RELECTRONICS ELECTRO-ACOUSTICS RAPIO ELECTRONICS

JAN. 1943

1/3
Vol. XLIX No. 1

FREQUENCY MODULATION: NEW SERIES

GECALLOY N.E. ALLOY POWDER.

GECALLOY NF ALLOY POWDER

is now used for practically all radio cores being manufactured in this country. It is an all-British Product, the result of extensive research and development work carried out during the last 15 years.

The use of a finely divided alloy of high magnetic quality represents a further advance in the science of Magnetic Powder metallurgy in comparison with all the various grades of iron powder, most of which previously have been imported.

PROGRESS PROBLESS TIC POWDER

MAIN ADVANTAGES of GECALLOY NF ALLOY POWDER and RADIO CORES.

- 1. Higher permeability.
- 2. Higher particle specific resistance.
- 3. Lower Eddy Current Loss.
- 4. Non-rusting.

METALLURGY

Please send your enquiries to:-

SALFORD ELECTRICAL INSTRUMENTS LTD.

PEEL WORKS, SALFORD, 3. Telephones: BLAckfriars 6688 (6 lines). Telegrams and Cables: "Sparkless, Manchester"
PROPRIETORS: THE GENERAL ELECTRIC Co. Ltd., OF ENGLAND

46-range Model 7 Universal AvoMeter

The Model 7 Universal AvoMeter (illustrated) is a compact combination electrical measuring instrument of B.S. 1st Grade accuracy. Its 46 ranges cover A.C. and D.C. amperes and volts, resistance, capacity, audiofrequency power output and decibels. No external shunts or series resistances. Protected by automatic cut-out against damage through overload.

Some delay in delivery of Trade Orders is inevitable, but we shall continue to do our best to fulfil your requirements as promptly as possible.

The world-wide use of "AVO" Instruments is striking testimony to their outstanding versatility. precision and reliability. In every sphere of electrical test work—laboratory, shop or out on a job—they are appreciated for their dependable accuracy, which is often used as a standard by which other instruments are judged. There is an "AVO" Instrument for every essential electrical test.

Sole Proprjetors and Manufacturers:

AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT Co., Ltd., Winder House, Douglas St., London, S.W. L

WHAT BIT TEMPERATURE SHOULD BE USED FOR 40/60 ALLOY?

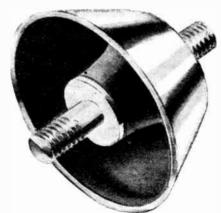
This and numerous other queries are answered in reference sheet 2 of "Technical Notes on Soldering," published by the manufacturers of Ersin Multicore—the A.I.D. approved solder wire with three cores of non-corrosive Ersin activated flux.

Firms engaged on Government contracts are invited to write for a copy of this reference sheet and samples of Ersin Multicore Solder Wire.

ERSIN MULICORE

The Solder Wire with 3 Cores of Non-Corrosive Ersin Flux MULTICORE SOLDERS LIMITED, BUSH HOUSE, W.C.2. 'Phone Temp.Bar 5583/4

PRE-EMINENT IN PEACE

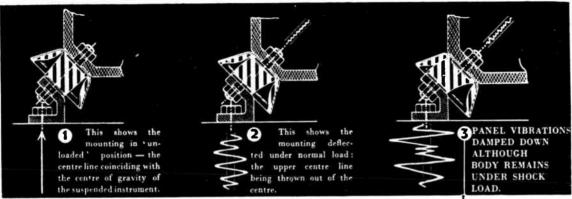


ADVERTISEMENT OF THE TELEGRAPH CONDENSER CO. LTD.

G.P. 5262

Αg

RUBBER-TO-METAL BONDING



Another very interesting problem in VIRRATION—and its solution.

PROBLEM: An instrument panel requires immunisation from shock arising in any or all of three dimensions.

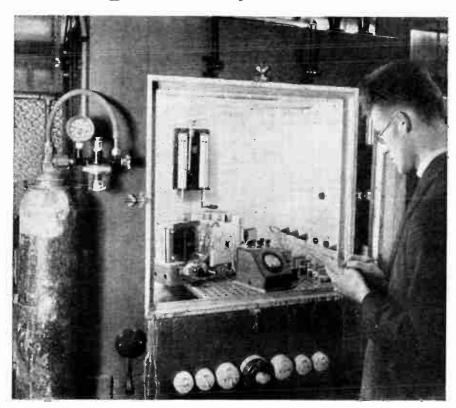
SOLUTION:

The R.B. Mushroom Mounting Type D.T.

Here is a problem in Vibration solved by the Rubber-to-Metal Bonding Technology of Rubber Bonders Ltd.

Vibrations are represented diagrammatically and the isolating effect of the Type D.T. Mushroom Mounting is clearly seen. This mounting is proving valuable in eliminating persistent vibration or shock.

Rubber Bonders Ltd., are successful because their scientific staff deal with every problem <u>individually</u>. Why not send a typical "vibration headache" to Flexilant Works, Dunstable for cure?


This shows the mountin; deflected under shock load. The upper centre line being still further thrown out of centre. You will notice the progressive 'abutment of the rubber profile which gives a stiffening effect that increases as the deflection increases.

A semi-technical booklet entitled "A Short Review of 'FLEXILANT' Products" is available upon enquiry.

RUBBER BONDERS LIMITED Engineers in Rubber bonded to metal FLEXILANT WORKS · WATLING ST · DUNSTABLE · BEDS

Value proved by long service

Osram Valves

Ever since the advent of radio Osram Valves have been closely connected with all the progressive stages of development in radio science. Intensive research still goes on by improvements in design and technique to keep pace with the advancing times, and which will ultimately be of benefit to all.

◆ LINAGLOW LIMITE

WATCH OUR ADVERTISEMENTS EVERY MONTH—IT WILL PAY YOU

We have secured the entire stocks of a famous manufacturer and offer these at from 33-45% below normal prices.

TUBULAR PAPER CONDENSERS, 500 v.. D.C. working. .5 mfd. 16/- doz.; .01, .02, .03, .001, .002, .003, .005 mfd., 6/doz.; .0001, .0002, .0003, .0005 mfd., 4/- doz., etc., etc., or Assorted Parcel of 50 for \$1/7/6. Minimum orders, 1 doz., any type.

FIXED CARRON RESISTORS. Wire Ends -- Assorted and Useful Values. 1-watt, 24/-; ½-watt, 30/-; 1-watt, 36/-; 2watt, 55/-; 3-watt, 84/- per 100. Minimum orders 50 assorted. Assorted parcel for \$3. Contains 25 1-watt, 50 4-watt, 50 1-watt, 25 2-watt, 10 3-watt.

WIRE WOUND RESISTORS. Wire Ends-Assorted and Useful Values. 4-watt, 110/-; 6-watt, 118/-; 8-watt, 135/-; 10-watt (800 ohm only), 150/per 100. Minimum orders 50 Assorted.

HEAVY DUTY WIRE WOUND RE-818TORS. Copper Ends. 8-watt, 100/ 25,000 ohm, 2/6 each; 12-watt, 900/40,000 ohm, 3/- each; 15-watt, 200/175,000 ohm, 3/6 each; 20-watt, 6,000, 7,000 and 8,000 only, 4/- each; 25-watt, 250/75,000 ohm, 5/6 each; 50-watt, 435/100,000 ohm, 7/- each.

TAPPED WIRE WOUND RESISTANCES. Special Offer. 25-watt, 375 ohm, tapped 125 and 250, 6/6 each; 50-watt, 840 ohm, tapped 600, 680 and 760, 8/- each.

MANSBRIDGE CONDENSERS. .01, 500 v. D.C., 18/- doz.

PHILIPS I.F. TRANSFORMERS, 3-hole chassis mounting, in circular copper cans, 1/- each.

ASSTD. 8/WAVE COILS, Paxolin Formers, chassis mounting, 5/- doz.

Special Offer!— DE LUXE 5-V. ALL-WAVE SUPERHET CHASSIS. Complete with VALVES and M.C. SPEAKER. LATEST MODEL. Brief Specification:

Wave Band Coverage 18m. to 2,000 metres, 5 waits output. Large 6in. Glass Dial. Separate tone and volume controls. Extremely good selectivity and sensitivity. Really "Hot" on Short Waves. Heavy Gauge Steel Chassis. Provision for extension Loud-speaker and Pick-up.

£14.15.0

PARAPHASE PUSH/PULL OUTPUT 7-VALVE CIRCUIT £19.10.0

Above prices include Purchase Tax

POCKET VOLTMETERS in case, good quality, 0-120 v., 0-12 v. nickel, with lead, 10/6 each. .0003 VARIABLE CONDENSERS, 2-gang, ceramic insulation, complete in brass screening can. Ideal for short wave work. Worth 21/-. 7/6 each.

HORT-WAVE VARIABLE CONDENSERS, mounted on porcelain base. Solid brass, split vane, long spindle. Normally 30/-. 15/- each.

OOS TWIN-GANG VARIABLE CONDENSERS.

Aluminium screened, with trimmers. Long spindle.

AMERICAN 3-GANG VARIABLE CONDENSERS.
Aluminium screened with trimmers, two sections 0003, one section .0002, 10/6 each.

DUAL H.F. CHOKES, a bargain, 3/= each.

SINGLE H.F. CHOKES, a bargain, 1/6 each.

3. HAMPSTEAD LANE. LONDON, N.6 'Phone: Mountview 9432

Don't miss this opportunity. These prices cannot be repeated. All goods are brand new. Guaranteed best quality. Close Tolerance.

VALVES—AT CONTROLLED PRICES 6K8, 12SA7, 1N5, 1D8, 12K7, 6V6G, 6D6, 42, 6X5, 6U5, 1A5, 75, 6U7, QP22A, 50L6, 12SJ7, 1H5, 6Q7, 25Z6, 25Z6GT, 35Z4, 35Z5, 45Z5, 70L7, 83, 12SK7.

VOLUME AND TONE CONTROLS, with and without switch—suitable for all well-known makes of radio. 6 assorted and useful values for \$1/7/6.

L.F. CHOKES

20 hys. 100 m.a. brand new 40 hys. 100 m.a.

16/9

ELECTROLYTIC CONDENSERS. Tubular Paper, 25×12, 2/e each; 25×25, 2/6 each; 8 mfd. Tubular, 150 v., 3/6 each; 8 mfd. Can, 350 v., 6/e each; 8×8 Can, 450 v., 12/6 each; 10 mfd. Tubular, 50 v., 1/6 each; 32×32 Block, 175 v., 6/6 each; 32 mfd. Can, 350 v., 12/6 each; 50×50×2 Block, 15/550 v., 5/6 each; 5×5 Block, 35 v., 3/6 each;

SILVER MICA CONDENSERS. Flat Wire End—Assorted and Useful Values, 17/6 per 100 (not more than 5 alike).

I.F. AND AERIAL TRIMMERS. 12 Assorted and Useful Values for 2/6.

CLEAR BULBS. 2.5, 15/9 per 100, inc. tax.

Valve Holders. 7-pin low loss ceramic porc., 3/6 doz.

Lissen R.C. intervalve coupling unit, 1/6 each.

Colvern 5- and 6-pin coil bases, 6d. each.

Benjamin 4-pin anti-phonic valve holders,

Glass Radio Fuses. Spring clip, bakelite base, 1-5 amp., 1/- each.

L.F. Intervalve Transformers. Heavy laminations, Exceptionally well made. Ratios 4:1 and 6:1, 3/6 each.

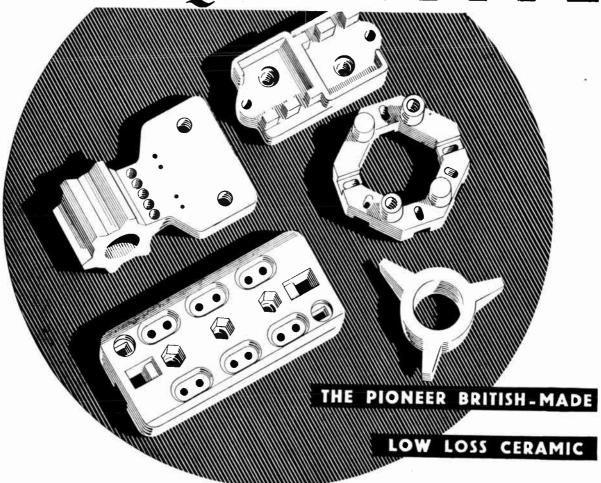
Philips Wire Wound Potentiometers, with switch, 1/6 each.

NOTE.—All Orders C.O.D. or Cash with Order, carriage paid. We cannot hold Order, carriage paid. We cannot hold ourselves responsible for goods damaged or lost in transit.

The Voice of the Services -SIGNALLING

EQUIPMENT

Specialists in Morse Equipment


also makers of Small Transformers, Coil iwindings, Small Bakelite Mouldings, Turned Parts, Light Pressings, and other components and accessories for the Wireless and Electrical Trades.

Merit House, Southgate Road, Potters Bar

Phone: Potters Bar 3133

FREQUENTITE

THE DEMAND for Frequentite, which possesses outstanding properties of Low Loss and High Mechanical Strength, continues to increase rapidly—and to be met. Production capacity has been stepped up over a period of years by extensions to plant, the

employment of specialised new equipment, and progressive improvements in manufacturing technique. Bulk supplies of the most intricate designs can be delivered promptly, and all manufacturers are invited to write for Catalogue No. SP.10.

STEATITE & PORCELAIN PRODUCTS LTD.

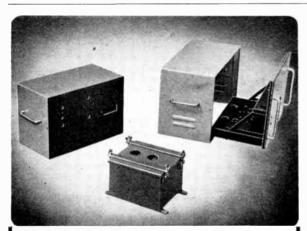
Head Office:

Telephone: Stourport 111.

STOURPORT-ON-SEVERN, WORCS.

Telegrams: Steatain, Stourport.

SP.2



hoping

In the wider interests of the country we are compelled to disappoint many users of our products. It is impossible for us to supply or repair any apparatus except on Government contract. But, to all those radio workers who have supported and encouraged our efforts in the past, let us say at once that we will neither forget them nor the aims which we set ourselves. One day, apparatus created by the research and experience we have gained in war years will bring you loudspeakers that set new standards of perfection in sound reproduction.

GOODMANS

Lancelot Road, Wembley, Middx.

A skilled team of workers in an efficiently equipped modern factory produces to an unusually high standard all types of metal instrument cases, radio chassis, panels, brackets, boxes and other metal components. We are also able to undertake the design and manufacture of complete amplifying equipment for special requirements.

PRIORITY ORDERS ONLY

Engineering and Electrical Contractors to the Admiralty, Air Ministry and Ministry of Supply.

ALFRED IMHOF LTD, 112-116, New Oxford Street, London, W.C.I.

MALLORY VIBRATORS

are always dependable

(BRITISH PATENTS)

A LONG every front Mallory has pioneered in vibrator design to ensure safety, dependability and long service.

Mallory offers synchronous and non-synchronous vibrators for 6, 12 and 32 volt input also a new range of accepted "STRATOSPHERE" vibrators for high altitude aircraft service.

Mallory engineers are at your disposal.

P. R. MALLORY & CO. INC. INDIANAPOLIS, INDIANA, U.S.A.

FRANK HEAVER LTD., Kingsley Road, Bideford N. Devon, Eng.

CLARKE'S

A.C. to D.C. CONVERTERS

Type R.M. 80/150

Input: 230v. A.C. $50\sim$ Output: 80, 100, 120, 150, 230v. D.C. Incorporating Westinghouse Metal Rectifier, In strong steel case, well venti-lated ... Price 5 Gns. Post and packing 3/6 extra.

ON-OFF TOGGLE SWITCHES

Finest quality. Turn movement. 1fin. spindle.

G.P.O. MORSE KEY AND **BUZZER UNIT**

Made for professional use. All parts of heavy brass moun ted on mahogany base.

Platinum contacts. A robust unit 40/which will give years of service

CELESTION AMPHENOL VALVE HOLDERS

The best quality obtainable 8-pin International 1/3

T.C.C. CONDENSERS Each 9/6 0.1 mfd. 5,000 v. D.C. wkg.

ELECTRIC SOLDERING IRONS 200/250 v. 75 watts 12/6

PIEZO-CRYSTAL Hand—Table **MICROPHONES**

See December issue for details.

82/6

Good Quality Components by HIIIPS

PHILIPS High Quality SUPER SENSITIVE P.M. SPEAKERS

These brand new speakers arc fitted with concentrically mounted Hi-note Diffusers. 84in. cone. Complete with Pentode Transformer. Price 32/6

PHILIPS DOUBLE-WET ELECTRO-LYTIC CONDENSERS

15 mfd. at 275v., and 50 mfd. at 320v. each 12/6

PHILIPS TRIMMER CONDENSERS

Non-drift air dielectric, 60 mmfds., suitable for S.W. Price 1/3

PHILIPS SMOOTHING CHOKES

Brand new, well-built chokes, 60 ohms D.C. resistance 400/120 m.a. Core size: 2in.×1in. each 5/6

Also 400 ohms D.C. resistance 60 m.a. Core size: 11in. 3/6

PHILIPS CARBON POTENTIOMETERS

700,000 ohms, with 2-pole M and B Switch 4/6 100,000 ohms, less switch ...

PHILIPS CONCENTRIC SPIRAL VANE VARIABLE CONDENSERS

3-Gang 0.0005 mfd. without trimmers. As used in Philips well-known Push-Button receivers. Price 4/6

PHILIPS WIRE WOUND **POTENTIOMETERS**

each 6/6 450 ohms and 10.000 ohms PHILIPS VOLTAGE TRANSFORMERS

Robust in construction; weight approx. 13 lb. Dimensions: 5\(\frac{3}{4}\times 5\)\\
\times 4\(\frac{1}{4}\)in. Specifica-×41in. Specification: 350-0-350v., 70 m.a. Four tappings giving 4v. 3 amps., 6.3v. 4 amps., 4v. 0.65 amp. and 4,000 v. at 3 m.a. Input

Free wiring diagram. 100/250.Carriage forward.

Price 32/6

SUPREMUS H.T. BATTERY ELIMINATORS

Model E25A for 200 - 250v. A.C. 40 - 100~

Tappings, 40, 60, 80, SGH, 100, SGL, 125v. These well-known H.T. Mains Supply Units are fitted in handsome bakelite cases. is an opportunity for battery set owners, who have A.C. mains current available, to be independent of the battery situation. Owing to post and rail conditions these are available TO CALLERS ONLY. 70/-Price 70/-

PUSH-BUTTON CONDENSERS

The .0005 6 - button Front Manual Control Model recently offered at

10/6 are all sold. We can now offer a .0003 mfd. 2-gang 6-button Condenser as illustrated, but with 8IDE manual control. Price 15/6. Also .0005, 3-gang 8-button at 17/6.

6 PUSH-BUTTON MECHANISM only UNIT Complete with buttons 4/6

SPEAKERS

ROLA 8in, P.M. without trans-former ... 25/-

CELESTION 8in. P.M. Pentode Out-put, New 25/6

MULLARD EA50 DIODES

60 mm. × 12 mm. overall. 6.3v. 10/6 heater at 15 amp. ... --- Each

OAK **SWITCHES**

21in. spindle. Complete with knob:

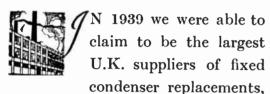
4-way, 2-bank with connecting block ... 4/6 4-way, 2-bank ...

ALL PUSH-PULL TRANSFORMERS

HAVE BEEN SOLD.

We cannot send Proforma Invoices nor can we accept

C.O.D. ORDERS


When sending your orders you must

ADD POSTAGE

23. LISLE ST. GERrard 2969 LONDON, W.C.2

Things to come

with unequalled range and variety of products.

In nineteen when radio and other electrical services return to their right use for the benefit of mankind and when the pace of technical improvement will be greatly accelerated, we shall be immediately ready to resume our cordial co-operation with the distributing trade in meeting the great public demand.



The Home of Condensers

Established 1901

Advt. of A. H. HUNT, Ltd., London, S.W.18

WHARFEDALE

GOLDEN CHASSIS

As supplied to the B.B.C.

Speech Coil 2-3 ohms: Flux Density 10,000 lines, 7-8 watts • 10° Chassis

Although we are making more than ever of this excellent Loud Speaker the output is absorbed by the B.B.C. and other Priority users,

PRICE 70/(Less Transformer)

RESPONSE CURVE

WHARFEDALE WIRELESS WORKS
SOLE PROPRIETOR: D. E. BRIGGS

HUTCHINSON LANE, BRIGHOUSE, YORKS.
PHONE: BRIGHOUSE 50. "GRAMS "WHARFDEL."

Acme Electric TRANSFORMER SPECIALISTS

NEW YORK.

WHERE PRIORITIES ARE AVAILABLE ACME CAN MAKE GOOD DELIVERIES OF THE FOLLOWING TYPES OF TRANSFORMERS:

INTERSTAGE
OUTPUT
PUSH-PULL
DRIVER
MICROPHONE
SIGNALLING

PLATE SUPPLY

AUDIO

FILAMENT
MODULATION
COMMUNICATIONS
RECTIFIER
3-PHASE POWER
400 CYCLE POWER
AIR-COOLED
LIGHTING

USERS OF TRANSFORMERS OF SPECIAL SPECIFICATIONS IN QUANTITIES NEEDING MASS PRODUCTION FACILITIES ARE INVITED TO SEND US THEIR ENQUIRIES.

SOLE BRITISH DISTRIBUTORS

ELECTRONIC ENGINEERING SERVICES LTD.

24, STANLEY ROAD, HEATON MOOR STOCKPORT

TELEPHONE: HEATONMOOR 3107

Made in Three **Principal Materials**

FREQUELEX

An insulating material of Low Dielectric loss. For Coil formers, Aerial Insulators, Valve Holders, etc.

PERMALEX

degree of efficiency.

nication under all conditions.

A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX

A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

BULLERS LTD.,
THE HALL, OATLANDS DRIVE,
WEYBRIDGE, SURREY.

Telephone: Walton-on-Thames 2451. Manchester Office: 196, Deansgate, Manchester.

CERAMICS LOSS

Laboratories have brought these materials to a high

They are in constant use for transmission and reception

and play an important part in maintaining commu-

COSMOCORD CRYSTAL PICK-UP SERIES III

It is regretted that production is severely curtailed and only very limited supplies are available through existing channels.

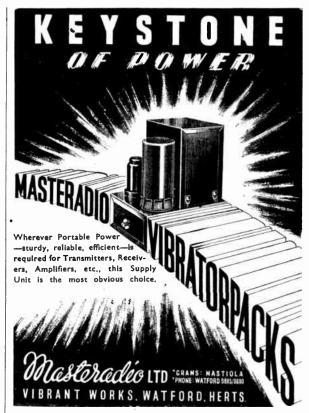
Sole Selling Agents:

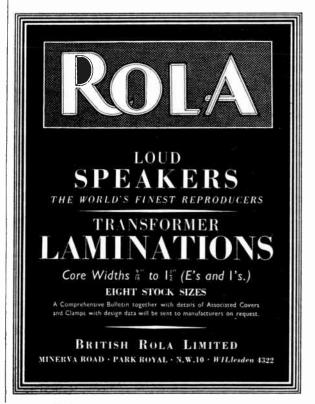
SALE, TILNEY & CO. LTD. 3, LLOYD'S AVENUE, LONDON, E.C.3

'Phone: ROYal 4811

SERVICE ON COSMOCORD CRYSTAL PICK-UPS IS MAINTAINED AS HITHERTO

Owing to lack of replacement parts and shortage of labour it is regretted that service on all other products and apparatus must be discontinued.


THINGS TO COME—


Are you interested? If so, will you kindly forward your name and address to

COSMOCORD LTD.

SERVICE DEPT.

700, GREAT CAMBRIDGE ROAD, ENFIELD, MIDDLESEX

NEVILLE'

COIL WINDING MACHINES

TAPING MACHINES

WIRE COVERING MACHINES

ARMATURE AND STATOR

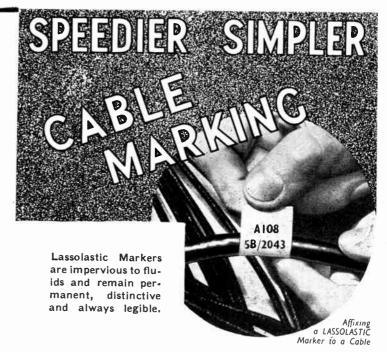
COIL WINDERS

Contractors to the Admiralty and other Government Departments.

Please address all enquiries to

NEVILLE'S (LIVERPOOL) LIMITED

SIMMONDS TOWER . GREAT WEST ROAD . LONDON


SIMMONDS GROUP DIVISION THE

Lassolastic Identification

Tabe provides thin filmic markers which adhere instantly by firm pressure, offer no undesirable thickening or interference with flexibility at their point of contact and can be affixed anywhere on a cable without necessitating any disconnection.

The identifications, which take form of any desired style of printing and colouring, cannot be erased till the filmic base, completely protecting them, is first destroyed.

HERTS. PHARMACEUTICALS Ltd. WELWYN GARDEN CITY, HERTS.

SUPPLIES

offer from stock the following brand new INDUSTRIAL and ELECTRO-TECHNICAL EQUIPMENT, for which early application is essential. All prices nett cash.

BEAVY DUTY OUTPUT TRANSFORMERS for two KT66 valves in push-pull (low loaded—opt. id. 3,600 chm) with sec. for 7.5 and 15 chms coils. Handling Swatts, weight 134 lb. Final opportunity, 72/6 (pkg. and pass. train 2/6 extra).

STEP-DOWN MAINS TRANSFORMERS, Prim. 200/250v, tapped. Sec. 12 and 17v. at full 5 amps., weight 9½ ib. For chargers, l.v. lighting, etc., 42/6 (pkg. and post 1/6). SUPERIOR BELL TRANSFORMERS, Prim. 200/250v. Sec. tapped 3, 5 and 8v. at 1 amp. Porcelain base with bakelite cover, fully fused on prim. and sec., complying with recommendations, 18/6.

With recommendations, 15/6.

MEASURING INSTRUMENTS by Weston, Ferranti, Elliott, etc. (We cannot undertake to select particular maker.) Housing 2½in. square fiange, flush panel mtg. requiring 2in. hole, black bakelite, back terminals. M/GOIL MILLIAMMETERS, 0/150 m.a. only left, 25/6. THERMO-COUPLE AMMETERS for any frequency and D.C., same style as above, 0/2.5 amp. and 0/3.5 amp. (two models), either 69/6. These meters are second-hand ex Govt., in good condition and lab. tested, and guaranteed accurate.

RELAYS. Londex with 200/250v. A.C. coil (2va) and 2-pole change over 6-amp. switch, size approx. 2½in. by 2½in., aliver contacts, 42/6. Also U.S.A. model, 4/12v., D.C. coil, with single pole make switch, 8/6.

VARIABLE RRISHTANCES, 100 watts, fully enclosed, approx. 3in. by \$in. by \$\frac{1}{2}in. following range, 4 ohms 5 amps., 10 ohms 3 amps., 50 ohms 1.5 amp., 100 ohms 1.amp., 200 ohms 0.7 amp., and 400 ohms 0.5 amp., any one \$21/-. Whole range in stock at time of \$50ing to press.

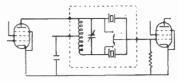
Stock at time of going to press.

TOGGLE PRESSES by 8.T.C.). Quick acting and accurate bench model exerting 1½ tons pressure. Height 32in., weight 130 lb. Many advantages over fly press—space saving, rapidity and ease of operation. A further amail supply for immediate delivery from stock. Many already supplied to most important users. Price \$30 nett, carriage forward.

DIDUSTRIAL ELECTRIC SOLDERING IRONS. Best makes from stock. S.T.C., all voltages, 100/110, 200/220 and 230/250, 75 watt with 4in. pointed bit, 21- (spare elements, any voltage, 6/-). Same make, 150 watt with massive flat bit, 32/6 (elements 7/6). Also Aern, popular bent model with interchangeable bit, good general purpose bit supplied, 28/6 (100 watt). Spare bits, 4/- each. Leave choice to

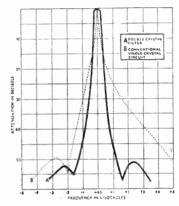
US.

PIEZO-CRYSTAL MICROPHONES (Rothermel-Brush). Just arrived, 400 only. Special miniature model only lin. dia. lightweight. Made for deaf-aid but suitable for all purposes, having a fine frequency response. In aluminium housing with short screened lead but no front grille, 27%. Also continuation of our well-known offer of well-known content of the content of the


G.E.C. PUBLIC ADDRESS SPEAKERS. Industrial model in 9in. drum, handling 5 watts, with transformer, 45/-. 10 watt PROJECTOR SPEAKERS with P.M. Unit with built-in line transf. and 42in. metal Horn, \$10.5.0. (Carr. 7/8 extra.)

Please estimate postage where not stated; any excess refunded

M.R. SUPPLIES, 68, New Oxford Street, London, W.C.1.


___ ('Phone : MUSeum 2958) _____

BAND-PASS FILTER CIRCUIT

Above Is shown the fundamental circuit similar to that employed in the Eddystone 358X receiver. When in circuit the bandwidth is 300 c/s, front panel control allowing optional use of normal I.F. selectivity, bandwidth 5 Kc/s.

SELECTIVITY CURVE "A"

shows the steep sides and flattened top response curve of the Band-pass Filter. Compare the normal crystal gate (Curve B) with its typical sharp peak necessitating constant tuning adjustment with the slightest signal frequency variation. Note the symmetrical rejection given by Curve "A" as opposed to the uneven tail effect of Curve "B."

In the 358X version of this famous receiver a Bandpass Crystal circuit is employed giving high selectivity and complete rejection of unwanted adjacent signals. Furthermore the double crystal circuit avoids the extreme "peaked" effect of the conventional crystal gate, allowing easier tuning and accommodating some frequency drift of the wanted signal. These advantages are readily appreciated by operators familiar with the hair-breadth tuning of the normal filter.

The "358X" may be inspected at 14, Soho Street, preferably by appointment.

EDDYSTONE COMMUNICATION RECEIVERS ARE AVAILABLE ON PRIORITY ORDER ONLY.

WEBB'S RADIO

Hours of Business 9 a.m.-4 p.m. Saturdays 9 a.m.-12 noon.

14, SOHO ST. OXFORD ST. LONDON, W. I. Telephone. GERRARD 2089

RADIO

MATERIALS

We have had a long experience in the manufacture of all kinds of Cables and Wires, Static Condensers, Insulators and Ironwork, Telephone Cords and Copper Earthing Rods, for Radio use.

BRITISH INSULATED CABLES LTD., Cable Makers and Electrical Engineers

Head Office PRESCOT, LANCS. Tel. No.: PRESCOT 6571

TAYLOR: METER

A NEW 38 RANGE UNIVERSAL METER

Sensitivity - 1,000 ohms per volt on all voltage ranges.

D.C. VOLTS. 7 ranges from 0—0.25 to

A.C. VOLTS. 6 ranges from 0-2.5 to 1,000 v.

OUTPUT. 5 ranges from 0-2.5 to 500 v.

D.C. CURRENT. 5 ranges from 0—1 mA to 2.5 Amps.

A.C. CURRENT. 5 ranges from 0—1 mA to 2.5 Amps.

RESISTANCE. 3 ranges from 1 ohm to 1 megohm with internal

battery.

RESISTANCE. I range from 1,000 ohms to 10 megohms with external 60 volt battery.

DECIBELS. 6 ranges from -22db to plus 60 db.

METER. 5 Scales covering A.C. and D.C. Measurements and also Ohms and Decibels.

SCALE LENGTH. Outer scale is 31 inches long.

TAYLOR MODEL 90

Supplied complete with leads test prod, internal battery and instruction book.

£11-11-0

British made by

TAYLOR ELECTRICAL INSTRUMENTS Ltd. Montrose Avenue, Slough, Bucks.

Telephone: Slough 21381

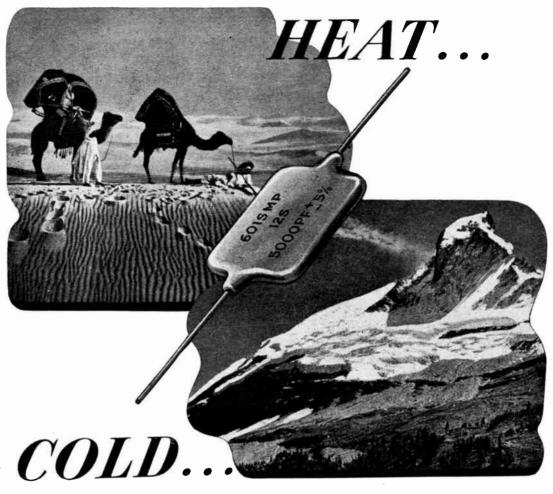
From Tootlights

to factory

N town to-nightat famous theatres and fashionable restaurants you will find Trix Sound Equipment. Like the war workers in the great factories. they all trust the reliability of Trix.

Illustration shows a TRIX 30-watt Amplifier with radio. There are TRIX Amplifiers from 5 to 500 watts.

Send for details.


TRIX ELECTRICAL CO. LTD. 65, Bolsover St., London, W.I.

Phone: EUS 5471/2.
'Grams: Trizadio, Wesdo, London

Equipment

AVAILABLE FOR PRIORITY WORK

. . . In the heat of the desert or the jungles, the cold of winter or high altitudes, SILVERED MICA CONDENSERS have to do their job and maintain their stability

TYPE APPROVED

UNITED INSULATOR Cº

12-20 LAYSTALL ST., LONDON, E.C.1

Telephone: TERminus 7383

Telegrams: Calanel, Smith, London

The Pioneers of low-loss Ceramics

Bargains!!! WIRE-WOUND POTS

A fortunate purchase of 5-WATT AMERICAN C.T.S. wire-wound Volume Controls, OFFERED AT HALF PRICE

20,000 ohms 4/-5,000 ohms 3/-2,000 ohms 2/6

In 2-doz. lots—less 25%.

HURRY!

Supplies won't last long.

RADIOMART

48, HOLLOWAY HEAD-BIRMINGHAM, I

Telephone: MIDland 3254

Westinghouse Rectifiers, our technical staff are ceaselessly, at work. We incerely regret that very limited supplies only are

sincerely regret that very limited supplies only are available, but we know that our customers will understand. To-day's intensive research, however, will release remarkable features of design when Westinghouse Rectifiers are again freely available to industry.

Westinghouse Rectifiers

Westinghouse Brake & Signal Co. Ltd., Pew Hill House, Chippenham, Wilts.

SPECIAL ANNOUNCEMENT!!!

American Lease-Lend RADIO VALVES

International Majestic Radio Corporation Ltd. have been appointed Official Distributors of these valves, specially released by the Board of Trade.

Owners of Receivers requiring replacements are invited to obtain our list of types available. All prices controlled by Government Order.

Our allocation is very comprehensive, but there will be a large call, so place your order immediately to avoid disappointment.

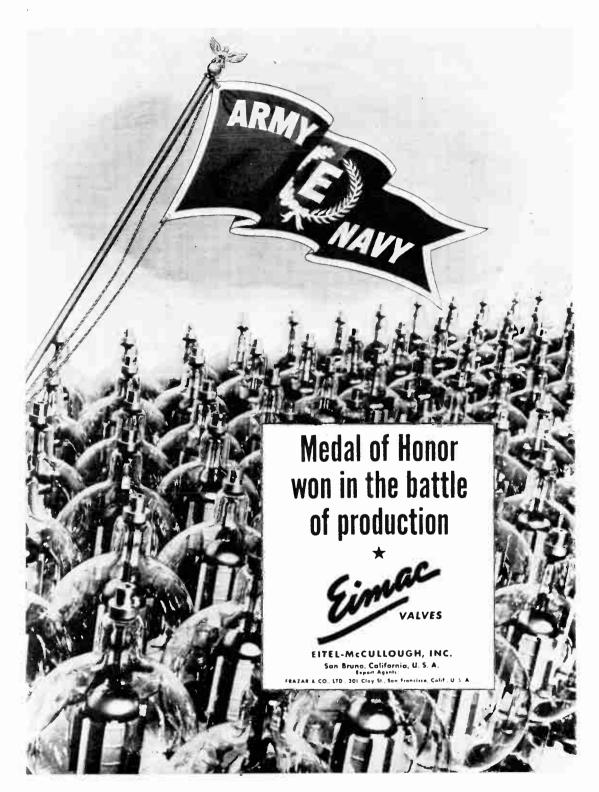
Any order guaranteed to be for genuine Maintenance-Replacement will be delivered.

PHONE OR WRITE

INTERNATIONAL MAJESTIC RADIO CORPORATION LTD.

6 Angel House, Pentonville Road, London, N.I.

TERMINUS 2256-7.


Were always doing the improbable

... solving the problems of our Customers with a confidence born of long achievement; producing the most complicated stampings and pressings with the precision of experience.

Have you a small part that's a big problem? We could produce it . . . doubtlessly . . . just try us!

JANUARY, 1943 WIRELESS WORLD Advertisements 19

But why

THE commandos of industry—those executives whose minds are at once enquiring and courageously receptive to new ideas—are storming the barriers of outworn custom.

Tested and proved in the hard school of industry, the products of the Simmonds Organization are daily presenting the vital short cut to simplicity of manufacture, economy of manpower and acceleration of output.

SIMMONDS

THE SIMMONDS "1987" NUT SIMMONDS-CORSEY CONTROLS SIMMONDS CONTENTS GAUGES FOR AIRCRAFT.

SIMMONDS POSITION INDICATORS
SIMMONDS ELECTRIC TEMPERATURE
AND PRESSURE GAUGES
SIMMONDS AIRCRAFT FLOORING

S P I R E "SEE" N U T S FRAM OIL & ENGINE CLEANER SIMMONDS INDUSTRIAL AND MARINE CONTENTS GAUGES SIMMONDS JOINTING COMPOUND SIMMONDS CRYSTAL UNITS SIM M O N D S - G O U D I M E NAVIGATIONAL INSTRUMENTS

SIMMONDS AEROCESSORIES LTD

ALL ENQUIRIES TO GREAT WEST ROAD, LONDON.

Wireless World

Proprietors: ILIFFE & SONS LTD.

Managing Editor: HUGH S. POCOCK, M.I.E.E.

> Editor: H. F. SMITH.

Editorial, Advertising and Publishing Offices:

DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Telephone:
Waterloo 3333 (35 lines).
Telegrams:
"Ethaworld, Sedist, London."

Δ

PUBLISHED MONTHLY

Price: 1/3

(Publication date 25th of preceding month)

Subscription Rate Home and Abroad 17/- per annum. Radio • Electronics • Electro-Acoustics

32nd YEAR OF PUBLICATION

JANUARY 1943

EDITORIAL		I		
FREQUENCY MODULATION.—1: The Nature of a FM Carrier.	ın			
By Christopher Tibbs, Grad.I.E.E.		2		
P.M.G. EXAMINATIONS. By William M. Moore		6		
HIGH-SENSITIVITY DC AMPLIFIER.				
By George A. Hay, B.Sc		9		
RADIO DATA CHARTS.—No. 3: The Characteristic Impedance of Transmission Lines.				
By J. McG. Sowerby, B.A., Grad.I.E.E.		10		
"WIRELESS WORLD" BRAINS TRUST A DEMONSTRATION MULTIVIBRATOR		12		
By E. Wilkinson, Ph. D		13		
RANDOM RADIATIONS. By "Diallist"		14		
VELOCITY-MODULATION U-H-F GENERATORS. By Geoffrey Bocking		16		
TOLERANCES.	• •			
By J. T. Terry	٠.	19		
THE WORLD OF WINESESSEE		23		
NEWS IN ENGLISH FROM ABROAD		24		
ONDITIOND. By I lee one	٠.	26		
DDIIDIO IO IIID DDIITI	٠.	27		
OHORI - WHILE THE HOLD -		30		
RECENT INVENTIONS	• •	32		

Branch Offices:

COVENTRY:

8-10, Corporation Street.
Telephone: Coventry 5210.
Telegrams:
"Autocar, Coventry."

BIRMINGHAM: Guildhall Buildings,

Navigation Street, 2.

Telephone:
Midland 2971 (5 lines).

Telegrams : "Autopress, Birmingham."

Manchester:

260, Deansgate, 3.

Telephone:
Blackfriars 4412 (4 lines).
Telegrams:
"Iliffe, Manchester."

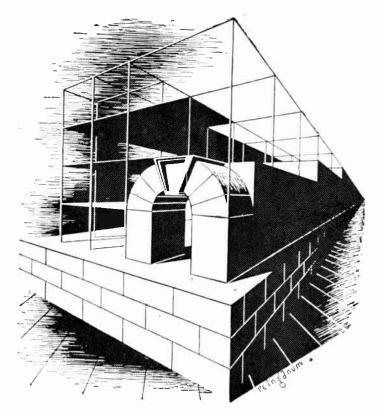
GLASGOW:

26B, Renfield Street, C.2. Telephone: Central 4857. Telegrams: "Iliffe, Glasgow."

Λ

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised before making use of them, to satisfy themselves that they would not be infringing patents.

Gunouncing The "HYPERLOY" Series


A range of high-performance, rspace-saving **TRANSFORMERS** and **CHOKES** designed to meet the exacting requirements of modern Electronic and Communications equipments.

- Small in size
- Weighing only 2 ozs.
- Meeting the most rigid Tropical Specification
- Easily mounted in any position
- Manufactured in a variety of windings to meet many diverse applications

WRIGHT & WEAIRE LTD. HIGH ROAD, TOTTENHAM, N.17

Telephone: TOTtenham 3847-8-9

STABILITY

More than fifty years of ordered progress and purposeful development have laid the foundations on which Philips have built a great commercial enterprise. Its record of achievement and service, in peace and war, reflects the foresight of its builders and the stability of the structure they have created.

PHILIPS

LAMPS • DISCHARGE LIGHTING • RADIO RECEIVERS • TRANSMITTERS • VALVES & THERMIONIC DEVICES • MEDICAL & INDUSTRIAL X-RAY & ELECTRO-MEDICAL EQUIPMENT • ARC WELDING EQUIPMENT & ELECTRODES • LIGHT ALLOY RESISTANCE WELDING PLANT • MAGNETIC OIL FILTERS • MAGNETS • SOUND AMPLIFYING INSTALLATIONS

PHILIPS LAMPS LIMITED, CENTURY HOUSE, SHAFTESBURY AVE., LONDON, W.C.2. (HOFFEV.)

Wireless World

Radio · Electronics · Electro-Acoustics

Vol. XLIX. No. 1

JANUARY 1943

Price 1s. 3d.

Broadcast Receiver Maintenance

Economy in the Use of Wireless Resources

In the issue of this journal for last August we expressed the view that the time had come to take drastic steps to ensure the continuance of broadcast reception. Since that time there has been no improvement; on the contrary, the position has deteriorated, in spite of the release (at the time of writing, on an apparently rather disappointing scale) of American Lease-Lend valves. It is believed that the number of broadcast sets now out of commission has reached a really significant figure, and, unless effective measures are taken now, the value of broadcasting as the most rapid means of disseminating information will be seriously reduced.

When writing on this subject in August, we examined the relative advantages of the two most obvious schemes for maintaining listening facilities for the majority of the population. The alternative plans were: (1) To devote a sufficient proportion of our wireless productive capacity to the manufacture of valves and components for replacements to keep existing receivers in working order, and (2) to design and mass-produce an extremely simple "austerity" receiver to replace brokendown sets. The second plan was admitted to be extravagant in raw materials, but it was suggested that it overcame the shortage of the skilled servicemen who would be required for the satisfactory operation of the first plan. An ample supply of components is of no avail if there is no one with sufficient skill to diagnose faults and make replace-

The use of the word "alternative" was perhaps unfortunate. It was not intended to suggest that either plan should be adopted to the total exclusion of the other. Clearly, it is uneconomic under present conditions to substitute a brand-new receiver for one that could easily be restored to working order by fitting a standard valve or component of a type that can still be efficiently produced. But it is equally uneconomic to devote many precious man-hours to the diagnosis of a fault in an out-of-date receiver, and then to spend

many more skilled man-hours in producing inefficiently the replacement part that is needed. In our view, there is room for both the plans to work side-by-side. What proportion of our productive capacity should be devoted to each scheme is a matter for discussion, but there seems to be a clear case for devoting some of that capacity to the manufacture of a simple "austerity" set. As far as producing replacements for sets that are economically repairable is concerned, we should concentrate on valves; also on reservoir and smoothing condensers.

Wartime Economies

In urging the importance of maintaining broadcast receivers in commission we are not unmindful of the needs of the Fighting Services, which must, of course, come first. Before asking for an allocation of some part of our national resources for civilian needs, we must make sure that what we already have is being used to the best advantage, and above all, that there is no waste.

Doubts have been expressed as to whether, in spite of the regulations, the American Lease-Lend valves are in fact being used solely as replacements. A correspondent instances the fact that, by a Ministry of Supply Order, a defective and unrepairable domestic boiler can only be replaced by a new one after making a declaration on an official form. He suggests that similar precautions should be taken in the supply of replacement valves. That seems to be an unnecessarily cumbersome procedure; would it not be sufficient to require that a "dead" valve should be surrendered when a replacement is purchased?

More economy in the use of wireless receivers might be practised by some sections of the public, who still seem to regard broadcasting merely as an all-day background to other activities. The B.B.C. could do good work in encouraging more selective listening, and in explaining what is being wasted when a wireless set is used unnecessarily.

World Radio History

Frequency Modulation—1

THE NATURE OF AN FM CARRIER

NTIL comparatively recently amplitude modulation was regarded as the only satisfactory means of impressing intelligence on a carrier wave. During the last twenty-five years the other two systems, frequency and phase modulation, have often been discussed, but until 1936 nobody had been able to demonstrate any reasons which would warrant a departure from amplitude modulation. However, in that year Major Armstrong published a paper² in which he made some important claims for one of the neglected systems. He showed that the use of wide-band frequency modulation produced a remarkable improvement in the signal-to-noise ratio. Since that time FM has made rapid progress and is to-day being used by many new commercial broadcast stations springing up in all parts of the United States. The results obtained with FM are claimed to be so superior in both signal-to-noise ratio and reproduction fidelity that the ordinary amplitude modulation receiver has been rendered virtually obsolescent.

Most of the initial work on FM was done in or near New York, where the listening conditions are bad. The screening produced by immense steel-framed buildings, coupled with extremely high static levels and a lack of satisfactory aerial arrangements, provided a hothouse atmosphere for the forcing of any system offering a reasonable chance of providing the flat dweller with interference-free reception. Comment is sometimes made on the number of American flats equipped with central receivers and built in two-programme loudspeaker systems. One of the reasons for the popularity of this method of providing radio entertainment is the extreme difficulty experienced in obtaining satisfactory reception in flats which are part of a vast honeycomb packed with every imaginable type of electrical equipment, from hundreds of vacuum cleaners to express lifts.

to be the almost perfect counter to these conditions. It offers an im-

Ву CHRISTOPHER TIBBS. Grad.I.E.E.

In this article, the first of a series on FM, the properties of a frequency-modulated waveform are dealt with. Sidebands are discussed, and the way they are depicted by the panoramic monitor is described.

Reception conditions in New York, with its giant steel-framed buildings, provided a hothouse atmosphere for the forcing of any new system which would eliminate the background of interference

equivalent amplitude modulation system. Coupled with this it also provides high-fidelity reception. Working on the ultra-short-wave band, it is above the frequency Frequency modulation is claimed spectrum covered by most forms of natural and man-made static.

the closely related systems of frequency and phase modulation. In view of the subject matter covered then, it is proposed to confine the present investigations entirely to frequency modulation.

The diagrams shown in Fig. 1 illustrate the manner in which intelligence is communicated by a frequency-modulated carrier. With the aid of these diagrams it is possible to make a number of deductions relating to the general nature of a frequency-modulated transmission. All the more important features are brought out by the following observations. The carrier frequency is steady at its mean or unmodulated frequency until modulation commences. The application of modulation causes the carrier to swing above and below its mean frequency. amount of this frequency swing (i.e., the deviation amplitude) is in direct proportion to the amplitude of the modulating signal. The number of times, or the frequency with which the carrier swings above and below its unmodulated value is directly controlled by the frequency of the modulating waveform. It should be noted that the actual deviation frequency has no connection whatsoever with the frequency of the modulating signal.

Another important point is demonstrated in Fig. 1(b), namely, that the carrier amplitude remains constant regardless of the modulation. The general nature of a frequency-modulated carrier is well summed up in the following definition. A frequency-modulated transmission is one in which there is no amplitude modulation of the carrier, and in which the frequency fluctuations faithfully portray the modulating wave shape.

Frequency modulation is by no means a recent invention, it has in fact been discussed ever since the use of a modulated continuous carrier wave became a practical proposition. Early attempts to develop the system were based on the idea that by frequency modulating the carrier to a small degree, say a maximum deviation of only Properties of FM.—In the Sep- 1,000 cycles, it would be possible provement in signal-to-noise ratio tember issue of this journal the to reduce the bandwidth required of more than 1000 to 1 on an author discussed and compared by a broadcast station. In this

way it was hoped to increase the course, suitable means of demodu- esting historical sidelight they throw number of stations on any given lation, there was an amazing im- on the art, but primarily because band. These early attempts were provement in the signal-noise ratio it is the only way of explaining a brought to a conclusion in 1922 normally experienced with ampli- number of important phenomena. with the first mathematical treat- tude modulation. It is this system, ment of frequency modulation, now known as wide-band frequency

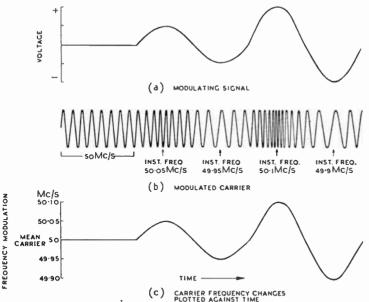


Fig. 1. Diagrammatic presentation of the general nature of a frequencymodulated carrier.

proved that these attempts were is being so successfully employed mit the sidebands fails to reproduce based on a fallacy, and that the band- in America. width required is at least double the highest modulation frequency.

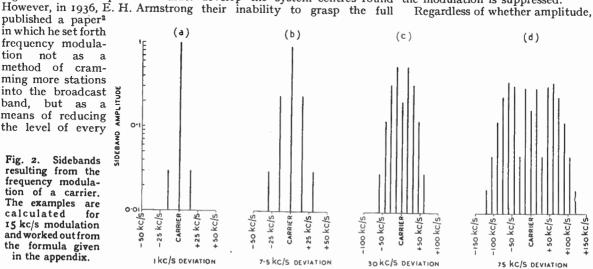

published a paper² in which he set forth frequency modulation not as a method of cramming more stations into the broadcast band, but as a means of reducing the level of every

Fig. 2. Sidebands resulting from the frequency modulation of a carrier. The examples are calculated 15 kc/s modulation and worked out from the formula given in the appendix.

This paper, published by Carson¹, modulation (FM for short), which

For a number of years FM was early engineers who attempted to short, remove the sidebands and regarded as of no practical value. develop the system centres round the modulation is suppressed.

When a carrier is modulated it appears to the observer as though it is merely necessary to alter forcibly either the carrier amplitude or its frequency, depending on the type of modulation being used. As far as an examination of actual waveforms is concerned, this is all that happens; if, however, anv serious investigation is to be undertaken, it is necessary to make use of the sideband theory. According to this theory, when a carrier is modulated it remains at its unmodulated frequency and some additional waveforms are brought into existence. These new components, or, as they are termed, the sidebands, interfere with the carrier in such a manner that the resultant combined waveform varies in either frequency or amplitude as required. If the new and additional waveforms are unable to exist for any reason whatsoever, then there will be no signal to interfere with the original carrier and so cause it to vary in the manner desired. This would account for the fact that an AM receiver with a passband which is too narrow to transthe modulation. Without the sidebands the carrier remains at its FM Sidebands.—The failure of the steady or unmodulated value. In

type of interference. He showed importance or even the existence frequency or even phase modulathat by employing a deviation of FM sidebands. It is proposed tion are being employed, it is several times that of the high- to deal with them at this stage, essential that the sidebands which

est modulating frequency, with, of partly on account of the inter- accompany all forms of modulation

The Nature of an FM Carrier-

circuits.

carrier is set out in the appendix.

amples which have been calculated The oscillograms shown in Fig. 3 receiver with a 2 kc/s pass band with the aid of Roder's formula. are typical of those obtained on would in fact suppress all modu-It should be noted that there are the FM panoramic modulation lation frequencies greater than an infinite number of sidebands, monitor. As each sideband in turn 1 kc/s. but that for clarity only those with "scans" the receiver response The value have been shown. These dividual sideband amplitude. sidebands occur at intervals equal to the modulating frequency f_{mod} of $\pm f_{\rm mod}$, $\pm 2f_{\rm mod}$, $\pm 3f_{\rm mod}$ $\pm nf_{\rm mod}$). There are sidebands of quite considerable amplitude above the maximum carrier deviation frequencies. These are necessary, as the waveform resulting from the fusion of the basic carrier and its sidebands will have a frequency within the band they embrace. The sidebands beyond the maximum deviation frequencies are therefore required in order that the final waveform, of which they form a component part, may be "pulled" to its maximum deviation.

The apparently random fluctuations in amplitude, which occur between adjacent sidebands, are the result of the extreme complexity of their phase angle and vector diagrams. When there is no modulation all the sidebands are dormant and have zero amplitude. As soon as the carrier is modulated a single pair of sidebands or a small group of sidebands spring into being, at the same time the amplitude of the carrier itself falls. The result is that the combined waveform is "pulled" from the unmodulated carrier frequency towards that of the sidebands existing at that instant. The amplitudes of bandwidth required by a broadcast both sidebands and carrier are station. amplitude modulation.)

The Panoramic Monitor. — In tion.

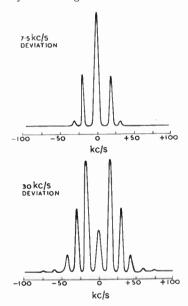


Fig. 3. Traces of oscillograph records of sidebands shown on the panoramic monitor. The modulation frequency is in each case 15 kc/s, and the similarity to the corresponding examples in Fig. 2 should be noted.

The reason for their balanced to a nicety, thus main- failure can now be discussed. The constant amplitude as its frequency lated carrier, as shown in Fig. 2, $+ \int_{2}^{\infty} (m_p) \left[\sin (\omega + p)t - \sin (\omega - p)t \right]$ is varied (i.e. avoiding sources) were calculated for the case of a $+ \int_{2}^{\infty} (m_p) \left[\sin (\omega + 2p)t + \sin (\omega - 2p)t \right]$ taining the combined wave at a sidebands of a frequency-moduis varied (i.e. avoiding spurious were calculated for the case of a steady sinusoidal 15 kc/s modula-

An amplitude-modulated are passed by the receiver tuned order to ensure that the deviation transmission would require a band of a frequency-modulated trans- 30 kc/s wide to reproduce this The only satisfactory method of mitter does not exceed the specified modulation. Fig. 2 shows that arriving at the actual values of limits (normally a maximum of however small the deviation this these sidebands is mathematically. \pm 75 kc/s) some form of conminimum bandwith will be required This is especially the case with tinuously operating monitor is re- to pass the first pair of FM sidefrequency and phase modulation, quired. This equipment, generally bands. If this bandwidth is reduced where they are large in number and known as the panoramic monitor, the modulation will be suppressed extremely complex. There have is essentially an elaboration of the in exactly the same manner for been a number of papers dealing ganging oscillator used for the align- either frequency modulation or with the calculation of FM side- ment of broadcast receivers, the amplitude modulation. Any attempt band amplitudes 3, 4, 5. The equa-essential difference being that by to reduce the receiver bandwidth so tion, which has been developed by drifting the oscillator of a con-that it passes only, say, a 1 kc/s devia-Roder, for a frequency-modulated ventional type of frequency changer tion, would automatically eliminate the incoming carrier is caused to the sidebands produced by any Fig. 2 shows a number of ex- "scan" the receiver response curve. modulation above this frequency. A

The latest American television an amplitude greater than I per curve its image is reproduced, the stations have standardised on FM cent. of the unmodulated carrier height being a measure of the in- for their sound channel while adhering to amplitude modulation for the vision channel. This de-FM and Television. - Reference cision results partly from the fact and on either side of the unmodu- has been made to the attempts of that the basic advantages derived lated carrier (i.e., at frequencies early radio engineers to reduce the from FM are only realised when the deviation is one or more times the maximum modulation frequency. With a television channel handling a maximum modulation of some 3 Mc/s to 4 Mc/s, the bandwidth required by a single FM station, with a deviation ratio of two, would be some 12 Mc/s to 16 Mc/s. On the pre-war bands allocated to television, it would be impossible even to consider such an increase in the station frequency width. It therefore seems certain that if the advantages of FM are to be enjoyed by vision as well as sound, there will have to be a substantial increase in the frequency used for television transmission. There seems quite a good case for operating a post-war service on the 100 Mc/s or even the 200 Mc/s band.

APPENDIX

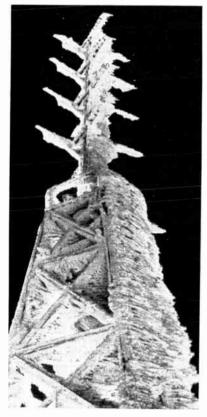
The equation developed by Roder for a frequency modulated wave is somewhat lengthy, as it includes a group of terms dealing with the amplitude of each sideband. In actual fact there is no end to this formula as there are an infinite number of sidebands. However, in practice, their amplitude falls off rapidly above and below the maximum and minimum deviation frequencies.

The sideband equation for a frequency modulated wave is :-

 $e = A\{J_o(m_p) \sin \omega t\}$ + $\int_{3}^{\infty} (m_p) [\sin(\omega + 3p)t - \sin(\omega - 3p)t]$ + . . . etc.}

Whore

A =The amplitude of the un- (Fig. 3). modulated carrier.


 $I_n(m_n) = \text{Bessel functions of the}$

 $\omega = 2\pi f_c$ where f_c is the carrier Armstrong.

 $m_p = F_d/F_m$ where F_d is the frequency deviation and F_m is the modulation frequency.

 $p = 2\pi F_m$, t = time, e = voltage. It will be seen that for any value of deviation ratio (m_n) chosen, that there is a carrier $[]_o(m_p)]$ and an infinite number of sidebands above and below the carrier $[J_1(m_p), J_2(m_p), J_3(m_p)]$ etc.], the amplitude of each of these values of $J_n(m_p)$ may be evaluated with the aid of a table of be mentioned that such tables present no more difficulty than a table of logarithms. The frequency separation between adjacent sidebands is equal to the audio-frequency (F,,).

The sideband amplitudes shown in Fig. 2 were calculated with the aid of the above formula. It is of interest to compare these results with those

ICING is an enemy of transmitting aerials as well as of aircraft. This photograph shows a heavy deposit of ice on the 4-bay FM aerial at station W39B on the summit of Mt. Washington, Boston, U.S.A.

obtained on the panoramic monitor

BIBLIOGRAPHY

4. "Amplitude, Phase and Frequency Modulation," by Hans Roder. Proc. I.R.E. December, 1931.

5. "A Frequency Modulation Monitoring System." by R. I. Pieracci. Proc. I.R.E. August.

6. "Carrier and Sideband Frequency Relations with Multi-tone Frequency or Phase Modulation, by M. G. Crosby. R.C.A. Review. July, 1938.

7. "Reference Data for Radio Engineers" (Table of Bessel Functions, page 60.) Published by Standard Telephones and Cables.

REPRODUCING RECORDS WITH LARGE RADIUS NEEDLES

T has been generally accepted radius, thus allowing it to drop that a needle with a tip of into the groove. as small radius as possible is considered that a needle fitting o.oo4in. tight to the bottom would pene-

walls of the record grooves.

smaller radius needle tip due to its across the surface. close fitting in the bottom of the needle.

that the full amplitude could not be tracking at 94 c/s is more accurate. traced by a radius tip of such

*"Large Radius Stylus for the Reproduction of Lateral Cut Phonograph Records," by John D. Reid. Journ. Acous. Soc. Am. Vol. 13. No. 3, Jan. 1942.

In a curve showing the effect of Bessel functions 3,7. In passing it may desirable for optimum reproduction tip radii, varying from 0.002in. to lateral - cut gramophone o.oo6in, on the electrical output for records. This assumption has been a constant frequency of 5,000 c/s based on the theory that the with 0.0002in, peak-to-peak amplimodulations are of equal lateral tude, other factors being unamplitude throughout the depth changed, the maximum output was record groove, and it was therefore reached with a tip radius around

> This increase of high-frequency trate the groove farthest, and so give output results from the fact that the greatest high-frequency output. HF modulations are not impressed In a recent paper* it is claimed in equal amplitudes throughout the that some unexpected benefits can depth of groove, and are less at the be obtained from the use of a needle bottom, which can be attributed point of large radius which makes primarily to certain stages in the contact only with the upper side record manufacture. During processing, the grooves are distorted Graphical comparisons were made by the chromium plating, which between three sizes of needle tip, deposits a heavier coating on the 0.0023in., 0.00275in., and 0.004in., raised surface (corresponding to the the bottom radius of the groove groove bottom), and, in pressing, being 0.0022in., the width 0.006in., the raised portions (again equiva-and the included angle 88 degrees. lent to the groove bottom) become It was apparent that the greater worn and distorted by the squeezing area of contact was given by the of the "biscuit" of record material

> Two records pressed from the groove. But it must be recognised same stamper were reproduced by that the least irregularity or lack the same turntable under identical of symmetry in the groove shape conditions, except for the needle tip would reduce the area of contact radius. An improved signal-toto even less than that of a 0.00275in. noise ratio was obtained with the 0.004in. needle. Measurements An enlarged plan view of part of a made of the signal-to-noise ratio modulated record groove, with a in the modulated groove show that 0.004in. needle inserted, was also a large radius needle tip still retains presented. The modulations repre- a superior signal-to-noise ratio at sented a sine wave of 7,000 c/s near 500 playbacks. Other curves reveal the inside of a 78 r.p.m. standard that there is an appreciable rerecord with a peak-to-peak ampli- duction in surface-noise at 7,000 c/s tude of 0.0004in. It was obvious with the wider needle, and that the

> In these results Mr. Reid's redimensions, and it would seem that search, if confirmed by other an increased amplitude could be workers in this field, would seem obtained by decreasing the needle to reside the explanation for tolerable quality record reproduction with fibre and other non-metallic needles, whose tips must of necessity broaden rapidly. D. W. A.

P.M.G. EXAMINATIONS

-and the Training of Marine Radio Officers

By WILLIAM M. MOORE

(Head of the Radio Dept., South_Shields Marine School)

NE of the effects of the war has been the definite lowering of the already comparatively low standard of technical knowledge required by candidates for the various Certificates of Proficiency in Radiotelegraphy issued by the Postmaster-General. careful comparison between typical questions set for the pre-war 1st Class P.M.G. Certificate and those for Grade III for the City and Guilds of London Institute examination in Radio Communication will show clearly that the standard set for the former was relatively low.

Before the present war, three grades of certificate were issued on the results of examination:-

- (a) Special Certificate.
- (b) 2nd Class Certificate.
- (c) 1st Class Certificate.

The telegraphy standard required for the Special and 2nd Class Certificates was 20 w.p.m. plain language; 16 w.p.m. code, and 10 w.p.m. figures. For the 1st Class Certificate the telegraphy standard is 25 w.p.m. P/L; 20 w.p.m. code and 12 w.p.m. figures. In all cases only negligible errors are allowed.

A candidate for the wartime Special Certificate undergoes a practical examination which in-

- (a) Regulating and adjusting the sending and receiving apparatus;
- (b) altering the wavelength; (c) testing and charging accumulators; (d) varying the transmitted power;

(e) tracing and clearing simple faults on the transmitter and receiver. Further, he is verbally examined and is required "to know the functions of the various pieces of apparatus in the wireless installation used for the examination.'

For the 2nd Class Certificate a candidate sits for a written examination, which consists of eight questions for which three hours are This is followed by a allowed. practical and verbal examination of a higher standard than that required for the Special Certificate.

The examination for the 1st Class Certificate consists of two papers; low. the first on electricity and mag-

The author urges the need for higher standards of training and qualification for marine Wireless Officers, who it may be expected, will after the war be responsible for the operation and maintenance of much more complex and highly developed apparatus.

netism, for which two hours are allowed; the second, similar to that for 2nd Class, on marine radio apparatus, for which three hours are allowed. In addition, there is a verbal and practical examination. The paper on electricity and magnetism which is set in the 1st Class examination is elementary and does not call for any mathematics worth mentioning.

The paper on marine installations which is set for both the 2nd Class and 1st Class examinations consists of questions of a descriptive nature.

Since the end of 1939 the ordinary examinations for 2nd Class and 1st Class Certificates have been suspended. Examinations for the Special Certificate are held at regular intervals at radio schools in various parts of the country. The average time taken by students to reach the standard for this examination is approximately five months

After six months' service as a Junior Radio Officer the holder may sit for a modified examination for the 2nd Class Certificate. This examination consists of a written test of eight questions to be done in three hours. Candidates for this examination are not allowed time to attend a suitable course of instruction ashore and are expected to prepare for it in their spare time at sea.

Criticisms

The pre-war system of examination for P.M.G. Certificates is open to the following criticisms:—

- (a) The technical standard is too
 - (b) Although the certificates are

called Certificates of Proficiency, a candidate may sit for the 1st Class Certificate without having previously obtained a certificate of lower grade and does not have to prove actual experience as a Radio

(c) The written examination for the 2nd Class Certificate does not test the candidate's knowledge of electrical principles.

(d) The questions set on the papers on marine radio apparatus are of such a type that a system of cramming by memorising answers to standard questions is in common use among students. This is encouraged by the fact that it is possible before an examination to predict at least half the questions which will appear on the paper.

(e) The practical examination for both the 2nd Class and 1st Class Certificates does not emphasise sufficiently the use of testing instruments in tracing faults and cir-

(f) The candidate's ability to carry out minor repairs and his familiarity with tools is not tested.

I suggest that the standards of the examination should be raised and that the system of examination should be amended as follows:-

A new applicant for a position as a Radio Officer should first undergo a course of training at an approved radio school and be allowed to sit for a 3rd Class Certificate, which would qualify him to serve as a Junior Radio Officer in any ship.

This examination to consist of: (1) A written examination on elec-

tricity and magnetism.
(2) Practical and verbal examination such as is now set for the 2nd Class Certificate.

(3) Operating tests as now set for the 2nd Class Certificate.

After, say, 12 months' actual sea service the holder of a 3rd Class Certificate would be eligible to sit for a 2nd Class Certificate, the examination for which might consist

(1) A written examination of three papers on electrotechnology, radiotechnology and marine type equipment.

(2) A practical and verbal test to prove the candidate's ability to operate and maintain a complete marine radio installation, including minor repairs.

(3) An operating test with telegraphy speed 25 w.p.m. P/L; 20 w.p.m. code.

The holder of this certificate to be qualified to act as Officer-in-Charge of Class 2 and Class 3 ships or as Second Radio Officer on Class I ships.

After a further period of sea service in one of the capacities laid down in the preceding paragraph the holder of a 2nd Class Certificate should be eligible to sit for a 1st Class Certificate. The examination for the 1st Class Certificate to be on similar lines to that laid down for 2nd Class Certificate, but a higher standard to be required and, in addition, the examination to include the type of apparatus used mainly on very large passenger ships. The holder of this certificate would be qualified to act as Officer in Charge of Class I ships.

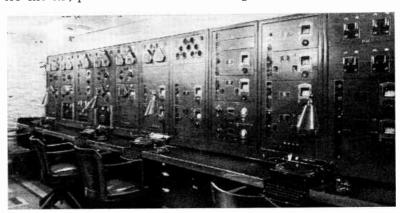
Candidates for the 1st Class and and Class Certificates should be allowed to sit for an additional receiving test, using a typewriter, and if successful their certificates to be suitably endorsed.

The examinations for 1st Class and 2nd Class Certificates should be divided into two distinct parts: A, operating and procedure; B, technical. In the event of a candidate failing in one part of the examination and obtaining a satisfactory pass in the other part, he should be credited with this pass and at the next examination take only that part in which he failed.

Training Courses

Naturally, the training of Radio Officers is determined by the examinations for which they will have to sit. In the past, training courses have been planned to enable students to pass the examination in the shortest possible time. In other words, a course of instruction designed to produce efficient operators with a thorough understanding of their profession is not the same as one designed to get a student through the examination, especially when the employment of cramming can produce satisfactory passes. The result is that in the past large numbers of Radio Officers have qualified for P.M.G. Certificates without the background of a thorough knowledge of the principles of electricity and radio which is so necessary.

Training courses could be ar-


electrical principles on the lines already approved by the Institution of Electrical Engineers for the evening technical courses for the National Certificates in Electrical Engineering. Particular emphasis should be laid on the types of circuits and machines used in radio practice. In addition to lectures, as much laboratory work as possible should be included. The succeeding course of instruction in radio theory should be arranged so that a large amount of the work can be done in the laboratory.

Experiments demonstrating such things as static and dynamic characteristics of diodes, triodes, tetrodes and pentodes; resonance in AC circuits; production of oscilla-

ranged to start with instruction in training and examinations which I have outlined will meet with a great deal of criticism from all who are directly interested. Much discussion will be necessary, and many conflicting interests will have to be reconciled before such a scheme can be adopted. The only satisfactory and workable arrangement will be one which has the goodwill and approval of the Radio Officers themselves, the employers and the Post Office, as the examining body.

Technical Standards

On one point, however, there will, I think, be general agreement. and that is the necessity of a sustained increase in the standards of training and examinations. The

Receiving apparatus and transmitter control gear of the liner Queen Mary. After the war, marine installations may be expected to become even more complex.

tions, valve oscillators; modulation; rectification of AF and RF currents can be easily arranged and will prove a valuable form of instruction. Students should build up their own circuits and wind the necessary coils.

The equipment in the radio laboratory should include cathode-ray generators. oscilloscopes, signal voltmeters, ammeters, milliammeters, power packs, potentio-meters, valves and batteries, as well as components such as transformers, chokes, condensers and resistances. Students should be given workshop practice and instructed in the use of tools.

The courses of instruction should be approved by the examining body, which should exercise the right to inspect approved schools to ensure that the syllabus is being adhered to and that the instruction given is satisfactory.

technical standard required and reached by officers of both the navigation and engineering departments of the Merchant Navy is very high. The highest certificates in each department, that of Extra Master and Extra Chief Engineer, are classed as the equivalent of a B.Sc. degree.

By comparison, the standard of the P.M.G. examinations is very low indeed, and this is amply illustrated by the fact that a student of average intelligence with a good elementary education can pass the examination for the 1st Class P.M.G. certificate after eighteen months' attendance at a radio school. An engineer, on the other hand, serves four years' apprenticeship ashore, during which time he attends organised courses at evening classes or a sandwich course at a technical school. He must then serve eighteen months It is inevitable that the scheme of as a junior engineer before being

P.M.G. Examinations-

eligible to sit for a 2nd Class Engineer's Certificate and a further eighteen months before sitting for a 1st Class Certificate. For each of these certificates a period of several months' attendance at a suitable school is necessary, and in addition very many engineers take correspondence courses of study while at sea. A long period of study is necessary to reach the standard for the Extra Certificate, and only a small proportion of engineers obtain it.

Complicated Equipment

The radio department on Merchant Navy ships is bound to grow in importance as each year brings further developments. Equipment will, with improved design and wider scope, tend to become more complicated. New ideas in DF apparatus together with, probably, some applications of radiolocation are likely. Any improvement in the standard of technical training and examinations will raise the efficiency of the radio department of the Merchant Navy, and this will be to the benefit of the whole Service.

Wireless World

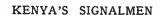
Radio officers did a good job of work before the war, often under great difficulties with obsolescent equipment. They are doing a grand job now, for which all honour is due to them. Their unceasing efforts to improve their efficiency and the standing and status of their chosen profession is worthy of complete success. It is their just due that they should be given the opportunity of a comprehensive course of training and a certificate which, while not easy to obtain, will bear comparison with that of their fellow officers.

"KEEP IT GOING!"

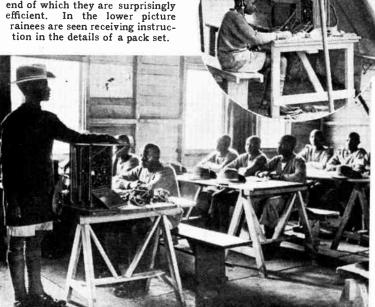
MAINTENANCE of civil broadcast reception has now become a pressing problem, and the appearance of this booklet, issued by Murphy Radio, could hardly have been more opportune. One is inclined at first to question whether it is wise to encourage the layman to delve into the vitals of his receiver, but any unworthy doubts on this score are dispelled on reading the contents. Nowhere is the reader encouraged to do anything that is likely to do more harm than good; all the advice given to him is admirable,

and is clearly written from a deep knowledge of the way in which the public is inclined to use—or misuse its receivers.

The function of "Keep it Going!" is to show the owner of any set—not only a Murphy set—how to do everything in his power, in the absence of professional help, to keep his set working in wartime. The booklet, which costs 6d., is distributed through Murphy dealers, but in cases of difficulty copies are obtainable direct from Murphy Radio, Ltd., Welwyn Garden City, Herts.


BOOKS RECEIVED

Radio Engineering. By Roy C. Norris. Written for those with little previous knowledge who wish to learn about radio. Treatment is practical and expository rather than theoretical, and the scope is very wide, including such aspects as wave propagation, receiving, transmitting, television, servicing, interference suppression and many other subjects. Marine and aviation radio and even wireless manufacturing methods are dealt with. Pp. 512; over 600 illustrations. Published by Odhams Press, Ltd., Long Acre, London, W.C.2. Price 6s. 6d.


Marine Radio Operator's Guide. By H. E. Chamberlain. Information for the newly joined marine Wireless Officer; shipboard life, uniform and kit required, status and etiquette. Though not a technical book, the beginner's normal training is supplemented by information on such matters as direction finding, maintenance of apparatus and short-wave working. Chapters on watch-keeping and various aspects of operating are included. Pp. 72; 4 illustrations. Published by Hutchinson and Company, 47. Princes Gate, London, S.W.7. Price 5s.

Whereas I was Blind. By Ian Fraser. This is not a wireless book, but wireless men will read with great interest the account of how Sir Ian Fraser overcame his disability of blindness. The author has long been associated with various aspects of wireless, and the book discloses some little-known facts about the initiation of the "talking book" scheme, for which electrical reproduction is, of course, employed; few developments have given more comfort to the blind, especially to those who have become blind in later life. A chapter is devoted to Sir Ian's work for the B.B.C. Pp. 169, with portrait of the author. Published by Hodder and Stoughton, Ltd., Warwick Square, London, E.C.4. Price 8s, 6d, net.

Aircraft Radio. By D. Hay Surgeomer. This revised 2nd edition begins with information on the international control and organisation of civil aviation radio services. This is followed by chapters on direction finding, blind-landing systems and aircraft equipment and its operation. Complementary airport equipment (including lighting systems) is also dealt with. Pp. 154; many photographic illustrations, explanatory drawings and circuit diagrams. Published by Sir Isaac Pitman and Sons, Ltd., Parker Street, Kingsway, London, W.C.2. Price 15s.

A Signal Training Centre has been established in Kenya at which selected African recruits are trained as operators, linesmen or despatch riders. The operators undergo a 32-week course, at the end of which they are surprisingly efficient. In the lower picture rainees are seen receiving instruction in the details of a pack set.

HIGH-SENSITIVITY DC AMPLIFIER

N view of the interest which has circles in the original design for a DC amplifier embodying a "Magic Eye" tuning indicator (Wireless World, March, 1942, p. 63), it has been thought desirable to add a few notes on the complicated arrangement mentioned in that article, which gives a sensitivity increase of over one hundred times.

It will be recalled that the maximum possible increase in sensi-

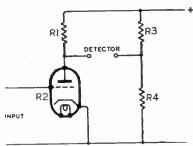


Fig. 1.-Basic circuit of the valve bridge used as a DC amplifier.

are made to increase this, instability results. A much greater increase is possible, however, by making use of an extra valve. Fig. 1 shows the skeleton circuit of a simple valve bridge. R2 is the DC resistance of the triode, and when $R_1/R_2 = R_3/R_4$ the output to the detector will be zero, i.e., the bridge is balanced. R2, however, can be varied by changing the DC input to the valve, hence any such variation in input is indicated by a corresponding but much greater change in the bridge Using a valve such as output. the Mazda AC2HL with $\mu=75$, a voltage gain of fifty times is easily obtainable.

If we use a CR tuning indicator as the bridge detector, a change of 100 mV is easily visible—hence the minimum visible change in input is about 2 mV. This is very little better than the original simple form of indicator previously described.

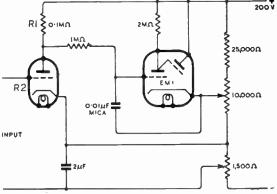
If however, we replace R2 or part

embodying a CR If, however, we replace R3, or part of it, by the target-cathode resistance of the "Magic Eye" itself, it will be found that the initial grid bias of the triode is first phase relations are correct for set by adjusting the 1,500 Ω resistor positive feed-back to take place to a value sufficient to avoid grid 28. 8d., including postage.

of the CR Tuning Indicator GEORGE A. HAY, B.Sc.

precisely similar.

above arrangement manageable sensitivity resistance to reduce the amount of increased to o.1 mV or even less. feed-back. A suitable practical circuit is shown in Fig. 2, which is designed round the Mullard EM1. Other tuning indicators are not so larger target currents. The amplifier used was a Mazda AC2HL, and, while this gave satisfactory results, use a top-grid valve such as a


triode - connected. It can be shown that the maximum voltage change is obtained when Rr = R2, but in practice it is better to make $R_1 = 3R_2$ in order to get sufficient target voltage for the EMI.

tuning indicator.

current. (A value of about 1.2 been aroused in biological Another Application volts is suitable, and it helps circles in the original design matters to run the cathode at a lower temperature than normal.) The $10,000\Omega$ resistor is then adjusted by trial and error to give the correct amount of feed-back, and the bias potentiometer finally set for zero reading. Owing to the increased complexity of the circuit, precise values cannot be given, as in the case of the simple arrangement, and a certain amount of experimenting with resistance values tivity with the simple arrangement with a resulting increase in sensi- might be necessary to suit individual was some ten times; if attempts tivity. It might be thought a more valves. It is helpful in this conobvious solution to include a nection to note that the smaller cathode resistor, as in the original the resistance shunted across the design, but this gives rise to a EMI, the less sensitive is the circuit. circuit which is much less con- If very high sensitivity is required, venient practically. The ultimate it would be advisable to stabilise results of the two circuits are both the high-tension and heater supplies to avoid zero drift. The As in the original design, the maximum sensitivity obtained with gave un- this arrangement with complete accom- stability has been about 0.2 mV for panied by instability and backlash, an easily visible movement of the and in practice it is necessary to shadow; if a less stable arrangeshunt the CR indicator with another ment can be tolerated, this is easily

Abstracts and References

THE subject and author indexes to successful on account of rather lished in our sister journal, Wireless Engineer, during 1942, will again be issued as a separate publication early in 1943. It is understood that supplies will be limited and it will, therefore, be if a very high input impedance is necessary to make early application to required, it might be advisable to our Publishers. A charge of 28, 8d. (including postage) will be made. The use a top-grid valve such as a December issue, which was on sale on Mazda SP41 or Osram KTZ41, the first of the month, includes the index

In operating the amplifier, the to the original articles published in itial grid bias of the triode is first Volume XIX, 1942, and to the authors. Issues are obtainable to order through newsagents, or direct from Publishers at

RADIO DATA CHARTS

ITH the growing use of higher and higher frequencies, the transmission lineespecially the co-axial type-has become of considerable importance to the radio experimenter and designer. Besides their normal function of transmitting radio frequency energy from point to point No. 3 (3rd Series) as required, lines are being used more and more to replace "lumped" circuit elements which become increasingly difficult to construct as frequencies rise.

Perhaps the most important constant of a transmission line is its characteristic impedance. In passing, it is worth noting that this constant is sometimes referred to as the "surge impedance" and the with G. To a close approximation, "iterative impedance" by various therefore, we may write authorities, but "characteristic impedance" is more usual. The abac sets out to calculate this constant from geometrical dimensions for six different line configurations. The inductance and capacitance per unit length are useful design data and so are included.

a line is defined as the input impedance of a line of the same geometrical dimensions of infinite length. In any real line, whether of infinite length or not, there must necessarily be conductance and capacitance between the "go" and "return" leads, and inductance and resistance in both, even though their numerical value may be small. It is this fact which causes any line to have an input impedance to AC, and it can be shown (see for instance Everitt's "Communication Engineering," 2nd Ed., Chap. 4.) that the input impedance of an infinite line when the capacity, etc., is uniformly distributed along the transmission velocity line is given by :-

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$
 Where R = resistance per unit length L = inductance per unit length

G = conductance per length C = capacitance per unit

length gressively less.
Fortunately, when dealing with Similar figures are radio frequencies, ω is large, and obtained for other line ωL becomes large compared with R, configurations. and ωC becomes large compared

J. McG. SOWERBY. B.A., Grad. I.E.E.

(By Permission of the Ministry of Supply)

The Characteristic Impedance of Transmission Lines

$$Z_0\!=\!\sqrt{\frac{j\omega L}{j\omega C}}=\sqrt{\frac{L}{C}}$$

the chart is based.

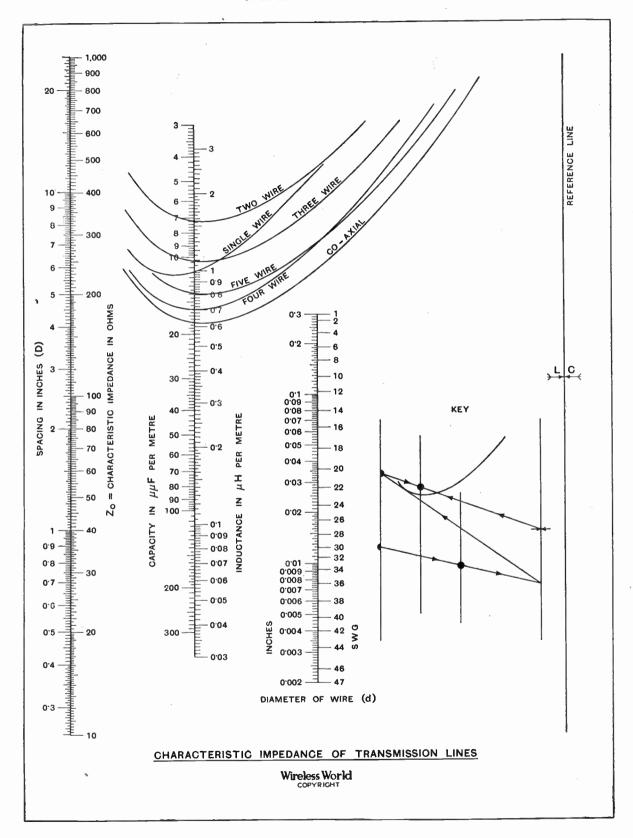
frequency which has been made in istic impedance is read off the Z₀ the case of the characteristic im-The characteristic impedance of pedance, has also been made in the is the capacitance per metre of this calculation of the inductance and line? Set the ruler on 689 on the capacitance scales of the abac. Z_0 scale and on the gauge point Actually, the assumption comes up LC on the reference line. The ruler in slightly different form, and is cuts the capacitance scale at 4.835 that the velocity of transmission is $\mu\mu$ F per metre, the answer required. that of light. In addition it is assumed that the distance between be used backwards, and this is the conductors (D) is large com-

pared with their diameter (d). At usual frequencies these assumptions are not very serious; and Hund ("Phenomena in H.F. Systems," 1st Ed., p. 449) gives the deviation of the from that of light at different frequencies for a typical two-wire line of characteristic unit impedance 490 ohms. At 16Mc/s the deviaunit tion is 0.139 per cent., and at 34Mc/s is 0.095 unit per cent. At higher frequencies the deviation becomes pro-

For reference

purposes the line configurations and the appropriate formulae are given in Table 1.

The Use of the Abac


For each type of line configuration, a curve appears on the abac and is used when finding the characteristic impedance of that configuration from its geometry. The capacitance and inductance scales are independent of these curves and are related only to the characteristic impedance scale. A worked example will make this clear.

Example 1.-It is proposed to match an aerial to a receiver by means of a two-wire line consisting of two 16 SWG wires ten inches apart. What is the characteristic $Z_0\!=\!\sqrt{\frac{j_\omega L}{j_\omega C}}\!=\!\sqrt{\frac{L}{C}}\qquad \begin{array}{c} \text{impedance? Set the ruler on 10}\\ \text{on the D scale and 16 SWG on the}\\ \text{d scale. A point of intersection is}\\ \text{found on the reference line. From} \end{array}$ impedance? Set the ruler on 10 this point draw a tangent to the This assumption of high working two-wire curve and the character-Scale. It is 689 ohms. What now

Like most abacs, this one may . (Concluded at foot of Col. 1, page 12).

TABLE I.

Line Configuration	Description.	Formula for Characteristic Impedance at RF (Z ₀).
d ‡ ⊕ · <u>*</u> • • • • •	Single Wire	$Z_0 = 138 \log_{10} \frac{410}{d}$
earanidam. • • ‡d i~D⇒i	Two Wire	$Z_0 = 276 \log_{10} \frac{2D}{d}$
d +D+I	Three Wire	$Z_0 = 207.3 \log_{10} \frac{\sqrt{4} D}{d}$
D. T.	Four Wire	$Z_0 = 138 \log_{10} \frac{\sqrt{2}D}{d}$
	Five Wire	$Z_0 = 172.5 \log_{10} \frac{\sqrt{2}D}{d}$
D d	Co-axial	$Z_0 = 138 \log_{10} \frac{D}{d}$

Does Clerk Maxwell "Date"? Control of Amateur Transmitters

Maxwell's Electromagnetic Theory affected by modern conceptions of the nature of electricity and the absence of the ether as a medium of propagation?

J. C. JEVONS.

Professor G. W. O. HOWE, D.Sc., M.I.E.E., Technical Editor of our associated journal, "Wireless Engineer," replies :-

HE answer to this question depends very largely upon what you understand by Clerk Maxwell's Electromagnetic at-a-distance and attributing to the Clerk Maxwell." ether the properties of a highly can also arrive at them in other proof of these equations be deduced from experience. It appears most logical, therefore, to regard them independently of the way in which properties which could not be the they have been arrived at, to con- properties of mere nothingness, sider them as hypothetical assump- and the mind, therefore, filled tions, and to let their probability empty space with this fictitious

RADIO DATA CHARTS

(Concluded from page 10)

make a five-wire line of character- equations something more than istic impedance 300 ohms from mere mathematical symbols, there 14 SWG wire. What is the requisite is obviously no need to postulate spacing? Set the ruler on 300 on an all-pervading ether. There has the impedance scale and draw a been a tendency in recent years to tangent to the five-wire curve. Join endue empty space with properties the point of intersection on the which a few years ago would have make any alteration in any for-reference line to 14 SWG on the d been regarded as inconceivable— mula." reference line to 14 SWG on the d scale, and the ruler cuts the D scale at 3.83 inches.

In the majority of cases the pattern of example 2 will be followed, since what is usually required is a line to match a given piece of apparatus. Matching is said to take place when a line is ingless questions about it. terminated with an impedance equal to its own characteristic im- high frequency flows in an aerial it pedance. Matching is important, loses energy, which reappears after because under these conditions no reflections are set up in the line, and the losses in it are at a minimum.

Question No. 8.—How is Clerk depend upon the very large num-receiver. In what form was the axwell's Electromagnetic Theory ber of natural laws which they energy? It is not very satisfying embrace."

Again, E. Cunningham writes in Pearson's Grammar of Science: "The true function of the ether is merely to assist the mind to a clearer understanding of the sequences of these phenomena. Nothing more is to be predicated of it than the laws that express concisely how these sequences are unfolded. The ether of the electromagnetic theory is to the scientist now nothing more than a vague Theory. Hertz wrote: "Maxwell's substratum whose only properties theory is Maxwell's system of equa- are specified by a number of mathetions. . . . Maxwell arrived at them matical equations which will always by starting with the idea of action- be associated with the name of

It will be seen from these two polarisable dielectric medium. We quotationse that the ether forms no essential part of Maxwell's theory. ways. But in no way can a direct It was introduced because it was felt at the time that the phenomena represented by the equations necessitated space being endued with medium and endued it with all the necessary properties. If one is prepared to endue empty space with the properties necessary to give a brought out in the second example. working picture of electromagnetic Example 2.—It is proposed to phenomena, and thus make the been regarded as inconceivable and still are by many people. For example, we are told that a gravitational field acting on empty space endues it with curvature. No harm is done by referring to empty space as the ether so long as one does not go further and begin to ask mean-

When an alternating current of a very short time in a distant aerial. During the interval the energy was undoubtedly traversing the space between the transmitter and the

to be told that it was in the form of some differential equations, although there are those who maintain that this is the limit of our knowledge of the matter. If one believes that the space between two oppositely charged conductors in a vacuum is in a peculiar state known as an electric field, and the space around a current-carrying conductor in a vacuum also in a peculiar but different state known as a magnetic field, and that each field represents an amount of energy, then one will have no difficulty in picturing the electromagnetic wave travelling from the transmitter to the receiver.

It is doubtful whether modern views of the nature of electricity are in any way antagonistic to Clerk Maxwell's electromagnetic theory.

In his book The A.B.C. of Relativity Bertrand Russell says: "Throughout all the revolutions which physics has undergone in the last fifty years, these equations (of Maxwell) have remained standing. Indeed, they have continually grown in importance as well as in certainty, for Maxwell's arguments in their favour were so shaky that the correctness of his results must almost be ascribed to intuition.' That was written in 1925, but it stands to-day. In his Electromagnetics (1938) O'Rahilly says: "We have no difficulty in deciding that the hypothesis of an 'aether,' whatever it is supposed to mean, does not nowadays pertain to the science of physics; for its denial does not

More views on Ouestion No 6. (Would not the control of all wireless matters be better vested in some independent body, like the F.C.C. in U.S.A., rather than in the G.P.O.?)

"T.J.R.," questions the accuracy of the querist's premises. writes :-

DOES the G.P.O. really control all radio matters? It may do so nominally, but its control is rather indirect in the case of, say, broadcasting. Though all listeners have heard of "strong men" at

Again, why should the G.P.O. be any less "independent" than a body like the American F.C.C.? The G.P.O. certainly has interests in telecommunication other than in its capacity as a controlling body, but has no vested interests of a material character, in the sense normally understood. The profits of the G.P.O. go into the coffers of the State, and not to individuals.

Unless one feels that the G.P.O. is unsuited for the job by inherent incapacity for progressive thought, it is just as well for the Government to effect control of radio through it as through some new and untried body. To sum up, what matters here, as in all technical matters of social importance, is that the State should be imbued with a progressive democratic spirit that can be passed on to its executive departments.

A. D. GAY, President of the Radio Society of Great Britain, replies from the point of view of amateur transmitters, whose numbers may be expected to grow greatly after the war:-

WITH the G.P.O. monopoly of wireless communication (and, in fact, of all forms of electrical communication) it seems obvious that the issue of wireless licences must be under its control. Any other body, were it given the powers to grant licences to experimenters, would have to consult the G.P.O. on questions of powers and frequencies and conform to any regulations which may be made at International Conventions time to time.

It would thus seem that to create an independent body such as the Federal Communications Commission would merely duplicate a department which already exists within the G.P.O. Whether such action would bring about more favourable consideration of requests for licences is exceedingly doubtful. The present Act of Parliament assures that anyone should have a transmitting licence who desires to carry out experiments, provided a certain elementary knowledge of radio is displayed by the applicant.

In the U.S.A. licences are granted to anyone, and for such purposes as third-party message handling. The size of the American continent and the absence of State monopoly over communications facilitates the unrestricted issue of licences. American

Broadcasting House, few are aware amateurs have done valuable work duties of administration in a less that the P.M.G. is its real overlord. in emergencies, bridging broken communications with portable radio equipment. In this country such assistance by amateurs might cause a loss of revenue to the G.P.O. and has never been encouraged.

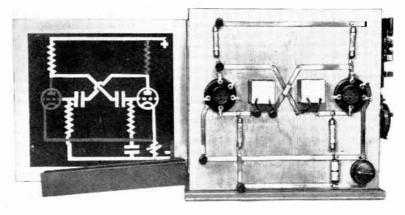
> The administration of radio matwider and more democratic affair. In the absence of a State departfore, necessary, and fulfils the improved at home.

biased manner.

The system in this country could be improved by the invitation of amateur representatives to attend all committee meetings at which amateur activities are to be discussed. A great deal of useful and ters in America is therefore a much friendly co-operation exists, for example, the invitation of an amateur representative to attend Interment dealing wholly with com-national Conferences abroad. This munications, the F.C.C. is, there-amicable state of affairs might be

A Demonstration Multivibrator

By E. WILKINSON, Ph.D.


photograph was developed in Loughborough College to assist students in understanding the working of the multivibrator. It portrays the electrical processes which are taking place in an actual circuit at a speed slow enough to be appreciated.

The circuit is a normal symmetrical multivibrator except for the two grid condensers, which are enormous compared with ordinary standards. Each is an electrolytic condenser of 16µF capacity, controlling the oscillation frequency down to one cycle in about three brings them into positions corre-

THE apparatus shown in the glass screen. This forms the front face of the instrument, and the rest of the glass is blacked so that individual parts of the diagram may be illuminated from behind.

> The operation of the multivibrator depends upon periodical charge and discharge of the two condensers. This is demonstrated by each condenser circuit automatically lighting up blue when charging and red when discharging.

The lamps illuminating the diagram are switched on and off by a mercury-vapour relay, contained in the main body of the seconds. The layout of com- apparatus, and controlled directly ponents on the breadboard back by the grid potential of one of the multivibrator valves. The lamps sponding to the circuit diagram illuminating the charge path of conwhich is drawn out on a ground- denser I and the discharge path of

Front view of demonstration multivibrator showing components mounted in the positions they occupy in the conventional circuit. The ground glass screen is painted black leaving the circuit diagram transparent so that the charge and discharge conditions may be indicated by pilot lamps of different colour. Gas-filled relays and auxiliary circuits for the automatic control of illumination are mounted inside the case and circuit values are chosen to give a complete cycle every three seconds.

A Demonstration Multivibrator—

condenser 2 are fed in parallel from a low-voltage winding on a mains transformer. The lamps in the discharge path of condenser I and the charge path of condenser 2 are fed in series with a ballast resistance and the primary of this transformer. The function of the gas-filled relay is to short a high-voltage secondary winding, thereby cutting out the

Wireless World

mains supply almost entirely across the series lamps and the ballast resistance. The increased primary current is then sufficient to light the series lamps.

The working of the triggered multivibrator may also be demonstrated. Free running is stopped by increasing the bias resistance and cutting off valve 1. The cover plate, seen in the photograph below parallel lamps and throwing the the diagram, hides the lower part circuit.

of the diagram when the circuit is running free. This is now removed to show the modification in the circuit. Condenser 1 discharges and remains discharged, while condenser 2 becomes charged. This condition appertains until the application of a triggering pulse overcomes the bias and allows a single change over of the illuminated and darkened parts of the

RANDOM RADIATIONS

By "DIALLIST"_

Licence Defaulters

TUDGING by the reports that one sees in the various daily papers the number of set users who don't take out receiving licences reached an alarming total. reads estimates of from 1,000 to 10,000 in some of the country's larger towns and the total for Great Britain and Northern Ireland may well run to a million or more. Evasion on this scale is a very serious affair, for it means that the B.B.C. is losing a large proportion of its just revenue at a time when it ought to be putting by a useful nest-egg for post-war repairs, reconstruction and expansion. I've always thought and I still think that one should have to produce one's receiving licence when buying a set or a replacement part. There wouldn't be any "hardship" about this, and it would certainly reduce licence evasion to a minimum, if it didn't end it altogether.

Frequencies and Wavelengths

EVERY reader must have been interested by the Editorial on Classification of Frequencies' in last month's Wireless World. The present position is chaotic, to say the least of it. You may, for example, in one and the same article describing a receiving set find that the term "high frequencies" is used (a) for frequencies above about 4,000 c/s 'this circuit is designed to avoid attenuation of the high frequencies in the AF stages"); (b) for those be-tween 300 and 150 kc/s (in describing the performance of the signal-frequency stages of a superhet in the long-wave band); (c) for those between 1,500 and 500 kc/s (signal-frequency stages in the medium-wave band); (d) for those between 20,000 and 3,000 kc/s (signal frequencies in the short-wave bands). "Intermediate frequency" may also be used in one or two paragraphs to describe

a frequency which would elsewhere in the article be called high. And it's not too easy for the beginner when he comes to wavelengths. His friends who are short-wave enthusiasts probably call the bands between 10 and 100 metres the short waves and those below 10 metres the ultra-shorts. But he may find that the wavechange indicator of his so-called all-wave set shows the bands between about 30 and 80 metres as short and those between 15 and 30 metres as ultra-short. Coming back to frequencies, if the aforesaid beginner at radio owns one of those devices for sunshine treatment in the home, he may be perplexed by the discovery that the book of the words refers to its infra-red radiation as low-frequency and its ultra-violet as high.

Simplification Needed

A considerable straightening out is clearly needed, and here's one way in which a beginning could be made. I do feel pretty strongly that all of us who write on wireless or argue about it amongst ourselves should eschew once and for all such expressions as "high frequency" and "low frequency" stages in a receiver, with their corresponding abbreviations "HF" and "LF." What the aerial delivers to the grid of the first valve should always be called the "signal frequency" or SF, and the frequencies dealt with by the postdetector stages and the loudspeaker should be "audio" or AF. The latter are easily and comprehensibly divided up into upper, middle and lower audio frequencies—UAF, MAF and LAF. That leaves what we now call the "intermediate frequency" to be dealt with. Is any change needed I'm not sure that it is, for there doesn't seem to be much chance of confusion, at any rate when speaking of a superhet, if we refer to its departments as SF, IF and AF. If, though, a change is thought to be desirable in the interests of perfect clarity, we might possibly use "conclarity, we might possibly use "conversion frequency" (CF) instead of I'm sure that the adoption of the nomenclature suggested for the working frequencies of the wireless receiving set would do a great deal towards smoothing the path of the beginner.

Can We Think in Frequencies?

But that is a very long way from being the whole of the story. We are still left with the classification of the whole vast range of electro-magnetic radiation frequencies, or at all events with that part of the spectrum with which wireless is concerned. There are those who claim that the problem would lose much of its difficulty if only we could bring ourselves to think in frequencies. But can we? Like most DX enthusiasts, I think of station frequencies rather than wavelengths and make my calibration charts in kilocycles or megacycles. In circuit-designing one must think and work in frequencies. But we can't go on doing so when it comes to short-wave aerials, transmission lines, and so on, for there we are concerned with the physical lengths of the waves with which they have to deal. Their heights, lengths and spacings have to be worked out in terms of wavelengths so that we can measure off in metres and centimetres or in feet and inches. Hence, thinking in frequencies, helpful though it is in many ways, is not a panacea for all one's wireless headaches.

What is Your Choice?

Each of the two systems given in the Wireless World Editorial has a good deal to recommend it-just as each has its drawbacks. I have a feeling that a kind of combination of the two might answer well. Here's what I'm driving at. Once you've got hold of such rather unfamiliar terms as

metre (not so difficult if you remember that in the metric system multiplying prefixes are always Greek numericals and dividing prefixes are reach. Latin), the order in which the wavebands come in the classification should stick in your head. Now, in the frequency side all that we have to do is to take the upper limit for each band. Thus, the myriametre waveband is concerned with tens of thousands of metres and the corresponding frequency range is below 3×101; it is thus frequency band No. 1. At the other end of the scale the centimetre waveband is concerned with hundredths of a metre and the frequency range corresponding is 3×10⁷, so that it is a frequency band No. 7. Hence the table can become:-

-			
Band	f in ke/s	Waveband name.	λ in metres
1	below 3×101	Myria-	above 10,000
2	$3\times10^{1}-3\times10^{8}$	metre Kilo- metre	10,000-1,000
3	$3 \times 10^{3} - 3 \times 10^{3}$	Hecto-	1,000-100
4	$3 \times 10^3 - 3 \times 10^4$	metre Deka-	100-10
5	$3 \times 10^4 - 3 \times 10^5$	metre Metre	10-1
6	$3 \times 10^5 - 3 \times 10^6$	Deci- metre	1-0.1
7	3×10 ⁶ -3×10 ⁷	Centi- metre	0.1-0.01

What do you think of the suggestion? I think there's something in it; possibly you can suggest something simpler and better.

To Jam or Not to Jam?

THOUGH the Axis Powers do their level best to jam as many as possible of the news and talks broadcasts put out by ourselves, the Americans, the Russians and other Allied peoples, the B.B.C. seldom, if ever, retaliates. Russia appears to indulge in a certain amount of interference with German and Italian transmissions. I don't know what the Americans are doing, but I don't fancy that they are bothering much to spoil reception by their people of the stuff dished out by Goebbels, Gayda and others of the gang. I saw it reported the other day in one of the lay papers that a B.B.C. official when asked "Why don't you jam Germany and Italy?" replied, "Why should we?" Personally, I take rather the same view. Hitler and Musso have such a wealth of broadcasting stations at their disposal in their own and in occupied countries that they can well afford to use a good many of them as jammers if they feel so minded. But we need all the long, medium and short wavelength transmissions that can be spared to give news to the Empire as well as to foreign countries. In any event, jamming, no matter how heavily it's done, is never a hundred per cent. effective; even

penalties for listening to the B.B.C. it does not prevent our news from reaching the people we want it to

Those American Valves

IT seems to take a long while for those American valves which the Board of Trade agreed should be released for replacement purposes in broadcast receiving sets to find their way into the shops. It's a good while since their coming was announced, but there seem to be few of them about yet. Perhaps their distribution will have been speeded up by the time that these lines are in print, and readers whose sets have been silent for want of the necessary "toobs" will once more be able to listen to news and entertainment. Far too many sets are out of action either because spares are unobtainable or because service men can't cope with the work thrown upon their depleted ranks.

Bits and Pieces

Meantime, I've seen some weird sets put together out of the quaintest museum pieces in the way of components, retrieved from the obscurity of junk box or attic. Old straightline-capacity variable condensers, worked by the kind of slow-motion dial that one hasn't seen for ten years or more, are yoked to tuning coils of the kinds that were illustrated in the advertisement pages of Wireless World in the late '20's or early '30's. Fixed condensers, resistances, transformers and switches of almost forgotten makes and types have been resurrected and are doing good service. One set was actually tuned by a variometer of about 1923 vintage. Another had a couple of those big flat variable condensers with mica dielectric that used to be made by the Polar people. I am still hoping to find a vario-coupler dug out from the depths and given a new lease of life. Under the conditions of to-day, when the set need only bring in a couple of medium-wave stations and requires no long-wave band, quite passable reception can be obtained with components that we wouldn't have thought worth bothering about in 1939. One thing is that, thanks to our network of high-powered broadcasting stations, a simple three-valve straight receiver will normally provide adequate reception: at any rate it enables the news bulletins to be heard

GOODS FOR EXPORT

The fact that goods made of raw materials in short supply owing to war conditions are advertised in this journal should not be taken as an indication that they are necessarily available for export.

myriametre, hectometre and deka- when it is combined with terrific almost anywhere in the country. The quality may leave a good deal to be desired, but in wartime almost any kind of set is better than none at all.

Woomph!

AN anyone explain why it is that those who use receiving sets for bringing in the dance music of the day so often find it desirable to turn the tone control as far counter-clockwise as it will go, or very nearly so? Is it because this takes the edge off the excruciating noises produced by muted trumpets and other strange instruments, thereby rendering them less unbearable? I don't know; l seek more light on the subject. What I do know is that if the news bulletin follows a dance band programme, hardly a word is intelligible until someone has moved the TC knob a long way clockwise. This preference for muffled (mellow is, I believe, the accepted term) reproduction is all the more puzzling since the majority of the sets that one comes across in messes and canteens have little enough "top" anyhow. Someone—I think it was "Cathode Ray"—once wrote that the dial of the average cheapish commercial receiver might well have four positions marked "very woomphy," "woomphy," "not quite so woomphy," and "still pretty woomphy."

Senile Decay?

That, I feel, is no very great exaggeration. But sometimes I am assailed by a doubt: do receivers sound woomphy to me because my aged ears have lost some of their high-note response? Do I like the tone-control furned farther clockwise than the young dance-music enthusiasts would have it owing to the sad effects of senile decay? It is, of course, a fact that once you are over thirty or so your ears respond less and less well to high frequencies. Hence grave and (we hope) reverend seniors might need the tone control turned clockwise in order to be able to hear the upper notes that are clearly audible to gilded youth. Is it then really the ears of the older folk that woomph rather than the loudspeakers of our wireless sets? I hardly think this can be so, for I notice that the young, too, are unable to comprehend the news when it is reproduced with the dance-music settings of their choice.

"Photograms of the Year"

This popular pictorial annual, now in its 43rd year, has again appeared. It constitutes a record of the year's progress in the photographic art, and includes pictures from many parts of the world. Photograms is issued by our Publishers and is obtainable from booksellers and photographic dealers at 7s. 6d. in paper cover or 10s. bound in cloth.

VELOCITY - MODULATION U-H-F GENERATORS

URING the past few years the focus of interest in radio engineering has been rapidly shifted towards the use of higher and higher frequencies. It is well known that a valve having a conventional electrode structure becomes progressively less and less efficient as a generator or amplifier as the frequency is increased; beyond approximately 100 Mc/s it may be considered useless for

Although generators for the ultrahigh frequency have been available for several years it had not in general been found possible to secure operating efficiencies comparable with those easily achieved at lower frequencies, and considerable research was, in consequence, devoted to improving this position. Much interest was aroused, therefore, when in 1936 and 1937 announcements appeared in the American technical Press of ultra - high - frequency generators called "rhumbatrons" and "Klystrons," for which high efficiency was claimed. The outbreak of hostilities in Europe and the attendant increased importance of

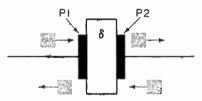


Fig. 1. A simple parallel-plate condenser, showing diagrammatically the relative movement of electron charges.

the ultra-high-frequency field has resulted in little information being published here on recent developments of these generators.

The first operating principle is practice, as the frequency of alternathat, for an alternating current to tion becomes progressively higher, a flow in a conductor, it is not neces- high impedance becomes more diffisary for the generator to have a cult to develop; high resistances conductive connection with the become short-circuits and above ing principle :conductor; it may be readily 100 Mc/s conventional resonant Velocity-modulation and Phase-induced by a "space-charge" circuits become impracticable. This focusing.—At low frequencies and whose density is made to oscillate. leads to the second operating in a vacuum electron velocity is This may be made clear by con- principle:—
sidering the simple condenser of Cavity Resonators.—In 1894 Sir "transit-time" or time taken by

Explaining Their Operation

By GEOFFREY BOCKING (Pasta Developments, Ltd.)

Fig. 1. P₁ and P₂ are plates of equal area and thickness separated by δ , a dielectric medium. When the condenser is discharged the potential difference between the plates is zero and no lines of electrostatic force pass through the dielectric. If a charge or quantity of electrons is added to P₁ a similar charge or quantity of electrons will depart from the surface of P2; that is, a current will flow within P2. Similarly, if the charge applied to P₁ is continually imposed and withdrawn, the current within P2 will alternate in direction. It is obvious that P₁ here performs the function of a conduction means whereby the proximity to P2 of a quantity of electrons or charge may be varied. This result may equally well be achieved by using a thermionically emitted electron cloud or spacecharge, and varying its density or position with respect to P2, causing a varying current to flow in it. This is the modus operandi of the troublesome effect met with in certain frequency-changer valves where the oscillations generated in the oscillator section causes an oscillating space-charge to appear before the signal grid; thus undesirable coupling occurs between the two. Consideration of the foregoing will show that for adequate power to be induced in a load connected between the two real or effective plates, this load must Space-charge Influence Effect .- possess adequate impedance. In

Oliver Lodge demonstrated to the Royal Institution that if an electromagnetic generator be placed within a suitably constructed hollow pipe, the electromagnetic energy could be confined within the pipe during its travel along it and projected as a beam from the open end. The mathematical theory of these "wave-guides." as they have later been called, was developed by Lord Rayleigh in 1897, and from then until 1936 their possibilities seem to have been overlooked. In that year, however, W. L. Barrow and G. C. Southworth published results of their independent experiments on guided waves in hollow pipes, and these papers have been followed by many others. It has been found that by so arranging the physical dimensions it is readily possible to develop standing waves in a hollow pipe system, the resulting configurations, called "cavity resonators," having high impedance and convenient practical construction. Various types of wave are possible in cavity resonators and are differentiated solely by the relative disposition of the lines of magnetic and electric force. They may be excited by placing a loop at right angles to the magnetic lines of force (magnetic excitation)

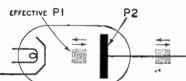


Fig. 2. A condenser in which one effective plate is formed by an electron cloud or "space-charge."

or by a conductor or electron stream parallel to the lines of electric force (electrostatic excitation). This last method of excitation, by an electron stream, is of interest here. Its practical realisation raises difficulties, however, and their solution is dependent upon the third operat-

point B in a circuit is so short, that (2) The physical dimensions of a the other. no error arises in considering the suitable cavity necessitate convelocity to be infinite. At ultra- siderable length along the axis of electron stream, the velocity of high frequencies, however, the the electron stream. The transit- successive electrons of which is transit-time may become com- time of this stream will therefore made successively greater, it will parable to the period of one cycle, normally be equal to the period of be apparent that at one point all and the induction by oscillating several cycles of the resonant electrons will overtake one another space-charge as given above is frequency of the cavity. complicated thereby. A considera-

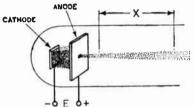


Fig. 3. Simple generation of an electron stream.

tion of this problem is therefore desirable.

The velocity of an electron in a vacuum is dependent upon the square root of the fall of potential through which it passes. Electrons issuing from the hole in the anode shown in Fig. 3 will continue with a velocity given by the formula:

 $v = 6 \times 10^7 \text{ VE}$, where v is the electron velocity in cm/sec. E is the anode voltage in volts.

At this velocity the electron stream will traverse a distance of x cms in t seconds, where t = x/v.

It should be emphasised that this time may be varied at will by changing the anode voltage E, practical considerations imposing upper and lower limits to this variation.

As shown in the description of the first operating principle of inducing an oscillatory current in a conductor by means of an electron cloud or space-charge, the density or proximity to the conductor of the charge must be varied at the frequency of the desired oscillation. An electron stream generated as shown in Fig. 3 may be arranged to do this at moderately high frequencies by interrupting the flow of electrons at such a rate that a matically in Fig. 4.

these frequencies. In consequence by side than at any other point on development of the first generator

The significance of this latter disadvantage may be appreciated by reference to Fig. 5. During the whole of the time that the electron cloud is within the cavity, it has the same influence upon it irrespective of its position (as shown in the upper diagram); whereas for resonance to be excited, the influence should vary as shown in the lower diagram. This might be overcome by making the velocity high and the transit-time short, but this would necessitate increasing the voltage E. Since the power supplied to the generator increases as the square of E ($P = E^2/R$) and the velocity only increases as the square root of E ($v = 6 \times 10^7 \sqrt{E}$), the efficiency falls more rapidly, due to the increase of energy supplied, than it rises due to reduced transittime effect.

The solution to the above dilemma may be appreciated by considering a well-known schoolboy problem in mathematics: "If a train A starts with a velocity v_1 ,

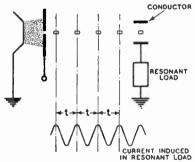


Fig. 4. Excitation of resonance by pulses of current induced by an interrupted electron stream.

cloud of electrons arrives opposite and T hours after a second train B the conductor, and in consequence starts with greater velocity v_2 , how the conductor receives a pulse of far must they travel before B overenergy in phase with the resonant takes A?" Assuming this to be frequency of the load connected solved, suppose that at the point suitable form (catcher). to it. This is shown diagram- at which B overtakes A there is a level crossing, the gates of which correct inter-operation of buncher This method is impracticable at have been negligently left closed; and catcher. ultra-high frequencies, however, for it will be obvious that the energy two reasons:-(I) The difficulty available for the immediate destruction stream after passing through of securing a resonant load having tion of the gates will be greater at the system. a sufficiently high impedance at this point where the trains run side

an electron to move from point A to a resonant cavity must be used. the line where one runs in front of

If this principle is applied to an to form a "bunch" and that the

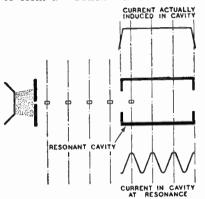


Fig. 5. Showing failure of an interrupted electron stream to induce resonance in a conductor having considerable length along the axis.

influence effect of this bunch at the point of its formation will be greater than that of its component electrons at any other point. In the case of the cavity resonator and electron stream given above, it is possible by suitable design to arrange the bunch to occur once per cycle at, for instance, the point where the stream leaves the cavity. Then, spread out along the stream behind the bunch will be electrons travelling with varying velocities, the net effect of which (some aiding and some impeding the resonant flux) will be very small compared with the large effect of the bunch.

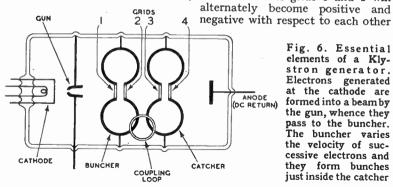
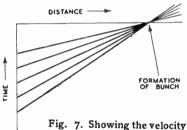
The elements of an efficient ultrahigh-frequency generator operating on the velocity-modulation principle are, therefore:

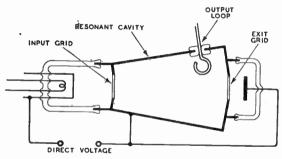
- I. Source of electrons and suitable accelerating and focusing means.
- 2. A device to impress a variation of velocity on the electron stream (buncher).
- 3. A resonant cavity to receive the energy from the buncher in
- 4. Coupling means to ensure
- 5. DC return path for the elec-

Practical Embodiments. — The

Wireless World

Velocity-Modulation U-H-F Generators oscillatory energy would be fed all factors are taken into account,


Fig. 6. Essential elements of a Klystron generator. Electrons generated the gun, whence they pass to the buncher. The buncher varies the velocity of successive electrons and they form bunches just inside the catcher

who in 1936 published details of at the oscillation frequency: this since this applies equally to all, the however, Arsenjewa-Heil and Heil them will alternately oppose and the variations of potential at the gave details of a device rather assist the acceleration field due to input grid. By suitable physical similar to the Monotron, to be the gun, and a variation of velocity design and applied voltages the described later. The method of will be impressed on the beam, bunching may be made to occur function was only generally indicated, but there seems little doubt that it was, in fact, the first of the velocity - modulation generators.

The Klystron.—Fig. 6 shows the Klystron as it was originally described. The buncher and catcher resonators of identical shape and having, in consequence, identical resonant frequencies, are in the form of toroids in which the re-entrant portions, instead of meeting at the centre, are closed in each case by two grids: 1 and 2, The catcher is so disposed to the quenched by application of an passing it through an electrode to exciting it to resonance. which a varying potential was ing oscillations to have been started,

imparted to successive electrons arriving after equal time intervals at the buncher.

to operate on the velocity-modula- back from the catcher via the the efficiency is only reduced from tion principle is commonly credited coupling loop to the buncher. As a theoretical maximum of 58 per to R. H. Varian and S. F. Varian, a result of this grids 1 and 2 will cent. to 40 per cent. in practice.

The Monotron.—Consideration of the voltage relationships within cavity resonators has shown that the function of buncher and catcher may be combined in one resonator. This device has been called the at the cathode are Monotron and one version is shown formed into a beamby in Fig. 8. It will be seen that in this case the resonator has considerable length along the axis of the electron stream, so that during the time of transit several cycles of oscillation can occur. During transit, therefore, the electrons are continually being accelerated and retarded, but their Klystron generator. In 1933, means that the electric field between bunching effect is governed only by

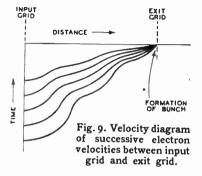
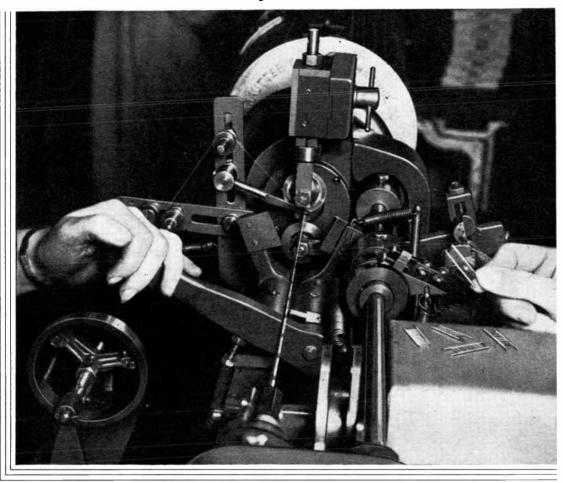

> in the right phase just at the exit grid. Another valuable feature arising out of this that the oscillation mav equally readily be

Fig. 8. The Monotron, a simplified version of the Klystron.

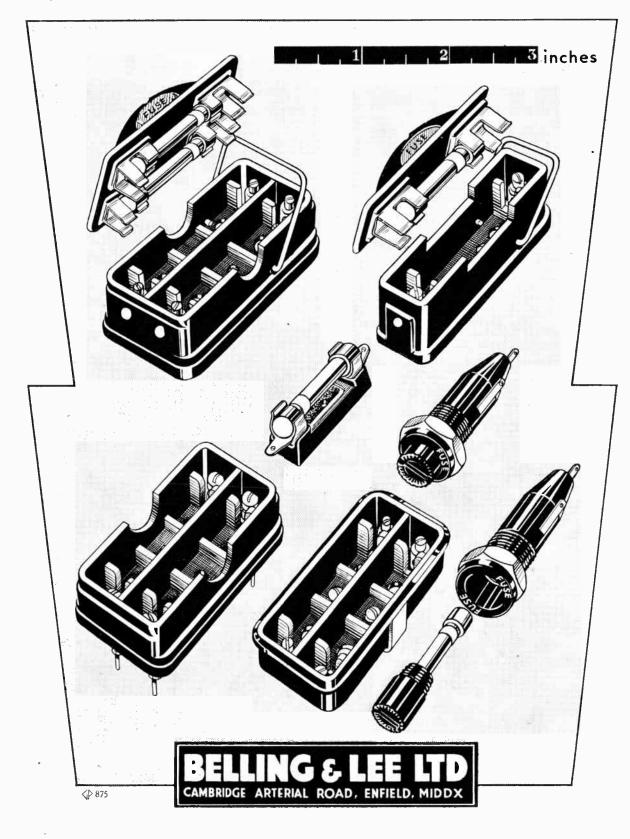
3 and 4. It was shown in Fig. 3 buncher that the electron stream incorrect voltage to the resonator, that a variable velocity could be forms a bunch just within it, the which fact offers a solution to the imparted to an electron beam by incidence of successive bunches hitherto difficult problem of modu-


applied. To attempt to secure this simplified in some respects, but a the Klystron, velocity modulation velocity modulation with a single full understanding can only be electrode would be to encounter achieved in mathematical terms the same difficulties as in a con- and, in fact, the Klystron has so ventional valve, and a cavity far defied a complete explanation resonator must be used. The in such terms. One simplification The in such terms. One simplification operation is then as follows: assum- however, should be immediately apparent from what has already been described: namely, that in a practical Klystron the transit-time within the resonators will be at least an appreciable part of one cycle of oscillation. The electric field will not, in consequence, have a uniform direction during the whole of the transit of the buncher, and velocity modulation must be and energy transfer occur at single various effect may be neglected and, when for speculation.

lation. The simplicity of the This explanation is considerably Monotron and the fact that, unlike

considered a sum effect of the grids, has led to a concentration of accelerations impressed development on this type. The during transit. A simple exercise results of these labours must for the in integration will show that the present, however, remain a matter

Grid Winding



MODERN technique demands the accurate winding of wire down to a diameter of one-thousandth of an inch-less than half the thickness of the average human hair.

It is also necessary to manufacture specially designed exponentially wound grids, and the machine shown in our illustration takes care of this operation.

BRIMAR WALVES

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP, KENT.

TOLERANCES

Considerations Governing the Fixing of Limits for Radio Components

T is generally realised that some unavoidable errors must arise in the manufacture of any article. Consequently, it is usual to specify tolerances for the more important in laboratory measurement is there- ards, although in some cases increphysical properties, or parameters, fore called for. to use a mathematical term meaning the same thing.

other industries cannot be trans- 109. will be shown later.

tion in the more specialised com- guaranteed in 1936. munications journals. Also it has led to standard specifications of various components under the auspices of the British Standards Institution and the R.M.A. reader may nevertheless find interest in a less rigid review of some aspects of the topic.

It is plain that tolerances which are required in practice cannot possibly exceed the accuracy of measurements. A short examination of what accuracies are possible

TABLE I. Precision of some electrical measurements. (NPL, 1st grade).

Quantity.	Accuracy.
Resistance Volt- and Ammeters Capacity of screened condenser Capacity of un- screened condenser	10 parts in 10^6 1,000 ,, ,, 100 ,, ,, or 0.01 $\mu\mu$ F for fixed condenser 0.1 $\mu\mu$ F for fixed condenser

J. T. TERRY

Now the customer or consumer units (e.m.u. and e.s.u.), practical yielding results of precision similar tends to request fine tolerances on units are derived and commercial to that with which the sub-standard principle, as it were. This tendency laboratory instruments calibrated is known. This will be realised on is often one of false caution, par- from the primary standards kept examining Table II. ticularly in radio, for while in at the National Physical Laboratory civil and mechanical engineering and similar institutions in other good workmanship and close dimen- countries. As explained by Dr. sions are essential for the first-class Hartshorn of the N.P.L. in the performance of parts in continuous "Reports on Progress of Physics" mechanical motion, in radio parts for 1939, the units of mass and are fixed in position relative to each length may be determined with a other, so that the experience of maximum accuracy of I part in Time intervals, and hence lated directly in this respect. In frequency, are common to all fact, to demand too close a toler- systems of units and can be readily ance may actually be inimical to checked to within 0.5 parts in 106. the interests of all concerned, as A considerable drop in accuracy obtains, however, when electrical All this is more or less realised quantities are considered. Table I by manufacturers of components indicates the best which the Elecand has received detailed examina- tricity Department of the N.P.L.

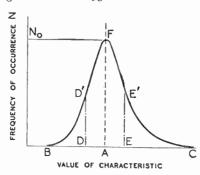


Fig. 1. Frequency distribution curve showing the relationship between the value of a given characteristic and the number of articles having that value.

In addition to this inherent limitaards are subject to drift. More- as A occurs most frequently (N over, unknown objects may be times) the total number of commeasured only by means of multiplying or dividing networks, or variable sub-standards or both; July, 1940.

hence, the accuracy of works laboratory measurements is generally one or two orders of magnitudes below that of N.P.L. standmental readings of the variable Leaving aside the academic ques- standards may be used, e.g., in tion of the fundamental systems of parallel substitution measurements.

Precision of some comparative measurements.

Parameter	Accuracy of Comparison.		
Resistance EMF Capacity	<0.1 in 10^6 1 in 10^6 0.001 $\mu\mu$ F (calibration of good micrometer condenser)		

Table II does not necessarily improve matters unless the customer supplies a sample to the manufacturer for comparison. Rather, Table II indicates that such sources of error as setting accuracy, scale resolving power and backlash may be overcome in good laboratory equipment so as not to impose further limitations on Table I.

Production Aspect

The characteristics of mass produced articles follow the "Normal Distribution Law." This means that when a large number of articles are made and the same parameter is measured for each one of them a graph connecting these values with "frequency" will be of the nature of Fig. 1.* "Frequency" in its present sense has no connection with $\omega/2\pi$, but denotes the number of specimens having the parameter value indicated by the abscissæ. Fig. 1 shows that while tion of accuracy it must be remem- the value A is particular among all bered that even laboratory stand- the other possible values inasmuch

^{*} See "Statistics and Engineering Practice" by B. P. Dudding and W. J. Jennett, J.I.E.E.,

Tolerances-

ponents having other values (i.e. larger. It is consequently not possible to admit of the value A only, in practice. The points E and D illustrate the significance of tolerance limits: the number of acceptable components is represented by the area DD'FE'E, and would have a definite value under given conditions of production. Hence, constant observation of this area is regarded as an essential feature of the modern production process, for any serious defect in the manufacture is likely to show up at once as a reduction. This watch is kept by means of laboratory checks, carried out for the sake of economy and expediency on numerically from drift in the shop sub-standard. small samples chosen at random from a large group—the day's out- from laboratory standards. put of the component say.

An example may help to elucidate this. Consider Fig. 2 which of the shop standard: the distribuwas obtained from measurements

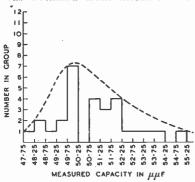


Fig. 2. Distribution curve for 29 condensers with a nominal capacity of $50\mu\mu\text{F}$ \pm 10 per cent.

on a sample of 29 condensers with a nominal capacity of $50\mu\mu$ F. Owing to the limited number, the diagram shows discontinuities, but these would gradually disappear if more samples were examined, and curve of Fig. 2 would approximate to that of Fig. 1. Fig. 2 shows that served equally well by what might some 25 per cent. of the samples be termed a "functional" tolerare within $\pm \frac{1}{2}$ per cent. of their ance, i.e. a tolerance which is adenominal value. Clearly, it would be quate for the function which the within the limits.

closer tolerances are specified. Also, of the instrument.

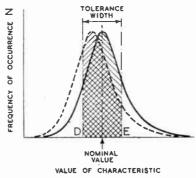


Fig. 3. Showing reduction in number of acceptances resulting

is illustrated in Fig. 3, showing the effect of a small drift in the value tion curve has been displaced and instead of the number of acceptable articles represented by the shaded area under the full line curve, only the much smaller number (shaded area under the dotted curve) may now be passed.

As many factors contribute to make such displacements unavoidable in practice, expediency demands that the closest tolerance specified should be well in excess of the uncertainty inherent in shop standards. The above also applies although to a lesser extent, where the customer submits his own standards to the manufacturer, as this valuable procedure eliminates uncertainties regarding standards in the laboratory, but not in the shop.

Consumer's Aspect

While cost and delivery time are the only factors to deter the conthe shape of the dotted envelope sumer from postulating the closest tolerance possible, he would be uneconomical to specify this toler-component is to perform. For in ance, as 75 per cent. of the produc- any wireless instrument, there are tion would have to be rejected, some components whose values are Actually, the particular condensers not at all critical, and, conversely, were made to a specified tolerance others which are very critical; of ±10 per cent., and are thus all indeed, some in the second group are so critical that even the closest series is $C_T = \frac{1}{C + C_g}$ The example does demonstrate possible tolerance is inadequate; however, the trend towards a the precise values of such components higher percentage of rejection if are adjusted in situ, after assembly on the value of C_T may be calcu-

Most radio allowance should be made for drift engineers agree that of two confrom B to C, excluding A) is much in shop sub-standards, as distinct temporary radio sets of similar specification but different manufacture, perfection and permanence of the final adjustments may contribute almost as much as design in making one set superior to the

> As an example, consider the sensitivity of a receiver. Here, it would be futile to pay much attention as to whether the "Q" of the aerial coil is 100 instead of 105 say, while the mutual conductance of valves varies normally between +20 per cent. What counts is the tracking of the aerial and oscillator circuits, and their alignment with the IF stages. Trimming condensers and/or permeability tuned coils are essential for this purpose. The variations possible with the former may be anything between 5 and 100μ F, while the figure is 5 to 100 per cent. of total inductance for coils. In these circumstances, it is irrational but usual for the customer to order quantity produced fixed condensers with a nominal capacity of 100 µµF, say, and a tolerance of $\pm \frac{1}{2}$ per cent. This leaves a margin of just five times over guaranteed N.P.L. measurements. Such a procedure will lead to disappointment. tolerance of ± 2 per cent., say, would have been quite adequate, and a simpler proposition for the makers.

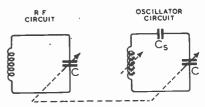


Fig. 4. Basic superhet circuit for the estimation of tolerances.

Next, consider as another example, the series padding condenser C, in the oscillator circuit of a superhet receiver (Fig. 4): The two nominally identical sections of a variable condenser tune the RF and the oscillator circuits, alignment being provided for in the values of the inductance and the series padder C_s . The effective or total capacity of Cs and C in

series is
$$C_T = \frac{CC_s}{C + C_s}$$
.

The effect of a change δC_s in C_s

lated by simple differentiation; are permissible. change in C_T will be

$$\frac{\delta C_T}{C_T} \, = \frac{C}{C_s + C} \cdot \frac{\delta C_\bullet}{C_\bullet} \label{eq:deltaCT}$$

(50 to $550\mu\mu$ F) for C, and a nominal resistor manufacturers ensures that and rather independent of valve value of $5,000\mu\mu$ F for C₈, the no item of their manufacture can slope and load impedance. 200 to 650 metres say. Then, at values!

$$\frac{C}{C_s + C} = \frac{50}{5050} \stackrel{:}{=} \frac{I}{100},$$
and
$$\frac{\delta C_T}{C_T} = \frac{I}{100} \cdot \frac{\delta C_s}{\delta C_s};$$

and at 650 m.

$$\frac{C}{C_s+C} = \frac{500}{5550} \div \frac{I}{II},$$
 and
$$\frac{\delta C_T}{C_T} = \frac{I}{II} \cdot \frac{\delta C_s}{C_s}$$

The effect of a small departure of Cs from its nominal value will obviously be negligible at 200 m; while at 650 m, it may cause some error in the calibration of the wavelength scale. Loss in sensitivity will hardly be experienced, owing to the flat top of the aerial circuit response curve. Allowing a maximum error of 3 m. this corresponds to a percentage error of

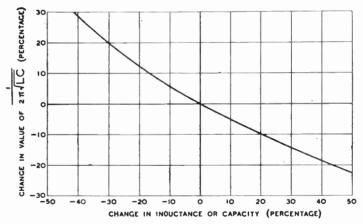
$$\frac{3}{650}$$
 × 100 \doteq 0.5 per cent. in

wavelength, and twice this amount, i.e. I per cent. in effective capacity.

Hence,
$$\frac{\delta C_{s}}{C_{s}} = \frac{\text{II} \times \delta C_{T}}{C_{T}} = \pm \, \text{II per}$$

cent. would be the permissible tolerance of the series padding condenser. A closer tolerance of ±5 per cent. could be easily guaranteed, yet customers frequently specify ±1 per cent. for this type of condenser. In a particular case, which probably applies to all manufacturers, a ± i per cent. tolerance would have been a manufacturer would have arrived

limits for the values of components using a pentode with self-bias and or negative component errors.


this shows that the fractional cathode bias resistors produce a essentially determined by the geoself-regulating effect and thus allow metry of the valve and the value of quite large tolerances. This is of the load impedance; while actually well realised, as a conse- if a large amount of negative feed-With a typical variable condenser values and tolerances of the larger determined by the feedback ratio medium wave band extends from be rejected because of incorrect Again, there is the danger of

statement.

measuring apparatus. Since the ance will change its resonant fre-

For instance, screen voltage dropping resistors is quence, the preferred range of back is used, the gain is essentially

cumulative tolerances. Thus, in Earlier in the war, an advertise- the last example but one, tolerances ment by a well-known firm of set would be cumulative if slope and manufacturers revealed that the load impedance were both low, or substitution of 10 per cent. toler- both high. If the tolerances were ance resistors for 2 per cent. ± 20 per cent. and ± 10 per cent. resistors could at the worst lead to say, the gain of the stage would a 6 per cent. change in sensitivity; vary by ± 30 per cent. very nearly; they claimed that this could hardly in other words, the difference in be noticed. In view of the much the gain of two similar stages, one wider tolerances usual in valves, of low and the other of high value not to mention output transformers components, would be 60 per cent. and loudspeakers, their claim may Reverting to the case of the simple be viewed as a model of under-tuned circuit, it can be shown by simple differentiation that a small Similar considerations apply to change in its inductance or capacit-

Relationship between change of inductance or capacity in a Fig. 5. tuned circuit and change of resonant frequency.

advent of negative feedback, suit- quency by half that amount, and able design renders their precision in the opposite direction. largely a function of the perfection large changes, however, use must simple matter for capacities of and permanence of tuned circuits be made of the complete formula: the order of 100 \(mu\mu F\), but very diffi- and resistor adjustment, and the Percentage change in resonant frecult for condensers of the order of conforming of a meter to a specified 5,000 $\mu\mu$ F: evidently, a little co-law—usually of the straight line operation between customer and type. There is some danger in quency = 100 $\sqrt{\frac{1}{1+b}} - 1$. pushing too far the plea for more at a wider tolerance, speeded up liberal tolerances, as one might where p is the fractional amount delivery and, incidentally, reduced find oneself arguing that the per- by which the actual capacity or Next to the sensitivity of a set, dependent of all its component inal. This equation is plotted in its selectivity and fidelity may be values. This is avoided by careful Fig. 5 showing that for fairly high considered the most important study of the given problem. As positive changes of inductance measures of performance. Here an example, the gain of a Class A or capacity changes in frequency again, it may be shown that wide voltage amplifier (without feedback) are more pronounced than for small

quency =
$$100 \left[\sqrt{\frac{1}{1+p}} - 1. \right]$$

formance of a given circuit is in- inductance differs from the nom-

Tolerances-

possible tolerance for a given com- aside. But such a step is basically ponent, the tolerances of other com- due to the requirements of mass ponents in the circuit must be considered at the same time.

concluded that sacrifice of quality need not lead to a sacrifice of for the sake of quantity and cheap-quality. Actually, mass producness is advocated. Quite the contion methods can be combined with trary; as a matter of fact resources a high degree of accuracy and are frequently wasted on ensuring workmanship. a needlessly close tolerance, and consequently, far more important properties of the component are neglected. To revert to an earlier example, tuned circuits can usually to the wanted frequency or fre- for component parameters. It is quency law. It is then most desir- almost always wrong to insist on able that the circuit adjustment very close tolerances as this may value of the component parameter, used-possibly as additions to a when adjusted. Yet this is gener-tions of the circuit which determine ally ignored by purchasing depart- its performance, for such adjustments which may specify a very ments are necessary at any rate close tolerance for the initial value during final test. of a component, but none at all for, say, its temperature coefficient!

Fitness for Purpose

couraging sign that one of the most quirements of both sides can usually reputable firms of English instru- be met if there is sufficient interest ment makers has adopted the slogan to try and understand them. This "Good enough for the job" in would increase not only the volume advertising a new product which by but also the quality of production, its robustness and availability is and perhaps bring nearer the time an improvement over earlier types, when components such as valves, while its low tolerances are still transformers, coils and condensers adequate in most applications, will be standardised as rationally Since production went up one may as resistors are to-day.

Wireless World

take it that slow if beautiful Hence, in specifying the widest craftsman's methods had to be put production technique and merely brought home more rapidly by Some readers may by now have the war. As mentioned before, it

Summary

Present day mass production be adjusted as closely as desired methods require generous tolerances should not alter appreciably with slow down delivery and lead to time, temperature, humidity and more important properties being pressure. In other words, what overlooked. Quality need not suffer matters is not so much the precise if semi-adjustable components are but the permanency of this value fixed component-in those sec-

Closer co-operation between customer and manufacturer and greater technical awareness of sales and purchasing staffs are essential for the realisation of optimum speci-In this connection it is an en-fications. The difficulties and re-

Books issued in conjunction with "Wireless World" Net Rv

Price	Post
FOUNDATIONS OF WIRELESS, by A. L. M. Sowerby. Third Edition revised by M. G. Scroggie 6/-	6/4
RADIO LABORATORY HANDBOOK, by M. G. Scroggie. Second Edition 12/6	12/11
WIRELESS SERVICING MANUAL, by W. T. Cocking. Sixth Edition	7/10
HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESS TELEGRAPHISTS, by H. M. Dowsett and I. E. O. Walker	-,
Seventh Edition 27/6	28/3
WIRELESS DIRECTION FINDING, by R. Keen. Third Edition 27/6	28/3
RADIO DATA CHARTS, by R. T. Beatty. Second Edition Revised 6/-	6/3
TELEVISION RECEIVING EQUIPMENT, by W. T. Cocking 8/6	9/-
RADIO INTERFERENCE SUPPRESSION, by G. W. Ingram 5/-	5/4
LEARNING MORSE. 285th thousand 6d.	71d.
INTRODUCTION TO VALVES, by F. E. Henderson 4/6	4/9
Obtainable from leading booksellers or by post from	

ILIFFE & SONS LTD., Dorset House, Stamford Street, London, S.E.1

BOOKS RECEIVED

The Amplification and Distribution of Sound, by A. E. Greenlees.—This is a revised second impression of a standard work for PA engineers, reviewed originally in the issue of this journal dated March 16th, 1939. The revisions are of a minor character and do not affect the main body of the next. Pp. 255 with 82 diagrams. Published by Chapman and Hall, Ltd., 11, Henrietta Street, London, W.C.2. Price 12s.

Instruction Manual for Cossor Ganging Oscillator.—Although intended primarily as a manual for the Cossor Model 343 Oscillator, this booklet stands by itself as a comprehensive treatise on coupled RF circuits and their response curves. and as such is sold separately from the instrument.

It is liberally illustrated with circuits and CR oscillograms and contains a useful bibliography. Pp. 44 with 36 diagrams. Published by A. C. Cossor, Ltd., Highbury Grove, London, N.5. Price 3s. 6d.

Frequency Modulation. By K. R. Sturley. This is the first of a series of monographs containing information on specialised subjects to be issued by Electronic Engineering. The subjectmatter of the present publication is based on a series of articles by Dr. Sturley that have recently appeared in that journal. The advantages and disadvantages of frequency and phase modulation are considered in detail, and there is a very full discussion of the FM receiver. Pp. 58; 30 figures. Published by Electronic Engineering, 43, Shoe Lane, London, E.C.4. Price 2s. 6d. (by post 2s. 8d.).

Six-figure Trigonometrical Tables. Giving the six trigonometrical ratios for every minute of arc. Definitions and formulæ that are likely to be required in using the tables are included. In pocket size; pp. 54. Published by the Ford Motor Company, Ltd., Dagenham, Essex. Price 1s. 6d. by post.

Experimental Radio Engineering. Second Edition. By E. T. A. Rapson. Describing a number of experiments and methods of measurement devised for use in a three- or four-year course in radio engineering at a technical college. experiments range from the illustration of simple resonance and the determinaof simple resonance and the determina-tion of valve characteristics to overall receiver tests and electro-acoustic measurements. Pp. 159; 170 figures. Published by Sir Isaac Pitman and Sons, Ltd., Parker Street, Kingsway, London, W.C.2. Price 8s. 6d.

Foyle's Technical Books Catalogue.-More than 450 subjects, including radio and electrical engineering, acoustics and mathematics for engineers, are dealt with in the November, 1942, edition of this catalogue issued by W. and G. Foyle, Ltd., 119-125, Charing Cross Road, London, W.C.1.

Conserving Paper

THE Waste Paper Recovery Association points out that, as less paper is now going into the home, it is becoming increasingly difficult to meet our war needs by merely salvaging all paper in current use. It is therefore essential that the consumption of paper must be drastically reduced.

THE WORLD OF WIRELESS

SOUND REPRODUCTION

THE technical basis of sound reproduction was the subject of a paper read by Dr. L. E. C. Hughes at the meeting of the British Institution of Radio Engineers held in the Lecture Hall of the Institution of Structural Engineers on November

In outlining the scope of his discourse, Dr. Hughes pointed out that a high degree of perfection had been attained in the individual components of the sound-reproducing chain—microphones, amplifiers, etc.—but that there were still many factors which could introduce distortion and unwanted components in the sound reaching the ear. Among these he gave as instances the blurring effect of reverberation, the properties of the ear in relation to loudness and the limitations of single-channel systems of sound transmission.

Listening tests were still the only reliable means of arriving at a final estimate of quality, and he gave details of the methods used to compare the original with the reproduced sound in selecting receivers for approval by the Central Council for School Broadcasting.

A lively discussion of these methods occupied the question time, which gave Dr. Hughes the opportunity of adding statistical evidence of the consistency of the results obtained.

AMERICAN AMATEURS

WHILST the recently formed American War Emergency Radio Service for the maintenance of civil defence communications systems is not exclusively a service for amateurs, it has certainly been a clarion call to them to make use of their vast experience in communication networks.

It had been suggested that the amateur stations should be linked to form a nation-wide communication system, but this has given place to the present scheme, which does not involve the use of amateur stations as such. It is pointed out by QST that the W.E.R.S. is making temporary use of amateur frequencies and necessarily counting largely on the support of amateurs and the loan of their gear for the establishment of "Civil Defence Stations" by local governments.

The stations will operate in the II2-II6, 224-230 and 400-401 Mc/s amateur bands.

BRITISH LISTENERS

IN reply to a recent question in the House of Commons the Assistant Postmaster-General stated that on August 31st, the latest date for which accurate figures were available, there were 8,836,724 wireless receiving licences in force in this country. He also intimated that since that date the number has increased to over 9,000,000.

The figure for August 31st shows an increase of 211,145 over that for December 31st, 1941. This is, however, about 300,000 fewer than the number of licensed listeners on July 31st, 1940.

IMPORTANCE OF RADIO

THE great increase in the importance of wireless communication, radiolocation and other applications of wireless technique in modern warfare were exemplified by two events occurring during December.

occurring during December.

Mr. Lyttleton, Minister of Production, announced on December 9th that it having been considered necessary to strengthen the existing organisation for controlling research, development and production in this field, a Radio Board had been set up "as the co-ordinating body in regard to inter-service policy, research, development and production."

Sir Stafford Cripps, the recently appointed Minister of Aircraft Production, who, in addition to his ability as a lawyer, has a scientific bent, will act as chairman in his personal capacity. Much of the work of the Board is carried out through two main working committees, the Production Planning and Personnel Radio Committee, and the Operations and Technical Radio Committee, of which Mr. Garro-Jones, Parliamentary Secretary to the Ministry of Production, and Prof. G. P. Thomson, F.R.S., are respectively chairmen.

The membership of the Board includes representatives of the Admiralty, War Office, Air Ministry, Ministry of Supply, Ministry of Aircraft Production, and General Post Office, as well as several special non-departmental members.

It will be remembered that when the Prime Minister asked Sir Stafford to accept the post of Minister of Aircraft Production he said "the production of aircraft and the development of radio technique lie at the very heart of our affairs."

Another important event concerning radio was that the German-controlled Philips factory at Eindhoven, Holland, had been considered of sufficient importance to send nearly

ASTATIC

CRYSTAL DEVICES

The care and precision with which Astatic Crystal Products are made insures highest operating efficiency and long, satisfactory service. No Astatic instrument ever leaves the factory without first having been thoroughly tested and found to meet the exacting standards of performance that have made these products so desirable. For amateur, studio, public address, intercommunicating sound systems and recording sets Astatic devices are accepted favourites—dependable and yet surprisingly low in cost. Astatic will be ready to supply you again as soon as circumstances permit; in the meantime Astatic crystal devices are doing their part in helping to win the war.

Register your name with our Representative for your future benefit

The ASTATIC CORPORATION YOUNGSTOWN, OHIO, U.S.A.

TORONTO, CANADA

Frank Heaver Ltd. Kingaley Boad, N. Devon

VARIABLE CONDENSERS ---DRIVES--AUTOMATIC TUNERS

WE are designing and building even better equipment with our enlarged and extended facilities and these improvements will be available for your use when the present struggle is over.

For the time being domestic receiver design and production has ceased but your radio receiver manufacturers will be ready to equip their sets with General Instrument variable condensers, automatic tuners and other G.l. devices as soon as conditions permit.

Always remember General Instruments
VARIABLE CONDENSERS - DRIVESAUTOMATIC TUNERS

Register your name with our Representative now. He will forward you information on our products as soon as they become available.

THE GENERAL INSTRUMENT CORPORATION ELIZABETH, N.J., U.S.A.

Exclusively Represented by Frank Heaver Ltd. Kingsley Road, Bideford, N. Devon

Wireless World

The World of Wireless-

100 light R.A.F. bombers to deliver a low-level, concentrated attack on the factory in daylight. The works include the largest valve manufacturing plant in occupied Europe, the whole of the production of which goes to the Nazis.

EMPIRE BROADCASTING

TEN years have passed since the opening of the Empire Service by the B.B.C. To record the story of the service and the advance made during this first decade of regular broadcasts from this country for oversea listeners the B.B.C. has issued an illustrated booklet, "Calling All Nations.

Although it was not until December 19th, 1932, that the Empire Service was introduced, it was five years earlier, in November, 1927, that the by arrangement with Mar-B.B.C., by arrangement with Marconi's Wireless Telegraph Company, established the 7-kilowatt experishort-wave transmitter, G5SW, at Chelmsford. It will, however, be remembered that Wireless World agitated for the introduction of Empire Broadcasting, a term of the Chelmsford station.

At first the official attitude of the B.B.C. was to throw cold water on the scheme, but we continued to plead that it be given a trial. Our opinions on the practicability of our effective Empire Service were soon confirmed by the successful transmissions to the Netherlands East Indies from the Dutch station, PCJJ, at Eindhoven, in March, 1927.

Great strides have been made in short-wave transmission in the past few years, and with the increased number of transmitters the B.B.C. is literally "calling all nations"—in forty-seven languages. In September, 1939, the B.B.C. was broadcasting in nine languages only.

Whilst for security reasons it is not possible to say how many transmitters are at present in use, it is significant that fourteen short wavelengths can now be employed simultaneously.

Tribute has been paid in the 64page booklet, which costs is., to the considerable help given by listeners oversea in building the service. Without their help it would have been impossible, especially in the early days, to determine how successwhich we coined, before the opening ful were the efforts of the broadcasting engineers.

U.S. SHORT-WAVES

SHORT-WAVE listeners will have noticed the considerable improvement in the quality and power of the transmissions from the Schenectady short-wave transmitter of the General Electric Co. This has been due to the inauguration of the new 100-kW WGEO transmitter. It has been built to replace a similar one transferred to KWID, San Francisco, some months ago to combat Japanese broadcasts in the Pacific.

IN BRIEF

Empire News Bulletins

News in English is daily transmitted by the B.B.C. in its European and World Services at the following times (BST) and in the wavebands listed.

				Except	Sunda	. Y.			
1200	25,	19			2345		31		
1000	49,	41,	31,	16	2245			31,	25*
000)					2045	31,	25,	19	
0715					1900				
0530					1700			19,	16
0345	49				1600				
0200	49,	31			1400				

Radio Relay Statistics

According to statistics just published there were 398,985 subscribers to 278 radio relay exchanges at the end of June, 1942. This was an increase of 11,751 subscribers in three months.

NEWS IN ENGLISH FROM ABROAD

REGULAR SHORT-WAVE TRANSMISSION

* Country : Station	Mc/s	Metres	Daily Bulletins (BST)	Country : Station	Mc/s	Metres	Daily Bulletins (BST)
America				Spain			
WNBI (Bound Brook)	17.780	16.87	2.0†, 2.45‡, 4.0§‡, 6.0.	EAQ (Aranjuez)	9,860	30,43	6.15,
WRCA (Bound Brook)	9.670	31.02	7.0 a.m., 9.45 a.m.	Sweden			
WRCA	15.150	19.80	2.0†, 2.45‡, 4.08‡, 6.0.	SBU (Motala)	9.535	31.46	10.20,
WGEO (Schenectady)	9.530	31.48	9.55 a.m., 9.0†, 10.55§‡.	SBT	15.150	19.80	4.0.
WGEA (Schenectady)	15.330	19.57	9.0 a.m., 2.0, 3.0, 7.45§‡,	Turkey		1	
" o mit (beliefeedan)	10,7000		11.0.	TAP (Ankara)	9.465	31,70	7.15.
WBOS (Hull)	11.870	25.27	12.45 a.m.†, 12.0 mdt.	U.S.S.R.			
WBOS	15.210	19.72	9.0 a.m., 2.0†, 2.45‡,	Moscow	5.890	50.93	11.0.
			4.081, 6.0.		6.970	43.04	11.45.
WCAB (Philadelphia)	6.060	49.50	6.0 a.m.		7.300	41.10	8.0, 9.0, 10.0, 11.0.
WCBX (Wayne)	15.270	19.65	11.30 a.m., 3.30, 7.30‡,		7.360	40.76	11.0.
n (bx (wayne)	10.210	10.00	9.30.		7.560	39.68	11.0.
WCRC (Wayne)	11,860	25.30	11.30 a.m., 3.30, 7.30‡,		9,390	31.95	4.0.
were (wayne)	11,000	20.00	9.30,		11.830	25.36	4.0, 6.0.
WCW (New York)	15.870	18.90	3.0, 4.0, 5.0, 6.0, 7.0,		15.110	19.85	2,15 a.m., 12.40,
WCW (New TORK)	10.070	10.50	8.0, 9.0, 10.0.		10	10100	11.45.
WCDA (New York)	17.830	16.83	1.0, 2.0.		15.180	19.76	12.40, 11.45.
	11.790	25.45	9.30±.		15.230	19.70	2.15 a.m., 11.45.
WRUL (Boston)	15.350	19.54	1.0, 9.30‡.		15.270	19.65	12.40.
	6.080	49.34	6.0 a.m., 7.0 a.m.		15.750	19.05	1.0 a.m., 2.0 a.m.,
WLW() (Cincinnati)		25.62			15.150	15.05	11.45.
WLWO	11.710		7.0, 8.0, 9.0, 10.0.	V:hashan	8.050	37.27	8.30.
WLWO	15.250	19.67	3.0, 4.0, 5.0.	Kuibyshev	13.010	23.06	6.0 a.m., 2.0, 2.45.
Australia	0.500	01.00	T 0		14.410	20.82	2.0, 2.45.
VLQ6 (Sydney)	9.580	31.32	7.0 a.m.	Vation Oite	14.410	20.02	2.U, 2.TU.
VLQ5 (Sydney)	9.680	30.99	8.0 a.nı.	Vatican City	F 050	50.25	7.15.
VLG3 (Melbourne)	11.710	25.62	8.0 a.m.	HVJ	5.970	30.25	1.15.
hina						'	
XGOY (Chungking)	11.900	25.21	2.0, 4.0, 5.15, 9.30.				
rench Equatorial Africa							
FZI (Brazzaville)	11.970	25.06	8.45.	MEDINA	A-WAVE	TRANSF	MISSIONS
ndia				MEDION	-WATE	. 1671101	,
VUD4 (Delhi)	9.590	31.28	8.0 a.m., 1.0, 3.50.		1		
VUD3	11.830	25.36	3.50.	Ireland	kc/s	Metres	
VUD3	15.290	19.62	8.0 a.m., 1.0.	Radio Eireann	565	531	1.401, 6.45, 10.0.

It should be noted that the times are BST-one hour ahead of GMT-and are p.m. unless otherwise stated. The times of the transmission of news in English in the B.B.C. Short-wave Service are given at the top of this page. § Saturdays excepted. † Sundays only. ‡ Sundays excepted.

Wireless World

Radio and Education

THE President of the Board of Education recently broadcast a talk on education by wireless. He spoke of the increasing part broadcasting was playing in education in this country and concluded: "Broadcasting is a part of the life of the people to-day, and must be part of their education if education is to be up to date."

The Television Society

A VERY satisfactory state of affairs was revealed at the Annual General Meeting of the Television Society, held on December 5th. The impression gained was that the Society will be in a strong position to resume more active work after the war.

All the officers were re-elected, and formal business was followed by a lecture on Colour Television by G. Parr, the Lecture Secretary.

Canadian Apparatus

ln a summary of the position of the wireless industry in Canada, a correspondent in the Dominion points out that whilst Canadian manufacturers are unable to make permanent-magnet speakers because of the control of essential materials some British manufacturers are still able to export PM speakers to Canada.

It is estimated that the production of radio equipment in Canada will reach approximately \$250,000,000 in 1943, as compared with \$100,000,000 in 1942.

Brit. LR.E.

THE British Institution of Radio Engineers has moved to new premises at 9, Bedford Square, London, W.C.I.
Until such time as the structural alterations necessary to provide a lecture. A PHOTO-ELECTRIC cell is incorporated theatre have been undertaken the in the latest type of meteorological general meetings will be held at the balloon designed by a United States Institution of Structural Engineers, 11, Government research worker. It is used Upper Belgrave Street, London, S.W.1. to indicate the lower and upper limits of The next meeting will be held on January cloud through which the balloon rises. 23rd at 6.30, when J. H. Cozens will give a lecture on modern condenser technique, with special reference to electrolytics.

American Pioneer

ROY A. WEAGANT, Chief Engineer of Marconi's Wireless Telegraph Company of America (later Radio Corp. of America) from 1915 to 1920, died recently in U.S.A. He will be remembered by old-time wireless men as the originator of the "Weagant X-stopper," a device designed to reduce atmospheric interference by a balancing-out process. He was also responsible for important pioneer work in valve reaction circuits and direction-finding technique.

I.E.E. Wireless Section

 $\Delta \tau$ the informal meeting of the Wireless Section of the Institution of Electrical Engineers on Tuesday, January 19th, at 5.30, a discussion on "Quartz Crystal Applications" will be opened by Capt. C. F. Booth.

D.C.B. to B.W.C.

A NUMBER of American organisations A NOMBER of American organisations have recently substituted the word "war" for "defence." The Defence Communications Board is now known, therefore, as the Board of War Communications.

"An Essential Institution"

A FEATURE of the American broadcasting system is the preponderance of smallpowered local stations. As a result of a recent survey of listeners conducted by the Medhill School of Journalism of Northwestern University it was revealed that some 90 per cent. of Americans listened habitually to the local station. Commenting on this in a recent article in Broadcasting the Director of Research writes: "The local radio station has attained an indispensable place in the social structure of the American community. It is regarded as an essential institution, comparable in usefulness and importance with the schools, the churches, and the Press."

Poland's 20,000 Listeners

GERMAN statistics reveal that in the region of Poland occupied by Germany (with the exception of provinces incorporated in the Reich) only 20,000 people are authorised to have receiving sets. Nothing could better demonstrate the situation in this country of 95,000 square kilometres with a population of more than ten millions, where before the war there were more than a million listeners.

Transmitting Gear in the U.S.

In an endeavour to ascertain the number of transmitting valves in use in the United States and at the same time to estimate the needs of the broadcasting and telegraph stations for the duration of the war, the U.S. Board of War Communications recently issued a question-naire to all stations. This is the first move in a scheme to organise a pooling plan for all essential apparatus.

Measuring Cloud Limits

The variations in light intensity as the balloon rises into and emerges from a cloud cause the cell to vary the transmitter frequency, the changes in which are recorded by a ground station.

Obituary

WE regret to announce the recent death of Walter L. Fillmore, director of Jackson Brothers, the condenser manufacturers.

St. Dunstan's

The publication of the twenty-seventh annual report of St. Dunstan's calls to mind the great part that wireless plays in the lives of blinded Service men and women. Until they are able to read by touch broadcasting is their main link with the outside world.

"Wireless World" Index

OUR Publishers advise us that the index and binding case for Vol. XLVIII of Wireless World, January to December, 1942, is expected to be ready by the new year. The index will cost sixpence (postage 14d.) and the binding case 4s. (postage 7d.). Both will be from our Publishing Office. Both will be available Arrangements can be made for binding readers' copies at an inclusive cost of 10s., plus od, to cover the postage when returning the bound volume.

CROWE

RADIO COMPONENTS

ESCUTCHEONS TUNING CONTROLS DIALS-REMOTE CONTROLS POINTERS. ETC.

FOR BOTH HOME AND COMMUNICATION EQUIPMENT

The Crowe organisation, now a part of the Arsenal of Democracy, will have available enlarged facilities after the war.

The Crowe plant will again be devoted to the supply of smartly designed and executed dials, dial scales, escutcheons, pointers and the like for radio receiver manufacturers all over the World.

Crowe also manufactures precision tuning devices for Communication Receivers.

Register your name now with our British Representative for details as soon as available of Crowe Products.

CROWE NAME PLATE & MANUFACTURING CO.

3701 RAVENSWOOD AVENUE CHICAGO, ILL., U.S.A.

Exclusively Represented in Great Britain by Frank Heaver Ltd. Kingsley Road, Bideford, N. Devon

-- RAYTHEON --WORLD'S LARGEST **EXCLUSIVE TUBE MANUFACTURER**

NEW Electronic developments have Raytheon are indeed fortunate to be placed in the advantageous position of engineering these new intricate designs. Our research engineers have developed special valves to meet the newest of to-day's electronic developments. We are meeting the demand for valves used in special applications. . . Raytheon has always been proud of the ability of its engineers to meet any emergency demand for unorthodox valve designs. To-day our pride has been more than justified by the electronic problems they have solved and the quality of the product they are fabri-cating. When the present conflict is over RAYTHEON engineers will be in pos-session of priceless electronic experience to build advanced valve designs for better transmission and reception.

Register your name with our Representative now for your future benefit.

RAYTHEON PRODUCTION CORPORATION NEWTON, MASS., U.S.A.

Exclusively Represented by Frank Heaver Ltd. Kingsley Road, Bideford, N. Devon

UNBIASED

Thank you, "Cathode Ray," but...

I WAS greatly moved to learn from his letter, in the correspondence columns of the November issue, that "Cathode Ray" is still in our midst on this war-torn planet, and very glad to have his assurance that the contributions to the world's literature which appeared over his name in recent issues of this journal really diemanate from his obviously versatile pen and not from that of some base usurper, as my recollections of his prewar writings had wrongly led me to think. Hitler has much for which to answer.

In order to understand the dialectic methods which "Cathode Ray" employs, in replying to the problem which I publicly propounded to him, it is unfortunately necessary to adopt the methods of the psycho-analyst and probe a little into his past. There is, however, no need to go the whole hog and ask him a lot of indelicate medical questions, as it is only necessary to examine the latter part of his letter to see clearly that in his younger days he served his apprenticeship to the political trade like myself. I well recollect that years ago, when I first put up for Parliament, the local party agent urged upon me that the only hope of saving my deposit was to adopt this very same redherring dodge of fending-off an awkward question by replying vigorously and emphatically to one which

"Fending-off awkward questions."

nobody had asked. I did as he advised, and always think that I owed my success largely to the fact that I promised to oppose strongly any attempt of the other party to repeal Ohm's Law, which I pointed out would mean that all our houses would be plunged into darkness and our cinemas left silent and deserted.

"Cathode Ray" is obviously as practised a politician as myself, for

By FREE GRID

the question which I asked had nothing to do with that with which he has so vociferously dealt. Briefly, my question was, why is it that a player-piano recording sounds so much more realistic than a gramophone recording of the same pianoforte solo, ceteris paribus. I have now been supplied with the correct answer by Mr. A. N. D. Howe, a well-known American savant. The explanation is to be found in our old friend, the 'psychic factor' or "mental sug-estion." In other words, just gestion.'' because the reproducing instrument is an actual piano, we expect the recording to sound like the original, and so to our befuddled brains it appears to do so.

As for stereophonic reproduction, the player-piano is no more capable of this than a gramophone or radio set, although many of my correspondents seem to think otherwise. I will consider dealing with this question personally in the Brains Trust section, but space and the Editor's temper are both short this month.

Music While You Shirk

As many of you know the introduction of music-while-you-work programmes into factories is no new thing brought about by the war. It was suggested by myself many years ago that the relaying of wireless programmes to factory operatives might do much to allay the tedium of soul-destroying repetitive work and actually increase production.

I well recollect the first occasion on which my idea was tried out. A large and well-known umbrella factory was equipped with loudspeakers, and all the local dignitaries were invited to take part in the initiation ceremony, the Mayor being delegated to turn on the first programme with a specially made golden switch. Having regard to the nature of the products on which depended the prosperity of everybody connected with the factory from the managing director down to the humblest worker, it was perhaps a little unfortunate that at the moment the Mayor pressed the switch, the B.B.C. orchestra should be churning out, "It ain't a-going to rain no more," a very popular ballad of the period, and it is small wonder that,

as the local paper put it, this unfortunate contretemps put a damper on the whole proceedings.

Actually, it was not the B.B.C.'s fault, as it was purely a coincidence that the loudspeakers were switched on at the moment they were, but the broadcasting authorities cannot be absolved from blame in the matter of the present-day music-while-you-work programmes to which several correspondents have drawn my attention. Apparently the B.B.C. department responsible for these particular programmes is so lacking in imagination and so much behind the times in sociological knowledge that it does not realise that the days when the factory worker was considered to be an ignorant creature, with low and vulgar tastes, have long since passed.

No other explanation is compatible with the dreary daily drool of dismal dirges and cacophonous caterwauling churned out in the music-while-youwork feature. At the request of several of my factory readers, I have made a point of listening carefully to these programmes of late, and I find

Music while you work.

that they appear to consist of nothing but music (?) of this type. There does not seem to be any attempt to put out music of a rather more elevating character. As one of my factory correspondents puts it, good tuneful music seems to be reserved solely for the shirkers, as these tuneful music-while-you-shirk features are not relayed to factories.

I do not ask for super highbrow music which might slow down production rather than speed it up, but is there no light classical music available? Even musical comedy stuff would be better than the ultra-low-brow cacophonous crooning, which at present the B.B.C. music-mangling department evidently thinks is suited to what it imagines to be the intellectual level of the average factory worker. It is small wonder that there are ominous reports of secret sabotaging of the PA gear in certain factories.

Hearing Aid "Dangers" Meter Repairs **Extending Multivibrator Range**

Hearing Aids

THIS letter ought to open with an apology for adding yet another contribution to the many already written on the subject of hearing aids, but as a medical practitioner and a reader of Wireless World for the past twenty years I feel I have some justification.

Firstly, I should like to point out that there are many diseases and conditions which are the causative agents in the production of deafness. The treatment required may be medical, surgical, physical, environmental or even psychological, or a combination of these. Therefore, I am of the opinion that in the first place, or as soon as possible, the deaf person should consult an ear specialist. He should decide the treatment, and if this includes the use of an aid, he can prescribe in broad outlines the type required.

As regards types, except in the cases of minor degrees of deafness the valve amplifier is the most useful one, and a good quality, massproduced instrument at a reasonable price would be a boon. At the same time the questions of size, weight, portability and inconspicuousness should also receive consideration. The deaf do not like to advertise their infirmity.

In nerve or inner ear deafness, perception of the higher frequencies Overhauling Moving-coil is usually impaired to a greater degree than the middle of the " auditory range. Therefore, in these ness due to otoscleroris the patients often hear better in a noisy background, and here the carbon microphone is preferable to the crystal

but generally speaking the patient home surroundings is essential.

Lastly, as regards the sale of deaf aids the National Institute for the Deaf has attempted to deal with this situation by keeping a list of approved dealers, but hearing aid clinics probably offer the most satisfactory solutions. Retailers with certificates of competency in the electrical and physiological aspects of the subject provide a suitable alternative.

E. M. JENKINS, M.B., Ch.B. Gatley, Cheshire.

MR. HAMILTON raises, in your November issue, the most important point since the discussion on "Hearing Aids for the Million' started.

He states: "Those who claim that hearing aids should not be distributed through the wireless dealer have still to show that their views are justified by a material number of deaf people being liable to use dangerously unsuitable

In my experience of nearly 25 years, during which I have come in contact with many thousands of deaf people, I have not met a single person who has complained that any hearing aid has increased his deafness, and deaf people are not reticent with their complaints.

Meters

TIFFEY'S'' well-written and interesting article gives much cases, an amplifier with a rising valuable information. The follow-characteristic would be of benefit ing comments may be helpful to if not always essential. In deaf- the enthusiast who is inspired to try his hand.

Tiffey's" Fig. 1 is very tempting. But he does not mention that it is about 2½ times the full size of a typical radio meter movement An automatic volume limiter and is, in fact, about the full size would, no doubt, be a great asset, of a switchboard meter movement. It is reasonable to assume that the can look after this feature with a average reader of Wireless World is manual control. The final test of likely to be concerned with the the suitability of any instrument, former—an article appropriately however, will depend upon how referred to by the switchboard-much it enables the deaf person to meter-minded as a "miniature." hear, and for this a week's trial in The immediate thought may be, "Yes, but what about the watch-

" All right, m'lads, you can smile, But I'm what they call 'versatile.' I can work day or night Sold ring wires with FLUXITE. But weather like this cramps my style !"

See that FLUXITE is always by youin the house — garage — workshop wherever speedy soldering is needed. Used for 30 years in Government works and by leading engineers and manufacturers. Of Ironmongers-in tins, 8d., 1/4 and 2/8.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET-compact but substantial-complete with full instructions,

Write for Book on the art of "soft" soldering and for Leaflet on CASE-HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple—with FLUXITE-but IMPORTANT.

FLUXITE

puts Fluxite where you want it by a simple pressure.

Price 1/6, or filled 2/6.

Wireless World

Letters to the Editor-

maker's eyeglass? " useful aid has one drawback. It lathe with suitable chuck and a magnifies all it sees-including the very fine stone. "Tiffey" is proboperator's fingers and his tools. ably right in recommending that it quency is to some extent opposed Let the beginner therefore set out shall be left alone. A cracked or for:with no illusions, remembering scored jewel can be "felt" with that the manufacturer employs the point of a scriber. It is not adolescent female labour for as-repairable. sembling "miniatures," first selecting them for their natural lightness Crack off and remove surplus when of touch, and then he trains them. cold.

delicate work the amateur must ex- gap. pect initial disappointments. is not intended to discourage him dered unusable by the ham-fisted.

meter itself demands only patience, nut, for which the unsentimental good eyesight and steady fingers for may thankfully substitute it. its renovation." Later he writes: "... these (the repairs) can be usable, leave it alone. attended to by a patient, unhurried and steady-fingered amateur with a little common sense." From these statements there are some rather Multivibrators: Extending dangerous omissions. "Unhurried" should be underlined. Steady A very fingers are not enough. light "touch" is essential. If he Cazaly implies that, in practice, lacks this the amateur had best repairs and refrain from taking the meter to pieces. It should be emphasised that in any case dismantling the movement should only be undertaken as a last re- by no means a sort and then only by one who is practical frecapable of tackling the successful quency limit for a dismemberment and reassembly of multivibrator. a wrist watch.

Dirt in the airgap is one of the is placed in the causes of stickiness. It can be re- cathode circuit of moved with a pipe cleaner, a piece each valve (as in of stiff non-magnetic wire and/or my accompanythe tweezers, without dismantling ing diagram), the the movement. If this is fruitless, check the adjustment of the pivots. This is done by waggling the coil very gently, holding it with the tweezers. It should not be dead tight, but lateral play should be at a minimum. If the stickiness remains after adjustment, cleaning maximum anode current of the justifiable, I face my critics, Messrs. the jewels and pivots may work a cure, but this is by no means certain. A cracked jewel or damaged pivots may probably be the cause. A pivot in good condition should

will not. Repointing requires skill consequently discharge quicker, so This very and experience, a watchmaker's that the frequency of oscillation is

Use only resin as soldering flux. It has a habit of coming Unless he is accustomed to very adrift later and getting in the air-

The simplest and most easily may easily ruin at least one instru- handled balance weight is a helix ment before scoring a success. If of lead fuse wire wound on a manhe can practise on an instrument drel of copper wire of suitable beyond repair this is the cheapest gauge. It is fixed with a solution way of buying his experience. It of shellac in methylated spirit. This rapidly dries and sets hard. triodes. from trying, but to warn him of the Adjustments are made later with pitfalls. A slightly sticky meter the second-best pair of tweezers can very easily and rapidly be ren- warmed in a bunsen flame. This form of weight is far easier and "Tiffey" writes: ". . . the quicker to adjust than any knurled

W. R. BISHOP. London, N.20.

Frequency Range

TN his article on "Multivibrators" (December, 1942, issue) W. H. 200 kc/s or so." with this figure for the circuit he shows, but it is

If a resistance

Multivibrator circuit with cathode resistors.

valves is reduced, due to the cathode bias, and the overall change in anode current, and therefore anode voltage, is lowered. This means fight it out with one another conthat the grid condensers are not cerning their diametrically opposite score the finger nail. A blunt one charged to so great a potential, and views on the pianist's touch con-

raised.

The apparent increase in fre-

- (a) The grid-leak resistance is effectively raised.
- (b) The anode resistance is effectively raised.
- (c) The anode-to-cathode resistance of the valves, which forms part of the discharge path for the grid condensers, is increased.

Even with these opposing effects I have found no difficulty in getting a multivibrator to work at 800 kc/s, using ordinary mains-type

The cathode resistor also cuts down the initial "kick" in the anode current of the valve, and it is possible to get an almost rectangular anode current wave form (see inset diagram).

I have had a multivibrator with One final word. If your meter is the circuit constants shown on the diagram running absolutely troublefree for some 15 months at 500 R. COPSEY. kc/s.

Worcester Park, Surrey.

Player-piano v. Gramophone

ENCOURAGED by the example of resourcefulness displayed by legal luminaries who base their "the upper limit of oscillation fre- defence on the twofold plea that confine his activities to the simpler quency is . . . of the order of their client didn't do it, or, alter-I quite agree natively, if he did do it, it was

LOCKING SIGNAL 500 kc/s +180 V 10,000 Ω Ω οοο,οι 🗧 BIAS RESISTOR CUTS DOWN THIS PEAK 20µµГ \$22,000a \$22,000Ω 2,000 € 20000 **-** HT

R. W. Haigh and D'Orsay Bell.

First, adopting a technique employed by St. Paul, I set them to

troversy (about which I myself with transients. expressed no convictions either way). In the resulting confusion I hope to get by with the argument that my stipulation that the playerpiano was properly designed and the record properly made would overcome the technical defect mentioned by Mr. Haigh, and, anyway, it hasn't got much to do with stereophony. Finally, I would remind them that it was "Free Grid" I was answering; again with Pauline technique, by being all things to all men.

"CATHODE RAY."

Transmitter Volume Compression

WHILST fully supporting Mr. King's plea, in your December issue, for the adoption of controlled volume compression in postwar transmitters, I feel that there is a danger that his letter may be misunderstood and gain further currency for the very common misunderstandings already existing on this subject.

Mr. King's first point was that the "range of intensities met with in most musical broadcasts is too wide for the average living room," I was glad to note his subsequent (if somewhat grudging) admission that this was not true in the case of high-fidelity reproduction.

It cannot be too strongly, or too often, emphasised that an ideal receiver must reproduce at the listener's ear exactly the same intensities and exactly the same range of intensities as would exist at the listener's ear if he were seated in his favourite seat in the concert hall. To this end, a very strong case can be made for the view that a controlled compression at the transmitter should be complemented by a controlled expansion in the receiver—both working to the same law.

To support this case, however, Mr. King pointed out that the present manual control of the intensity range by a monitoring engineer "cannot deal satisfactorily with transients." This is only too true, but the statement contains the clear inference that systems of controlled contrast compression or expansion can deal satisfactorily

The Editor does not necessarily endorse the opinions of his correspondents with transients. This is not the case at present.

A contrast compressor or expander is a system designed for the deliberate introduction of "amplitude" distortion-i.e., it is so contrived that the RMS output of the system is not proportional to the RMS input. Further, the essential difference between "amplitude "distortion and "non-linear" (or "harmonic") distortion is the integration time. Thus, if nonlinearity of the system is not a function of the RMS value of the input, but is a function of the instantaneous value of the input, then ''non-linear' (or monic'') distortion is occurring. It seems an inescapable conclusion that, if transients are to be effectively handled, the control of the compressor and the expander must be instantaneous-i.e., the whole system must be based upon the introduction of inverse "nonlinear" distortions.

Most critical matching of the law of expansion to that of compression would appear to be necessary if serious residual "non-linear" distortion is to be avoided. In addition, there would be the problem of that interim period during which the system had been brought into operation on the transmitters, but not on all receivers.

These are difficult problems, but they must be faced after the war. Contrast expansion, as it is used at present, is a sheer absurdity, since it is an attempt to correct an arbitrary (and often misguided) manual compression by a wholly unrelated automatic expansion which is inherently incapable of handling transient or very rapid changes in volume.

J. R. HUGHES.

London, N.W.7.

The Wireless Industry

READERS are reminded that a number of firms have prepared calendars for 1943, but, under existing regulations, copies can only be sent on request, and are subject to a charge. For example, the exceptionally useful calendar issued by British Insulated Cables, Ltd., Prescot, Lancs, is still available at 3d.

Grampian Reproducers, Ltd., have moved to Hampton Road, Hanworth, Middlesex. The new telephone number is Feltham 2657/8.

"Designing a Resistance-capacity Oscillator"

A PARAGRAPH heading was omitted on page 281 of this article in the December, 1942, issue, and the last paragraph on the page should begin: "The separator output amplifier should be designed..."

The Improved

VORTEXION

50 WATT AMPLIFIER CHASSIS

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma. per pair no load, and 160 ma. full load anode current. Separate rectifiers are employed for anode and screen and a Westinghouse for bias.

The response curve is straight from 200 to 15,000 cycles. In the standard model the low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil. Non-standard models should not be obtained unless used with special speakers loaded to three or four watts each.

A tone control is fitted, and the large eight-section output transformer is available in three types: 2-8-15-30 ohms; 4-15-30-60 ohms or 15-60-125-250 ohms. These output lines can be matched using all sections of windings and will deliver the full response to the loud speakers with extremely low overall harmonic distortion.

PRICE (with 807 etc. type valves) £18.10.0

Plus 25% War Increase

MANY HUNDREDS ALREADY IN USE Supplied only against Government Contracts

VORTEXION LTD.

257, The Broadway, Wimbledon, 8.W.19
'Phone: LiBerty 2814

SHORT-WAVE PHENOMENA

WO abstracts from technical papers of German origin which have recently appeared in Wireless Engineer deal with matters of particular interest to those engaged in short-wave work.

The first of these is from a paper by B. Beckmann, W. Menzel and F. Vilbig, and gives details of a particular form of "scattering" in the ionosphere, which results in strong signals being obtained within the skip distance of a transmitter.

As is generally well known, there is, for any particular point on the earth's surface not too far distant from a short-wave transmitter, a certain frequency which, with a given state of ionisation in the ionosphere refracting layer, is the highest that is returned to earth at that point. Waves of higher frequency than this, going up at the same angle, will penetrate the refracting layer, while waves of lower frequency will be receivable at the point in question and also at points nearer the transmitter. Similarly, when the ionisation in the layer is steadily increasing or decreasing, there comes a time for any particular frequency to be the highest which is returned to earth at the given point. At this time all points nearer to the transmitter lie within the "skip distance" for that frequency, and refracted waves are not receivable at them.

Weak and Unsteady Signals

Within the skip distance, and beyond the limits of the ground wave, signals of a kind are, however, normally obtainable, but they are of a generally weak and unsteady nature. These are due to the fact that, during the upward passage of the wave towards the F layer, it passes through the E layer, and here a portion of the energy in the wave is "scattered" by ionic clouds which nearly always exist in the lower layer. Some of this "scattered" energy is sent downwards so as to reach the earth within the skip distance for the refracted wave. It must be stressed, however, that this normal type of scattering provides only weak sig-

Modified Views on Propagation

nals, which are not to be compared with those due to a refracted wave.

According to the abstract the German workers carried out their observations at Munich and found that, after that place came within the skip distance for the London 25-m. wave, the London 19-m. wave "could almost always be heard at great strength." Of course, Munich would fall within the skip distance for a London 19-m, wave before doing so for a London 25-m. wave. Secondly, the 19-m. transmission of Zeesen, for which Munich was within the skip distance for the whole of the observing period, was frequently audible at very great strength, and on these occasions its signals did not, in fact, show any effect of "skipping." These strong signals could not have been due to the normal scattered radiation, and they are explained by the authors as follows: When. after the ionisation in the F layer has fallen below the limit necessary to return the wave to earth at the point in question, the transmission still is not interrupted, because the refracted rays are replaced by other rays which are deflected by the ionic clouds in the E layer on their upward journey, so that they fall more obliquely on the F layer than those going by a direct path. Under these conditions they are refracted by the F layer, and, reaching the E layer, are again deflected, this time downwards to earth.

The E region clouds do not act with the F layer to bring about this result on all occasions, for sometimes there is only the normal weak reception, which is due to the scattering from the E layer clouds acting by themselves. But, the German workers state, the strong reception was obtained during 50 per cent. of the observations, and if this is so it would appear that it should be taken account of in the planning of short-wave communication services to points not greatly distant.

Workers other than the Germans have also observed the fact that, at

these distances, strong reception on frequencies which should normally skip is often obtainable, but whether it is due to some other effect in the E layer is not yet definitely known.

The other matter of interest to short-wave workers is from a paper² by G. Leithauser, dealing with, among other things, the behaviour of the F2 layer. According to the abstract, the author of the paper is not satisfied with the generally accepted theories seeking to account for the daily and seasonal variations in the F2 layer critical frequency, and on this point he will, no doubt, find many to agree with him. Certainly, when it comes to practice, there do seem to be some points which still require explanation, more particularly in the matter of the low working frequencies which-if the measured critical frequencies are correct-should obtain during the summer day. Practical results show that these can often be considerably exceeded.

The critical frequency of the layer, i.e., the highest frequency return for a wave sent vertically up, is generally assumed to be that for the wave which is returned from the point of maximum electron concentration in the layer. According to this idea, all waves of higher frequency penetrate to a point higher than this, where the electron concentration is falling, and so they are not returned.

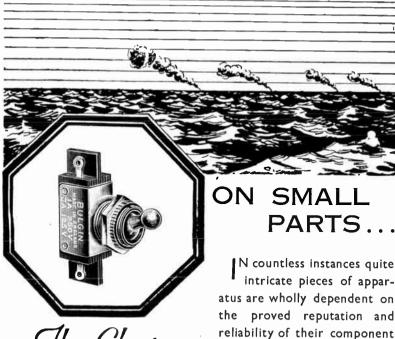
Attenuation and Frequency

The German writer bases his ideas on the fact that when a wave penetrates into the layer it becomes subject to a type of attenuation which increases with increasing frequency. Under certain conditions, he states, when the critical frequency measurements are made, what is obtained is not the point maximum electron concentration but a point from where, as the electron concentration increases, the attenuation rises with increasing frequency. This means that the point of maximum electron concentration lies higher than the point to which the wave of critical frequency reaches, and that higher frequencies fail to return, not because they penetrate the layer,

¹ Abstract 1279, Wireless Engineer, May, 1942.

Abstract 2275, Wireless Engineer, August, 1942

COMMUNICATIONS DEPEND...


but because they are completely attenuated. Thus the critical frequencies recorded for the summer day are too low, and this fact may give rise to all sorts of errors when the vertical incidence measurements are applied to the oblique case, as they are in the practical forecasting of working frequencies. Furthermore, according to the author, the error in the measured critical frequency is not confined exclusively to the summer day.

One would have thought, however, that it would have been relatively easy to determine whether the measured critical frequency was, in fact, due to the point of maximum electron concentration having been reached, or whether, on the other hand, it was due to attenuation of the wave with rising frequency. For example, does the virtual height increase very rapidly at frequencies near the critical frequency? If it does not, the implication would appear to be that the point of maximum electron concentration does lie higher in the layer, and that waves of frequency greater than the critical would, if they did not fail to return because of being attenuated, show increased virtual heights. If, however, the curve of virtual height against frequency is rising almost vertically near the critical frequency, one would infer that the point of maximum electron concentration is being reached, and that the failure of higher frequencies to return is due to penetration of the layer.

Power Effect?

Again, does the critical frequency vary with the power radiated? If it does it would appear that attenuation is the deciding factor, because attenuation can be overcome by an increase in radiated power, whereas electron limitation determines the critical frequency quite independently of the power radiated. It ought, therefore, to be possible to determine whether it is. in fact, the true critical frequency which is being measured or not.

On the whole—so far as the abstract goes-one would conclude that, in that part of the paper which deals with F2 behaviour, Leithauser has not quite proved his point, and that, to account for the anomalies previously mentioned, further work is necessary. T. W. B.

The Choice of Critics

SWITCHES

best Radio and small Electrical Switches in the world. Every one is the finest of its class. and the best for any job. Snapaction, low and constant contact resistance, reliable performance for tens of thousands of operations: all these are permanent characteristics.

PARTS... N countless instances quite intricate pieces of appar-

the proved reputation and reliability of their component parts.

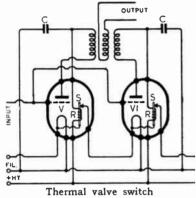
All products from the House of Bulgin are pre-eminent for superior design and workmanship and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

We ask the kind indulgence of the Trade on delivery until peaceful conditions return.

"The Choice of Critics"

LG

REGISTERED . TRADE . MARK


A. F. BULGIN & CO. LTD., BY-PASS RD., BARKING, TEL.: RIPPLEWAY 3474 (4 lines). ESSEX.

RECENT INVENTIONS

AUTOMATIC VALVE REPLACEMENT

T is an advantage, particularly in repeater and other "unmanned" stations, to make provision for automatically replacing any valve-unit developing a fault. In the arrangement shown the valve V includes a thermal strip S which closes a contact as soon as the valve goes cold, and so brings a stand-by valve V, into operation. The thermal switch is included in the comnion filament supply so that both valves are initially in circuit, but as soon as the valve V warms up, the valve V, is cut out and remains idle until the first valve develops a permanent fault. The closing of the switch may also be arranged to ring an alarm at the nearest terminal or attended station.

In addition to the ordinary dissipation heat, a further temperature control, in the shape of a resistance coil R in shunt

with the anode, may be wound around the thermal strip. As shown, this rethe thermal strip. As shown, this resistance in combination with a condenser C also serves as a decoupling circuit.

Standard Telephones and Cables, Ltd., and B. B. Jacobsen. Application date October 11th, 1940. No. 544447.

UHF TUNING

THE resonant frequency of a pair of coaxial conductors depends upon their distributed inductance and capa-city. According to the invention, the tuning of a line circuit of this type is varied by means of a rotatable copper vane which is inserted between the two conductors, preferably at the current loop. In one position of the vane it cuts a maximum number of magnetic lines, and so reduces the overall inductance of the system. When turned through a right-angle it will cut no lines, and there will be no eddy-current effect to reduce the inherent inductance.

A lateral projection at the free end of the vane co-operates with a shaped plate on the inner conductor to vary the capacity between the lines from a maximum to a minimum in step with the inductance.

The arrangement is applied to a receiving system to which the vane automatically rotated to compensate for

trequency drift.

Marconi's Wireless Telegraph Co.,

Ltd. (Assignees of B. Trevor). Convention date (U.S.A.) June 20th, 1940. No.

A Selection

of the More Interesting Radio Developments

SURFACE RESONATORS

LOW-LOSS tuning device for very A high frequencies consists of a hollow ring or toroid of ceramic material with an inside coating of metal, preferably silver. A narrow slit is made around the periphery of the ring to increase the inherent or distributed capacity and to provide an electrode for exciting the element or for coupling it to a load. The internal metal coating screens the ceramic material from the oscillatory field inside the toroid; and so prevents hysteresis losses, as well as frequency drift due to the resultant heating. At the same time the ceramic ring protects the thin silver coating from damage.

Philips Lamps, Ltd. (communicated by N. V. Philips' Gloeilampenfabrieken). Application date July 8th, 1940. No.

RADIO NAVIGATIONAL BEAMS

RELATES to aerial systems for marking out a navigational course or approach path by means of overlapping beams. In some cases the aerials are arranged to radiate beams both to the front and rear. The forward beams are directed across the landing field and form the proper approach path, whilst the others extend backwards and are used either for identification or orientation purposes.

It may happen that objects such as telegraph wires, buildings or trees come within the field of the back beams and reflect part of this radiation field forward, so that it distorts the true path formed over the runway. The invention describes several ways of effectively screening the front beams from the effects of such undesirable reflection from the rear.

Standard Telephones and Cables, Ltd. (Assignees of A. G. Kandoian). Convention date (U.S.A.) January 3rd, 1940. No. 545876.

"DUPLEX" TELEVISION

WHEN television broadcasting is re-W sumed there would be no great technical difficulty in providing a better service by increasing the number of scanning lines transmitted per frame. The difficulty is that such an advance would render existing receivers obsolescent.

As a compromise it is proposed to transmit a 600-line scan made up of three interlaced 200-line scans. Existing

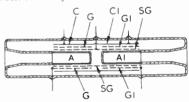
The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/each.

receivers would then reproduce a 200-line picture, whilst later models, fitted with suitable interlacing means, would benefit to the full extent of the 600-line service. Alternatively, the transmission could be made by scanning a succession of 200-line blue, red, and blue pictures so that the blue lines of the first picture are covered by the red lines of the second picture, and so on. Suitably equipped receivers would then reproduce pictures in colour, whilst older models would still give satisfactory reproduction of a 200-

line picture in monochrome.

J. L. Baird. Application date September 7th, 1940. No. 545078.

RECEIVING CENTIMETRE WAVES

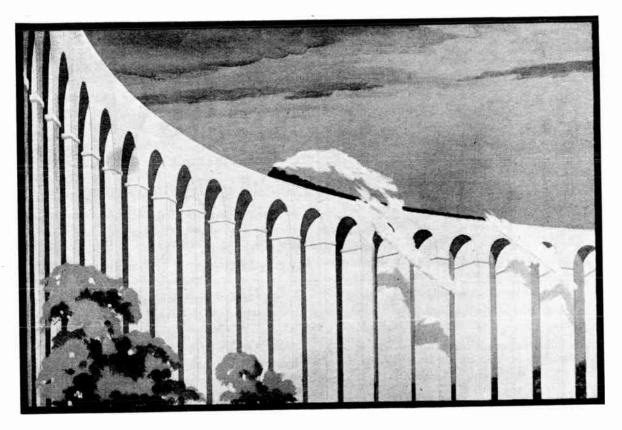

THE filament of a diode, triode or multigrid valve is connected across the centre terminals of a dipole aerial, so that the energy of the received waves varies the electron emission. The filament is preferably pre-heated to a threshold temperature where the effect of the incoming signals is most pronounced.

The terminals of the dipole may be fused into the glass walls of the valve or may even be completely enclosed in it. The filament is connected through chokes to the pre-heating battery, whilst the anode is connected to a high-tension supply through a resistance load across which the rectified signal is developed.

S. R. R. Kharbanda; M. C. Goodall; and Pye, Ltd. Application date, March 21st, 1941. No. 540505.

PUSH-PULL VALVE

THE figure shows a high-powered amplifier or oscillator, for push-pull operation, in which both pairs of electrodes are contained in the same evacuated space. The two anodes A, At are fitted to a re-entrant part of the glass holder, so that both can be watercooled. They can also be set close to



Push-pull valves in one envelope.

each other without creating any highfrequency field likely to destroy the welding between glass and metal.

A single screen grid SG, of cylindrical form, surrounds the anodes, and is associated with separate control grids G, G1. The cylindrical cathodes C, C1 are outermost, giving an assembly which is the "inverse" of that normally used. arrangement permits the use of short grid leads and short cathode supply conductors. Also, since the cathode is of large digmeter, it can be made of a number of thin wires, thus giving a high mutual conductance.

Philips Lamps, Ltd. (Communicated by N. V. Philips' Gloeilampenfabrieken.) Application date, August 23rd, 1941. No. 546376.

Valves and Viaducts

To the engineer, accurate knowledge of the presence and precise form of vibration is a matter of paramount importance.

The structural engineer needs to define and evaluate the stresses and strains on massive girders and framework; the mechanical engineer is concerned with the smooth transmission of power and the elimination of heavy wear and tear on plant and machinery.

With the aid of Mullard Valves in specially designed apparatus, vibrations having an amplitude as low as a few microns can be easily and accurately measured.

In almost every branch of engineering practice, problems are constantly being solved and the field of knowledge widened through the application of the thermionic valve-and Mullard have the right valve for the purpose.

MULLARD

THE MASTER VALVE

A Valve for Every Purpose

DOMESTIC · COMMERCIAL · INDUSTRIAL · SCIENTIFIC · MEDICAL · EXPERIMENTAL

THE MULLARD WIRELESS SERVICE COMPANY LIMITED, CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2. (44A)

IMPORTANT NOTICE

Owing to our Increased turnover, we have been forced to give up our premises at Ruislip as we find these are too small for the efficient handling of the extra business. We have, then, much pleasure in announcing that we have acquired large and commodious premises

246, HIGH STREET, HARLESDEN, N.W.10,

where we will In future deal with and dispatch your orders.

As the change-over will take place during the Christmas holidays, we will be fully equipped to deal with all enquiries and orders after December 28th at our new address. We feel sure that with the added floor space and facilities, we shall be able to deal much more efficiently than before with your business, and we shall be able to give a much better service than in the past.

We further have had the good fortune to acquire a number of very large and interesting parcels of all types of valves, both British and American. The change-over then will very appropriately make

J. BULL & SONS one of the LARGEST RADIO RETAILERS IN THE UNITED KINGDOM.

With the compliments of the season and best wishes to my many friends,

I am.

Yours sincerely.

J. BULL.

P.S.-Most of the valves and spares detailed in our previous advertisements are still available for immediate delivery from stock.

J. BULL & SONS

New Address]: 246, High Street, Harlesden, N.W.10.

TUNGSRAM **VALVES**

Our production of Radio Valves is both large and continuous. So, too, is the demand for them for urgent purposes. Some are available for domestic use, but the range is nccessarily limited. You may be assured of our willing help whenever possible.

Announcement of

BRITISH TUNGSRAM RADIO WORKS LTD., WEST RD., TOTTENHAM, N.17

LEARN MORSE

* Read what these Candler students say!

THE "KEY," TO SUCCESS
"I should just like to state that to anyone desirous of learning Code quickly, the 'Key' to success is given right at the commencement of the Candler Junior Course." Ref. No. 2102, J. H. L.

I AM VERY SATISFIED

"The whole course was a pleasure from start to finish, without even a dull moment. I can conditently send and receive at 20 words per minute. I am very satisfied with the tuition."

*Ref. No. 2032, O. H. O.

IN ONLY THREE LESSONS
"I have only got as far as Lesson 3, but I can receive 12
w.p.m., and send much faster." Ref. No. 4061, J. A. S.

A GOVERNMENT TELEGRAPHIST

N GOVERNMENT TELLEGRAPHIST

"I had no knowledge of Morse whatever before taking
the Candler Course. I have now secured a Government
post as a telegraphist." Ref. No. 3171, R. G. S.
IMPORTANT.—You or any friend of yours in London
con call and inspect the originals of these and many other
similar letters from Candler students.
In the "BOOK OF FACTS," which will be sent FREE on
request, full information is given concerning the subjects
covered by all Candler Candler.

covered by all Candler Courses.

JUNIOR Scientific Code Course for beginners. Teaches all the necessary code fundamentals scientifically.

ADVANCED High-speed Telegraphing for operators who want to increase their w.p.m., speed and improve their technique.

TELEGRAPH Touch Type-writing for those who want to become expert in the use of the typewriter for recording

Terms: Cash or Monthly Payments.

COUPO	N		
Please send me a Fre	e Copy of	Candler **	Book of Facts."
NAME			• • • • • • • • • • • • • • • • • • • •
ADDRESS			
Post Coupon in 1d, u	nsealed en	relops to Lo	mdon Manager

THE CANDLER SYSTEM CO. (Room 55W), 121 Kingsway, London, W.C.2

Candler System Co., Denver, Colorado, U.S.A. (942)

I.F. TRANSFORMERS of all types AERIAL & OSCILLATOR COILS TRIMMER & PADDER

CONDENSERS "SILVERCAP" CONDENSERS COIL FORMS, etc.

Our factory has been expanded considerably, our knowledge is increasing daily and our added experience and facilities will be available for you as soon as condi-

We are making many intricate parts for the U.S. Army, Navy, Air and Signal Corps, and we are happy to assist in the great effort to bring this struggle to a successful conclusion.
Sickles I.F. transformers, coils, trimmers

and other radio parts will be ready for you again in due course.

Register your name with our Representative now. He will forward you information on our products as soon as they become available.

The F.W. SICKLES Co. CHICOPEE, MASS., U.S.A.

Exclusively Represented by-Frank Heaver Ltd. Kingsley Road, Frank Heaver Ltd. Bideford, N. Devon

Procrustes

That amiable acquaintance of Hercules, giant Procrustes, had a crude but effective method of dealing with the misfits whom he invited to sleep in his bed. Should they be too long, then off came as much of their legs as necessary . . . too short, then a gentle stretching on the rack remedied the fault. Such barbarie methods of making things fit, however, do not need to be practised on a Gardner Transformer-each is designed and built to do its job efficiently and well without post-cutting and stretching. There are no misfits and nowhere in the range is this suitability for the job more exemplified than in the Small Power Transformers up to 4 kva. So when next a specification says, in effect, "Procrustes' Bed is out," ask for our co-operation.

We regret that at present Small Power Transformers are available for highest priority arders only.

GARDNERS RADIO LIMITED SOMERFORD CHRISTCHURCH HANTS CLASSIFIED ADVERTISEMENTS. Rate: 6/- for 2 lines or less, and 3/- for swary additional line or part thereof, average lines 5-6 words. Each paragraph charged separataly. Press Day: February issue, first post January 11th, one day earlier at branch offices. Bex Numbers: 5 words, plus 1/-. Deposit System particulars on request. No responsibility accepted for

TRANSFORMER DISTORTION

An abbreviated version of the original thesis by Dr. Norman Partridge on "Harmonic Distortion in Audio Frequency Transformers' is now available in booklet form. This has been reprinted from the September, October and November issues of "The Wireless Engineer. The subject is treated technically at length, and from an essentially practical viewpoint.

Copies can be obtained free of charge by professional engineers and technicians upon request. The shortage of paper prohibits distribution to interested amateurs.

N. Partridge

Ph.D., B.Sc., M.I.E.E., M.Brit.I.R.E., Kings Buildings, Dean Stanley Street, LONDON, S.W.I.

ARMSTRONG

Greetinas

to the many friends we have made through The "Wireless World" during the past ten vears.

We sincerely hope that 1943 will be a happier and brighter year, and look forward to the time when we can once again resume our normal happy relationship with you all.

ARMSTRONG MANUFACTURING CO. WARLTERS ROAD, HOLLOWAY, LONDON, N.7 'Phone: NORth 3213

NEW RECEIVERS AND AMPLIFIERS 230—Home-built school radio-gram, A.C., D.C., unusual clarity, meter, etc.; Sundays.—148, Barnhill Rd., Wembley [1435]

Sundays.—148, Barnhill Rd., Wembley [1435]

HIGH Fidelity 18 watt A.C.D.C. Chassis, complete with valves and input and output transformers, base and treble controls, twin faders; 18gns.—Below.

NACE and Stage Amplifying Equipment, complete transportable units, Universal, 18 watt, twin faders, M/C microphone, folding telescopic pedestal stand, pair auditorium speakers, all cables; 36gns.—Broadcast and Acoustic Equipment Co., Ltd., Broadcast House, Tombland, Norwich. [1441]

House, Tombland, Norwich. [1441]
£19/10 Only — 7-valve World "Quality amplifier chassis, with tone control stage, 8 watts pushpull Triode output; price includes all valves and 12in, speaker with triple cones; as above, but 8 valves 15-watt tetrode output, with negative feed back, £22; limited number. Bakers Selhurst Radio, 75, Sussex Rd., South Croydon, 1388

[1388]
RECEIVERS, AMPLIFIERS—SECOND-HAND
"EDDYSTONE" All World 8 By. Rec.,
E15.—Sullivan, 96, Hervey Rd., Blackheath,
E.3.

M IDWEST Console (English), AC/DC, 1939, 14-valve, 4 to 2.000 metres, overhauled, perfect; 33gns. Box 2789, c/o Wireless World.

"WIRELESS World" Quality Ampli fier, twin speakers and portable elec-tric gramo, unit, fine condition.—A.C.S. Radio 44, Widmore Rd., Bromley, Kent. [1412]

S.S. Four band Super Six, S.S. 12-watt amplifier, S.S. 4-valve contrast expansion unit. Voigt speaker with domestic horn; offers invited.—Box 2786, c/o Wireless World. [1426]

TELEVISION Chassis by Pye. brand new, complete with tube and all valves, linited quantity; £19/10 each.—Imhofs, 112
116, New Oxford St., W.C.1. Museum 5944.

Wanted

M 1DGET Receiver Wanted, new or second-hand, voltage.—Box 2791, c/o Wireless

COMMUNICATION Receiver, would collect.
-Phone 55011, or write 2, Cliff Road Gardens, Leeds, 6. [1446

WANTED, high-class American receiver. all-wave, all-mains.—Redway, Lovelace Crescent, Exmouth, Devon. [1402

COMMUNICATION Receiver, top notch outfit, Will pay high price for new or used set.—Dr. Talbot, Livermead, Torquay. [1404]

WANTED, Quality Amplifier with RF and tone-control stages (modified version), PX48, or similar professionally built equipment, less valves, speaker.—Box 2783. c/o The Wireless World. [1411]

N ATIONAL One-to-Ten Receiver, with complete set of coils; battery or mains operated; or similar receiver with a range of from 1-10 metres.—Kenneth Vinson, Boughton Place, Sandway, Maidstone, Kent. [1420]

JONDON OENTRAL RADIO STORES Will Pay Good Prices for Receivers, Radiograms, Amplifiers, Dynamos, Converters, Test Equipment, Electric Gramophone Motors, and all Radio and Electrical Accessories.—London Central Radio Stores, 23, Lisle St., London, W.C.2. Gerrard 2969

NEW MAINS EQUIPMENT
VORTEXION Mains Transformers, chokes, etc., are supplied to G.P.O., B.B.C.,
L.P.T.B.; why not you? Initiated but unequalled Orders can only be accepted against Government contracts.

Government contracts.

VORTEXION, Ltd., 257, The Broadway,
Wimbledon, London, S.W.19, Phone: [9942

PAKERS SELJIURST RADIO, the pioneer manufacturers of moving coil speakers since 1925.—Bakers' brand new surplus speaker since 1925.—Bakers' brand new surplus speaker burgains; Every music lover interested in real istic seproduction should write for free descriptive leaflet now; £3/10. brand new super quality triple rome speaker, permanent magnet model; limited number available under list price, wide frequency range, even response, ideal for quality reproduction; leaflet giving constructional details of an infinite buffle cabinet suitable for use with the above speaker free upon receipt of stamp.—Bakers Selhurst Radio, 75, Sussex Rd., South Croydon, [1389]

SECONDHAND LOUDSPEAKERS

VOIGT Double-cone Speaker in Cast Aluminium Housing, £17.—Harris, Strouds,

11396 Bradfield, Berks.

Advertisers and buyers are reminded that under Defence Regulations 1939, Statutory Rules and Orders 1940, Number 1689, a permit (T 99 G) must be obtained before sale or purchase of certain electrical and wireless apparatus, particularly such valves and apparatus as are applicable to wireless transmission.

MADE FOR USUAL STANDARD VOLTAGES

W. T. HENLEY'S TELEGRAPH WORKS CO. LTD. Engineering Dept., Milton Court, Westcott, Dorking, Surrey

L.R.S STUART PUMPS

These Centrifugal Pumps are ideal for Machine Tool Cooling and all pumping purposes—hot or cold water. Supplied complete with footvalve, strainer and hose union. Suitable rubber hose available from stock.

No. 10. 100 gals. per hour. Carr. 2/- extra 25 2 6 No. 11. 280 gals. per hour. Carr. 2/- extra £6 6 0 No. 12. 560 gals, per hour, Carr. 3/- extra E7 12 0

Please send 21d. stamp for specification. The STUART AUTOMATIC FLOAT SWITCH is the best method of controlling water-level. Price complete with all fittings ... 22 6 0

LONDON RADIO SUPPLY CO.

Est. 1925 Ardingly Road, Balcombe, Sussex.

$H \cdot H \cdot I$

SMALL ELECTRIC BREAKFAST COOKERS

with Duai Boiler, Switch, Imitation Vitreous Enamel Finish, supplied with Lead, 200/250 volts, A.C./D.C., £2.2.0, including tax.

ELECTRIC SOLDERING IRONS 60-watt, with Flex, 200/250 volts, A.C./D.C., Chrome-Plated, best quality, 12/6, tax-free.

LOUDSPEAKER TRANSFORMERS. SPECIAL OFFER.
Philco Pentode, 4/6; Heavy Duty Pentode, 7/-; Multi Ratio, 8/-; Heavy Duty Multi Ratio, 10/6.

MAINS TRANSFORMERS.

210/230/250 volts, 50 cycles, 600 v., 70 ma. 6.3 v., 1.5 amp. 4 v., 2.4 amp., 25/- each. 200/250 v., 350-0-350 75 m.a., 5 v., 2 amp., 6.3 v., 3 amp., 28/-. 200/250 v. 350-0-350 120 m.a., 5 v., 2 amp., 6.3 v., 3 amp., 37/6. Two-Way Line Cord replacement for Midget Receiver. 7/4 Receivers, 7/6.

ROLA P.M. LOUDSPEAKERS.

	1	With ransformer.	Without Transformer,
5 in.		18/-	13/6
6½ in. 8 in.	•••	19/6 24/9	14/9 18/9
	0	nly a few left	

ELECTRIC APPLIANCE LEADS.

ELECTRIC APPLIANCE LEADS. 6 ft. long, with connector one end for kettle, iron, radio, toaster, etc. Light adaptor or 2-pin plug other end, 5/9 each; Iron Connectors, 1/6 each; 2-pin 5 amp, plugs, 12/doz.; Insulating Tape (best quality American), 3/-per lb.; MILLERS FALLS Radio Mechanic's 5crewdriver, 2/11 each. Accumulators to fit No. 8 Torches, rechargeable, 3/6 each, including tax. including tax.

CHROME-PLATED ELECTRIC BELLS with Transformer, A.C. 200'250 volts, supplied with instructions for fitting, 15'6, tax free. WORTH DOUBLE. Do away with that old "Le'clanche" cell or dry battery and first still before held fit a reliable door bell.

FIRE BARS WITH ELEMENT Flat Type, 200/250 volt, 750 w., 3/9 each.

ROUND TYPE BAR

With Spiral, 200/250 volt., 750 w., 3/9 each.

THERMOSTATICALLY CONTROLLED
ELECTRIC GEYSERS

1½ gallon, with all fittings, 230/250 volt, A.C.
or D.C., as new, from stock of a famous
manufacturer, £6.19.0 each. If you need hot
manufacturer and accept a gaver is indice water in a hurry an electric geyser is indispensable. It is very economical too.

C.O.D. or Cash with Order, Carriage Paid.

H. H. LINTON & Co. LTD. 2, HIGHGATE HIGH STREET, N.6 Mountview 9431

AFTER THE WAR!

The advance in Radio Technique after the war will offer unlimited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become technically qualified. How you can do this quickly and easily in your spare time is fully explained in our unique handbook.

Full details are given of A.M.I.E.E., A.M.Brit.I.B.E., City & Guilds Exams., and particulars of up-to-date courses in Wireless Engineering, Radio Servicing, Short Waves, Television, Mathematics, etc., etc.

Prepare for to morrow's opportunities and post-war competition by sending for your copy of this very informative 112-page guide NOW-FREE and poet

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 388)

17, Stratford Place, London, W.1.

BRAND New Rola P.M. Loud Speakers. 6½in., with transformers, 19/: 8in., with transformers, 19/: 8in., with transformers, 24/: 6½in., without transformers, 18/6; the last of these; c.o.d. or cash with order, carriage paid.—Box 2784, c/o Wireless World. [1417

Wanted
WANTED, Voigt h.c. horn, Quality speaker,
Goodmans, Rola.—Box 2794, c/o Wireless World. [1447]

ONE to a Thousand P.M. Loud Speakers, complete in cabinets; send sample to Duckett, 24, New Chapel St., Mill Hill, Black-

VOIGT Domestic Corner Horn, complete with Voigt moving coil unit and field rectifier, collectively or separately; state price and condition.—Box 2792, c/o Wireless World.

MORSE Key and Buzzer, complete in polished wooden case: 10/.-16, Chesterton Rd., Birmingham, 11. [1413]

FULL Range of Transmitting Keys, practice sets and equipment for Morse training.—Webb's Radio, 14, Soho St., London, W.I. 'Phone: Gerrard 2089.

TEST EQUIPMENT
TESTOSCOPE, used everywhere by radio service engineers, makes 20 important tests. Send for interesting leaflet "R1."—Runbaken, Manchester, 1.

15 RANGE Avominor, 47/6; Neobeam oscilloscope, model 151, £20; 700 T.C.C. 0.1ml. condensers, 6/- doz., or offer en bulk; Kraft coil-winding paper, widths 2¹¹/₂in. and 2¹/₂in., 3/9 lb.; 21in.×2¹/₂in.×¹/₂mm. bake-lised paper insulating pieces, 4/- doz. lengths; tinned eyeletted tags, 8/- 1,000; ¾ lb. rolls of 19 S.W.G. enamelled wire, 10/6 doz.; no remittances, please; S.A.E. for details.—Box 2787, c/o Wireless World. [1428]

Wanted

WANTED, Universal Avometer, or similar, good price paid.—Bennett, Fakenham, Norfolk. [1398 **[1398**

GRAMOPHONE EQUIPMENT
LARGE Superior Quality Walnut Radiogram Cabinet; £25; seen London, King's
Cross district.—Box 2790, c/o Wireless World.

MARCONIPHONE, auto-change mechanism. 100-250-volt A.C. motor, complete with pick-up, in good working order; offers.—Sayer. Kirkby Stephen.

Kirkby Stephen. [1432]

SUPPLIES are Still Available in Small Quantities of Our Low Impedance Cutting Heads at £2/2, and of our special 10.12 watt amplifier, in which is incorporated a Radio circuit for reception of the two Home Service programmes. The response curves of these amplifiers is such that they are very suitable for sound on discs, receiver, or P.A. work. Please state for which purpose they are required, when ordering, as a small modification is incorporated when designed for the latter work: price, including valves, £20. Enquiries invited for all types of sound equipment—Southern Sound Studios, 2, Mansfield Rd., South Croydon.

Wanted FIRST Class A.C. Gramophone Motor.—W. Harrison, Midge Hall, nr. Preston. [1422 GRAM. Motor and Turntable, 230 volts A.C.—Gomersall, 39, Field Lane, Batley

ONE 250 volt a.c. Turntable, with or without pick-up.—A. E. Bees, l.td., 3, Charlotte Square, Newcastle-on-Tyne.

WANTED for Cash, record player, good condition, with A.C. motor, with or without P.U.-Write 16, Ranelagh Gdns., Fulham, S.W.6.

DYNAMOS, MOTORS, ETC.

ALL Types of Rotary Converters, electric motors, battery chargers, petrol-electric generator sets, etc., in stock, new and secondhand.

WARD, 37, White Post Lane, Hackney Wick, E.9, Tel.: Amherst 1393, [0518 M.L. Rotary Convertor, 12v. D.C. to 400v. 250m.a. D.C., excellent condition, little used.—42, Durley Ave., Cowplain, Hants.

L.T. Dynamos for Charging or Windmill, Lucas-Rotax, 6-12 volts 8 amps. D.C., 3rd brush. weight 11lb. size 8in.×4½in., unused ex W.D. cost £10, to clear 177-each. carr. paid; H.T. and L.T. G.E.C. double-end 6 volts and 600 volts, 17lb. ditto, 27/6 carr. paid.—Electradix, 19, Broughton St., London, W.8.

KURZ-KASCH RADIO KNOBS-DIALS INSTRUMENT KNORS

Modern plastics are materially helping to bring the war to a successful conclusion, and Kurz-Kasch with its extensive plant and equipment is assisting in that direction.

Apart from those good-looking and well-designed knobs which form equipment of test instruments and receivers, we are moulding other very important items for the combined Services. Kurz-Kasch Inc. look forward to serving you again as soon as circumstances permit.

Register your name with our Representative now. He' will forward you information on our products as soon as they become available.

KURZ-KASCH INC. Moulders of Plastics,

DAYTON, OHIO, U.S.A. Exclusively Represented by-

Frank Heaver Ltd. Kingsley Road,

RADIO SERVICE MAN, DEALER AND OWNER

The man who enrolls for an I. C. S. Radio Course learns radio thoroughly, completely, practically. When he earns his diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day, radio service work. We train them to be successful!

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 38, International Buildings, Kingsway, London, W.C.2 Please explain fully about your Instruction in the subject marked \mathbf{X} .

Please explain rully about your instruction in the subject marked X.

Complete Radio Engineering Radio Service Engineers

Elementary Radio Television

And the following Radio examinations:
British Institution of Radio Engineers

P.M.G. Certificate for Wireless Operators

Provisional Certificate in Radio Telephony and Telegraphy for Aircraft Telegraphy for Aircraft
City and Guilds Telecommunications
Wireless Operator & Wireless Mechanic, R.A.F.

-	
Name	Age
Address	

PREMIER RADIO

Premier 1-Valve de Luxe Battery Model S.W. Beceiver, complete with 2-voit valve, 4 coils covering 12-170 metres. Built on steel chassis and panel, 55/-, including tax.

PREMIER MICROPHONES

Transverse Current Mike. High-grade large output unit. Response 45-7,500 cycles. Low hiss level, 23/-,
Premier Super-Moving Coil Mike.

Permanent Marnet model requiring no energising. Sensitivity 56th. Impedance 15 ohms. Excellent reproduction of speech and inusic, \$5/5/-.
Microphone Transformers, 10 - each.
Chromium Collapsible Type Microphone Stand,

I.F. TRANSFORMERS,

IRON CORED
450-473 kcs., plain and with flying lead, 5/6 each.

NEW PREMIER S.W. COILS 4- and 6-pin types now have octal pin spacing, and will fit International Octal valve holders. 4-PIN TYPE 6-PIN TYPE

And will ht Internsitional Octal valve holders.

Type Range Price Type Range Price
4 9-15 m. 2/6 06 9-15 m. 2/6
044 12-26 m. 2/6 068 22-37 m. 2/6
045 22-47 m. 2/6 068 22-37 m. 2/6
04C 41-34 m. 2/6 068 22-37 m. 2/6
04D 76-170 m. 2/6 065 72-37 m. 2/6
04B 150-350 m. 304G 490-1,000 m. 4/04F 255-550 m. 3/04G 490-1,000 m. 4/04H 1,000-2,000 in. 4/04H 1,000-2,000 in. 4/04B 28-86 m. 4/9 hange Switch, to suit above. 1/6.

Premier 2-Band S.W. Condenser, 2× 00015 mid., with integral slow motion, complete with pointer, knob and scale, 10.6. 4-PIN TYPE
Range Pri
9-15 m. 2/

knob and scale, 10 8.

S.W. H.F. CHOKES

10-100 m., 10ld.

SHORT WAVE CONDENSERS

Trolital Insulation. Certified superior to ceramic.
All-brass construction. Easily ganged.
15 m.mfd 2/4 100 m.mfd 3/4
25 m.mfd 2/6 160 m.mfd 3/7
40 m.mfd 2 6 250 m.mfd 4 -
Utility Micro Dials, direct and 100-1 6/6
Brass Shaft Conplers, 1 in. bore 7 d. each
Flexible Conplers, & in. bore 11d. each

"LEARNING MORSE?"

Then purchase one of the new practice Oscillators. Supplied complète with valve, on steel chassis, 27 6. Fractice key 3/3, TX key, 5/9. Super model on wooden base, 11/6. Brown's Headphones, 19/6 pair. 3-Heary Chokes, 10/-. Good Quality Buzzer, 3/-.

ELECTROLYTIC CONDENSERS

Tubular wire end type: 8 mf., 125v., 1/6 each; 25 mf. 25v., 1/6 each; 50 mf., 12v., 1/6 each; 50 mf., 50v., 3/e each. Bakelite cased type, 15 mf., 50v., 1/e each.

RESISTANCES

Mains Resistances, 660 ohms, 3A Tapped. 360 × 180 × 60 × 60 ohms, 5/6 each. 1,000 ohms, 2/A Tapped. 900, 800, 700, 600, 800, 200, 4/8 each.

2-Way Line Cored Resistance, 50 ohms, per foot, price 1/4 per ft.

Valve Screens for International and U.S.A. types,

1/2 each. Push-Back Connecting Wire, 2d. per yard. Resin-Cored Solder, 74d. per coll. Systofiex Sleeving, 2 mm., 2/6 per doz. yards.

MOVING COIL SPEAKERS

Rola 5in. P.M. Speaker, 25/-. Celestion Sin. P.M. Speaker, 25/-. Plessey Sin. 2,000 ohms Field, 25/-. Above speakers are complete with output trans-

former. Bola Sin. P.M. Speaker, 3 ohms voice coil, 21.-. Bola Sin. P.M. Speaker, 3 ohms voice coil, 25.-. Send for details ef our Mains Transformers, Smoothing Chokes and Vaives available.

MATCHMAKER UNIVERSAL **OUTPUT TRANSFORMERS**

Will match any output valves to any speaker impedance 11 ratios from 13-1 to 80-1, 5/7 watts, 20/-; 10/15 watts, 26/-; 20/30 watts, 44/6; 50/60 watts, 59/6.

ALL ENQUIRIES MUST BE ACCOMPANIED BY A 21d. STAMP.

PREMIER RADIO CO.

ALL POST ORDERS to :

JUBILEE WORKS, 167, LOWER CLAPTON ROAD, LONDON, E.5. (Amherst 4723.)

CALLERS to :

ILEE WORKS, or 50, HIGH STREET, CLAPHAM, 8.W.4. (Macaulay 23°1.) JUBILEE 169, FLEET STREET, E.C.4. (Central 2833.) D.C. to d.c. Converters, Neco 220v. to 12v. 12a., £4; Crypto 220v. to 15v. 4.5a., £4; Crypto 250v. to 5v. £12/10; M.L. 100v. to 600v. 100 m/a, £4; many others, 100v. to 600v. 100 m/s, all sizes in stock.—Below.

D.C. to a.c. Converters, E.D.C. 100 watts in case. £7/10; Janette 300 watts, £12/10; Crypto 500 watts, £15; dozens in stock to 5 kW.—Below.

TUART-TURNER 500 watt 50v. Generating Set, comprising engine dynamo, fuel and water tanks and silencer; £25.—Harris, Strouds, Bradfield, Berks. [1394]

COMPONENTS—SECOND-HAND, SURPLU SOUTHERN RADIO'S Wireless Bargains:-**SURPLUS**

7/6.—Assorted Components contained in attractive permanent box; 2 volume controls, 12 assorted condensers, 9 assorted valve holders, 6 resistances, choke, wire, plug circuits, etc., 7/6; postage 7d.

25 --Assorted Parcel of useful components, including tubular condensers, resistances, sleeving, trimmers, knobs, volume controls, switches, etc., etc., 25/-; postage 1/1.

-12 assorted tubular condensers to 6mfd. 50 working, 8/-.

10/6.-12 Fixed condensers, sizes including 1 and 2mfd., 10/6.

.—Gross assorted screws and nuts, complete, 9/-.

.-Gross soldering tags, including spade ends, 6/-.

ends, 6/-.

RMOND Loudspeaker Units, largest 4-pole type, 6/6; smaller unshrouded type, 3/-; Ace P.O. Microphones, complete with transformer, ready for use, 6/6. Goodman 8in, permanent Magnet Speakers, 21/-, postage 1/-. Tungsram H.R.210 general purpose battery valves, 4/9. Telson Radio Magazines. No. 6, complete with 4 circuits, 9d.; wireless crystals (Dr. Cecil), 6d. each, 5/6 per doz., with cat's-whisker 9d. each, 8/- doz.; permanent detectors, 2/6; binocular H.F. chokes, 1/6; 75ft. wire suitable for aerials (covered), 2/6; small powerful circular magnets, 1/6, in. diameter, %in. thick, 1/6 each, 15/- dozen; Bakelite Morse practice keys, 4/-; buzzers, 4/-; engincers' wire brushes, 10d. Many bargains for callers. Post orders postage extra. All goods guaranteed. 4/-; engineers' wire b gains for callers. Po All goods guaranteed.

SOUTHERN RADIO SUPPLY Co., 46, Lisle St., London, W.C. Gerrard 6653. [1226

CORED Solder, 1lb. reel, 5/6; pushback connecting wire, 5/6 100tt. coil; solder tags, 2, 4 and 6 B.A., assorted, 4/6 per gross; tinned copper wire, 2/6 per half-pound reel; sent c.o.d. on receipt of your order.—J. Wm. Charge, 34, Wimborne Drive, Pinner, Mddx.

COULPHONE Radio, New Longton, nr. Preston.—Brand new goods only: mains transfs. 350-0-350, 120ma., 6.3v. 3a., 5v. 3a., 28/6; P.M. speakers with transf., 8in. Rola and Plessey, 24/6; 5in. Rola, 21/: 10in. Rola P.M., less transfs., 32/6; Barretter Resistors, 6/-; Line Cord Replacement Resistors, 800 ohm., 2 adjust. taps. 6/9; electrolytics, 50mfd. 50-volt, 3/3; Erie 1-watt resistors, all values, 9d. each; pushback wire. 100ft. coil, 6/-; switch cleaner, 2/3 bottle, power-pentode transformers, 6/9; S.A.E. for stock list. [1409]

LASKY'S RADIO, 370. Harrow Rd., Paddington, W.9, offer for sale the following components, spares, speakers, etc., etc.; Rola 5in. speakers, with transformers, 19/6; Rola 5in. speakers, with transformers, 16/6; 8in. speakers, with transformers, 22/6. Condensers: 0.1mfd. 350v. 5/6 doz., 50mfd. 12v. 16/- doz., 25mfd. 25v. 18/- doz., 2mfd. 200v. 2/- each, 2mfd. 150v. 2/- each, 2mfd. 600v. block 2/6 each, 1mfd. 600v. block 2/3 each, etc.; 4v. mains transformers, 350/0/35, Marconi, 25/- each; send cash with order or c.o.d. [1416]

RECTIFIERS.—Metal rectifiers, 6v. 0.5 amp., square type, with instructions, 5/9, post 4d. Metal rectifier 6v. 1 amp., with transformer and ballast bulb, charges 2v. to 6v., no animeter needed, 24/9, post 9d. Instrument rectifiers, bridge type, for meters, bakelite, very good make, 12/6, post 3d. Small battery chargers, "Atlas," in strong steel cases, set films chassis construction 2v. 4v. 6v. RECTIFIERS.-Metal battery chargers, "Atlas," in strong steel cases, not flimsy chassis construction, 2v., 4v., 6v., 0.5 amp., 35/-, post 8d. Rothermel "Bullet" crystal microphones for stand mounting, cast aluminium housing finished black crackle, new tilting mount, the best microphone value obtainable today, 60'-, post 8d. Miniature crystal microphone for deaf aids, etc., 42/6, post 6d. Rothermel new type bakelite pickup, 67/6.—Champion, 42, Howitto Rd., London, N.W.3.

GALPINS

ELECTRICAL STORES

21, WILLIAM ST., SLOUGH, BUCKS. 'Phone: SLOUGH 20855

TERMS: Cash with order

Regret Orders from Eire and Northern Ireland cannot be accepted.

AUTO TRANSFORMER, 1,000 watts, tapped 0-110-200-220-240 volts for step up or step down. Price £3 15s.

Price \$3 15s.

ROTARY CONVERTOR, D.C. to D.C.; input 220 volts D.C.; output 12 volts at 50 amps. D.C., ball bearing, condition as new. Price \$10, carriage forward, or 17/6 passenger train.

ALTERNATOR, output 220 volts, 1 ph., 50 cycles at 180 watts, will give 1 amp. easily, speed \$3,000 r.p.m.; self-exciting, condition as new. Price \$8, carriage forward, or 15/- passenger train.

SHEET EBONITE, size 12in. by 1lin. by 1/32in., best quality. Price 4/- per doz., post free. ELECTRIC LIGHT CHECK METERS, well-known makers, first-class condition, electrically guaranteed, for A.C. mains, 200/250 volts 50 cy. 1 phase 5 amp. load, 10/- each; 10 amp. load, 12/6,

1 KW. FIRE ELEMENTS mounted on fireproof

porcelain, for 220 volts, as new, easily mounted. Price 8/6, post free. GROMPTON DYNAMO, 50/75 v. at 25 amps., four pole, shunt wound, speed 1,750 r.p.m., condition as new. Price 88 10s., carriage paid. condition as new. The way to the condition as new. The power page at two 300 ohm chokes and two 2 M.F. condensers. Price 7/6, post free.

220 V. D.C. KLAXON MOTORS, precision made,

ball-bearing, 1/10th h.p., fitted right angle drive and reduction gear to 170 r.p.m. Price 50/-,

LOUD RINGING BELLS, working on 110 volts D.C., Sin. dia. gong (bell metal), plated; water-proof, new. 32/6 each, post free.

1 K.W. TRANSFORMER, input 100 volts at 100 cycles, single phase, output 10,500 volts, centre tapped to earth. Price \$4/10/-, carriage forward.

D.C. MOTORS, 110v., approx. 1/10 h.p., series wound, in perfect working order. Price 12/6 each,

HEAVY DUTY CABLE, V.I.R., and braided, in first-class condition, size 37/13, lengths 30 to 40 yards. Price by the length 5/per yard, carriage forward, or 7/per yard for short lengths.

carriage paid.

200 AMP. SWITCH FUSE, three-way, Ironelad, unused. 400 volt, size overall 30in. × 12in. × 12in. maker E. N. Bray, I.td. Price 26, carriage

1 K.W. TRANSFORMER, 200/250 volts input; output, 62 to 76 volts, tapped every 2 volts, in new condition. Price 25, carriage paid.
ROTARY CONVERTOR, D.C. to D.C. Input 12 volts; output 1,100 volts at 30 M/A, ex R.A.F., can also be used as double output generator.

Price 50/-, carriage paid.

HEAVY DUTY knife switches, D.P., D.T., quick break, 100 amp., in first class condition. Price 20/-, carriage paid. LIGHTWEIGHT HEADPHONES, 120 ohm, com-

plete with headband, cords and G.P.O. standard

Plug. 7/6 pair, post 6d.

LOW RANGE MEGGAR, by Evershed Vignoles, 500 volts, 100 megohms, size 7 × 7 × 12in., weight 20 lbs., in perfect condition. Price 220, carriage

paid.

MEGGAR by Evershed Vignoles, 5,000 ohms to megohms, 150 volts, size 7×7×12in., weight 20 lbs., in perfect condition. Price 212/10/-, carriage paid.

X-RAYTRANSFORMER, in oil-filled tank, medium.

A-HAT I KARBPURMEN, in oil-filed tank, medium size, input 120 volts, 50 cycles, 1 ph., output 45,000 volts at 2kW, intermittent rating, in perfect order. Price \$20, carriage paid.

ROTARY CONVERTOR, D.C. to D.C., input 48 volts, output 2,500 volts at 1 kW, condition as new and in perfect order.

as new and in perfect order. Price \$10, carriage

paid.
21 HP. PORTABLE PETROL ENGINES by Douglas, flat twin, both incomplete, no carburettor, some oil pipes missing, mags, petrol tanks, etc., included. The two engines together would make one good one. Price for the pair \$7/10/carriage paid.

ELECTRADIX BARGAINS

PETROL ELECTRIC PLANTS.

FTS. Pelapone 500-watt oyl.
2-stroke, water-cooled self-oiling engine; mag. igncoupled to 50/70 voits, 10
amps. shunt dynamo, 1,000
r.p.m., \$32:10/-.
ASTER 4-Cyl. W.C. Engine,
3 kW. Coupled to 100/150v.,
25 amps. Crompton D.C.
Dynamo.

25 anps. Crompton D.C.
Dynamo,
water-cooled Bagine, mag.
ignition and 110 voits 25 anps.
coupled 1½ kW. D.C. dynamo 50/70 voits 25 anps., mag.
ignition.

PETROL ENGINES. Almost new:

PETROL ENGINES. Almost new; twin cyl. Douglas, fan-cooled, 1½ h.p., governed, mag. ignition, light weight, 212. Larger, 2½ h.p. ditto, 215.
UNUSED X-RAY VACUUM TUBES.
New Government Hospital Surplus, 7in. dia, bulb. Big solid Tungsten Electrodes.
Emission guaranteed. 45/-. Packing case, 15/-.

mission guaranteed. 45/-. racana case, 15/-. LIGHT AND RAY OELLS. Selenium Rayrraft, 21/-. Electrocell, self-generating, 35/-. Baycraft outfit with relay, 42'-. Photo-cells for sound on Film G.E.C. 23/10/-. 10,000 ohm Relay, 22/6. MORSE KEYS. Type B.I. a strong key, 5/-. Bakelite base type M. 6/6. A first-class key, type P.F., plated fittings, well balanced, 9/6. The best key available is type IV. 12/6.

BUZZERS. Sheleton Buzzer, 2/-. Neat brass cased Buzzer, 4/6. Heavy type, Bakelite cased, 5/6. D.3 Buzzers, multiple windings, no contacts, 5/-. Townsend Micro Buzzer (as Illus.), 10/-Parfeet Morse. Home training

HANDOOMBS. Govt. All-Metal Field Hand-combs, Micro-telephones or Transceivers for portable or fixed telephones. These are the famous No. 16 Handcomb, used in so many field sets. Sturdily built with mike finger switch. Brand new with 4-way cord, 15/-. Limited number available. Similar handcombs, less centre switch and no cord, 7/6. 4-way cords, 2/6. A Home Guard can make a complete pocket telephone with these, a mike transformer and buzzer with a torch battery.

battery.

ROME GUARD. Field telephone cable, single or twin in 4-mile reels. Ceiling Roses, porcelain, with 2 "scruit" conplers for connect boxes, 6/6 doz. Relays and Drop Indicators, Portable Field Telephones, etc.

DYNAMOS. We have a large range of all sizes of Dynamos, Motors and Rotaries.

DYNAMO BARGAINS. Rotax, 6-12 volts 81 amps.

DRILLS. Electric LTRUS, LANGE SOCKET for \$\frac{1}{4}\text{in. steel.}\$ 287(0).*

PUMPS. Stuart motor pumps, centritugal, C.D. Shelter, 12 volts D.C. or 230 volts A.C. in stock. Twin-plston pumps with or without motors, for suds or water. \$\frac{1}{4}\text{ p.p.}\$ Motor Pump, 300 galls., \$217(10).*

DIMMERS or RIBOSTATS with "off" 0 to 1 ohm and will carry up to 4 amps., for regulation on 6 to 12 volts, dimming or bank circuit battary obarge model control, etc. One hole fixing for panels with bracket for other axing. Hollow knob has socket for min. bulb. glowing when circuit alive. New USA. A etna make, in carton, 2/6, Worth 5/. Large 40 amp. inonclad grid Rheso with heavy 10-stud switch to drop 220 volts to 45 volts. Size 31n. × 16in. × 24in. £5/10/-; 11 volt. ditto, 16in. × 250LO VARIABLE AIR CONDERSERS for Wave-meters and Single Circuit Tuning. logarithmic blades .0005 mfd., new. Type F., boxed, 4/6.

CONDENSERS, Fixed. 2 mfd. G.P.O.

new. Type F., boxed, 4/6.

CONDENSERS. Fixed. 2 mfd. G.P.O. for smoothing, 2/6. H.T. Mica Fixed Condensers. 1-4 mfd. 4,000 volts, 10/6. Large 1 mfd., 2,000 volts, 10/6. I mfd. 5,000 volts, 01-filled B1 condensers, 35/6. 2 mfd., 4,000 volts, caecd. 45/6.

LNSULATORS. All shapes and sizes fall that the condensers.

Cased, 20/r.

INFULATORS. All shapes and sizes from aerial egg or shell at 2d. to big Navy 6in. type. Cleats and pedestal insulators. No list ready. Please specify wants. S-WAY LUCAS-ECTAX Switch Boxes. 8 levers and fuses for charging, etc., 5/8.6 - Navy Push Button, R.A.P. switches,

MICROPHONES. Armoured type, metal clad, for heavy duty, 5/-. G.P.O. sensitive Button type, 2/6.

Please add postage for all mail orders. Scnd stamped envelopes for replies to all enquiries.

ELECTRADIX RADIOS.

18, Broughton St., Queenstown Rd., London, S.W.S.

Telephone: Macaulay 2159

G. A. RYALL, "Arnehurst," Marsh Lane, Taplow, Bucks, offers radio components. T.C.C. 0.1 Tubular Non-inductive ('ondensers, 350v. wkg., in Paxolin tubes and waxed; 6/6 dozen.

VOLUME Controls, British make, 1 meg., at 1/6 each.

SLOW Motion (Epicyclic) Drives, fit ¼in. shafts, long ¼in. spindles, well made in brass, with ball bearings, ratios 8-1; 1/3 each.

PAXOLIN Strip, 2½in. wide, as used for group boards, etc., three 12in. lengths for 1/6; group boards, 12-way, drilled, less tags, four for 1/3.

RIE Resistors, ½-watt type, actual valves as used in many well-known sets, 220, 680, 3,300, 27,000, 33,000, 1½-meg, 3/- dozen, new goods; Erie resistors, 2-watt type, 150, 560, 820, 3.000, 3,900, 7,500, 75,000, 140,000, 220,000, 560,000, 1-meg, three for 1/6, new goods; Erie resistors, 3-watt type, 680, 700, 1,500, 3,300, 6,800, 8,200, 22,000, 56,000, two for 1/6.

for 1/6.

PLESSEY, 3-gang, screened, with one trimmer only, 3/-; straight, no superhet, types; condenser drives, with 2-band scale, less escutch, similar Polar VP. 1/9.

TURNTABLES, as used for rotating portables, ball bearing. 1/6 each, soiled; post 9d. extra on single items.

MATT Ebonite, new goods, size 12×10, 3/8in... 4/6; also odd sheets, soiled, ½in. and ¼in... 14×7 and 16×7, 2/9 each.

THIMBLE-TOP Caps, 36 for 1/3; Clix input strips, 2.3-4-way, 2/3 doz.; insulating tape, 20z. reels, 8 for 1/3.

SWITCHES, Wearite, long type, silver plated contacts, ebonite barrel, will switch band pass, HF, and dial lights, 1/3 each; wave traps, iron core, ex K.B, 1/3 each.

CONE Units, heavy circular, less reeds, and small type with reeds, bobbins, mostly O.K., two 1/6, postage 9d.; Yazley switch screens, 334×336, with fixing flange, 4 for 1/3. SPEAKER "Pots," windings O.K., resistance 750 ohms, 325 ohms, 8,600 ohms, carry 120 m.a., 5/6 each, or complete, oral type, cones broken, 6/9; and 60 m.a. pots, 600, 2,000, 7,500, 3/9, with circular chassis gives

DIAL Plates, 3-band, size approx. 6×5, scale 4×2½, white ground, 2 1/3; Burgoyne dial plate, 3-band, brown ground, 6×4, scale 3×2, station list printed on, 2 1/3; dial plate ex Berners, 4-band, in green, red, blue, orange, transparent, brass stiffened edges, 1/6 each; dial and scale, 6¼×4.

SPECIAL Note.—We now confine our business to Mail Order.—G. A. Ryall, "Arnehurst," Marsh Lane, Taplow, Bucks. [1425]

Wanted
PAIR 3-15 ohms High Fidelity Headphones.
-Broadfoot, Penylan, Deganwy Rd., Llan[1421]

RADIOGRAM Cabinet, two 8 mfd. 750 volt electrolytics.—Hopkinson, 44, St. Mar Estate, Thetford, Norfolk. [14

COIL WINDING MACHINE

WANTED, for essential work, Douglas No. 1 or 3 coil winders and Macadie model T.D.S.M., any condition.—Box 2788, c/o Wireless World.

VALVES.—Thousands in stock; send requirements s.a.e.—Davies. 28. Mount Vernon [1073]

L ARGE Variety of British Valves in Stock. Send us your requirements. Retail price plus tax.-Napiers, 127, Prestwick Rd., Ayr. [1406]

MULLARD. Marconi, Tungsrani, Cossor, Brimar, Dario, Mazda valves, speakers, pick-ups, volume controls, etc.; S.A.E. and requirements.—Smith, 6, Shanklin Drive, Nun-

1,000 Valves in Stock, s.a.e. for printed list, VP4B, 12/10, AC/HI, 9/2, VM84/B 12/10, VP13C 12/10, UT6 11/-. EF9 12/10, AZ31 11/-, 42 12/10, GK7G 12/10 (C.1, 10/- Barretter), 6F6G 12/10 (C.1, 10/- Barretter), 6F6G 12/10 (C.1, 10/- Barretter), 6F16G 12/10 (C.1,

NEW Valves.—£10 the lot. Osram, 2 U14.

1 PX25. 1 LS5. 2 PX4. 1 GT1; Mazda. 1 AC/
TP. 1 AC, DD. 1 AC, HL/DD. 1 AC/P. 2 T31.

2 AC/P4, 1 PF7B. 1 HE/AC, 1 P650; Six
Sixty, 1 LAC; Mullard, 1 354U, 1 LW.3;

1 VP4A, 1 AC/044; Cossor, 1 41M.T.S.;
American Ken-Rad, 1 UX280. UY224A, 1.57.

—Apply Box 2782, c/o The Wireless World.

ARE YOU MINUS MATHS

If you wish to understand radio or any other technical subject thoroughly, you must know maths.

Our new Mathematics Courses have proved an outstanding success. We have already helped many men in the Forces and in other war-time occupations to qualify for promotion. We can help you By our simplified method of Home-Studying, you can now learn maths really thoroughly in your spare-time.

RADIO. If you wish to qualify for radio duties with the R.A.F., or for full-time or part-time radio work, we can train you. Hundreds of men now serving in the Forces, or doing other important radio work, have been accepted solely as a result of our training.

* Post coupon now for free details * T. & C. RADIO COLLEGE 29, Market Place, READING

•					*******			
	(Po	st in	unse	aled .	envelope,	Id.	stamp.)	
	Diana			6	describe.	-6		

Study Mathematics and Radio Courses.

——ARDUX——

"We have carried out exhaustive tests here, and have satisfied ourselves that, mechanically, it is the best material of its kind we have ever used. The electrical tests also were very satisfactory."—Messrs. The British Transformer Co., Ltd., Hages, Middleaex.

Ardux is a quick-setting adhesive for mouldings and laminated plastice.

AERO RESEARCH LIMITED DUXFORD CAMBRIDGE Telephone: Sawston 167-8

The Zeason's Compliments to users of the

COIL PICK-UP

at home and overseas.

H. H. JONES, 62, Worcester St., STOURBRIDGE.

KESSLERS, (London) LB

For TURNING and MACHINING of PLASTIC MATERIAL SIGNAL LAMP CAPS SWITCH KNOBS and HANDLES Albion House, 201-3, Church St., London, N.16 _ Tel.: Clissold 6247

WARD ROTARY CONVERTERS

Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, Frequency Changers, etc., up to 25 K.V.A.

CHAS. F. WARD

37, WHITE POST LANE, HACKNEY WICK, E.9 'Phone: Amherst 1393

ASKY'S RADIO, 370, Harrow Rd., Paddington, W.9, have a large stock B.V.A. mains and battery valves; send us your requirements; cash with order or co.d. [1415]

Wanted

VALVES Wanted, any quantity from one upwards; also test equipment, service sheets and spares.—J. Bull, 246, High St., Harlesden, N.W.10.

REPAIRS AND SERVICE

T.P. Repair All Mains Transformers and Chokes, Prompt delivery.

ONDON TRANSFORMER PRODUCTS.
Ltd., Willesden, N.W.10. Wil. 6486 (3)

MIDWEST, etc., we are the American experts.—Bennett's, 4, Humberstone Drive, Leicester. [1419]

TRANSFORMERS, pick-ups, motor rewinds, repairs of all descriptions to the wireless trade.—Marshall, 137, Windmill Lane, Nottingham.

METROPOLITAN RADIO SERVICE Co.
British Receivers.—1,021, Finchley Rd.
N.W.11. Spe. 3000. [9641

A COURATE Radio Rewinds, mains transformers, Fields O.P. transformers, etc., and all loudspeaker repairs, prompt service—Southern Trade Services, 75a, George St., Croydon.

MAINS Transformers Service, repairs, rewinds, or construction to specification of any type, competitive prices and prompt service.—Study Electric Co., Ltd., Dipton, Newcastle-upon-Type.

castle-upon-Tyne. [9651]
"SERVICE with a Smile."—Repairers of all types of British and American receivers; coil rewinds; American valves, spares, line cords.—F.R.I., I.td., 22, Howland St., W.1.
Museum 5675

DEGALJIER'S, I.td.—"Service with a Guarantee." If you have an English or American receiver that needs servicing, let American specialists do the job; any set handled from a T.R.F. Midget to a 30-valve Scott; we specialise in Challenger receivers, having serviced since inception; first-class workmanship only; when forwarding, chassis and valves needed only.—Degallier's, Ltd., 9, Westbourne Court, London, W.2. [1442]

TUITION

LEARN Morse Code the Candler Way. See advertisement on page 26. [1292]

R ADIO Training.—P.M.G. exams, and I.E.E. Diploma, prospectus free.—Technical College, Hull. [0611

PRACTICAL Postal Radio Courses; coaching for I.P.R.E. exams.; and post-war appointments; booklet free. — Secretary, I.P.R.E., Bush House, Walton Ave., Henleyon-Thames.

R ADIO Engineering.—Television and Wireless Telegraphy, comprehensive postal courses of instruction. Apply British School of Telegraphy, Ltd., 179, Clapham Rd., London, S.W.9. (Estd. 1906.) Also instruction at school in wireless for H.M. Merchant Navy and R.A.F.

TECHNICAL TRAINING

OREAT Possibilities Exist for Technically Qualified Engineers, key men in wartime and afterwards. Through the home-study courses of The T.I.G.B. take a recognised engineering qualification, such as A.M.I.Mech.E., A.M.I.E.E., A.F.R.Ae.S., A.M.I.Chem.E., C. and G., etc., in which examinations the T.I.G.B. students have gained 25 FIRST PLAOES and Hundreds of Passes. Write today for "The Engineer's Guide to Success"—Free—containing the world's widest choice of engineering courses covering all branches, including Aeronautical, Mechanical, Electrical, Wireless. Chemical, etc.

THE TECHNOLOGICAL INSTITUTE OF GREAT BRITAIN, 82, Temple Bar House, London, E.C.4. [1403

SITUATIONS VACANT
SERVICE Manager for Valve Deaf Aids,
London, W.I., good appearance and capable correspondent, exempt.—Write age, experience, salary required, Box 2780, c/o Wire-less World.

A Manager is Required for the Transmitting Valve Division of a well-known company engaged solely on the manufacture of radio valves; applicants must possess undoubted managerial ability, be qualified engineers, preferably with B.Sc. or equivalent degree, and recent experience of transmitting valve development and manufacture, and ahould be between 30-45; this is a responsible post offering excellent prospects both now and after the war.—Full details in confidence to Box 2793, o/o The Wireless World.

WAR-TIME 'ECONOMY' CONSTRUCTOR'S KITS

A.C. BANDPASS TWO. Triode detector and parallel output pentode. Energised speaker. 25 10s.

A.C. STRAIGHT THREE. VM. H.F. pen., triode, L.F. pen. (not a superhet), energised speaker. 26 10s.

BATTERY BANDPASS TWO. Triode detector, parallel feed transformer. Output tetrode. P.M. speaker. \$3 15s.

BATTERY THREE. VM. H.F. pen, triode detector and output tetrode. P.M. speaker. \$4 12s. 6d.

All Wave models of the above, 30/- extra. (16-50 metre approx.). (All prices less cabinets and batteries.)

> All the above kits supplied with B.V.A. valves, blue prints, metal chassis, all necessary components. wire, etc., and provided with pick-up sockets.

SPECIAL 3v. BATTERY KIT for those designing their own set can be supplied as follows:— One undrilled steel chassis, tuning condenser, SM drive and dial, colls, condensers, resistors, valve holders, etc. Less valves and speaker, §3. No circuit supplied except for the colls which are 1 pair dual range, Screened, and 1 pair of short-wave coils.

For SERVICEMEN and CONSTRUCTORS

Parcels containing Volume Controls, Resistors, Condensers, Solder Tags and other useful components, £1

8-W "FREQUENTITE" VALVE HOLDERS. 7-pin, chassis mounting, 1/6.
PARALLEL FEED L.F. TRANSFORMERS. Midget, 6/-.

STRAIGHT LINE DIALS, 3-wavebands, Station names, slow-motion drive, 4/-.

CHASSIS. Brand new metal chassis, undrilled. Size $8in. \times 6in. \times 2\frac{3}{4}in.$, 4/6; $10\frac{1}{4}in. \times 8\frac{1}{4}in. \times 6\frac{1}{4}in.$ 27in., 7/6.

VALVE HOLDER8, English chassis type, 4-pin, 6d.; 5-pin and 7-pin, 6d.; English, Octal, 6d.; American U.X. type, 4-, 5-, 6-, and 7-pin and International Octal, 6d.

465 kc. 1.F. TRANSFORMERS. Screened. Iron core permeability tuned, 5/- each.

TAPPED MAINS DROPPING RESISTANCES, approx. 800 ohms, standard for Pye, Lissen, etc., .2 amp., 3/8. 750 ohms, with variable slider, 5/-.

RESISTORS, different values, \(\frac{1}{2}\)-watt, 4d.; \(\frac{1}{2}\)-watt, 5d.; 1-watt, 1/-.

SCREENED VALVE CAPS, 6d. each.

TUBULAR CONDENSERS, T.C.C. or B.1." N.1, 0.0001, 0.0002, 0.0003, 0.0005, 0.005, 0.00015, 6d.; 0.01, 0.02, 0.1, 8d.; 0.25, 1/3; 0.5, 2/-. Tubular Electrolytics, 25 mfd., 25v., 2/-; 50 mfd. 12v., 1/9.

Speakers and Mains Transformers will shortly be available in small quantities. Please send us your enquiries.

HOURS: 9-5 p.m., Saturdays, 1 p.m. C.O.D. orders accepted. Prices subject to alteration without notice. Special terms to members of H.M. Forces and Civil Defence workers. Licence to export to Northern Ireland and Irish Free State. Please add postage for enquiries and mail orders.

51-52 CHANCERY LANE. LONDON. V.J.C. 2. Telaphone HOLBORN 4631. MISCELLANEOUS

I ONDON Business Man, middle aged, radio novice, requires facilities and guidance for learning servicing. Box 2785. c/o Wireless

tearning servicing. Box 2785. c/o Wireless World.

PATENT NOTICES

THE Proprietors of British Patent No. 513650, dated March 25, 1938 (Convention date, March 31, 1937), relating to Improvements in Closures for Evacuated Envelopes, are desirous of entering into arrangements by way of a licence or otherwise on reasonable terms for the purpose of exploiting the above patent and ensuring its practical working in Great Britain.—Inquiries to Singer, Ehlert. Stern and Carlberg, Chrysler Bidg. New York City, N.Y., U.S.A. 1395

THE Owner of British Patent No. 380876 relating to "Improvements in or relating to Signaling Systems" is desirous of entering into negotiations with one or more firms in Great Britain for the purpose of exploiting the invention either by sale of the Patent rights or by the grant of licences on reasonable terms.—Interested parties who desire further particulars should apply to Albert L. Mond and Thiemann, 14 to 18, Hollborn, London, E.C.1.

Mond and Thiemann, 14 to 18, notion, 1, 1000.

THE Proprietors of British Patent No.

493846, dated April 14, 1937 (Convention date, May 28, 1936), relating to Improvements in Signalling Systems, such as Public Address Systems, are desirous of entering into arrangements by way of a licence or otherwise on reasonable terms for the purpose of exploiting the above patent and ensuring its practical the above patent and ensuring its practical working in Great Britain.—Enquiries to Singer, Ehlert, Stern and Carlberg, Chrysler Building, New York City, N.Y., U.S.A. [1407

PREMISES

PULLDING to Let, West London, 75 heating system, spacious ground floor; commence £1,250 p.a. exclusive.—Box c/o Wireless World.

BOOKS, INSTRUCTIONS, ETC.

WANTED, service manuals, back numbers of "Service Engineer" and valve equivalent charts. -6. Lloyd, 36, High Rd., Short Heath, Willenhall, Staffs.

WEBFS Radio Map of the World Locates any Station Heard. Size 40×30in., 4/6, post 6d.; on linen, 10 6, post 6d.—Webb's Radio, 14, Soho St., London, W.1. 'Phone: Gerrard 2089. Gerrard 2089.

CLASSIFIED ADVERTISEMENTS intended for the FEBRUARY issue can be accepted up to First Post on Monday, January 11th.

MATRICULATIO brings Success & Security

Whatever your age, you can now study for the all-important Matriculation Examination at home on "NO PASS—NO FEE" terms. "MATRIC" is the accepted passport to all careers, and opens up opportunities which would otherwise be completely closed to you. Ensure the future success and security of you and yours by writing for our valuable "Guide to Matriculation" immediately—FREE, and post free.

B.T.I. (Dept. 114) 356. Oxford Street, London, W.1.

We will buy--at your price

USED Radios, Television, Test-meters, Amplifiers, Converters, Radio and Electrical Accessories, etc.

> Write or 'phone WE WILL CALL!

UNIVERSITY RADIO LIMITED

238, Euston Road, London, N.W.I EUSten 1966 and GERrard 4447

One of our range of Standard Amplifiers available for o f National mportance.

AUDIO AMPLIFIERS

SUB-ASSEMBLIES

Standard Amplifiers

Special Amplifiers for Industrial Applications • Transformers and Coil

Winding Sheet Metal Work and Stampings

Switch Assemblies • Microphones, etc.

HILL AND CHURCHILL ROOKSELLERS

SWANAGE DORSET

ENGLISH & AMERICAN BOOKS IN STOCK ON RADIO AND **TELECOMMUNICATION**

CATALOGUE ON APPLICATION

W. BRYAL

Expert assistance in the solution of problems relating to

TRANSFORMERS, CHOKES AMPLIFIERS POWER UNITS

> and Specialised Equipment embodying

ELECTRONIC CONTROL

WESTMORELAND RD., N.W.9. COLINDALE 7131

VALVES IN STOCK

AMERICAN National Union, Philco and Tungs-ram. IA4E, IA6E, IB4E, 2101, 6Y5V, IF4, 6U5, 12A5, 7A8E, 10, 15, 24, 7C6, 7Y4, X6IM, 6B6, IF5G, 6BBG, 6G5G, 6H6G, 6K5G, 6I8G, 6K7G, 27, 30, 33, 35/51, 36, 39/44, 49, 50, 41, 56, 5B, 7B, 61,7G, 6U5G, 6U7G, 6V6G, 01A, 12SA7, 6J5GT, 6K7GT, 12K7GT, 6Q7G, 117L7GT. 6-amp. Rectifiers for Tungsram Chargers, 4-'and 6-pin Barretters.

BRITISH Tungsram, etc. VME4, DK1, DD6, EABI, HP41, 01C, SP4B, SP4, VP4, VP4B, SP220, P215, SS210, DD13, HL13, HP13, DDT13, TX21, TH29, DDT13S, HP211B. 4-pin and side contact Barretters.

Please send requirements and stamp for quotation.

E. H. ROBINS TRADING CO. LTD. 'Torvista,' 44 Kyle Crescent Sonth, Whitchnrch, Glam.

"UNIVERSAL CIRCUITS"

by R. S. Roberts, M.Brit.I.R.E., A.M.I.R.E.

Three folders and a thirty-six page booklet, presenting the main principles of radio circuit operation in a concise and convenient form for the pocket.

I. The Transmitter
II. The T.R.F. Receiver
III. The Superheterodyne Receiver

By means of hinged flaps, the charts give a large number of recognized alternatives for each stage. To assist the student in memorising and understanding these, a logical five-colour scheme has been adopted throughout.

"Grid Leak "says: "The Charts and Notes are really intended for students and teachers of radio, but are extremely useful to every radio engineer."

Price complete 6/3 post free, from

The Bookstall NORTHERN POLYTECHNIC

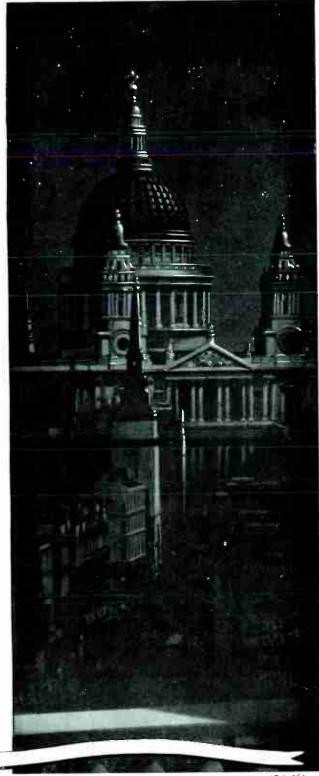
HOLLOWAY, LONDON, N.7

WISH our many friends a Victorious New Year and a return to the good things in life.

The Courts, Silverdale, London, S.E. 26 'Phone: SYD 6666

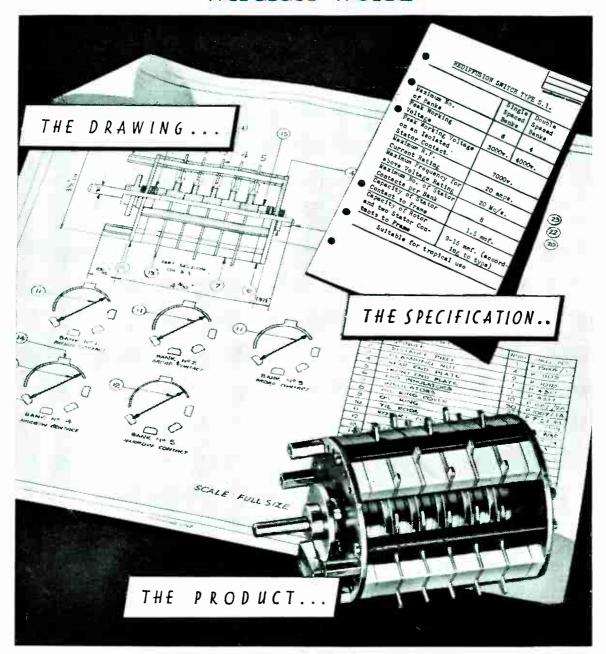
LONDEX for REI

SEREC 207 ANERIEY ROAD LONDON S.E.20


Printed in England for the Publishers, ILIFFE AND SONA LTD., Dorset House, Stamford Street, London, S.E.1.. by The Cornwall Perss Ltd., Paris Garden, Stamford Street, London, S.E.1. "The Wireless World" can be obtained abroad from the following—A cstallia and New Zealand: Gordon & Gotch, Ltd. | 181114. A. H. Wheeler & Cotampar: Imperial News Gotch, Ltd. | 181114. A. H. Wheeler & Cotampar: Imperial News (Co.; Gordon & Gotch, Ltd. | 181114. A. H. Wheeler & Cotampar: Manyorial Sons (S.A.), Ltd. | United States: The international News Co.

The stars

look dówn...


... upon the sleeping villages and towns of England. Over the peaceful scene the moon mounts guard with watchful eye. Yet, at any given moment, should the necessity arise, the quietest country village can be in instant communication with the greatest city; can command its resources and enlist its help. Our products for many years have served in spreading human happiness and in forging links between men, and to-day we still proudly play our part in maintaining human fellowship.

C.R.C. 161

Wireless World

This 20 megacycle 60 K.V.A. switch is a Rediffusion product, used in Rediffusion communication equipment.

REDIFFUSION

LIMITED

A subsidiary of

BROADCAST RELAY
SERVICE LIMITED

DESIGNERS AND MANUFACTURERS OF COMMUNICATION EQUIPMENT VICTORIA STATION HOUSE . VICTORIA STREET . LONDON . S.W.I. (PHONE VICTORIA 8831)