 1979 WR052 000 <u>am</u> 5v EARTH UC 0

 Fig. 2 (above): Full-size track layout of the p.c.b. Fig. 3 (above right): Component layout and details of external connections to the p.c.b. The switch will normally be part of the wave-change switch of the associated receiver. When using a 3½-digit l.c.d., two "U"-links of insulated wire should be soldered to the track side of the p.c.b., linking pins 2 and 5/6, and pins 3 and 7 of the display Fig. 4: Pin-outs of the SP8629 (below) and the MSM5526 (right) 	a VDD 1 f b S1 2 g S2 3 e c S3 4 s S4 5 S4 5 AM/FM 6 Segment a4. 4. e4.94 7 identification a4. 64. e4.94 7 c4 8 b4 9 a3 10 f 3 11 93 12 93 12 93 12	40) 55 39) Reset 38) Fin 37) XT 36) XT 35) V _{SS} 34) Com 33) FM _{out} 32] AM _{out} 31] d ₂ 30] c ₂ Segment out 29) b ₂
(TTL)V _{CC} 2 Output 2 (TTL)V _{EE} 2 (TTL)V _{EE} 2 (TTL)V _{EE} 2 (ECL)V _{EE} 1 (Segment out	28 Point 27 a ₁ 26 b ₁ 25 c ₁ 24 d ₁ 23 e ₁ 22 g ₁ 21 f ₁

***** components

Resistors			Semiconductors	- States
0.25W 5%			Transistors	
82Ω	1	R4	BF274 2 Tr1.3	
100Ω	2	R2, 9	BC108 1 Tr2	
390Ω	1	R3		
1.2kΩ	2	R5,8	Diodes	
100kΩ	1	R6	1N4148 as required for progra	amming (see
330kΩ	2	R1,7	Table 1)	5 111
1ΜΩ	1	R10		
			Integrated circuits	
			MSM5526 1 IC2 (OKI Elec	tric)*
Capacitors			SP8629 1 IC1	
Ceramic disc or plan	te (lead spa	cing 5mm max.)		
33pF	1	Č11	Inductors	
150pF	1	C6	1mH 2 L1, 2 (Toko 7	BA
1nF	4	C1, 3, 5, 15	144LY-102)	*
10nF	4	C2, 8, 9, 10, 16		
22nF	1	C13	Miscellaneous	
47nF	2	C4, 14	XL1 6-5536MHz Crystal, Style HC13	or HC18
and the second se			wire-ended*	
			4-digit (or 3 ¹ / ₂ -digit) liquid crystal displa	ay
Tanitalum bead			Socket for I.c.d. (see text)	
4.7µF	1	C7	Printed circuit board Ref. WR052	
10µF	1	C12	Terminal pins (8 off)	
-Sub-min trimmer			*Available from Ambit International an	nd
3-50pF	1	TC1	Watford Electronics	

Switch-on and test

Provided the components are located correctly, then there is nothing to go wrong apart from your soldering. Check the very fine tracks for splashes, and clean the board with flux remover if available. Using a currentlimited power supply (for extra security), apply 5 volts at first, gradually turning up to 12V if the current drain is not excessive—indicating a short circuit somewhere. Switch to the desired input, and place a finger on the relevant preamp input, when some stray counting should occur from the pickup thus provided. Remember, this is very sensitive.

With a suitable radio to hand, place a pickup coil near the oscillator, and feed this to the counter input via r.f. coaxial cable. Something is almost certain to happen, and usually no more trouble than this is necessary. In fact, a single-ended pickup is frequently enough, though not suitable if more than 150mm long. If you don't know the exact i.f. offset, assume 10.7MHz high for f.m., and in the f.m. mode, tune to a station of known frequency. If the display reads incorrectly—say 89.2 instead of 89.1 with the tuning indicator zeroed—then the i.f. offset should be adjusted to 10.79MHZ (the closest to 10.8MHz available) by diode programming. Many of the finer variations of offset will not be apparent unless you have a very accurately calibrated signal source handy.

To set the internal clock accurately, switch to Direct Count and with a signal generator and reference counter, tune to 999kHz so that the generator output reads 999.4999kHz. Tuning to 999.501 should cause the counter to change over to 1000kHz, and the trimmer capacitor on the crystal input to the MSM5526 may then be adjusted to provide this threshold point. With the trimmer approx 30 per cent enmeshed, the whole unit is sufficiently accurate to be self calibrating anyway, so do not worry too much about these very fine adjustments if you cannot get access to appropriate equipment. Another way is simply to count the crystal oscillator frequency on a separate counter so that it is trimmed for exactly 6.5536MHz (take care not to load the crystal—try to use inductive coupling if possible).

To set the a.m. offset, tune to a known frequency with the offset pre-programmed for 469.5kHz (nearest available to 470kHz) for most UK- and European-made sets, and 455kHz for most Japanese sets, and check the error. Simple maths will tell you what to do—e.g. if the station is known to be on 910kHz, and the counter says 905 when the i.f. is set for 470kHz, then reprogramme the offset for 465.5 and all will be well.

Applications

Apart from new equipment, there is obviously a large retrofit application for improving existing equipment since the accuracy of frequency display has let down many otherwise good designs. Varicap diode designs can occasionally put strains on analogue scale design, since the end-point capacitance can vary widely, although the diodes themselves remain well matched. This display takes away those problems, and does away with the last remaining mechanical headaches of the set designer.

One point which is very important about the MSM5526 is the fact the display is totally static. This means that there is no multiplexing interference—and the only potential source is in the shape of the backplane strobe, which is very, very low power for an l.c.d. Thus without screening, this device can readily be used without problems in any radio environment, from supplies ranging from 8V to 20V d.c. (thanks to the regulator on board). So next time the drive cord snaps, forget about a replacement and fit a digitally accurate alternative. REPORT LOGIC PROBE KIT

SPECIAL

PRODUCT

If you are involved in digital electronics it is essential that you have some means of detecting pulses and logic states. Without this necessary equipment you will be totally in the dark when trying to find out why your latest creation does not work.

There are many logic probes on the market but for the amateur they tend to come a touch on the pricey side. Continental Specialties Corporation, who also make a range of logic probes, have recently introduced a kit for a probe which will detect and display logic levels, pulses and voltage transients.

The kit is complete down to the last piece of wire and even includes a length of solder. All the components appeared to be of good quality and fitted the holes drilled in the glass fibre printed circuit board without any problems.

The instruction manual is very comprehensive and covers not only the building of the probe but also notes on how to use it.

★ specifications

Input impedance: 300kΩ Threshold: Logic 1 (Hi-l.e.d.) 70% Vcc Logic O (Lo-I.e.d.) 30% Vcc Detectable pulse width: 300 nanoseconds min. Input signal frequency: 1.5MHz max. Pulse detector: High-speed pulse train or single events (positive or negative transitions), active 0.1 second pulse stretcher Input voltage: ± 50V continuous, 120V a.c. for less than 15 seconds Power requirements: 5 volt Vcc at 30mA 15 volt Vcc at 40mA 25 volts max., with power lead reversal protection Physical size: 147 x 25.4 x 17.8mm

Weight: 85 grams

CONTINENTAL SPECIALTIES CORPORATION

Construction proved to be very simple and straightforward, the step-by-step assembly instructions proving easy to follow. Unlike traditional British component placement drawings however this one did not show the copper track pattern of the p.c.b. and no holes are shown so that it is very important to check twice that the components are correctly placed.

No problems were encountered and the probe worked first time, but if you are unfortunate a page is devoted to trouble-shooting and two pages to testing the probe following construction.

The plastics case, which is available separately and has been used for the *PW* Car Test Probe, is very neat and the two labels supplied with the kit are self-adhesive giving the finished probe a professional look.

The probe is simple to use, requiring the power leads to be clipped to suitable voltage rails on the circuit under test and the probe tip to be held against the test point.

Indication of the status of the point is by a combination of three l.e.d.s which light, or pulse, depending upon the logic state being investigated.

As a simple means of determining logic states this kit is very good value for money.

Dick Ganderton

SEE NEXT MONTH'S ISSUE OF PRACTICAL WIRELESS FOR DETAILS OF A SPECIAL INTRODUCTORY OFFER FEATURING THIS KIT

Sideas SEPARTMENT

Some original circuit ideas provided by our readers. These designs have not been proved by us, and we cannot therefore guarantee their effectiveness. They should at least provide a basis for experimentation.

Why not send us your idea? If it is published, you will receive payment according to its merits. Articles submitted should follow the usual style of PW in circuit diagrams and the use of abbreviations. Diagrams should be clearly drawn on separate sheets, not included in the text.

Each idea should be accompanied by a declaration that it is the original work of the person submitting it, and that it has not been accepted for publication elsewhere.

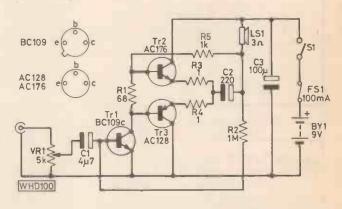
WORKBENCH AMPLIFIER

Although there are plenty of amplifier i.c.s and modules available, there are many applications where discrete circuitry can hold its own on cost and simplicity. One of these is a battery-powered audio amplifier for workbench use.

The input signal goes via the volume control VR1 to Tr1, which is a high-gain voltage amplifier. Its output is applied to the bases of Tr2/Tr3, the complementary output pair, with R1 providing the necessary standing bias. For reasons of simplicity and cost, no form of temperature compensation has been included.

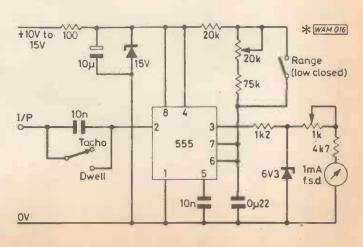
Two negative feedback paths are included. Resistor R5, which is basically the collector load for Tr1, also provides bootstrapping for the output stage. Resistor R2 provides base bias for Tr1 and also overall negative feedback. Audio quality may be improved at the expense of reduced output by lowering the value of R2. Capacitor C3 decouples the supply, and helps to maintain audio quality when the battery approaches the end of its life.

Transistors Tr2 and Tr3 should be purchased as a


TACHOMETER/DWELL METER

This circuit utilises a 555 timer chip in a dual function as a tachometer or dwell meter. In the tachometer mode, the input signal is taken from the car's contact breaker as a square-wave and fed via a capacitor to pin 2 of the timer, realising a high mark/space ratio. The two switched ranges, 0 to 1000 r.p.m. and 0 to 5000 r.p.m., are calibrated by a $20k\Omega$ and a $1k\Omega$ potentiometer.

In the "dwell" mode, the input capacitor is by-passed, maintaining a square-wave at the input of the device, which means that the output at pin 3 is an inverted version of the input waveform. In the "dwell" mode, only the lower of the two tacho ranges should be switched in.


The circuit requires a minimum supply of 12V for consistent operation.

R. J. Jenkins & M. E. Taylor, Knebworth, Herts.

matched pair, and must be fitted with heat-sinks—the push-on, finned type should suffice. With no signal applied, the total consumption of the amplifier should be less than 35mA.

D. L. Jones, Denbigh, Clwyd.

Practical Wireless, July 1979

Hey, Good Looking!

Beautiful innit?, but a swish exterior can often be an eye catching cover for some very ordinary "guts", so what's so different about the WINTON?

Well, for a start we have discarded Bi-Polar output devices in favour of the far superior performance of the Hitachi Power MOS-FETS, which until now have only been available in some of the most expensive Hi-Fi Amplifiers around, (and we consider £700 to be expensive with a capital E!). Secondly, our extremely low distortion figures are obtained at FULL RATED OUTPUT with both channels driven, across the entire audio spectrum. Further, at these power levels 2nd and 3rd order intermodulation components are typically less than 0.005% (See the March issue of P.W. for the full spec' and a few shots from the Spectrum Analyser.) Whilst we freely admit that ownership of a Winton will not prevent your hair from falling out, nor warts from growing on your nose, you will feel a nice sense of achievement when the job is complete, and you will own an Amplifier that will make your mates positively green with envy, until that is they see the light and obtain one of their own.

The WINTON Kit is available in the following form:-

	Price Inc.
	V.A.T. &
	carriage.
Pack (A) Capacitors & Fixed Value Resistors	£21.45
Pack (B) Switches, Potentiometers, Pre-Sets & Knobs	£13.26
Pack (C) Printed Circuit Board, and Terminal Pins	£8.10
Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks,	
Cabinet, Screws, Wire, Fuseholders etc., and a	
Brushed Aluminium Fascia Front Panel.	£32.99
Pack (E) Semiconductors (including HITACHI MOS Power	
Fets)	£30.53
Pack (F) Toroidal Mains Transformer	£17.22
Complete Kit of all parts necessary to built the WINTON	£120.00

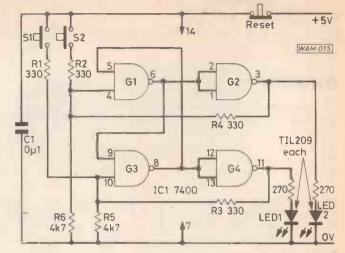
ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-

T. & T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7HH. PLEASE ALLOW 28 DAYS FOR DELIVERY.

Practical Wireless, July 1979

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint will cost 85p, including postage and packing to addresses within the United Kingdom.


Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 0PF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS—Radio Amateur Examination Reprint Please send your order and remittance to:-IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF Please send me . . . copies at 85p each to include postage and packing I enclose P.O./Cheque No Value Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD NAME..... (BLOCK LETTERS) ADDRESS..... (BLOCK LETTERS) Post Code Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626 A subsidiary of Reed International Limited

____ Cut round dotted line ____

IDEAS DEPARTMENT

TTL "SNAP" INDICATOR

At switch-on R6 holds the input to gate 1 low, making the output high. This is coupled to inverter gate 2, the output of which is low and is coupled back to pin 4 by a 330 ohm resistor. These gates remain in this state as do gates 3 and 4 and in this condition no l.e.d.s are lit.

Note that the high at pins 6 and 8 are cross-coupled to the inputs of gates 1 and 3. Suppose S2 is pressed: pin 4 is connected to a high via R2. As pin 5 is also high the output of gate 1 goes low causing gate 2 to change state at pin 3, which goes high causing l.e.d. 2 to be lit.

Pin 4 is kept high via R4 so that the l.e.d. is "latched" on when S2 is released. Since pin 9 of gate 3 is held low by the output of gate 1, closing of S1 cannot change the state of gate 3 and l.e.d. 1 cannot be lit.

A complementary sequence occurs if S1 is pressed first. The power supply must be broken by the reset button to restore the circuit to its original state. C1 decouples the supply lines and prevents random triggering of the l.e.d.s at switch-on.

> J. Bloxham, Stratford-on-Avon, Warwickshir<mark>e</mark>.

Learning to spell

The latest learning aid from Texas Instruments, known as "Spelling B", uses proven word/picture association techniques to help children progress in spelling regardless of their 'basic writing skills. Using an alphabetical calculator-type keyboard and display, combined with a picture book containing 264 carefully selected, colourful pictures of familiar objects, "Spelling B" is designed to provide an early introduction to word recognition, and also incorporates a series of simple and entertaining word games to improve basic reading skills.

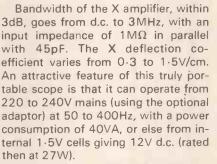
In operation, the "Spelling B" selects and displays a picture number, the child finds the numbered picture in the book, and then spells the name of the picture by pressing the letter keys. As the letters are keyed they appear in the display, and at the end of each word the display signals "right or wrong". If the word is misspelled, the

Portable 'scope

The new Model SB15M lightweight portable oscilloscope from Albol Electronic is claimed by the makers to break all records for cost-effectiveness for a professional/amateur instrument.

Albol say that the bandwidth goes up to 15MHz within 3dB limits and nine ranges cover, with an accuracy of 5% 10mV to 20V/cm on the 45 by 60mm measuring area of the c.r.t. Input impedance is $1M\Omega \pm 3\%$ in parallel with 30pF, and the maximum input voltage is 400V.

The timebase can be freely running or triggered, and is displayed on 19 calibrated ranges from 0.5s/cm to $0.5\mu s/cm$. Synchronisation can be either internal or external, with the a.c. mode giving 20Hz to 1MHz, and the h.f. mode 1 to 15MHz. Trigger sensitivity is said to be 0.5cm of the display on "internal", or 0.5Vp-p on "external".



Practical Wireless, July 1979

child is given a second attempt, and if this is wrong the correct answer is displayed. The number of correct answers is displayed as a "score" at the end of each set of five words.

"Spelling B" is programmed so that one of three different levels of difficulty can be selected. In addition, a variety of pre-spelling activities for younger children plus word games for all ages are available.

Among the games which add fun and variety to "Spelling B" are: "Starts with", a pre-spelling exercise in which the child only has to enter the first letter of the displayed word; "Missing letter", in which a word is selected at random and displayed with letters missing; "Mystery word", a variation of "Hangman" in which players have to guess words one letter at a time; and "Scramble", in which up to five words can be put into a memory in anagram form and recalled for "unscrambling" at a later stage.

The width of the SB15M is 150mm, depth 340mm, and height 280mm, and it weighs only 7.6kg. Price is £150 plus VAT.

Available from: Albol Electronic & Mechanical Products Ltd., 3 Crown Buildings, Crown Street, London SE5 OJR. Tel: 01-703 2311.

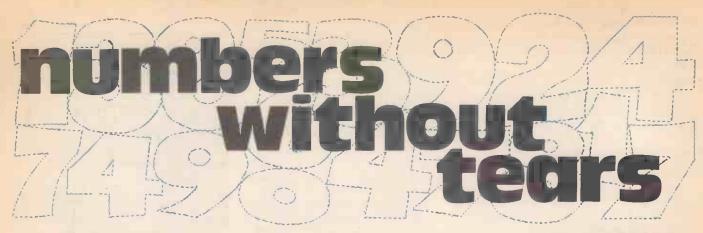
New Sinclair DFM

Latest from Sinclair's new instrument product range, is a high specification, low cost, digital frequency meter, called the PFM200.

Designed to provide the performance of high quality bench-style instruments with the portability of a 158 \times 76 \times 45mm unit in a light (6oz) but rugged case, the PFM200 is priced at only £49.80 plus VAT, which should permit most laboratory engineers, service technicians, students and hobbyists to possess their own personal digital frequency meter.

Its bright, sharp 8-digit display with variable accumulation period gives high resolution coverage from low audio frequencies right up to v.h.f.

The "Spelling B" costs £19.95 (r.r.p. including VAT), and is available through the usual distributors.


Texas Instruments Ltd., European Consumer Division, Manton Lane, Bedford MK41 7PA.

without the need for complex range changing and with exceptional sensitivity of 10mV. Guaranteed range is 20Hz to 200MHz, typically higher, with a frequency resolution down to 0.1Hz. Power is from a 9V battery or approved a.c. adaptor.

Supplied complete with test leads and probes, protective wallet and operator's manual, optional extras are a.c. adaptors for 117V, 220V or 240V; de-luxe padded carrying case with lead storage compartment; and a connector pack comprising BNC, coaxial, DIN and phono adaptors plus telescopic aerial for direct signal pick-up from nearby transmitter.

A technical information leaflet on the PFM200 is also available from: Instrument Sales, Sinclair Radionics Ltd., London Road, St Ives, Huntingdon, Cambs PE17 4HJ. Tel: (0480) 64646.

Dr G. BROWN

The aim of this design was to produce an educational toy capable of teaching rapid number recognition to children of $2\frac{1}{2}$ years and upwards. The absolute minimum of instruction should be necessary, the idea being that the child learns as he plays, without external influence. The toy should thus be interesting to play with.

To a young child this means: (a) visual stimulation things should be seen to happen; (b) tactile stimulation the instrument should respond to touch, to pressure there should be something to turn, something to switch.

This simple unit has all these facilities and can hold a child's attention for remarkably long periods. It can also double as a single die for use with other games.

General Features

Fig. 1 shows the basic design blocks. A sweptfrequency clock generator feeds the first decade counter, the digit outputs of which are used to drive ten lightemitting diodes (l.e.d.s) arranged in a circle: A second decade counter, fed from the same clock source, drives a single 7-segment l.e.d. numeric display. As the clock frequency rises from zero, the circular l.e.d. display assumes a rotating motion with a visible acceleration. As the clock frequency then falls to zero, the "flywheel" effects slows and stops at a random position.

The i.e.d.s are labelled 0 to 9, as are the positions on the manual number selector, which is a rotary switch. Provided that both decade counters are reset to zero initially, they will always remain synchronised, i.e., if the flywheel stops at position "4", then the 7-segment outputs will correspond to the figure 4 also.

The number selector is wired such that the 7-segment display is only illuminated when this switch is turned to the same number at which the flywheel has stopped. The normal fixed-frequency clock is used when the device is employed as a die.

Some simple logic is included to make the toy more interactive with the child, and will be described in the appropriate sections.

The Swept-frequency Clock Generator

For this particular application, a manually-initiated frequency sweep was required from zero up to about 100Hz and back again to zero. The circuit is shown in Fig. 2.

The clock is designed around the ubiquitous NE555V integrated circuit connected in the astable mode.

If the circuit to the left of the dashed line is studied, the timing components R1 and C1 are easily recognised. C1 is

charged up through R1, and IC1 will discharge C1 when the voltage at point A reaches 0.67Vdd. The negativegoing edge corresponding to the discharge of C1 retriggers the cycle and the system becomes astable, the frequency of oscillation being given by:

$$f = \frac{1 \cdot 44}{R1 \times C1} Hz$$

In the circuit to the right of the dashed line Tr1 and Tr2 are connected as a Darlington pair controlled by the touch plate connected to the base of Tr2. The quiescent-state voltage at point A is controlled by resistors R1, R2, and R3, the two transistors being effectively open-circuit. A simple Ohm's Law calculation shows that point A is held at 0.65Vdd and, because IC1 will not discharge C1 until point A reaches 0.67Vdd, the clock oscillator is biased off, its output being a logic "1" in this condition.

When a finger is applied to the touch plate, charge flows into the electrolytic capacitor, C2. As this charges up, the potential at point B rises. With C2 fully charged (after about one second), both transistors are turned fully on and point B is taken almost to Vdd. Thus the Darlington pair may be regarded as a variable resistance, Rt, between point B and Vdd, this resistance varying from infinity to near zero. As soon as Rt becomes finite, point A is lifted above the threshold value of 0.67Vdd and oscillation begins.

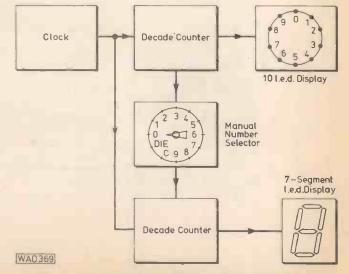


Fig. 1: The basic block diagram of the numbers toy

Practical Wireless, July 1979

The frequency of oscillation is still given by the above equation, except that R1 must be replaced by the effective instantaneous value of R1, R2 and Rt. In the limit, with Tr1 and Tr2 turned fully on, R1 and R2 are virtually in parallel between Vdd and point A, and have an effective resistance of $24.8k\Omega$. This gives a theoretical upper frequency limit of:

$$f = \frac{1 \cdot 44}{2 \cdot 48 \times 10^4 \times 3 \cdot 3 \times 10^{-7}} = 176 Hz$$

This figure is not attained in practice because Rt never falls completely to zero.

When the finger is removed from the touch plate, C2 discharges slowly through Tr1 and R3, and Rt increases correspondingly. The frequency of oscillation falls and finally reaches zero when point A falls again below its threshold value. This decay time is of the order of 10 to 15 seconds.

Switching R4 into the biasing network by closing S1 holds point A just above threshold and a constantfrequency output of about 15Hz is produced. The use of this clock frequency is described in a later section.

The touch plate is very sensitive in its action, and this encourages the child to experiment as he watches the effects of his finger's pressure illustrated on the flywheel display.

The Decade Counters

Apart from the NE555V oscillator, this instrument employs c.m.o.s. devices which are relatively cheap and are ideal for this purpose. Fig. 3 shows the circuit diagram of

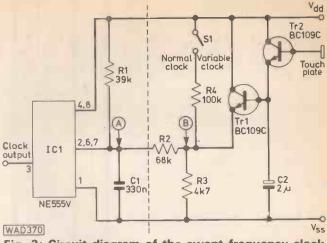
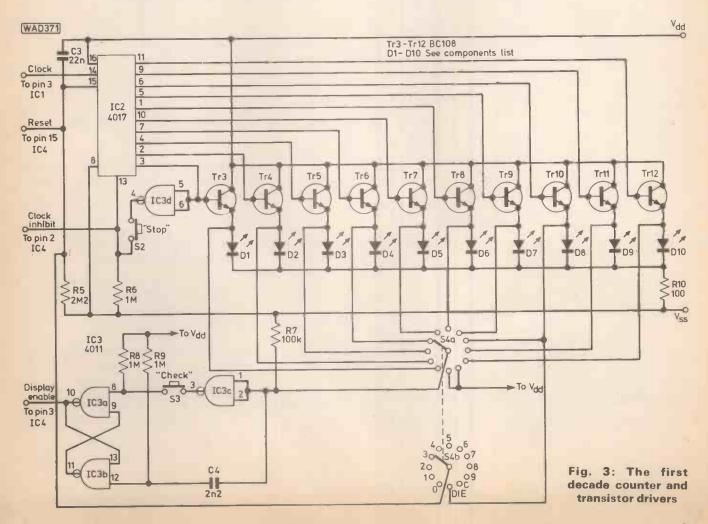



Fig. 2: Circuit diagram of the swept-frequency clock generator

the first decade counter and the transistor drivers for the 10-l.e.d. flywheel display. The 4017 decade counter is fed from the clock generator described above. In order to drive the flywheel l.e.d.s at 20mA, ten transistors operating as emitter followers are used. As only one l.e.d. is illuminated at any instant, only one current limiting resistor, R10, is necessary. It will be noted from Fig. 3 and Fig. 4 that the "reset" and "clock inhibit" functions are made common to both decade counters. This is to ensure complete synchronism of the two counters at all times. The combination of C3 and R5 resets both counters to zero when power is first applied.

Practical Wireless, July 1979

Switching Logic

The switching logic provided by S3, S4 and IC3 has two important effects, which are now described.

Suppose the flywheel display has stopped at "4". It would be trivial to connect the pole of S4a to the "display enable" pin of the second counter (see Fig. 4) to illuminate the 7-segment display when S4a is turned to position "4". This operation would not require any numerical knowledge on the part of the child: he would just turn S4 until the 7-segment display came on. To avoid this, IC3a, b and c are interposed between S4a and the "display enable" pin of the second counter. IC3a and b form a toggle whose normally-off output is taken to the "display enable" input of the 4026 counter, thus keeping the 7-segment display off under normal conditions.

Taking pin 8 of IC3 to Vss will turn the toggle on and, with it, the 7-segment display. Similarly, taking pin 12 of IC3 to Vss will reset the toggle and extinguish the 7-segment display.

Signals to control the state of the toggle are taken from the pole of S4a. The "on" state of toggle and display is controlled by the position of S4a, by the inverter IC3c, and by the push switch S3. If S4a is turned to position "4" to match the flywheel display, then the pole is taken to logic "1"; logic "0" thus appears at pin 3 of IC3.

If S3 is momentarily pressed, the resulting logic "0" applied to pin 8 of the toggle will switch both itself and the 7-segment display on. Thus the child must not only select a number, but must press the CHECK button, S3, to see if his selection was correct.

What happens if the selector switch is turned after the 7-segment display has been illuminated? If the display were to remain illuminated with the electro-switch now showing a different number, the child would be confused, so provision is made to extinguish the display (a) when the selector switch is turned from the correct position, and (b) when the flywheel is started again. These requirements are simultaneously fulfilled by connecting the pole of S4*a* via C4 to the "reset" input of the toggle, pin 12.

Suppose the previous procedure has resulted in a "4" being indicated by both the displays. If S4*a* is turned away from "4" the pole is taken from logic "1" to logic "0", and the negative-going edge so produced is passed by C4 to reset the toggle and extinguish the display.

Similarly, if the flywheel is started, the negative-going edge produced as l.e.d. "4" goes out resets the toggle via C4 and the 7-segment display is extinguished.

Thus, in normal use, there can never be any ambiguity between the numbers on the displays and the number set on the selector switch.

The presence of **R7** from the pole of S4a to Vss is worth

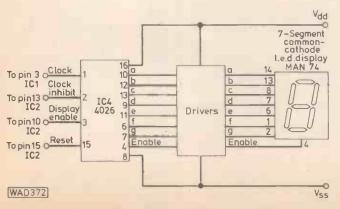


Fig. 4: The second decade counter

nothing. There is no reason why the digit positions on the S4a wafer should not go direct to the digit outputs of the 4017 counter: in this case R7 would be unnecessary. However, there is a very good practical reason why this is not done. The ten l.e.d.s and the selector switch S4 are mounted on the front panel. The integrated circuits and transistors are on a single circuit board mounted on the base of the metal box. Thus there are ten flexible leads from the emitters of Tr3-Tr12 to the l.e.d.s on the front panel. Ten more flexible leads would be needed from the S4a wafer to the digit outputs of IC2, but these leads can be eliminated by simple wiring to S4a from the anodes of the l.e.d.s, which are on the same panel. When this is done, a pull-down resistor, R7, to Vss is needed for the inputs of IC3c to keep them at logic "0" except when a logic "1" is fed to the pole of S4a from the flywheel display.

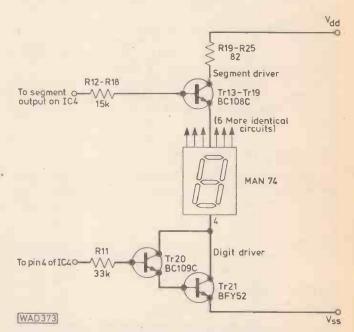


Fig. 5: Driver circuits for the second decade counter

The second decade counter and its associated circuitry are shown in Figs. 4 and 5. The counter is a Type 4026 c.m.o.s. device which has outputs for a 7-segment display. These figures require very little explanation. The 4026 counter operates in parallel with the 4017 counter, and the 7-segment common-cathode display is fed by seven segment driver stages, Tr13–Tr19, and one digit driver stage, Tr20–Tr21. The current-limiting resistors, R19–R25, give segment currents of 19mA. To. "enable" the display, the digit driver Darlington pair, Tr20–Tr21, is switched on by a logic "1" from pin 4 of the 4026 counter, thus providing a low-resistance path from the display cathodes to Vss. Tr21 must be capable of carrying $7 \times 19 = 133$ mA, and the Darlington configuration has been used so that Tr21 can be very conservatively rated, ensuring high reliability.

Provision has been made to illuminate the 7-segment display while the flywheel is running. This adds to the visual appeal of the instrument before the child is ready to tackle number recognition and matching. This is the function of position "C" (continuous display) on the selector switch S4. When "C" is selected and S3 pressed, the display will remain on throughout the flywheel cycle.

A final word now about the use of the instrument as a die. On the "DIE" position of the selector switch, S4a provides a constant logic "1" on its pole (as in the "C" position), and when S3 is pressed the 7-segment display is

constantly illuminated. S4b comes into operation at this point and connects the "7" digit of the l.e.d. flywheel to the "reset" pins of both counters. Thus both of the displays count repetitively from "0" to "6" when the clock runs. The swept-frequency clock can be used for this, but it has been found that the use of a constant 15Hz clock (selected by S1) is more satisfactory, in that the procedure is less involved for the child.

To "throw" the die, all that the child does is press S2: both displays stop immediately, showing a number between "1" and "6". On releasing S2, counting begins again. This function utilises the "clock inhibit" pins of both counters. When these pins are taken to logic "1", counting will cease, even though the clock is still running. The last NAND gate of IC3 is used for a rather devious purpose in this mode. Both IC2 and IC4 are counting from "0" to "6" yet it would clearly be incorrect to allow the die to stop at "0".

Instead, the die is slightly "weighted" such that it can never be stopped at "0"! The probability of throwing a given number on a die is 1:6. On this die, the probability of throwing a number between 2 and 6 is 1:7 and the probability of throwing a 1 is 2:7.

In use by young children, or even unsuspecting adults, this would never be noticed. To prevent a "0" being thrown, the signal to inhibit the clock is taken from the "0" digit output (pin 3) of the 4017 counter. If, at the moment S2 is pressed, a number from "1" to "6" is being displayed, pin 3 will be at logic "0". IC3d inverts this to logic "1" and inhibits the clock. However, if "0" is being displayed when S2 is pressed, pin 3 is at logic "1" and the logic "0" produced by IC3d will not inhibit the clock. Instead, it waits for the next clock pulse which increments both counters to the digit "1", at which instant pin 3 of the 4017 goes to logic "0" and IC3d then inhibits the clock with logic "1" at its output.

Power Supply

A single-polarity, stabilised 5 volt supply is used, employing an integrated circuit regulator. Stabilisation is to be preferred here, because the current taken from the supply varies between about 23mA with only the flywheel display on, to about 160mA with the 7-segment display showing an "8". Fig. 6 shows the circuit used. The regulator is mounted on the metal box to dissipate the small amount of heat generated. The use of 15V d.c. supply for the regulator may seem excessive. In fact, this supply rail will drop to 12 volts on full load and, as the regulator needs a supply of at least 8.5 volts, the supply is not too conservatively rated. A transformer with a 9-0-9volt secondary could be used, provided that the supply rail for the regulator did not fall below 9 volts on full load.

Fig. 6: Power Supply

***** components

Resistors					
1 W 5% carbon film					
82Ω	7	R19, 20, 21, 22, 23, 24, 25			
100Ω	1	R10			
	1				
4.7kΩ		R3			
1.5kΩ	7	R12, 13, 14, 15, 16, 17, 18			
3 3kΩ	1	R11			
39kΩ	1	R1			
68kΩ	1	R2			
100kΩ	2	R4, 7			
560kΩ	1	R26			
1MΩ	3				
	1	R6, 8, 9			
2·2MΩ		R5			
Capacitors					
Electrolytic					
2µF 6∨	1	C2			
25µ F 6 ∨	1	C6			
4700µF 25∨	1	C5			
4700µF 25V		00			
Polycarbonate or po	olyeste	er la			
2·2nF	1	C4			
22nF	1	C3			
0.33µF	1	C1			
Semiconductors					
Diodes	-	D 4 4 0			
1N4001	2	D11, 12			
LED	10	D1, 2, 3, 4, 5, 6, 7, 8, 9, 10			
Transistors					
	17	T-2 4 5 6 7 9 9 40 44			
BC108C	17	Tr3, 4, 5, 6, 7, 8, 9, 10, 11,			
		12, 13, 14, 15, 16, 17,			
		18, 19			
BC109C	3	Tr1, 2, 20			
BFY52	1	Tr21			
Integrated circuits					
MVR5 regulator	1	105			
NE555V	1	ic1			
4011	1	1C3			
4017	1	IC2			
4026	1	IC4			
Switches					
s.p.s.t.	1	S1			
Push to make	2	S2, 3			
2p 12w rotary	1	S4			
s.p.d.t. slide	1	S5			
Miscellaneous					
		T1 (1), 101			
		insformer T1 (1); 12V panel			
lamp (1); 7-segment red l.e.d. display, common					

Constructional Notes

Apart from the power supply, displays and switches, the entire circuit was constructed on a single piece of Veroboard measuring 95×63 mm. The layout is not important, so no details are given, but it is advisable to take all Vss leads to a common point.

cathode MAN74 (1); Veroboard (see text), case.

In general, this precaution is unnecessary, but in this circuit the emitter connection of the digit driver Tr21

Continued on page 60

This unit was developed after I was asked by a friend to build a device with which he could turn a light on by clapping his hands.

Obviously this could be done by using a simple sound operated switch comprising a microphone, audio amplifier and trigger circuit, but such a simple circuit would respond to any sound of sufficient volume. Clearly something more sophisticated was required.

After a number of tests had been made, it was found that satisfactory operation could be obtained by making the circuit respond only after receiving two sounds with a fixed time interval between them of around one second. This achieves a good compromise between simplicity, spurious operation from background noise and ease of use. The human brain is very bad at estimating short time intervals and a sequence of more than two sounds becomes impossible to generate with any accuracy. The circuit also incorporates a filter and a level trigger so only sounds of the correct pitch and sufficient volume will be detected.

Circuit Operation

IC1 and associated components amplify the sound picked up from the microphone and include rough frequency filtering. VR1 is a gain control and VR2 adjusts the d.c. level of the output from this stage. This is fed to a Schmitt trigger comprising Tr1 and Tr2 and also has a time delay (C4, R2) to prevent multiple triggering. The components following (Tr3-Tr5) form a driver stage for the logic circuit, and the l.e.d. D2 indicates when a sound has been detected. The circuit gives a logical '0' on receiving an input above a preset threshold set by VR2.

The output from this stage is first fed to a monostable comprising G1 and associated components which in turn triggers two more monostables G3, G4 and associated. components. Monostable G1 has a period of about 5 seconds and is included to prevent the other two monostables re-triggering before the circuit has finished its cycle. G3 has a period of about 1 second and G4 about 3 seconds.

The circuit comprising G6-G11 and FF1 looks for the state in which, after a pulse has triggered the monostables, a second pulse arrives during the period when G3 has turned off again and G4 is still on, i.e. 1-3 seconds after the first pulse. When this happens a logical '1' is sent to FF2 which then changes state and opens or closes the relay via Tr9 and Tr10. If the second pulse arrives before or after

the allowed period it is ignored and will also work the latch G9, G11 to make the circuit ignore all further inputs until G1 has reset. Thus on receiving two sounds with a time interval of about 1 second between them the circuit will operate the relay, turning the load circuit on or off.

Construction

Construction is simplified by the use of printed circuit boards. Start by soldering in the smallest components, i.e., resistors and diodes and add the tallest components (capacitors and transistors) last. The c.m.o.s, integrated circuits (IC2-IC5) should be connected using i.c. sockets, installing them in after all the other components have been soldered. Standard c.m.o.s. handling precautions should be used. Sockets should also be used for the other integrated circuits. Take great care to connect all components such as diodes, transistors, i.c.s and electrolytics the correct way round as incorrect connection can cause a large range of puzzling faults.

At this point, something should be said about the microphone and the mains transformer. The microphone used is a high impedance balanced armature earpiece which is better than a crystal microphone in this application. There is also space on the circuit board for putting a resistor in series with C2 to adjust the low frequency characteristics (10-100 Ω).

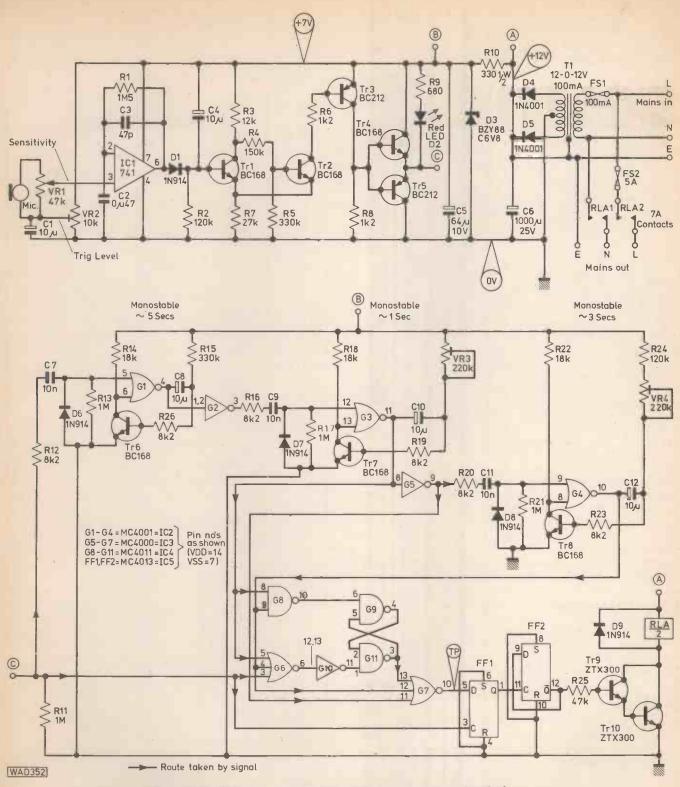
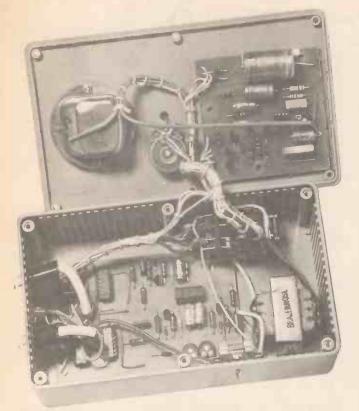



Fig. 1: Circuit diagram of the selective sound operated switch

The mains transformer is a 12-0-12V type designed to supply up to 100mA d.c. from a full-wave rectifier. Most of the current is drawn by the relay (60-80mA) with the rest taking less than 20mA. Thus if a relay is used which draws more than 80mA a larger transformer will be needed. A 100mA fuse is shown connected to the primary of the transformer and this is necessary for safety. If it is found that the fuse blows on switch-on an anti-surge fuse can be fitted. The other fuse supplying the appliance being controlled should be rated according to the relay contacts and mains cable used. A suitable case for the unit can be made from a plastics Bimbox. When fitting components into the case, it is important to keep all the high voltage components (relay, transformer and fuse holders) well away from the other components so that there is no chance of any live connections touching any other part of the circuit. Holes are drilled in the case for the microphone, the l.e.d. and the gain control VR 1. The circuit boards should be positioned within the case such that the presets VR2-VR4 can easily be reached to be adjusted. The boards are held in place using self-adhesive pads. When wiring up between the circuit boards, it is very important that all the supply rails are connected up correctly because the c.m.o.s. chips can be damaged if an input is fed to them before the power rails are connected.

The components and p.c.b.s are fitted into a plastics Bimbox. The two p.c.b.s are attached to the box base and lid using self-adhesive foam pads

Setting Up

First set VR3 and VR4 midway along their tracks. Set the gain control VR1 to minimum. It should be found that as VR2 is moved the l.e.d. will light at one end of the track and be extinguished at the other. Adjust VR2 until it is just extinguished. Then turn the gain control VR1 up a little. It should now be found that any loud sound near the microphone will cause the l.e.d. to flash on for just under a second. If it stays on or does not come on at all then adjust VR2 until the response is satisfactory. Next, connect a voltmeter between the 0V rail and pin 10 of IC3 (marked TP in the diagram) or, if no meter is available, disconnect R25 from IC5 and make a temporary connection from that end of the resistor to pin 10 of IC3.

It should now be found that if, after at least 5 seconds of silence, a sound is made near the unit loud enough to make the l.e.d. flash, then a short pulse of approximately +7V will be indicated on the meter, or the relay will close momentarily about one second after the sound. If this does not happen adjust VR3 and VR4 until it does. This is the period during which the device is sensitive and it will switch the load if a second sound is made during this period. Adjust VR3 and VR4 until the time period is satisfactory. Note, however, that if the values of the presets are made too low then the monostables will stop working, so that if a satisfactory time period cannot be achieved then it may be necessary to change C8 or C12. Do not make the "sensitive" period too short or it will be found very difficult to estimate the required time interval.

After R25 has been replaced in its correct position and the lid has been attached, then the unit is ready for use.

***** components

Resistors		
14W 5%		
680Ω	1	R9
1·2kΩ	2	R6, R8
8·2kΩ	6	R12, 16, 19, 20, 23, 26
12kΩ	1	R3
18kΩ	3	R14, 18, 22
27kΩ	1	R7
47kΩ	1	R25
120kΩ	2	R2, 24
150kΩ	1	R4
330kΩ	2	R5, 15
1MΩ	4	R11, 13, 17, 21
1 .5MΩ	1	R1
$\frac{1}{2}W5\%$		
330Ω	1	R10

Potentiometers

Horiz. miniature	prese	t
10kΩ Lin.	1	VR2
220kΩ Lin.	2	VR3.4
1 inch shaft		
47kΩ	1	VR1

Capacitors		
Disc ceramic		
47pF	1	C3
10nF	3	C7, 9, 11
Polyester		
0-47µF	1	C2
Electrolytic		
10µF 25∨	5	C1, 4, 8, 10, 12
64μF 1 6V	1	C5
1000μ F 16∨	1	C6

Semiconductors

D	iodes					
	1N4001	2	D4, 5			
	1N914	5	D1, 6, 7, 8, 9			
	Red I.e.d.	1	D2			
	BZY88 C6V8	1	D3			
T	ransistors					
	BC168	6	Tr1, 2, 4, 6, 7,			
	BC212	2	Tr3, 5			
	ZTX300	2	Tr9, 10			
Integrated circuits						
	741	1	IC1			
	4000	1	IC3			
	4001	1	IC2			
	4011	1 -	IC4			
	4013	1	IC5			

Miscellaneous

Bimbox (190 x 110 x 60mm BIM 2006/16); Mains transformer 12-0-12V 100mA (1); Relay 12V 80mA max. 7A 240V d.p.c.o. (1); Fuse holder (2); Fuses 100mA and 5A; Balanced armature earpiece (see text) (1); Printed circuit board (2 in set); Sockets, 14 pin d.i.l. (4); 8 pin d.i.l. (1); Knob (1); Mains cable, socket and cable clamps.

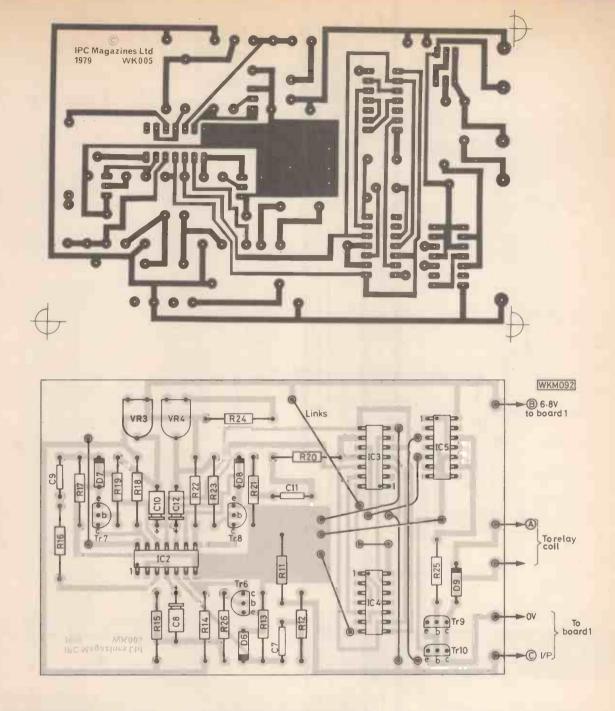
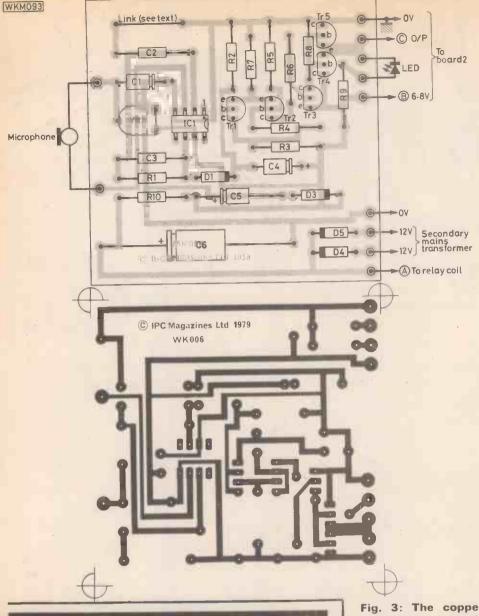
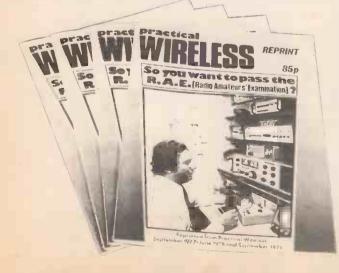


Fig. 2: The copper track pattern and component placement drawing for Board 2 shown full size.

Using the Switch


Adjust VR1 so that the l.e.d. will not flash from background noise in the room, but will reliably respond to a hand clap. The l.e.d. will be found very useful for indicating whether the unit has "heard" a sound or not, when setting the sensitivity.

Although originally intended purely as a gimmick, the device has been found to be extremely reliable and may well have more practical uses. The prototype was left in an average sitting room for a week without triggering spuriously, but would immediately respond on hearing the correct sound sequence.


There could be practical uses where it is necessary to operate equipment remotely, possibly by a disabled person, or in other cases where it is not possible to operate a switch directly.

Fault-finding

Once the design had been finalised, it was found that the units could be relied upon to work correctly immediately they had been assembled and adjusted. Most faults are likely to be caused by wire links in the wrong places and diodes or transistors the wrong way round. Remember that the circuit uses both *npn* and *pnp* transistors. A puzzling intermittent fault in one unit was traced to C6 being open-circuit. This resulted in the supply rails

So You Want to Pass the RAE?

For details and coupon see page 30

Fig. 3: The copper track pattern and component placement drawing for Board 1 shown full size

carrying unsmoothed a.c. and played havoc with the logic functions.

Provided that the l.e.d. flashes in response to sounds then faults are best traced by first checking the outputs of the monostables (pins 4, 10, 11 of IC2) and then following the voltage levels through the rest of the circuit. Remember that the monostables give an inverse output, i.e. "1" in the quiescent state and "0" when active, and remember also that the circuit takes 5 seconds to complete its cycle and if it receives an input before G1 has reset it will ignore it.

If the l.e.d. does not light up then first check IC1. The voltage on pin 6 (output) should equal that on the wiper of VR2, except at extreme settings of VR2. The Schmitt trigger, Tr1, Tr2 should turn on when the voltage on Tr1 base exceeds about 5V, turning on the l.e.d. via Tr3-Tr5, and should turn off sharply as the voltage is lowered. These functions can easily be checked with a multimeter and should show up the location of any fault. However, provided the unit is constructed carefully, there is no reason why it should not work first time.

NEXT MONTHIN... practical

> Unwanted salesman? Tired after a hard dry? Pur Automatic Intercom allows you to answer callers from your armchair without even pressing a button, while the front door remains securely bolted Disnal and analogue techniques are combined in this comprehensive, y easyto-install aid to basic security for an old, inner or just, bein lazy.

Automatic

ON SALE GTH.

Ultrasonic Remote Control

A short introduction to the use of ultraconics for cordless on/off control of domastic approaces itc. The article suggests some solvable choices based or i.c.s intended for use in other fields, powving the construction of very small transmitters and receivers

Acrial Design Ac

Aerial designs can be tested and developed easily by bolding so de moories of the proposed systems and making measurement, as unif. This article describes how a surplus marine order display can be adapted to plot the resulting pour diagrams automatically

Plus SPECIAL PRODUCT REPORT on the LOWE SRX~30 Receiver

Practical Wireless, July 1979

2

top band trar

J.R.Green BSc, G3WVR*

This low-power a.m. transmitter design illustrates the use of power f.e.t. devices—in particular, the VN66AF recently introduced by Siliconix Ltd.—and takes full advantage of modern semiconductor technology. The unit is particularly suitable for use within the 160-metre band, although operation at higher frequencies is quite possible.

Design Considerations

The Author has carried out a great number of experiments with low-power transmitter circuitry using bipolar (i.e. "conventional") devices over the last few years. Some degree of success was achieved in later designs, using the now-defunct BD123, but en route many pitfalls for the unwary were uncovered.

Technically, however, the bipolar device fell down on several counts, notably:

- 1. High drive power was required; typically 10%, even at low frequencies.
- 2. Difficulty was experienced in achieving really linear amplitude modulation, even when modulating both the driver and p.a. stages. Modulation of the p.a. only, by swinging the supply rail, was unsuccessful. Modulation of the driver as well was essential and far more modulator power was required.
- 3. Problems were encountered in achieving stability in the transmitter r.f. strip. Often appreciable "slugging" was called for to prevent h.f. or v.h.f. parasitics.
- 4. Modulation excursions also tended to introduce instability, often producing undesirable steps of modulation non-linearity in the modulated r.f. carrier envelope.
- 5. It proved remarkably easy to destroy the p.a. transistor(s) if instability occurred or the transmitter was mis-tuned.

These difficulties led the Author to the conclusion that solid-state transmitter design could be much simplified if a * Senior Development Engineer—Gould Instruments Division device existed which exhibited the characteristics of a thermionic valve. In particular, low drive power, modulation linearity and stability were desirable in addition to the ability to operate from low voltages. In other words, a high-power f.e.t. was needed.

During 1978, Siliconix Ltd. produced the VN66AF and samples were supplied to further the Author's experiments. The ultimate results are incorporated into the transmitter featured in this article. Whilst the published form is for 160-metres, the basic circuit could be used to produce a transmitter capable of at least 10MHz and possibly more.

Circuit Description

The transmitter employs a crystal oscillator which incorporates a twice-frequency, parallel-resonant crystal, with a TIS88A f.e.t. as the oscillator transistor (Care with substitutes! The circuit may fail to oscillate with devices requiring different d.c. conditions.). This stage provides sufficient drive to switch Tr2, a 2N2369A switching transistor which provides a twice-frequency 5 volt peak-topeak square-wave to drive IC1. This i.c. is a 7473 flip-flop wired to divide-by-two, thus producing the output frequency "f".

quency "f". The 7473 limits the "2f" crystal to around 6MHz (therefore the output frequency "f" to 3MHz) but this may be extended by substituting a Schottky, 7473 (i.e. a 74S73).

From IC1 the signal is passed to Tr3, another 2N2369A switching transistor, to present 12 volts peakto-peak square-wave drive to the output devices. With Tr3 looking into 100Ω the two VN66AF p.a. devices are easily driven. Their input capacity of 50pF each is the prime limiting factor with untuned drive, although a BFY50 could be substituted for Tr3 and R11 reduced in value to increase the operating frequency or drive more than two p.a. devices. A power output of 6 watts is typical for a 10 watt d.c. input.

A simple "constant K" type low-pass filter is provided, together with transformer matching to transfer the output power effectively into a 50Ω load and remove harmonics.

Note that since a 1:1 mark-space square-wave drive is derived for the p.a., optimum efficiency with minimal second-harmonic radiation in the unfiltered output is assured, with the filter biting hard at the third and subsequent harmonics.

Filter values shown are for a cut-off frequency of 2500kH2, but others may be calculated from the expressions:

 $C = \frac{1}{f_c \pi z} \text{ and } L = z^2 C$ where $z = 50\Omega$ and L = L1 = L2 = L3 $C = C_{10} = C_{11} \text{ and } C_9 = C_{12} = \frac{C}{2}$

f, is the cut-off frequency.

The modulator circuit is merely a modified version of the Author's hi-fi amplifier design and should not present any problems. A speaker matching transformer rated at 10 watts (T2) is used to transfer the modulator power to the p.a. This should have a core area of around 25mm square and a winding resistance between the 0 and 16 Ω taps of not more than 1 Ω . The modulator input sensitivity is in the order of 100mV, so a pre-amplifier will be necessary for microphone level signals.

The r.f. matching transformer T1 was wound on a Mullard binocular "balun" ferrite block, measuring approximately $25 \times 20 \times 8$ mm and consists of three turns on the primary (transistor) side and nine on the secondary (filter) side. Experiments using these baluns showed a power-handling capability of 100 watts peak! Substitutes should have the following characteristics:

- 1. Suitable for the intended operating frequency.
- 2. 1:3 turns ratio for 6 watts, 50Ω output with wire gauge as large as possible.
- 3. 50Ω secondary reactance to be $\geq 50\Omega$ at operating frequency.
- 4. Peak power rating of at least 20 watts.

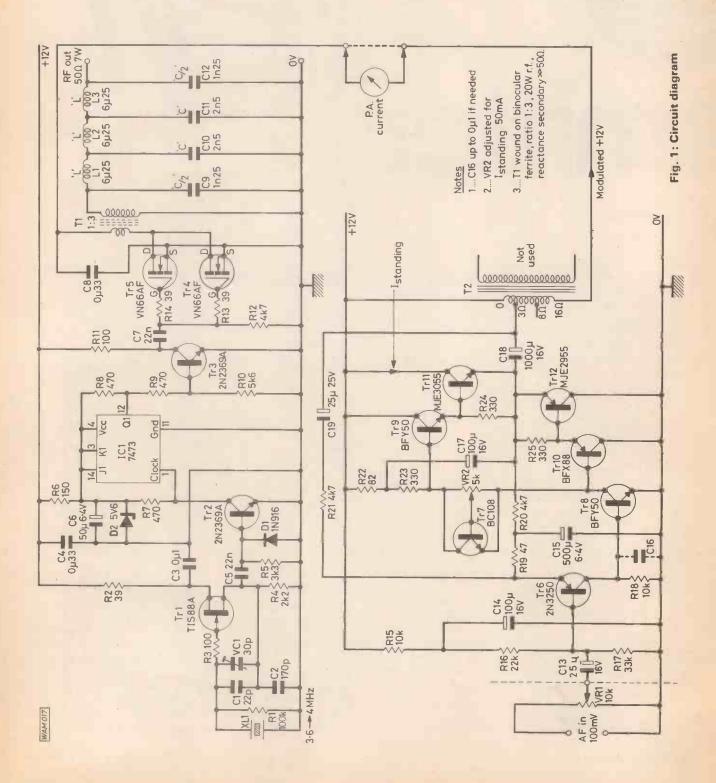
If a suitable ferrite block cannot be found, three Mullard FX2249 blocks can be used.

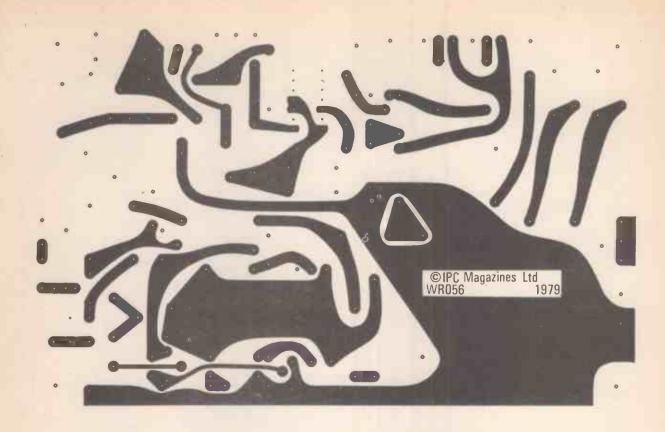
No Adjustments Needed!

It will be apparent from the r.f. circuitry that no tuning is required on the r.f. strip, which should work from switch-on. Trimmer VC1 is used for very fine frequency adjustment and could well be omitted, replacing it with a fixed capacitor of 18pF if the facility is not required. The pre-set potentiometer VR2 should be rotated until Tr11 and Tr12 just start to conduct—say 50mA of standing current.

The VMOS VN66AF devices performed very impressively throughout the development of the prototype transmitters. Only very low drive was necessary and very linear upward and downward modulation was produced. In every respect, the devices performed entirely to specification and simply shut down if an unacceptably-low load was connected.

Possibly it will be found that the modulator output is not quite sufficient to achieve 100% upward modulation but with a suitable transformer the quality is very good indeed and certainly far superior to so-called "communications quality", which covers a multitude of sins!


Construction


The construction techniques are clearly seen in the photograph, most of the components being soldered and mounted on one side of a double-sided "earth-plane" printed-circuit board, measuring 160×100 mm. The top of the board, the component side that is, forms an earth-plane and the copper should be cleared (using a drill and an outsized bit) around the larger holes indicated in Fig. 2. The remainder form earth-plane connections. Details of the p.c.b. are given in Fig. 2 and the component locations are shown in Fig. 3.

The modulation transformer T2 is mounted on the bottom panel of the West Hyde Developments instrument case, as are Tr4 and 5 (on insulated washers). Transistors Tr11 and 12 are mounted on the extrusion as shown in the photograph. (In fact, the VMOS devices could also be fixed in the same manner, if preferred). For the prototypes, the p.c.b.s were made by the rather laborious drilling-painting-etching-cleaning techniques, which are more arduous than difficult. However, constructors who wish to purchase ready-made boards will find them available from advertisers.

Components used in the output filter should be exactly as specified—i.e., abnormally high voltage capacitors to take high circulating currents and air-cored inductors to avoid the saturation which would occur with the smaller type of ferrite cores. Remember that the filter is passing 6-7 watts of r.f. energy and retaining 1-2 watts of harmonic energy.

Loss of harmonic power and the bottoming resistance of the power f.e.t.s are the principal causes of efficiency loss in this transmitter. The filter values may be "scaled" for other frequencies.

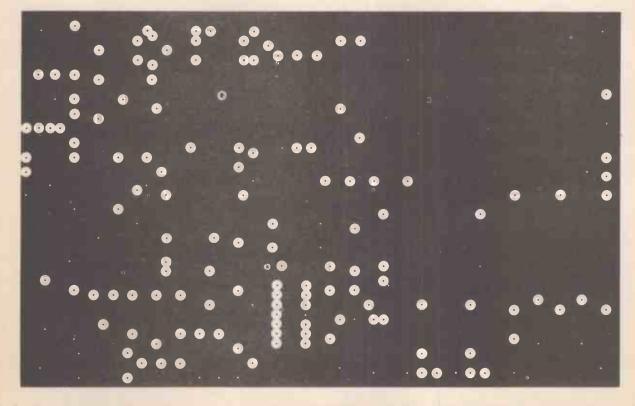
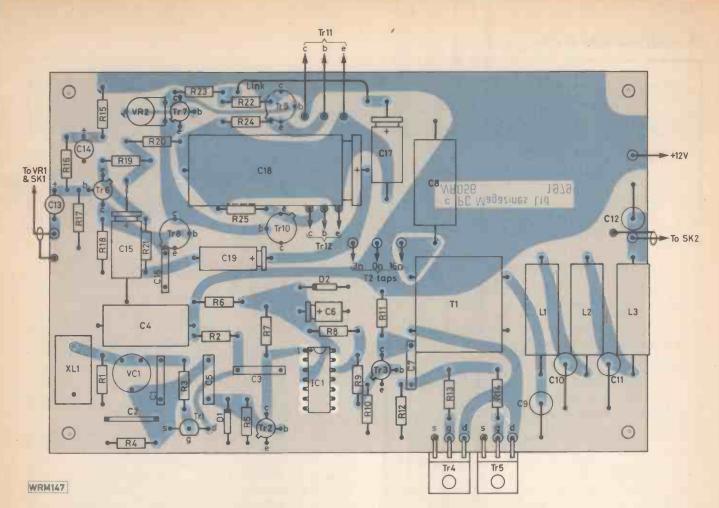


Fig. 2: The copper track side of the p.c.b. is shown full size at the top with the copper ground plane on the component side below it.

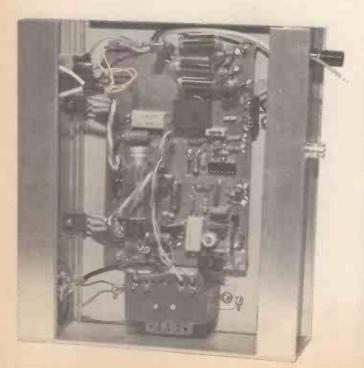
★ components

Resistors		Semiconductors	s and a second
🔒 🛓 watt 5% Metal Oxide	?	Diodes	
3 9Ω 3	R2, 1 3 , 14	1N914	1 D1 1N916 may be used
47Ω 1	R19	1N5339B	1 D2 5.6 volt Zener
82Ω 1	R22		
100Ω 2	R3, 11—see text	Transistors	
150Ω 1	R6	TIS88A	1 Tr1
330Ω 3	.R23, 24, 25	2N2369A	2 Tr2, 3
470Ω 3	R7, 8, 9	VN66AF	2 Tr4, 5 (from C. Bowes & Co.)
2·2kΩ 1	R4	2N3250	1 Tr6
3 · 3 kΩ 1	R5	BC108	1 Tr7
4·7kΩ 3	R12, 20, 21	BFY50	2 Tr8, 9
5.6kΩ 1	R10	BFX88	1 Tr10
10kΩ 2	R15, 18	MJE3055	1 Tr11
22kΩ 1	R16	MJE2955	1 Tr12
33kΩ 1	R17		
100kΩ 1	R1	Integrated circuit	
		SN7473N	1 IC1 SN74S73N for higher
			frequency operation
Potentiometers			
5kΩ 1	VR2 Skeleton pre-set	Crystal	
10kΩ 1	VR1 Log. Panel mtg. pre-set		requency HC6U type, parallel-resonant
	with locking nut and cap	XET TWIGE I	equency ricoo type, paranet resonant
Capacitors		Inductors	unduran fan 160 materia
Silver Mica			values for 160 metres:
22pF 1	C1	$6 \cdot 25 \mu H$, fc = $2 \cdot 5$	DIVIHZ.
170pF 1	C2 180pF may be necessary		
		L1, 2, 3	38 turns of 26 s.w.g. enamelled
Ceramic disc	and the second se		copper wire on 25mm long 8mm
22nF 2	C5, 7		diameter former, air cored.
0.1µF 2	C3, 16 see text		
0·33μF 2	C4, 8		
Polystyrene 350 volt		Transformers	
1.25nF 2	C9, 12 (Use 1.2nF)		rating r.f. transformer (peak). Turns
2.5nF 2	C10, 11 (Use 2·2nF)		secondary reactance \gg 50 Ω , wound on
Tontolum based 10	14		nocular balun-block ferrite (or 3 type
Tantalum bead, 16 vo	C13	FX2249, s	
25μF 1 47μF 1	C13 C14 100µF may be used		ating speaker matching transformer $8-16\Omega$ taps. The step-up ratio using
47με ι	CT4 TOOHF may be used		nmon 3Ω as input and 16Ω (or 15Ω)
Electrolytic, axial lead	6		s a fraction in excess of 1:2.
25μF 25V 1	C19	as output i	S a fraction in excess of 1.2.
50μF 6·4V 1	C6		
100µF 16V 1	C17		
220µF 16V 1	C15 470µF may be used	11-12	
1000µF 16V 1	C18	Hardware	the Ann MARCAE transistory (2)
1000001 100 1	010	Insulating ki	ts for VN66AF transistors (2),
			I MJE2955. Socket for crystal. 50Ω
Trimeros			ctor (or SO239). West Hyde
Trimmers			instrument case type "Classic"
Dau type ceramic 3–30pF 1	VICI and Anut (from the Distant)		e advertisers' index). Printed-circuit
3-SUPF	VC1 see text (from J. Birkett)	board.	


Setting Up

A very short section this! No tuning is required and the r.f. strip should work straight away. The d.c. input current to the final stage can be monitored and should be about 800mA when looking into 50Ω . Other loads will affect the p.a. current and in extreme cases may require some sort of matching transformer.

Poor quality "inactive" crystals will reduce the oscil-


lator drive level and this may reach proportions where Tr2 will not switch and consequently there will be no output.

The quiescent current of the modulator should be set at around 50mA by means of VR2. If this adjustment is a smooth one all is well, but if the current flicks up to a high value check for amplifier instability. This can be cured by fitting C16, which also helps to keep r.f. from reaching the modulator.

Fig. 3: The component placement drawing of the p.c.b. showing the ground plane (component) side of the

board.

Aerial Matching

Most low-frequency aerials in amateur use are unlikely to present a good 50Ω match due to their small electrical size. The following techniques, based on a little theory and a lot of experimentation, are suggested.

The transmitter filter is quite tolerant of a mis-match say $30-80\Omega$ —but placing a low impedance load on the output may violate the d.c. input power requirements. A really low load will cause the VN66AFs to overheat, but do not worry if this should occur; adequate protection is afforded within the devices, and they will merely shut down.

VFO Operation

Those who develop the transmitter may well wish to add the facility of v.f.o. operation. This is easily achieved by feeding the twice-frequency v.f.o. signal, at 2 volts peak-to-peak, into C5, in place of the injection from the crystal oscillator.

No problems with f.m. pulling should be encountered, as the v.f.o. and output frequencies are not the same.

Well, now you know how to build and operate your VMOS transmitter. Incidentally, the VN66AFs should only cost around £1 each. We hope it brings you enjoyment.

Changes in **BROADCAST-BAND LISTENING** on Short Waves PART 1

Jonathan MARKS

If you follow Practical Wireless regularly, then by now you may have put together or bought a short-wave general coverage receiver. Tuning around between 3 and 30MHz it soon becomes apparent that the spectrum is divided into blocks which are used for various purposes. If you listen between the frequencies 5950-6200, 7100-7300, 11700-11975, 15100-15450, 9500-9775. 17 700-17 900, 21 450-21 750 and 25 600-26 100kHz you'll hear radio programmes originating from broadcasting organisations all over the world. These radio stations are obviously different from the BBC or IBA domestic broadcast channels that the general public are used to, since their target audience is often a whole continent if not the world, rather than a single country or indeed a particular town.

A first flick through any short-wave (usually abbreviated to s.w.) broadcast band may prove disappointing. Many stations seem to be talking in foreign languages and are all crowded together. The secret with this hobby though is slow, careful tuning and frequent checks on "who's around". Most stations put out a magazine-style programme of about half-an-hour's duration in a number of languages, and with English the most common international language there are few stations without an English section. Indeed many s.w. stations broadcast specifically to Great Britain and Ireland every evening with programmes in English.

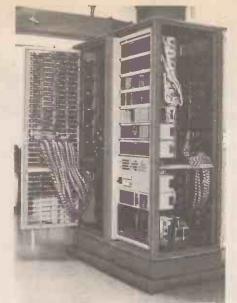
Station Types

Short-wave broadcasting stations fall into two main categories. The first group of stations aim to provide their listeners with news which is unlikely to hit world headlines (and therefore overseas newspapers and radio bulletins), yet never-the-less would be interesting to people with a

ABOUT THE AUTHOR

Jonathan Marks is a broadcaster/journalist who formerly worked in Vienna for the Austrian Radio Short Wave Service, becoming involved with the weekly SWL news programme "Austrian SW Panorama", broadcast world-wide every Sunday. Since returning to the UK, he has continued to make regular contributions to the programme, and is an active DX enthusiast

desire for information on world events and culture. Such stations are usually given a grant by their government, but the journalists and broadcasters are given a free hand to make programmes without government censorship. Hence the programmes give an objective, often critical insight into current affairs in the country, the reaction of its people to world events and a sample of the culture, music and perhaps even language. Stations in this category include Radio Finland, the Swiss Broadcasting Corporation, Radio Canada International, Austrian Radio, Radio Sweden and the BBC World Service.


In the second category are the government-run stations, whose main aim is to put over the political views of the government in power. As a result programming is rather one-sided, promoting only national achievements and churning out masses of statistics. That aside, such stations can be a source of quite fascinating information, and it is often interesting to compare their version of a news story with others, either in your national newspaper or on TV. Such government-run stations include Radio Moscow, Radio Peking, Radio Berlin International, Radio Tirana and the Voice of Vietnam.

A view of the BBC Monitoring Service listening room, as seen from the console

Photo courtesy BBC

Computer-controlled switching gear selects appropriate transmitters and aerials to suit propagation conditions

Continuity suite for Radio Sweden. The cartridge machine on the left provides multi-lingual station identifications

Reception Reports

Vienna,

While reading PW's "On the Air" feature you may have heard of QSLs and reception reports. These are really terms adopted by the broadcasting stations from the amateur radio world, and go back to the early thirties when many s.w. stations started up. In those days, stations didn't know if they were being heard in the target areas at all, and so in return for a listener sending in a report of reception (containing details of time, date, frequency and quality of reception, plus notes on the programme heard and receiving equipment used), stations would issue a confirmation card or QSL. This consisted of a picture postcard with the time, frequency and date of the transmission heard confirmed in writing on the back.

with s.w. section in

Photo courtesy ORF, Vienna

foreground

Many stations still send out QSLs, but since the thirties there have been a lot of changes on the technical side. Stations now use very much higher power (many in the order of 500kW), and because of the existence of professional monitoring stations, the larger broadcast stations know exactly how they are being received in target zones. Thus, as far as these stations are concerned, listeners' reception reports are now of marginal interest and the QSL card is more of a public relations venture since the reports are not checked. However, the smaller stations operating in only a few languages (especially religious stations), still need reception reports from listeners. They have only a limited budget and very much lower powered equipment, so regular reports on more than one frequency remain very important. How can you judge if the station wants your report?

How can you judge if the station wants your report? The answer is to look in an excellent annual publication called the *World Radio and Television Handbook* which is available through most bookshops. It lists all known radio organisations in the world and where and when to listen out for them. It will give you a clear idea as to the size of the station, its QSL policy and the exact address to send your report to. In general, the smaller the station the more welcome your reception report, with the exception of small stations in West and Central Africa and South Amercia. Stations in these areas use s.w. for domestic broadcasting in much the same way as v.h.f. is used in Europe, and distant reception reports are usually QSLd only out of courtesy.

Programmès

Photo courtesy ORF, Vienna

All international broadcast stations, large or small, welcome your comments on the programmes heard. Over the last 10 years, programming standards have improved enormously compared with the sixties when most stations were of the "cold war" variety, deadly dull and boring. Then, the hobbyist could do little but send a technical reception report. In 1979, though you'll still find some pure propaganda stations, most stations in the Western world (and even a few in the Eastern Bloc) have woken up to the fact that sheer political fact switches Mr Average SWL off. Instead you can now find interesting, wellpresented cultural material, whether it be tips on hitchhiking across Sweden, eating out in Brussels, getting around in Tokyo or exploring caves in the Alps of Austria. Younger listeners too are catered for, with music programmes which broaden one's outlook on the pop music scene and enable one to get world-wide contacts. It is also important to point out that listeners who provide stations with critical constructive comments are well respected by the editorial staff.

Who listens to these international s.w. programmes? In the UK, s.w. broadcast listening is not widely known. Radios sold today in the average British hi-fi shop have no facilities for s.w. listening, but this is not the case in other parts of Europe. In West Germany or Finland for example, thanks to publicity of SWL clubs and the availability of suitable sets, SWL means more to the man in the street. There are signs though that the UK may be catching up on its European neighbours, as good s.w. receivers become cheaper thanks to integrated circuits, and digital readout eases the tuning problem. Also with more holidays being taken abroad, people like to keep in touch with countries they've seen. In the USA and Canada, s.w. is catching on simply because listeners are fed up with their local station full of commercials, time and weather men and rip-and-read news.

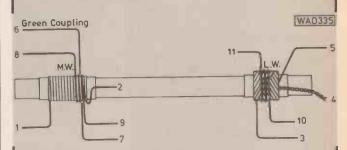
Photo courtesy Arne Skoog, R. Sweden

The more factual style of s.w. is also important in the developing countries, where radio is very different to Europe. There is usually no v.h.f. or m.w. service, and s.w. radio is the only means for the government to reach listeners in its own country. Thanks to ionospheric propagation though, signals from other countries (e.g. in Europe) can also reach developing countries. The BBC's African Service for example, thanks to a network of onthe-spot correspondents, provides a very fast, accurate picture of what is going on in Africa for African listeners, often before the national radio station reports it. Of course politics comes into play here. Many stations in the Western world beam vernacular programmes towards a developing country which disagree with what the national government station in that country is saying; something which often worries the latter if it is trying to influence its population.

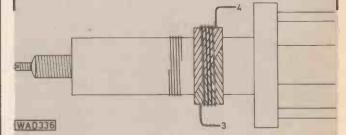
Local Stations

Most stations in Latin America broadcast on the 60 metre tropical s.w. band (4750-5060kHz) instead of medium waves, which are full of static due to tropical thunderstorms. Propagation is such that from about midnight until dawn in the UK you can hear these stations broadcasting to their local population: an excellent insight into Latin America with wide opportunities to study the language or simply enjoy the music. Such small stations in the jungle run on a shoe-string and provide amusing stories for those who've visited them.

The official time signal on one station in Peru for example, turned out to be made by a simple audio oscillator triggered by the DJ watching the second hand on an ancient clock. A station in Bolivia came up on the wrong frequency for over a month because the station engineer had plugged in the wrong crystal. Similar stories come from Asia where the national station in Nepal sometimes comes on the air late when they forget to switch on the carrier of the transmitter. All this added together makes for a fascinating hobby.


The secret is to know when and where to look. One of the best ways is to contact one of the UK Broadcast DX Clubs as well as reading "On the Air". In addition stations themselves put out SWL programmes to assist listeners, for example: Sweden Calling DXers (Radio Sweden), World Radio Club (BBC World Service), Austrian SW Panorama (Austrian Radio), World DX News (AWR, Portugal) and DX Juke Box (Radio Nederland) to name just a few. In addition, an organisation exists in the UK, called the Handicapped Aid Programme, to help introduce this hobby to the disabled. Undoubtedly, broadcast listening can open up new horizons for a person who is house-bound, and no licence is needed.

Finally, if you would like to combine your hobby with a holiday, then you might consider joining a DX camp for a few days. These take place during the summer months in Austria, West Germany, Sweden, Finland and, starting in 1979, in the UK. These meetings offer an excellent chance to try out new equipment and antennas as well as meeting fellow DXers and SWLs. Such camps are often coordinated under the European DX Council which acts as an umbrella organisation for European clubs and has a number of useful publications for broadcast band listeners. Meetings on a local basis also explode the myth that a typical SWL is someone who hibernates in his shack, to find friends all over the world but none in his own country!


KINDLY NOTE!

PW Imp 3-Waveband Receiver May 1979

The details of the extra windings to be added to the coils were unfortunately omitted from Figs. 5 and 6. They are given below.

Additional reaction windings. 38s.w.g. enamelled copper wire. 8-9, 2 full turns in sense shown above; 11-10, 2 full turns in sense shown above. Note that the coils should be on the rod as shown so that the windings are in the same direction from the 'live' ends (1 and 3).

Reduce winding 5-7 to 2 turns. Add 12 turns of 38s.w.g. enamelled copper wire on top (3-4) in direction shown above.

There are many types of communications receivers currently available, the choice of which is initially determined by where the user's interests lie. General-coverage receivers, as the name implies, cover **a** range of frequencies which include broadcast bands, amateur bands and other communications channels, and the Yaesu FRG-7 falls into this category.

FLEIVER

On the other hand, if only the amateur bands are required, then receivers for this purpose, offering a greater bandspread over these frequencies, are available.

In both instances, the tuned frequency may be displayed by "conventional" analogue means, or a digital readout, which gives the tuned frequency in illuminated digits.

The FRG-7 tested by *PW* was already fitted with a digital readout when supplied by SMC Ltd. This is an option which can be retro-fitted to existing FRG-7s and replaces the original dial unit with a $4\frac{1}{2}$ -digit red l.e.d. display. The digital display indicates the kilohertz part of the frequency to which the receiver is tuned, while the megahertz part is set using the original MHz knob in conjunction with the "Lock" indicator lamp and the "Band" switch.

A Preselector control is provided which enables the r.f. circuits to be tuned for optimum signal. This control operates a vertically mounted drum which has four bands marked on it. The Band switch selects the basic range over which the Preselector and MHz controls operate, at the same time illuminating the appropriate preselector band.

The "Lock" indicator lamp is extinguished when the MHz tuning control is correctly set to mid-band.

The main tuning control is fitted with a large diameter handwheel knob which has a large felt washer fitted behind it to provide a measure of friction although by no stretch of the imagination could the control be described as flywheel. The fine tune control is fitted just to the right of the main tuning knob and was positioned too close to the main knob for comfort. It proved to be annoying when, after getting the main control set, operating the fine tune meant that one's thumb or index finger caught the large knob putting the set off tune. The fine control also seemed to be much too coarse in operation making precise adjustment of setting, so essential for successful s.s.b. listening, very difficult. In fact with an adjustment of \pm 6kHz over 180° swing it was only four times better than the main control and it was almost as easy to set the tuning using only the main control and ignoring the fine one. As supplied the fine control operated in reverse to the main control but this was easily altered by slackening the grub screw of the knob and turning the knob through 180°.

An input attenuator is fitted with a three position switch labelled DX, NOR, Local. The handbook indicates that in the DX position a station which is swamping the set can be attenuated to enable a weaker distant station to be received. We were not able to verify this as in the Bournemouth area no signals seemed strong enough to overload the front-end. All the attenuator seemed to do was cut down the signal strength, so the set was operated with the attenuator in the normal position.

The Tone switch changes the audio response of the receiver and has three positions, 250Hz to 3kHz, 400Hz to 2.5kHz and 250Hz to 1.5kHz.

The other front panel controls fitted are a volume control and the Mode switch. A horizontal scale S-meter is fitted above the tuning dial. The dial lamps can be switched off independently of the main power, which cuts down on current drain from the battery pack when running from batteries.

The audio output, rated at 2 watts, is not hi-fi but is presentable and enables the receiver to be used on the broadcast bands.

A pair of phones can be used instead of the speaker fitted, the phone jack being on the front panel together with the jack for the record output.

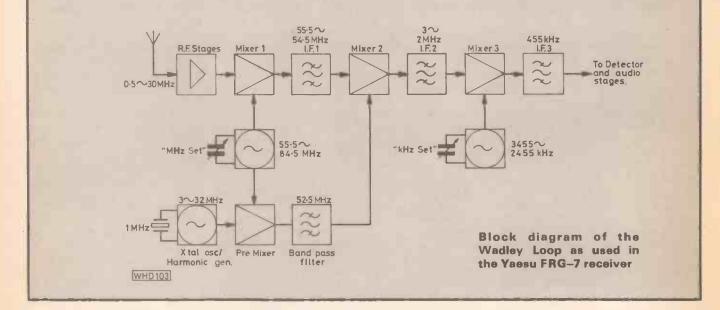
The performance of the FRG-7 on a.m. was excellent with a very good single-signal response. However, on s.s.b. and c.w. the set lacked selectivity with the standard filters. Alternative filters are available as optional extras but were not tried in this test.

Three sockets are provided on the rear of the case for aerials. Two of these are push-type terminals for long-wires while the third is a SO239 socket for use with a coaxial type

THE WADLEY LOOP

The FRG-7, in common with many other contemporary communications receivers, employs the Wadley Loop, triple-conversion superheterodyne system. This offers a number of advantages in terms of performance.

A high first intermediate frequency can be used, in this case around 55MHz, giving good image (secondchannel) rejection. The problems inherent in achieving satisfactory frequency stability in the first oscillator ("MHz Set"), which must operate in the v.h.f. band and tune over a range of some 30MHz (55.5–84.5MHz), are overcome by mixing its output in twice, so that any errors due to drift are selfcancelling.


As shown below, this is done by mixing the first oscillator output with a spectrum of harmonics from a stable 1MHz crystal oscillator. The product at 52.5MHz is selected by the Band-pass Filter and mixed with the 1MHz-wide band of signals coming from IF1 to translate them to the band 3-2MHz for IF2.

The output of IF2 is mixed with the output of the "kHz Set" oscillator in Mixer 3. Because this oscillator operates at a reasonably low frequency, and over a band just one megahertz wide, it is not too difficult to make it adequately stable. The output of Mixer 3 is at 455kHz, and is passed to a conventional i.f. filter/amplifier chain, detectors and a.f. stages.

Because there are no conventional band switches other than in the r.f. preselector stage, problems due to varying contact resistance in the oscillator circuits (a common cause of instability) are eliminated. Because the whole range of 0.5-30MHz is tuned in bands 1MHz wide, the tuning resolution of the receiver is the same at 1MHz as at 30MHz.

Disadvantages of the system are the large number of mixing stages employed, calling for careful screening and filtering if spurious products are to be kept low, and the need to design efficient filters operating in the v.h.f. band, for IF1 and the Band-pass Filter.

The actual frequencies adopted in the early stages of receivers using the Wadley Loop principle vary between different models: those shown here are as used in the FRG-7. Anyone checking the sums for themselves may wonder about the fact that the "MHz Set" oscillator tunes down to 55.5MHz, which is within the passband range of IF1, inferring that the receiver will tune down to zero frequency! In fact the lowest band is cut off at just below 0.5MHz by the response of the r.f. stages, and on that band, the signals passed to IF1 are limited to 55-54.5MHz and those in IF2 to 2.5-2MHz. The "kHz Set" oscillator only tunes over 2955–2455kHz on this band. In many Wadley Loop receivers, IF2 is fixed-tuned with a 1MHz passband, but in the FRG-7 it is tuned in step with the "kHz Set" oscillator.

feeder and this is electrically common with the push terminal labelled SW1. This can cause confusion since the coaxial socket is labelled SW1 on the circuit diagram, SW2 on the receiver back panel and to add to the confusion a label immediately above the aerial sockets gives the ranges as SW1, SW2, SW3 and SW4.

The handbook provided with the set was generally good, with an adequate circuit description, a full circuit diagram drawn reasonably well and very legible, a block diagram of the set and a comprehensive components listing.

The operating instructions were generally good but there

were some omissions. The English was very good for a Japanese model with none of the usual funny sentences which seem to occur during translation from the original.

Maintenance and alignment information together with a voltage chart and p.c.b. component layout drawings should help if it is ever necessary to overhaul or repair the set.

As well as the operating manual, the FRG-7 is supplied with two lengths of copper flex for use as aerials, all the necessary plugs and two spare fuses.

The maker's guarantee is for twelve months but does not include the semiconductors.

***** specifications

Mode: AM; SSB: (USB, LSB); CW

Frequency range: 0.5MHz-29.9MHz

Sensitivity: SSB/CW better than 0.7µV for 10dB S/N at 30% modulation

Selectivity: 3kHz – 5dB 7kHz – 50dB

Frequency stability: Within 500Hz during any 30 minute period after warm-up

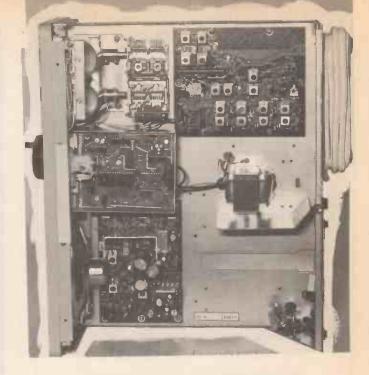
Input Impedance: 0·5MHz – 1·6MHz High Impedance 1·6MHz – 29·9MHz 50–75Ω unbalanced

Output Impedance: 4Ω

Audio Output: More than 2 watts

Power requirements: 100/110/117/200/220/234V a.c. 50/60Hz or 13.5 d.c. Negative ground

Batteries: Type UM-1 × 8


Dimensions: 340 × 153 × 285mm

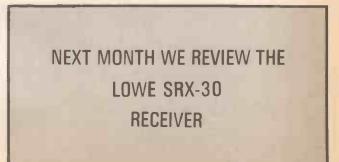
Weight: 7kg without batteries

The standard of engineering is excellent as can be seen from the photograph of the inside of the set we tested.

The receiver was subjected to several air-tests, using a variety of antennas, ranging from a 132ft long wire to a multi-element rotary beam. On the broadcast bands the receiver performed very well indeed and the s.s.b. capability for amateur reception was also quite good. (The latter mode can be quite dramatically improved, incidentally, by the inclusion of the mechanical filter, produced for the FRG-7 by Ambit International.)

The Wadley Loop provides a good degree of stability in the receiver. This is especially necessary for acceptable sideband resolution—at 29MHz, for the receiver to remain within about 25Hz of the tuned frequency, a stability factor of about one part per million is called for. Long-term stability is perhaps less important to the amateur than stability in the short-term, and the FRG-7 performs quite well in this respect. However, since the Wadley Loop system involves multiple conversion, it is difficult to achieve a wide dynamic range, a problem which is overcome to some extent in this receiver by the use of a balanced mixer.

Internal view of the Yaesu FRG-7


Used in conjunction with a 400 watt p.e.p. transmitter, the receiver performed well. Many contacts were made with W, VK, ZL, ZS and so on, some of these on a simple end-fed long-wire antenna. Copy on the h.f. bands was good, but onthe more congested frequencies—such as 40m—it was often felt that a little more selectivity would have been nice. Still, "You pays your money . . . " as the old adage goes, and the FRG-7 represents particularly good value.

A 2.4kHz mechanical filter to improve the s.s.b. performance is available from Ambit International, 2 Gresham Road, Brentwood, Essex, priced at £15.30 (inc VAT). We understand that a Yaesu approved s.s.b. filter may be available from SMC in the very near future.

Prices

Basic FRG-7 receiver £210.37 FRG-7 receiver with digital readout £270.00 Yaesu approved digital readout (SMC) £56.25 (All prices quoted include VAT and carriage)

The FRG-7 receiver reviewed was kindly loaned by South Midlands Communication Company Ltd., Osborne Road, Totton, Southampton SO4 4DN. Tel: 04216 7333, and we would like to thank them for their invaluable assistance in this respect.

C.B.	ELEC	CTRO	NICS
------	------	------	------

UNIT 3, 771 ORMSKIRK ROAD, PEMBERTON, WIGAN, WN5 8AT Telephone: Wigan (0942) 216567

THE BEST IN THE NORTH-WEST

The Communications Receiver that has it all

£210.00 incl. VAT + £2.00 p&p./ins.

Also available from us with Microwave Modules converter all for just an extra £20.25

All orders dealt with promptly by Mr. Jack Stephens

G3LRB

YAESU FRG-7000

£329

The New Performance Standard in Communications receivers I A high guality general coverage receiver for the discerning SWL and a worthwhile additon as a second receiver for the transmitting amateur. How often have you wanted a true general coverage receiver of this callbre but been

put off by the price. The FRG-7000 is a cost-effective answer to your prayers.

The FRG-7000 is a cost-effective answer to your prayers. * Full and continuous coverage 250kHz to 29.999MHz * Operation on SSB/AM/CW * Switched selectivity and fine tune control for maximum efficiency on SSB * Accurate digital frequency readout to 1kHz, using advanced CPU techniques * Built-In digital clock with facilities for setting two time zones (GMT and local), selected at the flick of a switch * CPU controlled timing clock switches receiver on or off at preselected times; also enables control of external unit such as tape recorder * Wadley loop circuitry for minimum drift and maximum stability * Simple and accurate frequency selection; easy-to-use colour coded bandswitch and preselector.

Send large SAE for further details of this and other equipment – or use our Answerphone after hours.

Wertern Electronicr (UK) Ltd HEAD OFFICE (All Mail/Enquiries) FAIRFIELD ESTATE LOUTH, LINCS, LN11 0JH Tel: Louth (0507) 4955/6

ACCESS VISA DINERS CLUB H.P.

Practical Wireless, July 1979

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VARIABLE FREQUENCY ANTENNA (.5-30MHz).

G4DJY's COPY LOG shows 68 North Americans worked in the ARRL W/VE contest.

W6TYP worked WA6JPR over hundreds of miles on 40m, using the JOYSTICK VFA and MICROWATTS "equivalent to 1,000,000 MILES PER WATT"—A WORLD RECORD—we can supply conclusive evidence I

 $\label{eq:conductive} \begin{array}{l} \text{MECURD} & -\text{we can supply conclusive evidence I} \\ \text{``I have used Rhombics, 4 x $\frac{1}{2}$ waves in phase, centre fed dipoles, etc., but the success I have had with the V.F.A. has been AMAZING . . . only 20ft. high . . . In front of my mobile home, I NEVER RECEIVE LESS THAN R7 AND MOSTLY R9 ON CWDX WORKING-Bob Green, SUIKG/G3APH, W.B.E., W.A.C. Phone and CW. \\ \end{array}$

W70E, U.S.A. Government Electronics Engr. (retd.), claims "VFA 5ft. below ground, same as dipole, elevated 15ft., one "S" point UP on dipole."

IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLD-WIDE AND IN GOVERNMENT COMMUNICATION

JOYSTICK ANTENNAS

SYSTEM "A"

SYSTEM "J"

£41.00

200 w. p.e.p. OR for the SWL

£47.95

500 w. p.e.p. (Improved "Q" on receive)

"PACKAGE DEALS" COMPLETE RADIO STATIONS FOR ANY LOCATION

All packages include the JOYSTICK VFA (System "A") 8ft feeder, all necessary cables, matching communication headphones. Delivery Securicor our risk. ASSEMBLED IN SECONDS. You SAVE E14-15 on each PACKAGE DEALI

PACKAGE No. 1. Features R.300 Rx.	£222.00
PACKAGE No. 2. Features FRG7 Rx.	£237.45
PACKAGE No. 3. Features SRX30 Rx.	£212.45
PACKAGE No. 4. Our "Rolls"-Rx. FRG7000.	£402.00

RECEIVERS ONLY

R.300	£184.50	FRG7	£199.95
SRX 30	£174.95	FRG 7000	£364.50

All prices are correct at time of going to press and include VAT at 121% and carriage.

Just telephone your card number Phone 0843 62535(ext.5) (or 62839 after office hours)

or write for details, send 9p stamp

3CED	RONI	G3VFA
5, Patridge CT10-1LD. (C		Broadstairs,

Every month is the right frequency

When you're building a major project from a PW design, you want to be sure of getting every issue in sequence ! Use this order form for a year's supply to be posted to you.

ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. £10.60.0verseas £10.60.

WRELESS SUBSCRIPTION ORDER FORM

PLEASE USE BLOCK LETTERS

NAME Mr/Mrs/Miss

ADDRESS_

POSTCODE____

Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to : Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

NUMBERS WITHOUT TEARS

Continued from page 37

should not be taken to Vss via any wire connecting the c.m.o.s. to Vss. When Tr21 is switching a full 140mA, some very strange arithmetic may be evident from the counters if some of the wiring to Vss is common! Anyone contemplating a' p.c.b. design is especially warned of this point.

In order to make the touch plate as mechanically simple as possible, a 6BA cheeseheaded bolt was mounted on (but insulated from) the metal front panel and recessed so that the head was flush with the panel. The entire box was earthed and connected to the mains transformer screen, and connected to Vdd via R26 (see Fig. 6).

In this way, a finger placed on the head of the bolt must also touch some of the surrounding painted panel, and this provides sufficient base current to operate the Darlington pair, Tr1 and Tr2. The instrument is thus electrically safe while providing 100 per cent reliable touch operation of the swept-frequency clock.

Fault-finding

It may be found that, on closing S1, the clock does not run. Decreasing R4 to $82k\Omega$ will solve the problem. Similarly, in the swept-frequency mode, it may be found that the clock is still "ticking over" even when C2 is discharged. Increasing R1 to $47k\Omega$ should stop the clock. These problems arise because of the 5% tolerance resistors used to derive quite a precise voltage at point A (Fig. 2). The author has not found this to be a problem, but theory shows that it is quite possible.

de

The mains switch, S5, is a d.p.d.t. slider switch mounted on the side of the box adjacent to the top of the front panel. It is thus normally out of sight, reducing the temptation to tamper with it.

Summary

This instrument is designed to appeal to children of $2\frac{1}{2}$ years upwards. The visual effects produced by it are pleasant and interesting. There are switches to use, buttons to press, a knob to turn, and a touch-controlled flywheel display. It aids in the teaching of rapid number recognition and matching, without obviously being a "teaching" toy.

It can also be used as a die for other board games when the numbers themselves have become of secondary importance.

With a little judicious help, the child will soon grasp the cyclic nature of counting in the decimal system—the progression from single-digit numbers to dual-digit numbers, the second (tens) digit being the number of complete revolutions of the flywheel, the first (units) digit being the number at which the flywheel stops.

6

5

A REVIEW OF RECENT DEVELOPMENTS In general, the author does not have any more information on products than appears in the article.

Microprocessor Miscellany

People have long been chanting that microprocessors are going to end up in "everything". One of the latest applications to reach my ageing eyeballs is in typewriters. The new ET 221 for example is not the established "golfball" but a "daisywheel". Built-in is a Z80-based system that uses a number (note: not just one) of 8-bit, single-chip microcomputers. To be sold in the US for under \$2000, this new wonderwriter has a 20-character display for showing what you've been typing in line at a time. It can also store lines and page formats too, so it appears to be bordering on a form of word processor.

Another microprocessor application to loom is in controlling motors. When one considers that there are virtually millions and millions of motors in so many different applications, the enormous market becomes apparent.

There are some very good reasons, too, for using microprocessors in this application. The first is that old chestnut-money. For example, many motors rely on costly feedback loop circuitry required for close speed control. It has been claimed that just over £1 worth of digital chip can replace £5 worth of analogue circuitry to do the same job. The microcomputer can also do far more than adjust speed. For example, it can check the motor current against a table of maximum values which it holds safely stored in its ROM. This very same ROM can contain a program that limits both the instantaneous and surge currents drawn by the motor at any given time. This, besides offering a safety factor, also allows the manufacturer to use smaller, and probably cheaper motors to do exactly the same job.

Big Bang Theory

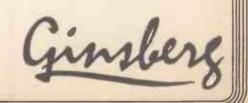
A few Ginsbergs ago I mentioned Lithium batteries. They appeared to offer advantages, but I now hear of disadvantages—like they explode. Perhaps not all Lithium batteries do this, but it is reported from America that the powerful Federal Aviation Administration has ordered that Lithium-Sulphur-dioxide batteries must be removed from emergency aircraft locator transmitters within 30 days. Apparently half a dozen or so reports were received of LiSO₂ batteries exploding. Some 6000 aircraft in the US carry equipment that uses LiSO₂ batteries.

Mon Dieu

I note with great interest that a British company has come up with an i.c. certain to cause a linguistic stir. By adding it to your teletext/viewdata decoder set, you can have the potential to display the whole lot in one of 28 different languages-Ha so! Perhaps you don't get the whole 28 in one go, but an order has already been received for the chip from across the pond in Canada, where the new i.c. is to enable delighted viewers to see viewdata information in a 20-row format (32 characters/row) in English and French. Had this happened when de Gaulle was in office, the designers would have been given the Legion of Honour and free wine for life. How about it, Giscard?

Stable Arrays

And pleased I am, too, to tell of another British achievement. A wellknown establishment has come up with a new way of addressing twisted nematic liquid crystals. The liquid crystal display matrix can be driven continuously over the whole of its area and thus the annoying flicker associated with multiplexed arrays is eliminated.


Complementary m.o.s. (CMOS) powered by only 15V is used to drive a 100 x 100 matrix at around 5kHz. Researchers believe that 1000 x 1000 element arrays are possible. This, coupled with the low voltages and flicker-free display, could have great impact on the small screen TV and scope development. A pocket oscilloscope with a power consumption of, say, 500mW becomes a reality.

Bye-Bye Noise

The Dolby system of noise suppression in audio and hi-fi equipment is now very well entrenched. But a German company has arrived with an alternative—and the claims are that it's better, too. The new system is called High Com and it claims to be an improvement over the Dolby system in two areas. The first is that it removes an extra 10dB of noise. It is also said to perform this kind act over the audio spectrum—that's 30Hz to 20kHz, not just over a narrow band.

The immediate area of obvious improvement is at the I.f. end. The Dolby system starts to be effective at around 300Hz, so it isn't so effective against our old audio enemy "mains hum" at around 50Hz. The name High Com derives from "high fidelity compander" and during compression the lowest level signals are amplified. Thus any noise that is picked up or contributed by either the storage medium employed or the actual transmission path finds the amplified signal that much stronger and therefore that much higher above the noise level.

The immediate application for such a device is in consumer audio goods and it is rumoured that some 20 European electronics manufacturers are very interested indeed, as are four of the big Japanese producers. One claim is that when the High Com was used on an audio cassette tape recorder, the measured noise was found to be no less than 20dB down. The magic i.c. that helps achieve all these wonderful things is designated U401B and it comes disguised in a 24 pin d.i.l. plastic package. It has been suggested that the new device could be very usefully employed in radio and television. Although it will cost a little more than the Dolby counterpart at present, volume production will doubtless bring the prices tumbling down. Please note: you cannot buy one yet.

Most multi-range meters offer a rather mediocre performance on the a.c. voltage ranges. The Avo 8 MkIV, which has long been one of the writer's favourite test instruments, exhibits an internal resistance of only 250 ohms on the most sensitive (2.5V) a.c. range. This is clearly very unsatisfactory regarding sensitivity and circuit loading when measurements are to be made on today's electronic circuits. The instrument described was therefore developed as a replacement for the Avo on the a.c. voltage ranges and it offers the advantages of a $1M\Omega$ constant input impedance on all ranges and a frequency response which is substantially flat from 10Hz to well over 100kHz. Six voltage ranges are provided, with a maximum sensitivity of 100mV r.m.s.

The unit uses low cost readily available components and can be built for an outlay of around $\pounds 10$. Battery consumption is minimal and a small 9V battery will provide for many hours of operation.

Circuit Operation

The a.c. voltage to be measured is applied to a switched potential divider, R1 to R6. The range is selected by S1 and capacitor C1 is used to remove any d.c. level present on the input voltage. R7 provides a measure of protection for the field effect transistor, Tr1, and C2 provides a degree of high frequency compensation. Tr1 operates as a

M.TOOLEY BA G8CKT

source follower and exhibits an extremely high input impedance (greater than $100M\Omega$) thus minimising the loading effect on the potential divider. Tr1 provides a voltage gain of slightly less than unity, the output voltage being developed across R8.

Silicon transistors, Tr2 and Tr3, form a two-stage highgain amplifier. Both transistors are operated in the common emitter mode. The amplifier incorporates three feedback loops which help to ensure unconditional stability, a wide operating bandwidth and a high degree of linearity. Stabilisation of the transistor bias is provided by means of direct current feedback from the emitter of Tr3 to the base of Tr2 using R9. C4 provides negative feedback in the second stage of the amplifier. This helps reduce any tendency to oscillation at high frequencies and also ensures that the frequency response "rolls-off" beyond a few hundred kilohertz. VR1, the emitter resistor of Tr2, is used to set the overall voltage gain by controlling the amount of negative feedback present.

Germanium diodes, D1 and D2, from a voltage doubler rectifier arrangement. The arrangement of C6 and C7 provides a means of reducing the surge current through the meter movement during switch-on. Silicon diodes, D3 and D4, provide a "last ditch" protection for the meter movement by offering a shunt path to current when a 600mV voltage drop of either polarity appears at the meter terminals; this corresponds to an eight times overload.



Fig. 1: Circuit diagram of the a.f. electronic voltmeter

***** specifications

Voltage ranges: 100mV, 500mV, 1V, 5V, 10V, 50V

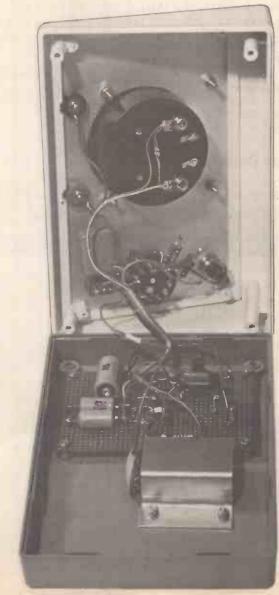
Input resistance: $1M\Omega$ on all ranges

Frequency response: Typically 5Hz to 250kHz at 3dB down

Accuracy: ±5%

Supply: 9V d.c. at 10mA

Construction


The impedance converter and the amplifier circuit are constructed on a p.c.b. The circuit board layout is shown in Fig. 3. The range selector switch, S1, is mounted on the front panel of the instrument together with the meter movement, power on/off switch, l.e.d. indicator and input sockets. The potential divider resistors, R1 to R6, are most conveniently wired directly to the tags of S1. C1 is wired directly between the input terminal and top end of R1, which is located on S1. Note that the high frequency response of the instrument will depend very much on the stray reactance associated with the input and potential divider wiring. It is essential that all connecting leads be kept as short and direct as possible. The front panel wiring layout is shown in Fig. 4.

Earthing of the metal front panel is achieved by means of the body of \$1, which may be soldered to directly in order to provide a common earth point. If an alternative switch is substituted for the recommended type, it may be necessary to locate a separate earth tag on the front panel. This may be most conveniently accomplished by using one of the meter securing nuts. The front panel is labelled by means of dry transfers, and then sprayed with clear lacquer to protect the transfers. During this operation the meter should either be removed from the front panel or be protected using several layers of masking tape.

The instrument is housed in a standard Vero case. Any other suitable case may of course be substituted provided that any metal parts are connected to the earth or common rail. It was not found necessary to use a totally screened enclosure for the instrument, as with careful wiring there should be no pick-up of hum or stray signals within the unit. The unit will not, however, give accurate indications in the presence of very strong r.f. fields such as may be experienced when measurements are made on medium or high power transmitters.

Testing and Calibration

After completing the assembly of the instrument it is advisable to carry out a thorough visual check of the wiring. Connect a 9V battery to the instrument and measure the d.c. current supplied. If the circuit is functioning correctly this should be approximately 10mA and will vary slightly according to the setting of RV1. Due to a slight difference in the charging currents of C6 and C7, the meter pointer

Internal view of the complete instrument. This is the prototype which used a matrix board instead of a p.c.b.

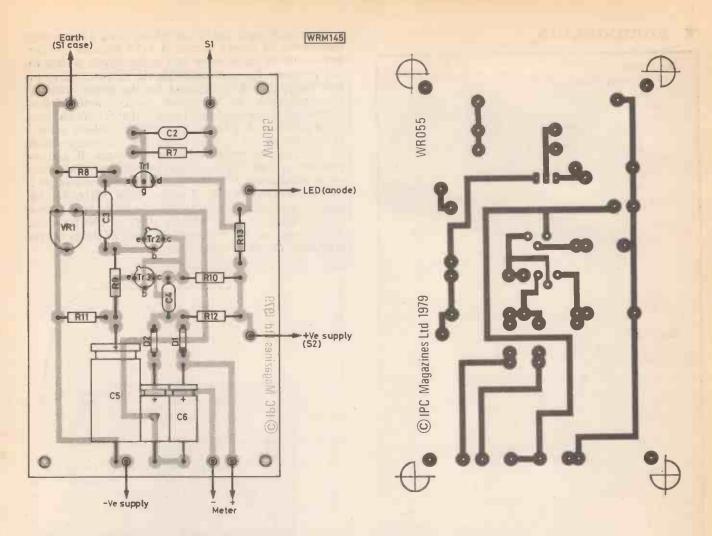
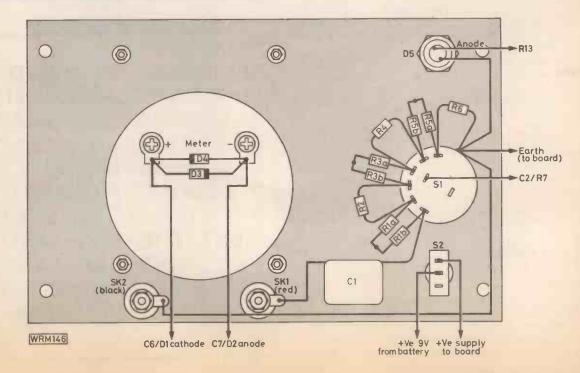



Fig. 2: (above left) The component overlay for the p.c.b. version of the a.f. voltmeter

Fig. 3: (above right) The copper track layout of the p.c.b. shown here full size

Fig. 4: (below) The wiring and layout of the front panel. The resistors on S1 are soldered directly to S1 tags and the end of R6 is soldered directly to the body of the switch

★ components

Resistors		
$\frac{1}{2}W$ 2% metal oxide		
1·2kΩ	1	R5a
2kΩ	1	R6
6·8kΩ	1	R5b
10kΩ	1	R4
12kΩ	1	R3a
68kΩ	1 .	R3b
100kΩ	1	R2
120kΩ	1	R1a
680kΩ	1	
UOUKSZ		R1b
11A/ EO/ mark an film		
$\frac{1}{2}W$ 5% carbon film		
1kΩ	2	R11, 13
1-5kΩ	1	R8
2·2kΩ	1	R12
22kΩ	1	R10
100kΩ	1	R9
1MΩ	1	R7
Capacitors		
Electrolytic axial leads		
100µF 25V	2	C6, 7
250µF 25V	1	C5
Polystyrene		
47pF	2	C2,4
Polyester		
0.22µF	1	C3
0.47µF	1	C1
0.47μ		CI
Potentiometers		
Miniature horizontal prese		VD1
5kΩ lin.	1	VR1
Semiconductors		
Diodes	~	
0A90	2	D1, 2
1N4148	2	D3, 4
LED	1	D5
Transistors		
BC108	2	Tr2, 3
2N3819	1	Tr1
Switches		
1p6w rotary	1	S1
s.p.d.t. min. toggle	1	S2
Miscellaneous		
Case Vero 75-1798-k	171	x 121 x 75mm (1);
4mm terminals 1 re	ed, 1	black: Meter, 50µA
4 inch scale 110 x 8		
battery connector, kno		
		and and any arra article

may give a momentary indication when switching on. The pointer should however return to zero fairly quickly, and if this is not the case the wiring should be re-checked for faults.

To calibrate the instrument a known source of a.c. voltage is required. A signal generator with a calibrated output level may be used, alternatively a comparison may be made with an existing a.c. voltmeter. If neither is available,

(Sifam).

a rough calibration can be carried out using a low voltage transformer of known output. A 6.3V filament transformer or the 9V transformer of a power supply is ideal for this purpose. The instrument should be switched to the 10V range and RV1 adjusted for the correct reading: The calibration on the other ranges should follow automatically provided that the potential divider has been wired correctly. If a signal generator is available a check can be carried out on each range. The calibration should be consistent to within $\pm 5\%$ on all ranges. If a signal generator is used, it is suggested that calibration be carried out at a frequency of 1kHz. Where a mains transformer is used the calibration will, of course, be at 50Hz. The frequency response of the instrument should be "good" over a wide frequency range, at least 10Hz to 100kHz at the 3dB points, and the frequency response of the prototype instrument on the 1V range is shown in Fig. 5.

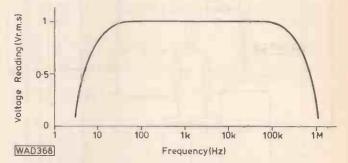



Fig. 5: The frequency response of the instrument

Note that, due to the high input impedance of the instrument, false readings can sometimes be produced on the more sensitive ranges. This is due to pick-up of hum and stray signals on the input leads. The input leads can be screened if desired; the inner lead of the coaxial cable is connected to SK1 (red) and the outer screen to SK2 (black). It is important to note that coaxial cable possesses an appreciable shunt capacitance between the inner conductor and screen (often as much as 100pF per metre). Long screened cables should therefore be avoided since they will impair the high frequency response of the instrument.

by Eric Dowdeswell G4AR

The problem of identifying correctly an amateur callsign can present a problem to anyone unaccustomed to listening on the amateur bands. It often seems to be a jargon incapable of being decoded! The answer is not always obvious even if the station is in the clear, but if it is being clobbered with QRM then there really is a problem.

Although there is an ITU phonetic alphabet, given below, it is seldom adhered to by amateur operators who seem to use part of this alphabet and part of their own invention. In a perfect phonetic code the word used to represent a letter, such as "alfa" for A and "bravo" for B, must be neutral, one without any particular connotation and generally understood world-wide.

The approved code starts off all right but then uses "Charlie" for C, although personal and place names ought to be avoided since these can be misleading, especially in amateur use, where station locations and operator's names are constantly being exchanged.

Α	Alfa	J	Juliett	S	Sierra
B	Bravo	K	Kilo	Т	Tango
С	Charlie	L	Lima	U	Uniform
D	Delta	Μ	Mike	V	Victor
E	Echo	Ν	November	W	Whiskey
F	Foxtrot	0	Oscar	X	X-Ray
G	Golf	Ρ	Papa	Y	Yankee
Η	Hotel	Q	Quebec	Ζ	Zulu
L	India	R	Romeo		

There are several words in the phonetics list which I do not agree with personally, but the problem is to find suitable alternatives.

What causes most confusion however is the amateur's own version of the phonetic code, especially the use of "George" for the G in UK callsigns, particularly where the operator is called "Fred"! Might not matter too much among lads and nets on 2m or u.h.f., but used on the DX bands can only make identification of a callsign all that more difficult.

On numbers, the recommended procedure is to use the word "figure" before any number, to indicate that a figure is to follow, thus "Golf, figure four, alfa romeo". This can only help but it is seldom employed by amateurs unless they have been trained on a military or commercial network of some kind. The use of phrases like "Red Hot Momma" for RHM in the suffix of a call may be amusing to some but meaningless to the amateur with little or no knowledge of the English language.

I appreciate that this little homily will have no effect whatsoever, but I hope it will serve to demonstrate to the innocent listener to the amateur bands that there is little or no "system" with amateur phonetics. Initially, it is better to write down in full what is heard and then the callsign ought to become apparent, aided by a good list of prefixes, but, as ever, experience will prove the best teacher.

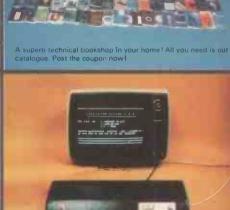
Here and There

Well known to this column for his SSTV reports in the past, Paul Barker of Sunderland is now busy on c.w. and s.s.b. with his new callsign G4HPS, having started off with G8OVD. Paul's first s.s.b. QSO was with FG7AS/FS7 on 10m, which is enough to make anyone's mouth water! He uses a TS520S transceiver to an 18AVT multiband vertical, plus an FT221R on 2m to an indoor 4-element quad. Paul managed to get QSLs from all six continents for SSTV reports before getting his ticket.

In Southport, Peter Hawks has got going with a DX 160 but, like others, found the manual's calibration chart did not match up to reality. He's talking about a digital readout unit but I think he would be better off initially with a crystal calibrator. Philip Charlesworth (Southport) has got going with an outside aerial which he finds "staggering" after his indoor one. As he lives on the only hill in Southport he will find the advantage of much greater importance when he gets his ticket in due course. Philip mentions the PAOAA transmissions on 3750kHz for amateurs, followed by slow Morse transmissions. Details of the latest schedules would be appreciated.

Peter Lucas of Newport, Salop, has dumped his R207 and settled for an AR88 but needs to rewire a lot of it. A circuit or manual would be appreciated at 3 Queen's Drive if anyone can help. Pete's been hearing plenty on 10m of late with only a 16ft vertical. In Chiswick, London, George Gizebieniak BRS 41733 has bought an old SX24 receiver for £20 and found it worked fine on the 10m band, with converters for 2m and 70cm.

An appeal from Jim Timoney ZS1TK for a spare for his KW2000 transceiver, not having had any success with the descendants of KW in this country. He wants the 3-gang tuning capacitor on the pre-selector, part number C40 on the circuit diagram. Any offers of help to me direct please. Another reader in need of help is M. David of 46 Pentathlon Way, Cheltenham, Glos, who has got hold of a Star SR550 for just a £1! It works fine but he'd like a manual for copying and return. He's heard an HK on the 10m band and threatens to send in some logs in future.



A massive new catalogue from Maplin that's even bigger and better than before if you ever buy electronic components, this is the one this is the one catalogue you must not be without Over 280 pages -some in full colour -it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page after page of invaluable data

Our bi-monthly newsletter contains guaranteed prices, special offers and all the latest news from Maplin

A 63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue

An attractive mains alarm clock with radio switching function and battery back up! Complete*kit with case only £13.88 (incl VAT & p & p) MA1023*module only £8.42 (incl. VAT).

Post this coupon now for your copy of our 1979-80 catalogue price 75p.

Please send me a copy of your 280 page catalogue as soon as it is published (8th Jan. 1979). I enclose 75p but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75p refunded immediately. If you live outside U.K. send £1 or ten International Reply Coupons.

NAME	
ADDRESS	,
_	Φ.M/ 7.Ki