35% reader discount on new Basic concept

ELECTRONICS Austria Asch. 66.00 WORLD Denmark DKr. 67.00 Germany DM 15.00 Greece Dra.1100.00 Holland Dfl. 11.75 Italy L. 8800.00 Malta Lm. 1.55 IR £3.30 Singapore S\$7.50 Spain Pts. 850 USA \$5.95 INCORPORATING WIRELESS WORLD A REED BUSINESS PUBLICATION SOR DISTRIBUTION

June 1997 £2.35

LOUDSPEAKERS **EXPOSED**

Opto devices and a new light meter

Does RF affect audio?

Designing voltage doubling psus

Double balanced mixers

Working with **VHDL**

Error feedback amp examples

£100 discount – Kenwood oscilloscope

For all your Power Distribution Olson offer a varied choice

EXPOSED

loudspeaker designs are so backwards relative to the rest of the hi-fi chain.

466 A LOOK AT LIGHT

With the aid of his new light meter design, Ian Hickman looks at some of the more recent opto devices.

472 HANDS ON INTERNET

New search options, a directory for UK electronics companies and filter design CAD are this month's discoveries from Cyril Bateman.

476 ERROR FEEDBACK IN **AUDIO POWER**

William de Bruyn outlines three power amplifiers illustrating different ways of implementing error feedback.

480 RF EFFECTS ON AF

Could mysterious audio distortions be explained by pick-up from broadcast stations? Cyril Bateman investigates.

486 APPLYING DIODE MIXERS

best lanced diode mixers.

507 VOLTAGE DOUBLING

simple, explains Ray Fautley.

517 CD JITTER BUG

519 PROGRAMMABLE LOGIC

Regulars

443 COMMENT Pre-election blues

444 NEWS

450 RESEARCH NOTES Thought control, New semicoductor technique, MW sun power, Super magnets.

493 LETTERS Overload matters, Resistors in C, x-over distortion, phase quadrature.

498 CIRCUIT IDEAS

- Two-wire remote control
- Ultra-simple oscillators
- Infinite impedance detector
- Offset source for op-amps
- Switch/latch/trigger

511 NEW PRODUCTS

FOUNTAYNE HOUSE, FOUNTAYNE RD., LONDON N15 4QL FAX: 0181-885 2496 TEL: 0181-885 2884

Darren Conway describes how to get the

Look-up tables make designing a reliable voltage doubling power supply relatively

Could jitter on signals between a cd player's transport and its d-to-a converter cause audible distortion? If it can, Chris Day's redesigned interface may be the answer.

The language for describing logic systems -VHDL - and turning schematics into code are Geoff Bostock's topics this month.

EMC laws difficult to enforce, Engineers lack lateral thinking, 56kbit modem.

• Improved infrared proximity detector • Power amp with adjustable impedance

The month's round-up of passive, active, instrumentation and computing products.

Special offers

A new language for helping scientists and engineers to visualise data is available to Electronics World readers exclusively at discounts to 44% see page 464.

This Kenwood 20MHz dual-trace oscilloscope is on offer to EW readers at just £319 - turn to page 471.

Cars with surround-sound systems based on flat-panel loudspeakers could appear this year - see page 444.

JULY ISSUE **ON SALE 5 JUNE**

ELECTRONICS WORLD June 1997

June 1997 ELECTRONICS WORLD

industry's world-class abilities in basic process technology when it looked, in the mid-80s, as if the companies could not afford to develop it themselves.

In Japan the collaborative programmes such as the VLSI programme of the 1980s are well-documented and led directly to Japanese domination of the memory business.

In Taiwan the government bought basic CMOS technology (seven micron) from RCA and refined it in the same government funded laboratory for twenty years - now down to quarter micron - every so often transferring the latest process to a commercial company and spinning it off as a start-up.

In Korea, the government funded the original acquisition of chip technology through the Korean Institute for Electronics Technology (set up in 1979) and followed that with the Semiconductor Industry Promotion Plan in 1982. Now the Korean Big Three - Samsung, Hyundai and LG - are all in the world top fifteen companies.

"We now have a semiconductor industry in this country second to none,"

In Europe collaboration such as the 1980s Megaproject, and the 1990s Jessi programme, helped Philips and SGS-Thomson to top ten status, and Siemens to become No.12 in the semiconductor firmament

So we need government involvement and funding in microelectronics. We need the government to help our companies to participate in MEDEA - the new European joint R&D project, we need government to help to facilitate transfer of technology from defence establishments to our companies, we need it to enable our relatively small chip companies to engage in world markets, and we need it to lubricate university/industry co-operation.

But will the politicians look behind the glamour of the headlines that accompany billion pound investments from foreigners to see and support the

indigenous UK companies surviving, without much help, in a bitterly competitive world? **David Manners**

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fax; (212) 679 9455 USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above. Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR Typeset by Marlin Imaging 2-4 Powerscrott Road, Sidcup, Kent DAt 4 SDT

© Reed Business Information Ltd 1997 ISSN 0959 8332

EMC law proving difficult to enforce

E uropean EMC legislation may not be enforceable in its present form due to the cost of investigation, claims a trading standards chief.

"It's becoming questionable whether the legislation is going to be properly enforced," said David Holland, head of Cardiff County Council's trading standards unit. Holland's team is halfway through what could turn out to be the UK's first EMC related prosecution. The unit bought four

pcs and found three failed EMC tests. Trading standards officers have interviewed the companies in question. Holland said: "In two instances

all components were CE-marked. We now have to examine all the

components to determine why the pcs failed." This burden means Holland is

now doing far more work than originally envisaged. He may need to draw manpower from other investigations, placing a heavy drain on the unit's resources. If Holland discovers components were improperly CE-marked, further investigation of suppliers will be needed. Whether or not the pc

manufacturers sold faulty equipment is not in question. "The people we've interviewed have committed offences," said Holland, "that is clear cut." But the real question that must be

determined before prosecution is whether they showed due diligence

Engineers lack lateral thinking

The engineering profession needs to engineers do least well. attract a different type of person if its to produce more top flight executives. So argues a book published by Warwick University's Institute for Employment Research. Engineers in Top Management, based on a three-year study of over 250 companies, shows that companies run by accountants tend to outperform all others, while those headed by qualified scientists and

The reason for this, argues Rob Wilson, one of the book's authors, is due to the personalities attracted to engineering and science in the first place. They do not have the lateral thinking required for top management. "Someone who goes for engineering tends to be more focused." he said.

Measures to improve the situation include the training of qualified

scientists and engineers in management practice, as well as the development of a cadre of outstanding managers to be 'corporate mentors'.

when designing their products. "If

they have done nothing, we will

prosecute," Holland confirmed.

be far too expensive for many

The Europe-wide EMC

But proving this could turn out to

trading standards units to justify.

legislation came into force on 1

grace'. EMC clubs and trading

standards units worked with

Since the start of this year,

with the directives.

to £5000.

January, 1996. The first year of its

existence was dubbed the 'year of

companies to ensure conformance

trading standards units responsible

taken a tougher line. Any company

prosecution can expect a fine of up

for policing the legislation have

at the wrong end of a successful

The long term solution, described by the institute as 'brutal', is to attract what the book calls 'divergers' bright students who currently opt for humanities subjects. "It is important that we attract our best and brightest into the profession," said Wilson.

Wireless data

The wireless data

services market is

four-fold over the

next few years

the part of users

are available. A

predicts a \$10bn

by the year 2000.

& Telecoms

over what services

report by FTMedia

mobile data market

expected to increase

despite confusion on

services to

increase

fourfold

Car makers give flat panel speaker a hearing

This year's car models are likely to have high-tech surround sound systems built-in thanks to an agreement between Noise Cancellation Technology (NCTI) and the developer of flat panel speakers NXT - a subsidiary of UK company Verity Group.

The two companies signed a crosslicensing agreement last week which allows them to use each others technologies and customise them for specific markets as well as commercialise them there. NCTI will focus intensely on the automotive market through new and existing tieups with car system makers and vehicle manufacturers.

"We believe that they (Verity) will utilise their expertise in licensing, manufacturing and distribution to deliver flat panel speaker products that will revolutionise the industry," said Michael Parrella, NCTI's president.

NCTI is already in a joint venture with the US-based Johnson Controls, which makes car headlining that will ideally incorporate the flat panel speakers to create a truly surroundsound environment in the passenger cabin

Currently NCTI and Johnson Control are in discussion with various car makers that will integrate the technology into new car models.

ELECTRONICS WORLD June 1997

THERE IS ONE DANGER YOU CAN'T SEE, HEAR, SMELL OR FEEL- ITS RADIATION. THERE ARE OVER 10,000 SHIPMENTS OF RADIOACTIVE MATERIAL IN THE UK EVERY YEAR BY ROAD AND RAIL! WOULD ANYBODY TELL YOU OF A RADIATION LEAK? NEW GEIGER COUNTER IN STOCK Hand held unit with LCD screen, autoranging, low battery alarm, audible 'click' output. New

and guaranteed. £129 ref GE1 RUSSIAN BORDER GUARD BINOCULARS £1799 Probably the best binoculars in the world! ring for colour brochure RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER, Exceptional coverage of 9 wave bands, (5 short, 1 LW, 1FM, 1MW) internal ferrite and external telescopic aerials, mains, £45 ref VEGA

NEW LASER POINTERS 4.5mw, 75 metre range, hand held unit runs on two AA batteries (supplied) 670nm £29 ref DEC49 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers all aspects of spirit production from everyday materials. Includes construction details of simple stills etc. £12 ref MS3

NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! less than 1" square and a 10m voice pickup range. £28 Ref LOT102. BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators and propellors Armed with this publication and a good local scrap yar could make you self sufficient in electricity! £12 ref LOT81 PC KEYBOARDS PS2 connector, top quality suitable for all 286

386/486 etc £10 ref PCKB. 10 for £65 NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT £29 range 1 5-5 miles, 5,000 hours on AA batteries, transmitt info on car direction, left and right turns, start and stop information Works with any good FM radio, £29 ref LOT101a HIGH SECURITY ELECTRIC DOOR LOCKS Complete

brand new Italian lock and latch assembly with both Yale type lock (keys inc) and 12v operated deadlock £10 ref LOT99 *NEW HIGH POWER WIRELESS VIDEO AND AUDIO

BUG KIT 1/2 MILE RANGE Transmits video and audio signals from a minature CCTV camera (included) to any standard television Supplied with telescopic aerial £169

CCTV PAN AND TILT KIT Motorize your CCTV camera with this simple 12vdc kit 2 hermentically sealed DC linear servo motors 5mm threaded output 5 secs stop to stop, can be stopped any where, 10mm travel, powerful. £12 ref LOT125

GPS SATELLITE NAVIGATION SYSTEM Made by Garmin the GPS38 is hand held, pocket sized, 255g, position, altitude, graphic compass, map builder, nitro filled. Bargain price just £179 ref GPS1 CCTV CAMERA MODULES 46X70X29mm, 30 grams, 12v 100mA. auto electronic shutter, 3.6mm F2 lens, CCIR, 512x492 pixels, video output is 1v p-p (75 ohm). Works directly into a scart or video input on a tv or video. IR sensitive. £79,95 ref EF137. IR LAMP KIT Suitable for the above camera, enables the camera to be used in total darkness! £6 ref EF138

INFRA RED POWERBEAM Handheld battery powered lamp, 4 inch reflector, gives out powerful pure infrared light! perfect for CCTV

use nightslights etc. £29 ref PB1 SUPER WIDEBAND RADAR DETECTOR Detects both radar and laser , X K and KA bands, speed cameras, and all known speed detection systems. 360 degree coverage, front & earwaveguides, 1.1"x2.7"x4.6" fits on sun visor or dash £149 ref

CHIEFTAN TANK DOUBLE LASERS 9 WATT+3 WATT+LASER OPTICS

Could be adapted for laser listener, long range communications etc. Double beam units designed to fit in the gun barrel of a tank, each un has two semi conductor lasers and motor drive units for alignement. mile range, no circuit diagrams due to MOD, new price £50,000? us' £199. Each unit has two gallium Arsenide injection lasers, 1 x 9 watt, 1 x 3 watt, 900nm wavelength, 28 vdc, 600 hz pulse frequency. The units also contain an electronic receiver to detect reflected signals from

EASY DIY/PROFESSIONAL TWO WAY MIRROR KIT Includes special adhesive film to make two way mirror(s) up to 60"x20" (glass not included) includes full instructions. £12 ref TW1.

NEW LOW PRICED COMPUTER/WORKSHOP/HI-F RCB UNITS Complete protection from faulty equipment for everybody! Inline unit fits in standard IEC lead (extends it by 750mm) fitted in less than 10 seconds, reset/test button, 10A rating, E6.99 each ref LOT5. Or a pack of 10 at £49.90 ref LOT6. If you want a box of 100 you can have one for £2501

TWO CHANNEL FULL FUNCTION B GRADE RADIO CONTROLLED CARS From World famous manufacturer these are returns so they will need attention (usually physical damage) cheap way of buying TX and RX plus servos etc for new projects etc. £12 each sold as seen ref LOT2. MAGNETIC CREDIT CARD READERS AND ENCODING

MANUAL £9.95 Cased with flyleads, designed to read standard credit cardsl complete with control elctronics PCB and manual covering everything you could want to know about whats hidden in tha magnetic strip on your card/ just £9.95 ref BAR31

June 1997 ELECTRONICS WORLD

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you ation on setting up different businesses, you peruse these our leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sell) the manuals as much as vou likel £14 ref EP74

RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE metal construction, built in light, mirror etc. Russian shrimp farmi, group viewing screen, lots of accessories. £29 ref ANAYLT AA NICAD PACK Pack of 4 tagged AA nicads £2 99 ref BAR34 RUSSIAN NIGHTSIGHTS Model TZS4 with infra red illuminator views up to 75 metres in full darkness in infrared mode, 150m range 45mm lens, 13 deg angle of view, focussing range 1.5m to infinity, 2 Au batteries required. 950g weight. £199 ref BAR61. 1 years warranty LIQUID CRYSTAL DISPLAYS Bargain prices. 16 character 2 line, 99x24mm £2.99 ref SM1623A 20 character 2 line, 83x19mm £3.99 ref SM2024A 16 character 4 line, 62x25mm £5.99 ref SMC1640A TAL-1, 110MM NEWTONIAN REFLECTOR TELESCOPE Russian. Superb astronomical 'scope, everything you need for som serious star gazingl up to 169x magnification. Send or fax for furthe information.20kg, 885x800x1650mm ref TAL-1, £249 YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprehensive plans with loads of info systems, panels, control electronics etc £7 ref PV1

COLOUR CCTV **VIDEO CAMERAS BRAND NEW AND** CASED, FROM £99

PERFECT FOR SURVEILLANCE. INTERNET, VIDEOCONFERENCING, SECURITY, DOMESTIC VIDEO Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, 1v P-P, composite, 75ohm, 1/3" CCD, 4mm F2.8, 500x582, 12vdc, mounting bracket, auto shutter. 100x50x180mm, 3 months warranty,1 off price £119 ref XEF150, 10 or more £99 ea 100+ £89 MICRO RADIO It's tiny, just 3/8" thick, auto tunning, complete with nes. FM £9.99 ref EP35

25 SQUARE FOOT SOLAR ENERGY BANK KIT 100 6"x6" 6v Amorphous 100mA panels, 100 diodes, connection details etc to build a 25 square foot solar cell for just £99, ref EE112 CONVERT YOUR TV INTO A VGA MONITOR FOR £25! Converts a colour TV into a basic VGA screen. Complete with built in psu, lead and s/ware.. Ideal for laptops or a cheap upgrade. Supplied in kit form for home assembly. **SALE PRICE £25** REF SA34 *15 WATT FM TRANSMITTER Already assembled but some RF knowledge will be useful for setting up. Preamp reg/d, 4 stage 80-108mhz, 12-18vdc, can use ground plane, yagi or dipole £69 ref 1021 *4 WATT FM TRANSMITTER KIT Small but powerful FM

transmitter kit. 3RF stages, mic & audio preamp included £24 ref 1028 YUASHA SEALED LEAD ACID BATTERIES 12v 15AH at £18 ref LOT8 and below spec 6v 10AH at £5 a pair ELECTRIC CAR WINDOW DE-ICERS Complete with cable plug etc SALE PRICE JUST £4.99 REF SA28 AUTO SUNCHARGER 155x300mm solar panel with diode and 3 metre lead fitted with a cigar plug, 12v 2watt, £12.99 REF AUG10P3. SOLAR POWER LAB SPECIAL You get 2 6"x6" 6v 130mA cells, 4LED's, wire, buzzer, switch + 1 relay or motor £7.99 REF SA27 12V DC MOTOR SPEED CONTROL KIT Complete with PCB

etc. Up to 30A. A heat sink may be required £19.00 REF: MAG17 SOLAR NICAD CHARGERS 4 x AA size £9.99 ref 6P476, 2 x

C size £9.99 ref 6P47 MEGA POWER BINOCULARS Made by Helios, 20 magnification, precision ground fully coated optics, 60mm objectives shock resistant caged prisms, case and neck strap. £89 ref HPH1

GIANT HOT AIR BALLOON KIT Build a 4.5m circumfrence fully functioning balloon, can be launched with home made burner etc. Reusable (until you loose it!) £12.50 ref HA1

AIR RIFLES .22 As used by the Chinese army for training puposes, so there is a lot about! £39.95 Ref EF78. 500 pellets £4.50 ref EF80. *NEW MEGA POWER VIDEOAND AUDIO SENDER UNIT. Transmits both audio and video signals from either a video camera order, TV or Computer etc to any standard TV set in a 500r rangel (tune TV to channel 31) 12v DC

*MINATURE RADIO TRANSCEIVERS A pair of walkie talkies BULL ELECTRICAL 250 PORTLAND ROAD, HOVE, SUSSEX. BN3 5OT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS £3.50 P&P PLUS VAT. 24 HOUR SERVICE £4.50 PLUS VAT. **OVERSEAS ORDERS AT COST PLUS £3.50** phone orders: 01273 203500 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS)

targets. £199 for one. Ref LOT4.

FAX 01273 323077 E-mail bull@pavilion.co.uk

with a range up to 2 km in open country. Units measure 22x52x155mm cases and earp'ces. 2xPP3 req'd, £37.00 pr. REF: MAG30 *FM TRANSMITTER KIT housed in a standard working 13A adapterII the bug runs directly off the mains so lasts forever! why pay £700? or price is £18 REF; EF62 (kit) Transmits to any FM radio. Built and tested version now available of the above unit at £45 ref EXM34

*FM BUG BUILT AND TESTED superior design to kit. Supplied detective agencies. 9v battery reg'd, £14 REF; MAG14

GAT AIR PISTOL PACK Complete with pistol, darts and pellets £14.95 Ref EF828 extra pellets (500) £4.50 ref EF80.

HEAT PUMPS These are mains operated air to air units that consist of a aluminium plate (cooling side) and a radiator (warming side) connected together with a compressor. The plate if inserted into water will freeze it. Probably about 3-400 watts so could produce 1kw in ideal conditions. £30 ref HP1

3 FOOT SOLAR PANEL Amorphous silicon, 3' x 1' housed in an luminium frame, 13v 700mA ouput, £55 ref MAG45

SOLAR/WIND REGULATOR Prevents batteries from over charging. On reaching capacity the regulator diverts excess power into heat avoiding damage. Max power is 60 watts. £27.99 ref S/CA11-/05 FANCY A FLUTTER? SEEN OUR NEW PUBLICATION? Covers all aspects of horse and dog betting, systems etc and gives you a betting system that should make your betting far more profitable! £6 a copy ref BET1

FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99 ref MAG5P13 ideal for experimentersI 30 m for £12.99 ref MAG13P1 4X28 TELESCOPIC SIGHTS Suitable for all air rifles, ground lenses, good light gathering properties, £24.95 ref R/7_ GYROSCOPES Remember these? well we have found a company

that still manufactures these popular scientific toys, perfect gift or for educational use etc. $\pounds 6$ ref EP70

NICAD CHARGERS AND BATTERIES Standard universal mains operated charger, takes 4 batts + 1 PP3, £10 ref PO11D. Nicads- AA size (4 pack) £4 ref 4P44, C size (2 pack) £4 ref 4P73, D size (4 pack) £9 ref 9P12. RECHARGE ORDINARY BATTERIES UP TO 10 TIMES!

With the Battery Wizard! Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four at a time! Led system shows when batteries are charged, automatically rejects unsuitable cells, complete with mains adaptor. BS approved Price is £21 95 ref EP31

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 radar detector can revent even the most responsible of drivers from losing their licencel Adjustable audible alarm with 8 flashing leds gives instant warning of radar zones, Detects X, K, and Ka bands, 3 mile range, 'over the hill 'around bends' and 'rear trap facilities, micro size just 4.25"x2.5"x,75", Can pay for itself in just one day! £89 ref EP3

3" DISCS As used on older Amstrad machines, Spectrum plus3's etc £3 each ref BAR400

STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, filters etc etc very comprehensive nicroscope that would normally be around the £700 mark, our price is just £299 (full money back quarantee) full details in catalogu

SECOND GENERATION NIGHT SIGHTS FROM £748 RETRON Russian night sight, 1.8x, infra red lamp, 10m-inf, standard M42 lens, 1,1kg £349 ref RET1

LOW COST CORDLESS MIC 500' range, 90 - 105mhz, 115g. 193 x 26 x 39mm, 9v PP3 battery required £17 ref MAG15P1

HI POWER SURVEILLANCE TELESCOPE Continuous zoom control from 20 times to an amazing 60 times magnification. 60mm fully coated objective lens for maximum light transmission, complete with tripod featuring micro elevation control. £75 ref ZT1

JUMBO LED PACK 15 10mm bicolour leds, plus 5 glant (55mm) seven segment displays all on a pcb £8 ref JUM1. Pack of 30 55mm seven seg displays on pcbs is £19 ref LED4, pack of 50 £31 ref LED50 12VDC 40MM FANS MADE BY PANAFLO, NEW. £4 REF FAN12 HELP WANTED WITH MOTORS We have thousands to

clear at rock bottom prices! bumper pack of 20 motors (our choice) is just \pounds 19.95! Some of these will be 5" or maybe larger!

HELP WANTED WITH MULTI RAIL POWER SUPPLIES Again we have thousands available, most with fans, mostly cased, sold as seen, condition may vary, some working some not. Pack of 10 is £19.95

HELP WANTED WITH TELEPHONE COIN BOXES Need we say, thousands available! these are units designed to convert an ordinary phone into a coinbox phone. They have damaged cases but the electronics and coinslots are ok. Speech chip on the board talks to u as you program it! Pack of 10 is £19.95

HELP WANTED WITH EXTERNAL MICRO TAPE STREAMERS 10,000 in stock, space needed! brand new cased units with loads of interesting bits (motor, tape heads, PCB etc etc. Very smart plastic case useful for projects etc. Pack of 20 is £19.95 ref MD2 HELP WANTED WITH YUASHA 12V 6.5AH SEALED LEAD ACID BATTERIES About 10 pallets full just inside warehouse no 2l pack of 5 for just £19.95 also some below spec 6v 10aH at £19.95 for a pack of 8

> Check out ourWEB SITE full colour interactive 1997 catalogue

http://www.pavilion.co.uk/bull-electrical

FREE COLOUR CATALOGUE WITH EVERY ORDER

World standard DAB setback

The worldwide adoption of the European Eureka 147 standard for DAB, or digital audio broadcasting, has taken a blow after a US decision to favour a satellite-based system.

To this aim, the US Federal Communications Commission (FCC) has auctioned frequencies in the Sband spectrum (2310 to 2360MHz). However, satellite-based DAB systems, unlike Eureka 147, cannot deliver cd-clarity audio to stationary and mobile users in open and urban areas, countering the whole purpose of adopting DAB.

The US government's decision has been described by the Consumer Electronics Manufacturers

Association (CEMA) as "disastrous for digital audio radio in the US". CEMA now hopes to sway the US

government towards giving up the Lband frequencies (1452 to 1492MHz), currently reserved for Pentagon use. The L-Band is suited to the improved quality terrestrial delivery of DAB, and CEMA is lobbying to get the Eureka 147 system implemented in the spectrum,

even though it believes the license fees demanded for Eureka 147 are too steep for US broadcasters. Frans Westra, DAB project leader

at Philips, countered the claim by saying: "It's not quite clear what is going on, but I have never seen a

technically superior system fail because of high licence fees." Moreover, certain Eureka 147 DAB receiver makers are not unduly concerned about developments in the US. "Currently we are looking at Europe although we are keeping a close eye on the situation in the States," said Tony Starling, sales director at Kenwood, which is launching the first commercial car-

DAB receiver in a couple of week's time. Eureka 147 has been selected by 20 countries worldwide. Japan has still to choose and is watching developments in the US.

End of 56kbit modem war in sight

D eace talks next month could end the 56kbit/s high speed modem standard war.

Lucent Technologies and Rockwell, who are promoting their joint K56Flex protocol, invited their rival, US Robotics, which is marketing its x2 modem, to the inaugural meeting of the Open 56K

Forum held in New York. Although US Robotics could not make the conference in time -

"Unfortunately, they only asked us to join half-an-hour before the first meeting," said a US Robotics spokesperson - the company is considering taking part in the next one, scheduled for later this month.

It raises the possibility that all three companies contribute to a common standard which would be put before the International

Telecommunications Union (ITU) for approval, so users can be confident the modem they buy will be compatible with those used by all Internet service providers.

UMIST researches self drive cars

C ars which drive themselves is the goal of research being carried out at University of Manchester Institute of Science and Technology (UMIST). Follow on from the EC-funded

Prometheus project aimed at preventing accidents through corrected steering, UMIST is developing vision systems which enable cars to operate on all road types.

Panos Liatsis, of UMIST's Control

Systems Centre, explained that a system for motorway use, where the road is well defined, is relatively straightforward, but "driving within the city is far more adventurous." According to Liatsis, the intelligent

sensing system for obstacle detection currently being developing relies on image analysis and neural network techniques. It consists of two modules: one for obstacle detection. the other for classification. The first module examines an

image for edges, to determine regions of interest (ROIs). The second module uses higher order neural networks (HONNs) to identify obstacles within the ROIs. They decompose ROIs into coarse fields, which are matched with known vehicle shapes.

The system has been tested with 400 images containing objects with different scaling and positions, and achieved a detection accuracy of 96 per cent

Marconi archive to stay in UK

Guglielmo Marconi's archive of scientific equipment and documents relating to his years developing the first practical radio transmitters at the beginning of the century is to be given to the nation by GEC-Marconi, the present owner.

Original plans to auction the archive - valued at between £1m and £3m - were scrapped earlier this year in response to criticism, including a letter to The Times from Marconi's daughter, that the archive was too important to the history of scientific discovery to be broken up.

GEC-Marconi has agreed to give the archive of over 1000 items, which includes Marconi's first patent for improvements to wireless telegraphy, a letter from Queen Victoria and radio message transmitted from the sinking Titanic, to the Science Museum in London.

Part of the archive will be displayed in a Marconi centre to be set up at the Chelmsford site where Marconi built the world's first radio factory.

Hart Audio Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very best audiophile components, and our own engineering expertise, to give you unbeatable performance and unbellevable value for money. We have always led the field for easy home construction to professional standards, even in the sixtles we were using easily assembled printed circuits when Heathkit in America were still using tagboards!. Many years of experience and innovation, going back to the early Dinsdale and Bailey classics gives us incomparable design background in the needs of the home constructor. This simply means that building a Hart kit is a real pleasure, resulting in a piece of building a Hart kit is a real pleasure, resulting in a piece of equipment that not only saves you money but you will be ud to own

Why not buy the reprints and construction manual for the kit you are interested in to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase.

'AUDIO DESIGN' 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K performance at bargain basement prices. Unique design features such as fully FET stabilised power supplies give this amplifier World Class performance with startling clarity and transparency of sound, allied to the famous HART quality components and ease of construction. Standard model comes with a versatile passive front-end giving 3 switched inputs, with ALPS precision "Blue Velvet" low-noise volving and belance courtors no need for an external preampli switched inputs, with ALP's precision blue verver low-house volume and balance controls, no need for an external preampl. Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-terminated, ready for instant usel. All versions are available with Standard components or specially selected Super Audiophile components and Gold Plated speaker terminals and all are also available factory assembled. K1100 Complete STANDARD Stereo Amplifier Kit, £415.21 K1100S Complete SLAVE Amplifier Kit, K1100M Complete MONOBLOC Amplifier Kit, £353.62 £271.20 RLH11 Reprints of latest Amplifier articles £1.80

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

Now you can throw out those noisy ill-matched carbon pots and Now you can throw out those noisy lil-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motorised versions have 5v DC

2-Gang 100K Lin. 2-Gang 10K, 50K or 100K Log. 2-Gang 10K Special Balance, zero crosstalk and zero centre

MANUAL POTENTIOMETERS

MOTORISED POTENTIOMETERS

K1100CM Construction Manual with full parts lists

Highest quality, purpose designed, 'single ended' class 'A' headphone amplifier for 'stand alone' use or to supplement those many power amplifiers that do not have a headphone facility. Easy installation with special signal link-through feature, the unit uses our 'Andante' Ultra High Quality power supply. Housed in the neat, black finished, Hart minibox it features the wide frequency response, low-distortion and 'musicality' that one associates with designs from the renowned John Linsley Hood. Volume and balance controls are Alps 'Blue Velvet' components. Very easy to build, or available factory assembled, the kit has very detailed instructions, and comes with Hart audiograde silver solder. A valuable personal listening option and an attractive and A valuable personal listening option and an attractive and karmonious addition to any hili system. K2100 Complete Standard Kit. K2100SA 'Series Audiophile' Kit with se

£5.50

... £16.40

£17.48

components A2100SA 'Series Audiophile', Factory A CM2100 Construction Manual

"Andante" Linear Technolog

AUDIOPHILE POWER SUPPLIES The HART "Andante" series power supplies are specially designed for exacting audio use requiring absolute minimum noise, low hum field and total freedom from mechanical noise. tield and total freedom from mechanical noise. Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for the above units, or any equipment requiring fully stabilised ±15v supplies. There are two versions, K3550 has 2±15v supplies and a single 15v for relays etc., K3565 is identical in appearance and has one ±15v. Both are in cases to match our 'C and our K1450 "Shunt Feedback" Pickt K3550 Factory Assembled Full Supply £147.25 SPEAKER DESIGN SOFTWARE.

Special set of toroidal transformers, 2 output & 1 mains for the "Hot Audio Power" valve amplifier design described in the Oct. 1995 issue of "Wireless World". Total Wt 4.8Kg. Special price for the set. £99, Post £8 RJM1. Photocopies of the Article by Jeff Macaulay. £2

TOROIDAL MAINS & OUTPUT TRANSFORMERS for EL34, 32W VALVE AMPLIFIER

PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its best? Our latest

triple purpose test cassette checks the three most important tape parameters without test equipment. Ideal when fitting new heads. A professional quality, digitally mastered test tape at a

5070 Polvester Wool, 125g 5069 Pure Lambs Wool, 125g

Send for Your FREE copy of our LISTS

If you want the very best sound out of vinyl discs then you need our high quality preamplifier with Shunt Feedback equalisation. The K1450 also has an advanced front end, specially optimised for low impedance moving colicatridges as well as moving magnet types. Selected discrete components are used throughout for ultimate sound quality. The combination of John Linsley Hood design, high quality components and an advanced double sided printed circuit board layout make this a product at the leading edge of technology that you will be provid to own A ercent review in "Gramphone" that you will be proud to own. A recent review in "Gramophone that you will be proud to own. A recent review in "Granophone magazine endorsing this view. Bought in kit form our step by step instructions it is very easy and satisfying to assemble, or you can buy a factory assembled version if you wish. This magnificent kit, comes complete with all parts ready to assemble inside the fully finished 228 x 134 x 63mm case. Comes with full, easy to follow, instructions as well as the Hart Guide to DCP Coextender was therewise parts the during rade Sliver PCB Construction, we even throw in enough Hart Audiograde Silve Solder to construct your kit!

K1450 Complete Kit K1450SA Audiophile K1450SA Audiophile Kit A1450SA Factory assembled Audiophi

"CHIARA" HEADPHONE AN

The Home of *Hi-Finesse*. Its not what you do, its HOW you do it that counts!.

SHUNT FEEDBACK PICKUP PREAMPLIFIER

															£116.58
4	į	i,	ł	,		ł	-		ì	4	•		ï	•	£138.94
e	9	1	ni	t	÷	ł	•	ł	1	×	÷	ł	3	2	£188.94
		a.		D											

	112.00
elected audiophile	
	115.46
ssembled £	115.46
	£2.50

nia	1	a		η	e	a	a	p	n	0	n	e	1	N	mpimer
DD	r	e	a	'n	ic	5.									
		í,	į,		Ĵ			÷.			1	ŝ	ŝ		£94.75
00	ŝ	2	2	į,	ŝ	ŝ	2	į,	1	ç	1			1	£84.42

VISATON "Speaker Pro 6" is a complete speaker design program for use on IBM machines. Covers cabinet and crossover design and contains a full expandable database of drive units. Earning a "most recommendable" accolade it tests this program is ideal for the professional speaker builder or serious audiophile. 0303 Speaker Pro 6. 3.5"Disk £45.51 0309 Demo Version with Database £9.28

SPEAKER DAMPING MATERIALS

Polyester Wool and Pure Lambs Wool both have optimal damping properties and are pleasant to handle. Standard 125g bag is sufficient for 20 litres enclosure volume.

£3.20

ROARING SUBWOOFER. A full revised kit will be available soon for this excellent and imaginative design from Russel Bredon (WW Feb.97). The latest design will use the 30mm maximum cone displacement of the 10° VISATON GF250 Driver to give even better performance at slightly reduced cost. Fraturing a rubber suspended fibreglass cone, extended pole plate, vented magnet, Kapton carrier and dual 4ohm voice coils the GF250 is unbelievably good value at only £111.45 each.

SPECIAL OFFER!. SOLENOID CONTROLLED FRONT LOAD CASSETTE DECK SFL800

HART TECHNICAL BOOKSHELF Try us for:- Bigger Range of Books, Better Prices, NO "28 Day Wait"

C10 001

"AUDIO ELECTRONICO" Jaho Lipslau Haad

THE ADT OF LINEAD ELECTRONICS"
Ine Ani or LineAn ELECTRONICS
John Linsley Hood, 1994
"THE ART OF ELECTHONICS" Horowitz & Hill
'DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY"
3rd.Edn. 0-240 51397 5 £19.95*
"INTRODUCING DIGITAL AUDIO CD. DAT AND SAMPLING"
SBN 1870775 22 8 F7 95
ACTIVE EILTED COOKBOOK" Don Lancaster 619.95
ACTIVE FILTER COORDOOK DOIL Landaster
THE ART OF SOLDERING 0-85935-324-3.0
'TOWERS' INTERNATIONAL TRANSISTOR SELECTOR"
D-572-01062-1 £19.95*
"AUDIO" F.A.Wilson, BP111£3.95
"HOW TO USE OSCILL OSCOPES & OTHER TEST FOURPMENT"
D A Dapfold BD267 63 50
THE HADT DENITED ODDING BOARD CONSTRUCTION
THE HART PHINTED CIRCUIT BOARD CONSTRUCTION
GUIDE."£2.50
"A SIMPLE CLASS A AMPLIFIER"
J.L.Linsley Hood M.I.E.E. 1969. RLH12
"CLASS-A POWER" Single Ended 15W Amp.
LL Linsley Hood, MILE E 1996, BLH13 F2 50
Accendicy nood minere: rood mento interno
AUDADEAKEDA THE WIN AND HOW OF COOD
LOUDSPEAKENS; THE WHY AND HOW OF GOOD
REPRODUCTION. G.Briggs. 1949 £8.95
"THE LOUDSPEAKER DESIGN COOKBOOK"
Vance Dickason. (5th Edn.) £23.95*
ELECTROSTATIC LOUDSPEAKER DESIGN AND
CONSTRUCTION Bonald Wagner BKT6 \$15.95
CONSTRUCTION ROTATION OUDOREAKED DECICAL COOKDOOK"
THE ELECTROSTATIC LOUDSPEAKER DESIGN COOKBOOK
Roger P.Sanders. 1995 E24.95
"BULLOCK ON BOXES" Bullock & White £10.95
"AN INTRODUCTION TO LOUDSPEAKERS & ENCLOSURE
DESIGN" V. Capel. BP256
"I OLIDSPEAKERS FOR MUSICIANS" BP207 F3 95
TUEODY & DEGION OF LOUDEDEAVED ENCLOSUDES"
THEORY & DESIGN OF LOUDSPEAKER ENGLOSURES
J.E.Benson
"QUICK & EASY TRANSMISSION LINE SPEAKER DESIGN"
Larry D.Sharp £8.95
"THE COUPLED CAVITY HANBOOK" David Purton £4.90
VISATON HOME HI FLCATALOGUE " Full Specifications and
Thiolo Small Data on all Drive Unite
There onland bata on an Drive Onits
VISATON, CAR HI FI CATALOGUE. In car guide £3.50
"VISATON, CABINET PROPOSALS" Book 1. In GERMAN £6.50
"VISATON. CABINET PROPOSALS" Book 2. In GERMAN £6.50
"SPEAKER PRO 6." VISATON Cabinet Design Software £45.51
"SPEAKER PRO 6." Demo Version with drive unit database £9.28
WALVE AND LEIEDE" Marann Jonan 1005/6 \$24.50
VALVE AMPLIFIENS Worgan Jones, 1995/0
THE VTL BOOK David Manley 1994. BKV11 £17.95
MULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAA27
£11.95
"THE WILLIAMSON AMPLIFIER." 0-9624-1918-4 £6.95
AN APPROACH TO AUDIO ERECUENCY AMPLIFIER DESIGN
CEC 1057 CITORODIOT NEGOENOT ANN EN LEN DECICI.
GEG 1957
AUDIO ANTHOLOGIES, articles from Audio Engineering. Six
volumes covering the days when audio was young and valves were
king!. BKAA3/1 to 6 All £12.95 each
"THE RADIOTRON DESIGNERS HANDBOOK" (CD) £49.00
"PRINCIPLES OF ELECTRON TUBES" H.D. Reich PH.D. \$25.95
"POWED AND DDO JECTS" Anthology 1070-1020 C1E 60
POWER AMP PROJECTS Anthonogy, 1970-1989 115.50
"WORLD TUBE DIRECTORY" 1996-7 Sourcebook of valve
related products £5.95
Fuller descriptions of the contents of all our books is given in our ful
catalogue, price£4.50
Postage on all books, unless starred, is only £2 per book.
of rol

books costing £3.50 to send. Don't forget No waiting at HARTI. All listed books are normally In stockl. Just ring with your Credit Card Number for instant

POSTAGE on UK Orders up to £20 is £2. Over £20 is £4.50. **OVERSEAS** Please Enquire.

Fuller Details of ALL kits are given in List, FREE on request.

All Prices include 24 Hr. ORDERLINE 01691 652894 UK/EC VAT.

Intel to lose ground A key beneficiary of Intel's lower

market share will be AMD which has managed to match the

"Unlike prior incursions, when

capacity or too late with competitive

performance, this time, bolstered by

the technology boost it received via

its NexGen acquisition. AMD's gun

may shoot real bullets," said Nathan

Brookwood senior analyst at

AMD arrived with too little fab

performance of Intel's

microprocessor.

Dataquest.

microprocessors with its K6

ntel is the undisputed king of the x86 microprocessor market. But it will lose a big chunk of its market over the next three years, predicts US market research firm Dataquest, which is impressed with the performance of Advanced Micro

Devices' new K6 microprocessor. Advanced Micro Devices (AMD), Cvrix and others, could snag 25 percent of the market by the year 2000, reducing Intel's share from 95 percent to 75 percent. The x86 microprocessor market was worth about \$15.4bn in 1996.

Hand-held records MPEG

n 1995, Hitachi developed a prototype camera that recorded digital video on a 400MB multi-layered flash memory. Now the company has demonstrated a camera that can record JPEG compressed still images and MPEG-1 compressed full motion video on a slot-in PCMCIA hard disk. And it's small enough to be held in the hand. The breakthrough has come through Hitachi's development of a single chip integrating the 300,000 components necessary to handle all camera functions, including real-time MPEG-1 and high speed JPEG encoding/decoding and playback. This CODEC LSI chip uses a 3-layer 0.5 micrometre c-mos process, and has a power consumption of 500mW (the camera consumes 6.5W in total). Image resolution is said to be greater than 352x240 dots. The 260MB disk can store up to 2880 JPEG images - or 1000 with 10 seconds of MPEG audio each - 20 minutes of MPEG-1 video and audio, or four hours of audio alone.

NEWS IN BRIEF

B T has received a veiled warning from Bindustry regulator Oftel over its plans to become a global telecommunications group. Oftel is to investigate whether BT's expansionist plans, which includes the proposed merger with US operator MCI. will have a detrimental impact on the telephone operator's services domestically.

After a consultation period Oftel will decide whether any safeguards should be added to BT's license. "It is possible that BT's moves towards globalisation may have an impact on the company's ability and willingness to meet its UK license obligations," said Oftel director general Don Cruickshank.

D^{VD-ram,} the rewritable version of digital versatile discs, or DVDs, has moved a step closer to its commercialisation. Last week ten major consumer electronics firms agreed on a single DVD ram format. Its specification will be published later in April.

Toshiba demonstrated its version of DVD ram hardware in Tokyo last month.

Other equipment makers are expected to produce DVD ram systems sometime before the spring of 1998.

U SA Global Link has introduced what it says is the first worldwide Internet telephony system.

The Global Internetwork service will be offered in 35 countries with rates varying between 25 cents and 50 cents per minute. The company claims that voice quality will be comparable with satellite-routed phone calls which often have a voice delay, but will be better than using Internet-connected PCs to call other PC users.

Global Link is not the first company to offer such services but it is the first to plan a worldwide one. The company is a leading 'call back' firm, offering overseas clients cheap phone rates by offering access to a US dial tone and cheap US phone rates.

The company plans to install gateways in various countries that will connect local phone users to the Internet. However, there are concerns that such services will further congest the already overburdened Internet.

M/A COM, the US microwave and rf specialist has produced a range of very low cost 14GHz Schottky diodes in plastic packaging. Charles Howell, a company spokesman, said: "Consumer applications like DBS and VSAT can't afford \$5 for a ceramic part. Plastic packaged diodes cost 25 to 30¢ and we got the capacitance on ours down to allow them to work at 14GHz." Schottky diodes are used as mixers for frequency converters in receivers. Howell said: "The highest frequency diodes, in hand assembled and tuned beam-lead packages, will work at 100GHz."

CER, the Industry Council for Electronic Equipment Recycling, has launched its design guidelines for the recycling of electrical and electronic equipment. "The guidelines include information on the principles of designing for recycling and cover developing an appropriate design strategy," said Claire Snow, the director of ICER. The launch is to be followed by an industry-wide consultation process, promoted by ICER, beginning in April. The 30 page ICER Guidelines: Design for Recycling Electronic and Electrical Equipment document is available at £20 from ICER. Tel: 0171 729 9121.

Philips back in the top ten

D hilips has returned to the top ten of the world's semiconductor manufacturers, according to industry analyst Dataquest (see table below).

Dataquest's final 1996 worldwide market rankings shows that Philips, after increasing revenues by 8.2 per cent on 1995, is at number nine, just ahead of SGS-Thomson Microelectronics. Mitsubishi dropped out of the top 10 to number 11 with revenues of \$4.1bn

Provisional figures, released in January have been largely confirmed with Philips and Mitsubishi being the only companies to swap positions.

Intel	17.781
NEC	10.428
Motorola	8.076
Hitachi	8.071
Toshiba	8.065
ТІ	7.064
Samsung	6.464
Fujitsu	4.427
Philips	4.219
	NEC Motorola Hitachi Toshiba TI Samsung Fujitsu Philips

The analog, digital and mixed-mode circuit simulator that really moves!

Turn on the power to your designs... CALL + 44 (0) 1203 233216 today!

Phone: +44 (0) 1203 233216 Fax: +44 (0) 1203 233210 E-mail: sales@rme.co.uk www.rme.co.uk

Shipping Charges UK £7.99. All prices are plus VAT. Electronics Workbench is a trademark of Interactive Image Technologies Ltd, Tornto, Canada. All other trademarks are the property of their respective owners

Australia • Belgium • Brazil • Canada • Chile • Colombia • Cyprus • Czech Republic • Denmark • Finland • France • Germany • Greece • Hong Kong • Hungary • India • Indonesia Israel • Italy • Japan • Małaysia • Mexico • Netherlands • New Zealand • Norway • Philippines • Portugal • Romania • Singapore • Slovenia • South Africa • South Korea • Spain Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom Trademarks are the property of their respective holders.

ELECTRONICS WORLD June 1997

NEW! Electronics Workbench Version 5 with analog, digital and mixed A/D SPICE simulation, a full suite of analyses and over 4,000 devices. Still the standard for power and ease of use. Now ten times faster. Still the same low price.

Join over 75,000 customers and find out why more engineers and hobbyists buy Electronics Workbench than any other SPICE simulator. You'll be working productively in 20 minutes, and creating better designs faster. We guarantee it!

Yes

High-End Features

True Mixed Analog/Digital Fully Interactive Simulation Yes Analog Engine Digital Engine Temperature Control Pro Schematic Editor **Hierarchical Circuits** Virtual Instruments **On-Screen** Graphs Analog Components Digital COmponents Device Models Money-Back Guarantee Technical Support

Powerful Analyses

DC Operating Point AC Frequency Transient Fourier Noise Distortion

Spice 3F5, 32-bit Native, 32-bit Yes Yes Yes Yes Over 100 Over 200 Over 4,000 30-day Free

No-risk 30-day money-back for first time buyers!

Runs on Windows 95/NT/3.1

*Special upgrade prices are available. All prices are exclusive of VAT and £7.99 p+p.

Yes

Yes

Yes

Yes

Yes

Yes

RESEARCH NOTES

Jonathan Campbell

Computer can respond to thought

Research at Imperial College could disabled people by allowing them to communicate through computer simply by thinking. Will Penny and colleagues,

researching into biosignals as part of the Brian Computer Interface project, are attempting to use information from the motor cortex region of the brain, recorded using electrodes attached to the scalp, to interface directly with a computer.

University associate professor of electrical The basis for the work is that movements of limbs, for example, are preceded by desynchronisations and synchronisations within the electroencephalogram (EEG). But these event-related

desynchronisations and sychronisations (ERD and ERS). appear to be present when volition to move a limb occurs, even when actual movement of the limb does not in fact take place.

Clearly, the accurate real-time determination and classification of the ERD/S offers many exciting possibilities for the control of peripheral devices via computer analysis.

This project aims to research this protocol. The primary application is expected to be computer interfacing and control by severely disabled people.But the methodology is general and has numerous other application areas.

Key areas of technical research to be solved include better preprocessing techniques for the spontaneous (non-averaged) EEG and development of suitable pattern recognition algorithms. This will also include investigation of dynamic 'neural' network architectures.

Research effort will also be directed at the issues of multichannel sensor fusion and the development and use of methods for assessing 'confidence' measures (or error estimates) for the output of neural' classifiers.

Will Penny, Department of Electrical Engineering, Imperial College, London SW7 2BT, UK. Email: w.penny@ic.ac.uk.

Revolutionary twist for silicon manufacturing

Ccientists at Cornell university Shave announced creation of a "universal substrate" for semiconductors, promising to eliminate many of the obstacles in conventional semiconductor manufacturing. The technique allows

pure, single crystal growth of any film on a semiconductor substrate. Results are still in their preliminary stages, but if the idea truly works and the researchers are confident it will - the technique could revolutionise the microelectronics industry.

The potential is "unimaginable", according to Yu-Hwa Lo, Cornell associate professor of electrical engineering who is leading the work opening the door for manufacturing whole new classes of devices in optoelectronics and microelectronics, for such items as new lasers, detectors, sensors, imaging systems, signal processing and computer chips, compact discs, data storage and dozens of other examples.

Conventionally, a major obstacle to the manufacture of semiconductors is that the single-crystal semiconductor thin films must be deposited on a crystal of the same structure. For example, a light-emitting gallium arsenide thin film must be deposited on a gallium arsenide bulk substrate, or else defects will result and the semiconductor cannot be used.

Each single crystal is characterised by its lattice structure and lattice constant. When a crystal layer is grown on a bulk crystal substrate. even a mismatch of 1% in lattice constants causes problems. But the

Cornell technique, for which Cornell has applied for a patent, shows that a mismatch of 15% can be overcome a feat previously unachievable.

The Cornell team solved that problem by what might be called a simple twist. By rotating a thin film slightly and bonding it to a substrate, the surface of this new substrate becomes flexible, or compliant, and a crystal of any material can grow on its surface. The researchers call it a twist boundary, in which the crystal materials are bonded by angular misalignment; and the result is a new compliant substrate.

The Cornell team has demonstrated the technique with thick, pure crystal layers of indium gallium phosphide, gallium antimonide and indium antimonide, with mismatches as high as 15%. Crystals of these compounds have successfully been grown on a gallium arsenide wafer that had a flexible layer thin film. With traditional methods, it would not have been possible.

The Cornell team, in collaboration with researchers from the Wright Patterson Laboratory and the Sandia Laboratory, has demonstrated that the defect density in an indium antimonide layer has been reduced by at least 100,000 times with the new method, compared to the conventional method. This means

NOW THE BATTLE

INIAT BE AND IT

ULTImate Technology now makes the best PCB Design tools available at very competitive prices from UK £ 2.675,-(Excl. VAT, 1400 pins version with 4 signal layers). We imagine you will want to see for yourself whether you too can achieve such fantastic results with the ULTIboard Wizard. Please come to our stand J135 at ICAT 97 at NEC (Birmingham) and convince yourself. A demo-CD is available. CIRCLE NO. 138 ON REPLY CARD

1 Viney Woodside = Lydney Gloucestershire = GL15 4LU = U.K. tel. (+44) 1594 - 516647

engineering, right, and Felix Ejeckam, doctoral candidate, examine transmission electron microscope photographs that demonstrate the success of a technique they developed for a universal substrate for compound semiconductors. Photo by Charles Harrington, Cornell University.

450

Yu-Hwa Lo, Cornell

After 10 years and with more than 20.000 users, ULTImate Technology now introduces the ULTIboard Wizard. This system is highly technology applied in the ULTIboard Wizard used to be available only as options on the more powerful and expensive Work-stations.The PCB design depicted below illustrates the capability of the Wizard, its ULTIboard Professional Design Contest at the Electronics'95 Exhibition. The same design was now executed in a 2-layer version with the ULTIboard Wizard in less than 2 hours.

In WEau

Energiestraat 36 • 1411 AT Naarden The Netherlands

that indium antimonide crystals can be grown on gallium arsenide, to form the basis for infrared detection and a Hall sensor – a sensor that has been used in airplanes and soon will be used in cars.

If this can be done for another compound semiconductor, gallium nitride, which has a lattice mismatch of about 20%, then high-quality blue and ultraviolet lasers as well as high-

temperature, high-power electronic circuits can be fabricated.

Blue lasers, rather than red, will be used in the next generation of compact discs, for example, because the shorter wavelength stores more data. Highpowered electronic circuits that can also withstand high temperatures are used in automobile, aerospace, communication and power industries.

The Cornell team expects it can be

achieved with this technique, and is currently in the process of trying it. The researchers also believe that the crystals can be grown on silicon wafers, opening the door for computers that, for example, could have different types of semiconductors operating at the same time on the same motherboard. Contact: Yu-Hwa Lo, Electrical

Engineering, Cornell University,

Sun power put into practice . . .

Data being collected from a 0.75 acre 342kW photovoltaic system at Georgia Tech is providing a valuable insight into how commercial solar electricity generation might work in real world applications.

Doctoral student Mike Ropp with the 342-kilowatt photovoltaic system on top of the Georgia Tech Aquatic Center. **Photograph Stanley** Leary, Georgia Tech Communications Division.

So far, the system, installed at Georgia Tech's Aquatic Center, has operated close to its expected efficiency, although actual energy production has been lower than predicted. For the seven-month period from July 1996 through to January 1997, it produced 162.2MWh of electricity, against a predicted 409MWh, which is enough to power about 35 average homes.

Factors that affected energy output, included fuses blown when lightning struck the Center roof in July and a water main break that flooded the electrical control room and forced a 10-day shutdown in October. Also, sunlight levels were lower than expected and extremely high temperatures in August decreased the efficiency of the system, which operates better in cooler temperatures.

Continuing experiments to compare performance-model equations to the real operating data brought further

shutdowns, but will help take the guesswork out of solar energy production.

In the future, researchers plan to study "islanding," where the main power source shuts down but the photovoltaic system continues to function. This creates a safety hazard for workers doing maintenance or repairs, especially if they're not aware of the secondary power source.

The Georgia Tech system is made up of 2856 photovoltaic modules, each with 72 multicrystalline silicon solar cells connected in series. A power conditioning system, or inverter, converts the array's dc power to utility-compatible ac power, which then feeds into the Aquatic Center's main power system. The inverter also controls and monitors the overall photovoltaic system.

A data acquisition system samples all vital signs every 10s, then averages and stores them every 10min. Incoming data includes meteorological parameters such as ambient air temperature, wind velocity and array temperature, and

... And put into space

A eronautical engineers in Southern California are developing an aircraft - called Centurion - that they believe will push solar-powered aircraft concepts to new heights, and provide a vehicle for scientific experiments.

Engineers for AeroVironment are designing the aircraft to fly at over 30,000m altitude as part of Nasa's Environmental Research Aircraft and Sensor Technology (Erast) program. Like its predecessor, the AeroVironment-developed Pathfinder, the Centurion will be an ultralight flying wing with multiple electric motors along its wingspan, powered by solar cells spread across the wing's upper surface. But

performance parameters such as ac power, dc voltage and dc current.

Although the photovoltaic system is operating as expected, researchers continue to seek ways to improve solar energy production. At 10-15% efficiency, photovoltaic systems are below traditional ones like coal, natural gas or nuclear power, which have efficiency ratings that fall somewhere between 30-60%. But their fuel source – the sun – is free and unlimited, and its operation is silent and non-polluting.

"There's money to be made in solar technology for those far-sighted enough to make the investment," said Christine Ervin, assistant secretary of the DOE's Office of Energy Efficiency and Renewable Energy. "The work we're supporting at Georgia Tech is at the cutting edge of this technology. What we learn from projects like the Aquatic Center increases the confidence of those potential investors in photovoltaics products and sets the foundation for our industry's growth and profitability.'

Centurion's wingspan, will be more than twice that of Pathfinder. According to Dryden reports, recent

flight tests of a quarter-scale batterypowered model of the craft at El Mirage Dry Lake in Southern California's high desert have answered questions about the Centurion's aerodynamics and stability. Next step is to scale up the aircraft, designing new airfoils that are more efficient for high altitudes and optimising the systems.

The final solar-powered Centurion will be designed to reach the ultrahigh 30,000m altitude for a relatively short duration - about 2h - while carrying a small 90kg payload of scientific sensors. The full-scale

****** June 1997 ELECTRONICS WORLD

 Tage
 CTV)
 £1.95

 AA (1910)
 CTV)
 £1.95

 Standard charger charges 4 AA cells in 5 hours or 4Cs or
 Thin 12-14 hours + 1.2579 (1, 2, 3 or 4 cells may be charged at a time)
 £5.95

 High power charger as above but charges the Ca and Ds in 5 hours. AAs, Ca and Ds must be charged in 2 or 10.95
 £1.90
 £1.90
 2 hours Ara, or her and the second se MX180 Digital multimeter 17 ranges 1000vdc 75 2Mohm 200mA transistor Hfe 9v and 1.5v ba E3.75 high discharge rates). E3.75 Special offers, please check for availability. Sick of 4 42x lbram Nicad batteries 171x16mm dia with red & black leads 4.8v button e116 V 280mA h battery with wires (Varta test manufacture to the stand of the stand 1.29 bitters 19 95 AMD 27256-3 Eproms. £200 each £1.25 100+ DIP switch 3PC0 12 pin [ERG SD-2-029]. 400 100+ Diak drive bases for 5.25 disk drive with room for a power supply, light grey plastic, 672682/47mm Fr 7.95 or £49.50 for 10 Hand held ultrasonic remote control. § 59 95 £2.45 Hand held ultrasonic remote control CV2486 gas relay, 30x10mm dia with 3 wire ter also work as a neon light GaAs FET low leakage current \$8873... BS250 P channel mosfet... BC559 transistor BC547A transistor..... 74LS05 hex invertor..... All products advertised are new and unused unless otherwise stated Wide range of CMOS TTL 74HC 74F Linear Transistors hits. Rechargeable batteries, always in stock. Please add £1.95 towards p&p. VAT included in all pri JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa Orders (01246) 211202 Fax: 550959 callers welcome 9.30am to 5.30pm Monday to Saturday CIRCLE NO. 112 ON REPLY CARD **ADVANCED ACTIVE AERIAL** 0000

New Special Offers

tw mini waterproof TV camera 40x40x15mm rec 10 to 20 volts at 120mA with composite video of (to feed into a video or a TV with a SCART plu-

10+ £89.32 + VAT = £104.95 High quality stepping motor kits (all including stepping motors) 'Comstep' independent control of 2 stepping motors by PC (Via the parallel port) with 'B motors and software upport and 'd digital inputs kit £27.00 Software upport and 'd digital inputs kit £27.00 Software upport and 'd digital inputs kit £27.00 Stepper kit 4 (manual control) includes 200 step stepping motor and control circuit cells you which lead is the base, the control cort it cells you which lead is the base, the collector and emitter and if its is NN or PNP of faulty ______ 535.45 Spare 6 w battery ______ Tarschengel [12]

20p each

or £200.00 for a box of 30 Polyester capacitors box type 22.5mm l 0.9uf 250vdc 14p...100+ 9p...1000+ 1uf 250vdc 15p...100+ 10p...1000+ 1uf 50v bipolar electrolytic axial leads.

0.22uf 250v polyester axial leads

Polypropylene 1uf 400vdc (Wima MKP10) 27.5mm pitch 32x29x17mm case

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90dBm, TOIP +55dBm. For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception 4kHz-30MHz.
- -10dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise 150dBm in 1Hz. Clipping 16 volts/metre. Also 50 volts/metre version.

* Broadcast Monitor Receiver 150kHz-30MHz. * Stabilizer and Frequency Shifters for Howl Reduction * Stereo Variable Emphasis Limiter 3 * 10-Outlet Distribution Amplifier 4 * PPM10 In-vision PPM and chart recorder * Twin Twin PPM Rack and Box Units. * PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and meter movements * Broadcast Stereo Coders *

SURREY ELECTRONICS LTD The Forge, Lucks Green, Cranleigh, GU6 7BG. Telephone: 01483 275997. Fax: 276477.

452

Q. Why Simulate?

A. Because It Really Works ...

when you have the right software tools. With Intusoft's ICAP/4, The Virtual Circuit Design Lab, you can simulate the toughest System, IC, and Board-level designs.

You said you would do more simulation if the tools were easier to use. Well here you go!

Ease of Use for The Beginner,

Power For The Professional

With ICAP/4Windows you can sweep ANY circuit variable from the schematic and instantly view the results. Seamless schematic-simulator integration makes it easy to see the effects of design changes.

Unmatched SPICE Power

Interactive Native Mixed Mode SPICE 3F and XSPICE based simulator with unlimited circuit size

Simulate all types of designs: Power, ASIC, RF, Analog, Digital, Electro-Mechanica

Advanced Features: AHDL Modelling, Latest BSIM3 MOS model, Simulation Alarms, Scripting Language

State-of-the-Art Convergence Algorithms

Powerful Behavioural Modelling Enhancements

New.. Interface Your Simulation with Test Hardware

Bigger SPICE libraries than ANY other vendor

8000+ models with more model types than any other vendor! Special RF and Power Libraries!

Integration With OrCAD[®] Capture[™] or Protel[®] Schematic^{3™}

We are the first to bring you real integration with other schematic packages using OLE2 techniques. You can run IsSpice directly from other schematics and cross-probe the results. All simulation functions are available from dialogues and little or no typing is required.

Software That Meets Your Needs New Network Version (No Protection Key Required) **Unmatched Free Support**

No maintenance fees Windows, 95, NT, DOS, Macintosh, Power Mac

Upgrade path: ICAP/4Lite -> ICAP/4Lite Xtra -> ICAP/4Windows three complete design and simulation systems, with increasing functionality.

available) for

ault analysis & design Phone: 01223-516469 estability

(demo Web Site: http://www.softsim.com email: info@softsim.com

Technology Sources, 2 Signet Court, Swanns Road, CAMBRIDGE CB5 8LA trading as: Soft Fax: 01223-729916

CIRCLE NO. 113 ON REPLY CARD

Centurion will span between 70 and 80m.

The Centurion is one of several unpiloted aircraft being developed by an alliance between Nasa and several small aeronautical development companies and universities under the Erast program. The goal of the program is to develop aeronautical technologies that will lead to development of a new family of highflying remotely piloted aircraft for scientific missions.

Test results of the guarter scale model have made scientists optimistic about developing a pilotless solar aircraft that will fly at 30,000m.

Millimetre-sized machines could provide jet thrust

Could an array of hundreds of tiny jet turbines, each a fraction of a cm 5mm. In front of each hole would be a small pressure sensor. When a sensor wide, one day replace a single jet engine to power an aircraft? That is what researchers at Stanford University's Rapid Prototyping Laboratory hope, and is among the blue-sky possibilities suggested by a new approach to mechanical design called massively parallel mechanical systems.

Although replacing a jet engine is well beyond the current state of the art, the scientists propose demonstrating the value of this approach by building several simpler but still useful devices.

One such device is a system to keep aircraft wings from stalling, a condition that causes the wing to lose the upward force that keeps it in the air: another is a tactile interface for virtual reality and tele-operation systems.

The aircraft device would work by covering critical parts of a wing with thousands of tiny holes each about 1mm in diameter and separated by

detects the conditions that precede a stall, it instructs a tiny valve to open, allowing a jet of pressurised air to blow out through the hole behind it. If properly triggered, such jets could prevent a stall from developing.

The tactile interface for virtual reality systems would be next step on

from force feed-back mechanisms that are currently used and give teleoperators a better feel for what they are manipulating. The new device would be something like a flat pin cushion, consisting of a dense array of millimetre-square pins attached to actuators that would position and push them up and down with a controllable amount of force. The millimetre spacing between individual pins would make the interface feel almost like a solid surface when all the pins are positioned at the same level. Under computer control. however, the surface could be programmed to imitate the shape and

hardness of different surfaces.

The difficulty with such engineering is that it falls between normal manufacturing methods that can create objects a cm or larger, and micro-mechanical devices that measure a few microns made using semiconductor manufacturing techniques.

The Stanford team is currently developing methods to make large numbers of mesoscale-sized mechanical devices, by combining two different types of techniques miniaturising traditional manufacturing methods while scaling up techniques used in the semiconductor industry.

So far the researchers have fabricated an array of nine nickel wheels, each one 0.3mm thick and 5mm in diameter, mounted on nickel axles to demonstrate they can make entire mechanical devices in place, without any assembly. Similarly, they have made a four-bladed propeller, 5mm in diameter.

Physics sets engineering challenge

T wo of the World's largest

superconducting magnets, for use in an international particle physics experiment, are to be designed and built by a team under the guidance of a scientist from the UK. Elwyn Baynham, the project leader from the CLRC Rutherford Appleton Laboratory and one of the World's experts on superconducting magnets, is to lead a team of engineers and scientists to design, construct and test a pair of massive toroidal magnets. These magnets will form a key part of the end cap detectors of the Atlas experiment on the large Hadron collider (LHC) currently being constructed at the European particle accelerator laboratory at Cern in Geneva.

Over 30km of Rutherford cable will be used to form the coils of the magnet. The coils will operate at 4.5K - just above absolute zero – and the conductors will carry a current of 20,000A with zero power loss. The magnets will have a stored magnetic energy of over 400Mj - equivalent to the kinetic energy of an inter-city train at 125mile/h

The huge scale and complexity of the finished product means that it will not be possible to build a prototype of the end caps, so special modelling techniques involving finite element analysis and virtual reality simulations are being used to ensure that the design is feasible. When the design stage has been completed the components will be fabricated in industry to the defined specifications of the design team and finally assembled, integrated and commissioned into the detector at Cern.

When the Atlas detector has been completed it will be used by particle physicists worldwide to search for evidence of the Higgs Boson. The LHC is due to be switched on in July 2005.

The Balance Box (mic/line amplifier) - The Phantom Power Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient pretector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants GU30 7QW Information line 01428 751469 Fax 751223 E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/catalogue/

For the Busy Engineer

Use MExpress and you could wonder how you ever managed without it. Need to load some data and plot it as a stacked contour, surface plot, contour & image? No problem.

Great for data Visualisation and building Applications

Need to create an application to analyse and display sound files which you can distribute with your new hardware design? No problem. With over 250 built in functions covering numerical methods, signal processing, scientific & engineering style 2D/3D graphics you can build applications quickly & if you order the Developers Edition you can distribute your applications ROYALTY FREE! MExpress 1.1 Standard Edition (£99), Developers Edition (£299). Prices exclude P&P and VAT, the Developers Edition requires a C++ compiler (a wide range are supported).

*30 Day Money Back Guarantee *FREE Technical Support *FREE Upgrades for 12 months

Tell me more!

Name

Address

Tel/Fax

Quickroute Systems Ltd. Regent House Heaton Lane Stockport SK4 1BS U.K. Tel 0161 476 0202 Fax 0161 476 0505 www.quickroute.co.uk COSL199

CIRCLE NO. 116 ON REPLY CARD

Loudspeakers exposed

With all the remaining components of an audio chain being increasingly refined, John Watkinson argues that the loudspeaker has become the limiting factor in audio quality. Here, he looks at the problems and presents solutions.

ntil recently, virtually every component in the audio chain was capable of causing audible impairment. If high quality was the goal a degree of determination and plenty of time was needed to adjust equipment to a finely balanced point faster than it drifted. Because things were never good enough there was a consistent research effort and this has given tangible results.

In a typical modern audio system, a microphone feeds an a-to-d converter, connected to a digital recorder, driving a d-to-a converter, a power amplifier and a loudspeaker. At some point a mixing console may be found. The weakest link determines the overall quality.

Modern microphones have an extremely flat frequency response, and adequate dynamic range and linearity. Modern converters using noise shaping and oversampling with 18 and 20-bit resolution are outperforming our ears, provided some attention is given to clock jit-

If a digital audio recorder uses digital i/o, then provided it doesn't use compression, it doesn't have a sound quality. Numbers coming in are the same as numbers going out. High quality modern mixing consoles have reached a stage where they are virtually transparent. Power amplifiers have reached a state where further developments will be in the area of efficiency and the friendliness of the load presented to the ac supply.

Most of the quality loss in a modern sound reproduction system is due to the loudspeakers, which for some reason have not seen the development of other components. In my opinion loudspeakers are now causing a quality bottleneck. Such an area is ripe for research because for a given effort the rewards will be more significant in comparison with more mature technologies where the returns diminish as the ideal is approached.

I should stress that I am interested in precise sound reproduction rather than in hi-fi. There was a time when the two were synonymous, but nowadays in many respects hi-fi has become a religion in which beliefs are more important than truths and enthusiasm replaces knowledge. The temples of hi-fi are the phenomenally expensive hardware installations and the high priests are journalists who find pseudo-scientific reasons to make the believers feel comfortable with the vast sums they have spent.

The laws of physics involved in audio reproduction are established beyond any shadow of a doubt yet they are regularly called into question by hi-fi journalists whose ejaculations usually serve only to raise the noise floor for the genuine researcher.

It is impossible to make other than accidental or empirical progress without a clear picture of the processes involved and an understanding of the key criteria. To determine what part of one's knowledge base can be trusted it is necessary to remove from it all of the myths and pseudo science and to establish what is and is not the case. It is surprising how long this takes if one is to be impartial and scientific about every spurious theory.

"The laws of physics involved in audio reproduction are established beyond any shadow of a doubt yet they are regularly called into question"

Without a knowledge of psycho-acoustics it is impossible to assess the relative merits of differing approaches. The human hearing system is complex and highly sensitive in some areas, yet surprisingly casual in other areas. If this is understood, precision will be placed in areas of sensitivity, whilst shortcomings can be mitigated by placing them in other areas.

As audio systems are designed for human listeners, the criteria for audio quality can only be subjective. Audio systems form a window between the listener and the original sound. All that is necessary is to make that window larger than the sound passing through it in all respects. If human listeners are unable to detect an impairment, then the quality is sufficient and the window is big enough. Making it even bigger simply drives up the cost.

Listening tests are vital once all objective tests have been passed, but in order to be significant, such tests have to be properly con-

(c)

Fig. 1a) Sound approaches microphone from many directions due to ambience and reverberation. b) In anechoic conditions a single loudspeaker produces exactly the opposite of a). c) Loudspeaker in reverberant conditions simulates situation of a) at listener's ears.

ducted to avoid bias. I can listen to a loudspeaker as well as anyone, but unlike many, I do not consider myself competent to do so alone. This is simply because the spread of human hearing performance is so great that I cannot be truly representative. I will naturally listen to my own designs more favourably than those of others.

In a significant listening test, neither the operator nor the subjects must be aware of the reason for the tests, and the design of the tests must be approved by a statistician who can determine how likely it is that identical results could have been obtained by chance. I can only listen to a loudspeaker of my own design to ensure that it has no obvious warts, but to compare it meaningfully with another speaker of similar performance is beyond any individual.

The ideal

An ideal speaker might be one which was a sphere whose volume changed according to the input waveform. Such a device would

behave as an ideal point source, having frequency independent dispersion and a frequency response like a ruler. What is more it would be perfectly linear and would not exhibit energy storage, which would also make it perfectly phase linear.

Some of these consequences bear explanation. A pulsating sphere acts as a point source because wherever one stands, the part of the surface nearest is moving directly towards and away from one. All points on the surface move in the same phase, therefore there can be no vibrations propagating across the surface of the sphere. Consequently there is no requirement to suppress such vibrations. Radiation cannot occur after the input ceases. If the output stops when the input stops, the system is phase linear.

A good microphone produces an accurate version of sounds approaching it from many directions. Even if a loudspeaker reproduced the microphone waveform exactly, the resulting sound is leaving in many directions. Spatially, a single loudspeaker is producing sound travelling in exactly the opposite direction to the original. Consequently reproduction of the original sound field is simply not possible

Figure 1 shows the problem. Sound approaching a microphone at a) does so from a multiplicity of sources whereas sound leaving a single loudspeaker superimposes all of these sources into one. Consequently a monophonic or single loudspeaker is doomed to condense every sound source and its reverberation to a single point.

When listening in anechoic conditions b) this is exactly what happens. While the waveform might be reproduced with great precision, the spatial characteristics of such a sound are quite wrong.

However, when listening in a room having a degree of reverberation, a better result is achieved irrespective of the reverberation content of the signal. The reverberation in the mono signal has only time delay and no spatial characteristics whatsoever whereas the reverberation in the listening room has true spatial characteristics. The human listener is accustomed to ambient sound approaching from all directions in real life and when this does not happen in a reproduction system the result is unsatisfactory.

Thus in all real listening environments a considerable amount of reverberant sound is required in addition to the direct sound from the loudspeakers. Figure 1c) shows that the reverberation of the listening room results in sound approaching the listener from all sides giving a closer approximation to the situation in a). Clearly better reverberation will be obtained when the loudspeaker is out in clear space in the room. So-called bookcase loud-

AUDIO

speakers mounted on walls or shelves can never give good results.

Better spatial accuracy requires more channels and more loudspeakers. While the ideal requires an infinite number of loudspeakers, with care, as few as two speakers can give a convincing spatial illusion. The improvement in spatial performance using two speakers is enormous. Tests have shown that most people prefer stereo with poor bandwidth and significant distortion to pristine mono.

Two speakers can only give spatial accuracy for sound sources located between them. Reverberation in the listening room then provides ambient sound from all remaining directions. Clearly the resultant reverberant sound field can never be a replica of that at the microphone, but a plausible substitute is essential for realism and its absence results in an unsatisfactory result. This renders the traditional use of heavily damped rooms for monitoring suspect.

If realism is to be achieved, the polar diagram of the loudspeaker and its stability with frequency are extremely important. A common shortcoming with most drive units is that output becomes more directional with increasing frequency. Fig. 2a) shows that although the frequency response on-axis may be ruler flat giving a good quality direct sound, the frequency response off-axis may be quite badly impaired as at b). In the case of a multiple drive unit speaker, if the crossover frequency is too high, the low-frequency unit will have started beaming before it crosses over to the tweeter which widens the directivity again.

The figure shows that the off-axis response is then highly irregular. As the off-axis output excites the essential reverberant field the tonal balance of the reverberation will not match that of the direct sound. The skilled listener

"If realism is to be achieved, the polar diagram of the loudspeaker and its stability with frequency are extremely important."

can determine the crossover frequency, which by definition ought not to be possible in a good loudspeaker.

The resultant conflict between on- and offaxis tonality may only be perceived subconsciously and cause 'listening fatigue', where the initial impression of the loudspeaker is quite good but after a while one starts looking for excuses to stop listening.

The hallmark of a good loudspeaker installation is that one can listen to it indefinitely. Unfortunately such instances are rare. More often loudspeakers are used having such poor off-axis frequency response that the only remedy is to make the room highly absorbent so that the off-axis sound never reaches the listener. This has led to the well-established myth that reflections are bad and that extensive treatment to make a room dead is necessary for good monitoring. This approach has no psychoacoustic basis and has simply evolved as a practical way of using loudspeakers having poor directivity.

The problem is compounded by the fact that an absorbent room requires more sound power to obtain a given sound-pressure level. Consequently heavily treated rooms require high-power loudspeakers which have high dis-

A conventional box shaped loudspeaker with drive units in the front will suffer extensive shading of the radiation to the rear and thus will create a coloured reverberant field. Clearly a much more effective way of exciting reverberation with an accurate tonal balance is for the loudspeaker to emit sound to the rear as well as to the front. This is the advantage of the dipole loudspeaker which has a figure-ofeight polar diagram.

Loudspeakers have also been seen with additional drive units facing upwards in order to improve the balance between direct and reverberant sound. These techniques work well but obviously in a dead room are a waste of time as the additional radiation will never reach the listener. The fault is in the room, not the speaker.

Air is not very dense. As a result it is not possible to influence very much mass at once. Thus it is difficult to radiate energy into air with a mechanical device because the mass of the moving part of that device will eclipse the mass of air influenced. In engineering terms a diaphragm has a high mechanical impedance but the air has a low impedance, resulting in a mismatch, meaning that loudspeakers will always be inefficient. With the almost limitless power from modern amplifiers this is a minor problem.

As an alternative the horn loudspeaker is a kind of acoustic transformer which raises the impedance of the air adjacent to the diaphragm in order to improve the power transfer. Unfortunately, acoustic transformers are difficult to make linear and the resulting distortion is difficult to eliminate.

A great problem with loudspeaker design is the span of wavelengths involved. These range

from a few millimetres at the highest audible frequency to several metres at the lowest. There cannot be many disciplines in which mechanical motion is required over such an octave range.

Wave theory is dominated by the relative sizes of the source and the wavelength. Thus in a loudspeaker at the highest frequencies the transducer is much larger than the wavelength, whereas at the lowest frequencies it is much smaller. As a practical matter it is necessary to use more than one drive unit with a crossover network.

Reproducing low frequencies

In order to allow a diaphragm to generate low frequencies, it must be provided with an enclosure which prevents an acoustic short circuit. Provided the wavelength is larger than the enclosure, the resulting radiation will be omnidirectional and the result will be exactly the same as if a pulsating sphere had been used.

The lowest frequency to be reproduced is debatable and depends upon the material to be reproduced. If we want to be able to reproduce all musical instruments, we have to include the organ. Organ pedal notes don't start to be realistic unless a response is maintained to around 20Hz. At this frequency you do some of your listening with your chest - even at moderate sound-pressure levels. Low-frequency roll-off is unavoidable, but it must be monotonic and preferably have a slope of no more than 12dB/octave.

Most loudspeakers cannot faithfully reproduce the input waveform at low frequencies, but unless this is done, a loudspeaker is simply not accurate enough. An obvious example is the transient when an organ pipe begins to speak or stops speaking. The sound is distinctive and a good loudspeaker should reproduce it - but most don't. Further examples include marimbas and other bass percussion instruments like hollow logs.

Many loudspeakers employ resonances to obtain an extended frequency response in the mistaken belief that only steady state frequency response is important, Fig. 3. By definition, resonance works by storing energy. This energy is taken from the leading edge of a bass transient and added to the trailing edge. Again by definition a tuned loudspeaker cannot be phase linear. Consequently transient edges are blurred and unrealistic and arrive out of time with the treble energy. The correct term is linear distortion.

Therefore reflex loading, the auxiliary bass radiator and its more recent relative the bandpass enclosure, are unacceptable on fidelity grounds. These all achieve a lower frequency steady state response by destroying the waveform of bass transients. They have a steeper roll-off below resonance which is unnatural. The transmission line loudspeaker fails because there is an assumption that a phase shift in the line is as good as an inversion. Again this is unfortunately only true on continuous sinewave.

Reflex, auxiliary bass radiator, transmission line and bandpass enclosures are all traditional approaches which were the best that could be done with the simple electronics of the day. The active loudspeaker, which can easily be made phase linear, renders all of these approaches obsolete except for economy or to get high sound-pressure with old fashioned magnet technology. The only published techniques which do not violate the ideal are the sealed enclosure and its relative the isobaric. Untuned loudspeakers which do not store energy are essential for high fidelity because they can be made phase linear.

With a traditional approach to the sealed enclosure, the optimal reproduction of low frequencies requires a physically large loudspeaker. The mass of the diaphragm and the stiffness of the air in the enclosure behind it form a resonant system, as Fig. 4 shows. Below resonance there is little output and so the lower the resonant frequency the better.

The smaller the cabinet, the higher the stiffness of the air within, and the higher the fundamental resonance. Also the internal pressures generated rise with small cabinets, resulting in a large force on the diaphragm and an increased likelihood of breakup. This is where the isobaric configuration scores by isolating the outer driver from the enclosure pressure.

"While it is well known in engineering that pressure containment vessels should be cylindrical or spherical, loudspeaker designers cling to the rectangular box."

Speaker Fig. 2a) Ideal on axis response is

dB,

dB,

off axis response of most

achieved by many loudspeakers. b)

loudspeakers is irregular causing

colouration of reverberant field.

(a)

(b)

On - axis

Off - axis

Frequency

Frequency

P

P

Fig. 4a) Sealed enclosure forms a non-linear air spring in parallel with driver compliance. This stiffens the compliance and raises the fundamental resonance. b) isobaric or compound woofer has tandem diaphragms.

The resonant frequency can be lowered by raising the diaphragm mass, but that reduces the efficiency too, causing a coil dissipation problem. The force on the diaphragm can be reduced by using a smaller diameter, but then the throw has to be increased, increasing distortion. Thus if a good low-frequency response and low distortion is required at reasonable sound-pressure levels, the traditional loudspeaker has to be large.

In strictly theoretical terms, a low-frequency loudspeaker only needs to be able to displace a sufficient volume of air to achieve the required sound-pressure level, and this has nothing to do with its enclosure volume. Thus in principle at least, a small low-frequency loudspeaker is possible, but this will not be based on the conventional approach and it will not be passive. With active techniques the motion of the diaphragm and its apparent resonant frequency are under the control of the amplifier designer.

Clearly a loudspeaker cabinet must be totally inert. As the interior of the cabinet is driven by a secondhand signal from the back of the drive units, there is no way that this can be allowed to radiate. As the area of the enclosure walls eclipses the area of the diaphragm, even small enclosure vibrations can have a serious effect on clarity.

While it is well known in engineering that pressure containment vessels should be cylindrical or spherical, loudspeaker designers cling to the rectangular box. The flat panels of a box are easy for carpenters to assemble, and eliminate the need for spending money on industrial design. But from any acoustic standpoint, they are inadequate. Has anyone ever seen a square submarine or a rectangular aerosol can?

Reproduction at higher frequencies

When a plane diaphragm transducer is much larger than the wavelength, it tends to produce plane waves which are directional. In the case of an unenclosed diaphragm, a bipolar response is achieved in which the front and rear radiations are identical but anti-phase.

Directionality rises with frequency and the result is that the highest frequencies can only be discerned directly on axis. As has been seen, this result is unacceptable and in a well engineered tweeter steps must be taken to avoid it.

At high frequencies, the cone acts as a mechanical transmission line for vibrations which start at the coil former and work out-

wards. It is possible to introduce frequency dependent loss into the transmission line so that the higher the frequency the smaller is the area of the cone which radiates. Done correctly this yields a constant dispersion drive unit which simulates a sector of our ideal pulsating sphere.

The main concern is that there are vibrations travelling out across the surface and there must be a cone surround which acts as a matched terminator so that there can be no reflections

If you consider the popular dome driver, to the casual observer it looks like a section of a

"The passive loudspeaker has so many flaws that it is difficult to know where to begin."

sphere and should therefore be close to the ideal. Unfortunately, as has been pointed out many times in the literature, this is a myth. The dome moves on a single axis, and this is not the same thing at all as a pulsating sphere. Domes cannot be rigid, and so the vibrations from the coil must propagate inwards from the circumference to the apex. This causes two problems as shown in Fig. 5.

First, when the vibrations arrive at the apex, there is nothing to terminate them, so they must continue on until they arrive back at the coil. Consequently rigid domes must suffer from energy storage and hangover.

The alternative is to use a 'soft dome' which is lossy. In this approach, losses in the dome mean that the amplitude of vibration falls towards the centre. This is the exact opposite

of what is wanted for good dispersion. Consequently domes can only work over a narrow frequency range and need to cross over to smaller units at frequencies where a transparent crossover cannot be achieved. As I showed earlier, this causes the directivity index to resemble a dog's hind leg. While the on-axis response may be flat at the sweet spot, the reverberant field will be extremely nonuniform

From the theoretical standpoint, the dome has no acoustic merit. The practical advantage of the dome is that it can be fitted with an immense coil which can dissipate a lot of power without cremating itself.

In the electrostatic loudspeaker, the diaphragm does not need to be rigid because it is driven uniformly. As a result it can be lighter with corresponding benefits in efficiency, phase linearity, transient response and freedom from intermodulation distortion.

The electrostatic diaphragm is supported between two driving plates and the spacing is a compromise between the amplitude of motion possible and the drive voltage needed. They are invariably used in bipolar mode without a cabinet. While this is advantageous for exciting the reverberant field, it means that they suffer an acoustic low-frequency roll-off and are best used in conjunction with a linear phase woofer.

A large, flat, uniformly moving diaphragm beams dreadfully at high frequencies. The elegant solution of the Quad 63 was to make the mechanically flat diaphragm behave like a sphere by splitting the electrode structure into concentric rings fed by lossy delay lines, as shown in Fig. 6. The outward propagation of vibrations across the diaphragm again allow a close simulation of a sector of the ideal pulsating sphere.

Again matched termination at the perimeter

prevents reflections. Unfortunately when the Quad was designed, it was simply not possible to produce a woofer of matching quality and a full range electrostatic design having restricted sound-pressure levels was inevitable. With modern active woofer technology these restrictions no longer apply.

With a phase array electrostatic transducer used from the low midrange upwards it is possible to get staggering sound-pressure levels because of the sheer volume velocity available, but without sacrificing the low distortion and near ideal dispersion. Moving coil designs simply cannot reach these low distortion figures.

Loudspeaker electronics

One approach to improving loudspeakers is to treat the amplification, crossover and transducer stages as part of a single system having an overall transfer function. When this is done, a great many new avenues open. The tradition of building general purpose amplifiers which are remotely sited from passive loudspeakers built by someone else has nothing to recommend it.

The passive loudspeaker has so many flaws that it is difficult to know where to begin. The low-frequency response of a passive speaker is determined by the mechanical parameters and not by the control system and will be inferior for a given enclosure size.

It is intuitively obvious that the two outputs from a crossover network should sum to produce the original signal. Unfortunately in a passive crossover this requirement simply cannot be met. Having heavy woofer currents and their distortion products flowing in the same wiring as the tweeter drive, as a passive speaker does, is asking for trouble. One engineering tenet which is seldom broken with impunity is to put the power source near the load.

The only accurate solution is to use one

crossover function performed at signal level prior to the amplifiers. Power amplifiers are so cheap today that there is little excuse for any other approach.

audibility is neatly sidestepped.

Dome tweeter has exactly the wrong

diffraction from tweeter

asymmetrical flux pattern for LF distortion

June 1997 ELECTRONICS WORLD

CIRCLE NO. 117 ON REPLY CARD

New Pico virtual instruments 15% reader discount

The new ADC-40 and -42 virtual instruments from Pico turn your pc into a 20kHz (15kHz for ADC-42) sampling digital oscilloscope - with non-volatile storage. As an exclusive introductory offer, Pico Technology in conjunction with Electronics World is making the single-channel ADC-40 and -42 available to readers at £51.31 and £73.92 excluding VAT and p+p. Normally, the ADC-40 is £59, while the ADC-42 is £85.

ADC-40/42 instrumentation

Used with the ADC-40/42, your computer becomes a 20/15kHz sampling single-channel:

- digital storage oscilloscope
- spectrum analyser
- voltmeter
- frequency meter

What is more, instrument functions can be displayed simultaneously.

With the ADC-40/42 running as an oscilloscope, you can monitor a waveform's shape, frequency, amplitude and dc offset with advanced triggering facilities. In addition, you have almost unlimited digital storage capability and infinite persistence for glitch capture.

This is a low-cost, low-frequency oscilloscope. But, using the pc as a control interface, its display, storage, printing and processing features outperform those of almost al benchtop oscilloscopes. You can even import captured waveforms into your documents.

Voltage of a waveform is displayed directly, unlike a conventional oscilloscope, where voltage has to be derived from graticule divisions. Chart-recorder mode makes viewing of slow waveforms easy.

All the storage and display features are available with the spectrum analyser function. These include pre and post triggering in 1% steps. Seven windows types are possible, together with signal averaging and all the trigger functions available in oscilloscpoe mode. And rulers are available for amplitude and frequency measurements.

In addition, you have a true rms voltmeter with decibel range, and a frequency meter capable of reading to 5kHz. Data-logging software is available for an extra £10 if purchased with an ADC40 or 42.

All instrument functions are easy to use and feature on-line help.

ADC-40/42 single channel oscilloscopes

- Low cost and easy to use
- No power supply required
- Ultra compact design
- Data logging software available · Write-to-disk on trigger function standard

The ADC-40 and ADC-42 are single-channel pc based virtual instruments. Simply plug the unit into the parallel port of your pc and run the software. Designed for analysing low-frequency signals, both units provide all the functionality of conventional scopes at a fraction of the price.

The ADC40 has 8-bit resolution and is suitable for a wide range of dc and ac measurements and analyses. Resolution of the ADC-42 is 12 bits, making it more suitable for applications where detection of small signal changes is needed.

Scope timebases Spectrum analysis Max sampling Voltage ranges Resolution

Channels I/P impedance Accuracy PC connection Power supply

500µs/div to 50s/div 100Hz to 10kHz 20ksample/s ±5V 8 bit for ADC40 12 bit for ADC42 1 BNC $1M\Omega$, dc coupled 1% D25 to PC parallel port No power supply required

Use this coupon to order your ADC40/42 (max 3 per coupon)

Please send me ADC-40(s) at the special offer price of £67.34 each or ADC-42(s) at £93.91. Note that both prices include VAT and recorded UK delivery. (UK P+P is £6 exc VAT).

Name

Company (if any)

Address

Phone number/fax

Total amount

Make cheques payable to Reed Business Information Group. Or, please debit my Master, Visa or Access card.

Card type (Access/Visa) Card No Expiry date

Please mail this coupon to Electronics World, together with payment. Alternatively fax credit card details with order on 0181 652 8111. You can also telephone your order on 0181 652 3614, but only Mondays, Tuesdays or on Friday mornings. Address orders and all correspondence relating to this order to Pico, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

CAREERS

CONNECT WITH THE UK'S NO 1 READ FOR ELECTRONICS PROFESSIONALS **ON THE INTERNET**

 Daily News Service this section is updated daily from news sources around the world. So

keep coming back to keep abreast of developments in the global electronics industry.

- Technology Updates
- Fully Searchable online database to Electronics Weekly's high quality editorial
- On-line Jobs service and careers advice - see the latest jobs on offer

TECHNOLOGY

 Instant Feedback your chance to speak to other engineers

ARCHIVE

Sponsored by:

Point your browser at http://www.electronicsweekly.co.uk/ and register now (it's free) adated Daily... STOP PRESS... Electronics Weekly Hyperactive

5 5 10 15 20 25 30 35 40 45 50

OHz

82Hz

STOP PRESS.

electromcsWI DELACTIVE

DAILY NEWS

TOOLKIT

INSIDE VIEW

NEWS

MEXPRESS Up to 44% discount

Announcing MExpress for Windows

Think of it as Basic for engineers and scientists.

MExpress has the interactive ease of use of Basic, but with the extensive and powerful 32bit functionality of a modern scientific & engineering development tool.

The package is essentially a means of helping scientists and engineers to visualise complex data by representing it in pictorial form.

It includes over 250 functions covering everything from solving simultaneous equations and signal processing, to advanced 3D plotting and creation of user interfaces.

Until 1 August, Quickroute Systems is offering MExpress exclusively to Electronics World readers at special prices of £79 fully inclusive for the Standard Edition and £199 for the Developers Edition –fully inclusive of VAT, packing and UK post. This represents discounts of 35% and 44% respectively. The exclusive rrp for MExpress Standard Edition is £99 while the

Developers Edition £299.

The Developers Edition requires a C++ compiler which can be Symantec® C++ 7.2, Microsoft® Visual C++ 2.0, or Borland® C++ 5.0.

Please contact Quickroute Systems at Regent House Heaton Lane Stockport SK4 IBS UK for further details. Tel 0161 476 0202 Fax 0161 476 0505 EMail info @guicksys.demon.co.uk WWW http://www.guickroute.co.uk

** For a free information pack, call Quickroute at the number above. **

Use this coupon to order MExpress

Please send me copies of MExpress 1.1 Standard edition at the fully inclusive price of £79 or copies of MExpress 1.1 Developers' edition at the fully inclusive price of £199.

Name

Company (if any)

Address

Phone number/fax

Total amount

Make cheques payable to Quickroute Systems Ltd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa/Switch/Visa Delta) Card No Expiry date Signature

Please mail this coupon to Quickroute Systems, together with payment. Alternatively fax credit card details with order on 0161 476 0505 or telephone on 0161 476 0202. Address orders and all correspondence relating to this order to Quickroute at Quickroute Systems Ltd, Regent House, Heaton Lane, Stockport SK4 1BS.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Quickroute for details

Plus:

- 30-day money back guarantee

MExpress – Features

Minimum system

3.1, '95 or NT.

Coprocessor not

essential.

ie Edit Co

MExpress can be used as a "super charged graphing calculator", by simply typing commands and expressions at a familiar prompt. Data can be loaded, processed, and plotted or visualised by calling on the powerful built-in functions. Once you are happy with basic commands, you can move on to create simple script

files. These are lists of commands - similar to batch files. You can also create functions and in turn complete applications with buttons, sliders, menus, multiple windows, etc. If you are using the Developers Edition of MExpress, the applications can be compiled into a Win32s executable which can be distributed - royalty free.

ELECTRONICS WORLD

+ WIRELESS WORLD

Electronics World+ Wireless world is applied electronic design. We'll show you how to use the latest silicon technology plus...

- **CAE** software
- New product reviews
- **Technology reports**
- **Detailed circuit diagrams**
- Innovations
- **Explanations of complex** technology
- Comment and much more in your issue.

solute R\$232 Optoelectron investigated Mathplus reviewed Transforms in C++ tax/da Power and Class-C Linsley-Hood ioise reduce

Applying the ZR78L05

So whether you are designing your own system or curious about your competitors Electronics World + Wireless World will help regulator you keep the leading edge.

SAVE UP TO 10%

Goulo Catoto acobe	2120.00
Hewlett Packard Scanjet	£95.00
Hewlett Packard 8407A Network Analyser with 8412A	£450.00
Racal Inst. 9915 UHF Freq. Meter 500 MHz	£90.00
Racal Inst. 9916 UHF Freq. Counter 500 MHz	£130.00
Leader LMV 181A AC Millivoltmeter	£130.00
Hewlett Packard 239A Oscillator	£125.00
Wavetek Model 185 Function Gen	£160.00
Farnell PSU 0-70VDC 0-5A/0-30 VDC 0-10A	£225.00
Marconi AM/FM Sig=Gen-2002B 88MHz	£150.00
AVO RM 215/L2 AC/DC Breakdown Tester	£250.00
Philips PM5171 AMP/LOG Converter	£100.00
PSI A100 Waveform Gen=	£200.00
Krohn-HITE 3343 Filter	£100.00
Racal 9902 Counter	£70.00
Hewlett Packard 415E SWR Meter	£75.00
Hewlett Packard 3551A Transmission Test Set	£160.00
Hewlett Packard 5004A Signature Analyser	£75.00
Philips PM 6611 Universal Counter 80 MHz	£90.00
Hewlett Packard 5300B Measuring System with 5312A HP-IB Ir 1.3 GHz	f225.00
Weir 761-1 Bench PSU	£117.00
Ortec Brookdeal Phase Sensitive Detector 9412 Ref Unit 9422 PLEASE RING FOR 7000 SERIES SCOPES + PLUG IN'S	£140.00
OVERSEAS ENG. WELCOME TELEPHONE ORDERS ACCEPTED C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5% VA	π

June 1997 ELECTRONICS WORLD

Money back Guarantee. Receive a full refund on your subscription within the first 90 days if you are not completely satisfied. Thereafter, we'll refund the unused portion of your subscription should you wish to cancel.

ction generator £239 + vat

LICI I BOZ

and nts

nd-

ter

are available including bench eters, counters, logic analysers, trum analysers and more.

All TTi products are designed and manufactured here in the U.K. and are backed by a level of quality and technical support that few competitors can match.

For details and prices of the full TTi range, contact our sales desk or circle the reply number.

Thurlby Thandar Instruments Limited Glebe Road, Huntingdon, Cambs. PE18 7DX Tel: 01480 412451, Fax: 450409, e-mail: sales@ttinst.co.uk

THURLBY THANDAR INSTRUMENTS

MEx	
Up to	
Announcing MExp	

Think of it as Basic for er

MExpress has the interactive ease of u powerful 32bit functionality of a mode development tool.

The package is essentially a means c visualise complex data by representing It includes over 250 functions coverir simultaneous equations and signal pro creation of user interfaces.

Until 1 August, Quickroute Systems is a Electronics World readers at special print Standard Edition and £199 for the Deve packing and UK post. This represents di The exclusive rrp for MExpress Stand Developers Edition £299.

The Developers Edition requires a C+ C++ 7.2, Microsoft® Visual C++ 2.0, Please contact Quickroute Systems a SK4 IBS UK for further details. Tel 016 EMail info @quicksys.demon.co.uk W

** For a free information pack, call (

Use this coupon to order ME

Please send me copies of MExp edition at the fully inclusive price of £' MExpress 1.1 Developers' edition at 1 price of £199.

Name

Company (if any)

Address

Phone number/fax

Total amount

Make cheques payable to Quickroute Systems Ltd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa/Switch/Visa Delta) Card No Expiry date Signature

Please mail this coupon to Quickroute Systems, together with payment. Alternatively fax credit card details with order on 0161 476 0505 or telephone on 0161 476 0202. Address orders and all correspondence relating to this order to Quickroute at Quickroute Systems Ltd, Regent House, Heaton Lane, Stockport SK4 1BS.

"Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Quickroute for details.

ameb Title	ameb Titleb Titleb Titleb Titleb Titleb to Electronb t	Country Country Internet Address Id + Wireless World for £ American Express (please delete appropriate card)
b Title	b Title	Country Country Internet Address Id + Wireless World for £ American Express (please delete appropriate card)
ompary ddress ost Code	ontpany	Country Country Internet Address Id + Wireless World for £ American Express (please delete appropriate card)
ost CodeCountryCountry	ost Code	Country
ost CodeFaxCountryInternet Address	ost Code	Country Internet Address Id + Wireless World for £ American Express (please delete appropriate card)
elephone	HREE WAYS TO PAY HREE WAYS TO PAY I enclose a cheque made payable to Electronics World 4 Please charge my Mastercard/Access/Visa/Diners Club/Am ith the sum of £	Internet Address Id + Wireless World for £ American Express (please delete appropriate card)
HREE WAYS TO PAY I enclose a cheque made payable to Electronics World + Wireless World for £ I enclose a cheque made payable to Electronics World + Wireless World for £ ith the sum of £ card number Expiry Date ished Date company VAT registration number Date Company VAT registration number Date Interesting promotions from other roups Date	HREE WAYS TO PAY I enclose a cheque made payable to Electronics World 4 Please charge my Mastercard/Access/Visa/Diners Club/Amvith the sum of £ Card number I	ld + Wireless World for £American Express (please delete appropriate card)
 □ I enclose a cheque made payable to Electronics World + Wireless World for £ □ Please charge my Mastercard/Access/Visa/Diners Club/American Express (please delete appropriate card) //ith the sum of £ and number □ 	□ I enclose a cheque made payable to Electronics World + □ Please charge my Mastercard/Access/Visa/Diners Club/Ami vith the sum of £ Card number _ _ _ _ _ _ _	ld + Wireless World for £ American Express (please delete appropriate card)
□ Please charge my Mastercard/Access/Visa/Diners Club/American Express (please delete appropriate card) ith the sum of £ ard number Expiry Date ard number Date Date Date Bease invoice me/my company. Purchase order number Date Company VAT registration number Delease tick here if you do not wish to receive direct marketing promotions from other companded	□ Please charge my Mastercard/Access/Visa/Diners Club/Am ith the sum of £: ard number	American Express (please delete appropriate card)
Card number Expiry Date Card number Expiry Date Igned Date Date Date Company VAT registration number Desce lick here if you do not wish to receive direct marketing promotions from other company	Card number	
ignedDateD		Expiry Date
 Please invoice me/my company. Purchase order number Please invoice me/my company VAT registration number Company VAT registration number Company VAT registration number 	igned	Date
Company VAT registration number	Please invoice me/my company. Purchase order number	Sr.
lasse tick here if you do not wish to receive direct marketing promotions from other compa	Company VAT registration number	
	lease allow 28 days for delivery of your first issue.	Please tick here if you do not wish to receive direct marketing promotions from

MExpress can be used as a "super charged graphing calculator", by simply typing commands and expressions at a familiar prompt. Data can be loaded, processed, and plotted or visualised by calling on the powerful built-in functions. Once you are happy with basic commands, you can move on to create simple script commands – similar to batch files. You can also create functions and in turn complete applications with buttons, sliders, menus, multiple windows, etc. If you are using the Developers Edition of MExpress, the applications can be compiled into a Win32s executable which can be distributed – royalty free.

OVERSEAS ENQ. WELCOME TELEPHONE ORDERS ACCEPTED C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5% VAT

CIRCLE NO. 120 ON REPLY CARD

June 1997 ELECTRONICS WORLD

measurably better value

20MHz function generator TG120 - £239 + vat

1307 1802

1.3GHz handheld counter PFM1300 £99 + vat

The TTi range of test and measurement instruments offers unrivalled value for money.

More than 60 products are available including bench power supplies, multimeters, counters, logic analysers, signal generators, spectrum analysers and more.

All TTi products are designed and manufactured here in the U.K. and are backed by a level of quality and technical support that few competitors can match.

For details and prices of the full TTi range, contact our sales desk or circle the reply number.

Thurlby Thandar Instruments Limited Glebe Road, Huntingdon, Cambs. PE18 7DX Tel: 01480 412451, Fax: 450409, e-mail: sales@ttinst.co.uk

THURLBY THANDAR INSTRUMENTS

ight emitting diodes have improved enormously, in both efficiency and

look at

brightness, over the years. I recall obtaining a sample of one of the first leds - red, of course - to become available, around 1970. This Texas Instruments used as turn indicators or flashers. device came in a single lead can, with glass window, smaller than TO18, the can itself being the other lead.

It was a great novelty to see a wee red light coming out of a solid. But as a replacement for a conventional panel indicator lamp, it was far too dim.

Since then, TI has continued to be a major force in opto products, several of these having been featured in articles in this magazine.^{1,2,3} But many other manufacturers are active in the field, which covers not only leds, photodiodes and phototransistors, but optocouplers, laser diodes, fibre-optic data products and other devices. Light-emitting diodes in particular have seen major advances recently. Being fortunate enough to obtain samples of a number of the latest types, I was interested in finding out just what they will do, and exploring ways of applying them.

Applications a-plenty

Light-emitting diodes are available covering the whole spectrum, from infra red to blue, and have a variety of uses. Infra-red types are used - commonly in conjunction with a photodiode fitted with a filter blocking visible light - in tv remote controls, and in infra-red beam intruder detectors, etc.

High-intensity red leds are now commonly employed as cycle rear lights, in place of small incandescent filament lamps. They are also suitable as rear lights for vehicles. Amber high-intensity leds are

Blue leds were for a long time unavailable. When they did appear they were much less bright than devices of other colours. But now, really bright blue leds are in production. A typical application is as one of the primary colours in large colour advertising displays. A good example is the Panasonic LNG992CF9 blue led in a T1³/₄ package. Surface-mount types are also available. It provides a typical brightness of 1400mcd over a ±7.5° angle, at a modest forward current of 20mA.

While most leds produce incoherent light, covering a range of wavelengths around the predominant frequency, special types operate as lasers, producing essentially monochromatic light. The result is a beam with very low dispersion. Uses include laser pointers as aids to visual presentations, and as read and write sources in optical disk products.

Panasonic produces laser diodes, but these are not at present marketed in the UK. They are intended for use in consumer products and hence available only in production quantities. Alas, there seems to be no manufacturer of cd players in this country.

Measurements are a must

In any branch of engineering - or science in general - little if any progress can be made without suitable measuring instruments. For my experiments with opto, I needed a light meter with the widest bandwidth possible. But high sensitivity was equally desirable. These two parameters result in an inevitable trade-off.

In the event, a medium-area silicon photocell was chosen. It was operated with zero reverse bias to achieve a low dark current and good noise figure, at the expense of sensitivity.

The final circuit, Fig. 1, offers a wide range of sensitivities, sensitivity on range 1 being a hundred thousand times that on range 6. The photocell used was an 'unfiltered' example of the SMP600G-EJ, i.e. one fitted with a clear window.⁴ This is a silicon diode with an area of 4 by 4mm overall, an effective active area of 14.74mm² and a capacitance at zero volts reverse bias of 190pF. A similar alternative is RS 194-076.

Responsivity as a function of wavelength is as shown by the unfiltered curve in Fig. 2. The diode connects to the virtual earth of an op-amp. This op-amp is used as a transimpedance amplifier; that is to say, the photodiode output current is balanced by the current through the feedback resistor, giving a volts-out per microamp-in determined by the value of $R_{\rm f}$.

The op-amp selected might seem an unusual choice, but it offers very wideband operation. It has a very low value of input bias current of 2pA typical, although at $20nV/\sqrt{Hz}$, its input noise is not as low as some other op-amps. Especially bearing in mind that the noise is specified at 1MHz; the 1/f voltage noise corner frequency and the current noise are not specified on the data

The TSH31 has a slew rate of 300V/us and a gain bandwidth product of 280MHz. In addition, it has a modest gain of typically 800 under open-loop conditions. This means that for the higher values of feedback resistor in Fig. 1, all of the loop gain is safely rolled off by the CR consisting of R_f and the capacitance of the diode, before the loop phase shift reaches 180°.

Even on range 6, where R_f is 100 Ω , the circuit is stable - at least with the diode connected. With it removed, the circuit oscillated gently at 160MHz, so there might be problems if one elected to use this op-amp with a small area diode, having a much lower capacitance. On the other hand, where sensitivity to extremely low light levels is needed - the proverbial black cat in a cellar - the value of $R_{\rm f}$ can be raised to 100M Ω , 1000M Ω or whatever, as desired. But note that using a tee attenuator in the feedback path, to simulate the effect of a very high resistance with more modest values, will incur a severe noise penalty. It does this by raising the 'noise gain' of the circuit. Raising R_f provides more gain with no penalty of increased noise.

Careful construction is needed, with short leads around the op-amp and especially for the decoupling components. But for possible fur-

ILLISTRATION JAMEL AKIB

around.

With the aid of his new light

meter design, lan Hickman

has been investigating the

properties of some of the

more recent opto devices

Relative

Responsivity

OPTOELECTRONICS

ther experimentation with different photodiodes, the diode was connected via a 180° five way DIN plug and socket. The board carrying the op-amp circuitry was mounted as close as possible to S_1 and the DIN socket.

The photodiode was mounted in the backshell of the DIN plug which, being of the better variety with a retaining latch, had a shell of solid metal construction. I removed the rubber cable support sleeve, and reamed the hole out to accept the metal can (a two-lead, halfheight TO39 style) of the photodiode.

One lead is connected to the diode cathode and also to the can, so naturally this lead was earthed. When the diode is illuminated, the anode tries to go positive, and thus sources current which is sunk by the short circuit provided by the op-amp virtual earth. Thus, due to the inverting configuration, the output signal is negative-going.

A small mains transformer with a single 7.5V secondary winding was used to power the instrument, the op-amp being supplied via 78L05 and 79L05 ±5V regulators. In addition to providing a sample of the op-amp output voltage for monitoring on a oscilloscope, a 1mA full-scale meter was provided. This reads the average value of the photodiode output at frequencies where the inertia of the movement provides sufficient smoothing - i.e. from a few hertz upwards.

Prototype testing having been satisfactory, I constructed the final version in a small sloping panel instrument case, RS style 508-201. The

OPTOELECTRONICS

DIN socket was mounted at the centre back, S_1 top rear, the meter on the sloping panel and the mains transformer as far forward as possible.

Provision was made for fitting a screen between the transformer plus power supplies

Fig. 3. Variation of light output from a 'white' fluorescent lamp. Photodiode at 50cm from the tube, lightmeter set to range 3. Oscilloscope settings 5ms/div. horizontal, 0.2V/div. vertical, 0V at centre line.

Fig. 4. Variation of light output from an uncoated fluorescent lamp. Photodiode at 30cm from the tube, lightmeter set to range 3. Lower trace: light output as measured by circuit of Fig. 1, 5ms/div. horizontal, 0.2V/div. vertical, 0V at centre line. Upper trace: waveform of the voltage applied across the tube, via capacitive pick-up, 5ms/div. horizontal, 2V/div. vertical, 0V at two divisions above centreline.

Fig. 5. Circuit diagram of a pocket torch using a 3000mcd red led.

board at the front, and the op-amp circuitry at the rear, but in the event this proved unnecessary. Even on the most sensitive range there was no visible hum pickup amongst the general background noise, which amounted to some 20mV peak to peak on range 1, the most sensitive range.

Measures leds, but what-else?

Before measuring any leds, I used the instrument to check two other sources of light, one of them the fluorescent light over my bench.

I believe that high-frequency ballasts are more efficient than conventional ballast chokes because the gas plasma does not have a chance to recombine between successive pulses of current in a high-frequency choke.

In a fluorescent fitting with a conventional ballast inductor, part of the energy in the 100Hz current pulses is spent re-establishing the plasma on each cycle. But recombination is not entirely complete between pulses; if it were, then the starter would need to produce a high-voltage kick every half cycle.

It was interesting to see the actual variation of light output over a mains cycle, shown in Fig. 3. This waveform was recorded on range 3 of the lightmeter, with the photodiode head at 50cm from the tube, a Thorn 2ft 40W 'white 3500' type - presumably with a colour temperature of 3500°. Given the 5ms/division timebase setting, the intensity variations are seen to be, as expected, at 100/s.

Characteristics of a silicon photodiode, used in voltage, i.e. open-circuit, mode are non linear and independent of the diode area. But in current, or short-circuit, mode, the sensitivity is proportional to the effective area of the diode, and extremely linear versus incident light intensity. It remains linear over eight or more orders of magnitude, from a lower limit set by the noise-equivalent power upwards.

The zero current line in Fig. 3, corresponding to complete darkness, is indicated by the trace at one division above the centre line. So Fig. 3 shows that between peaks at 4.25 divisions below the zero line, the light output falls to just under 60% at 2.5 divisions below.

There certainly seems to be evidence of a sudden increase of light just after the start of each half cycle of voltage, following the dip. And of course, being ac, the tube current must go through zero twice every cycle.

How brightly the plasma glows at that instant is a moot point, since the light output is mainly due to the tube phosphors of assort-- +1.5VA ed colours, to give a whitish light. If the phosphors used have different afterglow times, there will be variations in 'colour temperature', as well as light output, over the course of each half cycle - just to make things even more complicated.

So I next looked at the radiation from a fluorescent tube without any phosphor, which therefore produced a bluish light. Being entirely without any safety filter, it also produced both soft and hard ultraviolet radiation. It was a 12in tube type G8T5, used in an electronic ballast powered from 12V dc. This started life as a camping light, but the original

tube was removed and the ultraviolet tube fitted when it was converted into a homemade eprom eraser.

The unit was fitted into a long box, the front being closed by a removable, long, L shaped eprom carrier. This was to avoid external radiation when in use, as hard ultraviolet light is bad for the eyes.

With the carrier removed and the photodiode at a distance of 30cm from the tube, the light output measured on range 3 is indicated by the lower trace in Fig. 4. The 30cm separation was more than sufficient to ensure that there was no capacitive coupling between the high voltage waveform applied to the tube, and the photodiode element via the window. This is an important precaution, because the photodiode was not fitted with a mesh screen, available on other models.

The upper trace shows the waveform of the voltage applied across the tube. As measuring this voltage directly was inconvenient, it was recorded simply by placing the tip of an oscilloscope probe close to the end of the tube. The waveform at the other end was identical, but of course, the other way up.

The zero-voltage reference for the lower waveform is the graticule centre-line. It is clear that the light intensity closely follows the modulus of the voltage waveform, with just a little rounding. This rounding is not due to any limitations of the frequency response of the lightmeter. Presumably this means that the degree of ionisation in the plasma does not vary appreciably over the course of each cycle.

LEDs across the spectrum

It is clear from Fig. 4 that the electronic ballast ran at a frequency of about 20kHz - not so very different from a small pocket torch I made a few years back, when the first really bright leds appeared. It used a 3000mcd red led, powered from a single cell.

The circuit is as shown in Fig. 5. My records show that the circuit was built and tested as long ago as the end of 1990. It was constructed in one of those small transparent boxes used by semiconductor manufacturers to send out samples - very useful for all sorts of purposes.

Typical forward voltage of an led is between 1.5V and 3V, so some kind of inverter is necessary to run it from a single 1.5V cell. Figure 5 uses a blocking oscillator: the resistor provides base current to turn on the transistor and positive feedback causes it to bottom hard.

When the collector current reaches a value the base current can no longer support, the collector voltage starts to rise, and positive feedback causes the transistor to cut off abruptly. The collector voltage flies up above the supply rail, being clamped by the forward voltage of the led.

Energy stored in the inductor gives a pulse of current through the led, which was monitored by temporarily inserting a 1Ω resistor in its cathode ground return. The current peaked at 150mA and had fallen to a third or less of this value before the transistor turns on again.

measured using range 4 of the light meter, at a range of 1cm. 500mV/div. vertical, 0V reference line at one division above centreline, 10µs/div. horizontal.

Fig. 7. Circuit of a pocket torch using an HPWT-DL00 amber led, designed to run from a single 1.2V NiCd cell.

The transformer consisted of a twelve turn collector winding of 0.34mm enamelled copper wire and a twelve-turn feedback winding of 40SWG enamelled copper, on an FX2754 two-hole balun core, which has an AL of 3500nH/turns squared.

You would not normally expect a 1:1 ratio for a blocking oscillator transformer, but special considerations prevail when designing for such a low supply voltage. Light output is shown in Fig. 6, measured using range 4 of

June 1997 ELECTRONICS WORLD

the light meter, at a range of 1cm.

Operating frequency - given the 10µs/division timebase setting - can be seen to be a shade under 30kHz. Although of course of a totally different colour, the red led torch seemed about as bright as one using a 1.2V 0.25A lens-end bulb, while drawing, by contrast, only 50mA. The circuit worked well also with the Panasonic blue led mentioned earlier. I recently obtained some samples of very bright leds from Hewlett Packard Components Group, exemplifying the latest technology. The HLMP-D/Gxxx Sunpower series are T-1 ³/₄ (5mm) precision optical AlInGaP lamps in a choice of red, shades of orange, and amber.

These lamps are designed for traffic management, outdoor advertising and automotive applications, and provide a typical on axis brightness of 9300mcd. The HPWx-xx00 Super Flux leds are designed for car exterior lights, large-area displays and moving message panels, and backlighting. An HLMP-DL08, with its half power viewing angle of ±4°, was compared with an HPWT-DL00 with a half power viewing angle of ±20°. At a spacing from the photodiode of 1cm on range 4, with 30mA in each diode, they gave similar readings, but at greater ranges, the reading from the HLMP-DL08 exceeded that from the HPWT-DL00, on account of its narrower beam. However, the total light output from the HPWT-DL00 is greater, so it was chosen for an updated version of the led pocket torch of

Fig. 5.

And brighter still...

The resulting circuit was as shown in Fig. 7, again using an FX2754 core. Due to its broad beam, the HPWT-DL00 produced a less bright spot on the opposite wall of the room than a two-cell torch with a 2.5V 300mA bulb. But this is only because the latter had the benefit of an extremely effective reflector, giving a very small spot size.

With the aid of a small deep curve 'bulls eye' lens from an old torch of the sort that used a No 8 battery, the torch of Fig. 7 more than held its own. It drew only 150 mA from

OPTOELECTRONICS

Fig. 8. Performance of the circuit of Fig. 7: a) collector waveform (upper trace), 2V/div. vertical, 0V line at one division above centreline, 10µs/div horizontal. b) base waveform (lower trace), 2V/div. vertical, 0V line at two divisions below centreline, 10µs/div. horizontal.

Fig. 9. Performance of the circuit of Fig. 7: a) light meter output (upper trace), 1V/div. vertical, 0V line at three divisions above centreline, 10µs/div. horizontal. b) diode current waveform monitored across a 0.18 resistor, lower trace), 50mV/div. vertical, 0V line at three divisions below centreline, 10µs/div horizontal.

from a single cell. This makes it about four times as efficient as the torch bulb, with a colour rendering that is not so very different. It is certainly much more acceptable that the red led torch.

Figure 8 shows the performance of Fig. 7. The upper trace shows the collector voltage waveform at 2V/div. vertical, the 0V line being at one division above the centreline, and 10us/div horizontal. On the lower trace is the base waveform at 2V/division vertical, 0V line at two divisions below centreline, 10µs/div horizontal, the operating frequency being about 50kHz.

Figure 9 shows the output of the light meter on range 4 at 1V/div. vertical, 0V line at three divisions above centreline, 10us/div. horizontal. It is clear that the light pulse has almost completely extinguished by the time that the transistor turns on again to store more energy in the transformer primary. This is also seen in the diode current waveform, monitored across a 0.18Ω resistor. The lower trace is at 50mV/div, vertical, 0V line at three divisions below centreline and 10µs/div. horizontal.

Fig. 11. Lightmeter output at a range of 2cm from the four diodes, on range 5. 1V/div. vertical, 0V reference at centre line, 10µs/div horizontal.

Fig. 12. Light output of the circuit of Fig. 5, measured using range 2 of the light meter, at an increased range. 500mV/div. vertical, 0V reference line at one division above centreline, 10µs/div. horizontal.

Peak diode current is just on 400mA. Although peak current for the HPWT-DL00 is not quoted on the data sheet, the average current is safely within the 70mA maximum allowable at 25°C.

The circuit again used a BFY50 transistor. It also worked with a BC108, although that device actually needed a lower value of base resistor. This was despite its small signal $h_{\rm FE}$ of 500, against the 130 of the BFY50 - which only goes shows that in a switching circuit, a switching transistor beats one designed for linear applications.

Very bright – but invisible

Figure 10 shows the circuit diagram of a little instrument I made up recently for a specific purpose, of which more later. It uses four Siemens infra-red leds, type SFH487.

The unit offers a choice between constant and pulsed illumination. The three-inverter oscillator runs at about 450Hz, and its output is differentiated by C_4 and R_4 . This 180µs time constant, allowing for the effect of R_3 and the internal protection diodes of the inverter input at pin 13 of the CD4069, results in a positive-going pulse of about 100µs duration at pin 8.

Having a string of three inverters speeds up the trailing positive edge of the pulse at pin 13. But with three inverters on their own, a glitch on the trailing edge of the pulse is inevitable, due to internal coupling between the six inverters in the package. So C_6 is added to provide a little positive feedback to make the trailing edge of the pulse snap off cleanly.

Figure 11 shows the output of the lightmeter when illuminated by the diodes, at a range of 2cm on range 5. Despite the presence of D_3 , there is still some 100Hz ripple on the supply line. This results in some 100Hz modulation of the the pulse amplitude, and also of the pulse repetition frequency, or prf, both visible in Fig. 11.

To show this, I used a Polaroid photograph of the display on a real time analogue oscilloscope. My simple digital storage oscilloscope stores only a single trace per channel at a time: its facilities do not run to a variable persistence mode such as is found on the more expensive models.

Fortunately, for the intended purpose, the 100Hz modulation was unimportant. The predominant wavelength of the infra-red radiation from the diodes is 880nm, this being in the range favoured for physiotherapy purposes. Incidentally, although the spectral bandwidth is quoted as 80nm, the tail of the spectral distribution evidently extends some way even just into the visible part of the spectrum - as in operation the diodes exhibit a very faint red glow.

Switch S_1 allows the four infra-red diodes to be powered by dc, or via Tr_1 , with the pulses. Given their aggregate forward voltage of about 5V, the current through the diodes on cw, determined by $R_{8,9}$ and supply voltage, is

the rated maximum for the devices of 100mA. In pulse mode, the peak current reaches the rated peak maximum of 1A. But the duty cycle of around 5% keeps the average current to just half of the steady state dc maximum.

The circuit is supplied from an old 6.3V transformer which was probably intended originally as a tv spare. It would have been used to power the heater of a crt which had developed a heater/cathode short, thus extending its life and avoiding a costly replacement. This would explain the inclusion of an interwinding screen in such a small, cheap transformer.

In the cw position of S_1 , the supply voltage is a shade under 15V, but tended to rise to nearer 17V with the lower average current drain in the pulse mode. So I added D_3 to give the designed nominal supply voltage value of 15V on pulses also.

Resistor R_6 serves to pull the collector of Tr_1 up to +15V between pulses. Without it, the voltage lingers at about +10.5V, since with much less than 5V across the string of diodes, they become effectively open circuit.

Limitations of the lightmeter

Useful as the lightmeter has proved, it is necessary to bear in mind its limitations. One of these is the sensitivity/bandwidth trade-off mentioned earlier.

To illustrate this, Fig. 12 shows the same waveform as Fig. 6, the output of the red led torch of Fig. 5. But whereas Fig. 6 was recorded with the lightmeter set to range 4, for Fig. 12, the light reaching the photodiode was greatly reduced. In addition, range 2 - which is a hundred times more sensitive - was used.

The reduced bandwidth is clearly evidenced by the rounding of the edges of the waveform. With the incident light lowered yet further and range 1 selected, the waveform was reduced almost to a triangular wave. But while waveform high frequency detail was lost, note that the average value of the incident light is still accurately recorded.

The other great limitation of the lightmeter is, of course, that it provides no absolute measurements. To do so, it would have had to be calibrated with a standard light source, and none was available. Even then, absolute measurements would be difficult, as they always are in photometry. This especially true when comparing 'white' light sources of different colour temperatures, and even more so with leds where about 90% of the output radiation is within ±5% or less of the predominant wavelength.

Nevertheless, the instrument is exceedingly useful for comparisons, and for studying the variations of light output of a source as a function of time.

It can be made even more useful by incorporating a filtered diode. Using a diode with the U340 filter, see Fig. 2, the blue led tested earlier even produced zero response on range 1. Its predominant wavelength lambda is 450nm

The spread delta lambda is quoted as 70nm, although the data sheet does not say whether this represents the 50%, 10% or 1% power bandwidth. But evidently there is no significant tail to the distribution extending as far into the ultra-violet at 375nm, where the U340 filter cuts off. The ultra-violet filtered diode did show a small output when held close to a 60W bulb. This was due to the very small filter response shown in Fig. 2, in the region of 720nm.

Medical applications

Clearly, one should be very wary of experimenting in this area*. Some medical applications of optoelectronics are spectacular and hence deservedly well known, such as the use of laser radiation to stitch a detached retina back in place. Other uses are less well known, but one, the use of infra-red radiation in physiotherapy I have personal experience of.

It was used, with great success some years ago, to treat supraspinatus tendonitis, alias a painful right shoulder. At the time, an infrared laser with just 5mW output was used, although since then equipments with 50mW output have become available.

20MHz Kenwood oscilloscope – £100 saving

Featuring circuitry that synchronises the displayed waveform automatically - removing the need for complex sync adjustments - the dual-channel CS4125 20MHz oscilloscope represented excellent value for money at its retail price of £410 including VAT but excluding delivery.

For a limited period, Vann Draper is offering readers this instrument at the special discount price of £319 - including VAT and delivery - representing a saving to you of over £100.

Outline specifications

Sensitivity	5mV to 5V/div, ±3%, 1 to 2mV/div ±5%	
Attenuator	1-2-5 steps, 12 ranges, fine adjustment	He
Frequency respons	e	03
5mV to 5V/div	DC-20 MHz -3 dB or 10 Hz to 20 MHz -3 dB on AC range	Ple
1mV to 2mV/div	DC-5 MHz -3 dB or 10 Hz to 5 MHz -3 dB on AC range	inc
Crosstalk	-40 dB	N
Operating modes	CHI: CH1 single-trace CH2: CH2 single-trace	Na
Contraction of March 1996 (1997)	ALT: alternate CH1 and CH2 display	Co
	CHOP: chopping display of CH1 and CH2	00
	ADD: Combined waveform of CH1 and CH2	Add
Horizontal amplifie	er	
Sensitivity	same as vertical axis (CH2)	-
Response	DC: DC to 500kHz -3dB AC: 10Hz to 500kHz -3 dB	
	X-Y phase matching within 3° at 50kHz	
Operating modes	CHI: Y axis, CH2: X axis	
Sweep		
Modes	NORM: trigger sweep	
	AUTO: auto free-running with no signal	Pho
Sweep time	0.5 µs to 0.5s/div ±3% (0.2µs/div uncal.),	
and the second	1-2-5 steps, 20 ranges w. fine adjustment	Tot
Sweep magnify	x10 ±5% (20ns/div uncal.)	Mak
Triggering		0.
Trigger sources	VERT MODE: input signal selected in VERTICAL mode	01,1
	CHI: CH1 input signal CH2: CH2 input signal	Card
	LINE: commercial power supply	Card
	EXT: EXT. TRIG input signal	
External triggering	1110 100 5	Pleas
input impedance	1MΩ and 22 pF approx.	credi
Coupling modes	AUTO, NOHM, FIX: AC coupling	and a
Collibration of	IV-FHAME: IV-LINE:	Work
Calibration 0/p	square wave, positive polarity, 1Vp-p ±3%, approx, 1kHz	*Ove
intensity mod.	The input to 3.5 MHz and GHT 0/p 50mV/div to 10MHz	ring,

means that the energy can be applied with pinpoint accuracy to the affected spot, which is very useful when the power available is low. But I was advised by a physiotherapist (with a degree in physics and an interest in electronics) that apart from this, there is no reason to suppose that an infra-red laser has any specific advantage over any other source of infrared.

Having recently experienced a return of the tendonitis, I designed the unit of Fig. 10 to treat it. Despite my earlier warning about experimenting, this seemed a safe enough procedure, given that both the condition, and the treatment had been previously properly diagnosed

At 100mA forward current, the four diodes provide a total radiant flux of 25mW each. They were mounted as close together as possible on a scrap of 0.1in pitch copper-strip board, each angled slightly in so that their beam axes crossed at about 1cm out. It is thus possible to flood the affected area with infrared radiation, where, the theory goes, it 'energises the mitochrondria', the chemical power house of each cell, promoting healing. The low dispersion offered by a laser source, ment, following a few five minute sessions on 01455 552612.

OPTOELECTRONICS

alternate days. The pulse mode was incorporated to allow for the possibility that the effect is nonlinear with respect to intensity.

Instead of half the radiation producing half the effect, and a quarter just a quarter, it might be that half the radiation intensity produced only a tenth of the effect, and a quarter none at all. But the interim conclusion of my limited experience suggests that there is little difference between the efficacy of the pulse and cw modes.

*lan's medical experiments have been reported purely for interest. We do not advocate that you try such experiments yourself. Medical experiments should be carried out only with medical supervision - Ed.

References

1. Hickman, I, 'Sensing the position', EW+WW, Nov. 1992, pp 955-957.

2. Hickman, I, 'Reflections on optoelectronics', EW+WW, Nov. 1995, pp 970-974.

3. Robinson, D, (TI), 'Light update', Electronics World, Sept 1996, pp 675-679.

4. Semelab plc, Coventry Road, Lutterworth, I am happy to report a marked improve- Leicestershire LE17 4JB. Tel. 01455 556565, Fax.

Includes x1, x10 probes

e this coupon to order your CS4125

ease send me CS4125 20MHz oscilloscope(s) at the fully lusive special offer price of £319.

mpany (if any) _____

dress

one number/fax

al amount

£..... e cheques payable to Vann Draper Electronics Ltd please debit my Master, Visa or Access card: d type - Access D Visa D

d No

Expiry date /

ase mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax lit card details with order on 0116 2773945 or telephone on 0116 2771400. Address orders all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier s, Canal Street, South Wigston, Leicester LE18 2PL.

rseas readers can also obtain this discount but details vary according to country. Please write or fax to Vann Draper Electronics

Hands-on Internet

Cyril Bateman looks at new search options, a directory for finding UK electronics companies and filter design tools.

> The continuing escalation of Web pages available on Internet has resulted in very heavy loading and consequent delayed responses, for the most popular all-purpose search engines. This has resulted in two major improvements - the location of mirror sites outside North America for these all-purpose search engines, and the development of search engines targeted only to specific tasks.

> In the March issue I highlighted the version of 'YahooUK', dedicated to searching Internet for UK and Irish surfers. This month's 'bookmark' site, Altavista.telia.com¹ has introduced local search engines available for most countries and languages, which truly complements the parent site. While the full address is quite long, bookmarking it makes for extremely easy access.

Previously, telephone and fax numbers for North America were easily accessed using Internet, but not so for other countries. Applegate Media² has now released its Web site which specifically aims to supply the telephone and fax numbers of the UK electronics industry. Since this is a lengthy listing it is best accessed during a quiet period, and downloaded to your hard disk for easy future reference.

Fig. 2. In my view, the best selection of programmable logic data information available on the Net. Register here to set up your desired smartsearch agent.

Fig. 3. Home of the surface-mount technology reference centre contains directories of surface-mount equipment and component suppliers.

You can often guess the Internet address of a company by simply using its name, plus '.com'. When this fails, in the past I have found a search on Altavista able to supply the needed address. However for Web addresses of semiconductor makers, the best method now is to use Electronics Pages³. This not only supplies the addresses, it also provides direct web links to either the required home or data sheet pages. While the initial download is lengthy, once retained in your browser's temporary disk files, repeat access is extremely quick, beating all other methods, Fig. 1.

Still in development, EDAMall⁴ a new site, is based on an electronic shopping 'mall' which allows you to try, using real-time demonstrations, or buy, using a credit card, several electronic design automation systems. With its large reference library of technical articles and industry news, surfing this site can dramatically reduce the time needed to find essential pre-purchase information.

This site requires use of 'Java', 'Javascript' and a 'Java' enabled Netscape browser for full access. Three subsidiary malls cater for mechanical cad, scientific cad and software development.

When looking for programmable logic data, try Xilinx.com⁵ This site has its own specialised Weblinx smartsearch method which looks for information within the fifty best PLD sites as well as Xilinx itself. Regular users can define their own smartsearch 'agent' which automatically informs them via e-mail of any updates or new documents within the parameters they specified, Fig. 2.

Almost all new electronic designs use surface mounted parts, so SMTnet⁶ is an essential stopping off place to browse for a few minutes. Particularly useful are the industry directories of surface mount equipment makers and surface mount component suppliers. This last is searchable either by product or manufacturers name. Alternatively an alphabetical list of all component suppliers can be generated, Fig. 3.

Many established technical libraries of data, or software models, are located at sites which can only be accessed using Telnet. While a web browser can link you to a Telnet site, once connected one cannot access the site using a browser and must continue by using a Telnet client, its protocols and typewritten commands.

While having a dedicated Telnet client in my computer, I must confess to using it with some reluctance for one-off site visits. For regular access to a particular site, having learned that site's command set, Telnet is a very good access method indeed, but unlike Web pages, Telnet certainly is not a point and click method.

Perhaps this is about to change. TechOnline,⁷ formerly known as DSPnet, has been updated by Aliphas to become a truly interactive engineering forum. It is based on use of a Java applet which allows your browser to emulate a Telnet terminal within a Web page. This applet loads and executes dsp and other demonstrations automatically, using the site's so-called virtual laboratory. In this way, data searching is neatly combined with dsp simulations, Fig. 4.

Software simulated and Fairchild reborn

A return visit to National⁸ to download up to date details of state variable filter chips together with listings of relevant application notes, revealed a late news item. Fairchild Semiconductor, comprising the old logic, memory and discrete lines of National, was relaunched in January as a separately funded subsidiary. For further details see the new Fairchild⁹ home page, Fig. 5.

Effective active filter circuits can be built using either switched-capacitor or time-continuous techniques. For many low-noise, wide dynamic range or high-frequency design needs, the time-continuous filter is essential. Given the appropriate macromodels, the circuits can be simulated using a version of Spice. However, this design task is especially

June 1997 ELECTRONICS WORLD

suited to the use of simple but dedicated filter design soft-

Burr-Brown¹⁰ offers similar time-continuous filter products and design software. This company too had a news announcement. The Burr-Brown home page has been given a new look and extra functions by way of celebrating the first anniversary of their publishing a Web page. While Spice

> Fig. 4. Virtual dsp test laboratories on-line are provided by the home of dsp. Using a unique Java applet it links the Web browser with Telnet.

Fig. 5. National announces Fairchild spin-off. Visit to download your filter application notes in PDF format.

Fig. 6. Burr-Brown's Web anniversary celebration homepage. Download Filterpro software and application notes on-line.

COMMUNICATIONS

Fig. 7. New look and name for Motorola Semiconductors' page. View Motorola manufacturing locations worldwide.

models for individual parts can be down-loaded, completing their literature request form will arrange a disk containing all their Spice macromodels, sent by post,

The company's software, FilterPro, which can be downloaded, unpacks to give two dos packages; Filter2 caters for 7. TechOnline.Com.http://www.techonline.com mfb, or multi-feedback, style as well as Sallen-Key designs, while Filter42 is dedicated to the UAF42 state-variable chip, Fig. 6.

Design-net.com¹¹ is a new service from Motorola Semiconductor Products Division, dedicated to the design

Nine year index – new update

Hard copies and floppy-disk databases both available

** Includes over 600 circuit idea references** Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1988 to 1996, volumes 94 to 102 inclusive is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 5.25in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their

Photo copies of Electronics World articles Photo copies from back issues of Electronics World are

Hard copy Electronics World index

engineer's needs, giving easy access to data and applications sheets. The Semiconductor Division has more than twenty design and manufacturing locations world wide which can be viewed on the facilities page map, Fig. 7.

In November, I mentioned the new Windows evaluation version of PSpice 7.1 was available on cd rom as part of Motorola's DesignLab evaluation software. This has now been joined by the Intusoft Spice and So Much More demonstration cd.

While both evaluation software packages are fully usable, perhaps of even more benefit to the simulation novice and experienced user, is the wealth of application notes and online manuals these disks contain. While any of this software or data could be downloaded from Internet, the sheer volume of data contained on either cd, is only practical when supplied on cd rom.

References

- 1. AltaVista.Telia.Com http://www.altavista.telia.com
- 2. AppleGate Media Specialist Publishers.
- http://host.web121bf.claimname.com
- 3. The Electronics Pages.
- http://www.geocities.com/SiliconValley
- 4. EDA Mall. http://www.edamall.com
- 5. Xilinx Inc. http://www.xilinx.com
- 6. Surface Mount Technology. http://www.smtnet.com
- 8. National Semiconductor. http://www.nsc.com
- 9. Fairchild Semiconductor.
- http://www.nsc.com/Fairchild/company
- 10.Burr-Brown Corporation. http://www.burr-brown.com
- 11.Motorola Semiconductor Products..http://www.design-net.com

1-1		Circuit	Ideas	R
Renote r Resistan SCR Inve Sample a Schmitt Self-ID Sensor, Servo, 1 Servo, 3	notor control nee multiplier enter und-infinite h trigger, prog for plugs and Linear Curren figh torque po Simple	old • thresholds sensors t sition	SIMUL C J H May 1 "Simu loss Model the r ibser	ATOR, INSERTION & RETURN LOSS [a1] 992, p422 [taneous insertion and return plots". Ting a return-loss bridge at elevant port allow plot of tion loss, and, without
▶ ingle- Soft-sta	00 101 (101 (101		Design	RF
Speech (Square) Status (Status (Stepper Stepper Stereo (Switch, P1-Hala	 Directional Gigahertz S Biff Fractiver H HF creativer H HF creativer H Hgh gaslit Hubrids in Heasuring u Heasuring u Historyuaves, Noise source Polyphase S RF Design R RF Prouse M RF Transist RF Transist FF Transist FF Transist 	couplers, hybrid ystems on a Chip- performance g loop, inproved power arguiticr d FR combiners ransformation tetectors ith TDR New wave e, self-calibratin SB evolution assurements in mill ors, Using ors, Using or electro-explosi	esign onns 72 9 iuatts 73 ves	HICROUAVES, NEW UAVE Mike Hosking #1 Concepts, circuits & devices. April 1994, p276 #2 The Laws of Microstrip May 1994, p410 #3 Lumped components & uaveguides June 1994, p410 #3 Aumped components & uaveguides June 1994, p410 #4 Active devices for millimetres waves. July 1994, p571 #5 Oscilator and amplifier devices August 1994, p666

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquiries about photocopies, etc, please send an sae to SoftCopy Ltd at the address below.

Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53, tel 01242 241455, or e-mail at softcopy@compuserve.com, Please make cheques payable to SoftCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

 Simall Status
 Status

 HP New Colour Spectrum Analysers

 HP141T+8552B IF + 8553B RF - 1KHz-110Mc/s - £700.

 HP141T+8552B IF + 8554B RF - 100KHz-1250Mc/s - £900.

 HP141T+8552B IF + 8554B RF - 100KHz-1250Mc/s - £900.

 HP141T+8552B IF + 8555A RF - 02Hz-300KHz - £700.

 Special Offer just in from MOD Qty 40 HP8555A RF Units 10Mc/s - 18GHzS.

 HP141T +8552B IF + 8555A 10Mc/s - 18GHzS - £1200.

 HPASU Units Available separately - New Colours - Tested

 HP1515E IF - £300.

 HP8552B IF + 10Mc/s - £200.

 HP8555A RF 10M/c/s to 1250Mc/s - £500.

 HP8555A RF 10Mc/s to 18GHzS - £800.

 HP8555A RF 20Hz to 300KHzS - £250.

 HP8443A RF 20Hz to 300KHzS - £250.

 HP8555A RF 10M/c/s to 18GHzS - £800.

 HP8556A RF 20Hz to 300KHzS - £250.

 HP8443A Tracking Generator Counter 100KHz-110M/c/s - £300.

 HP8443B Tracking Generator Counter 100KHz-110M/c/s - £300.

 HP3580A 5Hz - 50KHz ANZ - £750 - £1000.

 HP3580A 5Hz - 50KHz ANZ - £750 - £1000.

 HP3580A 6Hz - 50KHz ANZ - £750 - £1000.

 HP3580A 100Hz - 1500Mc/s ANZ - £6k.

 HP8568B 100Hz-szGHz ANZ - £6k.

 HP9569B 10Mc/s - 22GHz ANZ - £6k.

 HP9569B 10Mc/s - 22GHz ANZ - £6k.

 HP8569B 10Mc/s - 23GHz ANZ - £6k.

 TEK 492 - 50KHz - 18GHz Opt 1+2+3 - £4.5k.

 TEK 492P - 50KHz - 21 GHz Opt 1+2+3 - £5k.

 TEK 492P - 1KC/s - 21 GHz CPt.

 TEK 492P - 1KC/s - 21 GHz CPt.

 TEK 495P 1KC/s - 21 GHz CPt.

 TEK 7112 - 100K/s - 12.4GHz = 4000.

 TEK 7112 - 100K/s - 12.4GHz = 400Hz = £1000.

 TEK 7112 - 100K/s - 12.4GHz = 400Hz = £1000.

 TEK 7112 - 100K/s - 12.4GHz = 400 Tektronix Mixers are available for above ANZ to 60GHzs Systron Donner 763 Spectrum ANZ + 4745B Preselector .01-18GHz + Two Mixers 18-40GHz in Transit Case - £3k. HP8673D Signal Generator .05-26.5GHz - £20k. Systron Donner 1618B Microwave AM FM Synthesizer 50Mc/s 2-18GHzs R&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s - £3.5k. ADRET 3310A FX Synthesizer 300Hz-60Mc/s - £600. HP8640A Signal Generators - 1024Mc/s - AM FM - £800. HP3717A 70Mc/s Modulator - Demodulator - £500. HP8651A RF Oscillator 22KC/S - 22Mc/s. HP5516B Universal Counter A+B. HP5002A Power Unit 0-5V 0-10A 200W. HP8625A Bipolar Power Supply Amplifier. HP461A-465A-467A Amplifiers. HP861B19A Optical Receiver DC-400Mc/s. HP370A Amplifued Delay Distortion ANZ. HP3770A Amplifued Delay Distortion ANZ. HP370A Bus System Analyser. HP5826B Power Unit 0-10V 0-100 Amps. HP3781A Pattern Generator. HP3781A Pattern Generator. HP3730A+3737A Down Convertor Oscillator 3.5–6.5GHz. HP37304 + 3737A Down Convertor Oscillator 3.5–6.5GHz. HP37304 + 3737A Down Convertor Oscillator 3.5–6.5GHz. HP105B Quart2 Oscillator - £400. HP5087A Distribution Amplifier. HP6034A System Power Supply 0–60V 0–10A–200W – £500. HP6131C Digital Voltage Source + – 100V ½ Amp. HP4737A Multi Frequency L.C.R. Meter. HP3779C Primary Multiplex Analyser. HP3779C Primary Multiplex Analyser. HP3160 A Optical Signal Source. HP61316 Logic Analyser. HP6336A Universal Counter A + B. HP539501B Isolated Power Supply Programmer. HP59501B Isolated Power Supply Programmer. HP53901A Multiplex Analyser. HP5370A Universal Time Interval Counter. Marconi TF2370 – 30Hz–110Mc/s 750HM Output (2 BNC Sockets+Resistor for 500HM MOD with Marconi MOD Sheet supplied - £650. Marconi TF2370 30Hz-110Mc/s 50 ohm Output - £750. Marconi TF2370 as above but late type - £850. Marconi TF2370 as above but late type - £850. Marconi TF2370 as above but late type - £850. Marconi TF2370 as above but late type - £800. Marconi TF2370 as above but late type - £200. Marconi TF2442 Microwave Counter - 20GHz - £1500. Marconi TF2442 Microwave Counter - 20GHz - £1500. Marconi TF2405 Modulation Meter - £2.3k. Marconi TF2405 Modulation Meter - £2.3k. Maeci/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards. Reaci/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards. Reaci/Dana 1303 True RMS Levelmeter + Head - £450. IFFE - £500. TEK A6902A also A6902B lsolator - £300-£400. TEK 1240 Logic Analyser - £400. TEK 1240 ID Programmable Function Generator 20Mc/s - £600. TEK 2465A 350Mc/s Oscilloscope - £2.5k + probes - £150 each. TEK CT-5 High Current Transformer Probe - £250. TEK J16 Digital Photometer + J6523 - 2 Luminance Probe - £200. TEK J16 Digital Photometer + J6503 Luminance Probe - £200. ROTEK 320 Calibrator - £300 High Current Adaptor AC-DC - £500. FLUKE 5102B AC-DC Calibrator - £4k. FLUKE 1120A IEEE - 488 Translator - £250. Tinsley Transportable Voltage Reference - £500. FLUKE 5402A Current Shunt - £500. HP745A 746A AC Calibrator - £600. HP745A AC AC Calibrator - £600. HP745A AC AC AC Alibrator - £600. HP745A AC AC ALibrator Marconi MOD Sheet supplied – £650. Marconi TF2370 30Hz–110Mc/s 50 ohm Output – £750. H 5400A - E800.
HP54200A Digitizing Oscilloscope.
HP1729B Carrier Noise Test Set. 01-18GHz - LEF - £2000.
HP3311A Function Generator - £300.
Marconi TF200B - AM-FM signal generator - also sweeper - 10Kc/s - 510Mc/s - from £250 - tested to £400 as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type 8406 - £400.
HP Vector Voltmeter type 8407A - £400 new volour.
HP Sweep Oscillators type 8690 A & E + plug-ins from 10Mc/s to 18GHz also 18-40GHz. P.O.R..
HP Metwork Analyzer type 8407A + 8412A + 8501A - 100Kc/s - 110Mc/s - £500 - £1000.
HP Amplifier type 847A - 1-400Mc/s £200 - HP8447A Dual - £300.
HP Frequency Counter type 5340A - 18GHz £1000 - rear output £800.
HP 8410 - A - B - C Network Analyzer 110Mc/s to 12GHz or 18GHz - plus most other units and displays used in this set-up - 8411a - 8412 - 8413 - 8414 - 8418 - 8740 - 8741 - 8742 - 8743 -
 HP 8410 - A - B - C Network Analyzer 110M/cs to 12GHz or 18GHz - plus most other units and displays used in this set-up - 8411a - 8412 - 8413 - 8413 - 8414 - 8418 - 8740 - 8741 - 8742 - 8743 - 8746 - 8650. From £1000.

 Reacl/Dama Modulation Meter type 9009 - 8Mc/s - 1.5GHz - £250.£400.

 Reacl/Dama Modulation Meter type 9009 - 8Mc/s - 1.5GHz - £250.

 Marconi RCL Bridge type TF2700 - £150.

 Marconi RCL Bridge type TF2700 - £150.

 Marconi TF1245 Circuit Magnification meter + 1246 & 1247 Oscillators - £100-£300.

 Marconi Milisortion meter + 1246 & 1247 Oscillators - £100-£300.

 Marconi Milisortion refer + 150. TF2331 - £150. TF2331A - £200.

 Marconi Milisortion are trype TF2331 - £150. TF2331A - £200.

ITEMS MARKED TESTED HAVE 30 DAY WARRANTY, WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

CIRCLE NO. 121 ON REPLY CARD

ELECTRONICS WORLD June 1997

OUNTS – RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK Tektronix Plug-Ins 7A13 – 7A14 – 7A18 – 7A24 – 7A26 – 7A11 – 7M11 – 7S11 – 7D10 – 7S12 – S1 – S2 – S6 – S52 – PG506 – SC504 – SG502 – SG503 – SG504 – DC503 – DC508 – DD501 – WR501 – DM501A – FG501A – TG501 – PG502 – DC505A – FG504 – 7B80 + 85 – 7B92A Gould J38 test oscillator + manual – £150. Tektronix Mainframes – 7603 – 7623A – 7613 – 7704A – 7844 – 7904 – TM501 – TM503 – TM506 – 7904A – 7834 – 7823 – 7633. Marconi 6155A Signal Source – 1 to 2GHz – LED readout – £400. Barr & Stroud Variable filter EF3 0.1Hz – 100k/s + high pass + low pass – £150. Marconi TF2163S attenuator – 16Hz. £200. Parcell Jower unit H60/50 – £400 tested. H60/25 – £250. Racal/Dana 9300 RMS voltmeter – £250. HP 8750A storage normalizer – £400 with lead + S.A or N.A Interface. Marconi TF2303 – or TF2330A wave analysers – £100-£150. Tektronix – 7514 – 711 – 7511 – 7512 – 511 – 522 – 539 – 547 – 551 – 552 – 553 – 7M11. Marconi mod meters type TF2304 – £250. Systron Donner counter type 6054B – 20Mc/s – 24GHz – LED readout – £1k. Racal/Dana 9308 signal source – two tone – £250. Systron Donner – signal generator 1702 – synthesized to 1GHz – AM/FM – £600. Tektronix TM515 mainframe + TM5006 mainframe – £450 – £850. Racal/Dana counters – \$904 – 9905 – 9915 – 9916 – 9917 – 9921 – 50Mc/s – 3GHz – £100-£450 – all fitted with FX standard. HP4815A RF vector impedance meter c/w probe – £500-£600. Marconi TF2092 noise generator. A, B or C plus filters – £100-£350. Marconi 7501 noise generator. A, B or C plus filters – £100-£350. Marconi 75001 noise generator. A, B or C plus filters – £100-£350. Marconi 7503 noise generator. A, B or C plus filters – £100-£350. Marconi 7504 sweep oscillator + 18642 P/18 available. SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK Philips panoramic receiver type PM/900 – 1 to 20GHz – £400. Marconi 6700A sweep oscillator + 18GHz Pl's available. HP8505A network ANZ + 8503A S parameter test set + 8501A normalizer – £4k. HP8505A network ANZ 6505 + 8501A + 8503A. HP8505A network ANZ + 8503A S parameter test set + 8501A normalizer - £4k. HP8505 network ANZ + 8505 + 8501A + 8503A. Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter type 527E + rubidium standard type 9475 - £2750. HP signal generators type 626 - 628 - frequency 10GHz - 21GHz. HP 432A - 435A or B - 436A - power meters + powerheads - Mc/s - 40GHz - £200-£1000. Bradley oscilloscope calibrator type 192 - £600. HP8616A signal gen 18GHz - 4.56Hz, new colour £400. HP8616A signal gen 18GHz - 4.56Hz, new colour £400. HP3325A syn function gen 20Mc/s - £1500. HP 3335A or B syn level generator - £500-£600. HP 3568B or C selective level meter - £750-£1000. HP 3568B or C selective level meter - £750-£1000. HP 3568B or C selective level meter - £750-£1000. HP 3568B or C selective level meter - £750-£1000. HP 3568D S/G microwave 2.3 - 13GHz - opt 001 - 003 - £4.5k. HP 8660 A-B-C syn S/G. AM + FM + 10Kc/s to 110Mc/s PI - 1Mc/s to 1300Mc/s - 1Mc/s to 2600Mc/s - 5500-£2000. HP 8640B S/G AM-FM 512Mc/s or 1024Mc/s. Opt 001 or 002 or 003 - £800-£1250. HP 86232B SWeep PI - 01 - 2.46Hz + ATT - 1750. HP 86238 Sweep PI - 01 - 2.46Hz + ATT - 1750. HP 86238 Sweep PI - 01 - 2.46Hz + ATT - 150. HP 86238 Sweep PI - 01 - 2.46Hz + ATT - 150. HP 86239B Sweep PI - 01 - 2.46Hz + ATT - 150. HP 86239B Sweep PI - 0 - 2.46Hz + ATT - 500. HP 86239B Sweep PI - 0 - 2.46Hz + ATT - 500. HP 86239B Sweep PI - 0 - 2.46Hz + ATT - 500. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - £1250. HP 86239B Sweep PI - 0 - 18GHz - 51250. HP 85239B Sweep PI - 0 - 18GHz - 51250. HP 85239B Sweep PI - 0 - 18GHz - 51250. HP 85239B Sweep PI - 0 - 18GHz - 51250. HP 85239B Sweep PI - 0 - 18GHz - 5 The B6290 B Sweep P1 - 2 - 18GHz - £1250. HP 86 Series P1's in stock - splitband from 10Mc/s - 18.6GHz - £250-£1k. HP 8620C Mainframe - £250. IEEE - £500. HP 8615A Programmable signal source - 1MHz - 50Mc/s - opt 002 - £1k. HP 8601A Sweep generator .1 - 110Mc/s - £300. HP 3488A HP --IB switch control unit - £500 + control modules various - £175 each. HP 8150A 50Mc/s programmable pulse generator - £1000. HP 853A MF FAXZ - £1.5k. HP 8349A Microwave Amp 2 - 20GHz Solid state - £1500 HP 3580A Analyser 20Hz - 40Mc/s - £4k. HP 3580B Analyser 5Hz - 50kHz - £1k. HP 3580A Analyser SHZ - 50kHz - £1k. HP 3455A Digital voltmeter - £500. HP 3455A System voltmeter - £250. HP 3581C Selective voltmeter – £250. HP 5370A Universal time interval counter – £450. HP 5335A Universal counter – 200Mc/s – £500. HP 5328A Universal counter – 500Mc/s – £250. HP 5328A Oniversal counter = 500/0052 - 1250. HP 6034A System power supply $-0^{-} = -60^{-} - -10 \text{ amps} = 5500.$ HP 645A Date error analyser = 7150. HP 4371A Attenuator = f150. HP 3710A - 3715A - 3716A - 3702B - 3703B - 3705A - 3711A - 3791B - 3712A - 3793B microwave link analyser = P.O.R. HP 3750A + B RF down converter - P.O.R. HP 3750A + B RF down converter - P.O.R. HP 3750A + B RF down converter - P.O.R. HP 3750A Amp delay disortion analyser = f400. HP 3764A Digital transmission analyser = f400. HP 37764 Amp delay disortion analyser = f400. HP 37764 Digital transmission analyser = f500. HP 37764 Digital transmission = f500. HP 37764 Digital transmission = f500. HP 3764A Digital transmission = f500. HP 3764A Digital transmission = f500. HP 5500A Multiprogrammer HP = H = f200. Philips PM5300 RF syn = 0.1 = 1GH2 = AM + FM = f1000. S.A. Spectral Dynamics SD345 spectrascope 111 = LF ANZ = f1500. Tektronix F750 Eurve tracer + adaptors = f300. Tektronix 576 Curve tracer + adaptors = f300. Tektronix 577 Curve tracer + adaptors = f300. Tektronix 650 = SC503 = SC504 osc100scopes = f75-f350. Tektronix 40503 Current probe + TM501 m/frame = f1000. Tektronix 650 = SC503 = SC504 osc100scope = f575-f350. Tektronix 4050 = f300 = SC504 osc100scope = f575-f350. Tektronix 40502 = 1602 = 1602 = 160 HP 6034A System power supply – 0 – 60V – 0 – 10 amps – £500. HP 5150A Thermal printer – £250. Teltronix 455 – 4558 – 475 – 2213A – 2215 – 2225 – 2235 – 2245 – 2246 – Kikusui 100Mc/s Oscilloscope CS6100M – £350. Nicolet 3091 LF oscilloscope - £400. Racal 1991 – 1992 – 1988 – 1300Mc/s counters – £500-£900. Fluke 80K-40 High voltage probe in case – BN – £100. Racal Recorders – Store 4 – 4D – 7 – 14 channels in stock – £250 – £500. Racal Store Horse Recorder & control – £400-£750 Tested. EIP 545 microwave 18GHz counter – £1200. Fluke 510A AC ref standard – 400Hz – £200. Fluke 510A AC ref standard - 400Hz - £200. Fluke 355A DC voltage standard - £300. Wiltron 610D Sweep Generator + 6124C PI - 4 - 8GHz - £400. Witron 610D Sweep Generator + 6104D PI - 1Mc/s - 1500Mc/s - £500. Time Electronics 9811 Voltage calibrator - £750. Time Electronics 9811 Voltage calibrator - 0. Witron 610D Sweep PI VIG oscillator .01 - 4GHz - £300. 8690B MF - £250. Both £500. Schlumberger 1250 Frequency response ANZ - £1500. Dummy Loads & power att up to 2.5 kilowatts FX up to 18GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors. B&K Hems in stock - ask for list. Power Supplies Heavy duty + bench in stock - Farnell - HP - Weir - Thurlby - Racal etc. Ask for list. ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007. Fax: 651160

Error feedback in audio power

In response to a plea for help on a feedback problem, William de Bruyn has unearthed three alternative methods of error feedback for power amplifiers that do work.

ollowing K H Ellis's plea for help in mal/electrical time constants. 'Feedback on Feedback' in the December 1996 issue, it seems to me that his amplifier (outlined later) was always bound to be unstable. Little or no attention seems to have been given to issues of loop stability.

Addition of the 22pF capacitor simply inserts a dominant pole at a suitable frequency; it does not 'filter' noise. The operational amplifier chosen for this implementation of Hawksford's error-cancelling idea is not particularly suitable as the inherent slew rate limitations of the device restrict the potential bandwidth.

There has been a number of practical amplifier designs which have used the idea of an error feedback loop around the output stage of an amplifier.

First is a design by E. M. Cherry, which deals with a number of issues rather elegantly. Quiescent current is sensed and controlled without any need for complex schemes of thermal feedback. Such schemes bring with them the difficulties of dealing with all of the ther-

Prof. Cherry's approach to this problem – the feedback loop around the back-to-back differential pairs - also permits accurate setting of the gain of the output stage to some desired level

His concept of nested differentiating feedback loops achieves unconditional stability with high levels of feedback and very low distortion within the audio band.

A further amplifier of note is designed by Robert Cordell. It was published in 1983 and reprinted in the Journal of the Audio Engineering Society, Vol. 32, No 1/2, 1984, Jan/Feb.

This amplifier employs a simple method of feed-forward error correction based on Hawksford's scheme. The error-correction loop uses only two fast small signal transistors and the resulting improvement in transfer linearity is quite remarkable. Most of the crossover and transfer artefacts, that so much recent correspondence has concerned itself

with, become relatively minor issues.

This design is capable of extremely low distortion over a very wide frequency band - less than 0.001% from 20Hz-20kHz. It also exhibits extraordinarily good high-frequency and transient performance and achieves a slew rate of more than 300V/us.

The third amplifier is a commercially produced design, namely the Tandberg 3009A. This also uses a variant of Hawksford's scheme. In this case no overall feedback is applied, each stage relying on local feedback for setting of overall gain. In this instance, the output stage used Hitachi mosfets. These fets are distinguished from Hexfet structures by their substantially lower transconductance and threshold voltages. This Amplifier is capable of good high-frequency performance.

All in all, I feel that much of the rather heated debate regarding the linearity of igbt devices as opposed to mosfets, 'batwing' transfer curves, etc. is rather absurd and has more to do with what people grasp with their hands

Fig. 1. Ed Cherry's 15W, 15Ω power amplifier, first published in IREE transactions, nested differentiating feedback loops are used. Note the driver circuit with inherent quiescent current regulation and substantial local feedback around the output stage.

In Robert Cordell's power amplifier above, first published in JAES, the front end has cascode circuitry to minimise

AUDIO

Error correction concept, above, for Cordell's power amplifier output stage, left, in which Tr₂₂ and Tr₂₃ provide the error correction.

rather than with their minds.

As many of the problems associated with amplifier design seem to centre on achieving ever greater bandwidth, it seems - to me at least - that the fastest available devices are the preferred option.

Poor transfer linearity can be readily dealt with by applying some sort of error correction around the output stage, without the problems of dealing with all of the poles that the application of overall feedback has to contend with.

I would be pleased to see someone apply some form of error cancelling feedback loop around, say, a valve amplifier output stage. Such devices are inherently less linear than mosfets and have much lower transconductance than any solid state device.

0-50V

Extract from Ellis's original query

...applying negative feedback to give a gain of four, the stage shown gives reasonable performance, except that output impedance is about 1Ω . Also, when loaded, the stage distorts because there is nothing to increase the drive.

I was about to give in when I came across a reference to an error cancelling technique by Hawksford. The small diagram below gives the theory. Having got the gains right, the results were astounding.

During testing, I found that a capacitive load of more than 22nF caused a high output at high frequency. This was a surprise as the output stage itself would happily drive a 10µF at 1kHz. More experimenting gave the feeling that this was not parasitic oscillation, but rather amplified and filtered noise. While loading the output with increasing values of capacitor, the output of A1 became increasingly noisy until it burst into oscillation at about 2MHz. Putting a small capacitor across R_8 (A₁) stopped the oscillation but was not the best place as only the error signal was being filtered. The best solution was a 22pF across R_{12} (A₂) to filter signal and error. The amplifier now drives 10µF with no problem. I would welcome your comments.

Contact Card Professionals for the most advanced portfolio of PCMCIA PC Cards, StarCards, 38edge Cards and compatible interface solutions

Centennial: major franchised stocking distributor for Centennial PCMCIA cards

ITT Canon: authorised stocking distributor for 38pin StarCards, 38pin StarCard connectors and 68pin PC Card connectors

Calluna: authorised stocking distributor for Calluna's type III ATA PC card range

Centennial: 38 edge card flash memories and connectors

A wide range of Reader/writers are available with ISA, SCSII, parallel and serial host interfaces for cards in our portfolio

Card Professionals Limited, Cedarmount House, Owlsmoor Road, Owlsmoor, Sandhurst, Berkshire, GU47 0SS. Tel: +44 (0) 1344 779632. Fax: +44 (0) 1344 779633. www.card-professionals-uk.com

CIRCLE NO. 124 ON REPLY CARD

COMPONENTS

RF effects on AF

Could mysterious audio power amplifier distortions be explained by rf noise from broadcast stations? **Cyril Bateman** investigates.

erforming distortion measurements on various erator signal on channel 2. speaker cables¹, I noticed and remarked on a level of non-harmonic residue, especially with the figure-of-eight cable styles. This residue was clearly visible on the oscilloscope output of my Hewlett-Packard 331A distortion meter.

The on-screen appearance of this residue supported by its notable absence when testing co-axial cables, led me then to believe it resulted from wideband noise radiated from the 50Hz domestic mains supply. Recent measurements, using a 3MHz wideband rf millivoltmeter of $1M\Omega/20pF$ input impedance, at the loud speaker terminals in my listening room using my old speaker cables, indicated some 6mV of noise, with my AR amplifier powered but not driven. Subsequent oscilloscope measurements show an amplitude modulated signal around 1MHz in frequency, which could be 'synched' to the trace at lµs/cm, as well as a multitude of lower and higher frequency noise.

Identification of this rf noise

Further experiments used this double-beam oscilloscope with traces synchronised to an rf signal generator, displaying noise on channel 1 and gen-

Slow variation of the rf signal generator frequency, resulted in both traces being stationary at several frequencies. The largest of these stationary traces at 1.05MHz. was visibly amplitude modulated.

Observing this trace while tuning a portable radio with my amplifier switched off, suggested the signal I was watching was 'Talk Radio' on 1053kHz, having some 20mV peak to peak amplitude. Talk radio commenced broadcasting two years ago and since I never listen to medium-wave broadcasts, I was previously unaware of its existence.

Using the scan tuning mode of my AR receiver, I identified seven broadcast transmissions with very high signal strengths in the medium-wave band. Judged by the tuning indicator deflection, the strongest was indeed Talk Radio on 1053kHz, with Radio 5 on 909kHz from Brookmans Park some 170km distant, the weakest noted, Table 1.

The medium-wave broadcasting band, extending from 526.5kHz to 1606.5kHz, is covered by a large number of transmitters, many being of very high power, so it was no surprise that many other weaker signals were obtained using manual tuning.

The long-wave broadcasting band extends from

148.5kHz to 283.5kHz, it also has a number of powerful transmitters giving coverage throughout UK.

Powerful non-broadcast transmissions at frequencies very much lower than the long-wave band are used for long distance data or time code transmissions. The National Physical Laboratory at Teddington transmits the MSF time signal from the 50kW Rugby transmitter, a far reaching signal, at 60kHz.

Advice from the BBC2 and Radio Authority³ engineering departments stated the service limit for medium-wave broadcasts is a minimum signal level of 2mV/m, with 5mV/m required for long wave. Any clearly received broadcast will thus much exceed this field strength at your location.

The engineer's field strength contours for my location, suggested for 'Talk Radio' a field strength of 100mV/m. This level is by no means unique. Examination of the various broadcast transmitter locations and powers suggests much greater levels are common.

With the most powerful transmitters being located close to densely populated regions,. locations in the Home Counties, West Country, Midlands, Yorkshire, North East, Scotland and Northern Ireland, situated close to these transmitters could experience field strengths exceeding 500mV/m (see the panel on propagation). However the frequencies of highest strength may differ from those I found, Table 2.

These medium and long-wave transmissions are not unique to the UK, but are controlled under internationally agreed standards and used in many countries. Transmissions from Europe are frequently received in the eastern counties of the UK, as demonstrated by my unidentified foreign station on 1395kHz, Table 1.

Could these signals affect audio power amplifiers? In order to find out, the complete circuit involved in the closed feedback loop within the amplifier and the amplifier components outside this feedback loop has to be considered. This includes the loudspeaker cable parameters, loudspeaker crossover network and the speaker drivers in their cabinet.

Depending on the amplifier's design, a varying level of audible distortion, or significant

increase of noise levels, resulting from 20mV rf signals, has previously been reported⁴. Subsequently, many amplifiers now have inbuilt protection against rf energy presented to their input terminals but not similar dedicated protection for their output terminals. The possibility that "audible intermodulation

 $E=300P^{1/2}$

 $E=221.8P^{1/2}$.

of 1MHz⁸.

Table 2. Listing of major long and medium-wave transmitters of 50kW and Some sixteen other transmitters have power outputs between 5kW and 50

National LW/MW transmitter sites Brookmans Park	Frequency (kHz) 909	Radiated erp (kW max) 150	Frequency (kHz) 1,089	Radiated erp (kW max) 400	Frequency (kHz) 1,215	Radiated erp (kW max) 125	Map reference TL259050	
Burghead	198	50	810	100		-	NJ125685	
Clevedon	909	50					ST400697	
Droitwich	198	500	693	150	1053	500	SO929663	
4 4	1215	105					uц	
Lisnagarvey	1341	100					1258619	
Moorside Edge	909	200	1,089	400	1,215	200	SE070154	
Stagshaw	693	50	XE				NY986709	
Start Point	693	50					SX814378	
Washford	882	100	1089	80	1215	100	ST058410	
Westerglen	198	50	810	100	909	50	NS868773	
uu	1089	125	1215	100			£6 £6	
Saffron Green	1548	97.5					TQ216977	

COMPONENTS

Low and medium-frequency rf propagation

This discussion involves frequencies between 30 and 3000kHz. Since it is almost impossible to build a guarter-wave vertical antenna for this frequency band, transmission invariably results from short vertical antennas at low heights above ground. At these frequencies the main reception mechanism results from groundwave propagation. This is attenuated both by increased distance and frequency, also the ground and sub-surface conditions the wave travels over. Given a near perfect ground surface - e.g. sea water - the theoretical figure for propagation will be approached,⁸

at 1km, where P is radiated power in kW and E is rms mV/m. Over land this figure³ is commonly reduced to,

When directional aerials are used, the above figures must be suitably modified. Low-frequency ground-wave propagation initially reduces almost inversely with distance, but rather more rapidly as distance or frequency increase, to some 110dB loss at 160km compared to 64dB loss at 16km, both assuming a frequency

Note that the above description has been greatly simplified; refer to the references for more details.

Table 1. Locally received high signal strength medium and long wave transmissions, strongest listed first. Data based on BBC and Radio Authority engineering information, confirmed by measurements using a 1m vertical whip antenna and wavemeter.

Frogram name	(kHz)	location	(kW max)	test site (km)	mV/m est.
Medium Wave					
Talk Radio	1053	Postwick	18	10	100
Radio 5	693	Postwick	10	10	40
Foreign	1395	Unknown			30
Radio Broadland	1152	Brundall	0.83	8	25
Radio Norfolk	855	Postwick	2	10	18
Virgin Radio	1215	Postwick	1.2	10	14
Radio 5 Long Wave	909	Brookmans Park	150	170	12
Radio 4	198	Droitwich	500	250	20

products can arise from spurious signals with frequencies above human hearing" was also touched on by Ivor Brown⁵ in a letter to Douglas Self.

Most amplifiers have a low value output inductor and Zobel capacitor resistor network between their feedback loop and their output

l above, based on BBC and Radio Authority engineering information.	
kW, with a further two hundred and eight below 5kW.	

COMPONENTS

Fig. 1. Speaker end damping voltage by test cable and frequency using Maplin mosfet amplifier.

Fig. 3. Test cable characteristic impedance by frequency.

Fig. 5. Amplifier-end damping voltage by test cable and frequency using Maplin mosfet amplifier. Notice the diverging behaviour of this amplifier compared with Fig. 6, at the higher frequencies.

Fig. 6 . Amplifier-end damping voltage by test cable and frequency using D. Self's bipolar amplifier. Notice the diverging behaviour of this amplifier, compared with Fig. 5, at the higher frequencies.

terminals. This is added to improve stability with reactive loads.

All inductors have an inevitable level of distributed self capacitance - several picofarads in value - effectively in parallel with the inductor. The capacitance of printed board tracks from the inductor's terminals, also appears effectively in parallel with the inductor. Depending on these inductance and capacitance values, the combination will 'parallel' resonate at some high frequency. At frequencies above this resonance the inductor will act as a capacitor and its effective series impedance reduce with frequency increase.

At frequencies below this resonance, the output inductor and Zobel Network should reduce the level of rf signal measured in the feedback loop, compared to that injected at the amplifier output terminals.

The level of rf measured at the amplifier output terminals depends on the amplifier's effective output impedance combined with the characteristics of the cables and speaker used, at these rf frequencies.

My previous articles measured cable characteristics and amplifier output impedance for two representative amplifiers⁶ but only to 100kHz. These measurements were repeated with frequencies extending from 1kHz to 1MHz, to clarify the working impedances that need be considered, Fig. 1-6.

The rf millivoltmeter measurements show the average of the signal levels involved. Since these also include amplifier and other audio frequency noise sources, a means to identify signal levels by frequency is needed. Obviously an rf spectrum analyser is ideal, however a wavemeter will suffice.

As a minimum, a wavemeter requires only an air-variable capacitor and suitable low loss inductor, housed in a fully screened enclosure, used as a pre-selector for the rf millivoltmeter. The variable capacitor must of course be fitted with a suitable reduction drive and dial to facilitate retuning to known frequencies. (see box 'What is a wavemeter?').

Having a Muirhead precision 50-1250pF air variable capacitor, with precision reduction drive fitted with a four-digit readout dial, already housed in an extremely substantial diecast case, I needed only to add the inductor, coupling capacitor and two BNC connectors. A frequency calibration chart, using my rf generator together with off air signals picked up by a 1m square-loop aerial, was quickly plotted.

My Self amplifier was already housed in a

Table 4. RF voltage levels, in millivolts, within the two power amplifiers tested, measured using oscilloscope probe. Signal generator output was applied to the amplifier output terminals with level set to 10mV, measured at pc board output pads (V2).

Measuring point	D. Self a	Maplin am			
	900kHz	1000kHz	1100kHz	900kHz	1
Amplifier terms. V1	11.2	11.4	11.3	10.8	1
At pc board out. V2	10.0	10.0	10.0	10.0	1
At Zobel network V3	1.26	1.4	1.55	7.1	7
Self Tr ₃ base V4	0.41	0.52	0.66		
Maplin Tr ₂ base V4				0.48	0
	Measuring point Amplifier terms. V1 At pc board out. V2 At Zobel network V3 Self Tr ₃ base V4 Maplin Tr ₂ base V4	Measuring point D. Self a 900kHz 900kHz Amplifier terms. V1 11.2 At pc board out. V2 10.0 At Zobel network V3 1.26 Self Tr3 base V4 0.41 Maplin Tr2 base V4 0.41	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Measuring point D. Self amplifier 900kHz 1000kHz 1100kHz Amplifier terms. V1 11.2 11.4 11.3 At pc board out. V2 10.0 10.0 10.0 At Zobel network V3 1.26 1.4 1.55 Self Tr ₃ base V4 0.41 0.52 0.66	Measuring point D. Self amplifier Maplin a 900kHz 1000kHz 1100kHz 900kHz Amplifier terms. V1 11.2 11.4 11.3 10.8 At pc board out. V2 10.0 10.0 10.0 10.0 At Zobel network V3 1.26 1.4 1.55 7.1 Self Tr ₃ base V4 0.41 0.52 0.66 0.48

coil winding or a low value capacitor

method used.

The wavemeter circuit used here incorporated a 50-1250pF air variable capacitor and a 47pF coupling capacitor. Since they were to hand at the time, for frequencies below 1100kHz I used a 55µH air core, switching to a 25µH air core for the higher frequencies

Table 3. Wavemeter measurement of rf pick-up at output terminals of D. Self amplifier, with wavemeter used to select individual transmission frequencies. Workroom location as used for distortion measurements, also listening room amplifier location for comparison. Field strength measured using a 1m square single-turn loop aerial connected directly to wavemeter. All cables were 4.9m long. Cable under test

Coaxial styles 75Ω Cat. 500 75Ω CT100 50Ω RG58C/U 50Ω URM67 3mm Mk I 3mm Mk II Fig. of 8 styles 2192Y bell wire 42 strand 42 strand modified 79 strand 2mm twin special Supra-Ply 2.0

Loop-antenna field streng Using D.Self amplifier wit

With 8.20 termination or

old listening-room cables

Detailed on page 124 of the February issue, the MkI and II cables are custom fabricated, very flexible and less than 6mm in diameter. The MkII has a 19-strand, 0.45mm inner wire insulated with polythene with a 3mm outside diameter. Its outer braid is 240 strands of 0.127mm wire. Heat-shrink tube provides overall insulation. MkI is identical, except for its 37 strands of 0.32mm inner core.

COMPONENTS

What is a wavemeter?

Essentially, a wavemeter consists only of a tuneable parallel circuit of a low loss variable capacitor with a low loss inductor. One common connection is grounded to earth and the circuit is loosely coupled to the antenna system. This loose coupling can comprise a tapping on the coil winding, a coupling

Wavemeter, comprising tunable parallel circuit, is loosely coupled to the antenna system.

between the 'hot' common connection and the aerial.

When used with higher impedance antennas, very high Q can be attained with tight frequency discrimination. Small single-turn loop antennas - especially when connected to the low impedance of an audio amplifier/speaker system - will achieve low 'Q', with consequently broader tuning. This is regardless of coupling

Due to its high input impedance, I was able to connect my rf millivoltmeter directly to the hot end of the tuning capacitor.

	693kHz (µv)	909kHz (µv)	1053kHz (µv)	1152kHz (µv)	1395kHz (µv)
	41	51	110	42	45
	40	52	106	40	44
	42	52	115	40	40
	41	52	105	44	46
	42	53	113	44	46
	41	54	113	46	46
	56	60	520	91	157
	56	62	540	96	170
	56	63	560	112	180
	59	63	570	100	173
	56	62	520	91	163
	58	63	560	86	152
ly	32	35	52	34	33
gth	2200	2500	20 000	7600	8200
th					
;	320	520	5600	1050	1300

COMPONENTS

Table 5. Wavemeter measurement at 1053kHz of rf pick-up at D. Self amplifier output terminals. Using figure-of-eight cables in balanced and un-balanced configuration to connect to loudspeaker system alternately to 8.2Ω dummy loudspeaker load. Balun transformer made with 30 twisted bifilar turns of 0.5mm wire, wound on TMC107523 toroidal core, which was un-balanced using removable link from earthy output to one wire of figure-of-eight cable. Cables 4.9m long.

Table 6. RF millivoltmeter measurements, in microvolts, of pick-up with amplifier replaced by dummy amplifier loading network of output inductor with 10Ω shunt resistor, a Zobel network and 0.033Ω termination resistor. Measured at this dummy load, with crossover or cable screened in turn, to determine proportion of noise pick-up due to crossover/speaker and cable under test. Shows excessive rf pickup with figure-of-eight cable. Cables 4.9m long.

Cable under test	In normal use	W. Xover screen	Cable screened	Both
Coax styles				
75Ω Cat. 500	54	47	26	19
75Ω CT100	52	46	30	20
50Ω RG58C/U	45	40	20	16
50Ω URM67	45	40	22	20
3mm Mkl	40	33	20	15
3mm Mkll	40	36	20	15
Fig. of 8 styles				
2192Y bell wire	440	420	30	22
42 strand	460	430	35	20
42 strand modified	710	660	40	25
79 strand	420	410	26	20
2mm twin special	265	255	29	21
Supra Ply 2.0	280	260	20	16
Termination only	16			

substantial aluminium screened case. I measured the wavemeter output, for five of the locally strong medium-wave frequencies, at the amplifier output terminals with the amplifier powered but not driven. The rf pick-up from the twelve test cables and speaker system, was measured using the same cable locations and orientation as for the distortion measurements, Table 3.

This wavemeter/amplifier measurement system was also used to measure the signal levels picked up by the old cables in my listening room. These were significantly higher due to increased cable lengths, the cable's direction and proximity to the ring mains.

Having established the frequency and voltage levels at the amplifier terminals when used with the various test cables, attempts were made to measure similar signals within the amplifier. Obviously should its output inductor sufficiently block these signal levels from entering the amplifier. In this way, the rf signals could not cause any audible intermodulation distortion.

With my rf signal generator set to a test frequency of 1MHz, I used HP9100 oscilloscope probes to connect the test points to my rf mil-

livoltmeter. With the signal generator output applied to the amplifier output terminals and signal level set to 10mV measured at the amplifiers pcb output pads (V2), I measured 1.4mV at the 'Zobel' network and 0.52mV at Tr3 base, of the Self amplifier. Having established that for this design a measurable rf level can be found within the feedback loop, the measurements were repeated for 900kHz and 1.1MHz, then with the Maplin amplifier. Table 4.

Having now confirmed that rf signals picked up on speaker cables can intrude within the amplifier, and that this rf level differs substantially between figure-of-eight and co-axial cable styles, how are these signals picked up? Just what is the pickup mechanism ?

RF pick-up mechanisms

A single-turn loop antenna can be formed by winding coaxial cable around a wooden frame and connecting the outer braid free end to the inner feeder conductor at the completion of the loop. Its termination at the receiver is unbalanced, i.e. the braid is connected to earth. Alternatively an antenna can comprise a figure-of-eight cable partially unzipped, with

each unzipped wire wrapped around one half of the frame, the free ends then being joined to complete the loop. Using balanced termination at the receiver minimises any stray pickup on the cable connecting the loop antenna to the receiver. This balanced termination is important, since any unbalanced figure-of-eight or twin feeder cable will both transmit⁷ and receive signals.

Signal pickup depends on the area enclosed by the loop, and while pickup of higher frequencies is quite good it discriminates heavily against much lower frequencies. The cable/amplifier rf pickup measurements of Table 3 also show similar frequency discrimination

When a figure-of-eight cable is used with a conventional amplifier as a loudspeaker cable, one line of the cable is earthed by the amplifier's 'low' output terminal, the cable is clearly unbalanced. The speaker ends of the cable are terminated by the speaker's rf impedance. Hence the figure-of-eight test cable and speaker system could form a very shallow singleturn loop aerial.

To put this to the test, I wound a simple 1:1 balun transformer, of some 50µH primary inductance, and re-measured the rf picked up by the 42-strand figure-of-eight cables. If the above analogy was correct, I expected a notable reduction in rf when measured with the figure-of-eight cable balanced to earth. versus the same cable deliberately unbalanced. Using my wavemeter set to 1053kHz, approximately half the level of rf signal was measured with cables balanced compared to the same system unbalanced. To eliminate the balun transformer losses from clouding these results, the balun and its connections with the test cable were retained for both measurements. A temporary earth link, connecting amplifier 'low' output to one line of the figure-of-eight cable, was used to establish the unbalanced state, it was removed for the balanced configuration, Table 5.

Regardless of loudspeaker cable used, the speaker cabinet wiring and the inductors used in any crossover network, will also function as antennas with some degree of rf signal pickup. Since speaker and crossover systems vary widely in their construction and thus potential for rf pickup, this has not been investigated other than to clarify the relative pickup levels with my test speaker system.

The methods used were both simple and effective. I decided to measure rf levels with the speaker and cables arranged exactly as for the distortion measurements. Next they were measured with the crossover network screened by a Faraday shield, and finally with the speaker cable similarly shielded. Not having a suitable metal container easily able to contain my test speaker cabinet, or my amplifier complete with the test cables, I needed to simplify the task.

The crossover had previously been moved outside the speaker cabinet for the distortion measurements. Connection to both drivers involved short lengths of 42-strand figure-ofeight cable. Replacing the amplifier with a dummy load allowed the test cable leads to be easily coiled up and screened. Grounding one dummy load terminal ensured the figure-ofeight test cables remained unbalanced at one end, exactly as in normal use.

This dummy amplifier load was made up using a typical output inductor, Zobel network and 0.033Ω resistor to replace the amplifier. A few experiments confirmed my metal wastebin, suitably earthed, served as an excellent Faraday shield.

Using the rf millivoltmeter, I measured the voltage levels at this dummy amplifier load for each of the 12 test cables. First, I measured with nothing shielded, next with the crossover only shielded, then with the cables coiled up and placed in the shield, and finally with both cable and crossover shielded.

In every case, the greatest reduction of measured rf resulted from simply screening the cable, thus clarifying the cable's pickup is the major contributor to rf pickup with my test speaker. While measurable changes were found for all cables, the unbalanced figure-ofeight cables were found to be particularly prone to rf pickup, Table 6.

Coaxial cable definitely is best

June 1997 ELECTRONICS WORLD

Due to the considerable variations in amplifier design and thus potential sensitivity to rf, no attempt has been made to confirm whether these rf signals caused measurable or audible distortions with either test amplifier. However the work published by Paul Miller⁴ suggests this is more than likely with most amplifier designs, given sufficient rf levels.

and are thus best avoided. Using coaxial cables with a conventional inductor output amplifier minimises this rf pickup. When combined with the other benefits already established in my previous articles, there remains no good reason for not changing to coaxial speaker cables.

One final proviso, the output terminals of two amplifiers arranged in a bridge output configuration may be truly balanced with respect to earth. The output terminals of a valve amplifier could also be balanced if neither terminal of the output transformer secondary winding were tied to earth.

When amplifier output terminals are balanced to earth at rf, to be effective in reducing rf pickup, coaxial cables must be wired correctly. The inner cores should only be used to convey signal power, with the inner of a second coaxial cable used to return the signal. The amplifier end of each braid should be connected to earth, providing a Faraday shield for each signal conductor.

With a conventional amplifier system, the coaxial cable inner wire is connected to the 'hot' terminals at the amplifier and speaker system, with the outer braid connected to both

& D Type: AD3522 FFT Analyzer + Besilts Printer	Free E300	and the second
anizen Uzygen Analyzer aritze Type: AIS420A Keteerk/Spectrum Analyzer Ne. 30400		nennemp satisfivityE175
ter and the second second second second	Marcoal Type: 2958 TACS Unit	Kettaley Type: 175 4.5 Digit Irus RNS AC Measuraments
The second start the pain of the branching second start the second start and the second start	0-99d8E180	Kalthlary Type: 2000 6 5 Digit. Teo many functions to list
& # Type: 2033 High Resolution Signal Analyzer £2804	Norda Attenuator 4-86Hz 0-4068	(cs new)
ntea Type: 2075 Noise Gain Analyzar + Noise Generator L185 n nl. 1853+	Narda Type: 8291 Hocho Rogeck Lackage Menter (broad rows in cosa) F250	Schlundbarger Type: 7055 Systems Votusiar
amell Type: 2085 Audio Frequency Power HaterE004	Padille Monsoressents Type: 1038-H13 Complete	SIGNAL GENERATORS
P435A Power Mater + Lood + HP8481A Power Sensor 1	Analyzer, System, Detectors included + 1038-V12 (2 off)	Constantion Amplitude, Frequency, Phase & Pube
erowert to 190mm, 10MH2-186H2	Rocal Down Type: 9303 True RMS IF Lavel Mater +	Modulation, 50 wett Reverse Power Protection, 90 Non-Valetile
3 nonewatt to 10 microwatt + HP Rel Attenuator	E800	Memories, Digital Disploy
P436A Power Mater + Lood + HP8481A Power Sensor	Recal Type: 9009 Automatic Medulation Mater	300KHz-450MHz. Comprehensive Amplitude, Frequency,
microwoff to 100mW, 10Minz-186Hz	Reed Desa Type: 9008A Literatic Nedulation Natur	Phase & Pulse Modulation. Ratary Control. 50 watt Reverse
P7740 Dual Directional Coupler 215 450MHz E200	1 SMH2-26H2	Fower Protection E700
P775D Deal Directional Coupler 450-9408Hz E200	Receil Type: 9301A True UNS EF Millivolmeter. E250	300KHz-1300Mitz (Fraguency Deabler Fitted) -
P7780 Deci Deschonel Coupler D.1-26Hz E354	International FS00	Details same as aboveE1400
P3571A Trocking Spectrum Analyzer 10Hz-13HHz	Redford Type: LDHS2/2 Low Distantian Measuring Set +	Formell PSG520 Synthesized Segnal Generator, 10-5209/Hz.
P3575A Goin Phese Mater 1Hz-13MHz	Lew Distortion Oxflator LD04E350	City, AM, THE Decide Prequency Reds-Out. Index & Demary Departies 6350
P3580A Spectrum Analyzar SH2-SOEHz E300 P3E817 Calastian Valuentus LEVIS GMVHz C050	Robio & Schwertz Type: ESHZZ1 Current Prote 901: 2000 Manual Room - 30 to 120-00 F300	Farmell 55G520 Synthesized Signal Generator 10-520MHz
P3582A Spectrum Analyzar 0.02Hz-25 599KHz Dual	Robde & Schwartz Type: ESH2Z2 Active probe	CW, AM, FM. Decode Frequency Read-Out. Sinad Facility.
annel Dynemic Signel Range features include Transfor	9KHz 30MHz Level Ronge 20 to 120dBull	Remark 70198 Sumburned Grand Constructor
nction Magnitude, Phase, Coherence, 0.027/z Resolution	Robbe & Schwartz Type: ESHZZ3 Passive Probe	BORH2-10408Hiz, Reverse Power Protection up to 50 Wath.
P3710A + NP37028 + HP3705A + HP3716A	Signates Pagalatessor Type: D2155 Level Meter	Comprehensive Amplitude, Frequency & Phase Modulation.
Militz IF Microwovs Link Analyzar	200Hz-620KHz + W3155 Tracking Outliator	Mannery Fechines, Digital Display
PS005B Signature Multimeter	Serry/Tektronix Type: 308 Date AnalyzerE300	10-520MHz, AM, FM, CW, Androsue Display. E370
P3423A Studiet Dynamic Analyzer	10Hz-20UHz E1200	Rocal-Desa 908291 5-520Mitz Signel Generator
scribed by both Magnitude & Phese 1-1000MHz	Spectral Dynamics Type: \$0375 FTI Spectrum Analyzer	AM, File, CW, Digital DisplayE400
P8410A Mainframe Network Analyzer Unit	E2800	r/w Rocal 99344 GPR Interface Dialted Disalary FASD
P8411A Removed Convertor 0.11-12.4081	AA302 Current Probe Callor Annual Probe	Systron Denner Model 1702 Signal Generator Audio
P\$413A Goin/These Mater Plup in E350	Toktroafs Type: WM490V Wavaguide Misser 50-75GHz +	1000MHz, Decade Frequency Reed-Out. E650
P8414A Poler Display Plug-In	Diplozar External Mixer Port No 015-0385-00 E1200	Tanad Outlighter, Wide Band Fill for Satellite Volen
P8418A Auxiliary Display Holder E154 P84188 Auxiliary Display Holder C154	Laser Position Transform Electronic C/W Loods E3250	5.4-12.4GHz
P84708 Crystal Detector 8 01-18GHz APCT Connector	DIGITAL VOLT METERS	HP86568 Synthesized Signal Generator 1008Hz-999MHz
cand new)	- AVO & NOT Analogue Scole Military Yersion	Output Levels of -12/dilm to +13dilm. CW, Hill or Combination 69750
P8740A Tratsmission Test Unit	AVO 8 MIKS, 6, 7 From £75	Telstronix 191 Constant Amplitude Signal Generator.
P87424 Reflection Test Set 2-12 45Hz E350	Cropice Type: DO4 Ohns Mater 10 micro ohm to 2 kde ohm 4 Wex Management	350KHz-100MHz Sine Wave
P8743A Retwork Anolyzar Transmission Test Sat	Detron Type: 1061A Options 10 + 20 Fitted Autocal 6.5	Tektrealz PG502 10Hz-250MHz Putsa GeneratorE325
12.4GHz E350	Digit 90 Day RCV Specifications to +/ 28ppm 200	Tektronix P0508 0-50MHz Pulse Generator 6250
PEGG1 & Modulation Analyzer 4 - Schwitz, 13004Hr Macoures	2 Wire 2. 4 Wire Resistory Convertion Opt 20 -	Teletronic PG504 .001Hz-408Hz Function Generator .E375
I/FM IF Frequency, IF Power completely autometic. E2500	Detres Type: 1061 Options 10, 40 & 50 Fitted Autocal	Tektreniz PG502 .1Hz-118Hz Function Generator
P11691D Directional Coupler 2-18GHz (as were)	5.5 Digit Opt. 10 = True BMS AC Convertor, Opt 40 =	HPB0058 3Hz-10HHz Polse Generator Adjustelia Delay
P11692D Dubi Directional Couplet 2-16682	Comprehensive Ratio + Reor Input, Opt 50 =	Width, Rate str
P11722A Sensor Module 50 OHM 10 microwath to1 with EPOA	Datres Type: 1071 Antocal Digital Nutrimular	HP8008A Pulse Generator Repetition Rate Variable from
P35650 System Comprising of HP356528 102.4KHz Input	Flotus Type: 8520A 5.5 Digit AC/DC Volty/Ohms	HPB015A Pass Generator Titz-SOMIT: 30 Yelt Owner C500
Idule (4 ett) + HF35653A SOCH2 Source Medule + PIS6518 Interferen /Second Processor EPOI	E450 Ebde Turner 86001 & 5 Dirit Led Burdeut	HP8112A Pube Generator SGAIHz E2500
P price in excess of E20,000III	Yelts/Ohms/Current	LF & AUDIO GENERATORS
P356778 5 Parameter Test Set 100KHz-200MHz _ E1500	Flaka Type: 8050A 4.5 Digit AC/DC/Valtu/Amps/	Fernell Synthesized Signal Generator Type: DSG-2
C Type: RUZ/9003R Celuior Test Set	62 Yologe E120 Flate Tuner 68108 5 5 Diet Hubinster 2125	Famal Outlinter Type: LEM-2 (5-1000Dty
arcomi TF2370 30Hz-110MHz Spectrum Analyzer EB50	Flake Type: 73 3.5 Digit Autorenging LCD Display	Sina/Square Wave E65
arcoal Type: 8938 AF Power Mater 300 microweth to	HP3455A 5.5/6.5 Digit, Digital Yohmeter£530	Ferroell Synthesized Generator Type: DSG-1
woffs, frequency 20Hz-35KHz, 48 impedance Ranges _£250	NP3456A 6.5 Digit, Yolty/Ohms Mater	Sine/Square Nor: Julgat E175
million 1 pper 2010 into this remains site 25881	Keitidev Type: 179 Trie RIG Multimeter 4.5 Divit C120	High Output Level Law Distortion

COMPONENTS

However, these signals cannot be beneficial

the amplifier and speaker 'cold' terminals. This completes the return path while shielding the amplifier's hot output terminal from rf pickup.

In summary

Having brought this anomaly of noise signals to a conclusion, work is now proceeding rapidly to refine the MkII coaxial cable design to give even more improved performance, reduce materials cost and improve ease of manufacture.

References

1. Bateman, C, 'Speaker Cables', Electronics World, Feb. 1997, pp. 119,124. 2. BBC Engineering Information, Villiers House, The Broadway, Ealing, London W5 2PA. 3. Radio Authority, Holbrook House, 14 Great Queen St, Holborn, London WC2B 5DG. 4. Miller, P, 'Resonances and Repercussions', Hi-Fi News & Record Review, June 1989, pp. 35,37 5. Brown, I, 'Silent Problems', Letters, Electronics World & Wireless World, Feb. 1994 p. 125. 6. Bateman, C, Measuring speaker cables,

Electronics World & Wireless World, Jan. 1997. p. 55.

7. Aerials, feeders and arrays, sect. 37, Admiralty Handbook of Wireless Telegraphy, HMSO.

8. Reference Data for Radio Engineers, Sams,

section on Electromagnetic wave propagation.

and an Config Searchis Particle	HAR FINIT FOR THE THE PARTY	Summer 11 Cel Roy Tays 1789 Coders Middamore 1988	
Add Speciations Ruled 1201 2008 (Photo Photo Phot	IN AF Signal Generator Type: HTE 15-SWAR	Digitizing, 17.365 lise little, 108 System, Histogrames, 678	7851 Delaying line Res. LTZ. 78516 Ruel Tres Res. 107697. 210
Interface CAMP WATTU SSS114.4 Addit: Lewisch, bud Connel. 278.2 The South Control of Contro Control of Control of Control of Control Control of Control Contr	bal Specialities Model 8201 20MHz Pulsa/Function	NPS4501A 100MHz Digitizing £1850	7870 Time Base 2009Rr C28
pa I and Generative Type 7 18/12 22 Particle Generative Type 7 18/12 22 Particle Genetive Type 7 18/12 22	E600	IWATSU SSS416A 400Hz Bundeleth, Dool Channel,	7860 Timo Basa 400MHz Dalayad £12
3.000000000000000000000000000000000000	ps Fanctine Generator Type: PIII5132	Delayed Samop E200	7885 Time Bose 40GMHz Deleyed£14
1.2020 is a Bindmark Amerikan Series 695 1.2020 is a Bindmark Amerikan Series 695 1.2020 is a Bindmark Amerikan Series 600 1.2020 is a Bindmark Amerikan Series 600 1.2020 is a Bindmark Amerikan Series 600 2020 is a Bindmark Amerikan Series 600	J Tomoleter Decede Occiliater Type: TCAAA	What Memory Length Memory Scipe, 8 St X 40/19 Wood Memory Length	7887 Digital Time Base 400MHz
 Bergel A. D. Gelfare Type 2000 2005; Bergel R. D. Schling Manuell, and Schling Manuell. 2014 (1998) Bergel R. D. Schling Manuell, and Schling Manuell. 2014 (1998) Bergel R. D. Schling Manuell, Schling Manuelle, Manuelle, Schling Manuelle, Schl	a-1 72MHz Low Distortion E95	IWATSU DIA2350 Disitol Memory Unit. 10 Bit. 2005 6400	7091 Logic Andryzu E19
andy (and performing) (1) 4 Answerter (1) 4 Stranger (1) 4 Strange	tool AF Oscillator Type: 2000 20Hz-20KHz	IWATSU SASB130 Woveform Analyzer. DC-3500MHz Dual	7B10 Girild Courts Dainy that
J. Bandmard Manualtr. 253 Profiler (1920) 253 Profiler (1920)	mely Low Distortion. 111dB Attenuator. (0.1dB Steps)	Channel, 10 Bit x 1024 Word Momory Each Channel£1500	7011 Dialtal Dalay Unit ES
312 A function from proceeding Table (1996) P323 A product (1997) Page (1983) P323 A product (1997) P323 A product (1997)<	P Ronifered Alternation 10 Contrillion E23	Phillips PALSZ17 SOURI Bandwidth, Duol Chennol,	7092 Personality Modula PH100 Series
333.5 Synthesized Lang Learners (Righ Parliments) 253.6 Synthesized Langelow (Linker)	117.6 Function Conversion Conversion California	Phillips PM3360 2000407 Resolution Day Channel	7D20 Programmable Digitizer
Lis CM175 Signar, 401040.10081, Buncheich, Dud Channel, E75 Diff. Signar, 401040.10081, Buncheich, Dud Channel, E75 Signar, 401040, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 401040, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 401040, 10081, Buncheich, Dud Channel, E75 Signar, 401040, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 401040, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 401040, 10081, Buncheich, Dud Channel, E75 Signar, 401040, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 401040, 2010, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Signar, 401040, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Signar, 401040, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Signar, 401040, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Signar, 40104, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Signar, 40104, Signar, Buncheich, Dud Channel, E75 Diff. Signar, 40104, 10081, Buncheich, Dud Channel, E75 Diff. Signar, 2714, Signar, 10081, 10081, 10081, 10081, 10081, 100	335A Synthesized Level Generator (High Performance)	Digitizing, Auto Set Up, 175PS Ilise Time	OF1 Osplay Formatter ES
255.5 Synthesize function Called Table (1996)	£3475	Scopex 4D10A 10MHz Bandwidth, Dual Chamel	TCLL Committee Link
11 and	325A Synthesizad Function Genarator	Talstreets 453 508Hz Bondwidt, Duel Channel,	ST Semeling Hard 10000Hz E154
1 C (Marcel Instance 110 Device Grave, Internet, State 110 1 C (Marcel Instance 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grave, Internet, State 110 1 Sin Coldine 110 Device Grav	EI SOO	Tubtrady 6658 + Dilles 100MH+ Bradwidt	TEXTRONY MAINCRANES
13 Fill Staff Colling, 1989. 1988. 1988. Fill Staff Colling, 1988. 19	& Calibrated Attenuation E150	Duci Chennel, Deloved Surge FACO	7403H 4GMH) Mathema
L CFS Diskyof Swag CFS Totality Biology Swag 76.31 (2008): Biology Swag 76.41 (2008): Biology Swag 7	18 Test Oscillator 10Hz-10Mitz 50 ahm & 600 ahm	Tektronix 465 100MHz Bandwidth, Deal Chansel,	7603 100MHz Mainframe E27
sa versum rome nacions venseres versus-4000; san versum rome nacions venseres versus-4000; sense There of the 2017 Product Advances (2017) and the advances of the 2017 Product Advances (2017) and the advances of the 2018 Product Advances (2018) and the 2018 Product Advances (2018) an	E95	Delayed Sweep E350	7633 103MHz Mainframe (Fest Starage)
Control of control of control Control of Control Control of Control of Control of Control of Control of Control Co	A version rhose Function Generator 0.005Hz-600Hz	Televel Survey	7704A 2004litz Moinframe E35
And Hubble 115 Sursey, Fractic Generator 9-Sett Differed Sursey. LSOB Provide Support	Leaves Collegial Press Official Control Adjusticity	Taktreats 4758 250Mits Bandwidth Dad Charmal	7834 4000412 Maintrane (Digital Skoroge)
g	otel: Model 185 Susse/Function Generator 0-SMitz	Delayed Survep	7994 Sound administration
nehr Madel 1027 Forega Generatin 1420881; Targer 37 N - 2004 Targer 37 N - 2004 Tar	eg6150	Taktroniz 464 100MHz Bandwidth, Dual Channel, Delayed	POWER SUPPLIES
Hange J-J and Caster List Schwarz Providen Spectra Schwar	stuh Madel 1067 Sweep Generator 1-400MHz	Several, Storage E400	APhills Type: 8559 Propency Convertor South Propency Ensure 45 5081 55 4541 370 4309 P154
State Construction	Empi +5/ In -/ climit. E400	Teletroniz 77134 608Hz Sendwidth, Duol Chernel _ £350	Fernal Type: N60-25 0.60V 0.254 Volts/Current
neal Rhodel 149 Sneps Generater 2000/219: 10012; Tris Rhodel 149 Sneps Generater 2000/219: 10012; Tris Rhodel 149 Sneps Generater 2000/219: 30012; Gonzi 1223 Synthesized Facultus Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1223 Synthesized Facultus Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1223 Synthesized Facultus Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1223 Synthesized Facultus Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1223 Synthesized Facultus Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1223 Synthesized Facultus Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1223 Synthesized Facultus Internet, Tris Cheman, Tris Synthesized Facultus Internet, Tris Cheman, Tris Cheman, Tris Synthesized Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1220 Synthesized Facultus Internet, Tris Cheman, Stephen 2000; Gonzi 1220 Synthesized Facultus Internet, Tris Cheman, Tris Cheman, Tris Cheman, Tris Cheman, Tris Cheman, Tris Cheman, S	imity 1847 FASO	Daleved Susan F700	Material New £400
P C130 Diaryof Sense, Caren, Sandard C145 United C145 Corput	stelk Model 147 Susap Generator 9.0005Hz-10MHz	Teletroniz 2245A 100MHz Benchridth, Four Channel,	Fernell Type: H60-50 0-60V 0-50A Yelts/Correct
net al. Black 1 145 sense Gewarder 3002115: Solite: Telef Walk 2445 1 Silite: Encloselity. For Chann, Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 3 VP 5307 6 Silite: 146 Mark Internet. 411 Hermit Type: 130/108 1 VP 540 Mark Internet. 411 Hermit Type: 130/108 VP 540 Mark Internet. 411 Hermit Type: 130	r	Delayed Senep,, Curson, ReadoutE1450	Natered
Oversite Just Links Provident J 228 Systemation function for the second	otak Model 164 Sweep Generator 9,0003Hz-30MHz	Teletroniz 2445 150MHz Bondwidth, Four Channel,	Formall Type: 030/20 0-30V 0-20A Nor MeterodE150
Hito: Differed Sense; Conver, Stellowith C2236 Ferrall Type: 107-320 (1ph Donad) Fill Differed Sense; Conver, Stellowith C2236 Fill Differed Sense; Conver, Stellowith C2236 Fill Differed Sense; Conver, Stellowith C2236 Fill Differed Sense; Conver, Stellowith Canver, Differed Sense; Fill Differed Se	atch Badal 1778 Southaring Exection Consulty	Taktenale 74458 20100 Renduith Four Channel	Natural Participation of the state of the st
1005C0555 Textimute 3234 102816 Endwidth, Fee Clannel, Delynd -77.4 × 5% - 177.1 Kingder Franklag -71.4 Kingder Franklag 05320 2016: Indwidth, Dud Clannel, Textimute 3234 102816 System -72.4 × 71.53.4 05490 2016: Indwidth, Dud Clannel, Textimute 3234 102816 System -72.4 × 71.53.4 05490 2016: Indwidth, Dud Clannel, Textimute 3234 102816 System -72.4 × 71.54.4 05490 2016: Indwidth, Dud Clannel, Textimute 325.4 Textimute 324.4 × 71.54.4 × 71.54.4 -70.4 × 71.54.5 05490 2016: Indwidth, Dud Clannel, Textimute 325.4 Textimute 325.4 Textimute 325.4 × 71.84.4 × 71.04 -70.4 × 71.54.5 05490 1010: Indwidth, Dud Clannel, Textimute 325.4 Textimute	1Hz-13MHz E900	Dalayed Swees, Carsors, Readout E7350	Fernali Turse: TOPS30 Triple Output 4-6V, 64.4 -5 to
0.05260 2011: Markells, David Consul. CESS Ferral Type: 127/16 C 1776 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 127/16 C 1776 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 127/16 C 1776 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 127/16 C 1776 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Markender 0.05260 2011: Markells, David Consul. CESS Ferral Type: 1270 VAI Mar	LLOSCOPES	Tektroniz 2336 100MHz Bondwidth, Four Channel, Delayed	-17 & +5 to +17V. 1A Dipolat Trucking. £120
1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033300 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 1033000 10330000 10330000 10330000 103300000 10330000000000000000000000000000000000	S OS300 20MHz Rendwidth, Duel ChennelE125	Server, Ruggardiad E850	Farnali Type: L12/10C 0-12V 0-15k Hatered
al Soreg	d OS3500 60MHz Bandwidth, Duai Channel,	Fox Inc. 1/04A Materia + /AZ0 + /553A Plos inc 700Mills Codem CAD0	Fernall Type: £350 0-3507 0-200mA 6.37 & 57 AC
Construction C100	ed Sweep E275	Tektronix 7623A Maiefrenze + 7A26 + 7A18A +	Farmal Taxas 19100 /00 Environments Prove
4 Silfs: Londenth, Dad Commi. [215] Taffwrdir, 7946 Mathiamer + 7824 + 7885 Farler 2981 (2081) School School Description 9 MI2 72 Still: Macheldh, Dad Commi. Frage Mill 2081 (2081) School Description Frage	Sternes E150	7892A Plug-lan 200MHz System (Storage)	Supply 3KW 100V 904 £1100
μ RA112 Scalin: Joudokh, bod Chamal, 1140 μ RA12 Scalin: Joudokh, Joud Chamal, 1140 Life angle Joudokh, Joud Chamal, 1140	ck 158Hz Bondwidth, Daol Chonnel	Tohtronix 7904 Mainframe + 7A26 + 7887 + 7885	Fernell Type: MP30/80 Requisted Autoronging Power
NU255 Statistic Induction, Doc Commil. Table Statistic Induction PLAN Statistics PERS 118. doc Void	g HAL312 208iHz Bondwidth, Duol Channel	Plug ins 2008/82 System	Supply 1KW, 30V, 80A ESOS
Constant	g HIR705 604Hz Bendwidth, Duol Chennal,	TBRS Flow Inc 400MHr Sectors (Dialto) Storage) C1100	HP6002A 0-50Y 0-10A 200W AutorengingESO
Component Component <t< td=""><td>W VCAALLANKER Bandwith Duri Channel</td><td>Tektrunix 7704A Matefrane + 7A18 + 7885</td><td>HP62615 0-201 0-504 Materia</td></t<>	W VCAALLANKER Bandwith Duri Channel	Tektrunix 7704A Matefrane + 7A18 + 7885	HP62615 0-201 0-504 Materia
963 5000000 2000 Tailwhardt 14401 Beginning (Mehrman) 2580 Kall 14401 Beginning (Mehrman) 2580 2580 </td <td>Storpes ES50</td> <td>Plug-les BOMHz System</td> <td>Kence Type: ATE75 /All 0.75V 0.3A Meteral F120</td>	Storpes ES50	Plug-les BOMHz System	Kence Type: ATE75 /All 0.75V 0.3A Meteral F120
VAA 102kt 12 beskelt, Dud Clenni, Seed, Clean Clean, Cl	958 S000tz Bandwidth, Dusi Channel	Teletrentz 11401 Digitizing (Acimirana) E500	Kopen Type: ATE75/158 0-75Y 0-154 Materiad
5 average 2130 21330 2130 2130	40A 100MHz Bandwidth, Dual Channel,	Telemisment D63 Meinhams + Officiation Analities Y3	Lambda Type: LK362 0-60V 0-25A E180
Office are subset of production production Calo Philip P1310 2330 61 Additional P1310 Calo P1310	ATA 100889 Read-off Turk Changel	£150	Lambde Type: LQ523 0-60 0-0.94
254.1 2016 bencheft, Dad Gonell, CS00 CS00 PAIL 1 Service 1 All Long 1 Control (Long	ad Sarong & Storoge E300	Trie CS1366A 206Hz Bondwidth, Duel Chennel	Photos PEISTO D-JSY 0-1A Metwood E35
ad Seep	25A 27SMHz Bondwidth, Qual Channel,	TERTRONIX PLUG-INS	0.30V 0.24 halated/Percelal/Series/Teachine #100
1.0. Mathemase + M*183X bott Content Verticial 7.812 Doub Trick Angliebe 1120ktr. E120 Mathemase + M*183X bott Content Verticial 7.812 Doub Trick Angliebe 1120ktr. E120 Mathemase + M*183X bott Content Verticial 7.812 Doub Trick Angliebe 120ktr. E120 Mathemase + M*183X bott Content Verticial 7.812 Doub Trick Angliebe 120ktr. E120 Mathemase + M*183X bott Content Verticial 7.812 Doub Trick Content Angliebe 200ktr. E120 Weith Types C4587 - 200ktr. E120 Weith Ty	e 5weep	7A11 Internal Probe Amplifier 1508Hz	Welr Type: 413 0-7.5Y 0-15Y 0-30Y 0-44 (mm)
Notice + 1972-153 Calify County County Calify County <	1 A Mateframe + KP1805A Duci Channel Vertical	7A12 Duot trock Amplifier 120MHz E120	Meterad E43
1.8. Blackmann + VP101A hold Consol Vertical 73.153 Single Downley Integritery 2001 Consol Lengther 200 Consol Lengther 2001 Consol Lengther 2001 Consol Lengt	for F300	7A154 Sends Channel Amelifier \$000/2 Can	Wair Type: 460 0-60V 0-1A Materod
in SMM-+ 491830CTms Ros Lint. 2259 7A164 Sigi Convol Angellar SSM:- £110 and the SSMS SMS SMS SMS SMS SMS SMS SMS SMS S	1A Malaframe + HP1801A Duci Chancel Vertical	7A15N Single Channel Amplifier 75MHz	Wallis Hivel Type: CT507 0-30KV DC Leokogo Current
1 A machines - MY 1904 A Clemen Angline / 1418 Dod Treak Angline 7 Mitt. C73 97 117525. The loss & Buly Generative	er SOMHz + HP1820C Tens Rose Unit	7A16A Single Channel Amplifier 275Miltz £110	Brand New & Rezed DC Person Sundy Unit Tonas
CK Mitchefmann + HP1810A 1000Mitz Flug-in FA19 Single Gannel Araphine / Single Gannel Araphine / Single Gannel Araphine / Single Single Fantel Type: R81030/35 Electronic Leel Micromen E300 7A25 biol Gannel Araphine / Single Fantel Type: R81030/35 Electronic Leel Micromen	1A Malefrane + HP1804A 4 Chennel Amplifier	7A18 Ded Trees Amplifier 75MHz	DF173 LCD Depley 0-30Y 0-34
ine) E300 7A26 Dod Germal Amplifier 200Mits E125 Farmed Type: RB1030/35 Electronic Lood Meximum	* HIT IS 254 1996 BER & Daily Constants	TATEM Date Manual Amplifier ADDING COM	DC LOADS - ELECTRONIC
	ine) F300	7A26 Duci Channel Amplifier 200MHz E125	Fartiell Type: RB1030/35 Electronic Loed Maximum
1110 SQNUHz Digitzing (Colour Display) 1GHz 7A42 Logic Triggured Vertical Amplifier 4 Chennel Batting 110W 35A 35V	1110 SOMHIZ Digitizing (Colour Display) 1GHz	7A42 Logic Triggured Vertical Amplifier 4 Channel	Reting TKW 35A 35V
e per secondE3450 3584HzE500 Kitural Type: PLZ1002W Electronic Leed Maximum Enting	a per secondE3450	3504Hz	Rikesi Type: PLZ1002W Electronic Loof Maximum Rating

Tel: 01952 605451 Fax: 01952 677978

Applying double-balanced mixers

Darren Conway illustrates how to get the best from double-balanced diode mixers.

ouble-balanced diode mixers are widely used in communications equipment. Their wide dynamic range and relatively low noise has made them a popular choice.

When properly applied, very good results can be obtained with diode mixers, but designing circuits that include them is not a trivial task. The main difficulty with applying the double balanced diode mixer is that mismatch at any of the three ports degrades performance.

These mixers are particularly sensitive to mismatch at the IF port, which results in greater conversion loss and the generation of unwanted mixer products. Ideally, the IF port should be terminated into a post mixer filter with a constant input impedance and a low pass frequency response.

This article uses simulation to compare various designs for post mixer IF filters with the purpose of identifying an optimum design.

Applying diode mixers

The following research was completed as part of the design of a satellite receiver capable of detecting low earth orbital satellites transmitting on about 137.6MHz. The design is an entirely conventional double superheterodyne. Its first intermediate frequency is 37.5MHz selected largely because of the ready availability of cheap and effective SAW filters commonly found in televisions.

Surface acoustic wave filters are physically small, require no tuning, and are easy to interface. The type used features a 3MHz band width. This means that it is also suitable for the front end of a receiver designed for high data rates available from many satellites.

For the first mixer, a double balanced diode type was

selected because of the wide dynamic range and a relatively good noise figure. The wide dynamic range is necessary so that the weak satellite signals can be received in the presence of strong interference from any nearby transmitters. A low noise figure improves the ability to detect and demodulate very weak signals.

Matching problems

The effect of termination mismatch on a double balanced diode mixer is not the same for each port. Mismatch at the rf port is the least problematical, which is fortunate because in many applications it is not practical to match to this port. Mismatch between the local oscillator and the mixer degrades third-order performance but can be improved simply by adding a -3dB 50 Ω pad. The output level of the local oscillator needs to be adjusted to overcome the loss. The effects of having each port reactively terminated are shown in Table 1. Performance is degraded even further if more than one port is mismatched.

To achieve minimum conversion loss through the diode mixer and prevent harmonics reflecting back into the mixer, it is particularly important that the IF output is correctly matched to a $50+j0\Omega$ resistance.

If the term $F_{LO}+F_{RF}$ is reactively terminated, then it will reflect back into the mixer and combine in anti-phase with the local oscillator to produce the terms $F_{LO}+F_{RF}-F_{LO}$, and $2.F_{LO}+F_{RF}$. This causes conversion loss and produces spurious responses.

It is not sufficient to properly match the IF port to the low order harmonics. In order to achieve the best performance from a mixer, it is necessary for the IF port to be terminated with a 50+j0 Ω resistance over an extensive frequency range.

Termination condition	Conversion loss	RF compression level	RF desensitisation level	Harmonic modulation products	Third-order IM products
IF=reactive	can vary ±3dB	can vary ±3dB	can vary ±3dB	can vary ±20dB	can vary ±20dB
LO=reactive	No effect if LO drive adequate	No effect if LO drive adequate	No effect if LO drive adequate	can vary ±10dB	can vary ±10dB
RF=reactive	Typically ±0.5dB for 2:1 yswr	±0.5dB	±0.5dB	No first-order effect	No third-order effect

*source, reference 3

In this application, it means that the post mixer IF filter should be matched to at least 200MHz. Proper matching at higher frequencies is highly desirable.

It is possible to achieve good matching by terminating the IF output with a 50 Ω resistor followed by a post mixer IF amplifier. The problem with this method is that the amplifier applies equal gain to all harmonics in addition to the wanted IF. This increases the risk of over driving the post mixer amplifier and generating additional harmonics.

The diode mixer should therefore be followed by a low pass filter with a constant input impedance of $50+j0\Omega$. Output of the filter should then be matched to the IF amplifier.

Specifying the IF filter

The intention in this application was to find an efficient IF filter circuit that gave the best performance from the least number of components. The desired specifications of the IF filter are as follows:

• A return loss of no less than -20dB across the frequency

spectrum as specified by the diode mixer manufacturer. ● Insertion loss of no more than -0.25dB. The insertion loss adds directly to the noise figure of the mixer and should be as low as possible.

• No more than three inductors. Limiting the number of inductors in a filter automatically limits the filter order and complexity.

• A low-pass filter function with a roll off of at least -18dB/octave. Good frequency roll off is required because the low-order, high-amplitude mixer products are relatively close to the IF.

• Easy to design, build and set up.

Analysing performance

Analysis of the circuits described below was completed using the MicroSim version 6.2 Spice simulator. The quality of the circuits was evaluated using four parameters.

Return loss was calculated using the network of resistors R_{1-4} and a 2× voltage gain block⁷ to provide a voltage across $R_{\rm rl}$ which is plotted as VdB(Rrl).

Ideally, the return loss should be very large across the frequency spectrum, indicating that energy has been efficiently transferred from the mixer output to the filter circuit. A small return loss approaching 0dB indicates that all energy is being reflected back to the source.

Resistor R_c which has a value of $1\mu\Omega$ is used as a sense resistor to measure current and voltage applied to the test circuit. Input impedance is calculated using the voltage and current passing through R_c and is plotted as V(Rc:1)/I(Rc).

The variable $-I_{\rm p}(R_{\rm c})$ measures the angular phase of the input current. Input current phase indicates the reactance of the test circuit. A purely resistive circuit will have zero phase shift. A capacitive or inductive component will cause the current phase to rotate. In this application, the IF filter should ideally be purely resistive at all frequencies.

The frequency response is measured across the load resistor R_1 . All IF filters analysed here have been designed for an IF of 37.5MHz, but the values can easily be modified for other frequencies. Plots of these four parameters are combined on single graphs and fully define the important characteristics of the IF filters under test.

LC tuned tank

The LC tuned tank circuit, Fig. 1 represents a simplistic solution to the IF filter problem that has been used in early receiver designs. It consists of an LC pair tuned to the IF at which point it appears to have a $50+j0\Omega$ input impedance. This is shown in the Spice analysis in Fig. 2, where at

RF DESIGN

Fig. 4. Analysis of the series tuned diplexer, Fig. 3.

37.5MHz the input impedance is 50Ω , the input current phase is 0° and the return loss is very high.

At all other frequencies the circuit is reactive and reflects significant harmonics back into the mixer. The frequency response is particularly poor giving only -1dB attenuation at 200MHz

The LC tuned tank circuit demonstrates all the undesirable features of a bad IF filter. Any receiver that uses this circuit would probably give better performance if the capacitor and inductor were removed, leaving only the 50 Ω resistor.

Fig. 5. IF filter comprising a Butterworth band-pass circuit. One of its useful features is that it displays constant impedance through the pass band.

Fig. 7. IF filter using a Butterworth diplexer

Fig. 8. Analysis of the 100MHz centre-frequency Butterworth diplexer, Fig. 7, shows that attenuation at 200MHz is a modest -18dB.

Series-tuned diplexer

The series-tuned diplexer design is intended to terminate both the IF and the third-harmonic (3.IF) into $50+j0\Omega$ loads. This circuit is designed to provide a resistive termination to the most troublesome low-order mixer products.

Values of the inductors and capacitors shown in Fig. 3 were selected simply to resonate at the correct frequencies. You can see from Fig. 4 that the input impedance is reasonably well matched between about 25MHz and 150MHz. Normally the signals are terminated into 50Ω resistors but analysis showed that 68Ω resistors are required to achieve a 50Ω input impedance.

The plot of input current phase shows that this filter is reactive at all frequencies except one. This characteristic combined with the increasing impedance at higher frequencies means that harmonics will be reflected back into the mixer.

Frequency response is also poor providing only -7dB attenuation at 200MHz. Although this circuit is an improvement on the LC tank circuit, the performance is far from ideal

Butterworth band pass

An IF filter based on a band-pass Butterworth filter appeared to offer some hope. One of the useful properties of Butterworth filters is that they ideally display a constant impedance through the pass band.

Outside the pass band, the impedance increases or decreases depending on the filter topography. In addition, they can be designed to have different input and output impedances.

The filter shown in Fig. 5 is designed with a pass band centred at 37.5MHz and a 10MHz band width. The input is matched to a source impedance of 25Ω defined by the impedance of the mixer and the 50Ω resistor.

Output impedance of the filter is 250Ω , intended to provide some degree of matching to the IF amplifier. The analysis results in Fig. 6 show an improvement in overall performance compared to the previous filters but there are still major flaws with this circuit. The insertion loss of -0.8dB in the pass band is higher than desired but attenuation at 200MHz is a healthy -52dB. The return loss and input impedance vary significantly over the pass band, which is likely to create unwanted reflections from received signals close to the rf input. From a practical constructive view, the 21nH inductor is a very small value and would be difficult to implement. The sharp dip in the return loss at 37.5MHz makes this filter sensitive to component drift and tuning errors.

Although this circuit offers reasonable performance in theory, it would be very difficult to construct and tune. It is therefore not recommended.

ELECTRONICS WORLD June 1997

Fig. 9. Weinreich-Carroll diplexer with centre frequency of 72MHz exhibits insertion loss of -3dB at IF.

Butterworth diplexer

As a variation to the Butterworth filter theme, separate highpass and low-pass filters were configured as a diplexer centred on 100MHz as shown in Fig. 7.

The results show that this circuit has better characteristics than the Butterworth band-pass filter above. At worst the return loss is -14dB which is 6dB less than the required value of -20dB. Both the input impedance and the input current phase remain reasonably close to ideal across the frequency spectrum.

Upward deflection of the frequency response plot at 150MHz is due to interaction between the high and low pass sections at their inputs. Insertion loss at 37.5MHz is only -0.084dB while attenuation at 200MHz is a modest -18dB.

None of the plots exhibits any excessively sharp peaks or dips which in this case means that the circuit is tolerant to component errors and drift. The values of the inductors are not too widely spread and are large enough to allow a practical filter to be constructed.

This circuit has the same number of components as the diplexer shown in Fig. 3 and yet displays superior performance. In spite of this, the Butterworth diplexer does not conform to the required specifications and a better solution was sought.

Weinreich-Carroll diplexer

The Weinreich-Carroll diplexer¹ is a second-order filter designed so that all capacitors and inductors have an impedance of $\sqrt{2}\times50=70.7$ at the centre frequency. A centre frequency of 72MHz was selected for this circuit, being the geometric centre between the IF and the image, $\sqrt{(F_{\text{IF}}.F_{\text{LO+IF}})}$. This results in an insertion loss at the IF of -0.3dB

Attenuation at 200MHz is a modest -17.9dB. The analysis plots in Fig. 10 show that this very simple circuit achieves perfect impedance matching across the entire rf spectrum. These ideal results will not be achieved in practice because of the effects of component errors, drift and parasitics. High quality components should however provide results close to those shown in Fig. 10. The only disadvantages with this circuit are the slow frequency roll off and the mediocre attenuation of harmonics.

Weinburg diplexer

A better frequency response can be obtained using a third order diplexer shown in Fig. 11. Like the Weinreich-Carroll diplexer, the Weinburg diplexer has the ideal constant input impedance of $50+j0\Omega$ at all frequencies, resulting in a very high return loss, Fig. 12. It also has a much better frequency response providing 33.8dB attenuation at 200MHz.

This circuit has been designed using the values¹⁰ in **Table** 2, with a centre frequency of 55MHz. The sharper roll off

0.418dB.

response.

49.0-

RF DESIGN

means that a lower centre frequency can be used without an excessive insertion loss. At 37.5MHz, the insertion loss is

Additional simulations were run to further define the performance of this diplexer. The graphs in Fig. 13 show a Monte-Carlo analysis based on a 10% component variation to determine how sensitive the circuit is to component errors. The upper graph plots variations in input impedance. The lower graph plots variations in return loss and frequency

Fig. 10. Weinreich-Carroll diplexer analysis. Although simple, this circuit achieves perfect matching across the entire rf spectrum.

These plots show that the return loss is very sensitive to

Fig. 13. Weinburg

analysis based on

10% component

demonstrates the

circuit's sensitivity

errors. Upper plots

impedance while

lower are return

loss and frequency

to component

Monte-Carlo

variation

are input

response.

component errors varying over a range of about 90dB. At worst, the return loss is -24dB which remains within the required specification. Perfect results can only be achieved with perfect components.

Table 2. We	inburg	diplexer	normalised values.
ow pass	L1	C2	L3
hird	3/2	4/3	1/2
ligh pass	1/C1	$1/L_2$	1/C3

Fig. 15. Analysis of the Veltrop-Wilds diplexer reveals that input impedance varies between 46 and 54.8 Ω .

Veltrop-Wilds diplexer

Diplexers based on modified Chebyshev filter tables offer good frequency response with near ideal input impedance. The diplexer shown in Fig. 14 is based on formula by Veltrop-Wilds². The circuit was calculated for a 3dB point of 55MHz which was selected to achieve an insertion loss of less than 0.25dB at the IF. This circuit yields the results shown in Fig. 15. Input impedance varies between 46Ω and 54.8 Ω , which is not ideal, but entirely adequate. Return loss is at worst -25.3dB and improves at higher frequencies. The insertion loss at 37.5MHz is only -0.238dB while the attenuation at 200MHz is a respectable -39.7dB.

For applications requiring a steeper frequency roll off, the values for normalised 3rd, 5th and 7th order filters are shown in Table 3. Band-pass/stop diplexers may also be implemented with the values in Table 3 using the same techniques used to calculate component values with standard filter tables.

As before, a Monte-Carlo simulation based on a 10% component variation was run for the Veltrop-Wilds diplexer. The results of this analysis in Fig. 16 show the return loss is at worst -23.3dB which remains within the specifications and is only slightly lower than for the Monte-Carlo analysis of Weinburg diplexer.

Likewise, the input impedances for the two filters look similar. In real circuits with parasitics and component errors, there is unlikely to be any significant difference in measured return loss between a Weinburg or a Veltrop-Wilds diplexer. Having determined that the input characteristics of the Veltrop-Wilds and the Weinburg in a real circuit are likely to be almost identical, a closer analysis of the output charac-

Fig. 16. Veltrop-Wilds Monte-Carlo analysis with 10% component variation show that return loss is at worst -23.3dB.

Fig. 17. Frequency-response comparison between the Veltrop-Wilds and Weinburg diplexers.

-12

teristics was conducted. The results are plotted in Fig. 17 which shows a close in view of the frequency responses of both the Veltrop-Wilds and Weinburg diplexers.

You can see that the -3dB point for both diplexers occurs at 55MHz as expected. The Veltrop-Wilds diplexer has the advantage of a sharper roll off resulting in an additional -4.25dB attenuation at higher frequencies compared to the Weinburg diplexer. In addition, at the IF of 37.5MHz, the insertion loss differs by 40% in favour of the Veltrop-Wilds diplexer.

Analysis of the filter output characteristics shows that the Veltrop-Wilds diplexer has a small but significant advantage over the Weinburg diplexer.

Final selection

The Veltrop-Wilds diplexer circuit shown in Fig. 14 and selected for this application exceeds all specifications and comes close to the 'ideal' IF filter. It does not provide a perfect 50+j0Ω input impedance seen in the Weinreich-Carroll or the Weinburg diplexers, but it is close enough for practical purposes.

Compared with the Weinreich-Carroll or Weinburg diplexers, the Veltrop-Wilds diplexer has a better frequency response and there is the potential for further improvement by increasing the order of the filter. For this application, the Veltrop Wilds diplexer is considered to display the best overall characteristics.

Designing the Veltrop-Wilds diplexer

The design principle of the Veltrop-Wilds diplexer is to modify the values of standard Chebyshev low-pass filters in order to produce a diplexer with a constant input impedance. This is accomplished using the following general equations:

 $\varepsilon = [(antilog(A_m/10))-1]$

 $\omega'_{3dB} = \cosh(1/n.\cosh^{-1}\sqrt{[(1+2\varepsilon)/\varepsilon]})$

when *n* is even and,

 $\omega'_{3dB} = \cosh(1/n.\cosh^{-1}\sqrt{[(1/\epsilon])})$

when *n* is odd, where $A_{\rm m}$ is the ripple value in dB and $\omega'_{3\rm dB}$ is the modification factor. Full mathematical derivation can be found in reference 2.

The result is a modification factor ω'_{3dB} that is multiplied with each capacitor and inductor to obtain the modified lowpass table values. To obtain the modified element values for the high pass filter, each modified inductor is replaced with a capacitor equal to 1/C farads, and each modified capacitor is replaced with an inductor equal to 1/L henries. The 0.5 normalised conductance values for the high pass and low pass filters are now placed at the crossover frequency of $\omega=1$.

Tuning the filter

The results of the Monte-Carlo analysis indicate which variable should be used to 'tune' the filter. Frequency response does not vary greatly with component errors and is therefore unsuitable for tuning the filter.

Return loss is the most sensitive to component errors and varies by up to about 30dB in the analysis of both the Veltrop-Wilds and Weinburg diplexers. For optimum performance, a network analyser used to measure return loss will provide the most effective means of tuning the filter.

The next best alternative is use a grid-dip meter and capacitance meter. First, accurately measure and set the values of each capacitor allowing about 3pF for in circuit parasitics, then selectively fit inductors to form LC pairs. Using the grid-dip meter, each inductor is adjusted until the LC pair resonates at the correct frequency.

By fitting and removing components to create LC tuned circuits, the correct values can be set in circuit and the final Table 3. V Low pass 3rd 5th 7th High pas Input end

In summary

References

April 1971.pp 38-42

ISBN:0-8634-056-1.

p322. No.2, Feb 1972.

RF DESIGN

5	L_1	C_2	L_3	C_4	Ls	C ₆	L_7
	1.5133	1.509	0.7164				
	1.561	1.8069	1.7659	1.4173	0.6507		
	1.5748	1.8577	1.921	1.827	1.734	1.3786	0.6307
s	$1/C_1$	$1/L_2$	$1/C_{3}$	$1/L_4$	$1/C_{5}$	$1/L_{6}$	$1/C_7$
s	$1/C_1$	$1/L_2$	$1/C_{3}$	$1/L_4$	1/C5	1/L ₆	1/ utp

filter response should closely match the simulated results. When constructing these filters, every effort should be made to minimise both parasitics and component errors in order to obtain results like those shown in the simulations.

One of the important results of these simulations is that good performance does not necessarily require complex designs and high component counts.

The most complicated circuit analysed has six reactive components, while the simplest has just two. A wide range of results from the positively bad to nearly ideal were obtained from circuits that at a glance look remarkably similar.

The results graphically display the importance of selecting the right circuit for the right job. Design efficiency can be measured in terms of performance versus complexity. Complex designs are usually difficult to build and maintain. There are significant downstream advantages in ensuring that the most efficient design is used.

The above simulations show that some commonly used post diode mixer IF filters perform very poorly compared to the ideal IF filter. Performance can be improved using constant-impedance filters based on the Butterworth function but they are not recommended.

At all frequencies, the Weinreich-Carroll diplexer has a perfectly matched 50+j0 Ω impedance, but its frequency response is only mediocre . The Weinburg diplexer also has a perfectly matched input impedance combined with a good frequency response. The best results are obtained using the Veltrop-Wilds diplexer which combines near ideal input matching with a superior frequency response.

Unlike the Weinreich-Carroll diplexer, the frequency response of the Veltrop-Wilds diplexer can be improved by using higher order variants.

The Veltrop-Wilds diplexer is recommended above all others for use with double balanced diode mixers.

1. 'ARRL Handbook' 1995, page 15.23, Diplexer by Richard Weinreich and R.W. Carroll

2. Veltrop, R.G. and Wilds, R.B., Modified Tables for the Design of Optimum Diplexers, Microwave Journal, June 1964.

3. Reactive Loads - The Big Mixer Menace, P. Will, Microwaves,

4. 'Radio Receivers', W. Gosling, Peter Peregrinus Ltd 1996,

5. 'Microwave Mixers', Stephen A. Maas, ARTECH House Inc 1993, ISBN 0-89006-605-1.

6. Mini-Circuits RF/IF Designers Handbook

7. Simultaneous insertion and return loss plots, C.J.Hall,

Electronics World and Wireless World, May 1992, p 422.

8. 'Microwave and RF Circuits: Analysis, Synthesis and Design', M.W. Medley, ARTECH House Inc 1993. ISBN:0-89006-46-2

9. Distortion effects in a switching-diode modulator with tuned terminations. A.M. Yousif, J.G. Gardiner. Proc IEE, Vol 119,

10. Weinberg L., Additional Tables for Design of Optimum Ladder Network, Technical Memorandum 434, Hughes Aircraft Co., August 31 1956.

THE **Autorouter** for EASY-PC Pro' XM!

EE Product News "Products of the year" Award Winner (USA Magazine)

"The Best Autorouter that I have seen costing less than £10,000!" R.H. - (Willingham, UK)

- Uses the latest 32 Bit, Shape Based, Multi-pass, Shove-aside and Rip-up and Re-try Technology
- AutoRoute very large and complex boards
- User Controllable, **User Configurable**
- 100% Completion where other autorouters fail
- 100% Autorouted 140 Components on a 210mm x 150mm board in less than 10 minutes! (75MHz Pentium)
- Could Easily Pay For Itself On The 0 **First Project**

MultiRouter - only £295/\$475!

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From \$275	£145
MultiRouter: 32bit Multi-pass Autorouter for EASY-PC Professional XM	\$475	£295
LAYAN: Electro-Magnetic Layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	£495
PULSAR: Digital Circuit Simulator	From \$195	863
ANALYSER III: Analogue Linear Circuit Simulator	From \$195	£98
FILTECH: Active and Passive Filter Design program	From \$275	£145
STOCKIT: Comprehensive Stock control program for the small or medium sized business	From \$275	£145
EASY-PC: Award Winning PCB and Schematic CAD.	\$145	£75
Z-MATCH : Award Winning Smith-Chart based program for RF Engineers.	From \$275	£145
We operate a no penalty upgrade polic Post and Packing Sterling Prices ex	cy. US\$ prices clude P&P and	include d VAT.

PROGRAMS NOT COPY PROTECTED.

http://www.numberone.com

Email: sales@numberone.com

International +44 1480 461778

Overloaded

LETTERS

Letters to "Electronics World"

Sutton, Surrey, SM2 5AS

In Self's 'Overload matters' in the

February '97 issue, Figs 1b and 1d

omit the final downward break in the

Quadrant House, The Quadrant,

frequency level for the LP record. As an engineer I am proud that my preamp can handle 1V at 20kHz with 0.0008% thd, but I know it is meaningless in the real world. If a preamp can handle 100mV at 1kHz then it need handle only 80mV at 20kHz to have a uniform overload characteristic. (See figure above). In the seventies, Tom Holman

proposed the 'Holman test' for phono preamps - which now I'm sure he would rather us forget. It used a 1kHz square wave, band limited by a 6dB per octave rolloff at 30 or 100kHz, passed through an inverse RIAA. The output of the preamplifier was examined for even harmonics which are not present in a square wave.

A considerable furore ensued when many respected preamps failed the test. As we can see from Self's graph the rolloff should have been at 2kHz not 30 or 100, with an additional rolloff at 8kHz. A totally unrealistic test.

Back in the sixties, an engineer friend suggested to me that the RIAA curve should really level off at 10kHz instead of continuing downward. This is trivial to implement with the common topologies and would have reduced the number of burnt-out cutter heads with little noise penalty. That would have been a real world benefit unlike the misguided IEC 'amendment' - if you need a subsonic filter then use a steep one. David Hadaway

Rindge USA

Douglas replies:

This is essentially a matter of definition. The input impedances for

a floating voltage source are the same in the sense that a given voltage must cause the same current in each input. The voltages on them are far from equal, being indeed zero for the cold input - as described in detail in my article.

On mature reflection, it seems more sensible to say that a floating source can only have one meaningful input impedance, in this case between the hot and cold inputs. This is 20kΩ.

A measure of resistance

I was reading through the article 'Resistors in C' in the April edition, and was getting on fine until I came across "...it is advisable to use at least a 486DX... because of 57600 calculations ... a lesser pc will take several minutes". Continuing the extrapolation, an old eight bit 2MHz processor running interpreted Basic would have taken around an hour - it didn't. So I thought something's wrong here and I started to look at the code listing.

It appears that each of the E24 values over ten decades is paired with every other value, to see if a match occurs within the required tolerance, using 57 600 (24×10×24×10) comparisons. The code tests each pair twice, the result for 1k and 12k will be the same as 12k and 1k so straight away the number of calculations could be halved to 28 800.

Further, it is rare to combine resistors where their ratio is greater than 1/(tolerance) so that for 1% components the limit would be 100:1. In the example given in the article 0.1% would equate to 1000:1, thus the search could be limited to a range of three decades instead of ten.

More fundamentally, all these calculations are repeated on each run generating exactly the same data; all that changes is that a different set of tests are applied. Therefore this data could be in a look up table, but it is still quite a large amount of data. However, as resistor values are

based on a decade structure once you have found the combinations to give 11.11R=12R//150R, the values for 111.1R follow simply as 120R//1500R. So the look up table only needs to cover 1728 (24*1*24*3) entries. If this table was arranged in

numerical order only 12 comparisons

CIRCLE NO. 126 ON REPLY CARD

Simulating crossover distortion

A In answer to your query from Ian Hegglun, any good CAD package Such as *Electronics Workbench*, can be used to simulate crossover distortion. The tricks are to use a low frequency to avoid masking with transit time effects, a low signal level and of course no negative feedback. To isolate and display the transfer hiatus characteristic on its own, sum the input signal to the output - suitably attenuated, of course - in a difference amplifier. This technique, which may be used to show most forms of distortion, was outlined by me in Circuit Ideas on page 608 of the July/August 1996 issue. **Reg Williamson**

Whitehill Staffordshire

Q&A

Instability problem

Q Cyril Bateman's letter about amplifiers going unstable with a piece of screened lead attached to their inputs brought back memories of this happening to amplifiers built or modified by me over the years.

I too cured this by means of a series resistor between the screened cable and the amp input terminals. My amplifiers used to oscillate at either rf, around 100kHz, or in the audio-frequency range. Efforts to discover the cause of this led nowhere.

Have any other readers experienced this? I'd love to know why it happens and how to fix it. **Charles** Coultas Wokingham

Bio-galvanic batteries?

Within some information supplied with a product called the 'Experimental printed circuit kit' - which is at least thirty years old - a 'Bacteria-powered radio' driven by a bio-galvanic battery appeared. The battery produced 2.5 to 3V, delivered around 5mA, and were said to be capable of running for a year or more on a few spoonfuls of sugar or a stale loaf of bread. Does this mean anything to anyone? David Heaton Wakefield West Yorkshire

Before you ask, yes I have seen photocopies of the originals, and they do mention such cells - Ed.

would be needed to find the entry closest to any particular value - a reduction in run time calculations of 4800:1.

So I would recommend readers to resist the special offer on this

program, and have a go at coding it themselves in whatever language they choose. David Markie Ascot Berkshire

COMPUTER ICS	MISCELLANEOUS
TMS 9900NL-40 PULLS	AAA NICADS HI CAPACITY 36
S9900 NEW AMD EQUIVALENT	25A SOLID STATE RELAY 240
MC6802 PROCESSOR	XENON STROBE TUBE
AM27C020-125L1 SURFACE MOUNT EPROM USED/WIPED .E1.50	Narrow angle infra red emitter L
2817A-20 (2K X 8) EPROM av eant	CNY65 OPTO ISOL 3000 availa
D41258C-15 256K X 1 PULLS	OPTO ICS also available TLP5
P8749H MICRO	68 way PLCC SKT 100 available
D8751-8 NEW£10	100 wa PLCC SKT 100 availabl
MK48Z02-20 ZERO POWER RAM EQUIV 6116LP£4	1250pF POSTAGE STAMP CO
USED 4164-15	LM324 (Quad 741)
BBC VIDEO ULA	TIOTILO NOISE OR AMP
FLOPPY DISC CONTROLLER CHIPS 1771 \$16	TLOST OP AMP
FLOPPY DISC CONTROLLER CHIPS 1772	47000u 25v SPRAGUE 36D
68000-8 PROCESSOR NEW	12 way dil sw
HD6384-8£5	10NF 63V X7R PHILIPS SURF
27C4001 USED EPROMS£4	
27C2001 USED EPROMS	SWITCHED MODE PSU 40 WA
1/02 EPHUM NEW	5A, +12V 2A, 12V 30011A FEOP
8284.15 8k STATIC RAM	220R 2.5W WIREWOUND RES
Z80A SIO-O £1.25	
7126 31/2 DIGIT LCD DRIVER CHIP	CMOS 555 TIMERS
2816A-30 HOUSE MARKED	2/3 AAA LITHIUM cells as used
USED TMS2532JL	PASSIVE INFRA RED SENSOR
HM6167LP-8	EUROCAHD 96-WAY EXTEND
68000-10 PROCESSOR	DIN 41612 96-WAY A/B/C SOC
2114 CMOS (BCA 5114) F1 60	DIN 41612 96-WAY A/B/C/ SOC
WD16C550-PC UART	DIN 41612 64-WAY A/C SOCK
ZN427E-8	DIN 41612 64-WAY A/C PLUG
27C256-26 USED£1.50	DIN 41612 64-WAY A/B SOCKET W
PAL20L8-25 9000 ex stock	BT PLUG + LEAD
M28F010-150K1 FLASH EPROM PLCC 500 ex stock	MIN. TOGGLE SWITCH I POL
LM091LN LCD DISPLAY£15	40 x 2 characters 182 x 35 x 13
REGULATORS	6-32 UNC 5/16 POZI PAN SCR
LM338K£6	NUTS
LM323K 5V 3A PLASTIC	PUSH SWITCH CHANGEOVER
LM350K (VARIABLE 3A)	RS232 SERIAL CABLE D25 W
78H12ASC 12V 5A	OF FEET LONG AF DING WIDE
I M317T PLASTIC TO220 variable	25 FEET LONG, 15 FINS WINE
LM317 METAL	AMERICAN 2/3 PIN CHASSIS
7812 METAL 12V 1A	WIRE ENDED FUSES 0.25A
7805/12/15/24	NEW ULTRASONIC TRANSDL
7905/12/15/24	POWER SMALL CYLINDRICAL
78HGASC + 79HGASC REGULATORS	8NC 500HM SCREENED CHAS
LM123 ST93 5V 3A TU3 HEGS	SMALL MICHOWAVE DIODES
78L12 SHORT LEADS 10/E1	180VOLT 1 WATT ZENERS als
LM2950ACZ5.0	MIN GLASS NEONS
COVETAL OCCULLATORS	RELAY 5V 2-pole changeover
CRISIAL USCILLATORS	47WBost
507.2KHZ 1M000000 1M0432 2M457000 3M0004 4M000000	MINIATURE CO-AX FREE PLU
3M372800 7M5 8M00000 9M21610M000 10M0 12M000000	MINIATURE CO-AX PCB SKI
14M318 14M3818 16M00 17M625600 18M00000 18M432 19M050	400 MEGOHM THICK FILM RE
19M2 19M440 20M000 20M0150 21M676 22M1184 23M587	STRAIN GAUGES 40 ohm Foil
24M0000 25M1748 25M175 25M1889 27M + 36M 27M00000	balco grid alloy
28M322 32M000000 32M0000 *S/MOUNT 33M3330 35M4816	ELECTRET MICROPHONE IN
38M100 40M000 41M539 42M000000 44M444 44M900 44M0	Linear Hall effect IC Micro Swite
40M00000 50M00 55M000 50M00520 64M000000 60M007 76M1	
000000000000000000000000000000000000000	AUDIO ICS I M380 I M386
CHYSTALS	555 TIMERS £1 741 OP AMP
32K768 1MHZ 1M8432 2M000 2M1432 2M304 2M4576 3M000	ZN414 AM RADIO CHIP
3M2768 3M400 3M579545 3M58564 3M600 3M6864 3M93216	COAX PLUGS nice ones
5M0688 6M000 6M041952 6M205 6M205 14 4M008 4M9152 5M000	COAX BACK TO BACK JOINE
8M448 8M863256 8M8670 9M3750 9M8304 10M240 10M245	INDUCTOR 20µH 1.5A
10M368 10M70000 11M000 11M052 11M98135 12M000 12M5	1.25 INCH PANEL FUSEHOLDE
13M000 13M270 13M875000 14M000 14M318 14M7450 14M7456	MONO CASS HEAD ET FRAS
15M0000 16M000 17M6250 18M432 20M000 21M300	THERMAL CUT OUTS 50 77 8
21M400M15A 24M000 25M000 26M995 BN 27M045 RD 27M095 OR	THERMAL FUSES 220°C/121°
2/M145 DL 2/M145 TW 2/M195 GN 28M4696 30M4696 31M4696	TRANSISTOR MOUNTING PA
36M80625 36M81875 36M83125 36MR4375 38M900 48M000	TO-3 TRANSISTOR COVERS
51M05833 54M1916 55M500 57M7416 57M7583 69M545 69M550	PCB PINS FIT 0.1 inch VERO
96M000 111M800 114M8£1 ea	TO 2 mices + bushes
TRANSISTORS	IEC chassis plug filter 10A
MPS442 10/01	POTS SHORT SPINDLES 2K5
MPSA92 10/E1	40k U/S TRANSDUCERS EX-E

BC487, BC488 .10/21 BC107 BCY70 PREFORMED LEADS full spec BC557, BC238C, BC308B 2N2907 PLASTIC CROPPED BC548B SHORT LEADS £1 £4/100 £30/1000 ...£1/30 £3.50/100 ...£1/15 £4/100 ..£3/100 £20/1000 **POWER TRANSISTORS** IRF620 TO-220 6A 200v SE9301 100V 1DA DARL SIM TIP121 . 2/E . 2/2 4/21 PLASTIC 3055 OR 2955 equiv 50p 100/£35 **TEXTOOL ZIF SOCKETS** KEYTRONICS TEL. 01279-505543 FAX. 01279-75765

E-MAIL. keytronics@btinternet.com **PO BOX 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX** http://www.btinternet.com/~keytronics

MISCELLANEOUS	DIODES AND RECTIFIERS
25A SOLID STATE RELAT 240 AC ZERO VOLTS SWITCHING 110 XENON STROBE TUBE	1N5407 3A 1000V. 1N4148.
Varrow angle infra red emitter LED55C	1N4004 SD4 1A 300V 1N5401 3A 100V
CNY65 OPTO ISOL 3000 available	1N5819RL 20K Ex stock
68 way PLCC SKT 100 available	BY254 800V 3A.
100 wa PLCC SKT 100 available	BY255 1300V 3A 6A 100V SIMILAR MR751
LM324 (Quad 741)	1A 600V BRIDGE RECTIFIER
TL071 LO NOISE OP AMP	6A 100V BRIDGE
47000u 25v SPRAGUE 36D	10A 200V BRIDGE
12 way dil sw	25A 400V BRIDGE £2.50
E30/4000	KBPC304 BRIDGE REC 3A 400V
5A, +12V 2A, 12V 500mA FLOATING	SCRS
220R 2.5W WIREWOUND RESISTOR 60K AVAILABLE	MEU21 PROG UNJUNCTION
CMOS 555 TIMERS	TRIACS
2/3 AAA LITHIUM cells as used in compact cameras	NEC TRIAC ACO8F 8A 600V TO220 TXAL225 8A 500V 5mA GATE
EUROCARD 96-WAY EXTENDER BOARD	BTA 08-400 ISO TAB 400V 5mA GATE
290 x 100mm DIN 41612 96-WAY A/B/C SOCKET PCB RIGHT ANGLE £1.30	TRIAC 1A 800V TLC381T 16k AVAILABLE.
DIN 41612 96-WAY A/B/C/ SOCKET WIRE WRAP PINS£1.30 DIN 41612 64-WAY A/C SOCKET WIRE WRAP PINS£1	PHOTO DEVICES
DIN 41612 64-WAY A/C PLUG PCB RIGHT ANGLE	SLOTTED OPTO-SWITCH OPCOA OPB815
BT PLUG + LEAD	2N5777 TIL81 PHOTO TRANSISTOR
LCD MODULE sim. LM018 but needs 150 to 250V AC for display	TIL38 INFRA RED LED.
40 x 2 characters 182 x 35 x 13mm	PHOTO DIODE 50P
NUTS	MEL12 (PHOTO DARLINGTON BASE n/c) . LEDs RED 3 or 5mm 12/21
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS	LEDs GREEN OR YELLOW 10/£1
25 FEET LONG. 15 PINS WIRED BRAID + FOIL SCREENS	HIGH SPEED MEDIUM AREA PHOTODIODE
INMAC LIST PRICE \$30	RED LED – CHROME BEZEL
WIRE ENDED FUSES 0.25A	OPI110B HI VOLTAGE OPTO ISOLATOR MOC 3020 OPTO COUPLED TRIAC
NEW ULTRASONIC TRANSDUCERS 32kHz	STC NTC BEAD THERMIST
8NC 500HM SCREENED CHASSIS SOCKET	G22 220R, G13 1K, G23 2K, G24 20K, G54 50
D.I.L. SWITCHES 10-WAY £1 8-WAY 80p 4/5/6-WAY	FS22BW NTC BEAD INSIDE END OF 1 inch
180VOLT 1 WATT ZENERS also 12V & 75V	20°C 200R A13 DIRECTLY HEATED BEAD THERMISTO
RELAY 5V 2-pole changeover looks like RS 355-741 marked STC 47WBost £1 ea	audio Wien Bridge Oscillator
MINIATURE CO-AX FREE PLUG RS 456-071	10B 20B 100B 200B 250B 500B 2K 2K2 2K5
PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY . £1	200K 500K 2M
400 MEGOHM THICK FILM RESISTORS	IC SOCKETS
balco grid alloy	8-WAY DIL SKTS
Linear Hall effect IC Micro Switch no 613 SS4 sim RS 304-267	32-WAY TURNED PIN SKTS SIMM SOCKET FOR 2 x 30-way SIMMS
1 pole 12-way rotary switch	POLYESTER/POLYCARB
AUDIO ICS LM380 LM386	330nF 10% 250V AC X2 RATED PHILIPS TY
ZN414 AM RADIO CHIP	10n/15n/22n/33n/47n/66n 10mm rad
COAX BACK TO BACK JOINERS	100n 250V radial 10mm 100n 600V Sprague axial
1.25 inch PANEL FUSEHOLDERS	2µ2 160V rad 22mm, 2µ2 100V rad 15mm 10n/33n/47n 250V AC x rated 15mm
STEREO CASSETTE HEAD	1µ 600V MIXED DIELECTRIC
THERMAL CUT OUTS 50 77 85 120°C	0.22µ 900V AC X 2 rating
TRANSISTOR MOUNTING PADS TO-5/TO-18	RF BITS
PCB PINS FIT 0.1 inch VERO	SAW FILTERS SW662/SW661 PLESSEY SI 379.5 MHZ
TO-220 micas + bushes	FX3286 FERRITE RING ID 5mm OD 10mm ASTEC UM1233 UHE VIDEO MODULATORS
IEC chassis plug filter 10A	STOCK
40k U/S TRANSDUCERS EX-EQPT NO DATA	DC4229F1/F2
LM234Z CONST. CURRENT I.C	XTAL FILTERS 21M4 55M0
MIN PCB POWER RELAYS 10.5v COIL 6A CONTACTS 1 pole c/o	VIOLET.
BANDOLIERED COMPONENTS ASSORTED Rs, Cs, ZENERS	2 to 22pF.
LCD MODULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHI LM10) 25	CERAMIC FILTERS 4M5/6/M/9M/10M7
'LOVE STORY' CLOCKWORK MUSICAL BOX MECHANISM	FEED THRU' CERAMIC CAPS 1000pF SL610
MADE BY SANKYO	6 VOLT TELEDYNE RELAYS 2 POLE CHAN
10,000µF 16V PCB TYPE 30mm DIA x 31mm	2N2222 METAL
EC CHASSIS FUSED PLUG B-LEE L2728	P2N2222A PLASTIC 2N2369
2A CERAMIC FUSE 1.25 Inch QB	2N3866+2N2N3866
20mm PCB FUSEHOLDER	EQUIV MHW806A-3 RF IN 40mW O/P6-+8w
ASTEC MODULATOR VIDEO + SOUND UM1287	MONOLITHIC CERAMIC C
NE567 PHASE LOCKED LOOP	10n 50V 2.5mm
NE564£1 TL084	100n 50V 2.5mm or 5mm
IR2432 SHARP 12 LED VU BAR GRAPH DRIVER	100n ax long leads
8 OHM MYLAR CONE LOUDSPEAKER 55mm DIA x 10mm	1µF 50V 5mm
DEEP	QUARTZ HALOGEN LAMP
1.5m lead	12V 50watt LAMP TYPE M312 £1
SEND £1 STAMPS FOR CURRENT IC+ SEMI ALSO AVAILARI F ON 3V INCH FLOPE	STOCK LIST - PY DISK
MAIL ODDED ONLY	v
MIN. CASH ORDER \$10.00. OFFICIAL ORDE	RS WELCOME
UNIVERSITIES/COLLEGES/SCHOOLS/GOVT.	DEPARTMENTS (HEAVY ITEMS) OTHERWISE 950
ADD 171/2% VAT TO TO	TAL
ELECTRONIC COMPONENTS BOU	GHT FOR CASH
CIRCLE NO. 127 ON REPLY CARD	

	1N5407 3A 1000V	
	1N4148 1N4004 SD4 1A 300V	
	1N5401 3A 100V.	
	BA158 1A 400V fast recovery	
•	BY254 800V 3A BY255 1300V 3A	
	6A 100V SIMILAR MR751	
	4A 100V BRIDGE	
	6A 100V BRIDGE	
	25A 200V BRIDGE £2	
	25A 400V BRIDGE £2.50	
	KBPC304 BRIDGE REC 3A 400V	
	SCRS	
	MEU21 PROG UNIJUNCTION	£1.25
	TRIACS	DIACS 4/£1
	NEC TRIAC ACO8F 8A 600V TO220	
	BTA 08-400 ISO TAB 400V 5mA GATE	
	TRAL2230D 30A 400V ISOLATED STUE	E 5 500 01 015/100
	PHOTO DEVICES	LE S FOR LI LIS/100
	HI BRIGHTNESS LEDS CQX24 RED	
	SLOTTED OPTO-SWITCH OPCOA OPE	3815 £1.30
	TIL81 PHOTO TRANSISTOR	£1
	TIL38 INFRA RED LED.	
	PHOTO DIODE 50P	
	MEL12 (PHOTO DARLINGTON BASE n LEDs RED 3 or 5mm 12/21	/c)
	LEDS GREEN OR YELLOW 10/21	
	HIGH SPEED MEDIUM AREA PHOTOD	IODE RS651-995 £10 ea
	OPTEK OPB745 REFLECTIVE OPTO S	ENSOR £1.50
	OPI110B HI VOLTAGE OPTO ISOLATO	R
	MOC 3020 OPTO COUPLED TRIAC	
	G22 220B, G13 1K, G23 2K, G24 20K, G5	4 50K, G25 200K, RES 20°C
	DIRECTLY HEATED TYPE	£1 ea
	20°C 200R	Inch GLASS PHOBE HES
	A13 DIRECTLY HEATED BEAD THERM	IISTOR 1k res. ideal for
	CEDMET MULL TI TUDN E	DESETS 3/, inch
	10R 20R 100R 200R 250R 500R 2K 2K2	2K5 5K 10K 47K 50K 100K
	200K 500K 2M	50p ea
	IC SOCKETS	Ct act TURE
	8-WAY DIL SKTS	£2 per TUBE
	32-WAY TURNED PIN SKTS	
	POLVESTER/POLVCAR	B CAPS
	330nF 10% 250V AC X2 RATED PHILIP	S TYPE 330 £20/100
	100n, 220n 63V 5mm	
	100n 250V radial 10mm	
	2µ2 160V rad 22mm, 2µ2 100V rad 15m	im
	10n/33n/47n 250V AC x rated 15mm	
	1µ0 100V rad 15mm, 1µ0 22mm rad	100/26
	0.22µ 900V AC X 2 rating	····· 4/£1
	KF BITS SAW FILTERS SW662/SW661 PLESSE	Y SIGNAL TECHNOLOGY
	379.5 MHZ	£1.50 ea
	ASTEC UM1233 UHF VIDEO MODULAT	TORS (NO SOUND) 1250
	STOCK	E1.50
	DC4229F1/F2	£1 ea
	XTAL FILTERS 21M4 55M0	
	VIOLET.	
	2 to 22pF	
	TRANSISTORS 2N4427, 2N3866	
	FEED THRU' CERAMIC CAPS 1000pF.	
	SL610 6 VOLT TELEDYNE BELAYS 2 POLE C	HANGEOVER £5
	(BFY51 TRANSISTOR CAN SIZE)	EIDA
	P2N22222 METAL	
	2N2369 2N3866+2N2N3866	
	74N16 TACS CAR PHONE O/P MODUL	E
	BB405B, BB809B VARICAP DIODES	-+5w 840-+910mHz £3 68
	MONOLITHIC CERAMIC	CAPACITORS
	10n 50V 2.5mm	
	100n SOV 2.5mm or 5mm	
	100n ax long leads	100/25
	1µF 50V 5mm	
	QUARTZ HALOGEN LA	MPS
	12V 50watt LAMP TYPE M312	£1 es HOLDERS 60p es
IS	DISK	
1	75450	A CONTRACTOR
T	WELCOME	
- 10		

VISA

ELECTRONICS WORLD June 1997

Q&A

Outputs in phase quadrature?

Q I am looking for a circuit to phase shift by 90° the components of a signal with frequencies in the range 10Hz to about 350Hz. Although simple integration or differentiation can achieve this, they do so at the expense of a frequency dependent change in the signal amplitude which I cannot use

In Electronics World of April 1993, Terrence Finegan mentions that such 'a useful analogue function' may be realised differentially with all-pass filters, but this hint has proven insufficient. Text books even mentioning allpass filters seem to be the exception, at my level of mathematical sophistication anyway

Are there any readers with a solution to this problem? It would help me and being an unusual function may inspire other interesting designs. Alan Scrimgeour London

(This query was originally published in the October 1996 issue.)

An response to Alan Scrimgeour's question in entitled 'Shifting phases?' Aon p. 790 of the Oct. 1996 issue, the design of two all-pass filters whose outputs are in phase quadrature can be obtained by suitable transformation applied to a prototype low-pass filter. This can be either a Butterworth type, or an elliptic type - provided that the pass and stop-band ripples are chosen to be power complementary. A fairly complete treatment of this design problem may be found in reference 1.

I have worked out a particular design featuring a phase quadrature accurate to within 1.10 over a range extending from about 5Hz to above 700Hz; this would meet Mr Scrimgeour's specifications of 10Hz to 350Hz with an octave to spare at either end.

Each all-pass function is the cascade of first-order all-pass sections having a transfer function of the form,

 $A(s) = \frac{s+p}{s-p}$

where s is the complex frequency variable and p is the pole of the filter. The design uses one third-order all-pass filter and one fourth-order all-pass filter, whose transfer functions are, respectively,

 $A_1(s) = \frac{s+p_1}{s+p_3} \frac{s+p_3}{s+p_5} \frac{s+p_7}{s+p_7}$ $s - p_1 s - p_3 s - p_5 s - p_7$ $A_2(s) = \frac{s + p_2}{s + p_4} \frac{s + p_4}{s + p_6}$ $s - p_2 s - p_4 s - p_6$

in which the pole locations are, p_1 =-13.922, p_3 =-145.749, p_5 =-948.030 and p_7 =-9925.083 for the first all-pass function, and p_2 =-54.627, p4=-371.718, p6=-2529.390 for the second.

The diagram plots the phase difference between the two all-pass functions, i.e., $\angle A1(2\pi jf) - \angle A_2(2\pi jf)$, where \angle designates phasor angle, f is frequency and $j=\sqrt{-1}$; note the equiripple approximation to a 90° phase difference. A design procedure which may be adapted to other specifications requires first finding a prototype low-pass filter, whose pole locations may then be transformed to yield the poles of the two all-pass functions. It may be summarised as follows:

1. Let f_1 and f_2 be the frequency extremes over which phase quadrature is

desired. In Mr Scrimgeour's problem, we have $f_1=10$ Hz and $f_2=350$ Hz. Convert these frequencies to radians-per-second, for which the conversion factor is 2π ; this gives $\omega_1 = 2\pi f_1 = 62.8319$ rad/s and $\omega_2 = 2\pi f_2 = 2199.11$ rad/s.

2. Let ϕ denote the maximum deviation from phase quadrature over the desired frequency range, and set, $\delta = \sin - 1(\phi/2)$. This constant determines the necessary pass and stop-band attenuations required of a low-pass filter prototype. For the design above, I used $\phi b=1.1^{\circ}$, giving $\delta=0.0096$.

3. Let C denote the geometric mean of ω_1 and ω_2 : C= $\sqrt{(\omega_1\omega_2)}$. In Mr Scrimgeour's problem, this becomes C=√(62.8319×2199.11)=371.718rad/s.

4. Now define two prototype frequencies according to,

$$\Omega_{s} = \frac{\omega_{2} + C}{\omega_{2} - C}, \ \Omega_{p} = 1/\Omega_{s}$$

For this design, $\Omega_s = 1.4068 \text{ rad/s}$ and $\omega_n = 0.7108 \text{ rad/.}$

5. Next, find a low-pass filter H(s) whose magnitude response $|H(j\omega)|$ satisfies the following specifications:

- $1 \ge |H(j\omega)| \ge (1 \sqrt{1 \delta^2})$ for $0 \le \omega \le \Omega_n$ (passband)
- $|H(j\omega)| \le \delta$ for $\omega \ge \Omega_s$ (stopband)

For reasons explained in '1', it is preferable to use either a Butterworth low pass filter, or an elliptic low-pass filter for which the passband and stopband ripples are power complementary. This ensures that the poles of the lowpass filter so designed will all lie at a common radius from the origin in the complex s-plane. Scale this common radius to unity. I used a seventh-order elliptic low-pass filter, whose pole locations q_1 through q_7 are,

q2.3=-0.6797±j0.7735; $q_1 = -1$: $q_{45} = -0.2877 \pm i0.9577;$ q_{6.7}=-0.0748±j0.9972.

(The notation $q_{2,3}$ means that poles q_2 and q_3 occur in complex conjugate pairs, and similarly for $q_{4.5}$ and $q_{6.7}$). More detail on designing low-pass filters may be found in references 2 and 3, among many other sources.

6. From the poles q_i , define transformed poles p_i according to,

$$p_i = C \frac{1 + jq_i}{j + q_i}$$

recalling the constant C from step 3. Provided each pole q_i has unit radius, each transformed pole pi will now lie on the negative real axis of the complex s-plane. Renumber these transformed poles, if necessary, into increasingly negative values: $0>p_1>p_2>p_3>...$ Then distribute these poles alternately between two all-pass functions according to,

$$A_{1}(s) = \frac{s + p_{1}}{s - p_{1}} \frac{s + p_{3}}{s - p_{3}} \dots$$
$$A_{2}(s) = \frac{s + p_{2}}{s - p_{2}} \frac{s + p_{4}}{s - p_{4}} \dots$$

The two all-pass functions $A_1(s)$ and $A_2(s)$ now exhibit the desired phase quadrature over the desired frequency range. Using numerical values for q_1 through q_7 from step 5 above, the pole locations p_1 through P_7 listed above are obtained

Prof. Phillip Regalia

Institut National des Telecommunications Evry, France

References

1. Regalia, E A, 'Special Filter Designs,' chapter 13 in: Handbook for Digital Signal Process-ing, S.K. Mitra and J. E Kaiser, eds., Wiley, New York, 1993.

2. Van Valkenburg, M E, 'Analog Filter Design,' Holt, Rinehart and Winston, New York, 1982.

3. Zverev, A I, 'Handbook of Filter Synthesis,' Wiley, New York, 1967

Tel: 01203 692066 Fax: 01203 692131 Email:sales@hitex.co.uk Compuserve: 100646,1526

1000 - 1000 We manufacture a range of Off-Air Frequency products including frequency standards, sources and disciplined standards including GPS, Customised units also available **Precision Frequency Source** 1kHz to 16MHz sinewave output, 0.0001Hz resolution, Easily settable via decade switches, VCXO backup as standard **Off-Air Frequency Standard** 1MHz, 5MHz and 10MHz, outputs, Options include Sinewave, Signal inhibit and Audio Warning CIRCLE NO. 150 ON REPLY CARD We are well known for our quality new and used test equipment. Our list is extensive, ranging through most disciplines. Call for details CIRCLE NO. 151 ON REPLY CARD Halcyon Electronics 423 Kingston Road, Wimbledon Chase, London SW20 8JR Phone: 0181 542 6383 Fax: 0181 542 0340 CIRCLE NO. 130 ON REPLY CARD **ELECTRONICS WORLD** June 1997

Dial Engineering is also

ible - contact Judi

CIRCLE NO. 129 ON REPLY CARD

Halcyon Electronics

READER

SERVICE

For more information about any of the products or services in this issue of ELECTRONICS WORLD.

101 102 103 104 105 106 107 108 109

Enquiry numbers may be found at the bottom of each individual advertisemen

INFORMATION

ELECTRONICS

simply ring the relevant enquiry number

WORLD

Subscribe today!

Guarantee your own personal copy each month

Save on a 2 year subscription **ELECTRONICS** WORLD

CIRCLE NO. 128 ON REPLY CARD

496

Newsagent order form

Pass this order form to your newsagent to ensure you don't miss the next issue of EW.

Тο (name of Newsagent)

Please reserve me the July issue of Electronics World- on sale 5th June - and continue to order every month's issue until further notice

Name	
Address	

Thank you

Name Address

Post code

Method of payment (please circle): Access/Mastercard Visa Cheque PO **Cheques payable to Reed Business Publishing**

Credit Card Number

Signed

Expiry Date

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. Additional authors will receive £35 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth performance beyond the capability of hand-helds"

One-component oscillator

U sing two components to make an oscillator¹ is, perhaps, a little over the top; you can use an op-amp and reduce the number of components by fifty percent. A CA3130 connected as shown in Fig. 1 with 7.5V oscillates at about 1.3MHz.

To complicate matters slightly, Fig. 2 is a voltage-controlled version, which varies in frequency from 140kHz to 27MHz at the rate of 2MHz per volt when control voltage changes from 2V to 14V. Peak-to-peak output is roughly sinusoidal, amplitude being about 75% of the control voltage; the filter will improve the waveform and give a more constant level of about 1V pk-pk. If you use the other Schmitt inverters in the hex package to reduce output impedance, the

control voltage might need to be limited to avoid excessive dissipation. P Gascovne Wantage Oxfordshire

This high-performance bench

multimeter could be yours in

exchange for a good idea. Featuring a dual display, the

 $10m\Omega$ and 0.1μ A and has a

basic dc accuracy of 0.04%.

Frequency measured is 10Hz

to 120kHz with an accuracy

of 0.01% and resolution to

0.01Hz. Capacitor and true

rms measurements are also

of a good idea, Thurlby

Thandar Instruments will be

giving away one of these

excellent instruments once

monthly £100 'best circuit

incentive is in addition to our

every six months. This

idea' award and £35

awards for each circuit

Recognising the importance

featured.

published.

4.5-digit 1705 multimeter

resolves down to 10µV,

Reference

+7.5V Fig. 2. A hex Schmitt inverter used as a voltage-controlled version of the skeletal oscillator shown in Fig.1. This one covers 140kHz-27MHz. CA313 Output 1.3MHz Pin 14 6 9 Voltage 12 15 Optional output filter Control Fig. 2. Curve of ww voltage Fig. 1. They do not come simpler than this 242 frequency/control voltage for =100n Pin 7 (& also unused input pins) 560 oscillator, if you ignore the components oscillator of Fig. 2. inside the op-amp.

Switch/latch/trigger

Switches from a 4066 cmos quad analogue switch are usable as inverters. When input to pin 13 in Fig. 1 is high, the switch is open and the output on pin 2 is low. In the reverse state, the channel is closed and the pull-up resistor holds the output high.

Two such switches form the latch trigger shown in Fig. 2. When the Q output is high, the channel of IC_{1(b)} is off, which causes the input of IC1(a) to be high and its channel turned on, /Q being low.

Activating the reset switch brings the Q output low by means of R_{12} and $IC_{1(a)}$ switches off; the input of $IC_{1(b)}$ goes high, pulled up by \hat{R}_3 , and its

Interference-resistant infrared proximity detector

his retro-reflective, pulsed detector was intended as an obstacle detector for a small robotic vehicle. Its advantages over commercial types are its low power consumption, its resistance to interference from other ir sources and the fact that no optics are needed.

In the transmitter, a 555 timer generates current pulses of about lus duration at a frequency of 3kHz. The p-n-p BFY64 discharges the capacitor through the TIL38 infrared led at a peak current of 0.7A, which can be increased by either increasing Vcc or using a lower on-resistance transistor. To achieve a well-shaped current pulse, the type of capacitor used was a Siemens B32650 pulse-resistant is emitted from pin 3 and used as reference by the integrator.

the led. Improved performance is polypropylene 1000V type. A pulse gained by the use of multiple with the same duration as the ir pulse photodiodes and by the use of a stop to confer the same field of view seen by the led. The receiver is unusually simple. In the integrator, pulses are Diode bias enforces stage gain converted to a dc level, the integrator dependent on signal amplitude and being synchronised with the polarity, the stages using alternate transmitter by the two-transistor gate BC179 p-n-p and BC109 n-p-n types and the reference signal from the to allow for signal inversion; pulse transmitter. Improved resistance to shape is unimportant here, only its interference is gained by applying a arrival time being of interest. Output pseudo-random modulation to the pulse is of 1-2µs duration. No transmitter by controlling the 555 instability showed itself, but good reference at pin 5. layout and screening are needed to W Grav prevent feedback; in particular, the Farnborough £100 WINNER photodiodes must be screened from Hampshire

CIRCUIT IDEAS

THE ORIGINAL SURPLUS WONDERLAND! Surplus always wanted for cash! THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS

n. the sys

SPECIAL BUY 'AT 286' 40Mb HD + 3Mb Ram

condition complete with enhanced ke DOS 4.01 and 90 DAY Full Guarantee

LOW COST PC's -

LIMITED QUANTITY only of these 12Mhz HI GRADE 286 systems

Made in the USA to an industrial specification, the system was designed tor total reliability. The compact case houses the mother-board, PSU and EGA video card with single 51% "1.2 Mb floppy disk drive & integral 40Mb hard disk drive to the front. Real time clock

with battery backup is provided as standard. Supplied in good used condition complete with enhanced keyboard, 640k + 2Mb RAM,

Order as HIGRADE 286 ONLY £129.00 (E)

LOW COST 486DX-33 SYSTEM

Optional Fitted extras: VGA graphics card 1.4Mb 3½* floppy disk drive (instead of 1.2 Mb) Wordperfect 6.0 for Dos - when 3½* FDD option ordered NE2000 Ethernet (thick, thin or twisted) network card

OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK For MAJOR SAVINGS - CALL FOR SEMICONDUCTOR HOTLIST

VIDEO MONITOR SPECIALS One of the highest specification

monitors you will ever see -At this price - Don't miss it!!

Mitsubishi FA3415ETKL 14" SVGA Multisync colour monior with fine 0.28 dot pitch tube and resolution of 1024 x 768. A variety of inputs allows connection to a host of comput-ers including IBM PCs in CGA, EGA, VGA & SVGA modes, BBC, COMMODORE (including Arniga 1200), ARCHIMEDES and APPLE. Many features: Etched faceplate, text switching and LOW RADIATION MPR specification. Fully outpartness supplied in EXCEL. specification. Fully guaranteed, supplied in EXCEL

LENT little used condition. Order as Only £119 (E) Order as Tilt & Swivel Base £4.75 VGA cable for IBM PC included.

External cables for other types of computers CALL As New - Used on film set for 1 week only!! 15" 0.28 SVGA 1024 x 768 res. colour monitors. Swivel & tilt etc. Full 90 day guarantee. £145.00 (E)

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £299 - CALL for Info

PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with <u>both</u> RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Good used condition - fully tested - guaranteed Dimensions: W14* x H12%* x 15%* D. Only £95 (E)

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen burns). In attrac-tive square black plastic case measuring W10" x H10" x 13/2" D. 240 V AC mains powered.

Pitch. Superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13%" x 12" x 11". Good used condition. Only £125 (E)

The ultimate in 'Touch Screen Technology' made by the experts -MicroTouch - but sold at a price below cost !! System consists of a flat translucent glass laminated panel measuring 29.5 x 23.5 cm connected to an electronic controller PCB. The controller produces a standard serial RS232 or TTL output which continuously gives simple serial data containing positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves the data Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & *optional* sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee. 20"....£135 22"....£155 26"....£185 (F) where a finger is touching the panel - as the finger moves, the data instantly changes. The X & Y information is given at an incredible matrix resolution of 1024 x vitions over the entire screen SPECIAL INTEREST ITEMS matrix resolution of 1024 x 1024 positions over the entire screen size !! A host of available translation software enables direct con-nection to a PC for a myriad of applications including: control pan-els, pointing devices, POS systems, controllers for the disabled or computer un-trained etc etc. Imagine using your finger with Windows', instead of a mouse !! (a driver is indeed available !) The applications for this amazing product are only imitted by your imagination!! Complete system including Controller, Power Supply and Data supplied at an incredible price of only: Full MICROTOLCH software support pack and manuals for IBM compatible PC's £29.95 RFE - Tested MITS & FA3445ETKL 14" Industria IBM 53/5501 Token Ring LCS 20 point BM 8230 Type 1, Token ring base u IBM 53/5501 Token Ring LCS 20 point IBM MAU Token ring distribution pan AIM 501 Low distortion Oscillator 9H Trend DSA 274 Data Analyser with O

Marconi 6310 Programmable 2 to 22 HP1650B Logic Analyser HP3781A Pattern generator & HP3

HP6264 Rack mount variable 0-20V HP54121A DC to 22 GHz four channel HP5810A A1 8 pen HPGL high speet EG+G Brookdeal 95035C Precision I View Eng. Mod 1200 computerised in Ling Dynamics 2kW programmable v Computer controlled 1056 x 560 mm Keithley 590 CV capacitor / voltage a Racel ICR40 dual 40 channel voice ro Hacai ICH40 dual 40 channel volce i Fiskers 45KVA 3 ph On Line UPS -ICI R5030UV34 Cleanline ultrasonic Mann Tally MT645 High speed line r Intel SBC 486/133SE Multibus 486 s Andrews LAHGE 3.1 m Satellife DIS Sekonic SD 150H 18 channel digital 1 TAYLOR HOBSON Tallysurf amplifie System Video 1152 PAL waveform n Test Lab - 2 mtr square quietised aco Kenwood 9601 PAL Vectorscope - N Please call for further detail

Only £79.00 (D) KME 10" 15M10009 high definition colour monitors with 0.28" dot

20" 22" and 26" AV SPECIALS

269 000

TV SOUND & **VIDEO TUNER**

End of line purchase scoop! Brand new NEC D2246 8" 85 Mbyte drive with Industry standard SMD Interface, replaces Fujitsu equivalent model. Full manual. Only £299.00 or 2 for £525.00 (E) 31/2" FUJI FK-309-26 20mb MFM I/F RFE £59.95(0 £59.95(0 269.00

THE AMAZING TELEBOX

CABLE COMPATIBLE

channels. TELEBOX MB covers virtually all television frequencies channels. TELEBOX MB covers virtually all television rrequencies VHF and UHF including the HYPERBAND as usad by most cable TV operators. A composite video output is located on the rear panel for direct connection to most makes of monitor or desktop computer video systems. For complete compatibility - even for monitors with-out sound - an integral 4 watt audio amplifier and low level Hi Fi outpatient and provided as standard.

Limited quantity of this 2nd user, supurb small size desktop uni Fully featured with standard simm connectors 30 & 72 pin, Supplie with keyboard 4 Mb of RAM, SVGA monitor output, 256k cache an Integral 120 Mb IDE drive with single 1.44 Mb 3.5* (loopy disk drive. Fully tested and guaranteed. Fully expandable only Many other options available - call for details. \$399.00 (E) FLOPPY DISK DRIVES 31/2" - 8"

£29.00 £19.95 £22.50 £29.00

Massive purchases of standard 5¼" and 3½" drives enables us to present prime product at industry beating low prices! All units (unless stated) are **BRAND NEW** or removed from often brand new equipstated) are BRAND NEW or removed from often brand new equip-ment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of standard size. All are IBM-PC compatible (if 3½" supported on your PC). 3½" Panasonic JJ363/4 720K or equivalent RFE £24,95(B) 3½" Mitsubishi MF355C-L. 1,4 Meg. Laptops only £25,95(B) 3½" Mitsubishi MF355C-L. 0,1.4 Meg. Non laptop £18,95(B) 5¼" Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE £18,95(B) 5¼" Teac FD-55GF-03-U 720K 40/80 (for BBC's etc) RFE £29,95(B) 5¼" BRAND NEW Mitsubishi MF501B 366K £22,95(B) Table top case with integral PSU for HH 5¼" Flopp or HD £29,95(B) 8" Shugart 800/801 8" SS refurbished & tested £195,00(E) 8" Shugart 810 8" SS HH Brand New £195,00(E) 8" Shugart 810 8" SS HH Brand New £195.00(

a' Shugart 510 a' SS HH *Brand New* B' Shugart 851 a' double sided refurbished & tested Mitsubishi M2994-63 8'' double sided *NEW* Mitsubishi M2996-63-0210 8'' OS similine *NEW* Dual 8'' cased drives with integral power supply 2 Mb £250.00(£275.00(E £285.00(E £499.00(E

HARD DISK DRIVES

31/2" CONNER CP3024 20 mb IDE I/F (or equiv)RFE 3½" CONNER CP3044 40mb IDE I/F (or equiv.)RFE 3½" RODIME RO3057S 45mb SCSI I/F (Mac & Acorn)
 3½*
 RODIME RO30575 45mb SCSI I/F (Mac & Acorn)
 £69.00/C

 3½*
 WESTERN DIGITAL 850mb IDE I/F Brand New
 £185.00/C

 5¼*
 MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE
 £49.95(C

 5¼*
 SEAGATE ST-238R 30 mb RLL I/F Refurb
 £69.95(C

 5¼*
 P3205-51 40mb HH MFM I/F RFt tested
 £69.95(C

 5¼*
 HP 3754B 850 Mb SCSI RFE tested
 £89.00(C

 5¼*
 HP C3010 2 Gbyte SCSI differential RFE tested
 £195.00(C

 5%
 FUJTISU M2322K 160Mb SMD I/F RFE tested
 £195.00(E

 6%
 FUJTISU M2322K 160Mb SMD I/F RFE tested
 £195.00(E

 6%
 FUJTISU M2322K 160Mb SMD I/F RFE tested
 £195.00(E

 Hard disc controllers for MFM , IDE, SCSI, RLL etc. from
 £16.95

8" FUJIISU Hard disc cont

Converts your colour monitor into a QUALITY COLOUR TV!!

The TELEBOX is an attractive fully cased mains powered unit, con The TELEDOX is an attractive fully cased mains powered unit, con-taining all electronics ready to plug into a host of video monitors made by makers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most televi-sion receivers' (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable off air' UHE colour television

audio output are provided as standard.

TELEBOX ST for composite video input type monitors TELEBOX ST for composite video input type monitors TELEBOX ST for composite video input type monitors TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner For overseas PAL versions state 5.5 or 6 mHz sound specification. For cable / hyperband reception Telebox MB should be connected to a cable type service. Shipping code on all Teleboxe's is (B)

DC POWER SUPPLIES Virtually every type of power supply you can imagine. Over 10,000 Power Supplies Ex Stock Call for info / list.

Infinite-impedance detector

nfinite-impedance rf detectors have been with us for almost 60 years¹, the first consisting simply of a cathodefollower with a high-value cathode resistor and a cathode capacitor, the charge on the capacitor tending to cut the triode off on negative-going excursions of the rf input. But it was in 1959 that Telefunken patented the transistor version2.

Figure 1 is a useful example of the circuit. Transistor Tr₁ is the detector,

taking the rf input from a 50Ω line. Capacitor C_1 charges up to nearly the positive peak of the input, C_1 discharging between the peaks at I_{π_1}/C_1 volts/s, which is made sufficiently slow to maintain most of the charge between rf peaks but speedy enough to follow the modulation. The effect is to produce a dc offset to the base-band output, which is compensated by Tr2 at the input to the op-amp buffer, the

amount of offset being adjusted by the $20k\Omega$ pot to give zero output level when rf input is at zero. T H O'Dell London W2

References

1. Weeden W N. New detector circuit, Wireless World, vol.40, 1937. 2. Meyer-Brötz G. West German Patent No. 1011481, 1959.

Mute (To VPF to A D1 ≤R₂ 133k 1N4148 **VPF +40V** £75 WINNER lok С₃ 10µ C7 100μ 680r Inputo-IC1 TDA 7294H C9 -[]|_{C35} Varying one resistor changes 22µ/40V the output Re impedance of this \$100k R7 transconductance amplifier from near zero to an VNE 401 1R0 ₹2k2 upper limit depending on amplifier performance.

Audio power amplifier with widely adjustable output impedance

This transconductance amplifier was meant to drive a sub-woofer loudspeaker, damping to be applied by velocity feedback. High output impedance was therefore needed. It is theoretically possible to vary the impedance from zero to infinity by

oLoad +

-o Load -

so varying R_x , although amplifier loop gain imposes restraints. Apart from audio use, the circuit should find application in industrial applications.

150

200 mV

Vin (pk)

Resistor $R_{8,9}$ in parallel define transconductance, these resistors being specified to avoid gain variation with temperature. The TDA7294 typically gives 70W into 4Ω or 8Ω if heat-sinked adequately, although any available power amplifier should serve. These amplifiers need a minimum closedloop gain for stability; in this case, 24dB. This figure cannot always be guaranteed with current drive and at high frequencies, which is the reason for the inclusion of C_0 to provide hf feedback. Paul Mills Airdrie Lanarkshire

HP150B Logic Analyser HP3781A Pattern generator & HP37 HP APOLLO RX700 system units HP6621A Dual Programmable GPIB I HP3081A Industrila workstation c/w B

Zeta 3220-05 A0 4 pen HPGL fast dr Nikon HFX-11 (Ephiphot) exposure o Motorola VME Bus Boards & Compo Motorola VME Bus Boards & Compo Trio 0-18 vdc linear, metered 30 amp Fujitsu M3041R 600 LPM band printe Fujitsu M3041D 600 LPM printer with Perkin Elmer 2998 Infrared spectropi VG Electronics 1035 TELETEXT De Andrews LARGE 3.1 m Satellite Dis Saterole SD 1504 16 becard divisital

IC's -TRANSISTORS - DIODES

the same the same the same the same the same the	
spec SVGA monitors	£24
r sources - ex stock	EPO/
nit driver	£950
t lobe modules	£750
el 8228-23-5050N	£95
z to 330Khz, IEEE	£55(
3703(2M) 64 i/o	EPO/
GHz sweep generator	£6500
	£3750
82A Error Detector	EPO/
	2950
PSU 0-7 V 160 watts	£1800
Barcode swipe reader	£175
@ 20A metered PSU	£675
el test set	EPO/
d drum plotter	£1850
lock in amp	2650
nspection system	EPOA
vibration test system	£PO/
n X Y table & controller	£1425
analyser	2POA
ecorder system	£3750
New batts Dec. 1995	£9500
cleaning system	EPOA
rinter	£2200
ystem. BIND Ham	£1200
um plotters	21150
Control Unit	21450
hents List. SAE / GALL	LPUP
Dench Fau. New	CIOE
a natwork latadaga	C1950
hotomotor	CDUV
coding Margin Motor	C3750
th + mount (For Voyager)	6950
Hybrid chart recorder	£1005
r / recorder	\$750
nonitor	£485
oustic test cabinets	£300
EW	£650
Is on the above iter	ms

Surplus always wanted for cash! 19" RACK CABINETS Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price! Top quality 19" rack cabinets made in UK by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back door and louvered removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting 10860860860 10860860860 1086086086 plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make socket switched mains distribution strip make have ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in multiple bays. Overall dimensions are: 771% H x 321% D x 22° W. Order as: OPT Rack 1 Complete with removable side panels. £335.00 (G) OPT Rack 1 Less side panels. £335.00 (G) OPT Rack 2 Rack, Less side panels £225.00 (G 32U - High Quality - All steel RakCab Made by Eurocraft Enclosures Ltd to the highest possible spec rack features all steel construction with removable side, front and back doors. Front and back doors are

hinged for easy access and all are lockable with five secure 5 lever barrel locks. The front door is constructed of double walled steel with a 'designer style' smoked acrylic front panel to enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack features fully slotted reinforced vertical fixing features fully slotted reinforced vertical fixing members to take the heaviest of 19" rack equipment. The two movable vertical fixing struts (extras available) are pre punched tor standard cage nuts. A mains distribution panel internalinted to the bottom rear, provides 8 x IEC 3

y mounted to the bottom rear, provides 8 x IEC 3 pin Euro sockets and 1 x 13 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. External dimensions mm=1625H x 635D x 603 W. (64" H x 25" D x 23%" W)

Sold at LESS than a third of makers price !! A superb buy at only £195.00 (G) Over 1000 racks - 19" 22" & 24" wide 3 to 44 U high. Available from stock !! Call with your requirements. TOUCH SCREEN SYSTEM

LOW COST RAM & CPU'S INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor Card is fully selectable tor Expanded of the driver disks supplied. RFE and above) memory. Full data and driver disks supplied. RFE \$59.95(A1)

And above) memory. Full data and driver disks supplied in Fully tested and guaranteed. Windows compatible. ES9.95(A Half length 8 bit memory upgrade cards for PC AT XT expands memory either 256k or 512k in 64k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order as: XT RAM UG. 256K, £34.95 or 512k £39.95 (A1)
 SIMM SPECIALS

 1 MB x 9 SIMM 9 chip 120ns
 Only £16.50 (A1)

 1 MB x 9 SIMM 9 chip 120ns
 Only £16.50 (A1)

 1 MB x 9 SIMM 9 chip 120ns
 Only £22.95 (A1)

 1 MB x 9 SIMM 9 chip 80 ns £19.50 or 70ns
 £22.95 (A1)

 1 MB x 9 SIMM 9 chip 80 ns £21.50 or 70ns
 £23.75 (A1)

 4 MB 70 ns 72 pin SIMM *with parity-* Only £95.00 (A1)

 INTEL 486-DX33 CPU £55.00 INTEL 486-DX66 CPU £69.00 (A1)
 FULL RANGE OF CO-PROCESSOR'S EX STOCK - CALL FOR £££
 FANS & BLOWERS EPSON DO412 40x40x20 mm 12v DC £7.95 10 / £65 PAPST TYPE 612 60x60x25 mm 12v DC £8.95 10 / £75 MITSUBISHI MMF-06D12DL 60x60x25 mm 12v DC £4.95 10 / £42 MITSUBISHI MMF-06B12DH 92x92x25 mm 12v DC £5.25 10 / £49 MITSUBISHI MMF-09B12DH 92x92x25 mm 12v DC £5.25 10 / £53 PANCAKE 12-3.5 92x92x18 mm 12v DC £5.95 10 / £53 EX-EQUIP AC fans. ALL TESTED 120 x 120 x 38 mm specify 110 cr 240 v £6 55 50 x 80 x 38 mm specify 110 cr 240 v £5 55

or 240 v £6.95. 80 x 80 x 38 mm - specify 110 MHOF B26 1900 rack mnl 3U x 19' Blower 110/240 v £5.95 Shipping on all fans (A). Blowers (B). 50,000 Fans Ex Stock CALL

Two-wire remote control

wo wires control eight outputs, in this case to a dot/bar driver. The LM3915 supplies constant current to the switch/resistor chain at the remote end of the wires. Selecting one of the resistors by

means of a switch applies the voltage dropped across it to one of the driver outputs, the log, scale of the driver allowing fairly wide resistor tolerance. Since, according to the data sheet, LM3915s may be

cascaded, the number of remote resistors can be increased to suit other purposes. Alex Birkett London SE22

/Sw

/Sw

/Sw

/Sw

/Sw-

/Sw

ZTX500 620R -1111 D1 1N914 1mA R₁₀ 13k 7 REO LD1 LD2 18 ww IC. LD3 RFA LM3915 LD4 16 ALH Dot/Bar ₹ R₉ 10k LD5 15 Driver LD6 14 LD7 13 LD8 12 LD9 11 LD10 10 C2 MODE 9

Offset source for op-amps

A separate source of offset voltage for a number of op-amps avoids the need to use the offset adjustment on some opamps, which is intended for the op-amp's internal offset, not that from other parts of a system. Further, such procedures can adversely affect other characteristics such as offset drift and, in some cases where the gain from the offset terminals is high, cause trouble with noise pickup from inevitably longish connections to the adjustment pot. This one provides a stable source of offset voltage, independent of the power supply.

A band-gap reference, well decoupled, provides up to 5V, which is divided to reduce the effect of the LM611 offset and allow the 611 output to be only loosely coupled to the rest of the system by a largish resistor.

Since gain from the 611 non-inverting input is +2 and that from the inverting input -1, varying the potentiometer end to end varies the output between -5V and +5V. The two $1M\Omega$ resistors ensure that, in the event of the wiper being opencircuit, the 611 output becomes zero rather than swinging to a supply rail.

Care with wiring is needed, particularly for ground connections.

Phil Denniss University of Sydney

NSW Australia

CIRCLE NO. 133 ON REPLY CARD

June 1997 ELECTRONICS WORLD

YOUR Ideal Partner in UHF and VHF COMMUNICATION

One stop solutions for all your radio telemetry module needs.

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies.

In other words, a partner like Wood & Douglas. Founded on technical excellence, Wood & Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood & Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact ...

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England Telephone: 0118 981 1444 Fax: 0118 981 1567 email: info@woodanddouglas.co.uk web site: http://www.woodanddouglas.co.uk

CIRCLE NO. 134 ON REPLY CARD

Spreadsheet Analysis for Engineers and Scientists

0

0

...

0

0

With this practical, hands-on guide, engineers and researchers learn, quickly and easily, the latest and most useful electronic spreadsheet methods. Using a variety of interactive techniques, including worksheets, self-test and practical programs on the included disk, Spreadsheet Analysis for Engineers and Scientists show you how to harness the power and versatility of spreadsheet programs, including those that contain the fast Fourier transform, complex operations and Bessel functions, and how to customise your own applications. **Includes disk** 0471 126837, 336pp UK £37.50, Europe £39.50, ROW £49.50

Electronic Component Reliability

Fundamentals, Modelling, **Evaluation and Assurance** This text approaches the quality and reliability of electronic components from a unique standpoint. Traditionally the twin subjects of reliability physics and reliability statistics have been treated as seperate entities. Here, the author examines both areas and reveals how components fail and how failures develop over a period of time 0471 952966, 374pp UK £50.50, Europe £53.50, ROW £66.50

Finn Jensen

Fuzzy Logic

Implementations and Applications

Offering a new perspective on a growing field, this text explores the many hardware implications of fuzzy logic based circuits. As use of Al increases, so the VLSI area of circuits is becoming a growth subject. Opening with an overview of fuzzy sets and fuzzy logic the book moves on to cover a range of nonstandard solutions for fuzzy logic VLSI circuits. Future trends, new concepts and ideas are all examined and supported with practical examples from the author's research. ISBN 0471 950599, approx 346pp, UK £50.50, Europe £53.50, ROW £66.50

Microelectronic **Switched-Capacitor** Filters

Switched-capacitor filters and associated MOS integrated circuits are now an established technology finding applications in the telecommunications and instrumentation fields. With unrivalled breadth of coverage, this book surveys the design techniques of an important class of analogue signal processing systems. An accompanying diskette containing a comprehensive computer-aided design package (ISICAP) enables readers to gain a greater depth of understanding of the described techniques. Containing both source code

MICROELECTRONIC SWITCHED-CAPACITOR FILTERS

H. Baher

files and an executable version of the main design package, this alone will be an indispensable tool for many circuit designers. **Includes** disk 0471 954047 384pp UK £75.50, Europe £79.00, ROW £92.00

The I²C Bus

From theory to Practice With a special emphasis on the 1²C Bus, this guidebook through the world of micro controller-managed serial buses presents comprehensive coverage of the theory necessary to design the best possible communications bus for any particular application. The book examines typical industrial and consumer applications and enables the reader to design effectively in a rel-world environment. A disk containing software for the 1²C bus is also included. Includes disk 0471 96268 6, 314pp UK £54.50, Europe £56.50, ROW £65.00

High Frequency Analog Integrated Circuits

As one of the first textbooks to discuss integrated circuit design considerations and

WHEN SERIES IN INCOMANY AND DEVICAL ENGINEERING

actual designs from the basic concepts, this title provides a solid background in designing basic circuits, advanced circuits and synthesis techniques. 0471 530433 424pp UK £80.00, Europe £83.00, ROW £95.00

Speech Coding

A Computing Laboratoty Textbook

This is one of the first lab manuals with software dedicated exclusively to speech processing and coding. It takes advantage of the development of the personal computer by making this technology accessible to a wider audience The manual and Dos based software together create a user-friendly digital signal processing lab which allows the user to

perform a wide variety of speech coding and speech processing experiments. The text presents and explains a set of basic speech coders analytically and in terms of the specific parameters controlling each coder. The manual leads the student through the experimental process of understanding how speech coders work and sound via over 70 exercises and projects. The class-tested menu-driven, Dos-based software can be operated by students with little or no training. Includes disks

0471 516929, 194pp, UK £28.95, Europe £30.95, ROW £36.95

Solar Cells and their Applications

The past decade has witnessed numerous important breakthroughs in solar cell technology, many of which have occurred in just the past few years. Far cheaper to produce and maintain, exhibiting a longer lifetime and considerably more efficient than ever before, solar cells are, at last, in a position to compete with traditional technologies for both small and large-scale energy conversion applications. Including contributions from some of the world's leading experts in the field, this book reports the most important recent advances in solar cell technology. From in-depth discussions of breakthroughs in cell, module, and system technologies to a probing look at important environmental, health, and ssfety issues in the photovoltaic industry, it covers a broad range of topics of vital interest to solar cell researches, power systems designers, and all those with professional interest in current and future capabilities of this important technology. Offers a detailed look at cutting-edge solar technology from an international team

SOLAR CELLS AND THEIR APPLICATIONS

LARRY D. PARTAIN

of researchers. Covers silicon, GaAs, InP, CdTe, a-Si:H, CuInSe29 and GaSb solar cells, cells, concentrators, multijunction cell configurations, space cells, and more. Describes a wide range of applications - from space cells to terrestrial systems Provides an informal look ahead at the future of solar cell technology. 0471 574201, 596pp, UK £71.50, Europe £75.00, ROW £92.00

Introduction to High-**Speed Electronics and Optoelectronics**

Lasers, fibre optics, and highspeed optical systems share many concepts with microwave devices. Furthermore, semiconductorbased optoelectronics and microwave integrated circuits share evolving process technologies. It is only natural, therfore, that students of optoelectronics be introduced to high-speed concepts in a unified manner. This highly practical intensive introduction enables electrical engineers, applied physicists, and students to develop and identify tools for understanding, analysis, design, and characterisation of high speed components. Broad in scope, this unique

complementary nature of electronics and optics and emphasizes high-speed technology in which the two fields are less differentiated. Beginning with an overview that develops a perspective and appreciation of analog high-speed technology in general, the book goes on to cover devices and circuits used at microwave and millimeter-wave frequencies, optical components, and optoelectronic integrated circuits and subsystems. Particular attention is paid to applications in the area of high levels of interest in this area and because many of the concepts are applicable in other fields. The book concludes with important coverage of the oftenoverlooked area of measurement and characterization of high-speed devices. Fully referenced and supplemented with hundreds of helpful illustrations, Introduction to High-Speed Electronics and Optoelectronics is equally useful as a professional reference or a textbook for senior undergraduate and first-year graduate courses. 0471 015822, 312pp, UK £65.00, Europe £67.00, ROW £77.00

text/reference examines the

Risc Systems and Applications

Professor Daniel Tabak has completely revised and updated his two previous books on Reduced Instruction Set Computer architecture to produce this new book, RISC Systems and Applications. The text is a unique, concentrated, detailed description of the architecture and implementation of most recent high-performance RISC systems, such as DEC Alpha ÁXP21164, IBM/Motorola/Apple PowerPC

620, Sun Microsystems and Texas Instruments UltraSPARC and SuperSPARC, MIPS technologies R10000, Intel i860 XP, Motorola MC88110, Hewlett-Packard PA-7100/8000 and the transputer. It also includes details of pioneering devices such as Berkley's RISC II and Stanford's MIPS and multiprocessor, real-time and workstation systems. ISBN 0863 801889, 452pp, UK £50.50, Europe £54.00, ROW £67.00

All prices are fully inclusive of packing and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Qty	Title or ISBN		Price
		_	1
			-

** All prices on these pages include delivery and package **

Total

Name

Address

Postcode

Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO

Cheques should be made payable to **Reed Business Publishing**

Credit card no

Card expiry date

Signed

Please allow up to 28 days for delivery

The Complete Electronics Design System - Now With RIP-UP & RETRY!

Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and

Simulation

- Non-Linear & Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Desten

CIRCLE NO. 135 ON REPLY CARD

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP & RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit. Tel: 01756 753440. Fax: 01756 752857. 53-55 Main St, Grassington. BD23 5AA.

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

EMAIL: info@labcenter.co.uk WWW: http://www.labcenter.co.uk

Ray Fautley shows how to design reliable voltage doubling power supply circuits with the aid of look-up tables.

 $I_{dc(load)}$ in amps.

V_{pri(rms)} in volts.

in hertz.

resistance R_{I} .

 $R_L = \frac{E_{dc}}{I_{dc(load)}}$

ignored, so,

 $I_0 = I_{dc(load)}$

7)

 $R_L = \frac{E_{dc(load)}}{E_{dc(load)}}$

Idc(load)

through each diode:

 $R_s = R_{\rm sec} + \frac{R_{pri}}{N^2}$

4)

5)

he symmetrical voltage doubler, shown in the diagram, is useful for providing high voltages at low currents.

The term 'symmetrical' is used as the diodes and capacitors are connected in a symmetrical fashion, looking rather like the bridge-rectifier circuit. There is no direct connection between the alternating input and the dc output. (Another type of voltage doubler circuit is the common-terminal circuit where the ac supply and dc output have a common terminal, and so is not 'symmetrical'.)

Alternating voltage is applied to the two rectifier diodes D_1 and D_2 . When point x is positive, diode D_1 conducts but D_2 is cut off. Current through D_1 charges capacitor C_A to approximately the peak of the transformer secondary voltage. During the next half cycle point x will be negative with diode D_2 conducting and D_1 cut off.

Current through D_2 charges capacitor $C_{\rm B}$, again to approximately the secondary peak voltage.

As the two capacitors C_A and C_B are connected in series, so are the voltages across each of them. The two voltages - being of suitable polarity - add, providing nearly twice the output voltage of a single diode half wave rectifier. This is logical because the voltage doubler is really just two half wave rectifiers in series.

Source resistance is shown as resistor R_s .

Voltage doubler design procedure

The procedure for designing the symmetrical voltage doubler is similar to that used for the rectifier circuits described in my previous articles

- 1) Specify required dc output voltage at full load $E_{dc(load)}$ in volts.
- 2) Specify required maximum load current

Used for providing high voltages at low current, this circuit produces nearly twice the voltage of a single-diode halfwave rectifier.

ANALOGUE DESIGN

Voltage doubling

3) Specify maximum ripple voltage acceptable, $V_{r(rms)}$ in volts.

Specify the ac mains supply voltage

Specify frequency of the mains supply f

6) Determine the value of equivalent load

where E_{dc} is the design value of the dc output voltage. It is the required voltage across the load $E_{dc(load)}$, added to any voltage drop across the diodes. As this type of rectifier is mostly used for obtaining a high voltage at low current the diode voltage drop can be

Determine the average current I_0

8) Determine a value for the source resistance of the supply R_s . As only high resistance loads - i.e. high voltage and low current - are to be considered, the predominant resistance will be that of the transformer windings. So,

However, as it's likely that the transformer winding resistance are not known, assume R_s is about 2% of R_I . So,

$$R_s = R_L \times \frac{2}{100}$$

9) Calculate the ratio of R_s to R_L as a percentage,

$$\frac{R_s}{R_I} \times 100\%$$

10) Determine the percentage ripple voltage from the specified maximum ripple and dc output voltage:

$$V_r \% = \frac{V_{r(rms)}}{E_{dc(load)}} \times 100\%$$

- 11) From the Table 1, determine the value of X required to provide the percentage ripple voltage V_r % in step (10) above, for (R_s/R_L) % calculated in step (9).
- 12) Calculate the value of capacitors C_A and $C_{\rm B}$ in the circuit diagram.

$$C_A = C_B = C = \frac{X(10^6)}{2\pi f R_L} \mu F$$

13) Find the nearest standard, or available, value for C_A and C_B , close to, or just above, the value calculated in step (12). If the practical value of C is different from that in step (12), call it C_1 and determine a new value for X (call it X_1) from, $X_1 = 2\pi f C_1 R_L$, or with C in microfarads,

$$X_1 = \frac{2\pi f C_1 R_L}{10^6}$$

- 14) From the figures in Table 2, determine the value of Y for X in step (11), or X_1 in step (13), and $(R_s/R_1)\%$ in step (9).
- 15) Determine the transformer secondary voltage Vsec(rms) required, from the value for Y in step (14),

$$V_{\text{sec}(rms)} = \frac{E_{dc(load)}}{\sqrt{2 \times Y}}$$
$$= \frac{0.707 \times E_{dc(load)}}{Y}$$

ANALOGUE DESIGN

16) Determine the peak voltage, or PIV, that each of the rectifiers must withstand,

PIV=2×V_{sec(peak)} $=2 \times \sqrt{2 \times V_{sec(rms)}}$ =2.828V_{sec(rms)}

17) Find the value for Z from Table 3 for 0.5X (or $0.5X_1$) where X was found in step (11) or X_1 in step (13), and for $(R_s/0.5R_L)\%$, where $(R_s/R_L)\%$ was found in step (9),

$$Z = \frac{I_{(rms)}}{I_o}$$

- 18) From the value of Z found in step (17), determine the current through each rectifier diode from $I_{(rms)}=I_0 \times Z$.
- 19) Determine recurrent peak current I(peak) through each rectifier diode. From Table 4, for 0.5X (or 0.5X₁) and $(R_s/0.5R_L)\%$ find W, which is $I_{(\text{peak})}/I_0$. Next find $I_{(\text{peak})}$ from $I_0 \times W$.
- 20) Determine initial switch-on current I_{on} . As capacitors C_A and C_B are initially discharged, the load on the rectifier diodes will be nearly a short circuit at the instant of switch-on, limited only by the source resistance R_s . As a result,

$I_{on} = V_{sec(peak)}/R_s$.

This very high current flows for only a very short time, but the rectifier diodes must be capable of withstanding it. If suitable devices with such high pulse ratings are not available, the source resistance R_s must be increased by adding an external resistor R_{ext} where R_s is shown in the circuit diagram. The value of R_{ext} to limit the switch-on

current to an acceptable lower value $I_{on(L)}$ is determined in step (28). 21) Decide on a suitable rectifier diode type. The device must have all its ratings equal to, or greater than, the following, PIV or 2×V_{sec(peak)} (sometimes V_{RRM}), see step (16) Initial switch-on current or Ion (sometimes I_{FSM}), see (20) Average current or I_0 (sometimes $I_{F(AV)}$), see (7) 22) Determine rms ripple current $I_{c(rms)}$, flowing through capacitors C_A and C_B , $I_{c(rms)} = \sqrt{[(I_{(rms)}^2) - (I_{dc(load)}^2)]}$ for $I_{(rms)}$ see (18) and for $I_{dc(load)}$ see (2).

23) Decide on the specification for capacitors C_A and C_B . Each capacitor must have ratings equal to, or greater than, the following,

Capacitance C_A and C_B see (12) or (13)

Working dc voltage $\sqrt{2} \times V_{\text{sec(rms)}}$, see (15)

Ripple current $I_{c(rms)}$, see (2.2)

- 24) Total transformer secondary current $I_{t(rms)}$ comprises two currents, one in each rectifier, which must be summed by,
- $I_{t(rms)} = \sqrt{[(I_{(rms)}^2) + (I_{(rms)}^2)]}$ $=\sqrt{2 \times I_{(rms)}} = 1.414 \times I_{(rms)}$

Vr%	(H _S /H)%		2.2	22	
4.14	0.1	0.3	1.0	3.0	5.0	10
0.1	1780	1594	1428	1279	1210	1145
0.2	863	772	691	618	585	553
0.3	561	506	456	411	390	370
0.4	418	375	337	302	286	271
0.5	332	299	270	243	231	219
0.6	280	250	224	200	189	179
0.7	238	214	193	174	165	157
0.8	203	183	165	149	141	134
0.9	183	165	148	133	126	120
1.0	163	147	131	120	114	109
2.0	80	72	64	58	55	52
3.0	52	47	42	38	36	34
4.0	39	37	35	33	32	32
5.0	30	27	24	22	21	20
5.0	24	22	20	18	17	16
7.0	20	18	17	15	14	14
3.0	18	16	15	13	12	12
9.0	14	13	12	11	10.7	10.5
10	13	12	11	10	9.6	9.2
20	4.8	4.5	4.3	4.0	3.9	3.8
30	2.3	2.2	2.1	2.0	2.0	2.0
10	1.1	1.07	1.04	1.02	1.01	1.0
For 5) Tra is, Typ	$I_{(rms)}$ se nsforme $=V_{random}$	e step 13 r volt-ar	8. np, or V	'A rating	g T _{VA}	
	i sectin	is) i(iiiis				
Thi	s determ	ines the	size of	the		
tran	stormer					
) Tra	nsforme	r require	ements:			
Vol	t-amp ra	ting $T_{\rm V}$	A, see st	ep (25)		
Prin	nary wir	ding $V_{\rm p}$	ri(rms), So	ee (4)		
Saa	ondary v	vinding	Vsec(rms)	see (15)	
Sec						

Х	(Rs/R	L)%													
¥	0.1	0.25	0.5	1	1.5	2	3	4	5	6	7	8	10	13	20
1.3	0.60	0.59	0.59	0.58	0.58	0.58	0.57	0.57	0.56	0.55	0.55	0.54	0.53	0.51	0.49
1.5	0.66	0.65	0.64	0.64	0.63	0.63	0.63	0.63	0.62	0.62	0.61	0.60	0.59	0.56	0.54
2	0.77	0.76	0.75	0.74	0.74	0.73	0.73	0.72	0.71	0.70	0.69	0.69	0.68	0.66	0.62
3	0.93	0.92	0.92	0.91	0.90	0.89	0.88	0.87	0.87	0.86	0.85	0.85	0.83	0.77	0.71
4	1.04	1.03	1.03	1.02	1.01	1.00	0.98	0.97	0.96	0.95	0.94	0.93	0.89	0.81	0.74
5	1.13	1.12	1.12	1.10	1.09	1.08	1.06	1.03	1.03	1.02	1.00	0.98	0.94	0.93	0.75
6	1.19	1.18	1.17	1.16	1.15	1.14	1.12	1.06	1.08	1.07	1.03	1.01	0.97	0.84	0.75
7	1.25	1.24	1.24	1.22	1.20	1.19	1.16	1.14	1.12	1.09	1.06	1.02	0.98	0.85	0.75
8	1.31	1.30	1.29	1.27	1.25	1.24	1.21	1.18	1.15	1.12	1.08	1.04	0.99	0.85	0.75
9	1.35	1.34	1.32	1.30	1.29	1.27	1.24	1.21	1.17	1.13	1.09	1.05	1.00	0.85	0.75
10	1.39	1.38	1.36	1.34	1.32	1.31	1.27	1.23	1.19	1.15	1.10	1.06	1.01	0.86	0.75
15	1.51	1.50	1.48	1.44	1.42	1.39	1.33	1.27	1.22	1.17	1.13	1.08	1.02	0.86	0.75
20	1.62	1.61	1.59	1.54	1.52	1.47	1.39	1.31	1.25	1.19	1.15	1.10	1.03	0.87	0.75
30	1.77	1.72	1.68	1.62	1.57	1.51	1.42	1.34	1.27	1.21	1.16	1.11	1.03	0.87	0.75
40	1.79	1.77	1.73	1.65	1.60	1.53	1.43	1.35	1.28	1.21	1.17	1.11	1.03	0.87	0.75
50	1.82	1.79	1.75	1.67	1.61	1.54	1.44	1.35	1.28	1.22	1.17	1.12	1.03	0.87	0.75
60	1.84	1.81	1.76	1.68	1.61	1.55	1.45	1.35	1.28	1.22	1.17	1.12	1.03	0.88	0.76
70	1.85	1.82	1.77	1.68	1.62	1.55	1.45	1.36	1.29	1.22	1.17	1.12	1.03	0.88	0.76
80	1.86	1.83	1.78	1.69	1.62	1.55	1.45	1.36	1.29	1.22	1.17	1.12	1.03	0.88	0.76
90	1.87	1.83	1.78	1.69	1.62	1.56	1.45	1.36	1.29	1.22	1.17	1.12	1.03	0.88	0.76
100	1.88	1.84	1.78	1.69	1.62	1.56	1.45	1.36	1.29	1.22	1.17	1.12	1.04	0.88	0.76
200	1.91	1.85	1.78	1.70	1.63	1.56	1.46	1.36	1.29	1.22	1.17	1.12	1.04	0.88	0.76
300	1.92	1.86	1.79	1.70	1.63	1.56	1.46	1.36	1.29	1.22	1.17	1.12	1.04	0.88	0.76
400	1.93	1.86	1.79	1.71	1.63	1.57	1.46	1.36	1.29	1.22	1.17	1.12	1.04	0.88	0.76

27)	When a suitable transformer has been
-0-00	chosen, measure the resistance of both
	windings. If the measured source
	resistance,

$$_{(m)} = R_{\rm sec} + \frac{R_{pri}}{N^2}$$

is less than R_s calculated in step (8), then an external resistor,

 $R_{\text{ext}} = R_{\text{s}} - R_{\text{s(m)}}$

R.

- must be added, see (28), to limit I_{on} to the value found in (20).
- 28) If an external resistor R_{ext} was found necessary in (20) or (27) to be fitted where R_s is shown to limit switch-on current to a lower level $I_{on(L)}$, its value will be,

$$R_{ext} = \frac{V_{\text{sec}(peak)}}{I_{or(1)}} - R_s$$

29) Power dissipated in R_{ext} , if used, is given by,

 $P_r = [I_{t(rms)}^2] \times R_{ext}$

A suitable resistor should have a power rating of about twice the value of P_r for reliable operation.

30) If R_{ext} is used, the regulation of the supply can be improved by adding a shorting-out device, as recommended for the bridge rectifier circuit described my article in the September 1996 issue.

Voltage doubler design example Finally, here is a worked example for the voltage-doubler circuit. Assume that a supply of 1000V at 100mA is required, having an

acceptable ripple level of 10V rms.

- 1) $E_{dc(load)} = 1000V$
- 2) $I_{dc(load)}=100 \text{mA or } 0.1 \text{A}$
- 3) $V_{r(rms)}=10V rms$
- 4) V_{pri(rms)}=240V rms
- 5) f=50Hz
 - $R_L = \frac{E_{dc(load)}}{I_{dc(load)}} = \frac{1000}{0.1} = 10 \mathrm{k}\Omega$
- Idc(load)
- 7) $I_0 = I_{dc(load)} = 100 \text{mA}$
- 8) Let $R_s=2\%$ of $R_{\rm L}$, i.e.,
- $R_s = R_L \times \frac{2}{100} = \frac{10^4 \times 2}{100} = 200\Omega$ $\frac{R_s}{R_t}\% = \frac{200}{10^4} \times 100\% = 2\%$

$$V_r \% = \frac{V_{r(rms)}}{E_{dc(load)}} \times 100\%$$
$$= \frac{10}{1000} \times 100\% =$$

11) The value of X for V_r % and (R_s/R_L) %, i.e. V_r %=1 and (R_s/R_L) %=2 from Table 1 is found to be 125.

12)

$$C = \frac{X(10^6)}{2\pi f \times R_L} \mu F = \frac{1}{2\pi}$$

$$= \frac{125}{\pi} \mu F = 39.8 \mu F$$

13) The nearest standard value above 39.8µF is 47µF, so, $X_1 = 2\pi f \times C_1 \times R_L$

 $=2\pi \times 50 \times 47 \times 10^{-6} \times 10^{4} = 148$ 14) From Table 2, the value of Y for X_1 and

 (R_s/R_L) %, i.e. X_1 =148 and (R_s/R_L) %=2, is found to be 1.56

15) $V_{\text{sec}(rms)} = \frac{0.707 \times E_{dc(load)}}{Y}$ 0.707×1000 1.56 = 453V rms

16) PIV=2.828V_{sec(rms)}=2.828×453=1281V

17) From Table 3, the value of Z for $0.5X_1$ and $(R_{0.5}R_{1})\%$, i.e. $0.5X_{1}=0.5\times148=74$ and $(R_s/0.5R_L)\%=2/0.5=4$, is found to be 2.46.

Table	3. To Fil	nd the va	alue foi
0.57	0.02	0.05	0.1
1	1.80	1.80	1.79
2	2 03	2.02	2 01
3	219	217	2 16
4	2.32	2.30	2.28
5	2.43	2.40	2.36
6	2 50	2.48	2.46
7	2.58	2.53	2.51
В	2.66	2.63	2.61
9	2.73	2.70	2.68
10	2.80	2.78	2.75
20	3.30	3.20	3.17
30	3.64	3.50	3.40
40	3.91	3.72	3.55
50	4.08	3.87	3.68
60	4.23	3.97	3.78
70	4.35	4.03	3.87
80	4.45	4.10	3.94
90	4.52	4.18	3.98
100	4.62	4.23	4.02
200	5.03	4.60	4.27
300	5.20	4.79	4.33
400	5.35	4.86	4.37
500	5.45	4.90	4.38
600	5.51	4.03	4.38
700	5.60	4.96	4.39
800	5.67	4.98	4.39
900	5.70	4.99	4.39
1000	5.75	5.00	4.39

ANALOGUE DESIGN

1%

20)

 125×10^{6} $1 \times 50 \times 10^4 \,\mu F$

result, $I_{(peak)} = I_0 \times W = 0.1 \times 7.02 = 0.702 \text{A}$, or 702mA.

18) $I_{(rms)} = I_0 \times Z = 0.1 \times 2.46 = 0.246 \text{ A}$ or 246mA

19) From Table 4, the value of W for $0.5X_1$

and $(R_s/0.5R_L)\%$, i.e. $0.5X_1=74$ and

 $(R_{\rm s}/0.5R_{\rm L})\%$ =4, is found to be 7.02. As a

$$I_{on} = \frac{V_{\text{sec(peak)}}}{R_s} = \frac{1.414 \times V_{\text{sec(rms)}}}{R_s}$$
$$= \frac{1.414 \times 453}{200} = 3.2\text{A}$$

21) Diode ratings required:

PIV (V_{RRM})=1281V $I_{on} (I_{FSM}) = 3.2A$ $I_{o}(I_{F(AV)})=0.1A$

For safe operation, two BYX38-1200 type diodes should be used in series for each of the two diodes in the voltage doubler circuit.

22)

$$I_{c(rms)} = \sqrt{[I_{rms}^{2}] - [I_{dc(load)}^{2}]}$$

$$= \sqrt{0.246^{2} - 0.1^{2}}$$

$$= \sqrt{0.0605 - 0.01}$$

$$= \sqrt{0.0505} = 0.225 \text{A}$$

C=capacitance=47µF

23) Capacitor ratings required, $C_A = C_B = C$

 $V_{\text{sec(peak)}} = V_{\text{DC(wkg)}} = \sqrt{2 \times 453} = 641 \text{V}$

Ic(rms)=ripple current=0.225A

r .	z.								
	0.2	0.5	1.0	2	5	10	30	100	
	1.79	1.79	1.78	1.77	1.77	1.73	1.70	1.66	
	2.00	1.99	1.98	1.97	1.96	1.89	1.77	1.67	
	2.14	2.13	2.11	2.10	2.03	1.95	1.79	1.67	
	2.26	2.24	2.22	2.17	2.08	1.98	1.80	1.68	
	2.32	2.27	2.23	2.19	2.10	2.01	1.82	1.68	
	2.44	2.42	2.40	2.28	2.13	2.04	1.83	1.68	
	2.49	2.47	2.45	2.31	2.16	2.05	1.84	1.68	
	2.60	2.58	2.50	2.35	2.17	2.06	1.84	1.68	
	2.66	2.64	2.57	2.38	2.18	2.07	1.85	1.68	
	2.73	2.70	2.62	2.40	2.19	2.08	1.86	1.68	
	3.15	2.83	2.82	2.53	2.26	2.12	1.88	1.68	
	3.29	3.05	2.89	2.59	2.30	2.15	1.90	1.68	
	3.40	3.13	2.92	2.62	2.32	2.16	1.90	1.68	
	3.48	3.22	2.93	2.64	2.33	2.17	1.91	1.68	
	3.55	3.25	2.94	2.66	2.35	2.18	1.91	1.68	
	3.60	3.27	2.95	2.67	2.36	2.18	1.91	1.68	
	3.65	3.30	2.96	2.68	2.36	2.18	1.91	1.68	
	3.67	3.31	2.97	2.68	2.37	2.19	1.91	1.68	
	3.69	3.32	2.98	2.69	2.37	2.19	1.91	1.68	
	3.86	3.37	3.00	2.69	2.38	2.19	1.91	1.68	
	3.88	3.38	3.00	2.69	2.38	2.19	1.91	1.68	
	3.88	3.38	3.00	2.70	2.38	2.19	1.91	1.68	
	3.89	3.38	3.00	2.70	2.39	2.19	1.91	1.68	
	3.89	3.39	3.00	2.70	2.39	2.19	1.91	1.68	
	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68	
	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68	
	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68	
	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68	

ANALOGUE DESIGN

24) $I_{t(rms)} = $	$2 \times I_{\rm rms} =$	√2×0.24	6=0.348A, o)
348mA	10,000			

25)	$T_{VA} = V_{sec(rms)} \times I_{t(rms)} = 453 \times 0.34$
	=158VA

26) Mains tr	ansformer ratings req	uired,
$T_{\rm VA}$	volt/ampere rating	158VA
V _{pri(rms)}	primary winding	240V
$V_{\rm sec(rms)}$	secondary winding	453V
I.(ma)	secondary current	348m/

I hope that the four simple procedures for designing the four key types of rectifier circuits that I have described over the past few months will prove as useful to you as they have to me over the years.

Designing reliable rectifiers
Ray Fautley has produced three earlier
articles along similar lines to this one,
covering:
Full-wave bridge rectifier
i un-wave bridge rectifier

September 1996 issue, p. 691 Half-wave rectifiers December 1996 issue, p. 980 Full-wave rectifier with centre tap

February 1997 issue, p. 133

or													
	Table	4. To Fi	nd the v	alue for	W.								
	0.5X	$(R_{\rm s}/0.$	5RL)%										
		0.02	0.05	0.1	0.2	0.5	1.0	2	5	10	30	100	
	1	3.70	3.70	3.70	3.64	3.62	3.60	3.60	3.59	3.58	3.57	3.46	
	2	4.60	4.57	4.55	4.53	4.52	4.50	4.28	4.20	4.08	3.72	3.51	
	3	5.50	5.40	5.33	5.30	5.20	5.10	5.00	4.67	4.33	4.00	3.55	
VA	4	6.20	6.17	6.13	6.10	6.00	5.98	5.45	5.20	4.95	4.05	3.57	
V	5	7.30	6.95	6.90	6.85	6.80	6.75	6.51	5.60	5.00	4.10	3.62	
V	6	8.00	7.90	7.70	7.60	7.50	7.30	6.90	5.84	5.09	4.19	3.63	
nA	7	8.70	8.55	8.50	8.30	8.10	7.82	7.30	6.00	5.10	4.22	3.64	
	8	9.60	9.50	9.35	9.00	8.50	8.20	7.69	6.15	5.14	4.23	3.64	
T	9	10.3	9.80	9.60	9.50	9.10	8.55	7.72	6.23	5.21	4.25	3.65	
	10	10.9	10.7	10.5	10.1	9.50	8.64	7.74	6.30	5.28	4.26	3.66	
et	20	16.0	15.0	14.4	13.0	11.1	9.44	7.83	6.47	5.29	4.27	3.66	
SL	30	19.7	18.0	16.3	14.3	11.7	9.60	7.92	6.50	5.31	4.27	3.66	
IS -	40	21.9	20.0	17.3	14.7	12.1	9.64	8.01	6.51	5.33	4.28	3.66	
	50	23.7	20.8	18.2	15.2	12.2	9.70	8.10	6.51	5.34	4.28	3.66	
	60	24.9	21.1	18.5	15.4	12.3	9.77	8.12	6.51	5.34	4.29	3.66	
	70	25.9	21.4	18.9	15.6	12.4	9.84	8.14	6.51	5.34	4.29	3.66	
	80	26.7	21.8	19.4	15.7	12.4	9.90	8.16	6.51	5.34	4.30	3.66	
er	90	27.5	22.2	19.5	15.8	12.5	9.93	8.18	6.51	5.34	4.30	3.66	
	100	28.5	22.5	19.7	15.9	12.5	9.96	8.19	6.52	5.35	4.31	3.66	
	200	30.5	23.0	20.0	16.3	12.6	10.0	8.19	6.52	5.36	4.31	3.67	
	300	31.6	23.3	20.5	16.9	12.7	10.0	8.20	6.53	5.38	4.32	3.67	
	400	32.8	23.5	20.9	17.0	12.7	10.0	8.20	6.54	5.40	4.32	3.67	
	500	33.3	23.8	21.0	17.1	12.8	10.0	8.20	6.55	5.42	4.33	3.68	
	600	33.8	24.0	21.1	17.2	12.8	10.1	8.20	6.56	5.44	4.33	3.68	
	700	34.2	24.5	21.2	17.3	12.9	10.1	8.20	6.57	5.46	4.33	3.69	
	800	34.4	24.9	21.4	17.4	12.9	10.1	8.20	6.58	5.48	4.33	3.69	
	900	34.5	25.8	21.5	17.5	13.0	10.1	8.20	6.59	5.52	4.33	3.70	
	1000	34.7	27.0	21.6	17.6	13.0	10.1	8.20	6.60	5.56	4.33	3.70	
	1.00												

Luxuriant editing! SpiceAge interfaces smoothly to almost any PCB design suite.

Although we would like you to use our own excellent Geswin schematic capture program which is purpose built for SpiceAge, if you already have a schematic program, there is a good chance that <u>SpiceAge will work with it</u> <u>better than any other circuit</u> simulator.

When you iterate between a schematic and a SPICE-like simulation environment while refining your circuits, the simulation settings and precious details such as polynomial functions on components can be lost. So without Geswin, it was sometimes easier to write the simulation netlist directly. However, SpiceAge's *circuit update* button only affects *changes* in the circuit built by the schematic and, because it retains all the previous information, you can spontaneously iterate between schematic and circuit.

To hear more about this and other nice touches in SpiceAge, please contact:

Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 0181 906 0155 FAX 0181 906 0969 Email 100550.2455@compuserve.com

CIRCLENO, 136 ON REPLY CARD

June 1997 ELECTRONICS WORLD

25Msample/s with a 1MHz output is -78dB. Analog Devices Ltd. Tel., 01932 266000; fax, 01932 247401.

Logic

Electronic tagging. Holtek HT6P20 electronic serial number chips offer 2²⁴ combinations and are intended for use in wireless key fobs, access control and burglar alarms. They are available programmed or blank and in five styles: the HT6P20 outputs its code on power-up; 6P20B allows the last two digits to be set by the user to identify the type of sensor or area from which the code was transmitted; and HT6P20D/E allow the last four and eight bits to be set. Supplies down to 2V will power the devices. With a Holtek 48000 8-bit microcontroller, a low-power tagging system can be made for under £1. Flint Distribution Tel. 01530 510333; fax, 01530 510275.

Optical devices

Multiple leds. Dialight's range of led

arrays now includes the 553 Series,

a dual, six-position type previously

replaces six bi-level devices or 12

bend 24 leads and giving accurate

resistors for 5V, draw 2mA and are

alignment. The leds have integral

separate ones, removing the need to

to special order and now standard.

A-to-d and d-to-a converters

fax 01635 552244

ACTIVE

High-I/V darlingtons. Arrays of

seven and eight darlington driver

circuitry and power loads such as

relays, print hammers and displays.

FE ULN2001-24 (seven drivers) and

FE ULN2801-2824 (eight) take up to

500mA through each driver, outputs

clamp diodes. Voltage rating is 50V

or 95V, depending on type. Various

input characteristics cope with pmos

Electronics Ltd. Tel., 01635 524490;

being paralleled for more, and all

have open-collector output and

comos and cmos input. FET

transistors by FET Electronics

interface between logic-level

Arrays

Fast a-to-d converters. Philips intends its TDA8762A and TDA8763A high-speed, highaccuracy and low-power converters for use in broadcast quality cameras. communications and medical imaging. Both provide 10-bit resolution at 80Msample/s and 50Msample/s respectively, the 8762 giving a ttl output and the 8763 cmos output from 2.7V to 5.25V. When sampling at 40Msample/s, the 8763 achieves an effective bit lengt of 9 4bit, s:n of 58dB and thd of -68dB, the 8762 at 80Msample/s being similar but with an effective bit length of 9.3bit. Sample-and-hold circuitry is not needed and low input capacitance avoids the need for buffering, Gothic Crellon Ltd. Tel. 01734 788878: fax. 01734 776095.

Transmission d-to-as. Analog Devices' AD976x family of cmos dto-a converters is meant for use in the transmission path of communications and signal generation equipment, all members providing differential 20mA output current and sharing a common 28-pin SOIC package. The 125Msample/s family consists of the 8-bit 9708, 10-bit 9760, 12-bit 9762 and 14-bit 9764, plus the 50Msample/s, 10-bit 9760-50. All run from a 2.7-5.5V single supply on 45mW (3V) with a power-down mode on 25mW. Performance features include a spurious-free dynamic range over the Nyquist band from 53dB when clocked at 100Msample/s to 79dB at 50Msample/s. Total harmonic distortion of the 9752 clocked at

available in two-colour types. Viewing angle is 30°. Dialight. Tel., 01223 424313; fax, 01223 423493. **PASSIVE COMPONENTS** Miniature colls. Three new miniature wire-wound coils in the 1008 package from Toko, the *FSLU2520 Series* offer inductances from 0.01WH to 2200 Will be Edge.

TUUB package from Toko, the FSLU2520 Series offer inductances from 0.01µH to 220µH in E12 values, low resistance, typical Q of 45 and 750ppm/°C temperature coefficient. Coils are in a sealed, heat-resistant case for flow or reflow soldering. Cirkit Distribution Ltd. Tel., 01992 444111; fax, 01992 464457.

Thick-film resistors. Virtually noninductive thick-film power resistors from RS Components are made by two suppliers: Vishay-Sfernice make the 5-50W types, while the 100W and 250W resistors come from Meggitt CGS. Cermet thick-film techniques are used, the housing being hard epoxy, and the components are meant to be mounted on a heat sink. The V-S resistors are to ±5% tolerance and

work in temperatures from -55° C to 125°C, the Meggitt CGS ones having a ±10% tolerance and -55° C to 70°C temperature range. All types will withstand a short-term overload. RS Components Ltd. Tel., 01536 201234; fax, 01536 405678.

Wirewound, switched pots. BFI lbexsa offers a range of 24mm diameter, single-turn wirewound potentiometers with a 4W rating and values in the 10Ω -22k Ω band. Switches are two-pole changeover types rated at 240V ac, 4A and 12V dc, 10A. Spindles are supplied to customers' specification, in either metric or imperial sizes. BFI lbexsa Electronics Ltd. Tel., 01622 882467; fax, 01622 882469.

Audio products

Comprehensive sound processor. Mitsubishi announces the M62460FP sound processor which forms a single-chip providing Dolby Pro Logic surround sound including centre and surround sound channel trimming for five speaker systems. It is an analogue processor with Pro Logic decoder, on-board memory and the I2C bus for closed-circuit television. A microprocessor interface renders the device simple to use, facilities including disco, hall, live mode and five delay time positions for digital space surround effects and 147.5ms or 196.6ms echoes. The use of BiCMOS is said to provide improved performance over cmos devices, as does the analogue design over combined analogue-digital types. Mitsubishi Electric UK Ltd. Tel., 01707 276100; fax 01707 278837

Communications equipment

Comms boards, C320 from Amplicon Liveline is an intelligent communications system providing between eight and 32 RS232 or RS422 serial comms ports for any pc having a free ISA slot. Each contains a plug-in controller board for the pc, a cpu module which is mountable up to 100m from the pc and a uart to plug into the cou module to give eight serial channels, each cpu taking up to four uarts for 32 channels and each pc holding four controller boards to give a total of 128 ports. Controller and cpu both have 46MHz risc processors and BS422 interfaces which, with the 512K of dual-ported ram in the controller, relieves the host of processing overhead. Software supplied is configuration and driver

Microwave components

L-band GaAs fets. Over the 1.6GHz to 2GHz, Toshiba's *TPM1919-40* GaAs fets deliver an output power of 42.7W or 46.33dBm, with a gain of 13.3dB and 42% power added efficiency; saturated power output is 51.3W. This is said to be the highest power at 1.8GHz ever achieved by a GaAs fet. gain flatness is ±0.5dB. Steatite Microelectronics Ltd. Tel., 0121 643 6333; fax, 0121 643 2011

software for Windows3.x, NT, 95, dos, SCO Unix, SCO Xenix, Unix SVR3.x, Unix SVR4.2, UnixWare and Solaris x86. Amplicon Liveline Ltd. Tel., 0800 525 335 (free); fax, 01273 570215.

Connectors and cabling

D-type connector hoods. Hoods for 9-37 way D-type connectors made by ODU UK are quick to assemble, need no fixing screws and come in a choice of ten colours. They are made in one piece and snap to lock together, incorporating a quicklyassembled reversible cable clamp with self-tapping screws to enable the use of cables of varying diameters up to 15mm thick for the 37-way hood. All have a captive steel thumb screw. The connectors themselves are of the mixed variety, in which data, power, coaxial and high-voltage contacts can be used in the one shell, ODU UK Ltd. Tel., 01653 600489; fax, 01653 600493.

Bga socket. Methode's 1.27mm pitch ball-grid-array socket provides a simple means of removing the bga device from the board, effectively turning the bga device into a pin grid

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

array type for socket or through-hole mounting. It is compatible with all popular bga packages and heat sinks: it needs no hold-down device and the footprint is standard bga size. Insertion force is 2oz/position and withdrawal 0.35oz/position, with several choices of ejector. Contact rating is 0.5A dc at 20-40mΩ. Methode Electronics Europe Ltd. Tel., 01389 732123; fax, 01389 732777.

Crimps and housings. AMP CST-100 crimp contacts and housings are available with 2-28 positions pitched at 0.1in and are compatible with the Molex KK series. This is a low-cost wire-toboard connection with a 250V ac, 4A rating and contact resistance of 2m . Both tin and gold-plated contacts are supplied and there is an overstress feature to prevent damage to the contact. Locking tabs and polarising tabs are standard. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734 776095.

Solderless connector. Surface Stack board-toboard connectors from Salwyh are fixed to the board by through-hole or threaded inserts, electrical connection to pads on the board being made by gastight beryllium-copper springs. There are models with from 22 to 78 contacts on a 1.27mm pitch. Selwyn suggests that the connectors are suitable for hand-held data collection devices, in which the pcb pads would be exposed for mating with the connector, avoiding the use of cables. Selwyn Electronics Ltd. Tel., 01732 763436; fax, 01732 763395.

Crystals

Wide-pull oscillator. Model 937 from Oak Frequency Control Group is a high-frequency voltagecontrolled crystal oscillator covering the 100-155.52 range of frequencies and is contained in a 16-pin dip. Output is ecl complementary in a variety of pin arrangements and standard frequency units are available from stock. Wyle Ginsbury Electronics Ltd. Tel., 01634 290903; fax, 01634 290903.

Test and measurement

Digital wattmeter. The Yokogawa Wt1000 is a versatile digital power meter with a maximum bandwidth of 300kHz and working to an accuracy within 0.1%. It is available in singlephase or three-phase versions and there is a version for testing the performance of motors. Input range is 15V-1kV rms and a filter with a selectable cut-off frequency isolates fundamental frequencies in inverters to allow harmonic analysis on fundamentals from 440Hz to the 50th harmonic. On three phases, the instrument simultaneously measures the phase difference between phases and active, reactive and apparent power of the fundamental. simultaneously showing voltage. current and a choice of other quantities on four front-panel displays. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494 535002

Jitter tester for comms. JitterGEN from NoiseCom tests communications systems, PSTN, cellular and PCS base stations, for behaviour in the presence of digital noise to the specifications of AT&T, Accunet, TR62411 and international specs such as G.823 and G.702. The instrument provides controlled fm and pm jitter and wander in the 0.009Hz-400kHz range and unit interval-controlled jitter from 0 to 200ui, either under the control of an

external controller or stand-alone. Jitter is applied to a self-generated clock or to a data stream from another source and re-output to the system under test. Jittergen is contained in a portable unit with a fold-away keyboard, having a pc architecture and Windows gui. Sematron UK Ltd. Tel., 01256 812222; fax, 01256 812666.

Rf absorbing clamp. For the measurement of radiated emissions from the cables of electrical equipment, the EMC standard EN55014 specifies the use of an rf absorbing clamp, contrary to the impression many engineers have that a broadband antenna is needed. Laplace has such a clamp, the RF400, which consists of ferrite rings which open up to admit the cable and are then closed and held with no gap by springs. Insertion loss is ±1dB, maximum cable diameter is 18mm, load current is unlimited and there are wheels underneath the instrument so that it can be run along the cable. Instruments are supplied with a six-metre mains test cable and antenna factor data to load into a receiver or spectrum analyser. Laplace Instruments Ltd. Tel., 01692 500777; fax, 01692 406177

CE-compliance tester. CE marking under the Low Voltage Directive now being in force, Seaward's new Premier LVD tester will help with the design of products to enable self-certification. It is microprocessor-controlled and contains all necessary data for testing to seven harmonised standards, accommodating ten programmable safety tests, manually or automatically. After selection of the standard, the instrument will carry out the sequence of tests and display the results on an lcd with pass or fail indication. Results are recorded and may be downloaded for printing. An optional Windows package is available to allow remote control from a pc. Accessories such as various probes and a remotecontrol earth bond can be supplied. Seaward Electronic Ltd. Tel., 0191 586 3511; fax, 0191 586 0227.

Lab. in a box. Several instruments from Feedback fit into one bench-top case, the 604 Mini-Lab. There is a 20MHz function generator with am/fm modulation producing sine. triangle, square, ramp and pulse waveforms, a 4-digit led readout being accurate to within ±1 count, and usable as a log/lin sweep generator; a 30MHz counter; a power operational amplifier: ±15V. 1A, adjustable dual or 5V, 3A power supplies; and a 3.5-digit multimeter measuring V, I, R and true rms. Feedback Test and Measurement. Tel., 01892 653322; fax, 01892 663719

Fm/am signal generators.

Kenwood announces the SG Series of programmable fm/am signal generators to cover the 100kHz-2GHz range of frequencies. SG-7200/7130 models go up to 2GHz and 1.3GHz respectively, being provided with a GPIB interface and modulation consisting of fm, am, am-fm and fm-fm simultaneously. Output levels increase in 0.1dB steps from -133dBm to 13dBm. SG-5150/5155 cover 100kHz-150MHz, the 5150 having fm stereo modulation and both having the GPIB interface. All have both rotary knobs and a keypad for control. Kenwood UK Ltd. Tel., 01923 218794; fax, 01923 212905

Literature

Racks. Vero has published the KM6-II Selector to help engineers find their way through the maze of options available in sub-racking systems, explaining the choices of style and the sizes of Eurocard to fit. considerations discussed being screening, ease of assembly, cost and number of configurations. The same process is then carried out for front panels and plug-in units. Vero Electronics Ltd. Tel., 01703 266300; fax, 01703 265126.

Power supplies. In 216 pages. Chloride Powerline's new catalogue, The Power Guide, describes a range of linear and switched-mode supplies, dc-to-dc converters and inverters from many of the leading makers. It also contains applications information and data on safety standards and the EMC Directive. Chloride Powerline. Tel., 0118 9868567; fax, 0118 9755172.

Electromechanicals. Roxburgh can supply a catalogue of Grayhill components, featuring series encoders, push-buttons and keylock switches, a new section describing the full range of optical and mechanical decoders. Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724 281650.

Frequency control, Fordahl GB (used to be McKnight Crystals) has a new catalogue of components and assemblies for a range of products for frequency control, such as quartz clock oscillators, voltage-controlled oscillators and crystal filters. Fordahl GB. Tel., 01703 877200; fax, 01703 846532.

Power supplies

High-reliability dc-to-dc converters. Interpoint has four new models in its MFL Series of converters, delivering 2V, 3.3V, 8V and 28V at up to 65W and intended for applications in which reliability is essential. All have a 16-40V dc input

ELECTRONICS WORLD June 1997

range, nominal being 28V, they are isolated to 100MΩ at 500V dc and are synchronised for system work. Conversion frequency is 550-650kHz. Protection includes short-circuit, input transients and low-voltage lockout. All have the facility for parallel working for up to three units. Interpoint UK Ltd. Tel. 01252 815511; fax, 01252 815577.

3.3V/5V smps. New to Power-One's MAP110 range of universal-input, switched-mode supplies is the MAP110-4300, which provides, in addition to the 5V, 8A and ±12V,1A, a 3.3V.15A main channel. overvoltage protection being a feature of both 3.3V and 5V outputs. Others include zero minimum turnon load, and optional power failure and thermal shutdown. Relevant standards requirements are met, an emi filter helping with FCC and CISPR 22 level B. The units come in three styles: open-board, with L brackets or totally enclosed. With forced air cooling, output is 110W or with conventional cooling, 80W. Power-One Europe. Tel., 01769 540744; fax, 01769 540756.

100W pluggable supply. Vero's EC100 range of low-cost, pluggable switched-mode supplies provide 5V and 24V rails for both logic circuitry

Three channels, eight traces. Kenwood has two new cilloscopes, the CS-5270/75, 100MHz bandwidth, threechannel, eight-trace instruments that offer ±3% measurement accuracy, Features include delayed sweep for expanded waveforms, single sweep and variable hold-off. There is automatic trigger and 1mV/div vertical sensitivity. The display is a 150mm rectangular tube with an internal oraticule and illuminated scales, the 5270 also being provided with a digital readout and a cursor. Kenwood UK Ltd. Tel., 01923 218794; fax, 01923 212905

relays and contactors. The supplies are in 3U by 12HP modules taking up three slot positions in a 19in rack and the rear heat sink is so designed to allow interfacing with both backplane and free-standing interconnection systems by way of a standard DIN41612 H15 connector Versions are available to give 24V at 4A and 5V at 3A with power sharing, or 5V at 12A, 12V at 2A and -12V at 0.2A. Units are CE marked. Vero Electronics Ltd. Tel., 01489 780078; fax, 01489 780978.

and peripheral components such as

Low-current voltage regulators. FET Electronics has a range of positive and negative regulators, FE 78LXXA and FE 8LXXA which, in a number of versions, provide fixed outputs from ±5V to ±18V at up to 100mA on inputs of ±25-35V. They are seen as replacements for resistor/zener combinations with much better performance and lower current. There is thermal shutdown and short-circuit current limiting. FET Electronics Ltd. Tel., 01635 524490; fax, 01635 552244.

Brighter ups. Five new accessory modules increase the intellect of Vero's SmartSlot range of intelligent uninterruptible power supplies. The Interface Expander module enables one ups to handle three different servers, which may be running different operating systems. On power failure, the Expander signals each server to shut down gently, tells the ups to start battery conservation and then manages each system's reboot when mains power is restored. Measure-UPS monitors ambient temperature and humidity within set limits and uses other sensors to detect fire, unauthorised access, etc. The Remote UPS Management Device uses a modem to control the ups remotely and to initiate tests, dialling two pagers if anything is amiss. Relay I/O Module allow control and monitoring via a dry contact interface, the format used by pbx and alarm makers. Vero Electronics

NEW PRODUCTS CLASSIFIED

Please guote "Electronics World" when seeking further information

Ltd. Tel., 01703 266300; fax, 01703 265126.

Protection devices

Low-C transient suppressors. Semtech offers the LC03-6 transient voltage suppressor, which has a peak pulse power of 360W for a pulse width of 10ms and is designed to protect devices connected to ISDN interfaces and high-speed data comms lines from voltage surges caused by discharges, fast transients and lightning-induced spikes. Operating and clamping voltages are 6V and 12V and the design, consisting of a tvs diode and bridge rectifier, affords transient protection in both common and differential mode in the one device. Peak pulse current is 30A, leakage current 5uA and operating temperature -55°C to 150°C. Capacitance is 30pF. Semtech Ltd. Tel., 01592 773520; fax, 01592 774781.

Switches and relays

Separate membrane switches. From EAO-Highland comes the Series 70 range of pcb-mounted pushbuttons and spacers in the form of discrete membrane units, from which can be assembled a complete membrane switch panel, coloured caps and multi-chip or T1 led backlighting being available. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.

Photo-interrupter. Isocom's ISTS802 optical interrupter has a 5mm wide slot for the opaque object to pass through and a light aperture of 0.5mm. Switching time is typically 3µs. There is a number of case styles with either pins or flying leads, special designs being made to order. Isocom Components Ltd. Tel., 01429 863609; fax, 01429 863581.

Thermal cut-outs. Texas Instruments' range of Klixon bi-metallic thermal trips now includes 2mm and 8mm versions with very reliable snap-action silver contacts The smaller one can be installed in cavities in transformers and motors and has a layer of epoxy resin to protect it against transformer and motor impregnations. Rated at 3A and 7A, the larger type works over the 70-160°C temperature range in 5°C increments at a tolerance of ±5°C. Steatite Power Ltd. Tel. 0181 778 6611; fax, 0181 778 7722.

Television components

Wireless cctv. Radio Data Technology announces its VideoWave hand-portable viewer/receiver for surveillance work and for setting-up procedures with the VideoWave wireless transmission system. It needs no licence for use in the UK and works indoors or outside with no need for line-of-sight transmission paths. Features include signal scrambling and low power, a battery pack or lighter socket providing sufficient. The detachable viewer screen is a 2.9in lcd with a removable light shield. Radio Data Technology Ltd. Tel., 01376 501255; fax, 01376 501312.

Transducers and sensors

Sensor interface. Industrial sensor interface MCA7707 provides programmable analogue signal conditioning for silicon piezoresistive

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

sensors. It will calibrate and compensate transducers, several at a time if required, to better than ±0.1% total error over the industrial temperature range and, in conjunction with an eeprom, store the calibration data and link to a pc via a parallel port. Both analogue and digital outputs are provided for pressure and temperature, a frequency output being obtained by using an external custom gate array. FET Electronics Ltd. Tel., 01635 524490; fax, 01635 552244.

Signal-conditioned accelerometer Possibly the smallest conditioned dc-response accelerometer available, the Model 3255 from AG&G IC Sensors contains a micromachined accelerometer die and an asic for signal conditioning, all in a 16-pin surface-mounted ic. In three versions handling ±50g, ±250g and ±500g, typical sensitivity is 40, 8 and 4mV/g respectively at handwidths of 2kHz, 3kHz and 3kHz. A self-test pin is provided, an electrostatic force moving the mass to simulate an acceleration. Over-range stops are

Optical encoders, Control Transducers offers the MD Series, a series of modular optical shaft encoders to detect position, speed and direction of movement, which are intended to supply feedback for position control in mechanical positioning equipment such as hydraulic presses or antenna positioning. Line counts are 96-2048 pulses per revolution, dual-channel, with or without index pulse and a line driver for long cable runs is available. The encoders which have internal signal conditioning, are 25mm or 50mm in diameter and will take up an axial shaft play of ±0.25mm without damage There is a variety of mounting accessories. Control Transducers. Tel., 01234 217704; fax, 01234 217083.

built in. Eurosensor. Tel., 0171 405 6060; fax, 0171 405 2040.

Hall sensor gives direction. Allegro has a family of Hall-effect

sensors that provide contactless speed and direction sensing. A3420/1/2 contain two latches, the Hall elements being spaced 1.5mm apart. Each latch independently detects the ambient magnetic field to give high or low outputs a subsequent logic circuit providing the direction signal. Latching means that the action requires a field reversal to operate, giving clean and positive switching. The chips contain internal voltage regulators for both analogue and digital circuitry. Allegro MicroSystems Inc. Tel., 01932 253355: fax, 01932 246622.

Dual thermostat chip. Two thermostats sharing one sensor in National's LM56 operate from a 2.7V supply and need 230uA of quiescent current. The device contains a temperature sensor, two comparators and a reference in the one 8-pin ic, three external resistors serving to set up trip points from -40°C to 125°C. An additional analogue output provides 6.25mV/°C with good linearity. Hysteresis over the whole range is 5°. Applications will include the control of system fans. National Semiconductor GmbH. Tel., 0049 1805 32 7832; fax, 0049 814103515.

Small speakers. Kingstate miniature waterproof speakers have Mylar cones, a rated input of 0.5W and come in impedances in the 8-5000 range. In a number of frame styles, sizes are from 20mm to 50mm diameter, frames being in metal or ABS, 5mm in depth, some cased for pcb mounting. There are units for voice to 4kHz or for full-range working up to 9kHz, Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724 281650.

Vision systems

Conference camera. eaZy is a colour ccd camera for video

conferencing (conferring?) that gives video and audio output to interface to MPEG or similar computer cards. Resolution is 320 000 pixels from a 0.25in ccd sensor through a 4mm, f3.8 lens with a built-in colour filter. It works in light levels from 10lux, 500lux being recommended, and there is an auto-white balance and electronic shutter with speeds from 1/50s to 1/120s. Voltage requirement of 5V can be obtained from the host in most cases. Premier Electronics Ltd. Tel., 01922 634652; fax, 01922 634616.

COMPUTER

Computers

Reconfigurable hardware. Embedded Solutions announces its first product, the Accelerator, which can be used to increase integer performance of processors, to provide customised interfaces to external devices, for prototyping and evaluation or for building scalable computing systems. Its main feature is the use of two field-programmable gate arrays instead of a conventional processor, an approach that offers the possibility of reorganising the hardware in a different configuration Two Xilinx field-programmable gate arrays are connected to each other and to a daughter board, the connector to which may be used to interface the board to input/output devices or to make network interfaces between Accelerators and other devices. A companion communications board allows connection to transputer networks converting an OS serial link to two parallel buses, linked to as many Accelerators as necessary. Embedded Solutions Ltd. Tel. and fax: 0118 9771682.

Data acquisition Anti-alias cards. From Laplace Instruments, the AAF-16 16-channel anti-alias filter card for data acquisition using a pc. Filters can be specified as Bessel, Butterworth, Cauer or linear phase types, depending on the application, roll-off being up to 120dB/octave for the Cauer.

Cut-off frequency is programmed from the pc from 2Hz to 50kHz or 100kHz depending on filter type. Single-ended inputs are at $2M\Omega$ impedance and the input range is ±10V, with protection to 120V rms and 250V for 5s. An optional daughter board provides protection against clock aliasing, Software supplied includes Windows in its various incarnations and Dos programs for setting key parameters and drivers compatible with Visual Basic, Visual C++, C and Pascal; drivers for LabView are also available. Laplace Instruments Ltd. Tel., 01692 500777; fax, 01692 406177.

Data communications

Data/fax modems. ClipperCom World by Apex Data is a PC Card data and fax modem providing 33.6kb/s V.34 performance with MNP2-4 and V.42 error correction, and MNP-5 and V 42 his data compression. Software included allows faxes to be sent directly from applications and to be scheduled for later transmission, faxes being sent and received in the background. The card is compatible with many notebook computers and with Windows 3.X. 95. NT Workstation. OS/2 and Dos. DIP Systems. Tel. 01483 202070; fax, 01483 202023.

Data logging

Black box for vehicles. RoadRecorder is a video logging system for buses, trains, police cars, etc., that collects relevant data in much the same way as does the flight recorder found in aircraft. Video and other types of data are logged and saved to hard disk to provide information on accidents or crime. On buses or trains, it is envisaged that there may be several video cameras inside and around the outside to provide internal security and to deter vandals. There could also be one pointed forward to record what happens in accidents. A GPS navigation and location device might be integrated with the system. Visimetrics UK Ltd. Tel., 01436 677557; fax, 01436 672131.

Multimedia

Web guide to CE marking. If, after reading leaflets, books and posters, watching videos and using computer programs, you are still baffled by CE marking, you can now catch it all on the Worldwide Web site of the Assessment Services, It shows which Directives apply to common products, although "...obviously the list is not exhaustive.". Highlighting a product brings up the Directives for that product and what you have to do to make sure it conforms to Holy

Writ. If you already know which Directives are relevant, you can see more information on any of six specific Directives applicable to most electrotechnical products. You can also ask questions by e-mail. To see all this try http://www.neag.co.uk/cgi-bin/cemark.coi "and get in the fast lane to compliance". Assessment Services' Tel., 01329 443350; fax, 01329 443421

Computer security

Computer safe. If a technically inclined tealeaf is intent upon stealing a computer's memory, nothing will stop him, but the Armagard family of computer safes will at least give him pause for thought; the Crown Jewels spring to mind. Latest in the range is the one for Mini Tower pcs: the computer cowers inside a 2mm thick steel box that has a seven-lever mortice lock. The whole thing bolts to the desk, has an inset door with concealed hinges, is of welded construction and is fitted with dog-bolts so that the door cannot be removed without unlocking it. There is a brush strip for cables at the rear, ventilation is taken care of and a fan can be fitted. Computers up to 350mm high. 220mm wide and 500mm deep fit inside and stay there while working.

ADVERTISE FREE OF CHARGE Subscribers* to Electronics World can advertise their

electronics and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word. You must include your latest mailing label with your form. * This free offer applies to private subscribers only. Your ad will be placed in the first available issue. This offer applies to private sales of electrical and electronic equipment only.

Trade advertisers - call Malcolm Wells on 0181-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

	1		
		2 4 5	

Please send your completed forms to:

Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

NEW PRODUCTS CLASSIFIED

Intek Electronics Ltd. Tel., 01352 810603; fax, 01352 810403.

Software

Efficient C compiler. Version 4 of Cosmic Software's C cross compiler for 68HC11 microcontrollers is source-code-compatible with earlier versions but has a new C driver structure for multipass processes, new unified compiler options and a 32-bit internal data structure for unrestricted development of new code optimisation. There is also a new C parser for optimisation before compiling. The company says that Version 4 is a virtually new package, methods used in earlier ones having reached a limiting point. This one is said to produce the most efficient code for the 68HC11. Included in this full ANSI C package are a macro assembler, linker, librarian, object inspector, hex file generator, object format converters, debugging support, a royalty-free run-time library source code and a multipass compiler command driver. Cosmic Software. Tel., 0118 9880241; fax 0118 9880360

Software verification for VME. In its latest version, CodeTEST from AMC is applied to VMEbus system software for test and analysis CodeTEST-VME will trace the code execution of a cpu or follow the workings of several cpus via VME system trace. The package consists of a single-slot 6U board, plugging into the VMEbus backplane, and application software modules for in-circuit verification of software performance, memory allocation analysis and deep trace capability; if runs on H-P and Sun workstations and pcs running Windows 95 or NT. Applied Microsystems Corporation Ltd. Tel., 01296 625462; fax, 01296 623460

Waveform analysis. For use with its dsos, data acquisition systems and recorders, Gould has introduced ProView, an analysis and report generating package. Its features include display and manipulation facilities, a search function for points of interest in waveforms and a document composition tool to assist in making reports. The package is to be used with the company's Transition 2, View II or View-to-ASCII linking software to connect ProView with digital storage oscilloscopes or to signals on disk and memory cards in recorders and data systems. Analysis includes a variety of statistical and mathematical functions and those in the frequency domain. Gould Instrument Systems Ltd. Tel., 0181 500 1000; fax, 0181 501 0116.

DIFFERENTIAL THERMOSTAT KIT Perfect for heat overy, solar systems, boiler efficiency etc. Two sensors will operate lay when a temp difference (adjustable) is detected. All components and pcb. £29 ref LOT93

MAGNETIC RUBBER TAPE Selfadhesive 10 metre reel, 8mm fect for all sorts of applications! £15 ref LOT87

MAINS POWER SAVER UK made plug in unit, fitted inseconds, can reduce your energy consumption by 15%. Works with fridges, soldering irons, conventional builbs etc. Max 2A rating, £9 each ref LOT71, pack of 10 £69 ref LOT72

YUASHA SEALED LEAD ACID Batteries, ex equipment but ok bargain price just £5.99 each ref YA1, 100 or more £3.50 each. DC TO DC CONVERTERS

DRM58 input 10-40vdc output 5v 8A £15 DRM128 input 17-40vdc output 12v 8A £18 DRM158 input 20-40vdc output 15v 8A £18 DRM248 input 29-40vdc output 24v 8A £12 DRS123 input 17-40vdc output 12v 3A £10 DRS153 input 20-40vdc output 15v 3A £20 DRS243 input 29-40vdc output 24v 3A £8

HITACHI LM225X LCD SCREENS 270x150mm standard 12 way connector, 640x200 dots, tec spec sheet, £15 each ref LM2 VARIABLE CAPACITORS Dual gang, 60x33x45mm, reduction gearing, unknown capacity but probably good quality (military spec) general purpose radio tuner, £9 ref VC1

ELECTRONIC FLASH PCB Small pcb fitted with components including a flash tube, Just connect 12vdc and it flashes, variable speed potentiometer, £6 ref FLS1

speed potentiometer, £6 ref FLS1 THIEF PROOF PEN! Amazing new ball point pen fitted with a on lock on the end that only you know! £2.49 ref TP2 JUMBO BI COLOUR LEDS PCB with 15 fitted also 5 giant

seven segment displays (55mm) £8 ref JUM1 HOME DECK CLEARANCE These units must be cleared leads, a n infra red remote gwerty keyboard and receiver, a standard UHF modulator, a standard 1200/75 BT approved modern and loads of chips, capacitors, diodes, resistors etc all for just £10 ref BAR33 6.8MW HELIUM NEON LASERS New units, £65 ref LOT33 COINSLOT TOKENS You may have a use for these? mixed bag

of 100 tokens £5 ref LOT20. PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machinel Effective device, X-ray sealed assemblies, can be used for experimental

ses. Not a toy or for minors! £6/set Ref F/XP1 TELEKINETIC ENHANCER PLANS Mystify and amaze your

friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special gimmicks yet produces positive motion and effect. Excellent for science projects magic shows, partydemonstrations or serious research & deve of this strange and amazing phychic phenomenon. £4/set Ref F/TKE1.

ELECTRONIC HYPNOSIS PLANS & DATA This data

shows several ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only, by those experienced in its use £15/set. Ref F/EH2. GRAVITY GENERATOR PLANS This unique plan

demonstrates a simple electrical phenomena that produces an anti-gravity effect. You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate £10/set Ref F/GRA1.

WORLDS SMALLEST TESLA COIL/LIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', St Eimo's fire, Corona, excellent science project or conversation piece. £5/set Ref F/BTC1/LG5.

COPPER VAPOUR LASER PLANS Produces 100mw of visible green light. High coherency and spectral quality similar to Argon laser but easier and less costly to build yet far more efficient. This particular design was developed at the Atomic Energy Commision of NEGEV in Israel. £10/set Ref F/CVL1.

VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging, £6/set Ref F/VS9

PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disrupt TV picture and sound works on FM tool DISCRETION ADVISED. £8/set Ref F/TJ5.

BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for security, law enforcement, research and development, etc. Excellent security device or very interesting science project. £8/set Ref F/BHT1.

BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance. This laser is one of the most efficient, converting 10% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Particle beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicable to burning and etching wood, cutting, plastics, textiles etc £12/set Ref F/LC7

MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity, amazing gift, conversation piece, magic trick or science project £6/sel Ref F/ANT1K.

FRUIT POWERED CLOCK Just add a fresh orange, tomato, banana or any other fruit plug in the probes and the clock works! £9.95 ref SC154

DYNAMO FLASHLIGHT Interesting concept, no batteries needed just squeeze the trigger for instant light apparently even works und water in an emergency although we haven't tried it yet! £6 99 ref SC152 ULTRASONIC BLASTER PLANS Laboratory source of sonic liquides. Many cleaning uses for PC boards, jewliery, coins, small parts etc. £6/set Ref F/ULB1.

ULTRA HIGH GAIN AMP/STETHOSCOPIC MIKE/ SOUND

AND VIBRATION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new world of sounds. Listenshulve ubrice windows, floors etc. Many applications shown, from law enforcement, nature listening, medical heartbeat, to mechanical devices. £6/set Ref F/HGA7

WOLVERHAMPTON ELECTRONICS STORE NOW OPEN IN

WORCESTER ST TEL 01902 22039 ANTI DOG FORCE FIELD PLANS Highly effective circuit

produces time variable pulses of accoustical energy that dogs cannot tolerate £6/set Ref F/DOG2 LASER BOUNCE LISTENER SYSTEM PLANS Allows you

nds from a premises without gaining access. £12/set Ref F/ LLIST LASER LIGHT SHOW PLANS Do it yourself plans show three

methods £6 Ref F/LLS1 PHASOR BLAST WAVE PISTOL SERIES PLANS

Handheld, has large transducer and battery capacity with externa controls. £6/set Ref F/PSP4 INFINITY TRANSMITTER PLANS Telephone line grabbe room monitor. The ultimate in home/office security and safety! simple

to use! Call your home or office phone, push a secret tone on your one to access either: A) On premises sound and voices or B g conversation with break-in capability for emergency messages Existing conversationv £7 Ref F/TELEGRAB BUG DETECTOR PLANS is that someone getting the goods or

you? Easy to construct device locates any hidden source of radio energy! Sniffs out and finds bugs and other sources of bothersome rence. Detects low, high and UHF frequencies. £5/set Ref F

ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision £5 ref F/EML2 ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! £5/set Ref F/EMA1.

PARABOLIC DISH MICROPHONE PLANS Listen to distan sounds and voices, open windows, sound sources in 'hard to get' or hostile premises. Uses satellite technology to gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an optional wireless link system. £8/set ref F/PMS 2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND

HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 9-12vdc, many possible experiments, £10 Ref F/HVM7 TCI A

MEGA LED DISPLAYS PCB fitted with 5 seven segment displays ach measuring 55 x 38mm £5 ref LED5

MOD TRANSMITTING VALVES 5J180E £80 ref LOT112 SWITCHED MODE PSU'S 244 watt, +5 32A, +12 6A, -5 0.2A, 12 0.2A. There is also an optional 3.3v 25A rail available. 120/240v I P. Cased, 175x90x145mm. IEC inlet Suitable for PC use (6 d/drive ectors 1 m/board) £15 ref LOT135

HYDROGEN FUEL CELL PLANS There is a lot of interest in using Hyrogen as the fuel of the future, Hydrogen is easy to produce using chemicals and surplus solar generated electricity. It is also easy to store with little or no loss Hyrogen fuel cells are designed to store hydrogen and weight for weight will hold twice as much energy as a ful petrol tank. Our plans give you loads of information on Hyroger production, storage and practical plans to build your own Hydrogen fue cell! you will need access to a well equiped workshop for this but ful construction details and drawings are included. Full cell plans £9 ref HY: VIDEO PROCESSOR UNITS?/6v 10AH BATTS/24V 8A TX Not too sure what the function of these units is but they certainly make good strippers! Measures 390X320X120mm, on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. Inside 2 x 6v 10AH sealed lead acid batts, pcb's and a 8A?

24 voroidial transformer (mains in), sold as seen, may have one or two proken knobs etc due to poor storage. £15.99 ref VP2 RETRON NIGHT SIGHT Recognition of a standing man at 300m in 1/4 moonlight, hermatically sealed, runs on 2 AA batteries, 80mm F1.5 lens. 20mw infrared laser included. £325 ref RETRON.

MAKE YOUR OWN CHEWING GUM KIT Everything you need to make real chewing gum, even the bowl and tree sap from the Sapodilla tree £7.99 ref SC190

MINI FM TRANSMITTER KIT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover 63-130 Mhz. Works with a common 9v (PP3) battery 0.2W RE 59 Ref 1001

3-30V POWER SUPPLY KIT Variable, stabilized power supply for lab use. Short circuit protected, suitable for profesional or amateu

use 24v 3A transformer is needed to complete the kit £14 Ref 1007. 1 WATT FM TRANSMITTER KIT Supplied with piezo electric mic. 8-30vdc. At 25-30v you will get nearly 2 watts! £15 ref 1009. FM/AM SCANNER KIT Well not quite, you have to turn the knob your self but you will hear things on this radio that you would not hear o an ordinary radio (even TV). Covers 50-160mhz on both AM and FM

Built in 5 watt amplifier, inc speaker. £18 ref 1013. 3 CHANNEL SOUND TO LIGHT KIT Wireless system, main

operated, separate sensitivity adjustment for each channel, 1,200 w

BULL ELECTRICAI 250 PORTLAND ROAD, HOVE, SUSSEX. BN3 5OT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE

WITH ORDER PLUS £3.50 P&P PLUS VAT. 24 HOUR SERVICE £4.50 PLUS VAT.

OVERSEAS ORDERS AT COST PLUS 43.50 ACCESS, VISA, SWITCH, AMERICAN EXPRESS phone orders : 01273 203500 FAX 01273 323077

E-mail bull@pavilion.co.uk

power handling microphone included £17 Ref 1014 4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp included. £24 Ref 1028

STROBE LIGHT KIT Adjustable from 1-60 hz (a lot faster than conventional strobes). Mains operated. £17 Ref 1037. COMBINATION LOCK KIT9 key, programmable, complete with keypad, will switch 2A mains. 9v dc operation, £13 ref 1114.

PHONE BUG DETECTOR KIT This device will warn you if omebody is eavesdropping on your line, £9 ref 1130 ROBOT VOICE KIT Interesting circuit that distorts your voice adjustable, answer the phone with a different voice! 12vdc £9 ref 1131

TELEPHONE BUG KIT Small bug powered by the 'phone line, starts transmitting as soon as the phone is picked upl £12 Ref 1135. 3 CHANNEL LIGHT CHASER KIT 800 watts per channel, speed and direction controlssupplied with 12 LEDS (you can fit triacs instead to make kit mains, not supplied) 9-12vdc £17 ref 1026.

12V FLOURESCENT LAMP DRIVER KIT Light up 4 foot tubes from your car batteryl 9v 2a transformer also required £8 ref 1069.

HELPING HANDS Perfect for those fiddly jobs that need six hands, 6 ball and socket joints, magnifier £7.99 ref YO57A

VOX SWITCH KIT Sound activated switch ideal for making bugging tape recorders etc, adjustable sensitivity. £10 ref 1073. PREAMP MIXER KIT 3 input mono mixer, sep bass and treble ontrols plus individual level controls, 18vdc, input sens 100mA £15

SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects to your projects for just £9 ref 1045.

15 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamp required 12-18vdc, can use ground plane, yagi or open dipole. £69 ref 1021.

HUMIDITY METER KIT Builds into a precision LCD humidity meter, 9 ic design, pcb, lcd display and all components included. £29 PC TIMER KIT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you want whenever you want num system configeration is 286, VGA, 4.1,640k, serial port, hard with min 100k free. £24.99

MAGNETIC MARBLES They have been around for a number of years but still give rise to curiosity and amazement. A pack of 12 is just £3.99 ref GI/R20

NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting parts into showpieces in 3 hours! Will plate onto steel, iron, bronze, gunmetal, copper, welded, silver soldered or brazed joints. Kit includes enough to plate 1,000 sq inches. You will also need a 12v supply, a container and 2 12v light bulbs. £45 ref NIK39.

Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12vDC adjustable from 0-30 secs, £4,99 HY1260M, 12vDC adjustable from 0-60 mins. £4.99 HY2405S, 240v adjustable from 0-5 secs. £4.99 HY24060m, 240v adjustable from 0-60 mins. £6.99 BUGGING TAPE RECORDER Small voice activated recorder, nplete with headphones. £28.99 ref MAR29P1 POWER SUPPLY fully cased with mains and o/p leads 17v DC 900mA output. Bargain price £5.99 ref MAG6P9

COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V sync, and video, 12v DC, £12.00 REF: MAG8P2. FUTURE PC POWER SUPPLIES These are 295x135x60mm, 4 drive connectors 1 mother board connector. 150watt, 12v fan, iec nlet and on/off switch. £12 Ref EF6.

VENUS FLY TRAP KIT Grow your own carnivorous plant with this ple kit £3 ref EF34

6"X12" AMORPHOUS SOLAR PANEL 12v 155x310mm 130mA Bargain price just £5.99 ea REE MAG6P12 FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99

ef MAG5P13 ideal for experimentersI 30 m for £12.99 ref MAG13P1 ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together! belived to cause rain!£3 a pair Ref EF29. 3' by 1' AMORPHOUS SOLAR PANELS 14.5v, 700mA 10

inium frame, screw terminals, £55 ref MAG45. ELECTRONIC ACCUPUNCTURE KIT Builds into an electron version instead of needles! good to experiment with. £9 ref 7P30 SHOCKING COIL KIT Build this little battery operated device into all sorts of things, also gets worms out of the ground! £9 ref 7P36.

HIGH POWER CATAPULTS Hinged arm brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 miles per hourl Range of over 200 metres! £8.99 ref R/9

COMPAQ POWER SUPPLIES WITH 12V DC FANS EX equipment psu's, some ok some not but worth it for the fan alone! bably about 300 watt PC unit with IEC input. £3.50 each ref CQ1 BALLON MANUFACTURING KIT British made, small blob into a large, longlasting balloon, hours of fun! £3.99 ref GI/E99R 9-0-9V 4A TRANSFORMERS, chassis mount £7 ref LOT19A. MEGA LED DISPLAYS Build your self a clock or something with these mega 7 seg displays 55mm high, 38mm wide. 5 on a pcb for just £4.99 ref LOT16 or a bumper pack of 50 displays for just £29 ref

SOLID STATE RELAYS CMP-DC-200P 3-32vdc operation, 0-200vdc 1A £2.50 SMT20000/3 3-24vdc operation, 28-280vac 3A £4.50

FREE COLOUR CATALOGUE WITH EVERY ORDER WE BUY SURPLUS STOCK FOR CASH SURPLUS STOCK LINE 0802 660335

CIRCLE NO. 108 ON REPLY CARD

Chris Daly believes that his enhancement to the interface between a cd player's transport and its d-to-a converter improves sonic performance by reducing problems associated with signal jitter.

ll compact-disc player transports incorporate a processing ic that reads the eight-to-fourteen modulation, or efm, signal. This chip provides the Sony/Philips digital-interface format, of SPDIF, signal as one of its many outputs. It also interfaces with either a combined oversampling d-to-a converter or to a separate oversampler and converter.

Jitter in the interface data stream produces clock jitter at the d-to-a converter, degrading the audio quality¹. The way that the processor interfaces with the oversampler and converter is the topic of this discussion. I will outline a new method of conveying the digital information providing improved integrity relative to the accepted SPDIF standard.

Individual signals involved are data, bitclock and left/right clock. Manufacturers name these signals with some uniformity. The Burr-Brown DF1700 application data is useful in this regard.

The advantage of money method is that the identity of each clock signal can at last be properly recognised. I am not the first to provide an alternative method. One of the earliest references I can recall is Stan Curtis of

Cambridge, who provided such an enhancement in the CD1 player.

The above-mentioned signals feed from the processor ic of the cd player/transport to the oversampling ic. In the case of the main bit clock signal, this travels back from the oversampling ic to the processor. All the signals travel over circuit-board tracks with a length of between 20 and 50mm and can become corrupted.

Using interpolation improves signal integrity. D-type bistable ics can be seen as singlesample interpolators. The method is to use the existing clock in the player/transport to clock the processor. Each of the three 74AC74 bistable devices is arranged to interpolate the bit clock, the data signal, and the left/right clock relative to the existing clock. Output Q of the aforementioned bistable ics then exits the player using rf terminations. It is advisable to use Van den Hul D300 MKIII coaxial cable with good BNC or TNC plugs and sockets.

On arrival at the digital-to-analogue convertor, these same signals need terminating again. The data signal, bit clock and left/right clock signals enter the data inputs of 74AC74 bistables which have a clock reference from

AUDIO

the Xti/Xto pin of the oversampling ic. This is usually available via a buffer, for example at pin 9 of the Burr Brown DF1700.

Finally, the signals exits at the Q output of each bistable device to interface with the oversampling ic inputs, called bit-clock input, data input and left/right clock input.

Reset of all bistable devices and reset of oversampling ic are returned to the XRST line of player. The 'set' inputs of the bistables are held high and the ground of the player and d-to-a converter are linked.

Linking the modification

Some 70% of cd player transports are Sony types and hence similar. Within these, 330 to 470Ω resistors usually interface each signal to the player's digital filter. These provide easy access to the signals. It is advisable branch the signals to the input of the bistable devices with a similar value resistor.

Usually, the clock signal feeds the cd-player transport's digital filter, which then outputs to the decoder's XTAI input. Once again, this signal is usually resistor coupled and similar branching can be used to couple the signal to the bistable ic clock inputs.

Connection into the d-to-a converter requires either removal of the digital receiver or breaking of the bit clock, data and left/right clock connections feeding the digital filter. Often, the receiver is a CS8412.

The prescribed modification no longer involves decoding of a clock signal. As a result, it is necessary to provide a 74AC04 clock driver to drive XTI of the digital filter. Alternatively, the digital filter's XTI/XTO and clock output (CKO on the Burr Brown DF1700) facilities could be used to drive the bistable ic clock inputs.

Both of the above methods require a crystal for the digital filter operating at 256fs, i.e. 11.2896MHz, of 384fs, or 16.9344MHz.

In my experience the enhancement works exceptionally well. My cd player is a Pioneer 701, Audio Synthesis DSM UA.

Reference

1. Fourre, R., What is jitter, Stereophile, October 1993.

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

ADC-100 Dual Channel 12 bit resolution The ADC-100 offers both a high sampling rate 100kHz and a high resolution. Flexible input ranges (±50mV to ±20V) make the unit ideal for audio, automotive and education use.

ADC-100 £199 ADC-100 with PicoLog £219

ADC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope
- 25 MHz Spectrum Analyser
- Windows or DOS environment ±50mV to ±20V
- Multimeter
- 20 MSPS also available

pico ADC 200-20 £359.00 ADC 200-50 £499.00

Both units are supplied with cables, power supply & manuals

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0)1954 211716 Fax: + 44 (0)1954 211880 E-mail: post@picotech.co.uk Web: http://www.picotech.co.uk/

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

CIRCLE NO. 137 ON REPLY CARD

ADVERTISE FREE OF CHARGE

Subscribers* to Electronics World can advertise their electronics and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word. You must include your latest mailing label with your form.

* This free offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only.

Trade advertisers – call Joannah Cox on 0181-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

		-1-

Please send your completed forms to:

Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Programmable

ardware description languages, or HDLs, are a more generalised method of describing the behaviour of logic systems than logic equations. However, they do embody some of the characteristics of logic and state equations. In this next section, I concentrate on one particular language - VHDL.

This language is becoming an industry standard, spurred on by MIL STD 454L, which requires all ASIC designs for the USA Defense Department to be documented in this language. It was devised as part of the VHSIC, or very highspeed integrated circuit, project to allow complex ASICs to be specified and simulated without reference to any specific technology. Having specified a circuit in this way, it should be transferable to any process or manufacturer with guaranteed reproducibility.

VHDL, an abbreviation derived from VHSIC HDL, describes logic systems from a top-down architectural standpoint. A system is visualised as a set of 'black boxes', called entities, with a set of interfaces. Top level entities may be broken into successively less complex functions until the bottom level is reached; this may be a between basic equations and HDL constructs. A four-bit

This article is derived from Geoff Bostock's new book 'FPGAs and programmable LSI - a designer's handbook'. The work covers designing FPGAs, large PAL structures, RAM and antifuse-based FPGAs and FPGA selection. Comprising 215 pages, this book is available by sending a postal order or cheque with a request for the book to Electronics World. Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The fully-inclusive price is £27.50 UK, £30 Europe or £33 rest of world. Alternatively, fax your full credit card details and address on 0181 652 8956 or e-mail jackie.lowe@rbp.co.uk.

June 1997 ELECTRONICS WORLD **ELECTRONICS WORLD June 1997**

enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

temperature processing, min/max detection and alarm.

pico

U TC-08

Supplied with PicoLog software for advanced

8 Thermocouple inputs

complete with serial cable

& adaptor. Thermocouple

Call for free demo disk-

Post & Packing UK £3.50, Export

and product range catalogue

customers add £9 for carriage & insurance.

TC-08 £199

probes available.

No power supply required.

TC-08 £224 with cal. Cert.

518

DIGITAL DESIGN

Geoff Bostock looks at the most popular language used to describe logic systems -VHDL - and discusses how schematics are turned into code for programmable devices.

gate-level description of the function.

Because each level of the logic hierarchy is specified uniquely, each may be simulated to check both syntax and logic function. The lowest level may be validated first so that a completely tested system is built from the bottom up. This is followed by a synthesis step which translates the whole design to the logic cell level after which it is simulated at gate level with built-in timing parameters.

This hierarchical design allows whole systems to be defined without specifying technology, or even partitioning into devices. The whole process is akin to designing software in a high-level language, with the low-level entities playing the same role as subroutines. A complete system may be defined and then tested without specifying a target device. The modules are designed separately and may be stored and used over again in future designs; in effect a library of functions is generated for re-use in new designs.

VHDL logic specification

Examples of VHDL definitions can show the difference

Geoff Bostock runs his own **FPGA/PLD** Design Consultancy, and may be contacted on 01380 828241. or by e-mail at geoff.bostock@zetnet.co.uk

DIGITAL DESIGN

Fig. 1. State machine schematic for the combination lock created using Viewlogic with the

adder may be defined as follows,

entity ADDER4 is

port(A, B: in INTEGER range 0 to 15; C: out INTEGER range 0 to 15); end ADDER4;

The entity section defines the signal interfaces and sizes. Defining a range of 0 to 15 implies that each signal has four bits. It must be followed by an architecture section to define the logic relationship between the signals. This may be written as:

architecture BEHAVIORAL of ADDER4 is begin

 $C \le A + B;$

end BEHAVIORAL;

The type of architecture, in this case BEHAVIORAL, is

) ^{SS1} o	● <u>553</u>			
SS2 o	o <u>SS5</u> o <u>SS9</u> Clock o			
SS3 o	eset o		x16A Y0 S0 o Y1 S1 o S2 o	
) ^{SS4} o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D C B DFC1 C Cir C	Y2 S3 Y3 S3 Y4 S4 Y5 S5 Y6 S6	
SS5 o	0 <u>554</u>		Y7 57 Y8 58 Y9 58 Y10 59	
SS6 o	¢ <u>SS7</u>	DFC1	Y11p Y12p Y13p Y14p Y15p	
} <u>\$\$7</u> ₀	0 ⁵⁵⁸ 0559			
		Clr		

arbitrary as it is ignored in the compilation process; it is good practice to make it relevant to the way in which the architecture is being defined. Here, we are using a high-level description which will be understood during simulation but might need synthesising at a lower level to achieve a good performance.

Lower level definition is generally specified as rtl, or register transfer level, which does not need to involve registers. The '<=' symbol represents the function 'signal assignment'; in the adder, the value of A+B is transferred to C.

In a multi-transfer definition all assignments are made concurrently. VHDL differs from software programming languages in this respect; in a programming language, the order in which commands are written defines the order in which they happen, in VHDL the simulator assumes that all signal transfers are simultaneous, except where sequential processes are defined.

A multiplexer specified to operate as a discrete logic '157 type illustrates the structure of an rtl function definition,

entity MUX157 is

port(A, B: in BIT_VECTOR(0 to 3); G, SEL: in BIT; Y: out BIT_VECTOR(0 to 3)); end MUX157:

architecture RTL of MUX157 is

begin

 $Y \le '0'$ when (G= '1') else

B when (G = '0' and SEL = '1') else

end ;

In order to specify state machines it is necessary to invoke sequential statements which occur within a process. The process itself is concurrent because it may be called at any time, when one of its signals changes. Essentially, a state machine consists of two parts - a sequential part which defines the ability of bistable devices to change state, and a combinatorial part which defines the signals offered to the bistable device as a function of present state and inputs.

entity DOOR_I	OCK is		
port (OPI	EN, CANCEL	in bit:	
CLOCK,	RESET in h	pit:	
I in B	IT VECTOR	(3 down to 0).	
UNLOCK	ALARM out	bitl f	
end DOOR LOCK		s sich f	
architecti	THE BULL OF	DOOR LOOK is	
double l	wohen is W	DOOR_LOCK IS	
now dof:	ipplien is v	HDL comment syntax	when a famo to mark a
how der	definiena	1 signals which are	not signal ports
'umo Stateman	. derining	types for the state	signals
.ype statelyp	e 15 (SU, S	S1, S2, S3, S4, S5,	s6, s7, s8, s9);
then we	define the	signals we are goin	ig to use
signal Sta	ite, NextSt	ate: StateType;	
begin			
SEQUEN	CE: process	(CLOCK, RESET)	and the second
this	defines a	process called SEQU	ENCE which is
invo	ked wheneve	er there is a change	in the value
of C	LOCK or RES	ET	
begin			
if	(RESET = '(0') then	
	State <= S	0;	
t	hen we defi	ine a rising clock e	dae by
elsif	(CLOCK'even	t and CLOCK = $(1')$	then
Sta	te <= Nexts	State:	
end if	1		
end proces	s:		
we can r	low define	the state jumps as a	
combinat	orial pres	the state jumps as a	k
COMPTN	MORTAL PLOCE		TTT Chatal
COMBIN	AIORIAL: pr	ocess (I, OPEN, CAN	EL, State)
Degin			
d	ssign derau	iit output levels	
UNL	OCK <= '0';		
ALA	RM <= '0';		
cas	e State is	=>	
	when SO=>		
	if (I =	6) then	
	Next	State <= S1;	
	elsif (I/= 6 and I/= 15) th	ien
	Next	:State <= S9;	
	end if		
	when S1=>		
	if (I =	15) then	
	Next	State <=S2;	
	end if		Do
1.11			Co
	when S9=>		Bo
	ALARM <	- 11/+	
153	if (CAN	CEL = 11(1) then	
	North	State <= S0.	A0
	Next	.state <= 50;	
	ena 11;		
end	case;		
end pro	cess	1	
end RTL;			

List 1. Code for combination lock logic.

enti

The door lock described in the May issue may be specified as in List 1. This listing is the complete specification for the door lock function. A function of this size would normally form only part of a complete fpga so the above would be just one entity of a total design listing.

Having defined a logic entity it may be used as often as desired within the whole design. Each use of the function is given a unique name and referred to this specification. This process is called instantiation because each time the logic module is called up it forms an instance of that logic.

It is usual to verify each entity individually before connecting them together in the top level design. This requires a simulation routine to be devised and written, as described in the next section.

Simulation with VHDL

In order to simulate an entity - or a complete design - a test bench must be created. The syntax for this is similar to the syntax for specifying logic entities. For example, the entity declaration will be:

entity TEST_DOOR_LOCK is

Actel cell library.

ELECTRONICS WORLD June 1997

DIGITAL DESIGN

end TEST_DOOR_LOCK;

This defines the test bench because it has no ports. only signal drivers. The architecture must define the signals, components and stimuli. It does this in the same way as in a logic architecture, List 2.

Finally, the results must be written to a file so that they can be examined to assess whether the simulation has achieved the desired result. VHDL includes a standard package - TEXTIO - to manage this function.

Capturing circuit schematics

Schematic capture is probably still the most popular method of defining logic for fieldprogrammable gate arrays, and many ASICs. It is a computer-aided design system dedicated to logic design.

Logic functions of complexity ranging from an inverter to multi-bit counters are stored in a library which describes both their functions and a graphical symbol. The designer calls up the symbols from the library, places them on the screen of a pc or workstation, and connects them with wires and busses.

The design is taking place on two levels. At the visual level the designer is creating a visual

Fig. 2. This is the schematic of the decoder at the top left corner of Fig. 1. Showing this much detail on the main diagram would make the whole difficult to interpret.

DIGITAL DESIGN

Fig. 3. State machine symbol providing an overview of the combination lock function.

familiar symbols for the components. At a level below this is a net list which defines the location of each component on the screen, and the way it is connected to the other components in the design.

all but the simplest of circuits. This can be illustrated via the door lock function used previously.

Figure 1 shows how the state machine may be drawn up. This schematic was created using Viewlogic with the Actel cell library, but a similar result would be obtained with other capture packages and manufacturer's libraries.

The schematic may be broken into four parts which just fit on to a single sheet of the capture display. On the left is a decoder. This is a standard Actel macro and generates the individual number inputs from the four-bit input line. The decoder schematic can be seen at a lower level of hierarchy; there is no need to draw the gate-level function on this sheet as the function of the block is clear. Replacing the symbol with the gate schematic, as in Fig. 2, would make the picture less clear.

Note that the outputs from the decoder have been labelled INI, IN4, etc., to indicate the number being input; note also that they are active low.

A second decoder on the right-hand side generates signals

Fig. 4. Waveforms involved in the combination lock system.

Fig. 5. Display of simulation results for the combination lock detection system.

representation of the logic which he requires, in terms of to indicate the present state of the state machine. These are labelled S0, S1, S2, etc., to correspond to the state numbering already used.

These signals are also active-low. Although the decoder function was pre-defined, by using it twice it only needs Hierarchical design is still possible, indeed necessary, for defining once. As a general point, any block of circuitry which is used in more than one location need only be defined once, but used in as many locations as desired.

> Outputs from the state machine are generated from the state signals on the right-hand side of the drawing. The block of gates in the middle of the schematic form the combinatorial section, defining the jump conditions from each state. They have been arranged to generate a 'next state' signal for each state. The jump to S0 is, in fact, superfluous since the state register is fabricated from D-types which set low in the absence of an input when clocked. It is included in our schematic for completeness although it would be automatically excluded at the place and route stage when components with 'dangling outputs' are eliminated.

> Because the input and state signals are active-low, most of the gate inputs are 'bubbled'. Although a NOR gate with inverting inputs is logically equivalent to an AND gate, the bubbled input gates are used for clarity. For example, the top function says that state S1 is entered when a '6' is input in either state S0 or S1 - the hold condition.

List 2. With VHDL, in order to simulate a design, a test bench needs to be created. This example is for a combination lock.

architecture TEST_BENCH of TEST DOOR_LOCK is signal CLOCK: Std_Ulogic := '1'; -- defines '1' as -- the initial level signal RESET: Std_ulogic := '0'; signal OPEN: Std_Ulogic := '0'; signal CANCEL: Std_Ulogic := '0'; signal I: Std_Ulogic_Vector (3 down to 0) := '1111'; signal DOOR: Std Ulogic; signal ALARM: Std_Ulogic; constant CLK_PD: Time := 100ns; constant RST_PD: Time := 50ns; --Std_Ulogic type of signal allows bit definitions --such as 'undefined' --'don't care', and 'tri-state' as well as '0' --and '1', and give more information --in a simulation result. component DOOR_LOCK port (CLOCK: in Std_Ulogic; RESET: in Std_Ulogic; OPEN: in Std_Ulogic; CANCEL: in Std Ulogic: I: in Std Ulogic Vector (3 downto 0); DOOR: out Std Ulogic; ALARM: out Std_Ulogic); end component begin DOOR LOCK port map (CLOCK-CLOCK, --explicitly maps a --signal to a port 1:

TB: BLOCK

begin

CLOCK <= not (CLOCK) after CLK_PD/2; --defines -- 10MHz clock RESET <= '1' after RST PD:

I <= 6 after lus, 15 after 2us,

7 after 3µs, 15 after 4µs, 1 after 5µs -- etc.

end BLOCK TB:

List 3. Part of the net list for the combination lock illustrates the structure used to store the design information.

DEF DOORLOCK; IN3, CANCEL, OPEN, IN0, CLOCK, RESET, IN2, IN1, UNLOCK, ALARM. USE ADLIB: INBUF; \$116. USE ADLIB: INBUF; \$115. USE ADLIB: OUTBUF; \$1111. USE ADLIB: INBUF: \$119 USE ADLIB: INBUF: \$118. USE ADLIB: INBUF: \$117. USE ADLIB: INBUF; \$113. USE ADLIB: CLKBUF: \$1110 USE ADLIB: INBUF: S1T4 USE ST MACH: \$112. USE ADLIB: OUTBUF: \$1112. NET \$1N13; \$1111:D, \$112 :UNLOCK. NET \$1NI5; \$112:ALARM, \$1112:D. NET \$1N22: \$112:0PEN, \$117.V NET \$1N24: \$112:CANCEL, \$118:Y. NET \$1N26; \$112:RESET, \$119:Y. NET \$1N28; \$112:CLOCK, \$1110:Y. NET ALARM: ALARM, \$1112 PAD NET CANCEL; CANCEL, \$118: PAD. NET CLOCK: CLOCK, \$1110:PAD. NET IO: \$112:10, \$116:Y. NET I1; \$112:11, \$115:Y. NET 12; \$112:12, \$114:Y. NET 13; \$112:13, \$113:Y. NET INO; INO, \$1116:PAD. NET IN1; IN1, \$115:PAD. NET IN2; IN2, \$114:PAD NET IN3; IN3, S1I3: PAD. NET OPEN; OPEN, \$117:PAD. NET RESET: RESET, \$119:PAD NET UNLOCK; UNLOCK, \$1111: PAD. END.

The gate inputs are all labelled with the appropriate signal names. Connections do not have to be made with actual wires on the screen; if two nets are labelled with the same name they will automatically be connected in the net list. The converse is also true; wires which must not be connected must have different names. Thus 'S1' has been used for a present state output but 'SS1' for a next state input.

The final section of the state machine is the state register and encoder. A full priority encoder is not needed to drive the state register because, if the logic is designed correctly, only one next state signal is active at any one time. Thus Q3 of the register must be set high by SS8 or SS9, Q2 by SS4, SS5, SS6 or SS7 and so on.

The schematic was generated in the order in which it was described, except that a symbol was created first. This is shown in Fig. 3, and could be used to define the state machine in a higher level of hierarchy; possibly, it could be incorporated into a single fpga with a keyboard encoder, to form a complete system.

Part of the net list is shown in List 3: this is not intended to convey any information, except as an example of the structure used in saving the design information, and to show that while the drawing serves as a primary human interface, the net list is in a form easily read by a computer.

Generating and simulating waveforms

Having constructed a logic circuit on paper, it is necessary to show that it fulfils the desired function.

Just as the circuit was drawn on the screen, at the same time generating an underlying net list, so a set of test 4F\h waveforms in 'oscilloscope format' can be constructed. Simultaneously, a command file to drive the simulator can be produced. Figure 4 shows the door combination lock.

First, a 10MHz clock is generated, together with the poweron reset to initialise the circuit to state S0. Input starts at 'F'; changing it to '6' should change it to S1, and stay in S1 until

ALARM UNLOCK CLOCK RESET CANCEL OPEN INO IN IN2 IN3

Fig. 6. Post-layout simulation of the combination lock detector. Until the clock is slowed to 5MHz, just to the left of the centre line, the circuit does not function properly.

the circuit. The waveform may also be defined in a command file and checks included to ensure that the circuit operates as intended. The format for this is:

vector INPUT I[3:0] | this defines the signals forming the input vector

vector STATES Q[3:0] | this defines the state outputs vector SIGNALSIN RESET OPEN CANCEL INPUT vector SIGNALSOUT UNLOCK ALARM STATES | initialize the system

restart

wave DOORLOCK.WFM clock input states signalsin signalsout this defines the signals for display wfm CLOCK 0=0 (500=1 500=0) *60 | this defines 60 cycles of 10MHz clock (500x0.1ns LOW, 500x0.1ns HIGH) break CLOCK 0 do (assign SIGNALSIN<APPLIED; +check SIGNALSOUT < TESTPATT)

sim 60000

0F\h 06\h 06\h OF\h, etc.

and for TESTPATT:

the input changes back to 'F'. The sequence should run through the states until the door is unlocked, then simulate the door opening and closing, and finally return to S0. Changing the input to '7' should set the alarm, in state S9, returning to state S0 on activating CANCEL. You can then go on and simulate any number of wrong entries - only one more is illustrated - to prove the complete functionality of

We then have to set up the applied vector pattern in file 'APPLIED' and the test pattern in file 'TESTPATT'. These will be as follows for APPLIED:

DIGITAL DESIGN

>00\h	
00\h	
00\h	
01\h	
01\h	
02\h	

Figure 5 shows the result of the simulation. The next step is to assemble the logic net list into a real device, using the place-and-route program. Estimated timings may now be inserted into the net list and the circuit resimulated to gauge its probable performance. In our case the circuit does not behave properly, however, if we slow the clock to 5MHz as in the right-hand part of Fig. 6, correct operation is restored. It appears that the circuit delays prove too great for the 100ns clock period.

By zooming into part of the waveform we can obtain a good estimate of real circuit delays. Figure 7 shows the

delay between the active clock edge and the alarm output; you can see that this is about 56ns, for four logic levels plus input and output buffer. As the loop round the state machine is between six and nine levels deep, it is possible for problems to arise with a 100ns clock period.

In summary

Various methods exist for defining the logic for fpgas. Schematic capture is probably the most popular because this has been promoted by both device manufacturers and software providers. It also produces an output which looks most like a designer's mental picture of a logic system.

VHDL is derived from logic equation/state equation entry, which was the standard method of defining logic for 20/24-pin plds. However, it has a syntax which is closer to a software programming language so it should be easy to migrate from software to hardware design. It also has the benefit of being a universal language which is not targeted at any particular device manufacturer or product.

Both approaches have the capability of fitting a top-down design hierarchy. Both also allow for individual testing of the component modules before they are connected into a final structure. Most design systems cater for a mixed design approach, where some parts of the system may be defined in VHDL, the entities then being represented by symbols which can be connected together in a top-level schematic.

Whichever approach is used, the basic pattern is the same - logic entry, then logic simulation, followed by device definition and logic synthesis. Once the chip is laid out and routed, the estimated delays can be back annotated to the simulation and real performance forecast. Proper use of the design tools leads to a solution which meets the original design specification.

manual for you to get started with your own designs. There is no need to get your complete receiver design working all at once. Build and test each block one at a time

Mail Order To: Pyramid Electronics Ltd.

.524

204 Ferndale Road, Brixton, London SW9 8AG Fax (0171) 274-7997 Out of office ordering by answering machine. Phone (0171) 738-4044

Simply connect the building blocks to build AM, SW,

Superhet and Direct Conversion receivers. Decode SSB, CW & FM! Use proven building blocks to develop and

(Kit excludes case & headphones)

P&P is £5 (UK), £8 (EC), £12 (World) Add 17.5% Vat to Total Price

Beat Frequency Oscillator Audio Filter **Audio Amplifier**

The Cattle Market Depot Telephone: +44 (0115) 986 4902/ Fax: +44 (0115) 986 4667 **Micro Video Cameras** NEW LOWER PRICES Following our recent Readers Offer for the 721-S Micro Camera many readers have contacted us asking about other items in our range of Micro Cameras and Security Surveillance equipment. We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world's leading manufacturer. ALL items in the range carry a full 12 Months Guarantee. If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large SAE with 48p postage, marked "Camera Catalogue" Here is a sample of the available stock. A-721-S Micro Camera 32mm x 32mm ... £85 A-721-P Micro PIN-HOLE Camera ... 32mm x 32mm ... £85 A-921-S Camera with AUDIO ... 30mm x 30mm ... £95 A-1211 C/CS Mount Camera ... 110mm x 60mm x 60mm ... £110 A-521 Micro Cased Camera 43mm x 48mm x 58mm ... metal cased ...£120 VMS-1 .. Video Motion Sensor ... replaced alarm sensors with totally electronic video monitoring system that detects changes in the video signal .. £175 C/CS Format lenses ... Premium 3.6mm = £22.50 Superior 8mm = £27.50 PLEASE NOTE: SPECIAL OFFER VHS Video Players ... Front Loading VHS Decks..12V operation. Rear Panel 2.6mm DC socket for power. Play..FF..RW..Stop Controls with the addition of REPEAT facility which allows the tape to be rewound and replayed time and time again. Video / Audio Outputs via Phono Sockets NEW CONDITION **AS-NEW** Condition.. **NOW ONLY £50.00 INCL VAT** (Courier delivery to UK addresses = $\pounds 8.75$) **OPEN 6 DAYS A WEEK**

ANCHOR SUPPLIES Ltd Nottingham NG2 3GY. UK +44 (0115) 986 4041 24hr answerphone NEW LOWER PRICES A-521 Micro Cased Camera 43mm x 48mm x 58mm ... metal cased ...£120 6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... £210 Outdoor Camera Housings ... Aluminium ... £35 Camera Switchers ... for up to 8 Cameras ... £75 NEW MODEL Auto Record Controllers ...Infra Red Controller using "One For All" technology controls your STANDARD VHS Video, and allows you to make unattended recordings of intruders etc. Accepts Normally open or Normally Closed contact inputs. Self contained unit ... Turns your VHS recorder into a professional Security Recorder ONLY ... £85 VHS recorder into a professional Security Recorder ONLY ... £85 QUAD-1 B/W Multivision Processor ... 4 pictures on one screen/video ... Including 4 channel switcher ... NOW ONLY £249 QUAD-2 COLOUR Multi Vision processor, REAL TIME ... including 4 channel switcher 4 Pictures on one screen/video ... NOW ONLY £575. QUAD-3 COLOUR Multi Vision Processor, REAL TIME ... with On screen Titles and Time/Date information ... Including 4 channel switcher ... 4 Pictures on one screen/videoNOW ONLY £695. SCI ... SCANNER ... 350° PAN ... Automatic / Manual ... £105 IRI-1 Infra Red Illuminator ... 12V operation ... 60 degree illumination angle to 20m. For "Total Darkness Surveillance" ... NOW ONLY £85. VMS-1., Video Motion Sensor ... replaced alarm sensors with totally electronic video monitoring system New and Boxed 14" COLOUR MONITORS. Models 1412 24V DC operation @ 2.2A.. Twin Composite Video Inputs (75ohm BNC) Black steel case ... Supplied with a pair of trailing leads for DC connections. Very easy to convert to 240V operation by adding a 240V / 24V supply either internally or externally. 30 Day Warranty. Circuit Diagram available..request at time of ordering NOW ONLY £99.00 INCL VAT Courier delivery to UK addresses = £12.25)

Mon-Fri 9am-6pm Sat 8am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME NATIONAL AND INTERNATIONAL MAIL ORDER A SPECIALITY ALL PRICES INCLUDE VAT (AT 17.5%) and COURIER DELIVERY UNLESS OTHERWISE STATED

VISA

ARTICLES WANTED

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD **APPRECIATE A TELEPHONE** CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8.IG. 5 Mins, from Tally Ho Corner. **TELEPHONE** 0181-445-2713/0749 FAX 0181-445-5702

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's. Langrex Supplies Limited

1 Mayo Road, Croydon Surrey CR0 2QP TEL: 0181-684 1166 FAX: 0181-684 3056

Wandel Goltermann PRA.1, 2mbit Frame Mux Analyzer superb instrument.

£3,500 o.n.o.

Tel: 01566 781680

WANTED: WW2 suitcase radioset (SOE/SIS) German military radios for display only, RA5 Otterstad, OZSRD, Hosterkobveg Co DK-3460 Birkerod, Denmark. Tel: ++45 4281 5205.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) £80. Ask for a free copy of our wanted List

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ. Tel: 01403 784961 Fax: 01403 783519 VISITORS STRICTLY BY APPOINTMENT MINIMUM ORDER £50 plus VAT

ARTICLES FOR SALE

AD	VE	RT	IS	EF

Anchor	Lal
Antrim	Lea
Bull Electrical	M
CMS	Nu
Card Professionals	Ols
Compass	Pic
Conford	Qu
Display Electronics	Ra
EquinoxIBC	Sto
Field	Cue
Halcyon	Sui
Hart	- 111
Hitex	lec
ICE TechnologyOBC	Teli
IOSIS	Teli
JPG	Tie
John's Radio	Ulti
Keytronics	Wo

VISA **OPERATING & SERVICE MANUALS** ALC: N Cooke International Aramon Aramon Aramon Brailer Braile Derillosorp Oscillosorp Poest Suppl Digital Mil A.F. Peetr Bicrossys Anticipation General material anticipation transmission (supp) tra CONTACT **Cooke International**

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0HD, U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243 542457 NOW AVAILABLE CATALOGUE ON DISC CIRCLE NO. 141 ON REPLY CARD

RS INDEX

enter
ng Edge
3
per One Systems
IIFC
Fechnology
route
Electronics
arts of Reading
y Electrical
ology
440
a
e
ate
& Douglas

ELECTRONIC UP

Contact Malcolm Wells on 0181-652 3620

Feedback

or friendly service & fast delivery

Comprehensive new LCD brochure

The widest range of colour LCDs, LCD monitors and plug and play kits available in the UK, all in one easy to use brochure, is now available FREE

It includes products ranging from 2.9" monitors to 16.1" colour LCD screens, mono/colour STN TFTs and touch screen technology from the orlds leading manufacturers.

CIRCLE NO. 143 ON REPLY CARD

NEW Feedback T&M Catalogue

The latest edition of the Feedback Test & Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

CIRCLE NO. 145 ON REPLY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

New for '97 Free Data **Acquisition Software Tool**

DAQ Designer 97 is a free system configuration software tool for the PC that takes you through your application step-by-step, asking you questions, and recommending all the right equipment, including: PC plug-in DAQ boards, PCMCIA DAQ cards, Signal Conditioning and Sensor Interfacing, Cabling and Software.

Call National Instruments for your free copy on (01635) 523545 CIRCLE NO. 144 ON REPLY CARD

NEW JENSEN TOOLS CATALOGUE

Colourful new Catalogue, hot off the press from Jensen Tools. presents unique new tool kits for service/support of communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools PC/LAN diagnostics, bench accessories, static control, technical manuals and more.

Ring 0800 833246 or Fax 01604 785573 for a free copy. Jensen Tools, 10-12 Ravens Way, Northampton NN3 9UD CIRCLE NO. 146 ON REPLY CARD

MCRO-PRO THE STATE-OF-THE-ABT PROGRAMMER

Features Include

- Micro-Pro for Windows™ Programmer Interface Software
- FPGA hardware ensures future device support
- Supports most DIL devices up to 40 pins without an adaptor
- Adaptors available for many other package types

al Electricaler

tes horalt

Equinox reserves the right to

Order code: MPW-SYS £149.00

C51 Microcontroller Starter System

Order code: AD-8051-ICPP £125.00 (Requires Micro-Pro Programmer to operate)

THE COMPLETE PROGRAMMING SOLUTION FOR 8051 MICROCONTROLLERS & MUCH MORE"

notice E80E, INTERNATIONAL DISTRIBUTORS REQUIRED

NEW programmers start at only £295

Tith prices starting as low as £295, ICE Technology's new range of parallel port programmers offers something for every budget. All programmers support dual in line devices directly in the socket - no adapters or modules are needed for any families of devices, providing extensive device coverage at very affordable prices. The full range of programmers is shown in the panel on the right. Our new easy to use device support checklist will help you to choose the programmer that is right for you, just call or use our faxback for a copy. All programmers come with FREE software updates on our BBS or our ftp site, full technical support direct from the manufacturer and one year's guarantee. All models can run from batteries or mains - ideal for use with laptops.

Low cost EPROM programmer

t only £295, the EPMaster LV is a powerful A tonly 2295, the Eriviaster Eriv much more than other EPROM programmers. With it's 40 pin socket it can support all types of EPROMs including 16 bit wide with no need for additional modules. Serial PROMs, Serial EEPROMs, Flash and EEPROMs are all included in the device support at no extra cost. In addition, low voltage parts are fully supported with the programmer's separate 1.8V, 3.3V and 5V logic circuits. EPMaster LV connects to the parallel port of any PC compatible and can be operated from batteries or mains electricity. You can also add a built in ROM/RAM emulator with a capability of up to 512k by 16, turning the EPMaster LV into a powerful development tool.

Eng No 176

Eng No 177

The Speedmaster GLV-32 Gang/Set programmer offers simultaneous high speed programming for up to 8 EPROMs and Flash (up to 8Mbit) at 3.3V and 5V. The 3.3V facility ensures that programmed devices will work correctly at their nominal operating voltage. Functions include gang programming, set programming and full editing. The Speedmaster GLV32 works in PC or stand alone mode.

Universal programmer only £525

he Speedmaster 1000+ and Micromaster 1000+ offer new levels of affordability in device programming. At only £395, the Speedmaster 1000+ supports all types of memory devices, plus 8748/51, BPROMs, GALs and erasable PALs. The Micromaster 1000+ at just £525 extends this support to include PALs, EPLDs, MACH, MAX, PSDs and over 180 microcontrollers including PIC,

ST6, MC68HC705, MC68HC711, TMS370, TMS320, 87Cxxx, 89Cxxx, COPs etc. The Micromaster 1000+ can support all device types, even Motorola micros, with NO ADAPTERS or MODULES for any dual in line devices up to and including 40 pins. As with all our programmers free software updates are included via BBS or our ftp site. Eng No 178

LV40 Portable

Reaching the parts other programmers can't reach

he NEW LV40 Portable stands head and shoulders above other portable programmers with it's comprehensive device support which includes EPROMs, EEPROMs, Serial PROMs, BPROMs, Flash, NVRAMs, PSDs, PALs, GALs, PEELs, EPLDs, MAX MACH. and over 180 microcontrollers. Unlike other portables, no adapters or modules are needed for any of these devices up to 40 pins dual in line. With socket adapters the LV40 is capable of supporting devices of over 40 pins and other package types.

At £995 for the complete package you'll soon see why the LV40 Portable is the best value, most powerful portable programmer Eng No 179

- Portable Universal
- Programmer
- High speed
- PC software included
- No modules to buy

 Supports memory, programmable logic, high density logic, and over 180 micros.

- Support for 1.8, 3.3 and
- **5V** devices
- Battery or Mains
- operation
- Lifetime free updates

	PROGRAMM	ER M	ODELS AND	PRICES	
(SUPP	LV MODELS ORT 1.8V, 3.3V and 5V DEVICES)		SPEEDMASTER 1000+	EPROMs, EEPROMs, Flash, NVRAMs, Serial PROMs, Serial EEPROMs, BPROMs, GALs, 8748/51	£395
EPMASTER LV	EPROMs, EEPROMs, Flash, Serial PROMs, Serial EEPROMs 8 to 40 pins all without adapters. Built in emulator modules: 128k by 8: £395 128k by 16: £465	£295	MICROMASTER 1000+	EPROMs, EEPROMs, NVRAMs, Flash, Serial, BPROMs, PALs, GALs, PEELs, MACH, MAX, PSD, over 180 microcontrollers without adapters.	£525
SPEEDMASTER LV	EPROMs, EEPROMs, Flash, NVRAMs, Serial PROMs, Serial EEPROMs, BPROMs, GALs, PALs, EPLDs, MACH, MAX, 8748/51.	£495	SPEEDMASTER GLV32	High speed EPROM/Flash 8 way Gang/Set Programmer. Supports 3.3V and 5V	£645
MICROMASTER LV	EPROMs, EEPROMs, NVRAMs, Flash, Serial, BPROMs, PALs, GALs, PEELs, MACH, MAX, PSD, over 180 microcontrollers without adapters.	£625	COP GANG PROGRAMMER	8 way Gang programmer for National Semiconductor COP family of micros	£1500
LV40 PORTABLE	All devices supported by Micromaster LV, plus completely portable with built in keypad and LCD display.	£995	SOCKET ADAPTERS	for PLCC, TSOP, QFP, SOIC, SSOP etc.	from £65

For details on any of our range of programmers, call or fax us now. You can obtain information immediately by using our faxback service or homepage.

ICE Technology Ltd, Penistone Court, Penistone, South Yorkshire S30 6HG. United Kingdom. Tel: +44 (0)1226 767404 Fax: +44 (0)1226 370434 Faxback: +44 (0)1226 761844 email: sales@icetech.com Homepage: http://www.icetech.com BBS: +44 (0)1226 761181 (14400 baud, 8N1)

CALL OUR SALES HOTLINE ON 01226 767404 - OR USE OUR FAXBACK FOR FULL DETAILS - 01226 761844 CIRCLE NO. 103 ON REPLY CARD