RF design winner: a new fm demodulator

ELECTRONICS HOULD A Strip Asch. 65.00 Denmark DKr. 66.00 Germany DM 15.00 Geree Dra.100000 Helland Dfl. 14.50 Holy L. 850000 Helland Dfl. 14.50 Helland Dfl. 15.50 He

INCORPORATING WIRELESS WORLD

A REED BUSINESS PUBLICATION SOR DISTRIBUTION

June 1996 £2.25

Marconi's patent

CRT deflection design

Spectrum analyser building blocks

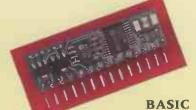
Working with mixed-signal models

Battery charging

Thermal dynamics in audio power

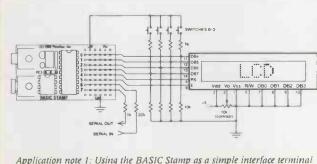
Wireless R\$232 link

Over 40% discount on Tx/Rx pair


No Time LUTIO

PIC based TOOLS to help you realise your project: from single applications to full scale production

BASIC STAMPS


PIC based BASIC Stamps are perfect for one-off and low volume applications. Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ...THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independantly of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

wkward

Small

Stamp 1 (BS1-IC) 8 I/O Lines up to 80 program lines Comms to 2400 baud 35x10mm size £29 single price

BASIC Stamp 2 (BS2-IC) 16 I/O Lines up to 500 program lines Comms to 50 kbaud 24pin DIP package £49 single price

BASIC Stamp Development Kits including PC software, manuals, 24+application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat. We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52 54 55 56 57 58 620 621 622 61 62 63 64 65 71 72 73 74 84

PIC16Cxx Programmer

Also stocked

02

- * ZIF sockets
- * SOIC/SSOP/PLCC adapters
- * Prototyping boards
- * Compilers/Simulator

Milford Instruments Milford House, 120 High Street, SOUTH MILFORD LS25 5AQ 01977 683665 Fax 01977 681465

In Circuit **Emulators**

- * True hardware emulation of program memory, registers and I/O
- * Unlimited
- breakpoints.

30

- * Single stepping
- * Software-programmable oscillator
- * Windows Environment
- * Runs from 32Khz to 10Mhz ('xx) and 20Mhz ('5x)
- * Source level debugging for PASM(X), MPASM and MPC
- * Optional trace facility

Please call or fax to receive our catalogue and price list. All prices exclude VAT and £3 shipping. BASIC Stamp & the Parallax logo are registered trademarks of Parallax, Inc

PARALIAX 7

E 8 E 7

F18 F9

Is Cirl+F9

3805 Atherton Road, ≠102 Rocklin, CA 95765 USA 916-624-8333, Fax 916-624-8303 http://www.parallaxinc.com

Contents

454 COMPUTER RS232 WIRELESS LINK

Covering distances to 120m, Pei An's wireless RS232 link hardware operates up to 9600 baud via type-approved transmitter/receiver modules.

461 THE FIRST RADIO PATENT

Exactly a century ago, Marconi filed his patent, representing the beginning of a new era in communication. Tom Ivall looks at that patent and events surrounding it.

HP8647A WINNER

466 DEMODULATION – A NEW APPROACH

Improving performance in both am and fm systems, Archie Pettigrew's new detection technique involves an amplitude-locked loop.

472 DESIGNING CRT DEFLECTION

There is one very common application where bipolar power devices do the job better than mosfets. David Sharples explains why.

481 THERMAL DYNAMICS IN AUDIO POWER

Douglas Self describes how the location of an audio power amplifier's temperature sensor affects performance.

488 DESIGNING FOR SPECTRUM ANALYSIS

Felice Labbrozzi outlines modules of his high-performance, yet economical, pc-controlled 1GHz spectrum analyser.

MIXED SIGNALS Bashir Al-Hashimi explains the benefits of having seamless analogue and digital design facilities in one package.

517 PUTTING THE POWER BACK IN

507 SIMULATION FOR

John Lenk shows how to apply charging ICs in a variety of designs for single and multi-cell NiCd and NiMH chargers.

Regulars

443 COMMENT

Thanks - but no thanks

444 NEWS

Light emitting polymer, Low resistance power FET, EMC amnesty, Low Voltage Directive, Chip prices softening.

3D optical storage could offer significant advantages over conventional 2D techniques – page 450.

449 RESEARCH NOTES

Photosynthesis, Intelligent micromachines, Optical switch for 3D data storage, Power boosted permanent-magnet motor, Benefits of dual flat-screens.

477 LETTERS

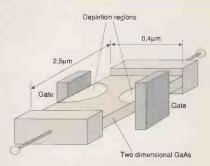
Cable effects, Oxygen and cancer?, Transmission lines, Caller ID, Help please.

498 CIRCUIT IDEAS 200MHz spectrum analyser, RF signal generator with sweep, Trickle-charged emergency light, Electrostimulator.

511 NEW PRODUCTS Pick of the month – classified for convenience.

Combined July-August issue Watch out for the next issue of *Electronics World*

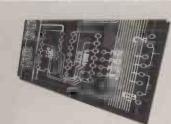
Watch out for the next issue of *Electronics World* 16 extra pages for the same price! On sale 4 July.



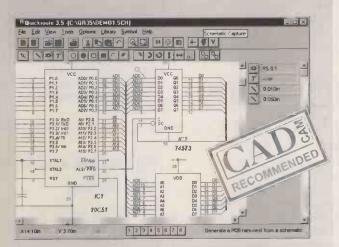
When Guglielmo Marconi applied for a patent on his wireless telegraphy apparatus, Queen Victoria was still on the throne - page 461.

Wireless link modules – 40% discount

Radiometrix is offering a pair of *BiM* Tx/Rx modules for just £60.65. Part of Pei An's design, these devices can be used over distances to 120m at speeds to 40kbit/s - page 454.



The remarkable characteristic of this 2D Mesfet is that it functions with only 200 electrons in its channel, allowing ultralow-power operation - page 444.


JULY/AUG ISSUE ON SALE 4 JULY

"..it certainly gets my vote!"

Computer Shopper Nov 1995

"..a very capable package which will be of interest to many electronic designers, especially because of its low price."

CADCAM, March 1996

For just £249* Quickroute 3.5 PRO provides a complete schematic & PCB design system for Windows 3.1, '95 and NT. The system includes multi-sheet schematic capture with power rail and bus support, auto-routing on 1 to 8 layers, netilist, CAD-CAM and WMF file export as well as design rule and connectivity checking

More advanced functionality is provided by Quickroute 3.5 PRO+ which for just £399* offers all the features of PRO as well as copper fill, enhanced auto-routing, netlist import, Gerber import/viewing, DXF file export, and links to a wide range of simulation packages. PRO+ also includes engineering change/enhanced connectivity checking which will update your PCB from a schematic, adding or removing nets and components automatically.

Call now and we will send you our free demonstration pack.

*Prices are PRO £249 and PRO + £399. Post & packing is £5 (UK), £8 (Europe), and £12 (worldwide). Please add V.A.T to the total amount. Lower cost versions are also available.

Tel/Fax 0161 449 7101 www.quickroute.co.uk

EMail: info@quicksys.demon.co.uk Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge,

Stockport, SK6 5DD, U.K. Prices and specifications are subject to change without notice.

All trademarks are acknowledged & respected.

CIRCLE NO. 106 ON REPLY CARD

EMBEDDED C ASSEMBLY SIMULATION

8051

- C compiler, first released in 1991, now features:
- Easy to use interrupt support with register bank switching
- IEEE floating point arithmetic
- IEEE 695 source level debug output
- Integrated relacatable assembler

Simulator running under Microsoft Windows provides extensive support for the 8051 code development

68000

Our first C compiler/assembler package

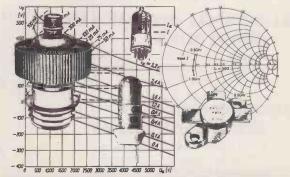
- now supports flaating point orithmetic
- has been widely adopted by many OEM's to support their 68000 and 68307 hardware

CPU32

68020 C compiler/ossembler, originally developed to accompany Motorola's 68020 and 68EC020 evaluation models

- Now supports the CPU32
- 68881 co-processor support
- IEEE 695 source level debug output

Further information from: CROSSWARE PRODUCTS St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS , UK Tel: +44 (0) 1223 421263, Fax: +44 (0) 1223 421006 Web: http://www.crossware.com, E-mail: sales@crossware.com



CIRCLE NO. 107 ON REPLY CARD

If you need Valves/Tubes or RF Power Transistors e.t.c. ... then try us!

We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements

Tuned to the needs of the Professional User

Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 0RG, England

844-01245-355296/265865 Fax: 44-01245-490064

> CIRCLE NO. 108 ON REPLY CARD ELECTRONICS WORLD June 1996

EDITOR Martin Eccles 0181 652 3128

CONSULTANTS

Jonath<mark>an Cam</mark>pbell Philip Darrington Frank Ogden

DESIGN Alan Kerr

EDITORIAL ADMINISTRATION Jackie Lowe 0181-652 3614

E-MAIL ORDERS jackie.lowe@)rbp.co.uk

ADVERTISEMENT MANAGER Richard Napier 0181-652 3620

DISPLAY SALES EXECUTIVE Malcolm Wells 0181-652 3620

ADVERTISING PRODUCTION 0181-652 3620

PUBLISHER Mick Elliott

Thanks – but no thanks

Over many years, I have watched in horror as electronics companies launched products which seemed to have been designed without any thought for the paying customer. Even as they hit the market, we just knew they were going to fail.

This represents a tricky dilemma journalists covering electronics. Should we write off the product as a flop, and thereby help to make it one? Or should we try to give it a helping hand, thereby putting consumers at risk of buying something that will later become obsolete?

In the case of Sir Clive Sinclair's C5 trike, it was an easy call. No matter that the battery went flat as quickly as anyone who has flattened a car battery with the starter could have predicted. Had Sir Clive ever actually tried taking one out on a busy road, and seen how it felt to be next to the wheels of a lorry?

Last year ICL and Fujitsu joined forces to launch the Indiana range of PCTVs. Soon after Olivetti followed suit with Envision. These three companies had one thing in common; no experience in consumer electronics. Even so it is hard to imagine how their designers could have made such a basic mistake.

Although the idea of using one tv screen for both a pc and tv is superficially seductive, there is an obvious and fatal flaw. Television screens are intended to display relatively low resolution tv transmissions. They look fine from across the room. Move close to a tv set you see interlace jitter; horizontal lines flicker vertically as the fields change. On 50Hz PAL sets, there is the added problem of wide area flicker on bright white images. The colour shadow-mask pitch is coarse, to match the tv scanning raster. So PC text and graphics look coarse too.

A tv screen makes a rotten pc display. That is why, after the era of Sinclair Spectrums and Amstrads, the pc industry moved away from tv standards, to higher refresh rates, and started to sell pcs with dedicated monitors.

Did anyone inside ICL, Fujitsu and Olivetti ever sit down in front of their own PCTVs and actually try some serious word processing, database building or spread sheet design? Apparently not.

Like blood from a stone I have now squeezed the admission that production of Indiana and Envision stopped

last winter, and neither ICL/Fujitsu or Olivetti has any firm plans for the future.

Philips developed Laservision, the 12in optical video disc, in the seventies. Rival electronics companies all round the world very quickly saw the elegance of laser read-out and gave up their research on alternative systems. Never mind that Laservision was launched later than promised, and was thus faced with competition from the vcr. The technology spawned CD, CD-ROM and recordable disc.

Stubbornly, RCA pressed ahead with CED Selectavision, a 12in grooved capacitance disc that needed a caddy. It was launched in the US and UK, but plain as pikestaff never had a chance. Hardly a disc played without skipping and the player had to incorporate a 'nudge control' to knock the stylus when it stuck in the groove. RCA's blinkered vision cost the company so much in hard cash that its name and trade infrastructure were bought by Thomson of France.

Commodore once had a healthy share of the computer and games market. Seeing Philips preparing for the launch of CD-interactive, Commodore dreamed up the idea of CDTV – an Amiga-based interactive CD that was incompatible with the Philips format. Commodore hoped that by rushing to the market ahead of Philips, CDTV would become the *de facto* standard.

One selling point was that the CDTV player was also a CD player. So how could Commodore have made the basic mistake of using a computer CD-ROM drive that played discs only when loaded into a caddy? Commodore's answer was that CD data discs need protection from finger marks.

With caddies costing around £5 a time, it was impractical to give one away with each CDTV disc. Audio CDs come in jewel boxes, anyway. So Commodore gave away one free caddy with each player and the owner had to load each disc in the caddy before playing it.

Instead of taking a CD out of its jewel box and loading it into a CD player tray, the owner had to take the CD out of the jewel box, and load it in the caddy before loading the caddy in the player. There was no less handling of the disc, just extra inconvenience.

The caddy issue raises its ugly head again later this year, but from the opposite direction. Toshiba, Thomson and Time-Warner are promising to launch high density DVD movie players, with Philips, Sony and others following next year, in less of a rush. By early May there was still no final agreement on vital standards issues, such as copy protection to prevent people dubbing high quality movies from disc to tape, and regional control, to stop movies released in the USA playing on European players.

But there is one issue on which the DVD Alliance is solid. Having learned from Commodore's mistake on CDTV the hardware and software companies have pledged that the DVD system will not need a caddy. Discs will be packaged like ordinary CDs and loaded direct into a tray in the player.

How strange then that some prototype DVD players still use caddies. Although the more modern prototypes use caddy-less tray loading, it pays to watch any DVD display and see how the demonstrator handles the discs – with extreme care, at the extreme edges.

No-one grabs a DVD disc with sticky fingers. But unfortunately this is exactly how the public treats CDs. They will treat DVDs that way too. Will the error correction cope? We are assured it will, even though the capacity of the new disc is so much greater, thanks to pits that are so much smaller.

If the DVD Alliance launch their system without first giving players and discs to sticky fingered next door neighbours, they could pay the same price paid by Sir Clive, RCA, ICL, Fujitsu, Olivetti and Commodore. That price is horrendously expensive failure thanks to the public's reluctance to pay money for neatly packaged inconvenience. Barry Fox

Electranics World is published monthly. By post, current issue £2.35, back issues (if available £2.50. Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. TIx:892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road Londan WIP OAU 0171 261-5108.

Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please natify change af address. Subscription rates 1 year £30 UK 2 years £48.00 3 years £70.00. Surface mail 1 year £35.00 2 years £56 00 3 years £80.00 Air mail Europe/Eu 1 year £43.00 2 years £68.00 ROW 1 year £52.00 2 years £83.00 Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Itd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fax; (212) 679 9455 USA mailing agents: Mercury Airfreight International Itd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above. Printed by BPCC Magazines (Carlisle) Itd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR Typeset by Wace Publication Imaging 2-4 Powerscrott Rood, Sidcup, Kent DAt 4 SDT,

Reed Business Publishing Ltd 1995 ISSN 0959 8332

EDITORIAL FAX 0181-652 8956

CLASSIFIED FAX 0181-652 8956

SUBSCRIPTION HOTLINE 01622 721666 Quote ref INJ

SUBSCRIPTION QUERIES 01444 445566 FAX 01444 445447

NEWSTRADE DISTRIBUTION David McGrory 0181 652 8171

ISSN 0959-8332

Wireless LAN technology connecting handheld pcs including one from SAIC the UK ruggedised computer supplier - is being tested for electromagnetic compatibility in Russia's Mir space station. A 2.45GHz spread spectrum wireless LAN from US company Proxim was taken up to the space station on the space shuttle Endeavor in March. According to Yuri Gawdiak, a NASA computer engineer: "Today's astronauts are surrounded by miles and miles of cable. Wireless networks eliminate their need." One important aspect of the emc tests will be the system's susceptibility to the impact of cosmic particles on processors and memory devices.

d memory devices. The remarkable characteristic of this 2D Mesfet is that it functions with only 200

EMC all over again?

ast year's panic over the introduction of CE marking for the EMC Directive is set to be repeated when the net technical harmonisation standard rears its head. If industry thought emc compliance caused problems, then enter the Low Voltage Directive, or LVD.

According to industry experts, many electronics engineers and manufacturing companies have little understanding of the LVD.

Andrew Perkins, instrument sales manager for Schaffner EMC, involved in conducting seminars said: "People's knowledge of the LVD is akin to that of the EMC Directive this time last year. Less than 5% of people attending the seminars are doing the tests correctly."

The lack of understanding is also resulting in few companies conforming to the Directive.

As of January 1, 1997, the LVD attains the same status as the EMC Directive, with manufacturers being required to CE mark for LVD conformity. This means that someone will have to sign a declaration of conformity and will be held accountable in law.

Safety divisional manager at TRL EMC is Simon Barrowcliff. "Small and medium sized companies are exhibiting good engineering practice in most cases", he said. "They are designing for safety but they are not conforming to the LVD."

While the DTI has provided information on the LVD, its spread over several years has resulted in it lacking the profile of the successful emc campaign. This, however, is likely to change in the coming eight months.

Richard Ball, Electronics Weekly

What is the Low Voltage Directive?

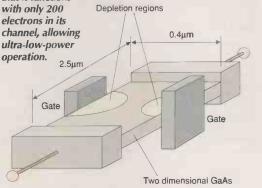
• The LVD is the standard specifying design and testing of equipment connected to the mains. The 'Low' refers to voltages below 1kVac and 1.5kVdc. It differs from the EMC Directive in several significant respects:

• The LVD dates from 1973 and is one of the first technical harmonisation standards. This has given companies ample time to prepare for LVD-day. Unlike the EMC Directive, there is no excuse for ignorance and little or no leniency will be allowed.

• Harmonised European standards for the LVD are much more complex. Longer design and testing time will be necessary to ensure total compliance by 1997. One route to compliance is via approval schemes such as the BABT scheme for telecoms and the BEAB for consumer and white goods. These specify third party type testing and formal quality systems such as ISO9001. Smaller companies with less funds and manpower may find these schemes prohibitive in cost and time.

• More information: DTI booklet, Tel: 01179 444 888.

EMC amnesty for UK manufacturers


British electronics manufacturers have been given an 'unofficial' emc breathing space by the government.

The DTI has told local trading standards officers, who have been officially policing the EMC Directive since January, to take a lenient approach to enforcement at least for this year. "There has been guidance to local authorities to allow a period of grace," said David Roderick, director of the safety committee for the Institute of Trading Standards.

In a move, which seems to be out of step with the rest of Europe, the DTI appears to be responding "sympathetically" to those suppliers waiting to have their products qualified in test houses. "There is concern about the test houses not being able to cope, so where people have made attempts to get things done, we will look upon it sympathetically," said Roderick. No one in the UK has yet been prosecuted under the EMC Directive, and Roderick believes any prosecutions are unlikely in the near future.

Ultra-low power 2D mesfet nearer production

University of Virginia's research group that recently demonstrated an ultra-low power two dimensional

mesfet has moved a step closer towards a production version.

The remarkable characteristic of the original device is that it operates properly with only 200 electrons in its channel. Conventional fet structures are swamped by second order effects at such low currents.

The advance is in the construction of the device. The developmental fet was made using a

AlGaAs/InGaAs/GaAs heterostructure, built up layer by layer on the substrate and patterned using an electron beam. Bill Peatman, a member of the team said: "This technique is not at all suited to mass production." The newest version is constructed using ion implanted bulk n-doped GaAs – a conventional technique and material.

Peatman said: "We made two transistors with the same geometry, one with the original construction and one by ion implanting bulk GaAs. The two behave very similarly, and were closely predicted by our theoretical models."

The channel of the 2D mesfet is a 0.4µm wide strip connecting the drain and source. The strip is only a few nanometres thick, hence the 2D label. Gates on either side of the channel control the width of the conduction region within.

Tomorrows Technology In Your Hands	Lo SMART CARD EVALL Comprising of Presentation cas Smart Card Reader / 244 page Hard Back Smart Card Interogati Evaluation application C' Library & Commar Programmers Develo Development Boards Selection of real Smar This package is all that is required in and specially written appliprehensive 'C' listings are incomment PCB's to allow the user cess commands and complete SYSTEM allows the user to C	se containing:- Writer (Programming Interface) reference book, covering all aspects of Smart Card ion System, to identify the commands accepted by a n, for use with Smart cards provided in the package and descriptions. For the user to design their own Sm pment Suite. Text Editor Assembler, Simulator for p for use with the programming interface. Allowing the rt cards with full programming details. uired to understand and develop, your first Smart C ications, give the user a valiuable insight into Card a luded as is a complete 'RISC- like' processor devel to program and Simulate a Smart Card, also includ e UNRESTRICTED programming information. The communicate with a Target card and extract the com- pormation please send a LARGE SAE with your requ	design and programming. a target Smart Card. nart card applications using the cards provided. orogramming the Cards provided. the user to simulate a Smart Card ard application. The comprehensive documenta- architecture and Programming techniques. Com- opment system. The package includes develop- ed are REAL SMART CARDS along with ac- e unique SMART CARD INTERROGATON nmand set used by that card 1
		THE SMARTEST SOLUTION	
microprocess processor for Crownhill can	or or die supplier. This your application. supply over 150 differen	of processor based smart cards. Crow allows us to work with you the custo at types of IC from more than 12 silicon s ailable from stock, most are manufacture	mer, in the selection of the optimal suppliers, all can be incorporated into
		VALUE	
	DEVELOPMEN	JOHN MORRISON I SOFTWARE & OEM PROGRAMMI	ING MODULES
PIC16C54, 16C55 16C61 16C64, 16C 16C620, 16C621, 24LC01, 24LC02, Supplied with power user to Read, Write data memory and integrated Editor Ass	ROGRAMMER 5, 16C56, 16C57, 16C58A, C65, 16C71, 16C74, 16C84, 16C622 & Memory Chips 24LC16, 24LC 32, 24LC65 ful editing software allowing the & Copy PIC devices including fuse areas. Supplied with an sembler software suite. Sample 16C84 copy protection removal	PIC IN CIRCUIT EMULATOR A low cost ICE to emulate all 18 or 28 pin PIC devices. All ports are BI-Directional with OSC2 output and RTCC input. An onboard A/D con- verter allows emulation of the PIC16C71. Sup- plied with PIC DEV software suite, user manual, connecting leads, headers and sample programs and projects. Note the ICE is not 'real time' the speed if emula- tion is determined by the host PC. However an local clock output is available to enable real time	MEGA PROM II A versatile EPROM programmer capable of handling EPROMS, EEPROMS, Flash Memeory from 2Kb to 8Mb NOW Including Microchip 24LC Series serial memory chips. The programmer operates with a host PC via the centronics port using a standard printer cable. The unit features AC / DC input Voltage handling and production quality ZIF socket. £99.95
Is possible with the e		mesurments to be taken. £125.00	EPROM Emulator
	SMARTIE EEPROM		A versatile EPROM pEmulator for ROM from 1Kb to 32Kb The Emulator operates with a host PC via the centronics
Smart little unit, just pl use and fast operation £49.95 Although this unit	igs into a free parallel port on the IB make this little programmer indespe	r Radio's and Cassete players, we offer no	port using parallel cable. The unit features very fast Download to tarket board EPROM socket and complete integration with ouir development software suites. Will alos operate without our development software suite with no loss of functionality. .£69.95
Smart little unit, just pl use and fast operation £49.95 Although this unit advice or support We stock the full ra a <u>FULLY INTEGR</u> Code can be down MCS-8051/52/552	igs into a free parallel port on the IBM make this little programmer indespe it can be used to decode Ca t for that useplease do no ange of JOHN MORRISON de ATED TEXT EDITOR, ASSEM loaded directly to our Emulators	MPC and auto detects Microwire or I2C types. Simple to nsable.	Download to tarket board EPROM socket and complete integration with ouir development software suites. Will also operate without our development software suite with no loss of functionality. .£69.95
Smart little unit, just pl use and fast operation £49.95 Although this unit advice or support We stock the full ra a <u>FULLY INTEGR</u> Code can be down	igs into a free parallel port on the IBM make this little programmer indespe it can be used to decode Ca t for that useplease do no ange of JOHN MORRISON de ATED TEXT EDITOR, ASSEM loaded directly to our Emulators	MPC and auto detects Microwire or I2C types. Simple to nsable. r Radio's and Cassete players, we offer no t ask! velopment software for PIC devices, Microprocesso IBLER, SIMULATOR and DISASSEMBLER. S. All software is supplied with sample code and oper 54/55/56/57 and compatible, PIC 16C71/6	Download to tarket board EPROM socket and complete integration with ouir development software suites. Will also operate without our development software suite with no loss of functionality. .£69.95 The and Microcontrollers. Each software suite has erating instructions. Devices catered for include: 34 and compatible. HD-63/6809, 6502. CHEQUE
Smart little unit, just pl use and fast operation £49.95 Although this unit advice or support We stock the full ra a <u>FULLY INTEGR</u> Code can be down MCS-8051/52/552 £19.95	igs into a free parallel port on the IBM make this little programmer indespe it can be used to decode Ca t for that useplease do no ange of JOHN MORRISON de <u>ATED</u> TEXT EDITOR, ASSEM loaded directly to our Emulators c, MCS-8048/49, PIC-16CS	MPC and auto detects Microwire or I2C types. Simple to nsable. r Radio's and Cassete players, we offer no of ask! velopment software for PIC devices, Microprocesso IBLER, SIMULATOR and DISASSEMBLER. s. All software is supplied with sample code and ope 54/55/56/57 and compatible, PIC 16C71/2 TEL 07010 700017 01223 235895 FAX 01223 441645	Download to tarket board EPROM socket and complete integration with ouir development software suites. Will also operate without our development software suite with no loss of functionality. .£69.95 Provide the software suite has erating instructions. Devices catered for include: 34 and compatible. HD-63/6809, 6502.
Smart little unit, just pl use and fast operation £49.95 Although this unit advice or support We stock the full rate a <u>FULLY INTEGR</u> Code can be down MCS-8051/52/552 £19.95 CROWNHILL PO BOX 844	igs into a free parallel port on the IBM make this little programmer indespe it can be used to decode Ca t for that useplease do no ange of JOHN MORRISON de <u>ATED</u> TEXT EDITOR, ASSEM loaded directly to our Emulators c, MCS-8048/49, PIC-16CS	MPC and auto detects Microwire or I2C types. Simple to nsable. r Radio's and Cassete players, we offer no of ask! velopment software for PIC devices, Microprocesso IBLER, SIMULATOR and DISASSEMBLER. a. All software is supplied with sample code and ope 54/55/56/57 and compatible, PIC 16C71/8 TEL 07010 700017 01223 235895	Download to tarket board EPROM socket and complete integration with ouir development software suites. Will alos operate without our development software suite with no loss of functionality. .£69.95 are and Microcontrollers. Each software suite has erating instructions. Devices catered for include: 84 and compatible. HD-63/6809, 6502. CHEQUE POSTAL ORDER SWITCH DELTA International Money order
Smart little unit, just pl use and fast operation £49.95 Although this unit advice or support We stock the full ra a <u>FULLY INTEGR</u> Code can be down MCS-8051/52/552 £19.95 CROWNHILL PO BOX 844 Waterbeact	igs into a free parallel port on the IBM make this little programmer indespe it can be used to decode Ca t for that useplease do no ange of JOHN MORRISON de <u>ATED</u> TEXT EDITOR, ASSEM loaded directly to our Emulators c, MCS-8048/49, PIC-16CS	MPC and auto detects Microwire or I2C types. Simple to nsable. r Radio's and Cassete players, we offer no of ask! velopment software for PIC devices, Microprocesso IBLER, SIMULATOR and DISASSEMBLER. s. All software is supplied with sample code and ope 54/55/56/57 and compatible, PIC 16C71/2 TEL 07010 700017 01223 235895 FAX 01223 441645	Download to tarket board EPROM socket and complete integration with ouir development software suites. Will alos operate without our development software suite with no loss of functionality. .£69.95 ars and Microcontrollers. Each software suite has erating instructions. Devices catered for include: 34 and compatible. HD-63/6809, 6502. CHEQUE POSTAL ORDER SWITCH DELTA International Money order
Smart little unit, just pl use and fast operation £49.95 Although this unit advice or support We stock the full ra a <u>FULLY INTEGR</u> Code can be down MCS-8051/52/552 £19.95 CROWNHILL PO BOX 844 Waterbeach Cambridge CB4 9JS	igs into a free parallel port on the IBM make this little programmer indespe- it can be used to decode Ca t for that useplease do no ange of JOHN MORRISON de <u>ATED</u> TEXT EDITOR, ASSEM loaded directly to our Emulators 2, MCS-8048/49, PIC-16CS ASSOCIATES LIMITE	MPC and auto detects Microwire or I2C types. Simple to nsable. r Radio's and Cassete players, we offer no of ask! velopment software for PIC devices, Microprocesso IBLER, SIMULATOR and DISASSEMBLER. s. All software is supplied with sample code and ope 54/55/56/57 and compatible, PIC 16C71/2 TEL 07010 700017 01223 235895 FAX 01223 441645	Download to tarket board EPROM socket and complete integration with ouir development software suites. Will alos operate without our development software suite with no loss of functionality. .£69.95 ars and Microcontrollers. Each software suite has erating instructions. Devices catered for include: B4 and compatible. HD-63/6809, 6502. CHEQUE POSTAL ORDER SWITCH DELTA International Money order VISA + ACCESS

Plastic lights

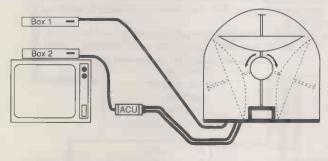
Cambridge Display Technology, CDT, is to give the first public demonstration of its light emitting polymer display in San Diego.

The forum is the Society for Information Display's annual conference and the device is a 60 column by 16 row photo-emissive dot matrix.

The display is said to combine characteristics of leds and leds. Mark Gostick, a spokesman for CDT, said: "The technology has the emissivity of leds, with the patternability of leds. Light is emitted wherever activated electrodes cross one another."

Although the demonstration is a dot matrix display, the first commercial use is likely to be as a backlight. Gostick said: "The life to 50% brightness is currently 3000 hours. This is perceived to be a bit short for a display, but easily long enough for a backlight." Light emitting polymer backlights offer similar advantages to electro luminescent materials. They are extremely thin, with the same emissivity and a similar lifetime.

The stated advantage of light emitting polymers is that they only require several volts, eliminating the inverter normally associated with electroluminescent lights. Gostick said: "The lack of an inverter makes a light emitting polymer backlight cost less to produce than the equivalent electroluminescent panel."


Most of the development displays made by CDT so far have been green and on glass substrates, but other types have been made. Gostick said: "We have made red and blue versions, the blue ones are the most difficult to produce. We have also made some flexible displays on plastic film, but the lifetime is not as good as the glass ones yet." Steve Bush, *Electronics Weekly*

Satellite tracker handles big waves

Receiving satellite transmissions at sea presents difficulties, with the signal being lost when the boat turns, pitches and rolls. This can be overcome by gyroscopically directed dishes; but the comparatively low power of satellites has meant that these have had to be large.

The launch of three high power digital satellites by GM Hughes Electronics has enabled KVH Industries of Rhode Island to produce a compact system capable of operating up to 200 miles off the US coast.

The *TracVision* actively stabilised antenna has an 18in carbon fibre dish guided by a robotic arm to maintain tracking accuracy to within 1°. It uses a digital, Earth-referenced compass and attitude sensors to hold

This marine satellite tracker can move at 18°/s. It has a 110° elevation range and can rotate through 360°.

directional information over long periods of time, with digital gyroscopes to provide instant directional information.

Measurements are relayed to the cpu, where software calculates the rate of the movements and translates them to stable, land-based coordinates. These are then converted to commands in the motor control unit to guide the robotic arm.

Two motors power the arm and antenna in the opposite direction to the movement of the vessel. It is capable of locating the target satellite with or without GPS information. The elevation range is $\pm 110^{\circ}$ from vertical, azimuth range is 360° continuous, and the tracking rate is 18°/s at horizontal.

Received video signals are passed to a set-top receiver box. A patented robotics gimbal joint system prevents cables from wrapping around the antenna pedestal and causing transmission breaks.

A smaller *Tracphone* version has also been produced. It has an 11.5in dish for satellite phone and fax communications. With this version, internal sensors measure the heading, pitch and roll of the vessel relative to the satellite. These are then transmitted to a microprocessor that directs the motors controlling the arm and dish.

IN BRIEF

Power fet resistance lowered to 260m Ω

Motorola has announced its next generation of power fet technology – hdtmos-2 – which gives a 30% reduction in R_{DSon} compared with the original hdtmos process.

Significant structural changes have bought the resistance of a 2mm×2mm chip down from $800m\Omega$ to $260m\Omega$. Sample devices are expected in the second quarter of this year.

Chip prices softening

Softening chip prices could be hit further as 14 new fabs come on stream before the end of June, and at least 16 more are due to start up in the second half of the year. The total for the year could be as many as 40 new fabs.

These are in addition to 60 fabs which, according to US analysts, came on-stream last year: 19 in America, 12 in Japan, 11 in Europe and 18 in Asia.

FCC considers Internet radio band

The US Federal Communications Commission is considering setting aside a band of radio frequencies for high speed Internet access over short distances. The FCC says it may set aside two bands of frequencies in the 5.15-to-5.35GHz and 5.725-to-5.875GHz bands for use by wireless computer devices that would send and receive data over a 0.25 mile range at rates as high as 25Mbits/s.

"Low-power radio technology can serve as a low-cost, high-bandwidth on-ramp to the information superhighway," said FCC Commissioner Susan Ness. The FCC has been petitioned by Apple Computer and the Wireless Information Networks Forum to set aside the frequencies.

Apple and other supporters say that these radio frequencies could be used for campus style local area networks. These would operate over a university or corporate campus linking computer users, and would be a cheap alternative to cellular phone or PCS networks.

Apple is also proposing a related technology that would allow high speed wireless data communications over a 9.6 mile range at 1.5Mbits/s. Using wireless technology could prove popular within corporate offices and save on the considerable expense of rewiring offices for high speed networks.

Trac Vision

Hart Audio Kits and factory assembled units use the unique combina-tion of circuit designs by the renowned John Linsley Hood, the very best audiophile components, and our own engineering expertise, to give you unbeatable performance and unbelievable value for money. We have always led the field for easy home construction to profes-sional standards, even in the sixtlies we were using easily assembled printed circuits when Heathki in America were still using tagboards!. Many years of experience and innovation, going back to the early binsdate and Baley classics gives us incomparable design back-ground in the needs of the home constructor. This simply means that building a Hart kit is a real pleasure, resulting in a piece of equipment that not only saves you money but you will be proud to own. Why not buy the reprints and construction manual for the kit you are interested in to see how easy in is to build your dwn equipment the

interested in to see how easy it is to build your dwn equipment the HART way. The FULL cost can be credited against your subsequent

K1100 AUDIO DESIGN 80 WATT **POWER AMPLIFIER.**

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hill system. This kit is your way to get úk performance at bargain basement proces. Ungue design features such as fully FET stabilised power supplies give this amplifier World Class performance with starting clarity and transparency of sound, allied to the famous HART quality of components and ease of construction. Useful options are a stereo LED power meter and a versatile passive front end giving switched inputs, with ALPS precision Blue Velvet low-noise volume and balance controls. Construction is very simple and enjoyable with all the difficult work done for you, even the winng is preterminated, ready for instant usef. All versions are available with Standard components or specially selected Super Audiophile com-ponents at 20:60 extra per channet, plus ú2:40 if you want to include Gold Plated speaker terminate.

Gold Plated speaker terminals.	
K1100B Complete STANDARD Amplifier Kit.	£395.21
A1100B Factory Assembled.	£499.21
K1100SC Complete SLAVE Amplifier Kit,	£333.62°
A1100SC Factory Assembled.	£422.62
K1100M Complete MONOBLOC Amplifier Kit,	£261.20
A1100M Factory Assembled	£329.20
RLH11 Reports of latest Amplifier articles.	£1.80
K1t00CM Construction Manual with full parts lists	£5.50

"CHIARA" SINGLE ENDED **CLASS "A" HEADPHONE** AMPLIFIER.

This unit provides a high quality headphone output for 'stand alone' use or to supplement those many power amplifiers that do not have a headphone facility. Easily installed with special link-through feature a headphone facility. Easily installed with special link-through feature the unit draws its power from our new Andante Ultra High Quality line-ear toroidal supply. Housed in the neat, black finished, Hart minibox it features the wide frequency response, low-distortion and 'musical-ity' that one associates with designs from the renowned John Linsley Hood, Pre-terminated interconnecting leads and PCB mounted sock-ets prevent supply polarity reversal and on-board diagnostics provide visual indication of supply line integrity. Volume and balance controls of a Place Tellie Veivet' components. Very easily built, even by beginners, since all components fit directly on the single printed circuit board. The kit has very detailed instructions, and even comes with a complementary roll of Hart audiograde silver solider. It can also be supplied factory assembled and tested. Selling for less than the total cost of all the components. If they were bought separately, this unit

components	
A2100SA Senes Audiophile version, factory Assembled £149.46	
K3565 "Andante" Power Supply Kit to suit "Chiara" £85.42	
A3565 Power Supply, Factory Assembled	
CM2100 Construction Manual	
SPECIAL OFFER. Both units together, Kit Form £184.92	
Factory Assembled and Tested	

QUALITY

AUDIO KITS

"Andante" SERIES 20VA AUDIOPHILE POWER **SUPPLIES**

Specially designed for exacting audio use requiring absolute mini-mum noise, low hum field and total freedom from mechanical noise this unit is a logical development from our highly successful 1550

Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for any module requiring fully stabilised ± 15v supplies

±15% supplies. Two versions are available, K3550 has 2 ±15% supplies and a single 15% for relays etc, and can be used with our K1400 preamp and our K1450 RIAA pickup preamp, as well as other useful modules soon to be introduced. The K3565 is identical in appearance but only has the ±15% lighter current supply for use with the K1450 RIAA pickup pre-amplifier or "Chara" headphone amplifier.

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

Now you can throw out those noisy ill-matched carbon pots and Now you can know out mose noisy in-nacioe caroon pois and replace with the famous hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motonsed versions have 5v DC motor.

MANUAL POTENTIOMETERS		
2-Gang 100K Lin	£15.	87
2-Gang 10K, 50K or 100K Log	E16.	4(
2-Gang 10K Special Balance, zero crosstalk and zero		
centre loss.	£17	48
MOTORISED POTENTIOMETERS		
2-Gang 20K Log Volume Control	£26.	2(
2. Cana 10K RD Special Balance, zero crosstalk and less		

2-Gang 10K RD Special loss in centre position £26.98

TECHNICAL BOOKSHELF

"THE ART OF LINEAR ELECTRONICS."

The definitive linear electronics and audio book by John Linsley Hood. This 300+ page book will give you an unparalleled insight into the workings of all types of audio circuits, Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best sound. The virtues and vices of passive and active give the best sound. The virtues and vices of passive and active components are examined and there are separate sections covering power supplies and the sources of noise and hum. As one would expect from this writer the history and derivation of audio amplifier circuitry have an entire chapter, as does test and measurement equip-ment. Copiously illustrated this book is incredible value for the ment, copiously iniustrated this book is increatible value for the amount of information it contains on the much neglected field of lin-ear, as opposed to digital, electronics. Indeed it must be destined to become the standard reference for all who work, or are interested in, this field, Latest reprinted edition with extended index. 1994 344 Pages, 247 x 190, tKg, 0-7506-0868-4. \$216.95*

"DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY £17.95* INTRODUCING OIGITAL AUDIO CD, DAT AND SAMPLING. ISBN 1870775 22 8 1870775 22 8 "THE ART OF SOLDERING" 0-85935-324-3. 0 "TOWERS' INTERNATIONAL TRANSISTOR SELECTOR"

0-572-01062-£19.95

.23.50

DESIGN \$2.95 THE HART PRINTED CIRCUIT BOARD CONSTRUCTION GUIDE."

VALVE & EARLY CLASSIC BOOKS

£13.95

 C13.95
 THE WILLIAMSON AMPLIFIER." 0-9624-1918-4.
 69.95
 AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN.
 GEC 1957, 1-882580-05-2.
 C18.95
AUDIO ANTHOLOGIES, articles from Audio Engineenng. Six voumes covering the days when audio wasyoung and valves were king!. BKAA3/1 to 6. All "A SIMPLE CLASS A AMPLIFIER" J.L.Linsley Hood M.I.E.E. 1969 £2.50 n all books, unless starred, is only ú1.50 per book, maxi-RLH12. Postage o

mum u4.50 for any number, any size!. Starred items are heavy books .£2.50 to send.

No waiting!. All listed books are normally in stock!. SPECIAL OFFER. All book orders over £15 will receive a FREE John Linsley Hood monograph entitled "Digital versus Analogue, Black Disks or Silver?"

SPECIAL OFFER **PRECISION Triple Purpose** TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks thethree most important tape parameters without test equipment. Ideal when fitting new heads. A professional quality, digitally mastered test tape at a price anyone can afford. Test Cassette TC1D. Our price only. 69 99

HC80 Replacement Stereo Cassette Head.

The excellent performance of modern cassette recorders depends totally on the quality of the R/P head.Even the sightest amount of wear can impart the frequency response and distortion levels. Our HCB0 is atop quality head from one of the foremost manufacturers in upana, easily fitted to most standard stereor recorders (except Sony) and will transform the performance over a worn head. Only the fact that we buy these in vast quantities enables us to offer them at the amazing price of only **\$11.70** each or 2 for **\$17.60**. We also stock a range of other heads, including TH reel-to-reel stereo

SOLDERING

The size of modern components makes the right soldering equipment essential for good results. Everything we offer we actually use in our own workshops!. See our Lists for the full range. 845-820 X5240 ANTEX 2400 25w Soldering Inon. This is the ideal Multi-purpose iron as the bit is designed to totally surround the element guing the best heat transfer. This excellent design also means that athrough it is small and handy enough for modern components its heating capaci-ty is better than larger irons of conventional construction. Excellent £9.93

£3.95

HART SUPER AUDIOGRADE SILVER SOLDER.

Hart Super Audiograde Silver Solder has been specially formulated for the serious audiophile. Not only does it give beautiful easy-to-make joints but it is designed to melt at normal soldering temperatures avoiding the possibility of thermal damage to components or the need for special high temperature irons. A very low residue flux makes per-fect joints easy but eliminates the need for board cleaning after assemblie. assembly.

845-007 3mtrs 22SWG in Hart Mini Tube	. £3.90
845-008 100g. Reel Special Valve Grade, 20swg	£12.90
845-009 100g. Precision PCB Grade, 22swg	£14,75
845-110 100g Reel Superfine 24swg for ultra precise control	and
easy working	£21.45

24 hr. SALES LINE ALL PRICES (01691) 652894 INCLUDE UK/EC VAT

HART ELECTRONIC KITS LTD. PENYLAN MILL 'OSWESTRY, SHROPSHIRE SY103AF 447

<code-block><code-block><code-block><code-block><code-block></code></code></code></code></code> <code-block></code> HP54200A Digitizing Uscilloscope. HP11728B Carrier Noise Test Set. 01–18GH2 – LEF – £2000. HP3311A Function Generator - £300. Marconi TF2008 – AM-FM signal generator - also sweeper – 10Kc/s – 510Mc/s – from £250 – tested to £400 as new with manual – probe kit in wooden carrying box. HP Frequency comb generator type 8405 – £400. HP Vector Voltmater type 8405 – £400 new colour. HP Network Analyzer type 8405 – £400 new colour. HP Network Analyzer type 8407 – 4412 Å + 8501 – 100Kc/s – 110Mc/s – £500 – £1000. HP Amplifier type 8447 Å – 1.400Mc/s £200 – HP8447A Dual – £300. HP Frequency Counter type 5407 Å = 18GH2 £1000 – rear output £800. HP Astio – A – B – C Network Analyzer 110Mc/s to 12GHz or 18GHz – plus most other units and displays used in this set-up = 8411 a = 8412 – 8413 – 8414 – 8418 – 8740 – B741 – B742 – B743 – 8746 – 8650. From £1000. Racal/Dana 9301A – 9302 RF Millivoltmeter – 1.5-2GHz – £250-£400. Racal/Dana 9301A – 9302 RF Millivoltmeter + 1.5-GHz – £250. Marconi RCL Bridge type TF2700 – £150. Marconi RCL Bridge type TF2700 – £150. Marconi TL245 Clircuit Magnification meter + 1246 & 1247 Oscillators – £100-£300. Marconi Tr245 Clircuit Magnification meter + 1246 & 1247 Oscillators – £100-£300. Marconi Ticrowave 6600A sweep osc., mainframe with 6650 PI – 18-26.5GHz of 651 PI – 26.5-40GHz – £1000 or PI only £600. MF only £250. TEMS B0UGHT FR0M HM GOVERNMENT BEING SURPLUS, PRICE IS EX WORKS. SAE FOR ENQUIRES, PHONE FOR A ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007. Fax: 651160

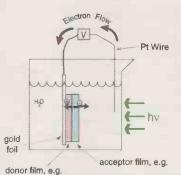
RESEARCH NOTES

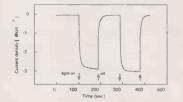
Jonathan Campbell

Energy technology is truly green

P lants can exploit virtually every photon they absorb to create a working electron that is efficiently taken up into chemical processes. Our own efforts in making electricity from the Sun using solid state devices are a lot less efficient. But a team from University of California and Princeton University looks to have taken a step towards developing a technology that uses a mechanism much closer to that used in nature.

The technology is based on materials given the name 'chemophylls' because of the way they mimic the chlorophyll process. A prototype chemophyll is a stable preparation that binds a layer of electron-donor substance (papd) to a layer of an electron acceptor substance (pv). The donor papd can be grown as true film, without crystalline structure, while the acceptor pd forms extremely small crystals that can be neatly arrayed in layers one molecule deep.


Both papd and pd consist of an active core sandwiched between structures called phosphonates. Atoms of zirconium bind to the phosphonates, tying the assembled 'sandwiches' to one another. The structure resembles a stack of papd and pd sandwiches piled on an ultrathin sheet of gold foil. Sandwiches with papd 'filling' alternate with sandwiches with pd filling, and zirconium atoms hold them together. When illuminated with light,


electrons move from the papd to the pd, creating an electrical potential. By providing an appropriate receptor material to accept the electrons on the other side of the surface, a continuing, one-way flow is set up.

University of Southern California chemist Mark E Thompson, leader of the scientific group responsible for the prototype's creation, explains the possible application of the chemophyll: "While this material would be inefficient at powering a device, like a radio or a hair dryer, that runs on electric current, it could be an extremely effective power source for light-induced chemical reactions, such as breaking down water into oxygen and hydrogen or making natural gas out of the carbon in carbon dioxide to create clean-burning fuels."

Three characteristics make it particularly interesting. It is produced in extraordinarily uniform layers and can deliver its energy evenly throughout an entire surface of arbitrarily large size. It can also be applied as a coating to an irregular surface.

Like chlorophyll – and unlike silicon cells – its photovoltaic action is a wet process, working in an electrolyte solution conducive to chemical reactions. It might even float on top

of a liquid that would form the raw material for the chemical reaction.

Finally, although the conversion efficiency of the material so far prepared is low, the team is confident that materials of similar structure with much higher efficiencies can be made.

More information from Mark Thompson, Associate Professor, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA. Tel: (213) 740-6402 Fax: (213) 740-0930 email: mthompso@chem1.usc.edu

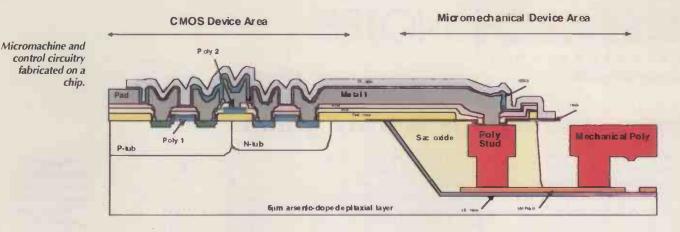
Micromachines get a little intelligence

Several research teams have recently made breakthroughs in the manufacture of micromachines. Now researchers at Sandia National Laboratories, Albuquerque have taken the next step by giving their micromachines built in intelligence.

Unlike previous machines, an intelligent micromachine can signal for more power, communicate that it is operating too fast or slow, or even perform actions on an automated basis. But using standard fabrication techniques, machines consisting of tiny motors with integrated circuit 'brains' on individual silicon chips – are now being mass produced by Sandia researchers.

Compact design, made possible by

sinking the motors in tiny etched trenches, enables the fabrication of entire electromechanical systems on a chip.


In the past, the difficulty with joining a microcircuit to a micromachine on a silicon chip has been that aluminum circuit interconnectors, if formed first, melt when the micromachines are heattreated. But if the micromachines are fabricated first, their elevation above the chip surface creates bumps that distort the delicate process of etching accurate microcircuits.

In the Sandia process tiny trenches are etched in silicon chips and the machines are fabricated within these depressions. The machines, heattreated, are then submerged in a tiny hardening sea of silicon dioxide. The hardened silicon dioxide re-creates a level chip surface upon which circuitry is fabricated by

A dust mite puts the new generation of micromachines in perspective.

Chemophyll's photovoltaic action is a wet process, working in an electrolyte solution, and could even float on top of a liquid that would form the raw material for the chemical reaction itself. The graph shows cathode photocurrents produced by an Au.papd/pv electrode with an electron acceptor in solution.

photolithography. Removal of the silicon dioxide at the end of the process frees the microengines. Working systems are manufactured with a 78% success rate -a reasonably high measure of production yield.

The micromachines are approximately 1mm square embedded in chip trenches 6µm deep, producing a single level structure suitable for

accelerometers and other sensors.

Three-level structures have been fabricated to a depth of 18µm.

Circuits fabricated only microns from a machine also eliminate ghost signals – parasitic currents – created by excess electrical capacitance in long connecting wires.

"Without this interference, by applying a mechanical load you can measure the capacitance change in the drive gear teeth as they move in and out," says Sandia engineer Ernest Garcia. "Then you know how fast the machine is moving. The sequence allows you to understand velocity."

Analog Devices, the largest producer of automated airbag sensors in the US, says it is already having preliminary talks with Sandia to use its technology in prototype devices. More information from Ernest Garcia, Sandia National Laboratories, Albuquerque, New Mexico, 87185-0167

Optical switch polarises arguments

A light-activated optical switch under development at the Georgia Institute of Technology could be the basis for a new type of rewritable three-dimensional data storage system. By making use of a small number of 'trigger molecules' to induce a phase transition in liquid crystal materials, the system would write, read and erase information using different forms of polarised and unpolarised light.

Such an optical storage system could offer significant advantages over conventional computer floppy disks, magnetic tape and compact disks, which use two-dimensional media to store data. The optical switch materials could also be used in spatial light modulators, and in active coatings for optical fibres.

The idea is that the liquid crystal could be written to, with circularly-polarised light, read from, with linearly-polarised light, and erased, with unpolarised light.

Operation of the new optical switch is based on chiral molecules that Gary Schuster, professor of chemistry at Georgia Tech, and co-

Georgia Tech researchers have been making microscope studies of liquid crystals suspended in glycerol, which helps to provide information about key properties.

workers are using to trigger changes in the liquid crystal. Chiral molecules exist in right-handed and left-handed forms. Each form is affected differently by circularly-polarised light – which also exists in right-handed and left-handed versions.

When right-handed trigger molecules are struck by left-handed light they may be converted preferentially to left-handed molecules. If the chiral molecules are dissolved in a liquid crystal material, this structural change can be used to prompt a phase transition in the crystal, altering the optical properties of the liquid crystal material.

Multiple phase transition 'switches' could therefore be used together to store digital information.

Returning the storage material to its original state would make the system truly rewritable — and of significant potential value as a computer data storage media, for example.

Schuster believes the system is an improvement over earlier optical switches not only because it is rewritable, but also because a small number of photons can trigger the phase transition. This makes the liquid crystals amplifiers for the photonic signal.

Before the switches become useful for optical data storage, they must be converted from two-dimensional layers to a true threedimensional system, perhaps written by three-dimensional holograms.

Development of practical optical switches has long been frustrated by the lack of suitable materials. Optical materials studied earlier used irreversible photochemical changes to store information. That meant data could be written to them only once, limiting their practical value for computer information storage.

Though the Georgia Tech system shows promise, Schuster emphasises that much work remains to be done before it could reach practical application.

"From a scientific point of view, looking off into the future, this is what we hope to do with these materials," he said. "Our grandchildren might see the first computers based on this system." More information from Gary Schuster at Georgia Institute of Technology Atlanta, Georgia 30332-0828

NOW, THE BATTLE IS OVER

ULTIBOARD BUNDLED WITH G SPECTRA SHAPE BASED AUTOROUTER

ULTIboard's interactive strenght has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTIboard Designer system will be supplied with a SPECCTRA SP4 Autorouter, ULTIboard designers now get the best of both worlds.

All ULTIboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECCTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTImate Technology is *the* PCB-Design Tool vendor that *really* cares for their customers!

THE ULTIMATE SPECIAL OFFER ULTIboard Entry Designer* £ 1295 (excl. VAT) will now be supplied with SPECCTRA Shape Based Autorouter *free Upgrade with EMC-EXPERT mid 1996 (list price at release £ 1875)

CIRCLE NO. 101 ON REPLY CARD

Corporate Headquarters: Energiestraat 36 • 1411 AT Naarden The Netherlands tel.: (+31) 35 - 6944444 fax: (+31) 35 - 6943345 UK/Ireland Sales-Office: 2 Bacchus House • Calleva Park Aldermaston Berkshire • RG7 4QW tel.: 01734 - 812030 fax: 01734 - 815323

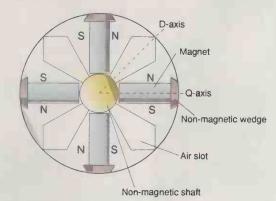
45

Rotor

configuration with

air slots that is

motor power


achieved.

densities to be

enabling greater

Researchers pack more power into electric motor

Two researchers in the Department of Electrical and Electronic Engineering, University of Hong Kong, claim to have invented a new design of permanent magnet motor that promises much higher power densities and efficiencies than other similar units. The permanent magnet synchronous motor drive has been developed for electric vehicle applications, with the greater power

density resulting in savings in energy and space.

Improvements in the motor's performance have been bought about by developing a special rotor geometry and using new neodymiumiron-boron magnets that have only recently become available.

In the past, efforts to boost the power density of pmsms have relied on increasing the flux density in the air gap – resulting in a smaller effective gap and leading to a strong armature reaction which limits the force density of the motor.

But the Hong Kong researchers say they have reduced this armature reaction considerably by making air slots along the D-axis within the motor ('An advanced permanent magnet motor drive system for battery-powered electric vehicles', CC Chan and KT Chau, *IEEE Transactions on Vehicular Technology*, Vol 45, No 1). According to Chan and Chau the improvement is possible because in the new design, the air slot at each pole centre has to be bridged by the armature field while the flux path for the excitation field experiences only an insignificant change. Power density of the experimental motor is 2009kW/m³.

So far a prototype of the 3.2kW battery powered drive system has been designed and built for an experimental vehicle. Specifications for the vehicle are a top speed of 30km/h, an acceleration of 0-20km/h in 8s and a payload rating of 200kg, able to be carried up a 15° gradient.

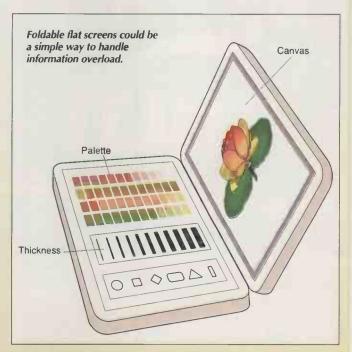
In principle, the proposed pmsm could be scaled up to fit the needs of a regular on-road electric vehicle with a 50kW motor. But the researchers warn that any economic advantages would be diminished because of the need for bigger quantities of the relatively expensive magnetic material. More information from the authors at University of Hong Kong, Pokfulam Road, Hong Kong.

How to take in twice as much information?

n the stimulus-overload world of the multimedia '90s, with the amount of data squeezed on to a computer screen nearing saturation point, we plainly need some new thinking on how to cope with this out-pouring of information. Now a team of Japanese researchers have come up with an answer – simply add another screen!

According to the researchers from Hitachi's Central Research Laboratory, conventional display systems are simply not capable of coping with the abundance of information being presented.

"Multi display systems, rather than single-display systems, may be more suitable for taking advantage of a multimedia environment," is the conclusion.


Fortunately, that doesn't mean we have to worry about our brains – and necks – seizing up as we twitch from screen to screen (to screen) surrounding our desks. Well not yet anyway. Because the solution proposed is an altogether friendlier foldable flat-screen display that looks as much like a book as a computer peripheral.

The prototype foldable display system built by the team ('Foldable-display systems as a standard platform for multimedia use', Y Kaneko *et al*, 'IEEE Transactions on Consumer Electronics', Vol 42, No 1.) is based on connecting two or more active matrix lcds mechanically and electrically. The resulting system can be opened up and laid on a table.

Possible applications suggested by the researchers are by using one screen as the palette space with details on brushes etc, and the other as the canvas. In more general terms, the system could be useful wherever information needs to be manipulated and data, tools and a work space are all needed. Another application being tested is in an electronic translator. Two people sit with the display between them, looking at equivalent text, inverted towards them, in their respective languages.

Pointing to a phrase by touching the screen by one person causes the equivalent phrase to be displayed on the other screen in the foreign language.

There could be economic advantages as well, as two 250mm active-matrix lcds are much cheaper to produce than a single display

with the same area, about 355mm diagonally.

If the Hitachi prototype makes it into production, it looks as though we may have a route to turbo-charging the output of information from our computers – but what about the input? We already use a keyboard and mouse together, and can even talk to some machines. But don't you feel a little frustrated that your feet have nothing to do?

More information from Yoshiyuki Kaneko at the Central Research Laboratory, Hitachi Ltd, Kokubunji, Tokyo 185, Japan.

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

New Version 4 Analog, Digital & Mixed Circuits Electronics Workbench®

Electronics Workbench® Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!

Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try 'what if' scenarios and fine tune your designs painlessly.

Electronics Workbench The electronics lab in a computer

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

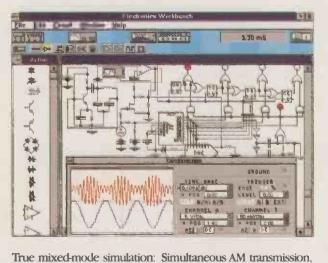
Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

Workbench

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.


Electronics WorkbenchTM The electronics lab in a computerTM

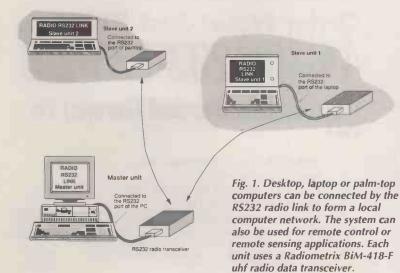
Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF Fax: 44 (0)1203 233-210 E-mail: rme@cityscape.co.uk

Shlpping charges UK £5.99. All prices are plus VAT. All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada. * 30 Day money-back guarantee.

Australia: 2:519-3933 • Brazil: 11-453-5588 • Cyprus: 2:62-1068 • Denmark: 33-250-109 • Finland: 0:297:5033 • France: 14:908-9000 • Germany: 711-62:7740 • Greece: 1:524:9981 Hungary: 1:215-0082 • India: 11-544:1343 • Israel: 3:647:5613 • Italy: 11-437:5549 • Japan: 3:3382:3136 • Malaysia: 603-7778945 • Mexico: 5:396:3075 • Netherlands: 18:031-7666 New Zealand: 9:267:1756 • Norway: 22:16:70:45 • Portugal: 1:814:6609 • Singapore: 462:0006 • Slovenia: 61-317:830 • South Africa: 331-68309 • South Korea: 2:2:222:3431 Spain: 1:553-3234 • Srl Lanka: 1:86:5970 • Sweden: 8:740:5500 • Thailand: 66:2:398:6952 • United Kingdom: 203-23:3216

digitization and pulse-code modulation of a signal.

INTERÁCTIVE


Computer RS232 wireless link

Covering distances of up to 120m, Pei An's wireless RS232 link hardware operates at up to 9600 baud via type-approved transmitter/receiver modules.

This article introduces a radio communication system which allows two or more computers to communicate with each other over a wireless link via their RS232 interfaces. Reliable communication can be achieved over a distance of 30 metres in buildings or 120 metres on open ground.

The radio link uses Radiometrix low power 418MHz uhf fm data transceiver modules which are type-approved to the Radio-communication Authority Specification MPT1340 in the U.K. This avoids the need to submit the final product for further approval.

By implementing suitable software, this system can form a local computer network. It can also be used for remote sensing or remote control applications.

How the system works

The system consists of a number of identical radio transmitter/receiver units, each connected to the RS232 interface of the various computers, Fig. 1. Each unit can be configured as a transmitter or a receiver. When it is configured as a transmitter, serial data from the RS232 interface is fm modulated by a uhf radio-frequency carrier signal and is transmitted to the surroundings. If it is configured as a receiver, radio signals picked up by the antenna are demodulated. Demodulated data – the serial data put into the transmitter – is fed into the RS232 interface.

A system may include one master unit and several slave units. By using appropriate software, half-duplex data transmission can be achieved between the master unit and the other units, Fig. 1.

RS232 interfacing

The RS232 is an industrial standard bi-directional asynchronous serial data communication interface for data communication between two devices. With computers, it is frequently used for connecting peripherals such as printers, modems and mice.

A pc's parallel port comprises eight data lines and information is conveyed one byte at a time. Unlike the parallel i/o port, the serial COM port has only one line for data transfer in either direction. Each eight-bit byte is transmitted or received serially, one bit at a time.

With asynchronous data transmission, the transmitted signal contains both data and synchronisation information. This synchronisation information enables the receiver to reassemble, or 'frame', the serially transmitted words correctly back into parallel form.

The format of the transmitted serial data includes a start bit, 7 or 8 serial data bits, a parity check bit and 1 or 1.5 stop bits. Figure 2 shows a typical serial data format. The receiver device, which runs at the same clock frequency as

Contains the current status of DCD, RI, DSR and CTS.

Acts as one-byte memory

(useful register)

RITY STOP

the transmitter, detects the start bit and receives the data bits. It checks the parity bit and upon receiving the stop bit it terminates the data receiving cycle and waits for the next transmission. The rate at which data bits are sent is measured by baud rate.

In practice, the asynchronous communication is facilitated by a family of industrial standard computer peripheral ICs known as uarts, or universal asynchronous receiver and transmitters. Most computers use a 8250 or 16450 uart. These devices operate at ttl voltage levels but RS232 operates at higher, bipolar voltages. For this reason, ttl-to-RS232 and RS232-to-ttl converters are needed.

The pc's RS232 interface

A standard RS232 interface is a 25-pin interface, which is housed in a 25-pin D-type male connector. A 9-pin version is also used on pcs. Figure 3 gives the pin layout and functions of the RS232 connectors viewed from the back of the computer. The functions of the pins are briefly described as follows:

- Prot protective ground line. This pin connects the metal screening of the cable to the chassis of the equipment.
- GND Ground line provides a common voltage reference for all signals.
- TD Transmitting data output. Serial data is transmitted on this line.
- RD Receiving data input receives serial data.
- RTS Request to send is a handshake output indicating that a transmitting device is ready to send data. If handshake is not required, it can be used as an output.
- CTS Clear to send is a handshake input from which a receiving device is informed to receive data. If handshaking is not used, it could be used as an input.
- DTR Data terminal ready is a handshake output and indicates that a transmitting device is ready. If handshaking is not used, it can be used as an output.
- DSR Data set ready is a handshake input from which a receiving device is informed that the data set is ready. If handshaking is not used, it could be used as an input.

An pc-compatible computer can have up to four RS232 interfaces. They are labelled COM1 to COM4. Each COM port is associated with a uart chip inside the computer. Operations of the COM port are controlled by internal registers of the uart. For register functions, see Table 1.

The i/o addresses of each internal register is calculated by adding the offset to the base address of a COM port. Table 1 shows the i/o address for COM port 1 which has a base address of 3F816.

Some registers are used for the wireless link described here. Register 0016 (data buffer register) stores the received data and the data to be transmitted. Register 0416, the modem control register, controls the status of RTS and DTR of the port. When handshaking is not required, the two lines can be used as outputs. Register 0616, the modem status register, stores the status of CTS and DSR, which, when handshaking is not used, can be used as two inputs.

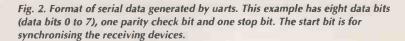
Base i/o addresses for COM1 to COM4 are summarised in Table 2.

Table	1. Functi	ions of the pc uart's inte	rnal registers.
Offset	Address	Function	Description
0016	3F8 ₁₆	Receiver buffer register	Store received data
		Transmitter buffer register	Store data to be transmitted
			(useful register)
0116	3F9 ₁₆	Interrupt enable register	Set the mode of interrupt reques
0216	3FA16	Interrupt identification register	Check mode of interrupt request
0316	3FB ₁₆	Data format register	Set the format of serial data
			transmission (useful register)
0416	3FC16	Modem control register	Set modem controls
			(RTS, DTR, etc) (useful register)
0516	3FD16	Serialisation status register	Contains information on status
			of receiver and transmitter

3FF₁₆ Scratch-pad register

Modem status register

Table 2. Base i/o addresses for the pc's COM ports.


3FE16

0616

0716

Interface	Base address	Addresses for	
COM1 COM2 COM3	3F8 ₁₆ 2F8 ₁₆ 3E8 ₁₆	internal registers 3F8-3FF ₁₆ 2F8-2FF ₁₆ 3E8-3EF ₁₆	
COM4		2E8-2EF ₁₆	PA
STACE		BIT-2 BIT-3 BIT-4 BIT-5 BIT-6 BIT-7	

STAGE	BII	011-0	DII-I	DIFE	DIT-3	011-4	011+5	DI1-0	D11+7	DIT	ыт	
					1						_	
		1	0	0	1	1	0	0	1	0		
								_				
										-		

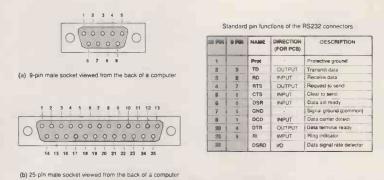


Fig. 3. Pin layout and functions of the pc's RS232 connector.

Connecting devices using RS232

Two types of RS232 link are shown in Figure 4. The arrows show the direction of data flow. Figure 4a) is known as a null modem. Some lines of the two RS232 interfaces are used as handshakes between the two devices.

Figure 4b) shows a connection using only three lines. One line is for transmitting data and the other for receiving data. The connection is arranged so that the transmitting line of the first device, TD, is connected to the receiving line of the second device, RD.

Software control

Before a COM port can be used, it must be configured. This configuration includes setting of the following: the bit rate, length of data bits, number of stop bits and the parity check bit. Two computers communicating with each other must have the same configuration. There are three methods of carrying out the configuration.

• The first method is to use DOS command 'MODE' under DOS prompt. The syntax of the command is:

MODE COMm: baud=b, parity=p, data=d, stop=s, retry=r

or

Table 3. BIOS initialisation bit functions.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Define bit	rate bits		Define p	arity check	Stop Bit	Data len	gth
111= 960	0 011= 60	00	00= No p	oarity	0= 1	10= 7 bi	t
110= 480	0 010= 30	00	10= No p	parity	1= 2	11= 8 bi	t
101= 240	0 001=15	50	01= Odd				
100= 120	0 000= 11	10	11= Ever	1			

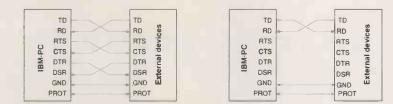


Fig. 4. RS232 pin connections between pcs and external devices.

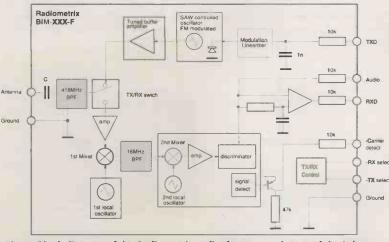


Fig. 5. Block diagram of the Radiometrix radio data transceiver module. It has a transmitter, receiver and other circuits integrated in one module.

MODE COMm: b, p, d, s, r

Functions of specifiers in the command can be found in any DOS handbook¹. For example 'MODE COM1: 96,n,8,1' configures COM port 1 to have a baud rate of 9600, no parity check, 8 bit data length and 1 bit stop bit. This command can be included in the autoexec.bat file.

• The second method is to use a basic-input-output-system, or BIOS, interrupt. This allows the interface to be configured from within the user's program. It requires that register AH is loaded with 0, DX is loaded with a number 0 to 3 representing COM1 to COM4 to be configured, and AL is loaded with an 8-bit initialisation code. The bit function of this code is shown in Table 3.

The following Turbo Pascal program shows how to achieve the same function as the DOS command 'MODE COM1: 96,n,8,1'. The initialisation code is 11100011B.

Procedure initialise; {COM1: 9600, no parity check, 8 bit data and 1 stop bit} var register:registers; begin with register do begin ah:=0; {load interrupt function number} al:=128+64+32+0+0+0+2+1; {load initialisation code, 11100011B} dx:=0; {COM1 is to be initialised} intr(\$14, register); {Call the BIOS interrupt} end; end;

• The third method configures the COM port by writing data directly into the data format register, at offset= 03_{16} , of the uart. This method is slightly involved and outside the scope of this article. Details can be found however in other pc hardware books².

Sending and reading serial data

There are several ways to read and send serial data via the RS232 interface. The following method is the most flexible one as far as pc interfacing is concerned. The method is known as direct port access.

To send data out of the COM1 interface, you can write data directly to the data buffer register, $3F8_{16}$ – the base address of COM1. The following instructions can be used:

```
OUT 3F8h, X in BASIC, and
PORT[$3F8]:=X in Turbo Pascal
```

X is the data in decimal. To read data from the COM1 port, we can read data from the data buffer register, $3F8_{16}$ and the following commands can be used:

Y=INP[3F8h]in BASIC, and Y:=PORT[\$3F8] in Turbo Pascal

where Y is the input byte in decimal.

Reading and writing data via handshake lines

To output data from the RTS and DTR lines, you should write to the modem control register at offset 04₁₆. Data bits DB0 and DB1 correspond to RTS and DTR. The following Turbo Pascal command makes the RTS and DTR lines of port COM1 go low. Note that both lines are inverted by ttl-RS232 transceivers inside the pc.

PORT[\$3F8+4]:=2+1

To read data from DSR and CTS lines, you should read the modem status register at offset 06_{16} . Data bits DB5 and DB4 correspond to the DSR and CTS lines of the port. Again, these two lines are inverted by ttl-RS232 transceivers.

COM port base addresses

The base addresses for different COM ports have been shown earlier. A convenient way to find the addresses automatically is to use software commands.

When the computer is switched on or reset, the BIOS checks all possible RS232 addresses. If it finds an installed one, it writes the addresses of the port, in a two-byte word, to specific memory locations. For COM1, the locations are $0000:0400_{16}$ and $000:0401_{16}$. By peeking these locations, the base address can be obtained. Memory locations for COM1 to COM4 are listed below.

Port	Memory address
COM1	0000:0400 - 0000:040116
COM2	0000:0402 - 0000:040316
COM3	0000:0404 - 0000:040516
COM4	0000:0406 - 0000:040716

Another useful one-byte memory location is $000:4011_{16}$. It stores the total number of installed COM ports. The information is contained in bits 3, 2 and 1 of the byte. Data bits 7 to 4 and 0 are used for other purposes.

DB3	DB2	DB1	Number of RS232 ports installed
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4

The following example in Turbo Pascal 6 first detects the number of RS232 interfaces installed on the pc and assigns the number to a variable, namely 'Number_of_COM'. It then reads from the memory locations holding the base address of COM1 and assigns the address to the variable 'COM1_address'.

```
Procedure detect_COM1;
var
```

COM1_address,number_of_COM:integer;
begin

```
number_of_COM:=mem[$0000:$0411]; {read
number of parallel ports}
```

```
number_of_COM:=(number_of_COM and
(8+4+2)) shr 1; {DB3, DB2 and DB1
```

```
extracted from the byte}
COM1_address:=memw[$0000:$0400]; {Memory
```

```
read procedure}
writeln(`Number of COM installed :
```

```
`,number_of_COM:2);
writeln(`Addresses for COM1 :',
```

```
COM1_address:3);
end;
```

Data transceiver module details

This wireless link uses wireless data transceiver modules supplied by Radiometrix. I recommend that you obtain a full descriptions of the modules before you try to implement them³.

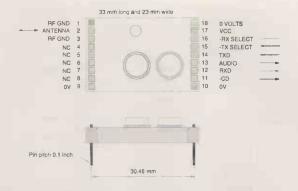
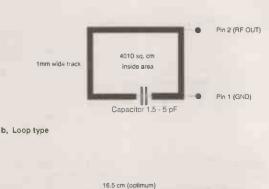



Fig. 6. Mechanical dimension and pin functions of the BiM transceiver.

26 turns of 0.5mm diameter enamelled copper wire coils wound on 2.5mm dia former

Pin 2 (RF OUT)
 Wire, rod pcb track or combination

c, Whip type

a. Helical type

Antenna performance chart

	Helical	Loop	Whip
Ultimate performance	22	1	555
Ease of set-up	22	1	555
Size	111	11	1
Immunity to proximity de-tuning	22	111	5

Fig. 7. Comparison of antenna options for BiM transmitter/receiver modules.

The modules are available in two types, namely *BiM*-418-F and *BiM*-433-F. The first operates at 418MHz and is type-approved to MPT1340 of the Radio Communication Authority in the UK. The latter is for European use in the 433.92MHz band.

Both modules provide a low-cost solution for a bi-directional half duplex data transmission at speeds up to 40kbit/s over a distance of 30 metres inside buildings and 120 metres on open ground. The block diagram of the module, its mechanical dimensions and pin functions are shown in Figs 5&6.

The module consists of a uhf fm transmitter and a matching superheterodyne receiver. For the transmitter, digital data is fed into a modulation lineariser via an R/C low-pass filter. This filter restricts the bandwidth of the modulation signal.

Output of the lineariser drives a varicap diode, the changing capacitance of which modifies the frequency of a uhf

oscillator. The centre frequency of the oscillator is derived from a surface acoustic wave (SAW) resonator. The modulated uhf signal is amplified by a tuned buffer amplifier and fed to a Tx/Rx switch.

C7, C8: 100r

After passing through the switch, the signal is emitted to the surroundings via the antenna. For the receiver, the uhf signal picked up by the antenna is switched to the receiver section. It is amplified and fed into the first mixer. As a result, a modulated signal at an intermediate frequency of 16MHz is produced. This IF passes through a 16MHz band pass filter and enters the second mixer. After that the signal is amplified and fed into the discriminator, where an audio signal is produced. The signal then passes through a data slicer, converting the analogue signal to digital form.

The antenna is used by both the transmitter and by the receiver. Switching is controlled by the Tx/Rx analogue switch and the operation of it is controlled by a transmit/receive selection circuit.

Pin-functions of the Tx/Rx module

Pin functions of the module are briefly described as follows. Pins 9, 10 and 18 are the ground pins, i.e. 0V, which are connected to the negative rail of the power supply. Pin 17 is the positive supply pin, $V_{\rm cc}$.

A dc supply voltage between 4.5V to 5.5V should be

Table 4. BiM and RS232 port pin relationships.

R5232 interface pin RD, receive data, pin 2 CTS, clear to send, pin 8, used as an input

TD, transmit data, pin 3
RTS, request to send, pin 7, used as an output
DTR, data terminal ready,pin 4, used as an output
GND, signal ground, pin 5

Pin of the BiM module TXD, transmit data --CD, carrier detect RXD, receive data --RX, receive select --TX, transmit select GND, ground connected. Applying a voltage above 5.5V or reversing the polarity of the power supply will cause permanent damage to the module. When the module is in transmit and receive modes, current assumption is about 12mA. In the stand-by mode, current reduces to about $1\mu A$.

Piñ 14 is the transmit data input pin (TXD). It can be driven directly by cmos logic running on the same supply voltage as the module. Analogue signals generated by modems or dtmf encoders can also be fed into this pin.

Pin 12 is the output of the received data. It can be connected directly to cmos logic. Pin 13 is the output of the analogue signals. It can be used with modems or dtmf decoders. Carrier detect is output on pin 11, -CD. When the module is in receive mode, a low state on -CD indicates a signal above the detection threshold is being received. This output can only drive one COM ports logic input.

Pins 15 (-TX) and 16 (-RX) are used for selecting operation modes of the modules. They could select one of the four modes listed below.

Pin 15 (–TX)	Pin 16 (RX)	Modes
1	1	Stand-by
1	0	Receive
0	1	Transmit
0	0	Self test loop

Pins 1 and 3 are the rf ground. They are internally connected to Pins 9, 10 and 18 and should be connected to the ground plane of user's pcb board against which the antenna radiates. Pin 2 connects to the antenna.

Antenna

Three types of integral antenna are recommended and approved for use with these modules. The configuration of the antenna and selection chart are given in Fig. 7. The present system utilises a helical type antenna.

Type approval

The BiM-418-F is type-proved to the RA MPT1340 for license exempt use within the UK for telemetry, telecommand and in-building security – but only provided that the following requirements are met⁴.

• The transmitting antenna must be one of the three variants given above.

• The transmitter module must be directly and permanently connected to the transmitting antenna without the use of an external feed. Increasing the rf power level by any means is not permitted.

• The module must not be modified nor used outside its specification limits.

• The module may only be used to send digital data. Speech or music is not permitted.

• Equipment in which the module is used must carry an inspection mark located on the outside of the equipment and clearly visible, the minimum dimensions of the inspection mark must be 10 by 15mm and the letter and figure height must be not less than 2mm. The wording must read: "MPT 1340 W.T. LICENSE EXEMPT".

• The trimmer control on the module must be inaccessible to the end user. This control is factory set and must never be adjusted.

Failure to meet the above conditions invalidates the modules' type approval. Further information on MPT1340 specification issued by the RA (DTI) may be obtained from the RA's library service on +44-(0)171-211-0211.

Requirement for digital data transfer

The data path through a pair of BiMs is ac coupled and there are several requirements for successful data transfer. Pulse width time – the time between two consecutive transitions in the serial code – must be between 25μ s and 2ms.

Receiver BiMs require at least 3ms of 10101010 bitsequence preamble to be transmitted before the actual data is transferred. The receiver is optimised for data waveforms with 50:50 mark-to-space averaged over any 4ms period. It will work reliably for sustained asymmetry up to 30/70 either way. But this will result in pulse-width distortion and decreased noise tolerance.

RS232 radio link hardware

The system consists of a number of identical units which are connected to computers via the RS232 interface. The transmission rate of the system is 9600 baud.

Figure 8 is the complete circuit diagram. It consists of three blocks, namely, the RS232/COM driver unit, the BiM-418-F module and the power supply system. The first unit is built around the TC232 RS232 driver, IC_1 . This IC requires a single 5V power supply and converts the right voltage levels for the RS232 standard and COM port logic.

One of the RS232 output lines, DTR, is converted to the COM-port logic level using a simple voltage clamp circuit using a 5.1V zener diode. All the signal lines between the *TC232* and the *BiM-418-F* are buffered by the 4503BE, *IC*₂. The pins of the BiM and RS232 are connected as shown in Table 4.

The 78L05 5V voltage regulator requires between 8 and 15V dc input. Suggested component layout and assembly of the unit is shown in Fig. 9.

Software requirements

RS232 serial data can be transmitted at 4.8 to 38.3kbit/s between a pair of BiMs. In order to send RS232 serial data through the BiMs, the data needs to be packetised to meet the Tx/Rx module requirements. The packetised data includes the following parts:

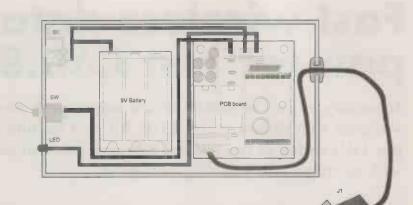


Fig. 9. Assembled unit of the RS232 radio link. Circuit board and batteries are housed in a plastic box. A lead connects the pcb and the RS232 connector.

- 3ms of preamble data of 55₁₆ or AA₁₆ to allow the receiver BiM to settle.
- one or two bytes of FF₁₆.
- one byte of 01_{16} to show the start of data.

• data bytes and

• check bits.

In practice, the format of the packetised data may vary according to the users' needs.

There are three methods of improving the mark-space ratio of the serial data to be transferred.

Method 1. Each byte is divided in half. The first half is the bit to be sent and the second half is its complement. Each byte has a guaranteed mark-to-space ratio of 50:50.

Method 2. Amongst the 256 possible eight-bit codes, 70 codes contain four zeros and four ones, which have a 50:50 mark-to-space ratio. Examples of these are, 17_{16} , $1B_{16}$, 27_{16} , and $E8_{16}$. They can be transferred between two RS232 ports using a data format of one start bit and one stop bit with no parity check bit. The actual data to be sent will be translated using these codes and then transferred. This also allows byte checking on receipt as all received codes must contain exactly four ones and four zeros.

Method 3. Each byte is sent twice. The first one is the true data and the other is its complement. This will again give a 50:50 mark-to-space ratio.

Control software in Turbo Pascal has been written to demonstrate data communication between two computers via the system.

Technical support

Designers' kits and assembled units together with demonstration software are available from the author. Please direct your enquiry to Dr Pei An, 58 Lamport Court, Lamport Close, Manchester M1 7EG. Tel: Ans/Fax: +44-(0)161-272-8279. If you would like to obtain more information on the BiMs, contact Radiometrix Ltd, Tel: +44-(0)181-810 8647, Fax: +44-(0)181-810-8648.

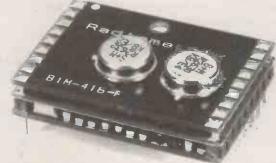
References

- 1. Microsoft DOS 6.0 manual.
- 2. Hans-Peter Messmer, The indispensable PC hardware book,
- Addison-Wesley publishing company, ISBN 0-201-62424-9.
- 3. Radiometrix Ltd. Low power UHF data transceiver module.
- 4. Radiocommunication Agency (RA), MPT1340, obtained from RA library service, Tel 0171-211 0211.

Fast wireless data transceiver pair for just £60.80

Normally, a pair of BiM418F uhf transceiver modules, as used in Pei An's wireless R5232 link, costs £105.84. But Radiometrix is offering one pair only per *EW* reader at the special discount price of just £60.80 – fully inclusive of VAT, postage and packing and data.

Operating at 418MHz, these modules are capable of halfduplex data communication at speeds to 40kbit/s over distances of 30m inside buildings or 120m over open ground.


tances of 30m inside buildings or 120m over open ground. The modules integrate a low-power uhf transmitter and matching dual-superheterodyne receiver together with data recovery and Tx/Rx changeover switching. Requiring a single 4.5 to 5.5V supply, the modules interface directly to 5V c-mos logic.

High data rates and fast Tx/Rx changeover of less than 1ms make the BiM transceiver ideal for high integrity one to one links/multi-node packet switch networks. Rapid Rx power up – also less than 1m – allows effective duty cycle power saving of the receiver for battery powered applications. For example, current flow is on average 15µA for 1ms on and 1s off cycling.

Typical applications of the transceivers are:

- Medium speed computer networks
- Laptop to pc to printer links
- High integrity wirefree fire/security alarms
- Building environment control/monitoring
- Vehicle alarm systems
- Remote meter reading
- Authorization/access control

UK Version - BiM-418-F Euro Version - BiM-433-F

Operating at 418MHz, these modules are capable of half-duplex data communication at speeds to 40kbit/s over distances of 30m inside buildings or 120m over open ground.

Features of the BiM transceivers

- Miniature pcb mounting module
- Licence exempt operation in UK on 418MHz, MPT 1340 (BiM-418-F)
- ETS 300-220 tested for European use on 433.92MHz (BiM-433-F)
- SAW controlled fm transmission at -6dBm erp.
- Double conversion Superhet receiver
- -107dBm receive sensitivity
- Single 4.5 to 5.5∨ supply <15mA Tx or Rx
- Half duplex data at upto 40kbit/s
- Reliable 30 metre in-building range
 Direct interface to 5V c-mos logic
- Fast 1ms power up enable for duty cycle power saving
- On board data slicer, supply switches and antenna change over

Order form

To receive your BiM418F transceiver pair with full data sheet, fill in this coupon and send it to Radiometrix Ltd at Clausen House, Perivale Industrial Park, Horsenden Lane South, Greenford, Middlesex UB6 7QE, together with a cheque or postal order. Please note that this offer closes on Friday 30 August. For further information, write to or call Radiometrix on 0181 810 8647, or fax on 810 8648.

Please send one pair, BiM4128F 🗆 or one pair, BiM433F (433.92MHz) 🗅

to Name

Company (if any)

Address

Exactly a century ago, Marconi filed a patent representing the beginning of a new era in communication. Tom Ivall looks at that patent and events surrounding it.

The first radio patent

hen Guglielmo Marconi applied for a patent on his wireless telegraphy apparatus exactly a hundred years ago he was in effect announcing the start of an era. Electromagnetic radiation outside the visible spectrum could now be utilised as an aid to human communication. It was the beginning of a new technology and commercial enterprise.

British Patent No. 12039, 'Improvements in transmitting electrical impulses and signals and in apparatus therefor', application date 2 June 1896, was the world's first radio patent. Queen Victoria was still on the throne.

It wasn't a discovery and Marconi was more inventor than scientist. Physicists and others had already been experimenting with this form of radiated energy for a decade or more, though without fully understanding what they were dealing with. They certainly had no practical applications in mind. Branly in France, Hughes and Lodge in England, Popov in Russia and Thomson in America, among others, had all detected apparent radiation from electrical discharges – some natural, some artificially generated – but it was not explored much further. The electron was as yet unknown.

Certainly Maxwell had defined the conditions for the propagation of electromagnetic waves – calculating their speed and inferring that light might be one form of them – as early as the years 1861-1865. His Royal Society paper 'A dynamical theory of the electro-magnetic field' was to become a scientific classic. But the experimental physicists of the time were either unaware of it or sceptical of what they considered a dubious concept.

Helmholtz in Germany, however, eventually understood the importance of this mathematically-based theory. It was under him, in Berlin, that Heinrich Hertz was then working as an assistant professor. Helmholtz realised that the theory needed experimental verification and invited Hertz to attempt it.

After several years this challenge resulted in the famous series of experiments of 1886 at Karlsruhe technical high school – described in Annalen der Physik of 1887 and 1888.

Marconi – 1874-1937 – was a resourceful and determined experimenter. Combining manual skills with a huge capacity for sustained hard work, he became a highly successful developer and entrepreneur.

Hertz's experiments

Hertz generated electromagnetic radiation with an induction coil, a spark gap and what we now call a dipole aerial. He detected it with a tuneable loop resonator containing another, very small, spark gap. He demonstrated that the radiation had the characteristics of waves and, like light, could be reflected, refracted, diffracted, polarised and made to produce interference patterns. His method was to set up standing waves with a sheet metal reflector and locate their nodes with the loop resonator. Thus he validated Maxwell's theory.

It was Hertz, incidentally, who pointed out the irrelevance of Maxwell's original notion, derived from analogies, that there had to be some kind of physical medium which the electric and magnetic forces acted upon - an aether. The essential relationships, he said, were in the equations themselves.

Hertz's laboratory experiments were recog-

nised everywhere. Branly, Lodge and Popov among others immediately repeated them and gave demonstrations to scientific and nontechnical audiences. Yet despite the fact that telegraphy existed and some of its pioneers like Morse and Preece had long been seeking a wire-less version, few seemed to realise that the Hertzian waves, as they became known, were offering them a potent new means of electrical signalling. The exceptions were Crookes, who predicted this possibility in 1892, and Lodge, who demonstrated in 1894 that it could be done.

Marconi's interest piqued

One of the scientists who followed up Hertz's experiments, however, was Righi at Bologna University. Marconi, then a teenager living near Bologna, had attended his lectures and studied his writings on e-m radiation. This was the start of Marconi's interest in Hertzian

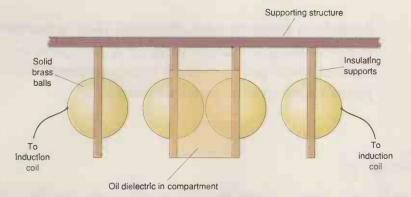


Fig. 1. Hertzian radiator formed by array of spark gaps. This is mounted at the focus of a cylindrical parabolic reflector (not shown).

waves. But it was later, in 1894, after reading more about Hertz's work, that he became fired with the idea of using these waves for communication. Then began the famous series of radio signalling experiments at his home in 1895.

These experiments at Bologna used apparatus broadly similar to that of the physicists who had followed Hertz's work. The transmitter was a keyed induction coil producing high-voltage pulses, a spark gap and a short Hertzian, or half-wave, dipole aerial. The receiver was little more than a dipole aerial with a non-rectifying detector in the form of a Branly type of coherer – though the term coherer was actually coined by Lodge.

Initially, the ranges achieved were very short – up to about 100 metres. But then Marconi had the idea, suggested by Popov's experiments in detecting distant thunderstorms, of replacing the Hertzian dipole in both transmitter and receiver with an elevated electrode, or antenna, on one side and an earthed metal plate on the other.

Marconi's important idea

These modifications gave a tremendous increase in range – eventually, with an 8m high antenna, to about 2.4km. Thus Marconi had devised what is now called the quarter-wave monopole, or Marconi aerial, in which a reflection or image of the quarter-wave element corresponds to the lower element of a vertical half-wave dipole. Some consider this to be his most important contribution to radio technology.

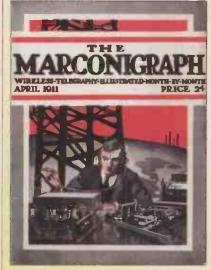
Marconi's transmitter, like those of Hertz and the other scientists, was a device for generating and radiating electrical oscillations. Henry had already observed such oscillations in a discharging capacitor (Leyden jar). The Hertzian oscillator was essentially an LCR series resonance circuit containing a spark gap which acted as a switch. The L, C and R were those distributed in the wiring, spark gap and radiating conductors. This circuit, of course, had a natural frequency.

A high-voltage pulse from the induction-coil secondary winding, initiated by interrupting the primary circuit, starts to build up charges on the metal spheres of the spark gap. The electric field within the gap increases correspondingly until the breakdown potential is reached, at which an electrical discharge takes place through the ionised air in the gap. This conduction reduces the gap resistance to a low value and closes the *LCR* circuit, which goes into natural oscillation.

Oscillation continues for as long as the spark discharge is maintained and hence the 'switch' is closed. But resistance quickly dissipates the power, reducing the oscillation amplitude and resulting in a damped oscillatory waveform. With the gap potential falling, the discharge eventually stops; thus the spark gap switch opens the *LCR* circuit and the oscillation ceases. When the next high-voltage pulse arrives from the induction coil the process is repeated.

But the R in this circuit was more than just its ohmic and spark gap resistance: it included the radiation resistance of the aerial system. A good radiator, therefore, as Lodge had pointed out, meant heavy damping and hence shortening of the oscillation and radiated wavetrain. It was a problem for effective signalling. Sustained oscillation and good radiation were conflicting requirements.

Syntony


Eventually the problem was solved by the technique of syntony, or tuned coupled circuits, which also provided better selectivity.

The link with Electronics World

This journal, which has just completed 85 years of continuous publication, owes its existence to the wireless telegraphy company that was established with the commercial protection of the 1896 patent.

Founded as *The Marconigraph* in April 1911 (see the reproduction of the front cover), it was then mainly a house magazine, but aimed to "acquaint the lay reader with the latest possibilities in connection with this most marvellous invention" – at a price of 2 (old) pence per month.

In 1913 the magazine was sold to an independent publisher and became The Wireless World. When radio valves and components began to be utilised in other, non-communication, applications, electronics technology was born – eventually to subsume radio – and the journal started on the road to its present form.

Front cover of the first issue of The Marconigraph, which later became Wireless World and the present Electronics World.

For this the underlying resonance principle had been demonstrated by Lodge in 1889. Marconi patented his 'syntonic' transmitting and receiving system in 1900: patent No 7777.

The 1896 patent, however, describes simple, open systems without tuning. Transmitting frequency is determined solely by the dimen-

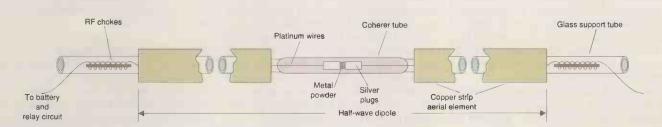


Fig. 2. Dipole receiving aerial with coherer between the elements. The coherer is connected to a battery and relay through two rf chokes.

sions of the oscillating and radiating elements. Though in practice the radiated spectrum is very wide. There are three kinds of spark transmitter, all using induction coils with vibrating interrupters pulsing the primary windings; and one kind of receiver, based on a coherer with resonating aerial elements connected to it.

Morse code signals are sent by a key in the pulsed primary circuit of the induction coil. At the receiver these are read by an ordinary telegraph instrument actuated from the coherer through a relay.

In one of the transmitters the radiator is essentially a Hertzian dipole formed by a horizontal array of metal balls providing spark gaps, as shown in Fig. 1. Other texts describe this as a Righi oscillator. The balls are solid brass, 100mm in diameter. The outer two gaps are about 25mm while the central gap is only about 1mm.

Obviously these spherical electrodes provide

much of the oscillator's capacitance as well as being radiating parts of the dipole. Capacitance and dielectric strength between the two middle balls are increased by an oil dielectric held in a compartment. This 'increases the power of the radiation'. Oscillations of 25cm wavelength (uhf) are produced.

To improve the range and directivity of this radiator, the assembly is mounted at the focus of a cylindrical parabolic reflector, made by

- Earth

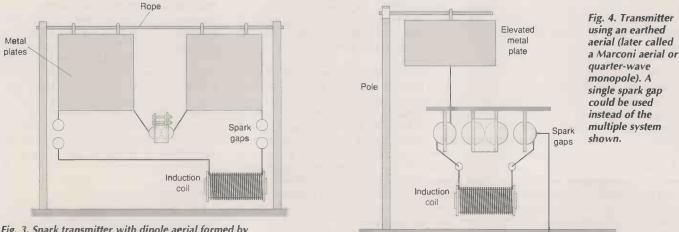
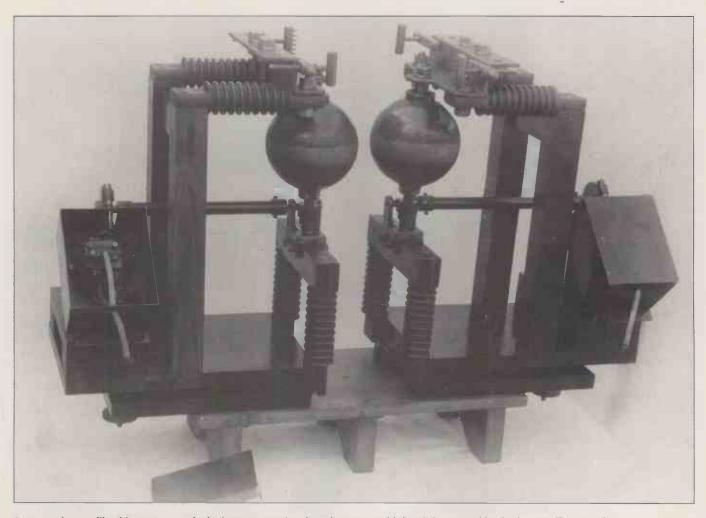



Fig. 3. Spark transmitter with dipole aerial formed by elevated metal sheets.

Later spark gaps, like this 1905 example, had motors rotating the spheres to avoid the pitting caused by discharges all at one place.

HISTORY

bending a sheet of brass or copper. Fed from an induction coil normally giving a 25cm spark, the system achieves a range of over 3km.

Tuning the receiver with tin foil

Corresponding to this transmitter is a receiver with a resonating half-wave dipole, Fig. 2, placed at the focus of a similar reflector. Here the dipole elements are 12mm wide strips of copper, cut to the required length to tune with the transmission. The appropriate lengths are found with a separate tuning aid – essentially a resonator containing a tiny spark gap, formed by strips of tinfoil which are experimentally cut to various trial lengths.

Two chokes at the outer ends of the dipole provide high impedance to rf and isolate the aerial from the electrical wiring. This was done to concentrate the received energy in the resonator and coherer.

In the middle of this receiving dipole is a coherer, or what patent calls a 'sensitive tube'. This comprises a 38mm long sealed glass tube of about 2.5mm internal diameter, containing two silver contact plugs with a gap of about 1mm between them. In this gap lies a quantity of loosely packed metal powder or filings: a mixture of 96% nickel filings and 4% silver filings is recommended. The sealed tube is preferably evacuated.

The coherer is connected in a circuit containing a 1.5V battery and a relay. Initially the loose powder has low conductivity and passes very little current. When the dipole picks up a signal, however, the rf energy causes the filings to cohere and conduct strongly. The resulting current through the coherer then operates the relay and the telegraph instrument.

Mark tap space

Unfortunately the filings continue to cohere after the Morse dot or dash has ceased, so a small vibrating hammer or tapper, similar to an electric bell mechanism, has to be used to unstick the grains ready for the next Morse symbol.

A different kind of transmitter is illustrated by a diagram similar to Fig. 3. Two metal plates are suspended by insulators from a rope and connected through spark gaps to the induction coil to form a Hertzian oscillator. No reflector is used. From the description, the mode of operation is not clear, though obviously the two plates not only form a dipole aerial but also provide a lot of capacitance and hence radiated power. The larger and higher they are, according to the text, the greater the signalling range.

Finally the patent reveals the use of the earthed antenna - the Marconi aerial discussed

above – in a transmitter, Fig. 4, and a corresponding coherer receiver. At both stations the single elevated metal plate is suspended from a pole, though kites covered with tinfoil are also successful. This system is advantageous where "obstacles such as many houses or a hill or mountains intervene between the transmitter and receiver."

Again Marconi reports that the higher and larger the antenna plates the greater the range achieved.


Start of a company and industry

Acceptance of this first patent in July 1897 provided the commercial basis for setting up a company that same month to develop and promote the Marconi apparatus. This was The Wireless Telegraph and Signal Company Limited, which eventually became The Marconi Company and finally part of GEC.

Some of the early demonstrations and communication achievements are described and illustrated in the *EW&WW* article 'Marconi Beginnings' in the January 1992 issue, on pages 74-76.

Further reading

A useful bibliography on the origins of radio is published in an article 'Guglielmo Marconi and Early Systems of Wireless Communication' by R W Simons, *GEC Review*, Vol 11, No. 1, 1996.

Winner: best rf article '95

The article Demodulation – a new approach – on the following pages is winner of *Electronics World*'s 'Best rf article '95' award – a Hewlett Packard programmable signal generator priced at £4000. Some 30 entries were considered, representing articles both published and unpublished articles offered to *EW* during 1995 – which is why the judging took longer than planned. All were interesting and there was a healthy shortlist of contenders for first place. But Archie's work stood out in that it represents a technique that truly breaks new ground in the important area of demodulation.

Since the article's publication in the December 1995 issue, Archie has **further** developed his amplitude-locked-loop and is presenting a paper describing the technique's mathematical model at BSI 96 International at Chertsey on 4 June.

The US Army has been looking at the demodulation system for incorporation into their new pan-forces radio system called 'Speakeasy'. From their initial evaluation, they agree that the technology works "as advertised". Additionally, DRA Malvern is using the analogue-locked-loop

Additionally, DRA Malvern is using the analogue-locked-loop technique in advanced laser dopplerimetry to minimise co-channel interference. Since publication of the article, eight advances have been made to the high-performance demodulator. Among these, the system's speed has been increased by a factor of five and overall dc coupling is being used to reduce cross-modulation products.

For his rf design article, 'Demodulation – a new approach', Archie Pettigrew wins an HP 8647A synthesised rf signal generator. Fully programmable and operating from 250kHz to 1GHz, this generator is designed for a variety of general purpose applications and semi-automated receiver test. With 300 storage registers and ten user-definable sequences – accessible from a remote keypad – the HP 8647A easily adapts to any test procedure. The generator features HPIB interface, a solid-state programmable attenuator and built-in am/fm modulation capability.

SUBSCRIBE TODAY

And Electronics World will help you keep the leading edge

EVERY MONTH - the best writing on Electronics design applications

ELECTRONICS WORLD

1 Year £30 UK, £43 Europe, £52 Row 2 Years SAVE 25% £45 UK, £65 Europe, £75 Row

		.,		And a stand of the	00
ES, I WOULD LIKE TO SUBSCRIE	BE	PAYMENT D	ETAILS	TIM Entres	20
TO ELECTRONICS WORLD		🗆 1 year £30 UK	🗆 £43 Europe	252 Rest of World	
Name Job Title		2 years £45 UK	🗆 £65 Europe	275 Rest of World	
Company Name		Please invoice	me/my company	Purchase Order N ⁰	
Address		I enclose cheq	ue made payable	to Electronics World	
		Please charge my Visa/Access/Amex/Mastercard			
Postcode	Country				
Telephone	Fax	Expiry date	Signa	ture	

Please tick box if you do not wish to recieve promotions from other companies.

UK RETURN ADDRESS: Electronics World, Freepost CN 2619, Reed Business Publishing, 9th Floor, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5BR. REST OF WORLD: ELECTRONICS WORLD, Reed Business Publishing, 9th Floor, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS, UK.

Demodulation a new approach

Archie Pettigrew's new demodulator concept uses amplitude-locked loop techniques to produce significant improvements in the quality of fm and am reception.

The amplitude-locked loop was developed to overcome a number of fundamental difficulties which have existed since the inception of both amplitude and frequency modulation – am and fm.

With the radio spectrum becoming more crowded each year, and carrier frequencies moving inexorably higher, two basic problems with am and fm transmission become more obvious. Amplitude modulation becomes highly distorted when the carrier fades – or in certain cases, vanishes altogether. Frequency modulation becomes highly distorted and unintelligible when another fm signal arrives at the antenna at the same time as the wanted signal which is equal in amplitude and of a similar frequency.

Both these breakdown processes are caused by interference in the form of multi-path¹ Doppler or quasi-synchronous² reception. All these forms become worse as frequency of the carrier is increased i.e. as wavelength is shortened and/or as transmission becomes mobile³. By using an amplitude-locked loop and associated circuitry, many of these interruptions can be avoided, and more reliable communications achieved.

This article describes in detail the operation of two demodulators, one for am and the other for fm, using the amplitude-locked loop.

Amplitude-locked loop

The amplitude-locked loop, ALL, is the dual of the phase-locked loop, PLL. It works in the magnitude domain rather than the phase or frequency domain. It consists of a linear multiplier contained inside a high gain, high bandwidth servo loop.^{4,5,6}

A phased-lock loop is similar in that it consists of a voltage controlled oscillator contained in a high gain, high bandwidth servo loop. Figure 1 shows a diagram of the amplitude-locked loop⁷.

Carrier from the intermediate frequency stage of the radio enters the ALL at the first port of the linear multiplier. The second port of the multiplier is set to a nominal value of unity. The modulated carrier passes through the multiplier to the modulus detector which accurately detects the modulus of the carrier down to white noise levels.

A dc reference voltage compares and subtracts the incoming modulus voltage and a difference or error voltage is generated, e(t). This voltage is integrated and reversed in sign. Output of the integrator is added to the restoration voltage which sets up the operating conditions – or bias conditions – of the loop.

When no carrier amplitude is present, the loop is out of lock. The integrator drifts to its maximum voltage and the multiplier is at maximum gain awaiting an input. When the carrier appears, an initial transient occurs as the loop pulls into lock. Servo feedback causes the carrier amplitude at the output of the multiplier to be fixed or locked to an amplitude defined by the loop reference voltage.

Let a simple amplitude modulated carrier $v_1(t)$ be described as,

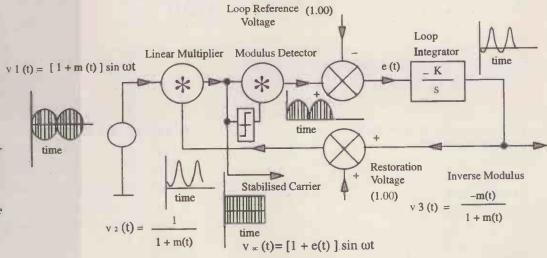


Fig. 1. Amplitude-locked loop consists of a linear multiplier, modulus detector and a high gain integrator. When the loop is closed, envelope variations of the carrier are reduced to insignificant proportions due to servo action and an error signal called the inverse modulus is produced.

RF DESIGN

$v_1(t) = [1+m(t)]sin\omega t$

where m(t) represents the modulating function of time and $sin\omega t$ is the normalised carrier amplitude of ω radians per second.

After some mathematical analyses, a number of amplitude-locked loop identities become evident. Assuming that open-loop gain is sufficiently high that servo theory is valid, ie the value of K in the integrator is greater than 100 at the maximum frequency of interest, the stabilised carrier, vsc(t), becomes,

$v_{sc}(t) = [1 + e(t)]sin\omega t$

where e(t) is the loop error voltage which becomes insignificant due to the high open loop gain. That is, $v_{sc}(t)=[10]sin\omega t$

Voltage $v_{sc}(t)$ represents a stabilised carrier with no envelope variations. Voltage at the second input to the multiplier must therefore be the reciprocal of the input modulation. As a result, $v_2(t)$ is 1/[1+m(t)] and $v_3(t)$ is -m(t)/[1+m(t)] by subtracting unity.

Three signals have been obtained – the unmodulated carrier, the inverse of the modulus and the inverse modulus with the dc term removed. Unfortunately, there is no requirement to recover the unmodulated carrier in amplitude modulation. The demodulated signal is the reciprocal of the modulation which is a highly distorted version of the original signal. The signal at the integrator output is simply the reciprocal of the modulation but with an average value of zero. At first sight, nothing scems to have been achieved by this circuit so why investigate further?

Much the same arguments were used for the PLL when it was first suggested. For example, the PLL could easily have been replaced by a piece of wire and at a much lower cost etc.

Perhaps for the above reasons the concept of the ALL has never been investigated, even in the valve or tube era of electronics. If the ALL is not directly suitable for demodulation of am, can it be used to replace the limiter-filter in the demodulation process? Indeed it can as will be explained.

Application to fm demodulation

When two fm carriers of equal amplitude are added, their envelope increases to twice the individual size and reduces to zero at the instantaneous difference frequency. This envelope variation will be eliminated by the servo action of the ALL. This is similar to the action of a hard limiter and a filter and fulfils the first requirement in fm demodulation – that am variations must be removed before demodulation.

A second signal is also available which is the inverse of the modulus of the two carriers. Could this second error signal be used constructively to improve fm demodulation?

Operating limits

Before continuing, it would be sensible to define the limits of operation of the first ALL unit. Starting with an intermediate frequency of 455kHz, amplitude and phase information

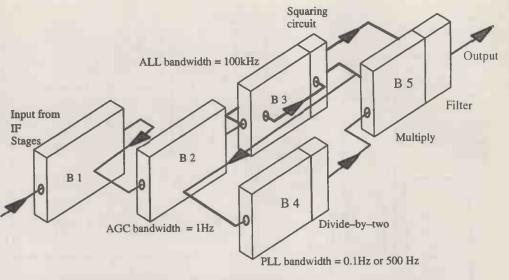


Fig. 2. ALL-PLL amplitude demodulator. The amplitude-locked loop alternates between in-lock and out-of-lock for strong and weak carrier signals. The PLL captures the carrier phase quickly but releases it slowly. A highly stable carrier is generated.

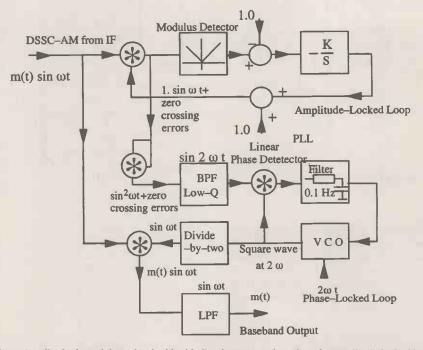
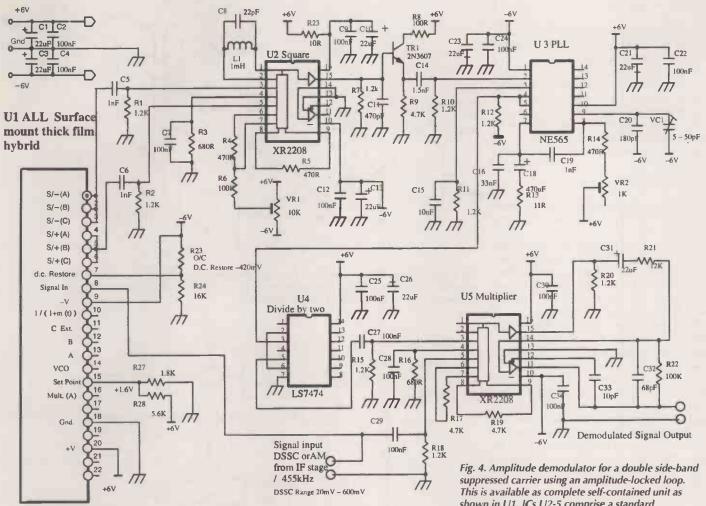


Fig. 3. Amplitude demodulator for double side-band suppressed carrier. The amplitude-locked loop generates a constant envelope from the input carrier. As the carrier approaches zero the amplitude-locked loop loses lock and the gain changes by 80dB. Phase-locked loop bandwidth is reduced by the same amount and synchronous demodulation is now feasible even in conditions of high noise.

is updated at twice the carrier frequency or 910kHz.


In a closed-loop feedback system, instability starts to occur at about one tenth of this frequency or 91kHz. So the ALL unity gain bandwidth was set to 91kHz giving an open loop gain at say 1kHz of 91 or 39dB. This was improved later by using a double integrator.

The dynamic range of the ALL was determined by the offsets and the characteristics of the linear multiplier, the *Exar 2208*. This was found to be to +20dB (10) to -6dB (0.5) or a linear lock range of 26 dB.

In practice, the ALL will track 26dB of amplitude variation up to a frequency of about

20kHz without significant error. This was found to be more than adequate for all narrowband fm speech channels. The lock-in transient is very short since the ALL is more linear than a PLL. Typically it was measured at about 4µs, i.e. the time required to reach 95% of the steady state value of stabilised amplitude.

Using a simulation package called *MATRIXx*, optimum circuit operation was established before any hardware was constructed. A much improved loop was designed using a double integrator with suitable phase advance for stability. This is described further in reference 8.

shown in U1. ICs U2-5 comprise a standard synchronous demodulator.

Applying the amplitude-locked loop The first application of the ALL is to improve the amplitude modulated double side-band suppressed carrier. This represents the ultimate in carrier – or Rayleigh – fading since the carrier vanishes at every silence of the speech waveform, by definition.

The core of this problem is the recovery of a stable carrier. There is no carrier present during the silence between speech. The worst case occurs at the lowest modulating frequency and lowest amplitude of the signal.

Doppler effects may cause the carrier to be shifted by say 100Hz so that high-Q filters are not permitted due to their rapid phase changes at resonance. Should the system lose lock, then reliable re-lock must occur within say one cycle of the lowest operating frequency, say 300Hz, or in about 3ms.

The carrier recovery circuit must also be able to track frequency variations up to 100Hz to an absolute phase accuracy of less than say 45° error between the modulated carrier and reference carrier. Assuming that a PLL is available to regenerate the carrier at 455kHz, then two conflicting conditions need to be met simultaneously.

Since amplitude of the DSSC signal is continuously varying, the envelope must first be

made constant. The PLL must have a wide capture and track range for fast lock-in and frequency tracking, yet it must have an extremely narrow noise bandwidth for stability during every speech silence.

The solution to these seemingly conflicting requirements is shown in Figs 2 and 3 in block diagram form and in circuit form in Fig. 4. This could be could be done by limiting and filtering which would be successful at high instantaneous amplitudes. A major problem occurs at low amplitude and low frequencies with noise. Noise captures the limiter, the voltage controlled oscillator becomes unstable and the phased-locked loop loses lock. System failure ensues. If the limiter is replaced by an ALL, a different process takes place.

At high instantaneous amplitudes, the large negative feedback of the loop flattens the amplitude variations giving a constant envelope at the output of the linear multiplier. At low instantaneous amplitudes, the ALL drops out of lock since its track range has been exceeded.

Gain of the 'loop' drops to the gain of the multiplier alone and not the combined gains of the multiplier, modulus detector and the integrator. At 300Hz, this represents a change from 80dB to 20dB. The noise level is not amplified, and in effect, the system closes itself down.

White noise is not permitted to overtake the signal, as would happen in a limiter. This is the advantage of the in-out action of servo feedback.

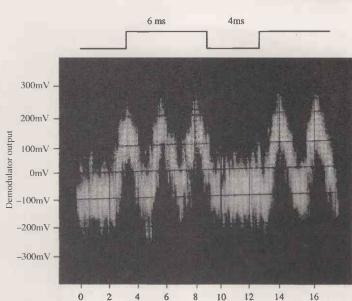
Carrier generation

A pure squaring device follows the analoguelocked loop to generate a coherent carrier at 2ω . When the ALL is out of lock, the PLL is being driven by a zero level carrier. Since the bandwidth of any linear PLL is a direct function of the input amplitude, its closed loop bandwidth drops to zero.

The voltage controlled oscillator free wheels

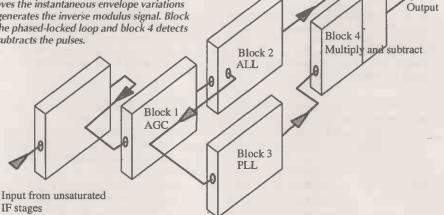
time

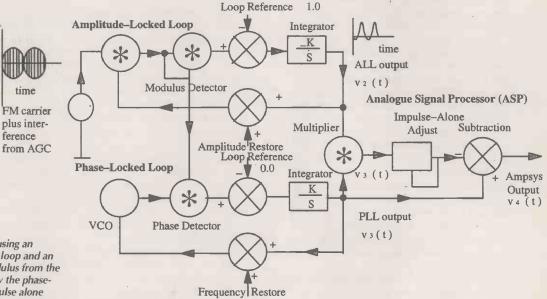
ference


on the long open-loop time constant of the PLL since there is no significant noise energy to cause perturbations. After a divide-bytwo circuit, normal demodulation takes place.

Thus the PLL has effectively two bandwidths. The first is with signal present and the ALL in lock. With values suggested in Fig. 3 this bandwidth measures about 500Hz. When no carrier is present, i.e. with the ALL out of lock, there is no signal present at the input to the PLL.

The effective open loop gain of the PLL is reduced to zero assuming a linear phase detector.


Fig. 8. Complete FM201 demodulator using an amplitude-locked loop, a phase-locked loop and an analogue signal processor. Inverse modulus from the amplitude-locked signal is multiplied by the phaselocked loop output to produce the impulse alone signal which is scaled and subtracted from the original phase-locked loop signal.


Fig. 6. Oscilloscope measurement of demodulated output showing a 300Hz signal gated on and off at 6 and 4ms intervals at a carrier-to-noise ratio of 0dB. Note stability of the noise during the period of zero level carrier. This is due to the amplitudelocked loop and the phase-locked loop both shutting down and awaiting the resumption of the signal.

Time (ms)

Fig. 7. The FM201 demodulator. Unsaturated output from the IF stage is stabilised in a slow acting automatic gain control, block 1. Block 2 removes the instantaneous envelope variations and generates the inverse modulus signal. Block 3 is the phased-locked loop and block 4 detects and subtracts the pulses.



Fig. 9. Waveforms in the FM201 demodulator. The inverse modulus $v_2(t)$ is multiplied by $v_1(t)$ and subtracted from the phase-locked loop output to give $v_4(t)$. Fig. 9a).Normal FM demodulation with additive carrier interference – phase-locked loop output. Fig. 9b) inverse modulus from the amplitude-locked loop with zero average ie no dc content. Fig. 9c) shows the 'impulse alone' signal – product of the signals 9a) and 9b). Fig. 9d) final demodulated output where all harsh impulses or spikes have been removed.

Stability of the voltage controlled oscillator is then determined solely by the time constant of the filter following the phase detector. This can be made large ie of the order of one second.

Carrier stability is thus maintained due to this very long time constant. By use of the ALL, phase-capture transients are very short when signal is present and phase loss transients are long when the signal is absent. By this technique, the coherent carrier can be recovered reliably even during periods of poor carrier-to-noise ratio. The circuit diagram of this system is shown in Fig. 4.

The ALL is contained in the hybrid block U_1 . The circuits which follow the ALL represent the normal synchronous AM demodulation technique, namely, a pure squaring device (U_2) followed by a narrow track range PLL (U_3) , a divide-by-two, (U_4) and finally a synchronous multiplier (U_5) .

Results obtained for this demodulator are presented in Fig 5. Figure 5 shows the comparison between a demodulator using a limiter and filter in place of the ALL. Whereas the limiter-filter ceased to operate effectively at about 3dB carrier-to-noise ratio, the ALL circuit still maintained synchronism until well into noise. Cycle slipping occurs in both demodulators at about the same relative position but does not result in complete loss of intelligibility.

It is interesting to note that there is no threshold effect present as would be the case in fm or angle demodulation. The output signal-to-noise ratio tracks the input carrier-tonoise ratio in a linear manner.

Results obtained from the above demodulator exceeded the performance of the normal synchronous demodulator in that carrier recovery could be achieved down to and below unity carrier-to-noise ratios. Figure 6 shows an oscilloscope trace of a 300Hz sine wave signal which is being gated on and off at 6 and 4ms intervals. Carrier-to-noise ratio with signal present was 0dB. Noise and carrier amplitudes were equal.

Due to carrier stability, system white noise is demodulated in a coherent manner. The PLL has an effective phase capture bandwidth of 500Hz and a phase release bandwidth of 0.1Hz. This phase capture-release phenomenon is a direct consequence of utilising the two in-lock and out-of-lock characteristics of the ALL and PLL simultaneously to make a near perfect am demodulator. This represents a major improvement in the state of the art on am demodulation.

This demodulator operates reliably and completely independently of the presence or absence of carrier. It is therefore ideal for the reception of am during multipath or quasisync. conditions.

FM demodulation

Frequency modulation is transmitted at constant amplitude. Any amplitude variation at the point of reception must be due to interference or noise acquired en route.

According to perceived wisdom, amplitude

variations must be removed by hard limiting and filtering of the carrier on reception. If not, two forms of degradation will occur at the demodulator output. The first is due to envelope variation and the second to phase variation.

In reality, the fm carrier is degraded not only by naturally occurring phase noise but also by amplitude noise. This is converted to phase noise in the limiting process. These two processes combine as the input carrier-to-noise ratio approaches a low value of typically 12dB.

The catastrophic fm threshold effect begins and rapid deterioration of the output signal-tonoise ratio then follows.

This same effect causes fm reception to be rendered unintelligible if two fm transmissions arrive at the antenna at equal or near equal strength to each other – assuming co-channel frequencies.

The corrupting carrier may be another transmission – co-channel – or a delayed version of the wanted carrier – multipath. It could even be a version of the same broadcast from an equidistant transmitter – simulcast or quasisync reception. Harsh acoustic spikes are demodulated which are inband and cannot be filtered.

Capture effect

In the past, much has been made of the 'capture effect' in fm. Generally, this means that if one carrier is say 10% stronger than the other, say 1dB, then capture takes place and the weaker station is completely suppressed. This was the argument put forward by Edwin Armstrong the inventor of fm. It is true – but it is not the whole story.

The unwanted carrier is suppressed but not into silence, which would be ideal. On the contrary, the co-channel interference is demodulated into strident noise, or large impulses which are intolerable to the ear and destructive of all intelligible communication. So destructive is this interference that all fm transmissions start to break down in the region where either carrier is within 6dB of the other. This is sometimes called the 'distortion zone' – when its existence is admitted. The 'capture effect' is not an advantage but is in fact a major disadvantage of fm in a crowded radio spectrum.

Frequency modulation works well when;

- carrier strength is high,
- there is only one single carrier,
- there is no co-channel interference,
- there is only one direct signal path,
- modulation depth is virtually unlimited
- transmission power is virtually unlimited.

These conditions prevailed some fifty years ago, but unfortunately not in today's overcrowded spectrum.

Ideal requirements of the modern demodulator would be a circuit technique which would make fm demodulation linear at low carrier-to-interference ratios but still have the co-channel rejection properties at high carrier-

RF DESIGN

to-interference ratios. Quasi-sync and multipath reception would then be improved by the addition of the intelligence in the carriers and co-channel reception would be equivalent to crossed lines in telephones.

The Ampsys FM201 demodulator

Using an amplitude-locked loop for the first time, an fm demodulator has been designed and tested which demonstrates the above requirements. It is designated the Ampsys *FM201*. Its block diagram is illustrated in Fig. 7 and a system diagram in Fig. 8.

In the FM 201 demodulator there are four separate processes or stages. The first process, after the normal intermediate frequency filtering, is to stabilise the wanted carrier and the interfering carrier to a fixed average value using a slow automatic gain control circuit. This process is necessary in order to present the ALL with a fixed average signal level.

The fm was originally transmitted as a fixed amplitude and the automatic gain control restores this long term average. Saturating limiting is always avoided. The automatic gain control block has a bandwidth of 10Hz.

In the second stage, block 2, the ALLremoves all short term variations leaving the carrier similar to the output of a hard limiter and filter. This stabilised carrier is then applied to the input of the PLL, block 3, which is regarded as normal demodulation.

A second output from the ALL, the modulus reciprocal less the dc term, is applied to a multiplier in the analogue signal processing stage, block 4, Fig. 7. Output of the PLL is applied to the second port of this multiplier. A product is formed at the output of this circuit – the 'impulse alone' signal. 'Impulse' refers to spikes superimposed onto the baseband signal by the demodulation process.

This new baseband signal is scaled in size and subtracted from the original PLL output. Care must be taken to ensure that any phase delays through the ALL and the PLL are equal otherwise subtraction will not be possible.

A demodulated signal is created which is free of harsh spikes and is now perfectly intelligible even when the carrier and interference are identical in magnitude. A simplified version of the relevant waveforms is shown in **Fig. 9a-d.** Voltages $v_1(t)$ to $v_4(t)$ correspond to those marked on Fig. 8.

Worst-case fm reception

Figure 10 is an oscillograph of the demodulator output when the interfering carrier is located at the centre of the the intermediate frequency passband and is of equal amplitude to the wanted carrier. This represents one of the worst case conditions in fm reception. It would result in the carrier vanishing and doubling alternately at the instantaneous difference frequency. It is equivalent to a fade of infinite depth.

The normal output signal-to-noise figure is much less than zero and is unmeasurable by normal instrumentation. Acoustically, all intelligence is lost and the channel would be muted. With the FM201 demodulator, signalto-noise ratio rises to about 14 dB unweighted. This is acceptable in a communication channel and represents 100% intelligibility.

The link has been preserved, so avoiding the call being dropped. In normal demodulation when Gaussian white noise is added or when both carriers become weaker, distortion and noise effects become even more severe and generally intelligibility is lost just after the fm threshold point. This means that there can be a 'distortion zone' or failure gap as wide as 12dB. In simple terms this means that if one carrier is more than one quarter the size of the other at the antenna, failure ensues rapidly.

With the FM201 demodulator however, the spikes are removed, as are the 'Rician' spikes due to Gaussian white noise. The net result is a much improved communication channel with almost 100% intelligibility well below threshold. Further testing has given the following observations.

• When the interfering frequency is offset from the centre of the passband, similar subtraction can be achieved by inserting an offset voltage at the input to the final multiplier. The interfering frequency however must be fixed.

• When quasi-synchronous reception occurs, baseband signals combine and an improvement in the signal-to-noise ratio of approximately 26dB is measured at the equal amplitude reception point. Multipath distortion causes a small reduction in signal-to-noise ratio.

• When two modulated carriers are present, the result is similar to that of a crossed line in a telephone. Although this is not ideal, it is preferable to complete loss of intelligence.

• With a very weak carrier, harsh spikes are removed and noise subjectively more acceptable. White noise can never be removed since there is never enough unique information.

• When the carrier-to-interference ratio is high, the 'impulse-alone' product diminishes rapidly since there are no envelope variations. The weaker transmission is suppressed as in normal demodulation and all beneficial characteristics of fm are retained, for example, quieting and co-channel suppression.

To summarise

A new circuit concept has been proposed called the amplitude-locked loop which can be used in conjunction with a phase-locked loop to improve the quality of fm demodulation.

By using the fundamental property that fm is transmitted at fixed amplitude, and that a unique relationship exists between the reciprocal of the modulus and the fm phase perturbations, a new signal has been derived called the 'impulse-alone' signal.

By a simple subtraction process this new signal can be used to eliminate spikes generated in fm demodulation. A fundamentally improved method of fm demodulation has been proposed which meets the criteria set out

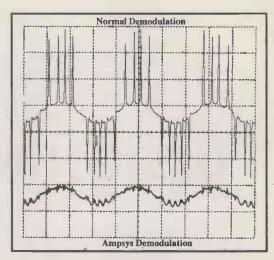


Fig. 10. These spikes could not be removed by any form of baseband filtering. At the interference-to-carrier ratio of unity the spike size is reduced by a factor of 20 fold, 26dB. Normally all intelligibility is lost. With Ampsys, demodulation is 100% intelligibility.

above for fm demodulation in today's overcrowded radio spectrum.

Two demodulators using the ALL have been built and tested and are available for evaluation purposes, from Ampsys, one for am demodulation and the other for fm.

Acknowledgments

I would like to thank Dr T. J. Moir of the Department of Electrical and Electronic Engineering at the University of Paisley for his help in the preparation of this paper and to the Governors of the University of Paisley for their support in the development.

References

1. Corrington M. S., 'FM Distortion Caused by Multipath Transmission' *Proc of the IRE* Dec 1945.

2. Gray G. D., 'The Simulcasting Technique: An Approach to Total-Area Radio Coverage' *IEEE Transactions on Vehicular Technology*, Vol VT-28, No 2, May 1979.

3. French R. C., 'The Effect of Fading and Shadowing on Channel Reuse in Mobile Radio.' *IEEE Transactions on Vehicular Technology* Vol VT-28, No 3, Aug 1979.

 Pettigrew A.M. and Moir T. J., 'Reduction of FM threshold effect by in-band noise cancelling', *Electronics Letters*, 1991, 27 (12) pp 1082-84.
 Moir T. J. and Pettigrew A. M., 'In-band noise

cancelling in FM systems: The white noise case.', *Electronics Letters*, Vol 28, No 9, Apr 1992, pp 814-815.

6. Pettigrew A. M. and Moir T. J., 'Coherent Demodulation DSSC without Pilot Tone Using the Amplitude-Locked Loop.' *Journal Audio Eng Soc* Vol 41 No 12 1993 Dec.

7. Amplitude-Locked Loop Circuits: British Patent Application No. PCT 91/00101, Ampsys Ltd.

8. Moir T. J. 'Simulation of an Amplitude-Locked Loop using MATRIXx', *Electronic Engineering*, July 1995, pp 27-32. Ignoring cost, nearly all power switching applications can benefit from replacing a bipolar output device with a power mosfet. But there is one very common application where this is still not the case. David Sharples explains why.

DESIGNING CRT deflection

The number of power applications that still have a bipolar transistor monopoly reduces by the day. The ingress of new technologies, such as high performance mosfets, igbts and power ICs, brings the humble bipolar transistor ever closer to the end of the road.

But there is one very common application where a bipolar high voltage transistor is the only viable power switch: tv and monitor horizontal deflection. As this situation is likely to continue for some time, while crt remains the dominant display technology, it is worth taking an extended look at this application.

Horizontal deflection circuitry

To understand the operation of the circuit shown in the panel consider the transistor turned on at time t_0 , as shown in the waveforms in Fig. 1. DC voltage across the coil will result in a linear ramp in coil current:

$$\frac{dI_c}{dt} = \frac{V}{L_c}$$

This current, $I_{\rm C}$, flows through the transistor to ground. At time t₁ the transistor is turned off. Turn-off is not instantaneous for a bipolar transistor and the current continues to rise for a couple of microseconds after the forward base current has stopped. This phase of operation is known as the transistor storage time: conduction is maintained by charge 'stored' in the device during the previous on time.

To turn a bipolar transistor off efficiently charge has to be extracted from the base, ie a reverse base current. When the base is depleted of charge to a level that restricts the flow of electrons from emitter to collector, the load will start to see turn-off. In this example, the load is coil L_c .

At the end of storage time, t_2 , the voltage across the device, V_{CE} , starts to rise. This rise in voltage reduces the voltage across L_c which in turn reduces the current ramp. With optimum charge extraction during the storage time the transistor collector current, I_C will fall rapidly to zero in around 300ns.

As current in L_c cannot change so quickly, it is diverted to the flyback capacitor, $C_{\rm fb}$. This current causes the voltage on $C_{\rm fb}$ to rise; L_c and $C_{\rm fb}$ operate as an *LC* circuit: sinusoidal rising voltage, cosinusoidal falling current.

At time t_3 , current will be zero and a peak voltage will be reached. This is the peak V_{CE} on the horizontal deflection transistor.

Peak voltage now drops as the current is reversed and $C_{\rm fb}$

discharges. If diode D_2 was removed the system would become an *LC* resonant circuit. However, the diode has an important role.

At time t_4 , the voltage reaches zero the current is a maximum, a negative going voltage forward biases the diode and the capacitor current is re-routed to the diode. The sinusoidal rising and falling voltage coincides with a polarity change in the coil current, this has then facilitated the flyback function.

With a negative peak current the beam is ready to start a scan at the left hand side of the screen. With a steady forward voltage drop across the diode, $V_{\rm F}$, the voltage across the coil is constant yielding a linear ramp in coil current. As the diode/coil current approaches zero the transistor is turned on again. This early turn-on ensures a smooth zero-crossing as the coil current now becomes transistor current as the beam crosses the centre of the screen. And so the cycle continues.

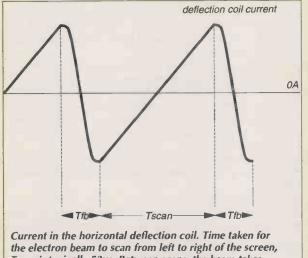
Typical waveforms for the deflection transistor $I_{\rm C}$, $I_{\rm B}$ and $V_{\rm CE}$ are shown in Fig. 2.

Typical device types

Two of the semiconductor devices shown in the circuit in the panel are standard commodity parts and two are unique to this application.

Primary switch transistor Q_1 . In the circuit in the panel this is shown as a mosfet but in most television circuits a cheaper bipolar is used. For a low primary supply voltage an industry standard bipolar *BC337* or *2N7000* mosfet could be used. For high primary supply voltages industry standard types can still be used: *BF422* (bipolar) or *BS108/BSN254* (MOSFETs).

Turn-off diode D_1 . Most small diodes will fulfil the requirements of this application. A well-used type is the Philips *BYD33D*.

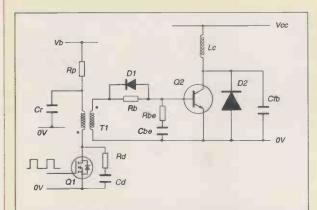

Deflection transistor Q_2 . Most deflection circuits have a peak flyback voltage of 1100-1200V; to allow for fault conditions the standard peak voltage of deflection transistors is 1500V. A small 14in television will only require a peak coil current of 2A. For the large screen, home cinema type tvs – up to 36in – peak coil current can be as much as 7A. Over specifying the current is not efficient in this application: a bigger piece of silicon may not be better than a correctly specified device.

COMPONENTS

Raster scanning basics

In the UK and mainland Europe, conventional tvs have a complete picture change 25 times every second, ie a change every 40ms. Each picture is made up of a series of lines, a 625 line system being the current standard. A change of 625 lines in 40ms implies 64µs per line. From this comes the 16kHz – actually 15.625kHz – horizontal, or line, frequency.

Each line is produced by the horizontal deflection of the picture tube's electron beam as it scans across the screen, left to right. The time the beam takes to scan from left to right is the scan time, t_{scan} . When the beam reaches the right hand



the electron beam to scan from left to right of the screen, T_{scan} , is typically 52 μ s. Between scans, the beam takes 12 μ s to fly back, hence T_{fb} .

side of the screen it has to fly back to the left hand side before the start of the next scan. Time taken for the beam to fly back is the flyback time, t_{fb} . Typically, the 64µs per line is composed of a scan time, t_{scan} , of 52µs and a flyback time, t_{fb} , of 12µs.

Originating at the cathode gun at the back of the picture tube, the electron beam is accelerated to the screen by a high potential anode, typically 25kV. The beam is deflected horizontally during the scan time by a magnetic field produced by a deflection coil. This field is produced by a current ramp through the deflection coil, as shown above.

This current waveform can be produced in a variety of ways but there is one dominant circuit which is used in over 90% of television and monitor designs, this is shown in its simplest form in the diagram below.

Used in over 90% of monitor and television designs, this simplified circuit produces the current waveform required to scan the electron beam from left to right on the screen.

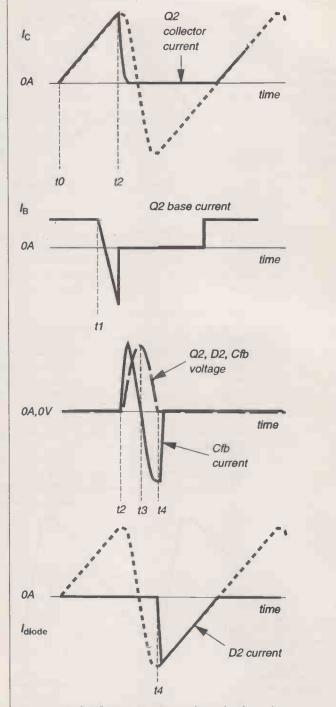
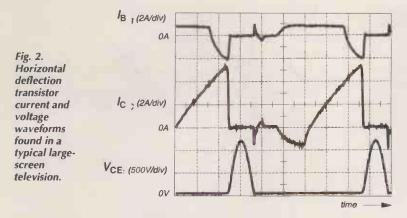



Fig. 1. Typical deflection circuit waveforms for the main circuit elements of the circuit in the panel.

Only a few of the world's major semiconductor suppliers offer a complete range of deflection transistors. Over 95% of the televisions produced will have a deflection transistor from one of these suppliers. Philips types range from the industry standard, and much copied, *BU508* to the new *BU2530AL*.

Damper diode D_2 . As the damper diode is in parallel with the deflection transistor (see the circuit in the panel) it has the same peak voltage requirements. Also the coil current is symmetrical about OA, therefore, the current requirements of the damper diode are the same as the deflection tran-

COMPONENTS

sistor.

Products for this application are offered by most of the major semiconductor rectifier suppliers and some of the deflection transistor suppliers; including Philips Semiconductors. Philips types range from the glass bead *BY228* to the *BY459* in TO220 style packages.

East/west and S correction

To compensate for the curved surface of the picture tube, and obtain 'true' image reproduction, a number of corrections have to be carried out to the deflection waveforms; a linear ramp in coil current does not produce a watchable image. For horizontal deflection the two important correction functions to be aware of are S-correction and eastwest correction

Given a typical display surface and a linear coil current ramp a pattern of equidistant lines would actually show as close packed lines in the centre of the screen and widespaced lines at the sides. The electron beam has to travel further to the edges of the screen than the centre.

To obtain an equidistant display, a ramp that is fast at the deflection coil current

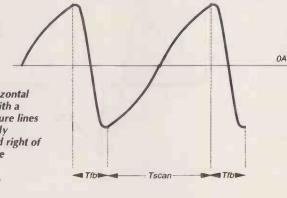


Fig. 3. Were the horizontal deflection coil fed with a linear ramp, the picture lines would be more widely spaced at the left and right of the screen than at the middle. S correction compensates for this.

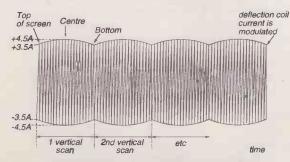


Fig. 4. Because the angle of electron beam deflection is smaller when the top and bottom of the screen are scanned, the current needed to move the beam from extreme left to extreme right is less than that needed to scan at the centre of the screen. As a result, the horizontal scan envelope is modulated as shown – a technique known as east-west correction. centre and slower at the edges is needed. This changes the shape of the coil current from a linear ramp to an S-shaped waveform, Fig. 3, hence the name S-correction.

S-correction is usually achieved by adding a capacitor in series with the deflection coil. In addition, compensation has to be made for the resistive component of the coil impedance. Coil resistance tends to shift the distortion to the right, and to compensate this a series negative resistance is required. This effect is achieved by a saturable inductance in series with the deflection coil.

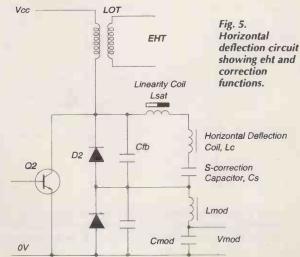
The need for east-west correction arises from the fact that given the curved surface of the crt, the electron beam has to travel further per scan at the centre of the screen than at the top and bottom. And the amount of deflection is proportional to current. Adding this correction feature has the effect of applying an envelope to the deflection current with peaks for the centre.

Although the complete picture changes every 40ms, this is done by changing alternate lines so a frame changes every 20ms. Two frame changes produce a complete picture change. The frame frequency, or vertical deflection frequency, is then 50Hz. This 50Hz waveform is superimposed onto the deflection current to produce the east-west correction.

Modulated current is shown in Fig. 4. This is achieved by applying a modulated voltage across the deflection coil.

Generating eht

As well as being the power switch in the horizontal deflection circuit the transistor performs a secondary function – generating the extra-high tension, or eht. The eht circuit is a basic flyback converter power supply with a special high voltage transformer producing the 25kV required at the secondary windings. This transformer is commonly called the line output transformer, or LOT.


The horizontal deflection transistor provides the switching function to the primary of the LOT. For this reason the horizontal deflection transistor is also referred to as the line output transistor. Fundamentally, the eht function adds an offset of up to 1A to the total deflection transistor current, $I_{\rm C}$.

Coil current now becomes symmetrical about the hightension offset, therefore, the damper diode current reduces by this amount.

Adding the eht and correction functions to the basic circuit produces a modified circuit; a version of which is shown in Fig. 5.

IDTV, HDTV and monitors

So far, the discussion has been limited to European stan-

dard television but, fundamentally, all of the above holds also for US, Far East TV, idtv, hdtv and monitors.

The 50Hz frame frequency of European tv follows the 50Hz mains frequency. For 60Hz mains countries, including the US and Far East, 60Hz frame frequency is used.

For a 625 line, 50Hz system the line frequency is 15.625kHz, often referred to as 16kHz. For 60Hz systems fewer lines are employed – frequently 525 lines – yielding a line frequency of 15.75kHz. This difference in line frequency is not significant to the deflection transistor.

New idtv systems offer 'flicker free' viewing with a 100Hz frame frequency, which is less detectable to the eye than 50Hz. In turn the line frequency doubles to 31.25kHz. This change is very significant to the deflection transistor.

Current proposals for hdtv systems indicate a 64kHz line frequency may be standard. Again this will have a further significant bearing on the deflection transistor selection. However, this application is unlikely to produce any new requirements for deflection transistors as a more taxing application already exists – pc and workstation monitors.

Monitors are now being produced that offer modes of operation that require line frequencies above 100kHz. Such sets are still required to operate at the common low end as well; VGA is 31.5kHz. All these applications are being met by bipolar deflection transistors in circuits very similar to that shown in the panel.

Ten years ago, not many pundits would have predicted the use of bipolar power transistors in high volume, 100kHz plus switching applications into the 21st century. But this is almost certainly the case with horizontal deflection applications.

Specifying the deflection transistor

In the simplest terms, the device should provide the functions outlined above with minimum dissipation. The device should also be able to survive any fault condition that may occur.

In a cost driven business like domestic television and pc monitors, the device/circuit costs are also important. The following notes equate these requirements to device characteristics.

On-state. When the device is on, ie passing positive collector current, $I_{\rm C}$, the collector-emitter voltage drop, $V_{\rm CE}$, must be as small as possible. Any voltage drop will modulate the voltage across the deflection coil and either cause

Optimising base current

These steps outline how to match the deflection transistor's $I_{\rm B}$ waveform to loading, $I_{\rm C}$.

• Measurement equipment: oscilloscope, 2 calibrated clamp-on current probes and 1 calibrated and compensated 100:1 voltage probe.

• Set I_{B} level (just before I_{B} turns off) to be 1/5 of the nominal peak I_{C} level.

• Set peak -/B level to 1/2 of the nominal peak /C level.

• Observe $I_{\rm C}$ and $I_{\rm B}$ waveforms, see Fig. 6. The $I_{\rm B}$ waveform should be essentially flat during the on-state with a linear slope to $-I_{\rm Boff}$. • Observe $V_{\rm CE}$ and $I_{\rm C}$ waveforms during turn-off to when $I_{\rm C}$ reaches zero. Waveforms for an optimised base drive are shown in Fig. 7.

• Observe the V_{BE} waveform; this should have no positive ring during flyback with an off-state level between -1V and -5V.

Once the principal operation has been established, the base drive should be optimised.

• Obtain high and low h_{FE} samples from the supplier. These will represent the production spread for a particular device.

• Additional equipment for thermal tests: calibrated heatsink $(R_{th} \ge 15 \text{K/W} \text{ for 16 kHz tv})$, heatsink temperature measure (Eg thinfilm thermocouple between device and heatsink or infra-red detector), ambient temperature measure.

• Determine application minimum and maximum load conditions. In a tv these conditions could be forced: min. brightness and contrast, min. picture width for minimum load; maximum brightness and contrast, maximum picture width for maximum load.

• For high and low *h*_{FE} devices record the steady-state heatsink and ambient temperatures for both minimum and maximum load conditions. Allow at least 15 minutes for the system to stabilise before taking temperature measurements.

where,

Power in the device can be calculated quite easily:

$$Power = \frac{Ths - Tamb}{Rth \ hs - amb}$$

R_{th hs-amb}≥15K/W T_{amb}≈25°C 85°C≥T_{hs}≥45°C (typically)

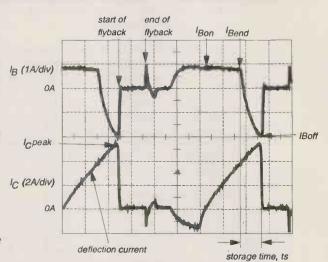


Fig. 6. Characteristics of the horizontal deflection transistor's collector and base-current waveforms after base-current optimisation.

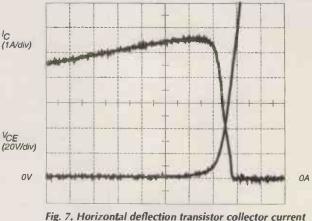


Fig. 7. Horizontal deflection transistor collector current versus collector-emitter voltage during turn off.

Fault finding in the deflection drive

Consider a 16kHz tv found to have a failed deflection transistor. Replacing it with an identical type restores full set functionality. If the picture shows some visible distortion then the chances are that there is a fault in the 'load' side of the deflection transistor, ie something causing a change to the $I_{\rm C}$.

If, however, everything appears ok there may still be a problem with the drive that does not immediately result in device failure. For 16kHz television, a typical deflection transistor should dissipate less than 2W which means that the device can run in free-air with a 25°C ambient. This can be tried in the workshop. If free-air operation leads to device failure or a visible distortion the drive circuit needs to be re-optimised.

This technique will not, of course, resolve the failure if it was caused by a single overstress event. These failure modes could be the result of lightning induced picture tube flash, or interference from some other source of electromagnetic radiation. This type of failure mode cannot be diagnosed easily.

a visible distortion on the screen or require some additional correction.

During the on-state the device should be operated in the 'saturation' region of the transistor operating area.

Off-state. The device must be able to withstand any voltage applied across the collector-emitter terminals when there is no positive drive.

Switching. The transition between on-state and off-state must be achieved quickly and without unnecessary dissipation. This is the most critical feature of operation with regard to the device requirements. Unfortunately, the switching characteristics of power devices are very circuit dependent. An appreciation of the interacting variables is essential if an optimised design is to be produced. The 'Base drive optimisation' section offers an empirical path through the maze of information surrounding bipolar horizontal deflection switching.

Using device data

Semiconductor companies usually adopt formats for data which have evolved from in-house rules laid down many years ago. It can be difficult to relate much of the published data to the requirements of the application. But, there are vital pieces of information that can be extracted.

The first parameter to check is peak voltage – the largest voltage value in data. This can be expressed as V_{CES} , V_{CEX} ,

Glossary of terms

Deflection transistor parameters

1 _C	collector current
VCE	collector-emitter voltage
/ _B	base current
Bend	base current, end of on period
-/Boff	peak reverse base current
V_{BE}	base-emitter voltage
hFE	current gain: Ic/IB

Other abbreviations

EHT	extra high tension
HVT	high voltage transistor
LOT	line output transformer
R _{th}	thermal resistance

 V_{CEV} , V_{CER} or V_{CBO} . For a solidstate physicist there are interesting differences between these parameters, but for a circuit designer all these can be viewed as the same. Most televisions of 21in and above, have a peak flyback voltage in normal running of 1100-1300V, in which case a 1500V peak voltage device is required.

There are no significant differences in the peak voltage characteristics of devices from different suppliers. This is the simplest data to comprehend.

A lower voltage value, V_{CEO} , is also often given in data. The subscript 'O' means the base is open circuit. Because the base is never open circuit in a deflection circuit, V_{CEO} is not of prime importance. The second parameter to check is recommended operating current, which may not be too easy to find. Some suppliers give an I_{Csat} value – ie the I_C in saturation – in the summary at the top of the data sheet. For other suppliers the value may have to be extracted from another characteristic.

All suppliers quote either V_{CEsat} h_{FEsat} or some switching values for a given I_{C} : this can be taken as the I_{Csat} value. The I_{Csat} value is determined by the chip size and hence has a large influence on the device cost.

There are two possible pitfalls when comparing I_{Csat} data: the operating frequency and 'specmanship'. A device specified at 4.5A for 64kHz operation in a pc monitor will have a bigger chip than a device specified at 4.5A for 16kHz operation in a tv. Also, some devices are over-specified on I_{Csat} . If some devices were operated at the I_{Csat} recommended in data they would have to be bolted to a very large, water-cooled heatsink. This is not practical for tv applications.

The only other relevant specifications are the maximum junction temperature, T_{jmax} , which is usually 150°C for bipolar deflection transistors, and the thermal resistance values. These specifications are required for base drive optimisation. Initially, at least, all other data is irrelevant.

Base drive design

Base drive design can only be optimised empirically. Advances in circuit simulation models fall short in this application: the available device (HVT and diode) and component (LOT) models are insufficient. This situation is unlikely to improve much in the next five years. Industry standard bipolar HVT models are not possible as the different construction of a 1500V, 5A, 64kHz device from supplier A will require a different drive from a 1500V, 5A, 64kHz device from supplier B.

The bipolar HVT is a current driven device so base current is the important waveform to analyse. A successful design will have matched this $I_{\rm B}$ waveform to the load ($I_{\rm C}$ waveform). The method, with a few 'rules-of-thumb', is outlined in the panel 'Optimising base current'.

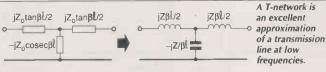
For small screen tv, with an optimised drive, the power should be 2W, or less. For the largest tvs the power could be as high as 5W in the extreme load case.

From the power, the device junction temperature, T_j , can be calculated. Thermal resistance between the junction and the heatsink, $R_{\text{th }j-\text{hs}}$, will be between 2K/W for a large, non-isolated device to 5K/W for a small, isolated device. So,

$T_j = T_{hs} + (Power \times R_{thj} - hs)$

A good rule-of-thumb is that the T_j is 10°C higher than the heatsink temperature.

The standard $T_{j(max)}$ for bipolar deflection transistors is 150°C, however, it is not good practice to use this as the limit in the above experiment. The thermal analysis has to be good for a complete production program so it is usual to inset the desired $T_{j(max)}$ to a lower value, typically 110°C. This should result in the elimination of any thermal failures during the production run of a tv model and enhanced reliability for the horizontal deflection stage.


Using a small heatsink compensates for not carrying the tests out at an elevated ambient. In the laboratory, the tv may have the back off and the main pcb may be exposed to freely circulating air. In domestic use the set will be placed usually with its back to the wall in the corner of a room. Heat flow in these two situations is significantly different, so some allowance must be made for this in the laboratory measurements.

Cable shunted

Although Ben Duncan's analysis of loudspeaker cables is highly interesting, it is evident that a shunt capacitance of 228pF (impedance greater than $10k\Omega$) cannot have any effect on a low impedance load. Indeed, if the amplifier were current driving, the cable modelled would have no effect at all.

A T-network is an excellent approximation of a transmission line at low frequencies (see figure) by linear approximation of the trigonometric functions. The total inductance and capacitance per metre in this case are the same as the intrinsic inductance and capacitance per metre of the transmission line.

The inductance parameter seems to be measured at cut-off to a 5.6 Ω load, i.e. at about 1MHz. The corresponding capacitance at that frequency must be about 60pF (or else the dielectric constant is as high as 10.2).

If, due to increasing skin depth, the characteristic impedance becomes much smaller at lower frequencies, the inductance must correspondingly decrease so as to

Is oxygen to blame?

I read with great interest Anthony Hopwood's account of Prof. Henshaw's ideas on the causes of some cancers and leukemias in humans, in the April issue. I am sure some of these diseases can result from the causes mentioned, but only very few due to direct damage by alpha particles on human tissue.

I have suffered both these dreadful diseases myself, and have worked for 26 years on the first cyclotron in the world to be built in a hospital for medical research. There, alpha particles and deuterons were accelerated up to 15MeV. Even though several of my colleagues died of cancer, I do not believe the alphas caused direct damage to body tissue.

I think the causes of large number of victims of radiation combined with high voltages is best shown by going back to my first employers in 1932. They were two brothers who in the twenties manufactured cold cathode, gas focussed X-ray tubes. They had diversified into making architectural lighting and neon signs. My job was to gas fill these signs.

The brothers, as did many early X-ray pioneers, both died of cancer. Others from Madam Curie onwards died of leukemia. All these people had one thing in common with people living under power lines and getting either cancer or leukemia - they all breathed air that had simultaneously been exposed to a high voltage and some sort of irradiation.

Thus the air all these people were breathing was likely to be ionised, and since oxygen is taken up some thirty times more than any other elemental gas, it seems to me that the oxygen that was breathed had a charge of +15eV instead of the normal oxygen charge of -2eV.

Now because radon has such a large mass it cannot be freely accelerated at normal temperature and pressure. This is because of its short mean free path, and since it is inert it cannot be attracted chemically.

However the tiny electron which is so vital in electron transport system in metabolism will be accelerated and increased greatly in number by the Townsend avalanche effect. In all aerobic organisms those that require O_2 – electrons find their way back to the ultimate electron acceptor, oxygen.

While oxygen may be the breath of life, could ionised oxygen be the death of you?

Leslie C. Baker Dorset

make LC=1/c² constant. Am I right? Otherwise there would be dispersion, i.e. lower-frequency

waves propagating slower, but dispersion has to do with the dielectric which is relatively constant at low frequency. I couldn't find any loudspeaker cables hanging around, so I refrained from making the measurements myself. Michael Williams Jerusalem

Delayed reflections

I was intrigued to read Mr Russell's article on Transmission lines in Electronics World March issue. I designed and manufactured the MDN2484 8µS/8K delay line that you describe, in about 1965. Lexor Electronics of Coventry supplied these things mainly to the English Electric Company, who were Anglicising an RCA Computer and acquiring an interest in the LEO computer set up by J. Lyons. We designed a whole range of delay lines for them. Later the company became English Electric.

The article analyses the basic parameters correctly. However Mr Russel makes no mention of the factor which could possibly foul up the results if not taken into account

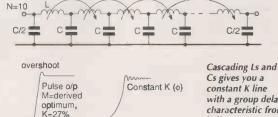
Simply stringing together a cascade of Ls & Cs gives you a 'Constant K' line. This has a group delay characteristic from hell. Delays at low frequencies will be much less than those at high frequencies. Therefore when you double or otherwise multiply frequencies, the apparent wavelengths and thus nodal

undershoot

relationships will not be as expected. Lexor delay lines were mainly

designed for time-domain - pulse operation. They were used in computers for equalising the delays through various diverging and converging paths in the computer, and a major third parameter following delay and impedance is overshoot and its opposite, undershoot. These are evinced in response to a pulse input.

Briefly, when undershoot and overshoot are equal, then all frequencies within the pass-band of the delay line (it can be considered as a type of low-pass filter with a Gaussian response) are delayed by the same amount.


In order to achieve this within the design, you have to provide for magnetic coupling between adjacent sections of the line. Moreover the sign of the coupling should be positive between adjacent section and negative between alternate sections in order to avoid reflections (poor swr) at the highest frequencies.

In the 2484 series, this could not be contrived due to physical constraints, and all couplings were positive. Since the units were employed solely in the time-domain however this was not a problem.

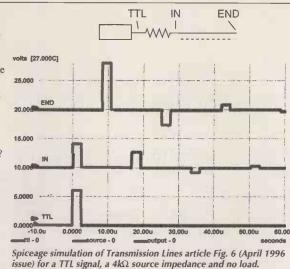
The optimum coupling in a classic m'-derived design requires a 'K' of approximately 27%. This is managed in the 2484 series by winding the coils on ferrite 'cotton-reel' bobbins, and arranging them axially with a closely controlled spacing. Too close results in group delay negative with frequency, and vice-versa.

Values up to $500ns/560\Omega$ are available in 14 pin, 0.3 in DIL form these days. However, we still supply them all to order. J.C. Pledger

Active Electronics Labs (tel. 01926 484050) Warwickshire

with a group delay characteristic from hell.

477


LETTERS

Ouch!

I would like to make it clear that Bill Russell's April 1996 article on transmission lines has used the ttl devices output for the top trace in Fig. 6. The actual input of the transmission line shows a pulse after 16.8µs. The amplitude of this pulse is 2.6V since a third of the returning 4V initial pulse is inverted and reflected back along the line.

The other nit I would like to pick at is; has Douglas Self actually measured his distortion levels with - to use an objective term - music? Music frequently contains peaks that may exceed five times the rms level. Many low distortion amplifiers use high voltage power supplies to supply these short duration peaks.

For uncompromising audio purists I suggest they bridge two of Self's amplifiers together and suffer a 3dB loss in the wallet! Andrew Pate Surrey

No contest

In response to the 'challenge' in Letters in the May issue, Allen Wright appears to have misunderstood the nature of scientific enquiry. In the famous example, the hypothesis 'All swans are white' is disposed of forever by seeing one black swan. It is not necessary to look at more black swans in different ways to confirm the finding.

Faced with the rather less plausible hypothesis 'All copper conductors are composed of 10mV diodes' it is only necessary to show once that this is not true. I think that my experiment reported in the March '96 issue of EW is proof positive that magical 10mV diodes do not and cannot exist in solid copper. Further evidence is given by my JAES paper 'Granularity Distortion' which probed the matter down to the -150dBu level¹.

As far as I can gather, Mr. Wright's own hypothesis seems to be 'Thinner speaker cables sound different, and I think they sound better, so this must be because there are fewer magic diodes, as there is less total weight of copper.' Mr. Wright assumes - apparently for no other reason than because he wants to - that any change in subjective quality must be due to magic diodes, and that the highly unscientific procedure he outlines will 'prove' it. It is, I hope, unnecessary to point out the gaping holes in the logic here.

If an audible thin-cable effect exists, then I suggest the reason is as follows: single-strand cable will have a much higher resistance than normal speaker cables. The extra resistance means that the speaker impedance curve will be partially superimposed on the basic speaker/room frequency response. These extra response irregularities which will not have been anticipated by the speaker designer, who will have assumed that his brain-children are to be driven by a low-Z source may or may not make the overall

sound better according to unguessable subjective criteria. It may well be that a listener could convince himself that the result is greater clarity and lesser distortion; but he has no right to then state that the difference is due to mysterious effects when a very obvious explanation is right under his nose. Bring forth Occam's Razor.

Mr. Wright makes no mention of double-blind A/B testing in connection with his assertions, so I assume they were conceived under informal listening conditions. I

therefore decline to accept his statements about enhanced clarity and reduced distortion.

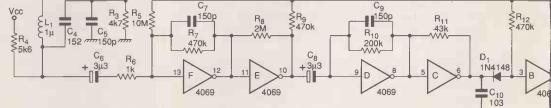
While I can only judge by the title, I can well believe that any book entitled 'SuperCable Cookbook' would upset a lot of people, especially those who feel that technical books should preferably contain facts.

1. 'Ultra-low noise amplifiers and granularity distortion' JAES Nov 1987, pp 907-915. **Douglas Self** Idmiston, Herts

Caller who?

I would like to raise a few points related to Segaran's Caller ID article in the April issue. Enhancement of the service to deliver the caller's name is on trial, I believe with 400 users in Edinburgh, and with good results. Users can specify information sent in the name field; apparently most prefer to send first names only.

In my experience, the 'number unavailable' message relates not to phones on older exchanges but to those on catv networks, confirmed by asking the caller. This seems to imply that while catv networks support their own caller ID system they are incapable of transmitting Caller ID to BT's network. This is pathetic.


Mobile phones usually register as unavailable - but not always. Calls from ex-directory lines are not delivered as 'number withheld' by default; this must be specifically requested. Most of my 'number withheld' calls are from businesses whose numbers are advertised in the national press; this baffles and infuriates me.

Nor is Caller ID a particularly useful complement to an answering machine. I originally subscribed to the service to screen out bogus calls. I now find I cannot do this for fear of missing out on employment

One area where Caller ID would be useful is in deciding whether or not to answer a second call being

If you have any electronics-related questions that you have been unable to find an answer to, why not see if other readers can answer them? Simply write to me, the editor, at the address on page 267, fax 0181 652 8956, or e-mail martin.eccles@rbp.co.uk.

I would be grateful for your assistance. In the diagrams is a small transmitter and receiver which include encoding and decoding facilities.

Receiver: When the receiver is switched on, once a signal is received, the signal is processed by the components to the left of the solid black vertical line. The output of this processing is the same code sent by the transmitter which enters pin 14 of IC3 This chip has also been set to the same code as the transmitter. When the correct matching code is received pin 17 goes high to turn on the chime

section of the circuit. The section to the right of the solid line is fully understood.

Question 4: How is the signal processed by the receiver in order for the 4069 hex-inverter to work since the frequency of around 340MHz is too high a frequency for the chip to operate? Question 5: Could it be that the inverters are working as filters? If so how?

Transmitter: The main integrated circuit provides a number of combinations which can be sent by connecting pins 1 to 9 to ground. When power is

offered by Call Waiting. However, the number of such a call is not transmitted. From the data in Mr Segaran's article it appears that such an enhancement to the service is probably not possible; in any case BT has informed me that they do not intend to try.

This is a great shame. What is the 'metering and message waiting status' information that BT would like to transmit without alerting the phone user? I have asked BT to explain the 'message waiting' flag on the display of my *CD50* but they cannot be bothered to answer.

I note that the software provided with the *CID-PC1* is for Windows only. For the benefit of pc owners who, like me, have thrown away their copy of Windows, I would like to have DOS tsr software.

I apologise if this letter sounds negative. I have great enthusiasm for the concept of Caller ID and I am saddened by the reality. **Chris Bulman** Bedford

Recalling the facts

The letter from Chris Bulman certainly had a negative spin on Caller ID as a useful service. Although some of the points he makes are relevant, others are factually incorrect.

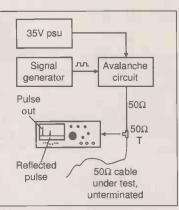
The 'number unavailable' message is mostly from older

form is the signal transmitted?

exchanges, although calls from subscribers on the catv network will also be delivered as 'unavailable'. However, when the interface between BT and the catv network is upgraded, this information should be available. Regarding mobile telephones, subscribers to the 'Orange' network both receive and transmit caller ID information. Certainly, if other network operators want to offer a competitive service, they too will have to offer this.

Chris is correct in that for 'number withheld' to be set permanently on a line or group of lines, a special request has to be made to BT. As for companies requesting suppression of their number, this is mainly for administrative convenience Companies that operate DDI (direct dial in) exchanges, have individual numbers for each staff member, but the number delivered is that of the main 'switchboard'. If calls are returned to this number, and not to the individual, then the switchboard will be swamped. I assume that other companies withhold their numbers for other reasons. In practice, this problem is not as extensive as Chris suggests. In our experience, about 70% of all calls to our office have number attached, the remaining being split into number withheld, number unavailable. international and payphone calls. In the area of Call Waiting, BT is

Coaxial cable tester

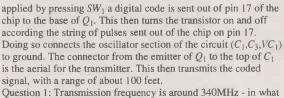

Design brief in the March 1996 issue discussed working with avalanche transistors and Nick Wheeler's article covered coaxial cable testing. I have combined elements of the two, constructing within a few minutes this avalanche pulse generator for testing and experimenting with coaxial cables. **PW Fry G4SBF** Southampton

well advanced in trials of such a system and should be introducing it within a matter of months. Its protocol has been defined for some time, and is already operational in some states in the US. Supplier's Information Note 242, as referred to in my article, gives technical details.

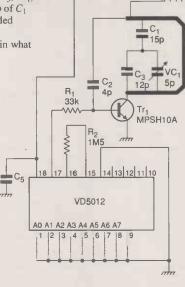
Introduction of name on a national basis is much more of a problem. Maintenance of a national database of names – 20 million plus – and the 'instantaneous' look-up of this for every call, presents a big technical and administrative problem that BT seems to be shying away from.

By the way, existing customers can obtain details on the protocol for exchanging Caller-ID data via the serial port. Seggy Segaran

Seggy Segara York

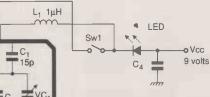


Do you have a vtr?


David Markie has designed a comprehensive remote control interface with pc-based control software for vtrs. It uses the industry standard, or 'Sony', protocol. Write to the editorial offices (Quadrant House address) for more details.

Non-slewing audio power In this article, from the March issue, the CSA amplifier of Fig. 1 there is a 200Ω resistor between the 50Ω resistor pair junctions. There should be no connection

between the junctions. Also, in Fig. 4, the resistor between the diode-junction pairs is $3.3k\Omega$ and the emitter resistors for $Tr_{18, 21}$ are 62Ω . Apologies for these.



C₁₁ 103 Tr₂ (C2926 Speaker A562 R₁₃ ≤ 43k ≤ R₁₄ 560k Ş IC₃ VD5013 IC₂ VD5011 A0 A1 A2 A3 A4 A5 A6 A7 14 5 6 2 3 18 Out ş R₁₆ 470k ≩R₁₇ ₽ С₁₂ 3µ3 470k 3µ3 m

Question 2: Can the value of transmitter frequency be derived from the component values and if so how? Question 3: Is the above statement correct?

The circuit is sold by Rapid Electronics in kit form, but the company cannot help. Grahame Collins Reading College

Schumann Resonance

I wonder if any of your readers could help me with information on Schumann Resonances – particularly in relation to the instrumentation required to detect it – including antenna. The topic is mentioned in EW, Research Notes, May 1993.

Ted Crowley

Invotron

Co. Wicklow Ireland

Would Mr Callegari, who wanted to contact people measuring Schumann Resonances, please let us have his address? – Ed

Headphone bass

Why do small 'personal' earphones give such a good bass response? I do not think they are infinite baffle designs, so why is the low frequency cut-off not higher than it apparently seems to be? **David Gibson** Leeds

Massive purchases of standard 5¼° and 3½° drives enables us to present prime product at industry beating low prices! All units (unless stated) are *BRAND NEW* or removed from often brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of standard size. All are IBM-PC compatible (if 3½° supported on your PC).

31/2" Panasonic JU363/4 720K or equivalent RFE	£24.95(B)
31/2" Mitsubishi MF355C-L. 1.4 Meg. Laptops only	£25.95(B)
31/2" Mitsubishi MF355C-D. 1.4 Meg. Non-laptop	£18.95(B)
5¼" Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE	£18.95(B)
5¼" Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFI	E £22.95(B)
5%" BRAND NEW Mitsubishi MF501B 360K	£22.95(B)
Table top case with integral PSU for HH 5%" Flopp or H	1D £29.95(B)
8" Shugart 800/801 8" SS refurbished & tested	£195.00(E)
8" Shugart 810 8" SS HH Brand New	£195.00(E)
8" Shugart 851 8" double sided refurbished & tested	£250.00(E)
Mitsubishi M2894-63 8" double sided NEW	£275.00(E)
Mitsubishi M2896-63-02U 8" DS slimline NEW	£285.00(E)
Dual 8" cased drives with integral power supply 2 Mb	£499.00(E)

HARD DISK DRIVES

End of line purchase scoop! Brand new NEC D2246 8" 85 Mbyte drive with industry standard SMD interface. Ultra hi speed data transfer and access times, replaces Fujitsu equivalent model. Complete with full manual. Only £299.00 or 2 for £525.00 (E)

3½" FUJI FK-309-26 20mb MFM I/F RFE	£59.95
31/2" CONNER CP3024 20 mb IDE I/F (or equiv)RFE	£59.95
31/2" CONNER CP3044 40mb IDE I/F (or equiv.)RFE	£69.00
31/2" RODIME RO3057S 45mb SCSI I/F (Mac & Acorn)	£99.00
31/2" WESTERN DIGITAL 850mb IDE I/F Brand New	£185.00
5¼" MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE	£49.95
5¼" SEAGATE ST-238R 30 mb RLL I/F Refurb	£69.95
5¼" CDC 94205-51 40mb HH MFM I/F RFE tested	£69.95
8" FUJITSU M2322K 160Mb SMD I/F RFE tested	£195.00
Hard disc controllers for MFM , IDE, SCSI, RLL etc. fro	m £16.95

THE AMAZING TELEBOX

The TELEBOX is an attractive fully cased mains powered unit, con-taining all electronics ready to plug into a host of video monitors made by makers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most televi-sion receivers' (TELEBOX MB). Push button controls on the front panel allow reception of slufty tuneable off air UHF colocu relevision channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video output is located on the rear panel for direct connection to most makes of monitor or desktop computer video systems. For complete compatibility - even for monitors with-out sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. TELEBOX ST for composite video input type monitors TELEBOX ST for composite video input type monitors TELEBOX ST for composite video input type monitors to solve the standard. TELEBOX ST for composite video input type monitors to a cable / hyperband treception Telebox MB should be connected to a cable type service. Shipping code on all Teleboxer's is (B) DC POWER SUPPLIERS The TELEBOX is an attractive fully cased mains powered unit, con-

DC POWER SUPPLIES

Virtually every type of power supply you can imagine.Over 10,000 Power Supplies Ex Stock Call for info / list.

....

ESTABLISHED

25 YEARS

PHLIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with <u>both</u> RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers, Ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Good used condition - fully tested - quaranteed Optice Construction used condition - fully tested - guaranteed Dimensions: W14" x H12¾" x 15½" D. Only £95 (E)

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen bums). In attrac-tive square black plastic case measuring W10" x H10" x 13%" D. 240 V AC mains powered. Only £79.00 (D) Only £79.00 (D)

KME 10" 15M10009 high definition colour monitors with 0.28" dot Pitch. Superb clarifty and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13%* x 12* x 11*. Good used condition. Only £125 (E)

Only £125 (E)

20" 22" and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & *optional* sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee.

20"....£135 22"....£155 26"....£185 (F)

SPECIAL INTEREST ITEMS MITS. A FA3445ETKL 14" Industrial spec SVGA monitors 2kW to 400 kW - 400 Hz 3 phase power sources - ex stock Broadcast Electronics inc FX30 FM exciter 80-108 MHz Staneico STA15 15kW RF Induction heater system IBM 8230 Type 1, Token ring base unit driver IBM 53F5501 Token Ring ICS 20 port lobe modules IBM MAU Token ring distribution panel 8228-23-5050N AIM 501 Low distortion Oscillator 9Hz to 330Khz, IEEE Trend DSA 274 Data Analyser with G703(2M) 64 i/o HP APOLI O BX700 exstem units £245 £POA **EPOA** £950 £750 £95 Aim 501 Low distoriou Oscillator PHz to 330Knz, IEEE Trend DSA 274 Data Analyser with G703(2M) 64 i/o HP APOLLO RX700 system units HP APOLLO RX700 system units HP APOLLO RX700 system units HP6264 Rack mount variable O-20V @ 20A metered PSU HP54121A DC to 22 GHz four channel test set HP7580A A1 8 pen HPGL high speed drum plotter HP5406 H310 Programmable 2D 22 GHz sweep generator G550 GG-NG Brookdeal 95035C Precision lock in amp Computer 1650 SM Stabilised IRI lasér calibration source Ling Dynamics 2kW programmable vibration test system Computer 16mm CCTV auto kin senses C'mount - NEW Keithley S90 CV capacitor / voltage analyser Racal ICR40 dual 40 channel voice recorder system Roken 80-250 240V single phase flow solder machine CT Ltd 150 SM Stabilised IRI lasér calibration source Ling Dynamics 2kW programmable vibration test system Computer 16mm CCTV auto kin senses C'mount - NEW Keithley S90 CV capacitor / voltage analyser Racal ICR40 dual 40 channel voice recorder system INTEL SBC 486/1335E Multibus 486 system. BMb Ram Zta 3220-05 A0 4 pen HPGL fast drum plotters Nikon HFX-11 (Ephiphot) exposure control unit Motorola VME Bus Bards & Components List, SAE / CALL EVOA Trio 0-18 vdc linear, metered 30 amp bench PSU. New Fulltsu M3041B 600 LPM band printer S1950 Predit Linger 2998 Infared spectrophotometer PCA Prod 168AH 1KAV UPS system with network interface PerAin Elmer 2998 Infared spectrophotometer VG Electronics 1035 TELETEXT Decoding Margim Meter Andrews LARGE 3.1 m Satellite Dish + mount (For Voyager) Thurlby LA 1608 logic analyser Test Lab - 2 mtr square quietised acoustic test cabinets Kenwood 9601 PAL Vectorscope - NEW Please call for further details on the above items **V available e - semd lacrae**

The utimate in Touch Screen Technology' made by the experts - *MicroTouch* - but sold at a price below cost II System consists of a flat translucent glass laminated panel measuring 29.5 x 23.5 cm connected to an electronic controller PCB. The controller produces a standard serial R532 or TL output which continuously gives simple serial data containing positional X & Y co-ordinates as to where a finger Is touching the panel - as the finger moves, the data instantly changes. The X & Y information Is given at an incredible matrix resolution of 1024 x 1024 positions over the entire screen size II A host of available translation software enables direct con-nection to a PC for a myriad of applications including: control pan-els, pointing devices, PCS system, controllers for the disabled or computer un-trained etc etc. Imagine using your finger with 'Windows', instead of a mouse II (a driver is indeed available I) The applications for this amazing product are only limited by your Imagination!! Complete system including Controller, Power supply and bata supplied at an incredible price of only. Eul MICROTOUCH software support pack and manuels for IBM compatible PC's 129.55 RFE - Tested

Sold at LESS than a third of makers price II

A superb buy at only £195.00 (G)

Over 1000 racks - 19" 22" & 24" wide 3 to 44 U high. Available from stock !!

Call with your requirements.

TOUCH SCREEN SYSTEM

LOW COST RAM & CPU'S

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor and above) memory. Full data and driver disks supplied. RFE. Fully tested and guaranteed. Windows compatible. E59.95(A1) Half length 8 bit memory upgrade cards for PC AT XT expands memory either 256k or 512k in 64k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order as: XT RAM UG. 256k. £34.95 or 512k £39.95 (A1)

 Order as:
 X H AM UG. 256K, 534,95 or 51x15

 SIMM SPECIALS
 SIMM SPECIALS

 1 MB x 9 SIMM 9 chip 120ns
 Only

 1 MB x 9 SIMM 9 chip 80 ns £23.50
 or 70ns

 1 MB x 9 SIMM 9 chip 80 ns £22.50
 or 70ns

 4 MB 70 ns 72 pin SIMM - with parity Only

 Image
 Similar
 SPECIALS
 Only
 £19.50
 (A1)

 1 MB x 9 SIMM 3 chip 80 ns
 £23.50
 or 70ns
 £24.95
 (A1)

 1 MB x 9 SIMM 9 chip 80 ns
 £22.50
 or 70ns
 £24.00
 (A1)

 1 MB x 9 SIMM 9 chip 80 ns
 £22.50
 or 70ns
 £24.00
 (A1)

 4 MB 70 ns
 72 pin SIMM - with parity Only
 £55.00
 (A1)

 8 MB 70 ns
 72 pin SIMM - no parity
 £159.00
 (A1)

 INTEL 486-DX33 CPU £55.00
 INTEL 486-DX66 CPU £69.00
 (A1)

FANS & BLOWERS

 EPSON D0412
 40x40x20 mm 12v DC
 £7.95 10 / £65

 PAPST TYPE 612 60x60x25 mm 12v DC
 £8.95 10 / £75

 MITSUBISHI MMF-06D12DL 60x60x25 mm 12v DC
 £4.95 10 / £42

 MITSUBISHI MMF-06D12DL 92x80x25 mm 12v DC
 £5.25 10 / £10

 PANCAKE 12-3.5 92x92x18 mm 12v DC
 £5.95 10 / £53

 PANCAKE 12-3.5 92x92x18 mm 12v DC
 £7.95 10 / £69

 EX-EQUIP AC tans. ALL TESTED 120 x 120 x 38 mm specify 110 or 240 v £5.95
 10 HOF 826 1900 rack mm 3U x 19' Blower 110/240 v KEY 9.95

 Shipping on all tans (Å). Blowers (B). 50,000 Fans Ex Stock CALL
 50.000 Fans Ex Stock CALL

UIŬI

6/

FAX 0181 679 1927

414

Open Mon-Fri 9.00-5:30 Dept WW. 32 Biggin Way Upper Norwood LONDON SE19 3XF

Open Mon - Sat 9:00 - 5:30 215 Whitehorse Lane South Norwood On 68A Bus Route N. Thornton Heath & Selhurst Park SR Rail Stations

All prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools, Universities and Local Authorities - minimum account order £50. Cheques over £100 are subject to 10 working days clearance, Carriage charges (A)=£3.00, (A1)=£4.00, (B)=£5.50, (C)=£8.50, (D)=£12.00, (E)=£15.00, (F)=£18.00, (G)=CALL Allow approx 6 days for shipping - faster CALL. Scotland surcharge CALL All goods supplied to our Standard Conditions of Sale and unless stated guaranteed for 90 days. All guarantees on a return to base basis. All rights reserved to change prices / specifications without prior notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks etc acknowledged. © Display Electronics 1996. E & O E, 01/5

The Original

REE On line Database

into on 20.000 + stock items! **RETURNING SOON !**

£750

£550

CIRCLE NO. 115 ON REPLY CARD

....

....

VA

:

Thermal dynamics in audio power

Class B amplifier requires thermal compensation to avoid thermal runaway, and because bias setting is critical for the minimisation of crossover distortion, which is generally regarded as the most pernicious of non-linearities. The biasing of a Class B output stage requires the establishment of an accurate voltage drop V_q across emitter resistors R_e of tiny value, by means of hot transistors with varying V_{be} drops. It's surprising it works as well as it does.

This thermal compensation has two main problems, attenuation and delay. Since the thermal sensor is more or less remote from the junction whose gyrations in temperature will hopefully be cancelled out, heat losses and thermal resistances cause the temperature change reaching the sensor to be generally too little and too late for complete compensation.

As in Part 1, all the voltages and errors here are for one half of an output stage, using symmetry to reduce the work involved. These 'half amplifiers' are used throughout this piece for consistency, and the error voltages only doubled to represent reality (a complete output stage) when they are compared against the tolerance bands previously quoted.

In this study, we are faced with errors that vary not only in magnitude, but also in their persistence over time; judgement is required as to whether a prolonged small error is better than a large error which quickly fades away.

The absolute error criterion

The same issue faces most servomechanisms, and I borrow from Control Theory the concept of an 'Error Criterion' which combines magnitude and time into one number^{1,2}. The most popular criterion is the Integrated Absolute Error (IAE), which is computed by integrating the absolute value of the error over a specified period after giving the system a suitably provocative stimulus; the absolute value prevents positive and negative errors cancelling over time. Another common criterion is the Integrated Square Error (ISE) which solves the polarity problem by squaring the error before integration - this also penalises large errors much more than small ones. It is not immediately obvious which of these is most applicable to bias control and the psychoacoustics of crossover distortion that changes with time, so I have chosen the popular IAE.

One difficulty is that the IAE error criterion for bias

In Part 2 of his analysis of thermal dynamics in high performance power amplifiers, **Douglas Self** discusses the importance of temperature sensor location.

voltage tends to accumulate over time, due to the integration process, so any constant bias error quickly comes to dominate the IAE result. In this case, the IAE is little more than a counter intuitive way of stating the constant error, and must be quoted over a specified integration time to mean anything at all. This is why the IAE concept was not introduced in the first part of this article.

Much more useful results are obtained when the IAE is applied to a situation where the error decays to a very small value after the initial transient, and stays there. This

AUDIO

can sometimes be arranged in amplifiers, as I hope to show. In an ideal system where the error decayed to zero without overshoot, the IAE would asymptote to a constant value after the initial transient. In real life, residual errors make the IAE vary slightly with time, so for consistency all the IAE values given here are for 30s after the step input.

The emitter-follower stage

In the first part of this article, it was shown that the basic emitter-follower (ef) stage with the sensor on the main heatsink has significant thermal attenuation error and therefore under compensates temperature changes. The $V_{\rm q}$ error is +44mV, the positive sign showing it is too high. If the sensor is on the TO3 can top it over compensates instead, V_q error equals -30mV.

If an intermediate configuration is contrived by putting a layer of controlled thermal resistance 80°C/W, between the TO3 top and the sensor, then the 50s timescale component of the error can be reduced to near zero. This is the top error trace in bottom half of **Fig. 1**. The lower trace shows the wholly misleading result if sensor heat losses are neglected in this configuration.

Despite this medium term accuracy, if the heat input stimulus remains constant over the

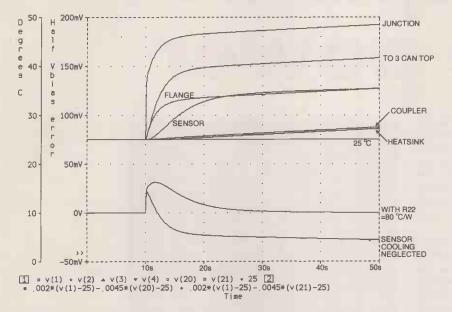


Fig. 1. EF behaviour with semi-insulating pad under sensor on TO3 can top. The sensor in the upper temperature plot rises more slowly than the flange, but much faster than the main heatsink or coupler. In lower Vq-error section, upper trace is for a 80°C/W thermal resistance under the sensor, giving near zero error. Bottom trace shows serious effect of ignoring sensor cooling in TO3-top version.

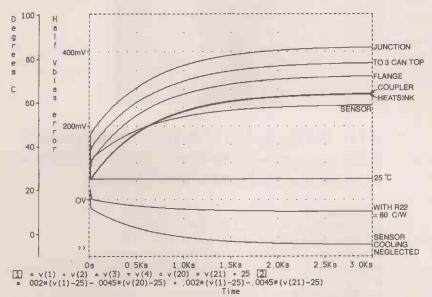


Fig. 2. Over a long timescale, the lower plot shows that the Vq error, although almost zero in Fig. 1, slowly drifts into over compensation as the heatsink temperature (upper plot) reaches asymptote.

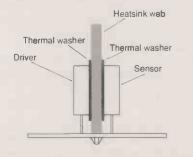
very long term (several kilo-seconds) there still remains a very slow drift towards over compensation due to the slow heating of the main heatsink, **Fig. 2**. This extra complication over very long periods was glossed over in Part 1 due to sheer lack of space.

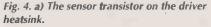
This long term drift is a result of the large thermal inertia of the main heatsink and since it takes 1500s (25 minutes) to go from zero to -32mV is of doubtful relevance to the timescales of music and signal level changes. On doubling to -64mV, it remains within the ef V_q tolerance of ±100mV. On the shorter 50s timescale, the half amplifier error remains within a ±1mV window from 5s to 60s after the step input.

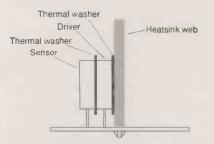
For the ef stage, a very long term drift component will always exist so long as the output device junction temperature is kept down by means of a main heatsink that is essentially a weighty chunk of finned metal.

The ef system stimulus is a 20W step as before, being roughly worst case for a 100W amplifier. Using the 80°C/W thermal semiinsulator described above gives the upper error trace in Fig. 3, and an IAE of 254mV/s after 30s. This is relatively large because of the extra time delay caused by the combination of an increased R_{22} with the unchanged sensor thermal capacity C_6 . Once more, this figure is for a half amplifier, as are all IAEs in this article.

Up to now I have assumed that the temperature coefficient of a V_{be} -multiplier bias generator is rigidly fixed at $-2mV/^{\circ}C$ times the V_{be} -multiplication factor, which is about 4.5× for ef and 2× for cfp. The above figures are for both halves of the output stage, so the half amplifier value for ef is -4.5mV/°C, and for cfp $-2mV/^{\circ}C$.


Speeding the response


Staying with ef, if we boldly assume that the V_{bias} generator can have its thermal coefficient varied at will, the insulator and its aggravated time lag can be eliminated. If the 80°C/W thermal pad is replaced with standard material, between the sensor and the TO3 top, the optimal V_{bias} coefficient for minimum error over the first 40s proves to be -2.8mV/°C, which is notably less than -4.5. The resulting 30s IAE is 102mV/s, more than a two times improvement. See the lower trace in Fig. 3, for comparison with the semi-insulator method described above. In view of the fixed time constants, dependant upon a certain weight of metal being required for heat dissipation, it appears that the only way this performance could be significantly improved upon might be to introduce a new kind of output transistor with an integral diode that would sense the actual junction temperature, being built into the main transistor junction structure. Although it would be of immense help to amplifier makers, no one seems to be keen to do this.


From here on I am going to assume that a variable temperature coefficient (tempco) bias generator can be made when required. The details of how to do it must wait for a later article. It should be an extremely useful device, as thermal attenuation can then be countered by increasing the 'thermal gain'. It does not however help with the problem of thermal delay.

In the second ef example above the desired tempco is $-2.8 \text{mV}/^{\circ}\text{C}$, while an ef output stage plus V_{be} -multiplier has an actual tempco of $-4.5 \text{mV}/^{\circ}\text{C}$. In this case we need a bias generator that has a *smaller* tempco than the standard circuit. The conventional ef with its temp sensor on the relatively cool main heatsink would require a *larger* tempco than standard.

A potential complication is that amplifiers should also be reasonably immune to changes in ambient temperature, quite apart from changes due to dissipation in the power devices. The standard tempco gives a close approach to this automatically, as the V_{be} -multiplication factor is naturally almost the same as the number of junctions being biased. However, this will no longer be true if the tempco is significantly different from standard, so it is necessary to think about a bias generator that has one tempco for power device temperature changes and another for ambient changes. This sounds rather daunting but actually proved fairly simple.

b) An improved version, with the sensor mounted on top of the driver itself, is more accurate.

c) Using two sensors to construct a junction estimator.

Complementary feedback-pair output As revealed in Part 1, the complementary feedback pair (cfp) output stage has a much smaller bias tolerance of ± 10 mV for a whole amplifier, and surprisingly long time constants. A standard cfp stage therefore has larger relative errors than the conventional emitter follower (ef) stage with thermal sensor on the main heatsink. This is the opposite of conventional wisdom. Moving the sensor to the top of the TO3 can was shown to improve the ef performance markedly, so we shall attempt an analogous improvement with driver compensation. The standard cfp thermal compensation arrangements have the sensor mounted on the driver heatsink, so that it senses the heatsink temperature rather than that of the driver itself. See Fig. 4a for mechanical arrangement, and Fig. 5 for thermal model. As in the ef, this gives a constant long term error due to the sustained temperature difference between the driver junction and heatsink mass. See the upper traces in Fig. 7, plotted for different bias tempcos. The cfp stimulus is a 0.5W step, as before. This constant error cannot be properly dealt with by choosing a tempco that gives a bias error passing through zero in the first fifty

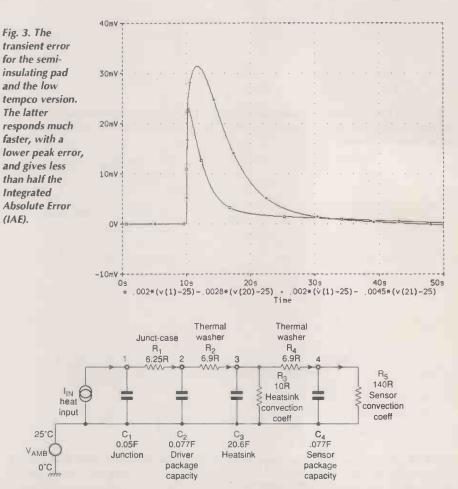
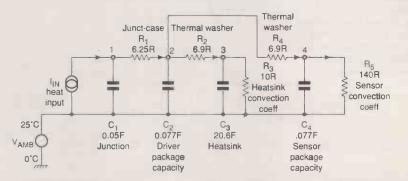
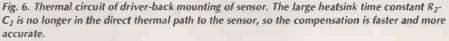




Fig. 5. Thermal circuit of normal CFP sensor mounting on heatsink. R_3 is the convective cooling of the heatsink, while R_5 models heat losses from the sensor body itself.

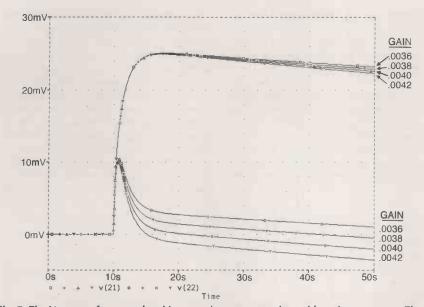
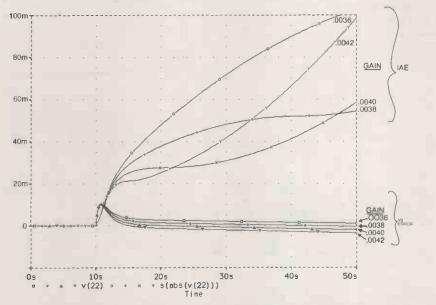
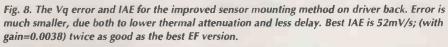
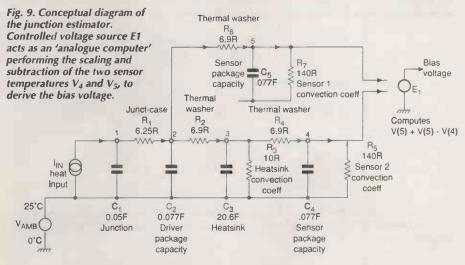





Fig. 7. The Vq errors for normal and improved sensor mounting, with various tempcos. The improved method can have its tempco adjusted to give near zero error over this timescale. Not so for the usual method.

seconds, as was done for the ef case with a TO3-top sensor, as the heatsink thermal inertia causes it to pass through zero very quickly and head rapidly South in the direction of ever increasing negative error. This is because it has allowed for thermal attenuation but has not decreased thermal delay. It is therefore pointless to compute an IAE for this configuration.

A better sensor position

By analogy with the TO3 and TO3P transistor packages examined earlier, it will be found that flat driver packages such as TO-225AA on a heatsink get hotter faster on their exposed plastic face than any other accessible point. It looks as if a faster response will result from putting the sensor on top of the driver rather than on the other side of the sink as usual. With the Redpoint SW38-1 heatsink this is fairly easy as the spring clips used to secure one plastic package will hold a stack of two TO-225AA's with only a little physical persuasion. A standard thermal pad is used between the top of the driver and the metal face of the sensor, giving the sandwich shown in Fig. 4b. The thermal model is Fig. 6. This scheme greatly reduces both thermal attenuation and thermal delay, (lower traces in Fig. 7) giving an error that falls within a ±1mV window after about 15.5s, when the tempco is set to -3.8mV/°C. The IAE computes to 52mV, as shown in Fig. 8, which demonstrates how the IAE criterion tends to grow without limit unless the error subsides to zero. This value is a distinct improvement on the 112mV IAE which is the best that could be got from the ef output.

The effective delay is much less because the long heatsink time constant is now partly decoupled from the bias compensation system.

A junction estimator

It appears that we have reached the limit in what can be done, as it is hard to get one transistor closer to another than they are in Fig. 4b. It is however possible to get better performance, not by moving the sensor position, but by using more of the available information to make a better estimate of the true driver junction temperature. Such 'estimator' subsystems are widely used in servo control systems where some vital variable is inaccessible, or only knowable after such a time delay as to render the data useless³. It is often almost as good to have a 'model system', usually just an abstract set of gains and time constants, which will give an estimate of what the current value of the unknown variable must be, or ought to be

The situation here is similar, and the first approach makes a better guess at the junction temperature V(1) by using the known temperature drop between the package and the heatsink. The inherent assumption is made that the driver package is isothermal, as it is modelled by one temperature value V(2).

If two sensors are used, one placed on the heatsink as usual and the other on top of the driver package, as described above Fig. 4c,

then things get interesting. Looking at Fig. 6, it can be seen that the difference between the driver junction temperature and the heatsink is due to R_1 and R_2 . The value of R_1 is known, but not the heat flow through it. Neglecting small incidental losses, the temperature drop through R_1 is proportional to the drop through R_2 . Since C_2 is much smaller than C_3 , this should remain reasonably true even if there are large thermal transients. Thus, measuring the difference between V(2) and V(3) gives a reasonable estimate of the difference between V(1) and V(2). When this difference is added to the known V(2), we get a rather good estimation of the inaccessible V(1). This system is shown conceptually in Fig. 9, which gives only the basic method of operation. The details of the real circuitry must wait until we have decided exactly what we want it to do.

We can only measure V(2) and V(3) by applying thermal sensors to them, as in Fig. 4c, so we actually have as data the sensor temperatures V(4) and V(5). These are converted to bias voltage, scaled and subtracted, thus estimating the temperature drop across R_1 this is added to V(5) to give the estimate of V(1). The computation is done by Voltage-Controlled-Voltage-Source E1, which in PSpice can have any equation assigned to define its behaviour. Such definable VCVS's are very handy as little 'analogue computers' that do calculations as part of the simulation model. The V(1) result is then multiplied by a scaling factor called estgain which is incor-

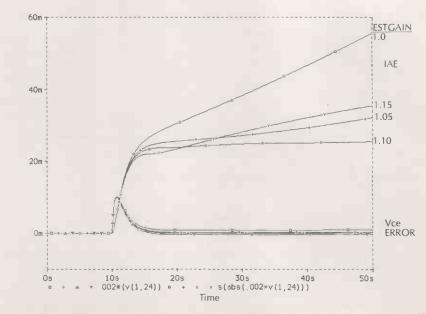
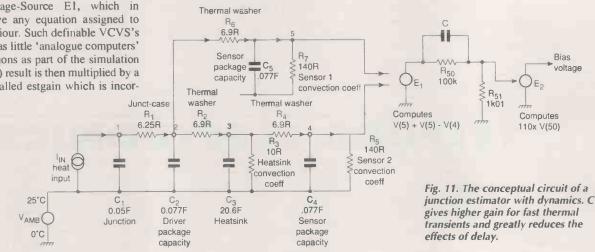
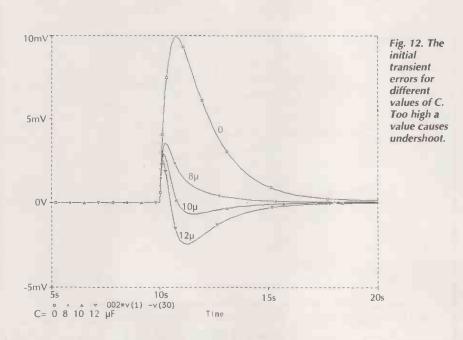
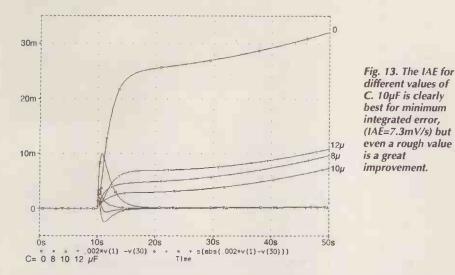



Fig. 10. Simulation results for the junction estimator, for various values of estgain. The optimal IAE is halved to 25mV/s; compare with Fig. 8.



porated into the defining equation for E1, and is adjusted to give the minimum error. Note the variable tempco bias approach is used to allow for the difference in resistance between R_1 and R_2 .


The results are shown in Fig. 10, where an estgain of 1.10 gives the minimum IAE of 25mV/s. The transient error falls within a $\pm 1mV$ window after about 5s. This is a major improvement, at what promises to be little cost.

A junction estimator with dynamics The remaining problem with the junction estimator scheme is still its relatively slow initial response. Nothing can happen before heat flows through R_6 into C_5 , in Fig. 9. It will take even longer for C_4 to respond, due to the inertia of C_3 , so we must find a way to speed up the dynamics of the junction estimator.

The first obvious possibility is the addition of phase advance to the forward bias com-

AUDIO

pensation path. This effectively gives a high gain initially, to get things moving, which decays back over a carefully set time to the original gain value that gave near zero error over the 50s timescale. The conceptual circuit in Fig. 11 shows the phase advance 'circuitry' added to the compensation path. The signal is attenuated 100 times by R_{50} and R_{51} , and then scaled back up by VCVS E2, which is defined to give a gain of 110 times, incorporating an estgain of 1.10 times. C causes fast changes to bypass the attenuation, and its value in conjunction with R_{50} and R_{51} sets the degree of phase advance or lead. The slow behaviour of the circuit is thus unchanged, but transients

pass through C and are greatly amplified by comparison with steady state signals.

The result on the initial error transient of varying C around its optimal value can be seen in the expanded view of Fig. 12. The initial rise in V_q error is pulled down to less than a third of its value if C is made 10μ F. With a lower C value the initial peak is still larger than it need be, while a higher value introduces some serious undershoot that causes the IAE to rise again, as seen in the upper traces in Fig. 13. The big difference between no phase advance, and a situation where it is even approximately correct, is very clear.

With C set to 10µF, the transient error falls

within a ± 1 mV window after only 0.6s, which is more than twenty times faster than the first improved cfp version, (sensor put on driver) and gives a nicely reduced IAE of 7.3mV/s at 50s. The real life circuitry to do this has not been designed in detail, but presents no obvious difficulties. The result should be the most accurately bias compensated Class B amplifier ever conceived.

In summary

It is, I hope, clear that most of this work is purely theoretical and would be much the better for confirmation by practical tests. This would be a mountain of work and I have no intention of undertaking it.

Hopefully it is equally clear that it is no longer necessary to accept ' V_{be} -multiplier on the heatsink' as the only option for the crucial task of V_{bias} compensation. The alternatives presented promise greatly superior compensation accuracy.

The third part of this series will deal with variable tempco bias generators.

References

1. Chen, C T, Analog & Digital Control System Design Saunders-HBJ 1993. p 346.

2. Harriot, P, Process Control McGraw-Hill 1964. pp 100-102.

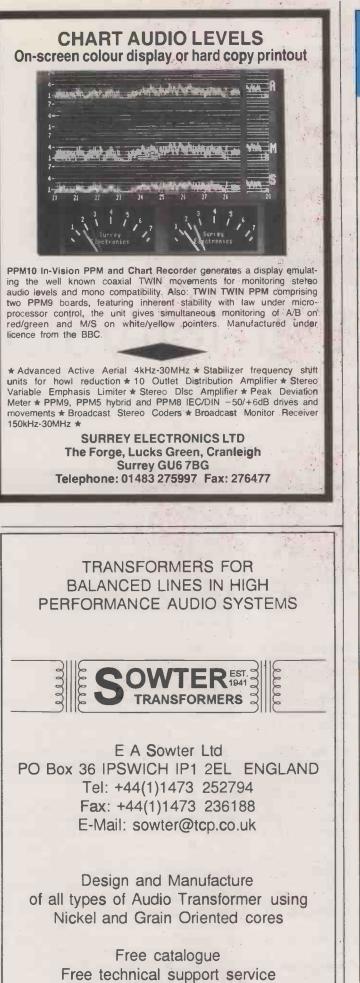
 Liptak, B, ed Instrument Engineer's Handbook
 Process Control Butterworth-Heinemann, 1995. p 66.

TELFORD ELECTRONICS

Adari 7404.UHF geerator 0.1-1.1120Mr; Adari 2504 - Singuro y mhene Y 100Hr; Adars 2504 - Singuro y more y 100Hr; Adars 2504 - Singuro y 100Hr; Adars 2505 - Singuro y 100Hr; Adars 2505

Gould 05016A - 70MH; Deillosope Gould 05016A - 70MH; Deillosope Gould 05400 - Outliboope Gould 05400 - Outliboope Harris 87205 - Reserver stoler Hinsley 754 - Designation for the Hinsley 754 - Designation for the HINSLE HANDSTATE - Digital storage outliscope HP HID234 - Service to parable conversor HP HID234 - Ampiliter switch HP HID234 - Ampiliter switch HP HID234 - Digital storage outliscope HP HID234 - Digital storage HP HID234 - Discope HID244 - Discope HID244 - Discope HID244 - Discope HID244 - D

HP HP461A - Ampilie HP HP457A - Microwes ampilies HP HP457A - Microwes ampilies HP HP504A - Signature analyse HP HP504A - Signature analyse HP HP504A - Electronic counter HP HP504A - Discretion counter HP HP504A - Dis NP NP3/438 – & Pelanterin transmission test with 180 trg NP NP3/436 – S-Porameter test at 81 ± 2 00 trg NP NP3/54 – S-Porameter test at 81 ± 2 00 trg NP NP3/54 – Bodia/tion calyse NP NP3/54 – Bodia/tion calyse NP3 + NP3/54 – Solitz Solitz Solitz NP3 + NP3/54 – Solitz Solitz NP3 + Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz Solitz Solitz Solitz Solitz NP3 + Solitz Solitz Solitz Solitz Solitz So


Birty Milliver W1(224 – PH Millingtometer
 MSI Gaptistea metric/D pathom
 MSI Gaptistea metric/D pathom
 MSI Gaptistea metric/D pathom
 Morme DJ35 – Ald Namba Million Million
 Morme DJ35 – Milli Mindra Million
 Morme DJ35 – Million Million Million
 Philips M33 – SUMH Science 10, Million
 Philips M33 – SUMH Science 2000
 Philips M33 – SUMH Science 2000
 Philips M33 – SUMH Science 2000
 Philips M35 – Solar Million
 Read M30 – Solar Million
 Read M30 – Million
 Read M30 – Solar Million
 Read M30 –

Audios W17182 - Noine digital watch receive Rhode & Schweis SUIZ - Voira generator Rhode & Schweis Spei generon: DRM-130MH; Roland OD-17209 - Florer Seques 241 - 600MH; Frequent; contex Schweisere AT20 - Option hultmeter Schweisere AT20 - Option hultmeter Schweisere AT20 - Dubit of the security Semens 20155 - Leef meter Semens 20155 - Leef meter Semens 20155 - 2001t-3200H; Leef meter Semens 20155 - 200H; Leef meter Semens

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE - Postage and pocking must be added. Please phane for price. VAT @ 17/2% to be added to all orders. Please send forge SAE for details. Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ

Tel: 01952 605451 Fax: 01952 677978

CIRCLE NO. 116 ON REPLY CARD

CIRCLE NO. 117 ON REPLY CARD

Popular types from stock

Second-User Equipment Sale

Prices

In circuit emulators from Applied Microsystems Corporation

Corporation	from
CodeICE 68040 40MHz emulator for PC host.	£13,350
CodeTAP emulators for 80C186–EA.	£250
CodeTAP emulators for 80C186–EB.	£2,500
 CodeTAPXA emulators for 80C186-EA.	£2,400
CodeTAPXA emulators for 68332 for both SUN and PC hosts.	£2,900
CodeTAP 80386 emulator for SX/DX versions.	£1,300
CodeTAP 80386 emulator for EX version.	£4,600
EL1600 emulators for 68000, 68302 and 80C186 processors.	£500
EL3200 emulator for 68020 and 68030 processors for either SUN or PC hosts.	£1,500
EL3200M emulator for 68360 processor for SUN host.	P.O.A.
ES1800 emulators for a variety of Intel and Motorola processors.	£500
All systems are complete with overlay memory and debugging software as appropriate.	
DATA I/O Device Programmers	
Data I/O 2900 and 3900 systems available.	£1,300
UNISITE, including PLCC base and	
84 pin base.	£6,000

Contact us now for detailed configurations and a full stock list of equipment for sale.

ATS TechniRent

Park House, Downmill Road, Bracknell, Berks RG12 1QS Tel: 01344 411011 Fax: 01344 411329

CIRCLE NO. 118 ON REPLY CARD

Designing for spectrum analysis

Felice Labbrozzi outlines modules of his high-performance, yet economical, spectrum analyser.

typical spectrum analyser, one not based on fast Fourier transforms, is essentially a superheterodyne receiver. Within this receiver the local oscillator, a vco, is swept using a sawtooth signal. The oscillator starting frequency equals the intermediate frequency.

With this technique, the received frequency theoretically starts from zero, or dc. In practice, the lower limit is affected by the IF filter response and the input dynamic range. The higher frequency is related to the first IF value.

Design criteria

In order to develop a useful set of specifications for the spectrum analyser, I examined ten commercial spectrum analysers. The specifications I chose are shown in the panel.

Measurements displayed on a spectrum analyser's vertical axis usually need to be logarithmic. As a result, the input voltage is passed through a logarithmic amplifier.

As with any heterodyne receiver the ability to select the signals received is determined by the intermediate-frequency filter. When tuning rapidly to different signals with a bandwidth near to or lower than the band of the detected signals, there are no simple effects. This is because the time needed by a signal to pass through a filter is inversely proportional to its bandwidth.

As a result, to analyse signals with different characteristics, it is necessary to change three parameters. These are,

- bandwidth selectivity of the intermediatefrequency filters
- span the frequency range of the measurement in question
- sweep time the time needed to analyse the same frequency range.

Spectrum analyser design goals

- Frequency range dc to 1GHz
- Dynamic display of more than 80dB with linearity of around ±1dB
- Input amplitude range +30, -120dBm minimum
- Frequency accuracy dependent on only one reference oscillator
- Resolution lower than 1kHz
- Ability to print reports, graphs and comparisons
- Capability for storing measurements on dos disks

Analyser system elements

To accommodate a range of signals from very large to those close to the thermal noise level,

a very sensitive front end circuit is needed, preceded by an attenuator. This attenuator must have precise and repeatable characteristics over the whole frequency and amplitude range of the instrument. For this reason I have made it a separate module, Fig. 1.

Input frequencies over a gigahertz could be converted by harmonics from the vco. Displaying all the vco harmonic responses at the same time is likely to cause confusion. In order to separate the spurious responses from the required signals it is better to use a low-pass input filter. This will attenuate those signals higher than 1GHz. If it is necessary to extend the input frequency band, the low pass filter can be replaced by band pass preselectors of 1GHz each. The rf attenuator and the first mixer should be adequate enough to cope with this frequency range if the required amplitude response is to be achieved.

All rf circuits are mounted on one pcb and all control lines are dc. When this module receives input

RF ENGINEERING

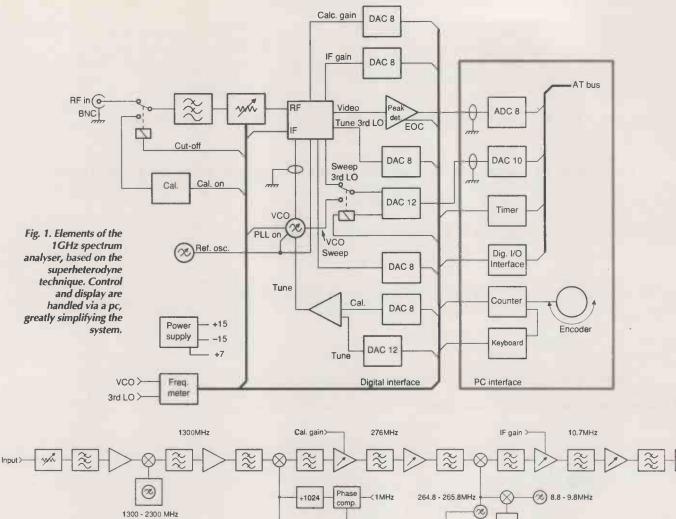
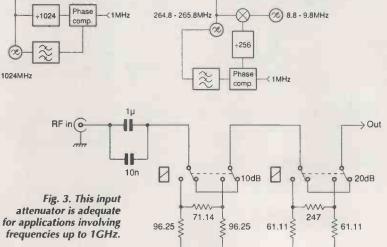


Fig. 2. RF-IF module block diagram. Three intermediate frequencies bring the signal down to 10.7MHz.


signals together with those from the vco, it sends the resulting signal to the digital interface and then to the pc interface. This signal is converted to digital form for display and/or computation.

RF and intermediate-frequency

Measurement receiver Figure 2 uses three frequency conversions to bring the input signal to 10.7MHz. This frequency is processed by quartz filters with variable band width and then applied to a logarithmic amplifier such as a TDA1576. After the filters, a low cost logarithmic amplifier such as TDA1576 works well.

When two signals are mixed, the product of the mixed signal has all the characteristics of the original signal, together with those of the local oscillator. To avoid additional noise as each local oscillator increases the original signal, all local oscillators are controlled via phase lock loops. In this way, the local oscillators can be locked to just one stable and low noise oscillator reference derived from the internal frequency reference.

An exception to this is the third local oscillator, which can be continuously tuned over IMHz when the first vco is phase locked.

Here, phase noise near the carrier remains low enough to be ignored.

The vco has to be tuneable over a very large band – typically 1.3 to 2.3GHz. Because of this, the stability and noise performance required to detect signals hundreds of hertz apart cannot be guaranteed.

All rf amplifiers operating under 1GHz are dual-gates mosfets – BF 961s, or 40673s for 10.7MHz. These are straightforwardly configured, with gain being controlled via the second gate. The input amplifier and 1.3GHz amplifier comprise inexpensive minicircuits MAR 6s and BFR91s.

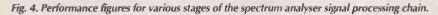
System gain is software controlled. Software

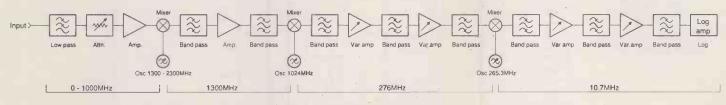
also compensates for small ripples due to components or their coupling. This makes selection of the first mixer less critical and cheaper.

An auto calibration routine imposes a flat response to the whole system when a signal derived from a harmonic generator is connected to the input.

RF attenuation

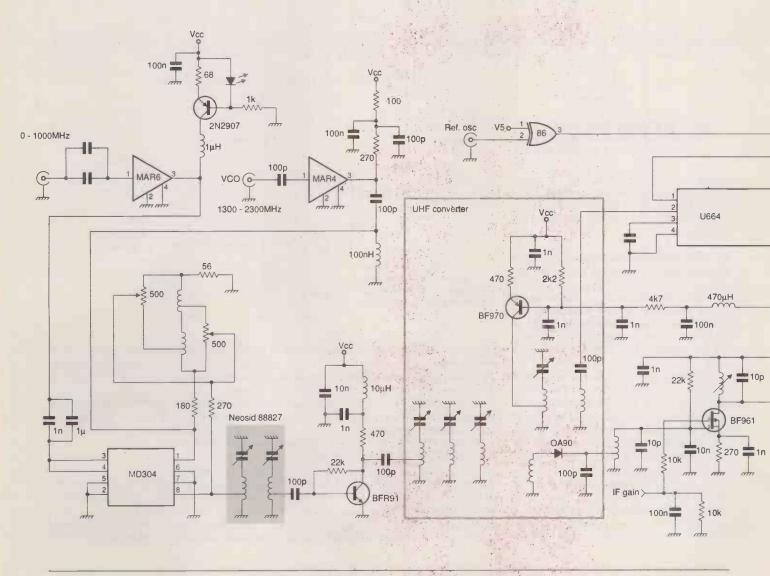
If you are not interested in extending the frequency range over 1GHz, you can make the rf attenuator following Fig. 3.


To form a 40dB attenuator, it is better to connect two 20dB sections together. If we use


Log

amp

RF ENGINEERING


	LF)	AMP	•	BP		BP		BP		B	P		BP		BP	E	ЗP		BP		
	40 20	-						T						-				-				
	-20	-						_			-			1		-		-	-	1		
	-40		1			=	4			=	-	_		-					-			
	<u>-60</u> ⊏								_			_	*		1				_			
					00		00				-			-		00		00		00		
Min. noise	LP 0,5	Att. - 0,5	Amp 16	Mix 1 -7	BP -2	Amp 15	-3	Mix 2	-1	Amp 17	-4	Vara 17	imp	BP	Mix 3	-1	Var amp. 19	BP 6	Amp 16	-3		
Typ. gain	-0,5	-40,5	-	-7	-2	15	-3	-7	-1	17	-4	17		-1	-7	-1	9	-6	16	-3		
Max. gain	-0,5	-70,5	16	-7	-2	15	3	-7	-1	7	-4	17		-1	-7	-1	19	-6	16	-3		
dBm levels	LP	Att.	Amp	Mix 1	BP	Amp	вр	Mix 2	BP	Amp	вр	Var.	Amp	BP	Mix 3	вр	Var. amp	вР	Amp	вр	Log amp	
Max.sens.	-50	-50,5		35		-44	-29	-32	-39			-27		-10			-19	0	-6	10	7	
Тур.	0	-0,5	-41	-25		-34	-19	-22				-17		0	-1	-8	-9	0	-6	10	7	
Max. level	30	29,5	-41	-25	32	-34	-19	-22	-29	-30	-23	-27		-10	-11	-18	-19	0	6	10	7	

F=F1+(F1-2)/G1+(F3-1)/G1G2=2.91 (see text), and NF=10logF=4.65dB

Fig. 5. Front end synthesis. Theoretically, given a noise figure, NF, of 4.65, a signal just 3dB above noise can be detected.

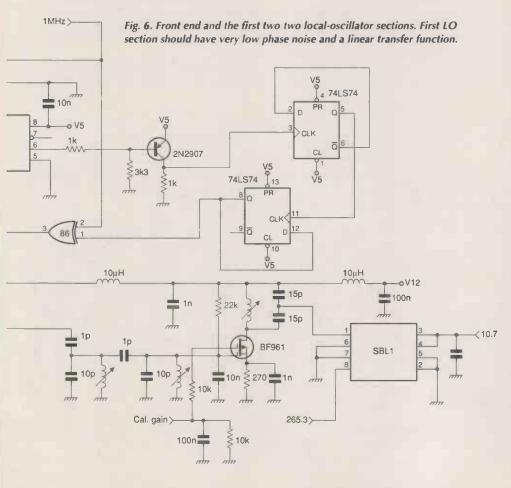
only one pi network attenuator, stray capacitances limit the frequency response to under 1GHz. Selecting or parallelling standard carbon resistors a 70dB attenuator can be made, increasing the dynamic range of the system. It is necessary to repeat the 20dB section three times using low capacitance reed relays. Excitation coils of the two dual-ganged relays are connected together, as shown.

You must cut the connections as short as possible. The best method is to compute a 50Ω strip line, and insert the relays in the middle of it cutting the strip between the relay's pins. Relays should have an appropriate pinout; I used *FEME ZFH 002 12* types.

Input capacitors are unpolarised tantalum and ceramic types. If you cannot use surfacemount components, cut the resistor wires down to an absolute minimum and solder the remaining tag directly onto the relay pins.

To compensate for stray capacitances, two short teflon insulating wires can be connected in parallel with the series resistors. Winding the wires together acts as a small capacitor, helping to maintain a flat frequency response.

The following circuit descriptions are not unique solutions. I have tried several different types of circuit, each with good results. However, if you decide to change the schematics, ensure that the local oscillator rf power is higher than +7dBm. This guarantees acceptable values, imposed in the system design, for losses in the balanced mixers. If the oscillators have a high harmonic content, it is better not to increase the rf power more than 3dB otherwise you could have difficulties reducing spurious responses.


The second conversion, 1300 to 276MHz, was made in a separate silvered-brass box measuring 10 by 50 by 85mm. Inside this box I made resonant coupled circuits using small 6mm brass tubes, teflon standard insulators, small plastic tubes and 3M bolts.

The second mixer uses an OA90 or AA119 germanium diode but I also tested HP5082 series schottky diodes with good dynamic range results.

Designing the rf system

After selecting the conversion frequencies so that the harmonics or mixing products do not block the intermediate-frequency or generate strong spurious frequencies, it is possible to design the amplifier and establish the noise figure of the receiver system.

From the local oscillator and intermediate

frequencies you can compute the intermediate -frequency filters so that the attenuation of the images frequencies and the 6/60dB frequency band ratio reaches the desired level. Divide insertion losses so that no filter exceeds 10dB. With a spread sheet such as *Excel* you can assign the gain needed for each amplifier so that you arrive at the input level needed for the log amplifier input, Fig. 4.

You can consider the noise figure of a passive mixer as being roughly the same value as its loss. The passive stages can be grouped together in series, making it possible to draw an equivalent block diagram.

Remember that the noise figure of a circuit with a loss of A decibels, connected to the input of an amplifier with noise figure NF decibels, is A+NF decibels. A cascade of two amplifiers with N_1 , G_1 and N_2 , G_2 will show looking from the input,

$$F = F_1 + (F_2 - 1)/G_1$$

or in decibels, a noise figure,

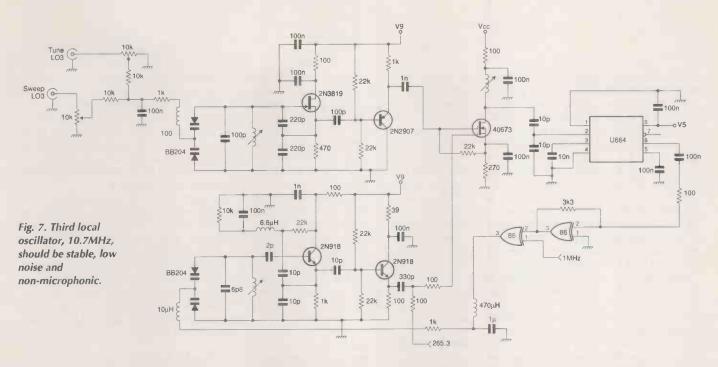
NF=10×logF.

Now you can draw an equivalent block diagram with three or four stages in cascade. Within this diagram, you can integrate the losses before each amplifier.

To find the system's noise figure, apply the formula to these equivalent amplifiers for two cascade modules, starting from the last amplifier. Make sure that formulas consider decimals, ie do not mix it with decibels.

The lowest detectable signal depends on the noise present, which is proportional to the band width of the testing system. The minimum noise that cannot be cut, with a bandwidth B of 1kHz, has a power,

$$N = 10\log\frac{KTB}{10^{-3}} = -144$$
dBm


where K is the Boltzmann's constant, 1.38×10^{-23} , and T = 293 K, is room temperature.

Thus theoretically, given a noise figure, *NF*, of 4.65, as per Fig. 5, a signal just 3dB above noise can be detected. This corresponds to a level of,

-144+4.65+3=-136.65dBm.

When the vco generates 1300MHz it is important that the first amplifier, which has to operate on the lowest amplitude signals, does not saturate. To decrease the signal passing through the mixer, a double balanced type is insufficient.

I have made a phase network to produce a 1300MHz signal with opposite phase, and the same amplitude as the mixer output. The res-

onant lines, a quarter wavelength, shown in Fig. 6, were made with teflon RG174 coaxial cable and the trimmers are miniature carbon types, as are the resistors.

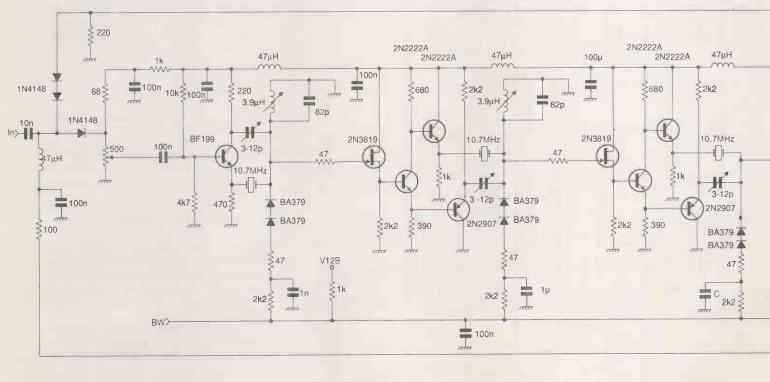
Third local oscillator

The third local oscillator, Fig. 7, is simple, especially if it is phase locked loop with a very high comparator frequency.

The high comparator frequency guarantees short lock time and spurious signals are far from the carrier minimum of 1MHz. As a result, they are outside the range of the intermediate-frequency filters.

With a direct synthesis phase-locked loop, it is possible to further decrease phase noise and increase stability. This circuit does not limit the noise characteristics of the spectrum analyser provided that you take care with the 9MHz voltage-controlled oscillator.

To make a stable, low noise and non-microphonic oscillator, use silvered-mica *NPO* capacitors, inductors with mechanically stable supports and a stable, well filtered power supply.


Remember to solder oscillator components to the board, or fix them using wax or adhe-

sive. This will prevent microphonic effects and allow you to remove them if necessary.

Variable quartz filter

The quartz filter that determines bandwidth relies on the resistance of *PIN* diodes in parallel with the tuned circuit. Increasing current into the diodes decreases their equivalent resistance. It also decreases the ratio Q=F/B between the centre frequency and the 3dB bandwidth.

If the variation of diode capacitance is negligible, they do not change F but increase B.

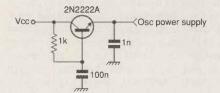
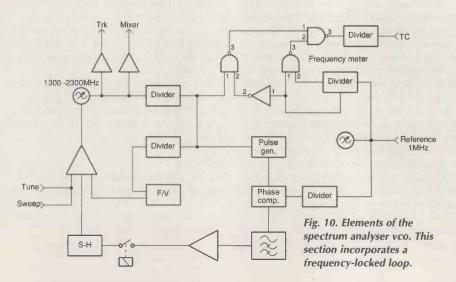


Fig. 9. Low impedance power supply. Input ac fluctuations are reduced by the 100nF capacitor.

In Fig. 8, trimmer capacitors compensate for asymmetry in the frequency response. The junction fet guarantees a high impedance to help obtain a high Q.


When implementing this circuit, it is necessary to select crystals that work in series fundamental mode, with identical frequencies and with minimum equivalent resistance.

Digital interface

Control voltages are produced by the digital interface. This comprises two *MAX500* quad 8bit serially-controlled d-to-a converters and two *MAX543* 12bit d-to-a converters. These generate voltages for tuning the vco and for sweeping and calibrating it.

Together with low noise op-amps, these d-to-a converters generate voltages to calibrate the vco and the third local oscillator. They also produce signals for tuning the third local oscillator, controlling bandwidth, calibrating gain and changing intermediate-frequency gain.

On the same board *ULN2004* drivers control the rf attenuator relays, the cut-off relay and close the vco phase-locked loop in the first local oscillator. A peak detector integrates the

amplitude of four successive samples of the log amplifier prior to the a-to-d conversion. Sweeping is produced by a 12bit d-to-a converter, but on screen it is not possible to detect more than 500 horizontal steps. Moreover this integration can be used to increase signal to noise ratio and sensitivity.

Interfacing to a pc

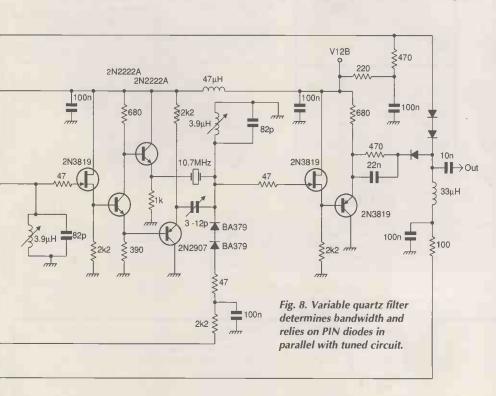
I designed most of the control ICs on to a pc AT BUS expansion card. It holds an Analog Devices' *AD7821* fast a-to-d converter, a 12bit d-to-a converter, a triple programmable timer and an 8255 i/o interface.

One flat cable and two miniature coaxial cables transfer every digital control, analogue input to the a-to-d converter and sweep volt-

of the age to the digital interface board. This is not the best solution, but it is simple.

First local oscillator

Many of the spectrum analyser's parameters depend on local oscillator characteristics. The main technical specifications of this module are,


- Frequency range with a relatively constant amplitude from 1.3-2.3GHz,
- two output ports with power higher than +7dBm,
- phase lock capabilities with steps of 1MHz or lower,
- very low phase noise,
- linear transfer function from control voltage and output frequency.

Together these characteristics are difficult to achieve. If you do not have uhf components, instrumentation and experience in ultra high frequencies, you can waste a lot of time trying to sort out the oscillator. Certainly a yttriumiron-garnet oscillator can solve many of these problems. But such oscillators are expensive and difficult to find.

A good alternative to a labour-intensive home made oscillator is a solid-state voltagecontrolled crystal oscillator. Several manufacturers, including Avantek and Watkin Johnson, make small, uhf oscillator modules in packages similar to *TO5*. Such oscillators do not normally give the required power, but they do allow you to simplify and repeat the circuit characteristics.

When using this module, the power supply should have a low impedance between dc and the operating frequencies. To achieve this it is not sufficient to have very short connections to ground – even leadless ceramic capacitors. It is necessary to use an active buffer, **Fig. 9**.

To linearise the vco transfer function I have made a frequency-locked loop like the one shown in the internal feed back of **Fig. 10**. Output frequency is divided 2048 times before

RF ENGINEERING

triggering a constant pulse generator.

If pulses are shorter than the triggering period, their number per second is proportional to the output frequency. Integrating these pulses, whose amplitude and duration is constant, gives a dc signal proportional to frequency. I use this voltage as feedback in an analogue adder, where tune and sweep voltages and the error voltage from the phased-locked loop comparator are connected.

To obtain low phase noise near the carrier it is better not to divide the output frequency too far. If you do, it is possible to transfer the stability and phase noise of the reference oscillator to the output signal. In my spectrum analyser, this only happens when the vco is locked and the sweep voltage is connected to the third local oscillator. Also if the low frequency vco in the third local oscillator is free running, it is relatively clean, and its phase noise is not detectable on the screen with a span of several megahertz.

Phase comparator

The phase comparator is made with a very fast pulse generator and a mixer that samples output frequency, divided by four. Using this solution, pulses are separated from the oscillator output with a cleaner spectrum spread, and amplitude on the phase-comparator can be kept constant.

By connecting a signal derived from the fre-

quency-locked-loop divider to a 16bit divider it is possible to produce a frequency meter. It is possible to count how many pulses are required to bring the counter to zero using the pc. Since the precise counting period is known, derived from the reference oscillator, it is easy to calculate the input frequency with a good degree of accuracy.

The same frequency counting system is used to measure the variable 9MHz third local oscillator. Mixing the measured frequencies in a simple formula it is possible to display the receiving frequency.

Software

The pc software controlling the spectrum analyser comprises these functions:

- draw a graticule and reference numbers for the set parameters on screen,
- draw lines between the y axis samples, repaint colours and clear graticule elements from previous lines,
- read keyboard and optical encoder to determine functions requested,
- save measurement samples in memory for later disk storage,
- configure the pc so that 'Print Screen' key can start a print out.

Some of these functions are time critical

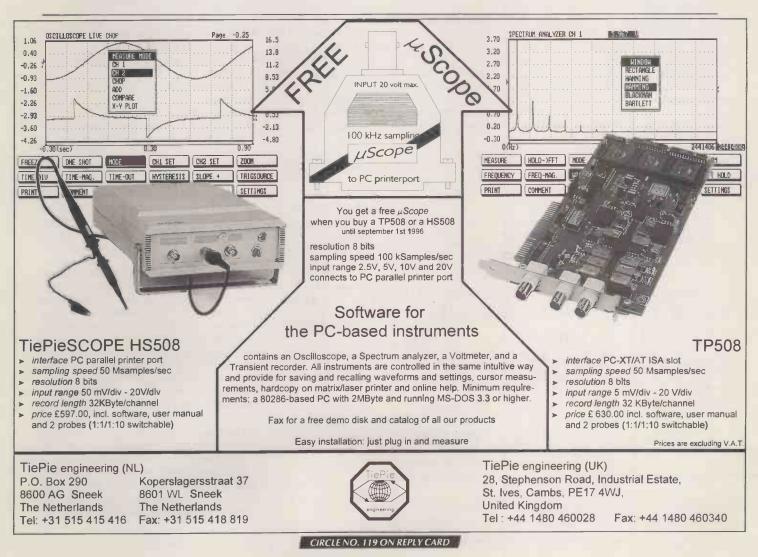
because the 'time per division' must be independent from program cycle time. To execute the graphics functions mentioned fast enough for a real-time display, using serial and parallel ports on a standard pc can cause problems.

I tried small 386 assembly language routines and specific professional software, for example National's *LabWindows* and Hewlett Packard's *APPCAD*. Both produced good results in terms of speed and graphics.

My main program was written in Quick Basic. It is unpretentious, and is continuously undergoing modifications and updating.

In a subsequent article, Felice discusses set up, calibration and software details.

Further reading


Morris Engelson, 'Modern Spectrum Analysers Theory and Applications', Artech House Inc., 1984.

Chris Bowick, 'RF Circuit Design', Howard W. Sams & Co. Inc., 1982.

Hewlett Packard, 'Application Note 150 Series'. Wayne C. Ryder, 'High Performance Spectrum Analyser', *HAM Radio Magazine*, June 1977. Jochen Jirmann, 'Broadband VCO's using

Microstrip Techniques', VHF Communications, April 1992.

Jochen Jirmann, 'UHF Spectrum Analyser' VHF Communications, 1991-1992.

I knew I should have ordered my copy of Electronics World

Don't miss out!

Place a regular order with your newsagent for your own copy of **Electronics World.** And be entered into our **Free Prize Draw!** One reader a month will win...

In April A FREE 11-piece tool kit and a FREE copy of "Oscilloscopes" by Ian Hickman, worth £16.99

In May A FREE 11-piece tool kit and a FREE copy of "Modern CMOS Circuits Manual" by R M Marston, worth £14.99

In June A FREE 11-piece tool kit and a FREE copy of "Analogue Circuits Cookbook" by Ian Hickman, worth £19.95

To enter the draw simply fill in the form opposite, ask your newsagent to sign it when you place your regular order for Electronics World and send the forms to: Marketing Department, Electronics World, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Name Address

Telephone number

Signature

Newsagent

Newsagent's address

Newsagent's signature

- Analyse and Simulate all types of designs with IsSPICE4, the First and Only Interactive Native Mixed Mode SPICE 3 Simulator
- System, Board, and IC level
- Analog, Digital, Sampled-Data, Mixed Mode, Behavioural elements
- Power, ASIC, RF, Mechanical, Physical, Thermal applications
- AC, DC, Transient, Distortion, Temperature, Monte Carlo, Noise, Sensitivity, Optimisation, and Fourier analyses
- Works with all popular schematic entry systems!
- Graphically Driven and Easy To Use Support & Service FREE, EXPERT, UK BASED AFTER SALE SUPPORT, Web & CompuServe Forums
- Affordable, Prices from £450 to £2,300

Technology Sources Ltd Ask us for a Falmouth Avenue, NEWMARKET **FREE Working** CB8 0LZ, UNITED KINGDOM Tel. 01638-561460 SPICE Fax 01638-561721 **Simulation Kit!** E-mail: aaj74@dial.pipex.com The Future Is Interactive!

CIRCLE NO. 122 ON REPLY CARD

1

Platform Support

Windows 95

Windows NT

Macintosh

DOS, NEC

(x86 Alpha & MIPS)

Power Macintosh

intusoft

11

s[4]4]+]+]

Windows

SYNTHESISED SIGNAL SOURCE

an innovative design from an established 'Off-Air' Company

- Custom designed chip set
- Sinewave output 0dBm into 50Ω
- NEW Hom Haloyon Can be run independently or genlocked to external source
- dc to 16MHz in 0.1Hz steps, with option 0.0001 Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available Models available October, contact us for prices

'OFF-AIR' FREQUENCY STANDARD CIRCLE NO. 124

Provides 10MHz, 5MHz & 1MHz Use it for calibrating equipment that relies on quarz crystals. TCXOs, VXCOs, oven crystals Phase locks to DROITWICH (rubidium controlled and traceable to NPL) For ADDED VALUE also phase locks to ALLOUIS (cesium controlled and traceable to OP -- French eq to NPL) Britsh designed and British manufactured Options available include enhanced receiver, sine wave outputs and 13MHz output for GSM. Prices on application.

TEST EQUIPMENT CIRCLE NO. 125

Output frequencies -10MHz, 5MHz, 1MHz

Short term stability – bette than 1×10^{-8} (1 sec) Typical – 4×10^{-9} (1 sec) Long term – tends to 2×10^{-12} (1000 sec) *Call for 'Off-Air' Standard list*

CIRCLE NO. 123

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

HALCYON ELECTRONICS 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

KESTREL ELECTRONIC COMPONENTS LTD

☆ All items guaranteed to manufacturers' spec. A Many other items available.

'Exclusive of V.A.T. and post and package'

	1+	100+		1+	100+
27C64-15	2.60	1.57	628128LP-85	8.30	6.90
27C128-15	2.40	2.20	62256LP10	3.60	2.45
27C256-15	2.20	1.55	6264LP-10	2.60	1.45
27C512-15	2.20	1.75	MM58274CN	4.90	3.75
27C010-15	3.95	2.75	ULN2003A	0.43	0.28
27C020-15	6.00	3.80	7805	0.32	0.25
27C040-15	8.60	6.00	MAX232	1.35	0.88
80C31-12	2.10	1.95	7406	0.35	0.23
80C552-5-16	10.50	7.50	7407	0.35	0.23
Z80A CPU	1.80	1.00	74HC244	0.35	0.21
LM317T	0.50	0.40	74HC245	0.35	0.21
75176BP	1.35	0.50	74HC373	0.35	0.21
68w PLCC skt	0.90	0.70	74HC374	0.32	0.21

Phone for full price list

All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey, England CR8 4HA Tel: 0181-668 7522.Fax: 0181-668 4190

CIRCLE NO. 126 ON REPLY CARD June 1996 ELECTRONICS WORLD

YOUR **Ideal Partner** in UHF and VHF

One stop solutions for all your radio telemetry module needs.

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies.

In other words, a partner like Wood & Douglas. Founded on technical excellence, Wood & Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood & Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact...

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England Telephone: 0118 981 1444 Fax: 0118 981 1567 email: info@woodanddouglas.co.uk web site: http://www.woodanddouglas.co.uk

CIRCLE NO. 127 ON REPLY CARD

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. **Additional** authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth – performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5-digit 1705 multimeter resolves down to 10μV, 10mΩ and 0.1μA and has a basic dc accuracy of 0.04%. Frequency measured is 10Hz to 120kHz with an accuracy of 0.01% and resolution to 0.01Hz. Capacitor and true rms measurements are also featured.

Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly £100 'best circuit idea' award and £25 awards for each circuit published.

Unipolar positive operation for the DAC-08

The DAC-08 digital-to-analogue converter has excellent performance and provides complementary outputs. Its data sheet

Table Outsut meaning block	ry input for the unipolar d-to-a.
i ladie. Output versus dinar	y input for the unipolar a-to-a.

Input status	B ₁	B ₂	B ₁	B ₁	B ₁	B ₁	B ₁	Eo	Ē,
Full scale	1	1	1	1	1	1	1	0.04	10.00
Full scale-lsb	1	1	1	1	1	1	0	0.08	9.96
Half scale-Isb	1	0	0	0	0	0	1	4.96	5.08
Half scale	1	0	0	0	0	0	0	5.00	5.04
Half scale-Isb	0	1	1	1	1	1	1	5.04	5.00
Zero scale+lsb	0	0	0	0	0	0	1	9.96	0.08
Zero scale	0	0	0	0	0	0	0	10.00	0.04

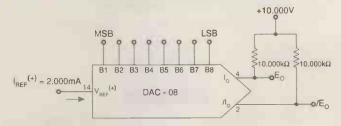


Fig. 1. Basic bipolar operation, as shown in Motorola's data sheet for the DAC-08.

shows various schemes for using the outputs with external components to obtain bipolar or unipolar characteristics. There is, however, no apparent method of obtaining a unipolar *positive* output. The circuit shown for the positive low-impedance equivalent has no provision for complementary output. This circuit is a solution to the problem.

Basic bipolar operation is shown in the data sheet, reproduced in Fig. 1, and a modification of this, Fig. 2, provides the answer. Splitting the two $10k\Omega$ resistors into two halves, with outputs taken from the junctions, effectively shifts the whole output positive by 10V, as indicated in the table.

With this scheme, unipolar positive and bipolar outputs are available from the same circuit.

S Ravindranathan Naval Physical and Oceanographic Laboratory Kochi Indi**a**

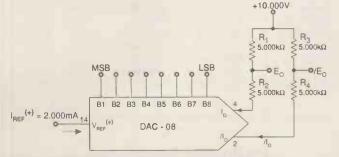


Fig. 2. Modifying the circuit of Fig.1 provides both unipolar positive and bipolar working at the same time.

0				
	OMPUTER ICS			
TM	S 9900NL-40 PULLS			£20 ea
	00 NEW AMD EQUIVA			
MC	6802 PROCESSOR			£2 ea
AM	6802 PROCESSOR 27C020-125L1 SURFA	CE MOUN	TEPROM USED/W	/IPED £1.50
MX	16C450 UART			
P82	16C450 UART	DI LER CH	IP EX EQPT	£25
281	7A-20 (2K ×8) EEPRO	l ex egot.		
D41	1256C-15 256Kx1 PULL	S		9 FOR £5
PA	49H MICRO			
D8	751-8 NEW			£10
MK	751-8 NEW	BRAME	QUIV 6116LP	£4
	ED 4164-15			
BR	C VIDEO ULA			£10
	1 MICRO			
FLO	OPPY DISC CONTROL	EBCHIP	S 1771	£16
	OPPY DISC CONTROL			
	00-8 PROCESSOR NE			
	6384-8			
	USED EPROMS ERA			
	6-45 USED			
273	2-45 USED			£2 100/£1
	4-30 USED			
	2256-30 USED			
	C512 USED			
170	2 EPROM NEW			63
211	I4 EX EQPT	500	4116 EX FORT	700
626	4-15 BK STATIC RAM.	. Joh	ATTO EX COP TI	C1 50
	DA SIO-O			
74	26 3 1/2 DIGIT LCD DRIV			C7 00
281	164-30 HOUSE MARKE	D		62
LIS	ED TMS2532JL	62 50	2708 LISED	6.2
	6167LP-8	L	2700 0060	650
69/	00-10 PROCESSOR			ao
	55-5			
211	4 CMOS (RCA 5114)			C1 60
	16C550-PC UART			
	427E-8			
	2256-26 USED			
211	5250-20 USED			E1.50

REGULATORS

LM338K	26
LM323K 5V 3A PLASTIC	£3
LM323K 5V 3A METAL	£3
LM350K (VARIABLE 3A)	£3
78H12ASC 12V 5A	£5
LM317H T05 CAN	£1
LM317T PLASTIC TO220 variable	
LM317 METAL	£2.20
7812 METAL 12V 1A	£1
7805/12/15/24	30p
7905/12/15/24	30p
CA3085 TO99 variable reg	2/£1
78HGASC+79HGASC REGULATORS	£30 ea
LM123 ST93 5V 3A TO3 REGS	. £3 ea
UC3524AN SWITCHING REGULATOR IC	60p
78L12 SHORT LEADS	. 10/11
LM2950AC75.0	60P

CRYSTAL OSCILLATORS

CRYSTALS

£1 ea

TRANSISTORS

MPSA42	
MPSA92	
2N2907A	
BC477, BC488,	
BC107 BCY70 PREFORMED LEADS	
full spec	E1 E4/100 E30/100
BC557, BC238C, BC308B	£1/30 £3.50/10
2N2907 PLASTIC CROPPED	£1/15 £4/10
BC548B SHORT LEADS	

0

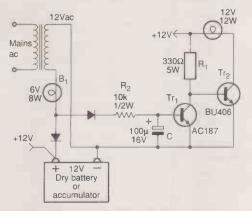
POWER TRANSISTORS

OC29	£2 ea
2SC1520 sim BF259	E1 100/E22
TIP 141/2 £1 ea TIP 112/428	
IRF620 TO-220 12A 200v	2/£1
SE9301 100V 1DA DARL SIM TIP121	
BD680	
PLASTIC 3055 OP 2055 could 500	100/025

TEXTOOL ZIF SOCKETS

	-
MISCELLANEOUS XENON STROBE TUBE XENON STROBE TUBE Xarrow angle infta red emitter LED55C 2//	E1
UM6116M-2L surface mount 1000 available	E1 Op
OPTO ICS also available TLP550 TLP666GF 68 way PLCC SKT 1500 available	ch
100 wa PLCC SKT 100 available	5n E1
LM324 (Quad 741)	E1
TL071 LO NOISE OP AMP	E1
47000u 25v SPRAGUE 36D	2) E1
SWITCHED MODE PSU 40 WATT UNCASED QTY. AVAILABLE + 5	
5A, +12V 2A, 12V 500mA FLOATING	
220R 2.5W WIREWOUND RESISTOR 60K AVAILABLE \$50/10	00
CMOS 555 TIMERS	50
290×100mm DIN 41612 96-WAY A/B/C SOCKET PCB RIGHT	
ANGLE £1. DIN 41612 96-WAY A/B/C SOCKET WIRE WRAP PINS. £1.	30
DIN 41612 64-WAY A/C SOCKET WIRE WRAP PINS DIN 41612 64-WAY A/C PLUG PCB RIGHT ANGLE DIN 41612 64-WAY A/C PLUG PCB RIGHT ANGLE	E1 E1
DIN 41612 64-WAY A/B SOCKET WIRE WRAP (2-ROW BODY) BT PLUG+LEAD	£1
LCD MODULE sim. LM018 but needs 150 to 250V AC for display 40x2 characters 182x35x13mm	
6-32 UNC 5/16 POZI PAN SCREWS. 11/1 NUTS. 11-25/16 POZI PAN SCREWS. 11-25/1	00
PUSH SWITCH CHANGEOVER	21
E5.90 ea (E1.3	
AMERICAN 2/3 PIN CHASSIS SOCKET	£1
WIRE ENDED FUSES 0.25A	pr
POWERFUL SMALL CYLINDRICAL MAGNETS	£1
SMALL MICROWAVE DIODES AE1 OC1026A 2/ D.I.L. SWITCHES 10-WAY £18-WAY 80p 4/5/6-WAY 8	0p
180VOLT 1WATT ZENERS also 12V & 75V	£1 £1
RELAY 5V 2-pole changeover looks like RS 355-741 marked STC 47WBost	ea
MINIATURE CO-AX FREE PLUG RS 456-071	£1
PCB WITH 2N2646 UNIJUNCTION WITH 12V 4-POLE RELAY	
STRAIN GAUGES 40 ohm Foil type polyester backed balco grid alloy	£1
ELECTRET MICROPHONE INSERT	
1 pole 12-way rotary switch	£1 #8
555 TIMERS £1 741 OP AMP	£1
COAX PLUGS nice ones	£1
INDUCTOR 20µH 1.5A 5/ 1.25° PANEL FUSEHOLDERS 3/	C1
12V 1.2W small w/e lamps fit most modern cars	£ 1
MONO CASS, HEAD £1 ERASE HEAD	0 p
THERMAL FUSES 220°C/121°C 240V 15A	21
TO-3 TRANSISTOR COVERS	21
TO-220 micas + bushes	£2
Large heat shrink sleeving pack	£2
IEC chassis plug filter 10A	pr
LM335Z 10MV/degree C LM234Z CONST, CURRENT I.C.	£1 £1
BNC TO 4MM BINDING POST SIM RS 455-961. MIN PCB POWER RELAYS 10.5v COIL 6A CONTACTS 1 pole c/o	
BANDOLIERED COMPONENTS ASSORTED Rs, Cs, ZENERS	
E5/10 LCD MODULE 16 CHAR. X 1 LINE (SIMILAR TO HITACHI LM10)	£5
OPI1264A 10kV OPTO ISOLATOR	
MADE BY SANKYO. £1 Telephone cable clips with hardened pins. 500 40 000-12 FURE SAVE DATA THE SAVE SAVE SAVE SAVE SAVE SAVE SAVE SAV	£2
10,000uF 16V PCB TYPE 30mm DIAx31mm	£1
2A CERAMIC FUSE 1.25" QB	RR
IEC CHASSIS FUSED PLUG B-LEE L2728	£1
ASTEC MODICATOR VIEW + SOUND UM 1207 22 BARGRAPH DISPLAY 8 RED LEDS. 11. NE567 PHASE LOCKED LOOP. 2/	50
NE564	21
104 IN2432 SHARP 12 LED VU BAR GRAPH DRIVER £1. 10A CORCOM MAINS RFI FILTER EX. EQPT	25
8 OHM MYLAR CONE LOUDSPEAKER 55mm DIA X 10mm DEEP	
	(110-
SEND £1 STAMPS FOR CURRENT IC + SEMI STOCI 31/2" FLOPPY DISK	
MAIL ORDER ON	LY

DIODI	S AND RECTIFIERS	
	600V FAST RECOVERY DIODE	
1N5407 3	1000V	
1N4148 1N4004 S	100/£1.50 D4 1A 300V	í
1N5401 3	100V	
BA158 1A	D4 1A 300V 100/L1 30 1 100 V 100/L2 1 100 V 10/L2 20K Ex stock 100/04 10 400 / last recovery 100/L3 100 / 3A 4/L2 100 / 3A 6/L1 100 / 3A 6/L1	í
BY254 80 BY255 13	0V 3A	
4A 100V E	RIDGE RECTIFIER	
6A 100V E	RIDGE	
25A 200 V	BRIDGE £2	
25A 400V	BRIDGE £2. 10/£18 BRIDGE £2.50 10/£22 10/£1	
KBPC304	BRIDGE REC 3A 400V	
SCRS		
PULSE TH	ANSFORMERS 1:1+1	i.
MEU21 P	800mA 400C SCR 3/£1)
	S DIACS 4/£1	
NEC TRIA	C ACO8F 8A 600V TO220. 5/E2 100/E30	
TXAL225	8A 500V 5mA GATE	i
TRAL223	D 30A 400V ISOLATED STUD £5 ea	1
	800V TLC381T 16k AVAILABLE 5 FOR £1 £15/100)
	O DEVICES	
SLOTTED	TNESS LEDS COX24 RED)
2N5777	50p DTO TRANSISTOR	>
TIL38 INF	RA RED LED 5/£1	
4N25, OP	12252 OPTO ISOLATOR)
MEL12 (P	HOTO DARLINGTON BASE n/c))
LED's RE	D 3 or 5mm 12/21	5
FLASHIN	ED NGR YELLOW 10/21 100/26 3 RED LED 5mm 50p 100/240 ED MEDIUM AREA PHOTODIODE RS651-995. 210 ee	5
OPTEK C	ED MEDIUM AREA PHOTODIODE RS651-995 £10 ea PB745 REFLECTIVE OPTO SENSOR £1.50	3
RED LED	PB745 REFLECTIVE OPTO SENSOR	1
MOC 302	OPTO COUPLED TRIAC	l.
STCN	ITC BEAD THERMISTORS	
G22 220F	G13 1K, G23 2K, G24 20K, G54 50K, G25 200K, RES 20°C	
DIRECTL ES22BW	Y HEATED TYPE 11 ea NTC BEAD INSIDE END OF 1" GLASS PROBE RES 20°C	3
200R	£1 ea CTLY HEATED BEAD THERMISTOR 1k res. ideal for	3
A13 DIRE audio Wie	CTLY HEATED BEAD THERMISTOR 1k res. ideal for n Bridge Oscillator	
	IET MULTI TURN PRESETS 3/4"	
	00R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K	
20 0K 5 00	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K 2M	3
200K 500	000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K 2M CKETS	
200K 500	000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K 2M CKETS	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY D	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K 2M 50p ea CKETS 50p ea 0024/28/40-WAY DIL SKTS 1 per TUBE L SKITS 12 per TUBE URNED PIN SKTS 3 for 11	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY T SIMM SO	100B 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ee CKETS 50p ee 020/24/28/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKET FOR 2×30-way SIMMS £1	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY D SIMM SO POLY	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ea CKETS 50p ea 0204/23/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKETFOR 2x 30-way SIMMS 51 CKETR/POLYCARB CAPS 51 CAPLAC YA DATED PUN US TYPE 320 50/000	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY D SIMM SO POLY	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ea CKETS 50p ea 0204/23/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKETFOR 2x 30-way SIMMS 51 CKETR/POLYCARB CAPS 51 CAPLAC YA DATED PUN US TYPE 320 50/000	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY D SIMM SO POLY	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ea CKETS 50p ea 0204/23/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKETFOR 2x 30-way SIMMS 51 CKETR/POLYCARB CAPS 51 CAPLAC YA DATED PUN US TYPE 320 50/000	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY D SIMM SO POLY	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ea CKETS 50p ea 0204/23/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKETFOR 2x 30-way SIMMS 51 CKETR/POLYCARB CAPS 51 CAPLAC YA DATED PUN US TYPE 320 50/000	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY D 32-WAY D 330F 10 100n, 220 10/15/2 100n 500 100n 620 1000 600 2µ2 160V	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ea CKETS 50p ea 020/24/23/40 WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for 12 CKETFOR 2x 30-way SIMMS 51 ESTER/POLYCARE CAPS 520100 % 250V AC X2 RATED PHILIPS TYPE 330 20c1 100/23, 52 2n/33n/47m66n 10mm rad 100/23, 52 7 radial 10mm 100/25, 52 7 radial 10mm 100/25, 57 7 rad 22mm, 2µ2 100V rad 15mm 100/25, 52	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY 1 SIMM SO POLY 330nF 10 100n, 220 100n 250 100n 600 2µ2 160V 10r/33n/4 1µ 600V I	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K 2M 50p ea CKETS 50p ea 00R 24/24/40-WAY DIL SKTS £1 per TUBE L SKITS 52 per TUBE URNED PIN SKTS 3 for £1 CKETOR 2x 30-way SIMMS 51 ESTER/POLY CARB CAPS 500 for 60 % 250V CK 2X RATED PHILLIPS TYPE 330 20/100 n 63V 5mm 20/23n/47n/66n 10mm rad 100/53,57 Y adala 10m 100/53,57 7 adala 100°1 7 ad 22mm 22 100V rad 15mm 100/516 70 ado 200 AC x rated 15mm 10 KED DIELECTRIC 50p ea 100/516	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY T SIMM SO POLY 330nF 10 100n, 220 100n 600 2µ2 1600/ 10n/33n/4 1µ6 000/ 100/33n/4	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M	
200K 500 IC SO 14/16/18/ 8-WAY D 32-WAY T SIMM SO POLY 330nF 10 100n 250 100n 250 100n 600 2µ2 160V 100 100V 2µ2 160V 1µ60V V 1µ0 100V 0.22µ 250 0.22µ 900	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K2M 50p ea CKETS 50p ea 00R 24/24/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKET FOR 2x 30-way SIMMS 51 ESTER/POLY CARE CAPS \$20/100 x033n 47/n/66n 10mm rad 100/E3 5C 2n/33n 47/n/66n 10mm rad 100/E3 5C 7 adda1 10m 100/E1 5C 7 add 22mm 2y 100V rad 15mm 100/E1 5C 7 add 15mm, 100 25mm rad 100/E1 5C 7 add 22mr 2,4 200V rad 15mm 100/E1 5C 7 add 22mr 2,4 100 25mm rad 100/E1 5C 7 add 22mr 2,4 100V rad 15mm 100/E1 5C 7 ad 22mr 2,4 200V rad 15mm 100/E1 5C	
200K 500 IC SO 14/16/18/ 8-WAY 1 32-WAY 1 330nF 10 100n, 220 100n 600 2µ2 160V 100/33n4 1µ 600V 1µ60V 1µ602V 1µ60V	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 2002 /23/40-WAY DIL SKTS £1 per TUBE L SKITS £2 per TUBE URNED PIN SKTS 3 for £1 CKETFOR 2x 30-way SIMMS 3 for £1 CKET FOR 2x 30-way SIMMS 2010 630 5mm 20011 00 fc3 2n/33n/47n/66n 10mm rad 100135 7 radial 10mm 1000516 7 radial 10mm 1000516 7 rad 22mm, 22 100V rad 15mm 100165 70 at 10nc11 50p ea MIXED DIELECTRIC 50p ea VAC X2 RATING 4/et m VAC X2 RATING 4/et m	
200K 500 IC SO 14/16/18/ 8-WAY 1 32-WAY 1 330nF 10 100n, 220 1001 500 2µ2 160V 1001 000 000 200 2µ2 160V 1001 000 000 200 2µ2 160V 1001 000 002 2µ2 50 002 2µ2 000 RFBI SAW FILT 379.5 MH	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 51p er TUBE L SK17S 51 per TUBE URNED PIN SKTS 51 per TUBE SCRETFOR 2X 30-way SIMMS 51 ESTER/POLYCARE CAPS 500 f00 63V 5mm 200100 n 63V 5mm 100153 20/32n/47/n66n 10mm rad 100153 100 F1 100154 7 radal 10mm 100251 7 radal 10mm 100251 7 radal 10mm 100251 7 radal 10mm 100251 7 rad 22mm rad 100251 7 rad 15mm, 100 22mm rad 100252 V AC X2 RATING 4E1 V V V 4E1 TS 20051 100 250 TS 20052 250 651 PLESSEY SIGNAL TECHNOLOGY Z 51,50 ea	
200K 500 14/16/18 8-WAY D 32-WAY 330nF 10 32-WAY 300nF 20 100n 520 100n 520 100 5	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ee CKETS 50p ee 0.0024/23/40-WAY DIL SKTS £1 per TUBE L SK15S £2 per TUBE URNED PIN SKTS 3 for £1 CKET FOR 2x 30-way SIMMS £1 ESTER/POLYCARB CAPS £20100 r033 5m 2011 r04alal 100mm rad 100(£3, 52) r04alal 10mm 100(£5, 52) r04alal 10mm 100(£6, 62) Y Sprague axial 10(£1) 100(£6, 62) r04 5mm, 24, 2100V rad 15mm 100(£6, 62) r04 5mm, 24, 2100V rad 15mm 100(£6, 72) r04 5mm, 24, 200V rad 15mm 100(£6, 72) r04 5mm, 24, 200V rad 15mm 100(£6, 72) r04 5mm, 100 22mr rad 100(£6, 72) VAC X2 RATING 4/2 for TS ERIS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY EIRS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY £1,50 ee EIRITE RING 10 5mm 0D 10mm 10 for £1	
200K 500 14/16/18 8-WAY D 32-WAY 330mF 10 32-WAY 300nF 20 100n 520 100n 520 1	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K (2M 50p ee CKETS 50p ee 0.002/4/28/40-WAY DIL SKTS £1 per TUBE L SK17S £2 per TUBE URNED PIN SKTS 3 for £1 CKET FOR 2x 30-way SIMMS £1 ESTER/POLYCARB CAPS \$20100 r0305 mm 20211 100/£3 2n/33n/47n/66n 10mm rad 100/£3, £2 100/£3, £7 100/£6 2n/33n/47n/66n 10mm rad 100/£3, £2 100/£3, £7 100/£6 7 radal 10mm 100/£5, £2 7 radis 10mm 100/£6 7 radis 10mm 100/£5, £2 7 radis 10mm 100/£5, £2 7 radis 10mm 100/£5, £2 Y AC X2 RATING	
200K 500 IC SO 14/16/18/ 8-WAY 1 32-WAY 1 330nF 10 330nF 10 100n 500 POLY 330nF 10 100n 500 100n 500 100 600 V 100 100V 000 222 160V 100 100V 100 500 222 160V 100 100V 100 500 222 160V 100 100V 100 500 222 160V 100 100V 100 500 222 160V 100 500 500 222 160V 100 500 500 222 160V 100 500 500 500 222 160V 100 500 500 500 500 500 500 500 500 500	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K K2M 50p ea CKETS 50p ea 00R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea URNED PIN SKTS £1 per TUBE L SKITS 52 per TUBE URNED PIN SKTS 3 for £1 SCKET FOR 2x 30-way SIMMS 51 ESTER/POLY CARBE CAPS \$20/100 x033n 47/r/66n 10mm rad 100/E3 5C 100 rad 22m 72 100V rad 15mm 100/E1 100 s0 AC x rated 15mm 100/E1 10 200 AC x rated 15mm 100/E1 10 AC XR ATED FHILLISE YPE 30. 20/10 10 AC XR ATED FMILLISE YPE 30. 20/10 10 AC XR ATED FMILLISE YPE 30. 20/10 rad 15mm, 10 021 100/E3 5C 10 AC XR ATING 10/021 10 AC XR ATING 4/E1 10 AC XR ATING 10 for E1 10 X23 UHF VIDEO MODULATO	
200K 500 IC SO 14/16/18/ 8-WAY 1 32-WAY 330nF 10 100n 500 POLY 330nF 10 100n 500 100n 500 212 160V 100 1000 002 21 60V 100 1000 002 21 60V 100 1000 002 20 900 REBI 379.5 MH FX3266 ASTEC U STOCK MARCOM	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 21 per TUBE URNED PIN SKTS 21 per TUBE URNED PIN SKTS 31 or 1 CKETS 31 or 1 CKETOR 2x 30-way SIMMS 51 ESTER/POLY CARB CAPS 20/100 x 250V CK 2X RATED PHILLIPS TYPE 330 20/100 n 63V 5mm 20/121 100/123 2n/33n/47n/66n 10mm rad 100/13, 57 rad 22mm 2/2 100V rad 15mm 100/13, 57 Yadal 100E1 100/25, 67 7 ad 22mm 2/2 100V rad 15mm 100/13, 57 YAC 2X RATED FILECTRIC 50p ea YAC 2X RATING 4/21 YAC 2X RATING 4/21 YAC 2X RATING 4/21 YAC 2X RATING 10/107 YAC 2X RATING 11.50	
200K 500 14/16/18/ 8-WAY 32-WAY 330mF 10 100n, 220 100/15n/2 100n 500 2µ2 160V 100 1000 200 2µ2 160V 1µ0 100V 0.22µ 250 0.22µ 900 RFBI SAW FILI 379.5 MH FX3266 F ASTEC U STOCK. MARCON DC4229F STAL FIL ALL TRIM VIOLET.	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 21 per TUBE URNED PIN SKTS 21 per TUBE URNED PIN SKTS 31 or 11 CKETS 22 per TUBE URNED PIN SKTS 31 or 11 CKETFOR 2x 30-way SIMMS 51 ESTER/POLY CARB CAPS 20/100 x 250V CK 2X RATED PHILLIPS TYPE 330 20/100 n 63V 6mm 20/11 00/013 2n/33n/47n/66n 10mm rad 100/13, 54 1/ radial 10mm 100/13, 54 1/ radial 10mm 100/13, 54 1/ radial 10mm 100/13, 54 1/ radial 10x1 100/25, 54 1/ radial 10x1 100/25, 54 1/ radial 10x1 100/25, 54 1/ radial 10x1 10/02, 56 1/ rad 2zmm, 2µ2 100V rad 15mm 10/02, 56 1/ rad 2zmm, 2µ2 100V rad 15mm 10/02, 56 YAC X2 RATING 4/21 YAC X2 RATING 4/21 YAC X2 RATING 10/21 YAC X2 RATING 10/21 YAC X2 RATING	
200K 500 IC SO0 14/16/18/ 8-WAY D 32-WAY 330nF 10 100n, 222 10/15/ 100n 250 100n 600 2µ2 1600/ 1µ6 1000/ 0.22µ 900 0.22µ 900 0.22µ 250 0.22µ 900 RF BI SAW FLT 379.5 MH FX3266 F ASTEC U STOCK MARCON DC4229F XTAL FIL ALT TRIN VIOLET RED 10-1	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 51p er TUBE URNED PIN SKTS 51 per TUBE CKET FOR 2x 30-way SIMMS 51 or 51 S20V AC X2 RATED PHILIPS TYPE 330 520/100 R3V 5mm 100/13, 55 Y oradial 10mm 100/25, 57 Y oradial 10mm 100/25, 57 Y oradial 10mm 100/25, 67 Y add 310mm 100/25, 67 Y AC X2 RATING 4/21 Y Y Y AC X2 RATING 4/21 Y Y Y AC X2 RATING 4/21 Y Y Y Y Y	
200K 500 IC SO0 14/16/18/ 8-WAY D 32-WAY T 330nF 10 100n, 222 10n/15/v2 100n 250 100n 600 2µ2 1600/ 100 2µ2 1600/ 100/30/4 1µ6 1000/ 0.22µ 900 RFBI SAW FLI 379.5 MH FX3266 F ASTECK MARCON 0:242 F XTAL FLI ALL TRIN VIOLET RED 10-1 2 to 22p F TRANSIS	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 51p per TUBE LSK17S 51p per TUBE URNED PIN SKTS 51p per TUBE URNED PIN SKTS 3 for 51 SCRETFOR 2x 30-way SIMMS 51 ESTER/POL YCARE CAPS 520/100 % 250V AC X2 RATED PHILIPS TYPE 330 520/100 ROV 5Mm 100/13, 52 7 / radial 10mm 100/25, 52 7 / radial 10mm 100/25, 52 100 / rad 22mm 2/100V rad 15mm 100/25, 62 100 / rad 22mm 2/100V rad 15mm 100/25, 62 100 / rad 15mm, 1/00 / 22mm rad. 100/25, 62 V AC X2 RATING 4/21 V AC X2 RATING 4/21 V AC X2 RATING 4/21 V X 4/21 V X 20 / 22 XU 20 / 22 X 10 / 20 X 10 / 20 X 100 / 21 X 10 / 22 X 10 / 20 X 10 / 20 </td <td></td>	
200K 500 IC SO0 14/16/18/ 8-WAY D 32-WAY T 330nF 10 100n, 222 10n/15/v2 100n 250 100n 600 2µ2 1600/ 100 2µ2 1600/ 100/30/4 1µ6 1000/ 0.22µ 900 RFBI SAW FLI 379.5 MH FX3266 F ASTECK MARCON 0:242 F XTAL FLI ALL TRIN VIOLET RED 10-1 2 to 22p F TRANSIS	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 10p er TUBE LSK17S 12p er TUBE URNED PIN SKTS 10p r TUBE SK17S 12p er TUBE URNED PIN SKTS 3 for 11 OXCX 2X 30-way SIMMS 10f 11 CKET FOR 2x 30-way SIMMS 10f 21 CKET FOR 2x 30-way SIMMS 100 C13 CAST POR 2x 30-way SIMMS 2011 00/C13 X 250V AC X2 RATED PHILIPS TYPE 330 22011 00/C13 CAST PATTER 100/C13 Y 3prague axia 10/C1 100/C15 TA 220m 21 00V rad 15mm 100/C15 TA 220M AC x rated 15mm 100/C15 TA 250V AC x rated 15mm 100/C15 Y AC X2 RATING 4/E1 V 2 X 2 15.00 ec ERS X062/SW661 PLESSEY SIGNAL TECHNOLOGY 2 X 2 11.50 ENGUMAY DIDE	
200K 500 IC SO 14/10/918 8-WAY D 32-WAY 330nF 10 32-WAY 300nF 20 100n,222 100/15/2 100n 250 100n 250 100n 250 100 242 160V 100 500 242 160V 100 500 242 160V 100 500 00,229 00 0,229 00 0,200 00 0,000 00	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKETS 50p ea CWARD PUN SKTS £1 per TUBE L SKITS £2 per TUBE URNED PUN SKTS 3 for £1 CKET FOR 2x 30-way SIMMS 51 CKET FOR 2x 30-way SIMMS 51 CKET FOR 2x 30-way SIMMS 520100 CS0V AC X2 RATED PHILIPS TYPE 330 520100 CASU ATED PHILIPS TYPE 330 520100 CY adail 10mm 10013.55 Y radial 10mm 10015.55 Y radial 10mm 10015.55 Y adail 10mm 10015.55 Y AC X2 RATING 4/21 Y AC X2 RATING 4/21 Y AC X2 RATING 4/21 Y Y 4/25 Y TS 50 pe ERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY 11.51 IMICROWAVE DIODES TYPES DC2929, DC2922,	
200K 500 14/16/14 8-WAY D 32-WAY 330m 520 POLY 330m 520 10/15m2 100m 520 10/15m2 10/15m	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 10p er TUBE LSKITS 12p er TUBE URNED PIN SKTS 11p er TUBE LSKITS 12p er TUBE URNED PIN SKTS 10r 11 OCKET FOR 2x 30-way SIMMS 11 ESTER/POLY CARE CAPS 20/10 n 63V 5mm 20/10 n 63V 5mm 20/10 n 63V 5mm 100/11 Y chail 10mm rad 100/21 100 21 f 20/21 100/21 7 add 2mm 2/21 00V rad 15mm 100/11 100 20 AC x rated 15mm 100/11 10A 22mm 2/21 00V rad 15mm 100/12 17 a 250V AC x rated 15mm 100/11 10A 22m ALLOCTRIC 50p ea rad 15mm, 1µ0 22mm rad. 100/21 VAC X2 RATING. 4/21 V. 4/21 VIE23 UHF VIDEO MODULATORS (NO SOUND) 1/250 11MICROWAVE DIODES TYPES DC2929, DC2962. 11.50 11MICROWAVE DIODES TYPES DC2929, DC2962. 11.51 11MICROWAVE DIODES TYPES DC2929, D	
200K 500 14/16/18 8-WAY D 32-WAY 330mF 10 100n,220 100n 520 100n 520	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 21 per TUBE LSK17S 21 per TUBE LSK17S 21 per TUBE LSK17S 21 per TUBE URNED PIN SKTS 31 or 11 CKETS 20/100 RESTER/POLY CARB CAPS \$20/100 % 250V AC X2 RATED PHILIPS TYPE 330 20/100 n 633 %mm 20/11 100/12 2n/33n/47n/66n 10mm rad 100/13, 5 Y radial 10m 100/13, 5 Y radial 10m 100/13, 5 Y radial 1001 100/25, 6 Y calal 1001 100/10, 7 Y calal 1001 100/10, 7 Y calal 1001 100/10, 7 Y cala 2mm, 2µ2 100V rad 15mm 10/02, 10 YAC 24 RATING 4/21 YAC 24 RATING 4/21 YAC 24 RATING 4/21 YAC 24 RATING 10 for 1 YAC	E E I I D B B B B B B B B B B B B B B B B B
200K 500 14/16/18 8-WAY D 32-WAY 330mF 10 100n 520 100n 520	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 21 per TUBE LSK17S 21 per TUBE Stort CX 2R ATED PHILIPS TYPE 330 20/10 n 630 %mm 20/11 00/013 2n/33n/47n/66n 10mm rad 100/013 17 radial 10mm 100/013 17 radial 10mm 10/013 17 radial 10mm 10/014 17 radial 10mm 10/015	E E I I D B B B B B B B B B B B B B B B B B
200K 500 IC S00 14/16/18/ 8-WAY D 32-WAY 330nF 10 100n, 222 10n/15/v2 100n 250 100n 600 2µ2 1600 000 200 1000 200 000 200 000 200 RFBI SAW FL1 379.5 MH FX3266 F ASTEC U STOCK MARCON 0.22µ 900 0.22µ 900	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 10p er TUBE LSKITS 12p er TUBE LSKITS 12p er TUBE URNED PIN SKTS 10 r 11 SCRETCR 20/100 RSTER/POL YCARE CAPS 20/100 % 250V AC X2 RATED PHILIPS TYPE 330 20/100 R03V 5mm 100/13 2n/33n/47n/66n 10mm rad 100/13 100/13 100/13 2n/33n/47n/66n 10mm rad 100/13 100/14 100/15 7 radial 10mm 100/16 7 radial 10mm 100/16 <td>E E I I D B B B B B B B B B B B B B B B B B</td>	E E I I D B B B B B B B B B B B B B B B B B
200K 500 IC SOO 14/16/18/ 8-WAY D 32-WAY 330nF 10 132-WAY 330nF 10 100n, 222 100n/15// 100n 250 100n 250	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 51p er TUBE 000R 200R 250R 500R 2K3 3K5 51 or 51 00R 200R 250R 500R 2K3 3K5 51 or 51 00R 200R 250R 500R 2K3 3K5 51 or 51 00R 50R 50R 50R 50R 50R 50R 50R 50R 50R	E E I I D B B B B B B B B B B B B B B B B B
200K 500 14/16/18/ 8-WAY D 32-WAY 330nF 10 100n, 222 100n/1502 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 500 RFBI SAW FILT 379-5 MH FX3286F ASTEC U STOCK MARCON 0C4229F XTAL FIL ANSIS CERAMIC FED TH SL610 6 VOLT T 21N2222 2N3369A 2N3416 TF 2N2222 2N3369A 74N16 TF EQUIV MONOCO	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 51p er TUBE 000R 200R 250R 500R 2K2 2K2 5K 10K 47K 50K 100K 51p er TUBE 000R 200R 250 WAY DIL SKTS 51 per TUBE 00R 200R 250 WAY DIL SKTS 51 per TUBE 00R 200R 250 WAY DIL SKTS 51 or 51 00R 200R 250 WAY DIL SKTS 52 of 100 00R 200R 250 WAY AT M66N 10mm rad 1000C1 52 20/30R 47 M66N 10mm rad 1000C1 52 20/30R 47 M66N 10mm rad 1000C1 52 20/30R 47 M66N 10mm rad 1000C1 52 20/30R 42 100V rad 15mm 1000C1 52 7 A 250 VA CX rated 15mm 100 for 50 10/30R 42 100V rad 15mm 100 for 51 10/30R 42 100V rad 15mm 100 for 51 10/30R 42 PATING 4/4 for 72 7 500 862/SW661 PLESSEY SIGNAL TECHNOLOGY 10/30R 42 PATING 4/2 for 50 10/30R 500 500 100 10mm 10 for 51 10/30R 500 500 500 100 10mm 10 for 50	E E I I D 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
200K 500 IC SOO 14/10/918 8-WAY D 32-WAY 330nF 10 32-WAY 330nF 10 100n, 222 100/15/02 100n 250 100n 250 100n 250 100 202 100/0 202 160V 100/0 202 100V 100/0 202 205C 100/0 202 205C 202 205C	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKETS 50p ea URNED PIN SKTS £1 per TUBE L SKITS 52 per TUBE URNED PIN SKTS 3 for £1 OX4 2/2/40 WAY DIL SKTS £1 per TUBE URNED PIN SKTS 3 for £1 OKET FOR 2x 30-way SIMMS 51 ESTER/POL YCARE CAPS \$20100 % 250V AC X2 RATED PHILIPS TYPE 330 520110 R03V 5mm 100£3 Y oradial 10mm 100£5 Y cadal 10mm 101£5 Y 2 £1.50 ERS SW662/SW661 PLESSEY SIGNAL TECHNOLOGY \$1.50 Y cadal 10m	a a a a a a a a a a a a a a a a a a a
200K 500 IC SOO 14/16/19/ 8-WAY D 32-WAY 330nF 10 132-WAY 330nF 10 100n, 222 100/15/02 100n 250 100n 250 100n 250 100 0 202 100/15/02 100/1	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 21per 10Be 000R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 21per 10Be 000R 200R 250R 500R 2K3 2K3 5K 10K 47K 50K 100K 21per 10Be URNED PIN SKTS 21per 10Be 8 250V AC X2 RATED PHILIPS TYPE 330 220100 6 30V 5mm 100C13 7 2dall 10mm 100C13 7 2dague axla1 10C1 100C50 ET 7 100V AC X2 RATED PHILIPS TYPE 330 100C11 100 2D AC X2 RATING 100C11 V AC X2 RATING 4C1 V AC X2 RATING 4C1 V AC X2 RATING 4C1 V X 4C1 TS 2 ERS W662/SW661 PLESSEY SIGNAL TECHNOLOGY 2 Z 5.150 ec M1233 UHF VIDEO MODULATORS (NO SOUND) 1250 11 M1233 UHF VIDEO MODULATORS (NO SOUND) 1250 11 MERS 3 FOR 50p f100/10 TORS 2N4427, 2N3866	E E I I D 30033))01 a 55111 a 55111 a 551111 a 5551111 a 55511111 a 555335
200K 500 IC SO 14/10/218 8-WAY D 32-WAY 330nF 10 100n, 222 100n/1502 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 600 2µ2 160V 100n 50V 20,219 00 0,229 00 0,000 0	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKETS 50p ea CKETS 51p er TUBE LSK17S 51p er TUBE LSK17S 51p er TUBE URNED PIN SKTS 3 for 51 CKET FOR 2x 30-way SIMMS 51 ESTER/POLYCARE CAPS 520100 % 250V AC X2 RATED PHILIPS TYPE 330 5201100 2n/33n/47n/66n 10mm rad 100123, 52 1007 radial 10mm 100124, 50 1007 radial 10mm 100125, 50 1007 radial 10mm 100124, 50 1007 radial 10mm 100124, 70 1007 radial 10mm 100124, 70 1108 radia 15mm, 1µ0 22mm rad 100124, 70 1108 radia 15mm, 1µ0 22mm rad 100124, 70 1108 radia 15mm, 1µ0 22mm rad 100125, 70 11100 100 500 MODULATORS (NO SOUND) 1250 11.50 11100 100 500 MODULATORS (NO SOUND) 1250 11.51 11100 100 50	E E I I D 30033))01 a 55111 a 55111 a 551111 a 5551111 a 55511111 a 555335
200K 500 14/16/18 8-WAY D 32-WAY 330nF 10 132-WAY 300n 220 POLY 330nF 10 100n 220 100n 220 100n 220 212 160V 100n 220 212 160V 100n 220 212 160V 100 600V 212 160V 100 600V 212 160V 100 60V 100 60V	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKITS 50p ea URNED PIN SKTS 51p er TUBE L SKITS 52p er TUBE URNED PIN SKTS 51p er TUBE SKTS 52p er TUBE URNED PIN SKTS 51 or 51 SKTS 520 VAC X 20-way SIMMS ESTER/POLY CARB CAPS 520/100 % 250V AC X2 RATED PHILLIPS TYPE 330 20/100 n 633 5mm 100/613, 52 Y adala 10mm 100/613, 52 Y adala 100T1 100/613, 52 Y adala 100T1 100/614, 50 Y CA 22 RATING 4/61 YAC 22 RATING 4/61 YAC 22 RATING 10 for 51 WIC2 DELECTRIC 50p ea YAC 22 RATING 10 for 51 WIX23 UHE YUBCO MODULATORS (NO SOUND) 1250 ea 5105p YER SW662/SW661 PLESSEY SIGNAL TECHNOLOGY 51.65p YF2	E E I I D 33))) I a 55 I I A A A 55 I I A A A 55 I I A A A 55 I A A 55
200K 500 IC 500 14/16/18/ 8-WAY D 32-WAY 330nF 10 100n, 222 10n/15/02 100n 250 100n 600 2µ2 1600 000 200 I000 200	100R 200R 250R 500R 2K 2K2 2K5 5K 10K 47K 50K 100K 50p ea CKETS 50p ea CKETS 50p ea CKETS 51p er TUBE LSK17S 51p er TUBE LSK17S 51p er TUBE URNED PIN SKTS 3 for 51 CKET FOR 2x 30-way SIMMS 51 ESTER/POLYCARE CAPS 520100 % 250V AC X2 RATED PHILIPS TYPE 330 5201100 2n/33n/47n/66n 10mm rad 100123, 52 1007 radial 10mm 100124, 50 1007 radial 10mm 100125, 50 1007 radial 10mm 100124, 50 1007 radial 10mm 100124, 70 1007 radial 10mm 100124, 70 1108 radia 15mm, 1µ0 22mm rad 100124, 70 1108 radia 15mm, 1µ0 22mm rad 100124, 70 1108 radia 15mm, 1µ0 22mm rad 100125, 70 11100 100 500 MODULATORS (NO SOUND) 1250 11.50 11100 100 500 MODULATORS (NO SOUND) 1250 11.51 11100 100 50	E E I I D 30033)) D 1 a 5 I 1 a 5 I 1 a 5 I 1 a 6 5 5 5 1 1 1 1 a 6 5 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 9 a 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5


T-ALSO AVAILABLE ON

CIRCLE NO. 128 ON REPLY CARD

MIN. CASH ORDER \$5.00. OFFICIAL ORDERS WELCOME UNIVERSITIES: COLLEGES/SCHOOLS/GOVT. DEPARTMENTS MIN: ACCOUNT ORDER \$10.00 P&P AS SHOWN IN BRACKETS (HEAVY ITEMS) OTHERWISE 95p ADD 171/2% VAT TO TOTAL ELECTRONIC COMPONENTS BOUGHT FOR CASH

Trickle-charged emergency light

Emergency lights designed to switch on when the mains fails have the disadvantages that it can be expensive to repair them when necessary and to keep them in batteries. This design uses an old 12V car battery, but the circuit may be modified to take a 6V battery.

With normal mains operation, the

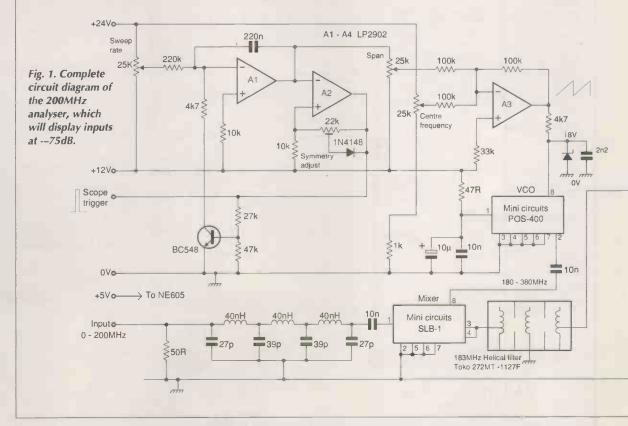
Car battery is normally charged from the mains, powering the 12V emergency lamp during mains failure. battery charges through D_1 , the 6V bulb indicating the fact. Since Tr_1 is bottomed by way of D_2 and the smoothing components CR_2 , Tr_2 is turned off. Consequently the 12V lamp is off. A mains failure cuts Tr_1 off, so Tr_2 conducts and the 12V lamp comes on.

Transistor Tr_2 is a power type on a heat sink and the 12V bulb may be replaced by three 6V, 8W bulbs for a longer life. *I Rahman*

Islamabad Pakistan

£100 WINNER 200MHz spectrum analyser displays to -75dB

Used with an ordinary oscilloscope, this circuit forms a spectrum analyser for the 0-200MHz range of frequencies. To simplify examination of the wanted frequency, span and centre frequency controls


are arranged to make signals in the

middle of the trace stay there as span

decreases.

Amplifiers A_1 and A_2 produce a sawtooth waveform, symmetrical about the 12V rail, which is amplified in A_3 with control of amplitude for span and offset for centre frequency. The discharge pulse from A_2 for the integrator also goes to the oscilloscope as a timebase trigger.

Driven by the sawtooth, the Mini Circuits POS-400 voltage-controlled oscillator provides a linear voltage/frequency output over the 180-380MHz range and drives the SLB-1 double-balanced mixer

CIRCUIT IDEAS

Electrostimulator

Droviding a constant-frequency, variable-amplitude train of pulses in response to a probe coming in contact with a low-resistance biological point, this circuit is also usable as a voltage detector or to measure resistance.

Oscillator $IC_{1a,b}$ drives the monostable $IC_{1c,2b}$, this part of the circuit only operating when its voltage supply is provided by IC_{2a} . When the passive probe touches a biologically active point of low resistance, the output of IC_{2a} rises and turns on the oscillator, also opening gate IC_{1d}. Oscillator pulses now pass, via the amplitude control R_4 , to the probe, being prevented from affecting the rest of the circuit by D_1 . Resistor R_2 determines the input sensitivity and R_1 and R_3 are frequency and pulse width adjustments respectively.

To provide an indication of operation, particularly at low frequency, the IC_1 oscillator modulates a second oscillator in IC2c.d, which drives the sounder, transistor and led.

Component values shown give a 10-150Hz train of 0.5 to 5ms pulses.

Vasiliy Borodai Zaporozhje Ukraine

8p2

173 3MHz

SAW resonator

47p

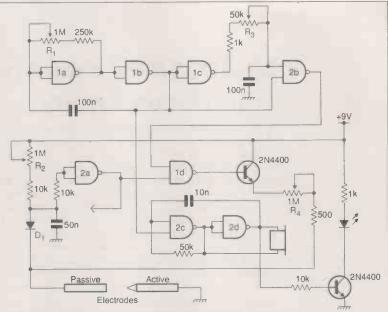
22µ

Tant +5V0

Murata SAR173.3MB40X

Ճ80nH

≲18k


1

100n

33k

80nH

820R

Using c-mos ICs, this circuit emits a constant-frequency pulse train to stimulate biologically active points. No switching is needed, since it only operates when the probe touches the point.

directly, signal input to the mixer coming via the low-pass filter.

After filtering by the Toko 272MT-1127F, mixer output is impedance matched to the NE605. This device converts down to a standard if of 10.7MHz, the local oscillator being a saw type. A voltage proportional to the log. of the internally amplified 10.7MHz if appears at pin 7 of the NE605 and is buffered in A_4 to be used as the oscilloscope input.

Symmetry of response is maintained by the CFSK ceramic filters, which also determine the bandwidth.

A limitation is the fairly slow response of the output of the NE605. It is usable, but reduces the amplitude of the display at faster sweep rates. It may be that the NE625, which is pincompatible and faster, would improve matters. **Givn** Roberts

> 100n 100

> > 560R

A4

Gain

221

Walsall West Midlands

NE/SE605

820R

47k

BSSI

100k

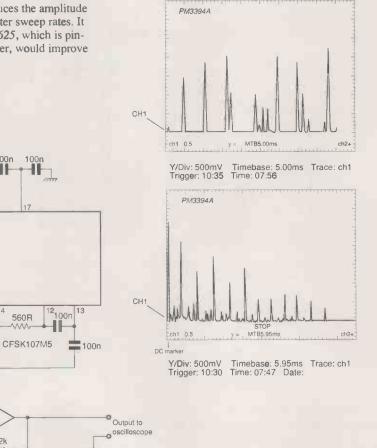
390R2

560R

47p

CFSK107M5

8µ2H


1n

an

1n

220

Spectrum of local fm broadcast band, 88 to 108MHz, top, and 20MHz square wave, demonstrating sweep linearity, bottom.

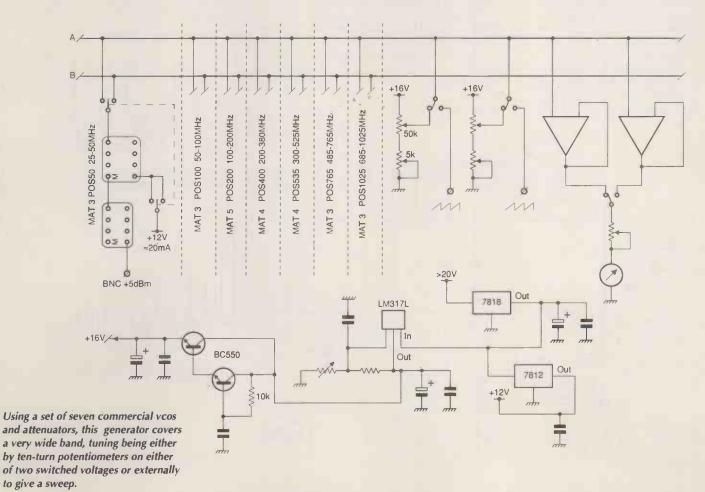
25-1025MHz signal generator with sweep facility

This very simply built generator is effectively a set of commercial voltage-controlled oscillators with some power and control circuitry. It provides good performance in a novel arrangement, which can be modified to suit individual needs.

Output is from 50Ω at 5dBm, varying about 1.5dBm over the frequency range, harmonics are at less than -20dBc and phase noise around -100dBc at 10kHz.

Two switched rails carry the tuning voltage, which may be adjusted on each by potentiometers or varied by an externally applied sawtooth for a sweep. A meter, driven by voltage followers, indicates the tuning voltage and therefore the frequency fairly roughly.

A set of seven oscillators from Mini Circuits covers the 25-1025MHz band in roughly 2:1 steps and forms the core of the circuit, each oscillator being followed by an attenuator to define the 50Ω impedance at the BNC outputs rather more exactly than do the oscillators. This also allows individual output levels to be adjusted, since they do vary somewhat. Again, the attenuators come from MiniCircuits.


Since, even if all the oscillators were to be switched into circuit at the same time, current requirement would be only 140mA, the power supply need only be fairly modest, although the tuning voltage must be well filtered to maintain a low noise level.

A BICC-Vero Eurocard 03-2989L suits the circuit well. Note that a ground plane is essential. Björn Nilsson Mijas Spain

Make sure that V+ is as clean as possible. Decouple each tuning port pin with 10nF but do not use an electrolytic capacitor – ed.

Special offer to EW readers

Electronics World readers can obtain a set of oscillators for this design at £60.65 excluding VAT. This represents over 10% discount on the normal price. For each PATx surface-mount attenuator (MATx equivalent) required add £2.95 excluding VAT. Send your order requesting one KPOS2EW set plus any attenuators you want at £2.95 each, together with a cheque or postal order payable to Mini Circuits, to Mini Circuits Europe, Dale House, Wharf Road, Frimley Green, Camberley, Surrey GU16 6LF. Credit card orders are acceptable, Phone 01252 835094, fax 01252 837010.

SURVEILLANCE TELESCOPE Superb Russian zoom telescope adjustable from 15x to 60xl complete with metal tripod (imposible to use without this on the higher settings) 66mm lense, leather carrying case £149 ref BAR69

RADIATION DETECTOR SYSTEM Designed to be wall mounted and connected into a PC, ideal for remote monitoring, whole building coverage etc. Complete with detector, cable and software. £19.95 ref BAR75

WIRELESS VIDEO BUG KIT Transmits video and audio ignals from a minature CCTV camera (included) to any standard television! All the components including a PP3 battery will fit into a cigarette packet with the lens requiring a hole about 3mm diameter. Supplied with telescopic aerial but a piece of wire about 4" long will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use £99 REF EP79. (probably not licensable!)

CCTV CAMERA MODULES 46X70X29mm, 30 grams, 12v 100mA. auto electronic shutter, 3.6mm F2 lens, CCIR, 512x492 pixels, video output is 1v p-p (75 ohm). Works directly into a scart or video input on a tv or video. IR sensitive. £79,95 ref EF 137.

IR LAMP KIT Suitable for the above cameral enables the camera to be used in total darkness! £5.99 ref EF138

REMOTE CONTROLTANDATA TD1400 MODEM/ VIEWDATA Complete system comprising 1200/75 modem, auto dialler, infra red remote keyboard, (could be adapted for PC use?) psu, UHF and RGB output, phone lead, RS232 output, composite

output. Absolute bargain for parts alone!!£9.95 ref BAR33.

9 WATT CHIEFTAN TANK LASERS

Double beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drive units for alignement. 7 mile range, full circuit diagrams, new price £50,000? us? £349. Each unit has two galilum Arsenide Injection lasers, 1 x 9 watt, 1 x 3 watt, 900nm wavelength, 28vdc, 600hz pulse frequency. The units also contain an electronic receiver to detect reflected signals from targets, five or more units £299 ea. £349 for one, Ref LOT4

TWO WAY BIRROR KIT Includes special adhesive film to make two way mirror(s) up to 60°x20°. (glass not included) includes full instructions. £12 ref TW1.

NEW HIGH POWER RF TRANSMITTERS

AMPLIFIERSAssembled PCB transmitters, 4 types available, 12.6vdc 90 watt 1.5-30mhz 75 ohm in/out FM/AM £75 ref RF1 12.6vdc 40 watt 50-200mhz 50 ohm in/out FM/AM £65 ref RF2 28vdc 125 watt 1.5-30mhz 75 ohm In/out FM/AM £85 ref RF3 28vdc 100 watt 50-200mhz 50 ohm In/out FM/AM £75 ref RF4 A heat sink will be required, ring for price and availability. If you intend using these as audio transmitters you will need a also ed a preamp. Complex module available at £40 ref RE5. COMPUTER/WORKSHOP/HI-FI RCB UNITS Complete

protection from faulty equipment for everybody! Inline unit fits in standard IEC lead (extends it by 750mm), fitted in less than 10 seconds, reset/test button, 10A rating. £9 each Ref MM5.

RADIO CONTROLLED CARS FROM £6

EACH !!!! All returns from famous manufacturer, 3 types available, single channel (left,right,forwards,backwards) £6 refLOT1. Two channel with more features £12 ref LOT2. Two channel proportional (plug in crystals etc) £35 ref LOT3

THOUSANDS AVAILABLE RING/FAX FOR DETAILS! MAGNETIC CARD READERS (Swipes) £9.95 Cased with flyleads, designed to read standard credit cards! they have 3 wires coming out of the head so they may write as well? complete with control elctronics PCB. Just £9.95 ref BAR31

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sell) the manuals as much as you like! £14 ref EP74

PANORAMIC CAMERA OFFER Takes double width photographs using standard 35mm film. Use in horizontal or vertical mode. Complete with strap £7.99 ref BAR1

COIN OPERATED TIMER KIT Complete with coinslot mechanism, adjustable time delay, relay output, put a coinslot on anything you likel TV,s, videos, fridges, drinks cupboards. HIFI, takes 50p's and £1 coins. DC operated, price just £7.99 ref BAR27. ZENITH 900 X MAGNIFICATION MICROSCOPE Zoom metal construction, built in light, shrimp farm, group viewing screen, lots of accessories, £29 ref ANAYLT.

AA NICAD PACK Pack of 4 tagged AA nicads £2.99 ref BAR34 PLASMA SCREENS 222x310mm, no data hence £4.99 ref BAR67

NIGHTSIGHTS Model TZS4 with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150m range, 45mm lens, 13 deg angle of view, focussing range 1.5m to infinity. 2 AA battenes required, 950g weight, £199 ref BAR61. 1 years warranty

LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, 99x24mm £2.99 ref SM1623A 20 character 2 line, 83x19mm £3.99 ref SM2020A

16 character 4 line, 62x25mm £5.99 ref SMC1640A TAL-1 110MM NEWTONIAN REFLECTOR TELESCOPE Russian, Superb astronomical'scope, everything you need for some serious star gazing! up to 169x magnification. Send or fax for further details £249 ref TAL-1

GOT AN EXPENSIVE BIKE? You need one of our bottle alarms, they look like a standard water bottle, but open the top, insert a key to activate a motion sensor alarm built inside. Fits all standard bottle carriers, supplied with two keys. SALE PRICE **27.99** REF SA32. GOT AN EXPENSIVE ANYTHING? You need one of our cased vibration alarms, keyswitch operated, fully cased just fit it to

WOLMERIA MPRONBRANCH NOAMODBENNA MANYOR (MENSAMERASAN WHAMPTON TEL 01902 22039

yuning from videos to caravans, provides a years prov 3 battery, UK made. SALE PRICE £4.99 REF SA33.

DAMAGED ANSWER PHONES These are probably beyond epair so just £4.99 each. BT response 200 machines. REF SA30, COMPUTER DISC CLEAROUT We are left with a lot of software packs that need clearing so we are selling at disc value only! 50 discs for £4, thats just 8p each!!(our choice of discs) £4 ref EP66

IBM PS2 MODEL 150Z CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. £9.95 ref EP67 DELL PC POWER SUPPLIES 145 watt, +5,-5,+12,-12, 150x150x85mm complete with switch, flyleads and IEC socket SALE PRICE £9.99 ref EP55

1.44 DISC DRIVES Standard PC 3.5" drives but returns so they will need attention SALE PRICE £4.99 ref EP68

1.2 DISC DRIVES Standard 5.25° drives but returns so they will need attention SALE PRICE NOW ONLY £3.50 ref EP69

PP3 NICADS Unused but some storage marks. £4.99 ref EP52 DELL PC POWER SUPPLIES (Customer returns) Standard PC psu's complete with fly leads, case and fan. +12v,-12v,+5v,-5v SALE PRICE £1.99 EACH worth it for the bits alone! ref DL1. TRADE PACK OF 20 £29.95 Ref DL2

GAS HOBS ANDOVENS Brand new gas appliances, perfect for small flats etc. Basic 3 burner hob SALE PRICE £24.99 ref EP72. Basic small built in oven SALE PRICE £79 ref EP73

RED EYE SECURITY PROTECTOR 1,000 watt outdoor PIR witch SALE PRICE £6.99 ref EP57

ENERGY BANK KIT 100 6"x6" 6v 100mA panels, 100 diodes, connection details etc. £69.95 ref EE112

PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, includes wordprocessor, report writer, wir wing. networkable up to 10 stations, multiple cash books etc. 200 page comprehensive manual. 90days free technical support (0345-326009 try before you buy!) Current retail price is £129, SALE PRICE £9.95 ref SA12. SAVE £120!!!

COMPLETE PC 200 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power fluctuations and cuts. New and boxed, UK made Provides up to 5 mins running time in the event of complete power failure to allow you to run your system down correctly. LAST FEW TO CLEAR AT £49 SAVE £30 ref LOT61 BIG BROTHER PSU Cased PSU, 6v 2A output, 2m o/p lead, 1.5m input lead, UK made, 220v. SALE PRICE £4.99 REF EP7

Check out our WER SITE

http://www.pavilion.co.uk/bull-electrical

RACAL MODEM BONANZA! 1 Racal MPS1223 1200/75modem, telephone lead, mains lead, manual and comms software, the cheapest way onto the net! all this for just £13 ref DEC13.

.5mw LASER POINTER. BRANDNEW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket clip (which also acts as the on/off switch.) About 50 metres rangel Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments etc. just £39.95 ref **DEC49 TRADE PRICE £28 MIN 10 PIECES**

BULL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70% of sufferers. Drug free pain relief, safe and easy to use, can be used in conjunction with analgesics etc. £49 Ref TEN/1

RUSSIAN MONOCULARS Amazing 20 times magnification coated lenses, carrying case and shoulder strap £29.95 REF BAR73 PC PAL VGA TO TV CONVERTER Converts a colour TV Into a basic VGA screen. Complete with built in psu, lead and s/ware., Idea for laptops or a cheap upgrade.Supplied in kit form for home assembly. SALE PRICE £25 REF SA34

EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodlights, built in charger and auto switch. Fully cased. 6v 8AH lead acid regid. (secondhand) £4 ref MAG4P11.

YUASHA SEALED LEAD ACID BATTERIES Two sizes currently available this month. 12v 15AH at £18 ref LOT8 and 6v 10AH (suitable for emergency lights above) at just £6 ref LOT7. ELECTRIC CAR WINDOW DE-ICERS Complete with cable.

plug etc SALE PRICE JUST £4.99 REF SA28 AUTO SUNCHARGER 155x 300mm solarpanel with diode and 3

metre lead fitted with a cigar plug. 12v 2watt £8.99 REF SA25 ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, 60-100 flashes a min. £6.99 REF SA15B.

E-mail bulk@pavilion.co.uk

24v AC 96WATT Cased power supply. New. £9.99 REF SA40 MICRODRIVE STRIPPERS Small cased tape drives ideal for stripping, lots of useful goodies including a smart case, and lots of components. SALE PRICE JUST E4.99 FOR FIVE REF SA26

SOLAR POWER LAB SPECIAL You get TWO 6"x6" 6v 130mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit SALE PRICE JUST £4.99 REF SA27

RGB/CGA/EGA/TTL COLOUR MONITORS 12' in good condition. Back anodised metal case, SALE PRICE £49 REF SA16B PLUG IN ACORN PSU 19v AC 14w , £2.99 REF MAG3P10

13.8V 1.9A PSU cased with leads. Just £9.99 REF MAG10P3 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12v motor up to 30A, Complete with PCB etc. A heat sink may be required, £17.00 REF; MAG17

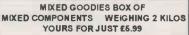
PHONE CABLE AND COMPUTER COMMUNICATIONS PACK Kit contains 100m of 6 core cable, 100 cable clips, 2 line drivers with RS232 Interfaces and all connectors etc. Ideal low cost method of communicating between PC's over along distance utilizing the serial ports. Complete kit £8.99. Ref comp1.

VIEWDATA SYSTEMS made by Phillips, complete with internal 1200/75 modem, keyboard, psu etc RGB and composite ou menu driven, autodialler etc. SALE PRICE £12.99 REF SA18 outputs,

AIR RIFLES.22 As used by the Chinese army for training puposes, so there is a lot about! £39.95 Ref EF78, 500 pellets £4.50 ref EF80. PLUG IN POWER SUPPLY SALE FROM £1.50 Plugs in to 13A socket with output lead. three types available. 9vdc 150m A£1.50 ref SA19, 9vdc 200m A£2.00 ref SA20, 6.5vdc 500m A£2 ref SA21. VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any

standard TV set in a 100'range! (tune TV to a spare channel) 12v DĆ op. Price is £15 REF: MAG15 12v psu is £5 extra REF: MAG5P2 *MINATURE RADIO TRANSCEIVERS A pair of walkie talkies

with a range up to 2 km in open country. Units measure 22x52x155mm, Including cases and earpices. 2xPP3 req1d. £30.00 pr.REF: MAG30 FM TRANSMITTER KIT housed in a standard working 13A adapter! the bug runs directly off the mains so lasts forevert why pay £700? or price is £15 REF: EF62 (kit) Transmits to any FM radio.


*FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. 9v battery reg'd. £14 REF: MAG14

TALKING COINBOX STRIPPER COMPLETE WITH COINSLOT MECHAN ISMS originally made to retail at £79 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their original use or used for something else?? SALE PRICE JUST £2.50 REF SA23

GAT AIR PISTOL PACK Complete with pistol, darts and pellets £12.95 Ref EF82B extra pellets (500) £4.50 ref EF80. 6"X12" AMORPHOUS SOLAR PANEL 12v 155x310mm

30mA. SALE PRICE £4.99 REF SA24 FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4,99

ref MAG5P13 ideal for experimenters! 30 m for £12,99 ref MAG13P1

4X28 TELESCOPIC SIGHTS Suitable for all air rifles, ground lenses, good light gathering properties, £19.95 ref R/7.

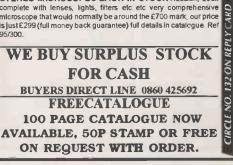
RATTLE BACKS Interesting things these, small piece of solid perspex like material that it you try to spin it on the desk it only spins one way! In fact if you spin if the 'wrong' way it stops of its own accord and go's back the other way! £1.99 ref GI/J01.

GYROSCOPES Remember these? well we have found a company that still manufactures these popular scientific toys, perfect gift or for educational use etc. £6 ref EP70

HYPOTHERMIA SPACE BLANKET 215x150cm aluminised foil blanket, reflects more than 90% of body heat. Also suitable for the construction of two way mirrors! £3.99 each ref O/L041.

LENSTATIC RANGER COMPASS Oil filled capsule, strong metai case, large luminous points. Sight line with magnifying viewer, 50mm dia, 86gm. £10.99 ref O/K604.

RECHARGE ORDINARY BATTERIES UP TO 10 TIMES! With the Battery Wizardi Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four at a time/Led system shows when batteries are charged, automatically rejects unsuitable cells, complete with mains adaptor. BS approved. Price is £21.95 ref EP31.


TALKING WATCH Yes, it actually tells you the time at the press of a button. Also features a voice alarm that wakes you up and tells you what the time is! Lithium cell included, £7,99 ref EP26.

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsible of drivers from losing their licence! Adjustable audible alarm with 8 flashing leds gives instant warning of radar zones. Detects X, K, and Ka bands, 3 mile range, 'over the hill' 'around bends' and 'rear trap facilities, micro size just 4.25"x2.5"x.75", Can pay for itself in just one day! £79.95 ref EP3

SANYO NICAD PACKS 120mmx14mm 4.8v 270 maH suitable for cordiess phones etc. Pack of 2 just £5 ref EP78

3" DISCS As used on older Amstrad machines, Spectrum plus3's etc £3 each ref BAR400.

STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, filters etc very comprehensive microscope that would normally be around the $\pounds700~mark,~our~price$ is just £299 (full money back guarantee) full details in catalogue. Ref 95/300.

200 WATT INVERTERS Nicely cased units 12v input 240v output 150watt continuous, 200 max. £49 ref LOT62.

6.8MW HELIUM NEON LASERS New units, £65 ref LOT33 COINSLOT TOKENS You may have a use for these? mixed bag of 100 tokens £10 ref LOT20.

PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine! Effective device, X-ray sealed assemblies, can be used for experimental purposes Not a toy or for minors £6%set. Ref F/XP1. TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent means or ca Uses no electrical or mechanical connections, no special gimmicks yetproducespositive motion and effect. Excellent for science projects, magic shows, party demonstrations or serious research & development of this strange and amazing phychic phenomenon. E4/set Ref F/TKE1

ELECTRONIC HYPNOSIS PLANS & DATA This data shows several ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must when be used cautously. It is for use as entertainment at parties etc only, by those experienced in its use £15/set. Ref F/EH2.

GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect. You can actually build a small mock spaces hip out of simple materials and without any visible means- cause it to levitate. £10/set Ref F/GRA1.

WORIDS SMALLEST TESLA COIL/LIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', St Elmo's fire, Corona, excellent science project or conversation E5/set Ref E/BTC1/LG5

COPPER VAPOUR LASER PLANS Produces 100mw of visible green light, High coherency and spectral quality similar to Argon laser but easier and less cosity to build yet far more efficient. This particular design was developed at the Atomic Energy Commision of NEGEV in Israel. £10/set Ref F/CVL1.

VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. £6/set Ref F/VS9.

PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disrupt TV picture and sound! works on FM tool DISCRETION ADVISED. £8/set Ref F/TJ5.

BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for security, law inforcement, research and development, etc. Excellent security levice or very interesting science project. £8/set Ref F/BHT1.

BURNING, CUTTING CO2 LASER PLANS Projects an

Invisible beam of heat capable of burning and melting materials over a considerable distance. This laser is one of the most efficient, converting 10% inputpower into useful output. Not only is this device a workhorse in weiding, cutting and heat processing materials but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Particle beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicable to burning and etching wood, cutting, plastics, textiles etc £12/set Ref F/LC7. MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple

concept. Objects float in air and move to the touch. Defies gravity amazing gift, conversation piece, magic trick or science project £6/ set Ref F/ANT1K

ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides. Many cleaning uses for PC boards, jewliery, coins, small parts etc. £6/set Ref F/ULB1.

ULTRAHIGH GAIN AMP/STETHOSCOPICMIKE/SOUND AND VIBRATION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new world of sounds. Listen through walls, windows, floors etc. Many applications shown, from law enforcement, nature listening, medical heartbeat, to mechanical devices, £6/set Ref F/HGA7

ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate £6/set Ref F/DOG2

LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. £12/set Ref F/LLIST1

LASER LIGHT SHOW PLANS Doit yourself plans show three methods, £6 Ref F/LLS1

PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with external controls £6/set Ref E/PSP4

INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ultimate in home/office security and safetyl simple to use! Call your home or office phone, push a secret tone on your telephone to access either: A) On premises sound and voices or B) Existing conversation with break-in capability for emergency es FT Ref F/TELEGRAB

BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy! Sniffs out and finds bugs and other sources of bothersome interference. Detects low, high and UHF frequencies. £5/set Ref F/ BD1

ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision £5 ref F/EML2 ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! £5/set Ref F/EMA1.

PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostile premises. Uses satellite technology to gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an optional wireless link system. £8/set ref F/PM5

2 FOR'I MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100.000 VDC OUTPUT GENERATOR PLANS Operates on 9-12vdc, many possible experiments £10 RefF/HVM7/

NOW OPEN AT WORCESTER ST W'HAMPTON TEL 01902 22039

INFINITY TRANSMITTERS The ultimate 'bug' fits to any phone or line, undetectable, listen to the conversations in the room from anywhere in the world! 24 hours a day 7 days a week! just call the number and press a button on the mini controller (supplied) and you can hear everything! Monitor conversations for as long as you choose £249 each, complete with leads and mini controller! Ref LOT9. Undetectable with normal RF detectors, fitted in seconds, no required, lasts forever!

SWITCHED MODE PSU'S 244 watt. +5 32A. +12 6A -5 0.2A 12 0 2A. There is also an optional 3.3y 25A rail available 120/240v // P. Cased, 175x90x145mm, IEC inlet Suitable for PC use (6 d/drive connectors 1 m/board). £10 ref PSU1

VIDEO PROCESSOR UNITS?/6v 10AH BATTS/12V 8A TX Not too sure what the function of these units is but they certainly make good strippers! Measures 390X320X120mm, on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. Inside 2 x 6v 10AH sealed lead acid batts, pcb's and a 8A? 12v torroidial transformer (mains In). Condition not known, may one or two broken knobs due to poor storage. £17.50 ref VP2 ay have

RET RON NIGHT SIGHT Recognition of a standing man at 300m in 1/4 moonlight, hermatically sealed, runs on 2 AA batteries, 80mm F1.5 lens, 20mw Infrared laser included. £325 ref RETRON.

MINI FM TRANSMITTER KIT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover 63-130 Mhz. Works with a common 9v (PP3) battery. 0.2W RF. £7 Ref 1001.

3-30V POWER SUPPLY KIT Variable, stabilized power supply for lab use. Short circuit protected, suitable for profesional or amateur use 24v 3A transformer is needed to complete the kit. £14 Ref 1007. 1 WATT FM TRANSMITTER KIT Supplied with piezo electric mic. 8-30vdc. At 25-30v you will get nearly 2 watts! £12 ref 1009.

FM/AM SCANNER KIT Well not quite, you have to turn the knob your self but you will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers 50-160mhz on both AM and FM. Built in 5 watt amplifier, inc speaker. £15 ref 1013.

3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate sensitivity adjustment for each channel, 1,200 w power handling, microphone Included, £14 Ref 1014. 4 WATT FM TRANSMITTER KIT Small but powerful FM

transmitter, 3 RF stages, microphone and audio preamp included. £20 Ref 1028

STROBE LIGHT KIT Adjustable from 1-60 hz (a lot faster than conventional strobes). Mains operated, £16 Ref 1037. LQUID LEVEL DETECTOR KIT Useful for tanks, ponds, baths,

ak detector etc. Will switch 2A mains. £5 Ref 1081. COMBINATION LOCK KIT9key, programmable, complete with keypad, will switch 2A mains. 9v dc operation. £10 ref 1114.

PHONE BUG DETECTOR KIT This device will warn you if omebody is eavesdropping on your line, £6 ref 1130. ROBOT VOICE KIT Interesting circuit that distorts your voice!

djustable, answer the phone with a different voice! 12vdc £9 ref 1131 TELEPHONE BUG KIT Small bug powered by the 'phone line, on as the phone is picked up! £8 Ref 1135. 3 CHANNEL LIGHT CHASER KIT 800 watts per channel, speed and direction controlssupplied with 12 LEDS (you can fittriacs instead to make kit mains, not supplied) 9-12vdc £17 ref 1026. 12V FLOURESCENT LAMP DRIVER KIT Lightup 4 foottubes our car battery! 9v 2a transformer also required. £8 ref 1069. VOXSWITCH KIT Sound activated switch ideal formaking bugging tape recorders etc, adjustable sensitivity. £8 ref 1073.

http://www.pavillon.co.uk/bull-electrical

PREAMP MIXER KIT 3 input mono mixer, sep bass and treble controls plus individual level controls, 18vdc, input sens 100mA, £15 ref 1052

METAL DETECTOR KIT Range 15-20cm, complete with case, . £8 ref 1022

SOUND EFFECTS GENERATOR KITP roduces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects to your projects for just £9 ref 1045.

15 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamp required 12-18vdc, can use ground plane, yagi or open dipole. £69 ref 1021.

HUMIDITY METER KIT Builds into a precision LCD humidity meter, 9 ic design, pcb, icd display and all components included, £29 PC TMER KIT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you want whenever you want. Minimum system configeration is 286, VGA, 4.1,640k, serial SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

port, hard drive with min 100k free, £24.99

DIVINING RODS Expensive technology cannot challenge the fool proof art of water divining, passed down from generation togeneration. Seeing is believing. Use in the home, garden, countryside or desert, It's divinely simplel £4.99 a pair ref E/3.

HUGE BUBBLE MAKING KIT You'll be amazed at the the size of the bubbles you can acheive with this bubble making kit. Once you have got the knack it is possible to make bubbles of up to 40 feet long.

FM CORDLESSM IC ROPHON E This unit is an FM broadcasting station in minature, 3 transistor transmitter with electret condenser mic+fetampdesign resultin maximum sensitivity and troadfreque ncy response. 90-105mhz, 50-1500hz, 500 foot range in open country! PP3 battery required. £15.00 ref 15P42A.

MAGNETIC MARBLES They have been around for a number of ears but still give rise to curiosity and amazement. A pack of 12 is just ref GI/R2

STETHOSCOPES A fully functioning stethoscope for all those intricate projects Enables you to listen to motors, pipes, heartbeats, walls, insects etc, £6 ref MAR6P6.

NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting parts. Into show pieces in 3 hours! Will plate onto steel, iron, bronze, gunmetal, copper, welded, silver soldered or brazed joints. Kit includes enough to plate 1,000 sq inches. You will also need 12v supply, a container and 2 12v light bulbs. £39.99 ref NIK39.

Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12vDC adjustable from 0-30 secs. £4.99 HY1260M 12vDC adjustable from 0-60 mins. £4.99 HY2405S, 240v adjustable from 0-5 secs. £4.99 HY24060m 240v adjustable from 0-60 mins, £6.99 BUGGING TAPE RECORDER Small voice activated recorder, ette complete with headphones. £28.99 refMAR29P1. POWER SUPPLY fully cased with mains and o/p leads 17v DC 900mA output. Bargain price £5,99 ref MAG6P9

9v DC POWER SUPPLY Standard plug in type 150ma 9v DC with lead and DC power plug, price for two is £2,99 ref AUG3P4. COMPOSITE VIDEO KIT, Converts composite video into sepa-

rate H sync, V sync, and video, 12v DC, £8,00 REF: MAG8P2. FUTURE PC POWER SUPPLIES These are 295x135x60mm,

4 drive connectors 1 mother board connector, 150watt, 12v fan, iec inlet and on/off switch. £12 Ref EF6. VENUS FLY TRAP KIT Grow your own carnivorous plant with this

ple kit £3 ref EF34 6"X12" AMORPHOUS SOLAR PANEL 12v 155x310mm

130mA Bargain price just £5.99 ea REF MAG6P12. FIBRE OPTIC CABLE BUMPER PACK 10 metres for £4.99

ref MAG5P13 ideal for experimenters 30 m for £12.99 ref MAG13P1 ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together! belived to cause raini£3 a pair Ref EF29

3' by 1' AMORPHOUS SOLAR PANELS 14.5v, 700mA 10 watts, aluminium frame, screw terminals, £44.95 ref MAG45.

ELECTRONIC ACCUPUNCTURE KIT Builds Into an electronic version instead of needles! good to experiment with. £7 ref 7P30 SHOCKING COIL KIT Build this little battery operated device into rts of things, also gets worms out of the groundi £7 ref 7P36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and flies! 50 m range £6 ref EF2.

HIGH POWER CATAPULTS Hinged arm brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 milles per hour! Range of over 200 metres/ £7.99 ref R/9.

BALLON MANUFACTURING KIT British made, small blob blows into a large, longlasting balloon, hours of funi £3.99 ref GI/E99R 9-0-9V 4A TRANSFORMERS, chassis mount. £7 ref LOT19A. 2.5 KILOWATT INVERTERS, Packed with batteries etc but as they weigh about 100kg CALLERS ONLY! £120. MEGA LED DISPLAYS Build your self a clock or something with these mega 7 seg displays 55mm high, 38mm wide, 5 on a pcb for just £4.99 ref LOT16 or a bumper pack of 50 displays for just £29 ref LOT17

CLEARANCE SECTION, MINIMUM ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.

2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR340 AT LEAST 200 CAPACITORS (SAME VALUE 99P REF BAR342 AT LEAST 200 CAPACITORS (SAME VALUE 99P REF BAR342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUIT BREAKERS, OURCHOICE TOCLEAR 99P REF BAR335 MICROWAVE CONTROL PANELS TO CLEAR 52 REF BAR326 2 TUBES OF CHIPS(2 TYPES OUR CHOICE) 90P REF BAR306 LOTTERY PREDICTOR MACHINE!! JUST £1.50 REF BAR313 HELLAL/ROVER ELECTRIC H/LAMPLEVELLER 22 REF BAR311 SINCLAIR C5 16" TYRES TO CLEAR AT JUST 75P REF BAR318 LARGE MAINS MOTORS (NEW) TO CLEAR AT 75P REF BAR310 MODEMS ETC FOR STRIPPING £2.50 EACH REF BAR324 110V LARGE MOTORS (NEW) TO CLEAR AT 50P REF BAR332 MODULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR323

GX4000 GAMES COSOLES JUST £4 REF BAR320

GX4000 GAMES COSULES JUST EA REF DATASE SMART CASED MEMORY STORAGE DEVICE, LOADS OF BITS INSIDE, PCB, MOTOR, CASE ETC. BUMPER PACK OF 5 COMPLETE UNITS TO CLEAR AT £2 50(FOR 5) REF BAR 330. 2CORE MAINS CABLE 2M LENGTHS PACK OF 4 £1 REF BAR 337 CARD PC USER/BASIC MANUALS, LOADS OF INFO. £1 REF BAR304 PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR341 3 M 3CORE MAINS CABLE AND 13A PLUG. 60P REF BAR325

ALL PRICES PLUS VAT AND CARRIAGE · ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY 86 Bishopgate Street, Leeds LSI 4BB Tel: (0113) 2435649 Fax: (0113) 2426881

CIRCLE NO. 135 ON REPLY CARD

Simulation for mixed signals

Bashir Al-Hashimi explains how mixed-mode circuit simulation packages differ from their solely analogue or digital predecessors.

ircuit simulation packages have become an important part of the design and implementation cycle of electronic systems. The result is fewer prototypes, shorter design cycle, and significantly better quality products.

Simulation packages divide into three types: analogue, digital and mixed signal simulators. Almost all analogue simulators are based on the popular Spice – an acronym for simulation program with integrated circuit emphasis. Spice was developed in the 1970s in the University of California. This type of simulator predicts the frequency and time response of analogue circuits.

The simulation results are graphs of amplitude, phase against frequency in the case of frequency analysis and graphs of amplitude against time for transient analysis. This shows that Spice can be used to simulate the functions of network analysers and oscilloscopes in practice.

A digital simulator enables the designer to

perform a timing analysis of a digital circuit. The result is a timing diagram or a truth table of the circuit. In practice, this is the similar to using a logic analyser.

As circuits increase in complexity, it is likely that a mix of analogue and digital parts is used for implementation. To predict the performance of such circuits, mixed signal simulators are needed. This article aims to provide an introduction to this type of simulation through a detailed worked example. The simulator PSpice A/D from MicroSim¹ is used for demonstration purposes. For an introduction to circuit simulation and PSpice, read reference 2.

Types of mixed-signal simulator

Mixed signal simulators are basically divided into two types: native and glued. A glued simulator consists of a separate analogue and digital simulators combined through an interface software which controls data flow between the two simulators.

An example of glued simulator is

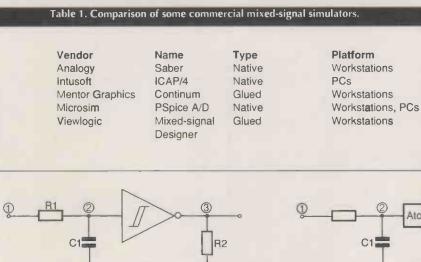


Fig. 1. In mixed-mode simulation, when a combination of analogue and digital components are used, an interface node occurs.

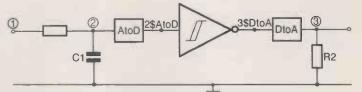


Fig. 2. This shows the circuit in Fig. 1 after PSpice has inserted a-to-d and d-to-a interface subcircuits.

Continuum from Mentor Graphics. Glued simulators are aimed primarily at systems with large number of analogue and digital parts. Also, they provide designer with the opportunity to integrate their favourite simulators.

A native simulator on the other hand consists of one simulator which performs mixed signal simulation. Examples are *PSpice A/D* and *Saber* from Analogy. When simulating systems that contain large analogue circuitry and small number of digital parts, a native simulator is usually a better choice. **Table 1** is a list of some commercially available mixed signal simulators.

Mixed signal simulator principles

Analogue simulators recognise only analogue nodes where all components connected to the node are analogue. Similarly, digital simulators deal only with digital nodes. A mixed signal simulator on the other hand recognises three types of nodes, namely analogue, digital and interface.

An interface node occurs when a combination of analogue and digital components are connected to it as shown in Fig. 1. Here, node 1 is an analogue node, while nodes 2 and 3 are interface nodes. A mixed signal simulator must translate interface nodes into purely analogue or digital nodes. The translation is achieved using different techniques depending on the simulator. The *Saber* simulator, for example, uses special models called Hypermodels for the translation.

The *PSpice A/D* simulator on the other hand, achieves the translation using 1-bit analogue/digital, a-to-d, and digital/analogue, d-

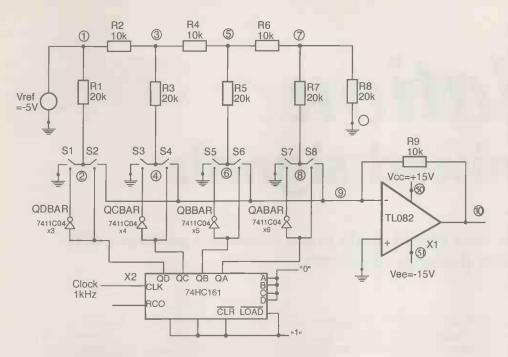


Fig. 3. Mixed-mode circuit example for producing ramp waveforms.

to-a, interface subcircuits. The function of both the hypermodels and the 1-bit a-to-d and d-to-a subcircuits is to change analogue voltages and impedances to digital states (0, 1, X, Z...) and *vice versa*. The simulator automatically inserts the appropriate subcircuits between analogue and digital parts.

For example, Fig. 2 shows the circuit of Fig. 1, after *PSpice* has inserted a-to-d and d-to-a

interface subcircuits. Nodes 2 and 3 are now purely analogue nodes. As Fig. 2 shows that the simulator has created two new digital nodes designated 2\$AtoD and 3\$DtoA. The *PSpice* symbol \$ represents new nodes occurring as a result of a-to-d and d-to-a interface subcircuits.

For more information on how *PSpice* creates and name these nodes, see reference 2.

Entering circuit details

In order to perform a circuit simulation, the circuit must first be described to the simulator. There are usually two methods of achieving this task, one a netlist, the other schematic capture. The choice of circuit entry depends largely on user preference, with both methods requiring some time to learn. However, it is generally accepted that understanding the basic rules of creating netlists often allow a better appreciation of the simulation process and principles in particular for analogue simulation.

The *PSpice A/D* simulator supports both types of circuit entry, with the dos version providing the netlist entry, while the windows version provides the schematic capture entry. In this article, the netlist method is used. Note, however, that the simulation of complex digital circuits requires the use of schematic capture. To demonstrate mixed signal simulation, consider the following example.

A mixed simulation example

Figure 3 shows a circuit for producing ramp waveforms³. Outputs of the four-bit counter, QD QC QB QA, determine the position of switches S_1 , S_2 , S_3 ... Logic zero connects the switch to ground, while logic one connects the switch to the inverting input of the amplifier.

The amplifier acts as a current-to-voltage converter. Here, the simulator is used to obtain the amplifier output voltage as the four-bit counter goes through its different 16 states. Listing 1 gives the *PSpice* netlist of the circuit. First consider the description of the analogue parts. The listing shows that the resistors

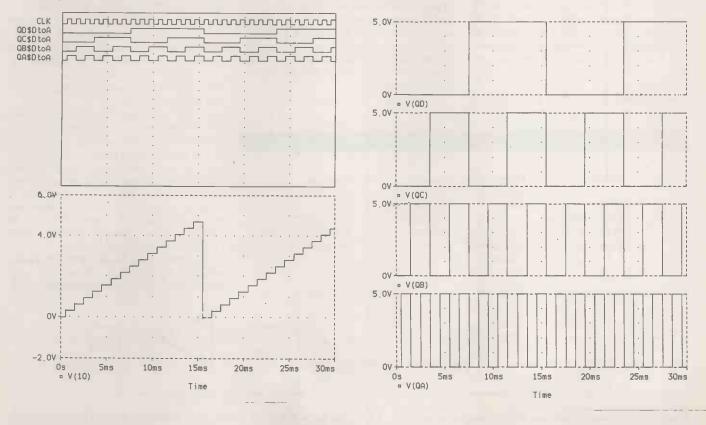
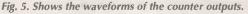



Fig. 4. The simulated digital and analogue signals of the circuit in Fig. 3.

are described using passive component description statements and the voltage reference V_{ref} is described using a dc independent source statement.

Op-amps are modelled in *PSpice* using X statements. In this example it is assumed that the *TL082* op-amp is used with $\pm 15V$ power supplies. The model of the *TL082* device is obtained from the 'linear.lib' *PSpice* library. Switches S_{1-8} are voltage controlled and are modelled as follows. First the input, output, control nodes and model name of the switch are described using an S statement.

For example the input and output of the switch S_1 are connected to nodes 2 and 0 respectively, while the control is connected to nodes 'QDBAR' with respect to ground. *PSpice* allows you to express nodes as numbers and/or names. For example, the control node of S_1 has been given the name 'QDBAR', which has been chosen arbitrarily.

Attributes of a switch are defined using a .MODEL statement giving the optional parameters of the switch model. The model parameters are: on and off resistance, and the control voltage for on and off switch state. In this example, all switches have been modelled using the model name 'SW1' which has all its parameters set to their model default values.

Now consider the description of the digital parts of the circuit. *PSpice A/D* has an extensive digital models library including the 74xx ttl series and the 4000 cmos series. The library also has models of data converters and memory devices.

PSpice models digital devices using X statements. For example, the 74HC161 counter is defined by the X2 statement. To be compatible with practical digital devices, *PSpice* expresses the device nodes using names. The counter output nodes, for example, have been assigned the names QA QB QC QD, as shown in the X2 statement. Note that the parameters \$D_HI and \$D_LO in the statement represent a digital one and zero respectively. Finally, the inverters are defined using the X3,X4, X5 and X6 statements.

Simulating input/output

Having described the circuit, the next step is to define the circuit input(s), desired analysis type, and how to display the simulation output results. Clock signals are defined using the U statement as shown in the listing. It has been assumed that the counter clock is 1kHz, or 1ms period. The parameter STIM in the statement is the *PSpice* symbol for the stimulus generator. Statement (1 1) defines one signal of binary format². Also, the parameters \$D_DPWR and \$D_DGND represent digital power supply and ground nodes respectively.

To simulate the output voltage of the amplifier as a function of time, a transient analysis is required. This type of analysis is specified using a .TRAN statement. The netlist shows the transient analysis is performed over a period of 30ms.

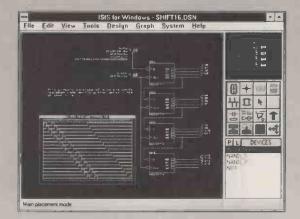
The .PROBE command generates a data file for viewing the simulation results graphically. Figure 4 shows the simulated digital and anaListing 1. PSpice netlist of mixed-mode ramp generator, Fig. 3. Ramp waveform generator, Fig. 3; comment line * analog parts R1 1 2 20K R2 1 3 10K R3 3 4 20K R₄ 3 5 10K R5 5 6 20K R₆ 5 7 10K R₇ 7 8 20K R₈ 7 0 20K R₉ 9 10 10K ; resistors V_{ref} 1 0 –5V ; reference voltage source X₁ 0 9 50 51 10 *TL082* ; op-amp description V_{cc} 50 0 15V ; positive power supply Vee 51 0 -15V ; negative power supply .LIB c:\msim61\lib\linear.lib ; op-amp library S1 2 0 QDBAR 0 SW1 ; voltage controlled switch S2 2 9 QD 0 SW1 S3 4 0 QCBAR 0 SW1 S4 4 9 QC 0 SW1 S5 6 0 QBBAR 0 SW1 S6 6 9 QB 0 SW1 S7 8 0 QABAR 0 SW1 S8 8 9 QA 0 SW1 .MODEL SW1 VSWITCH [RON=1, ROFF=10M, Von=5V, Voff=0v] ; switch model * digital parts X2 CLK \$D_HI \$D_HI \$D_HI \$D_HI \$D_LO \$D_LO \$D_LO + QA QB QC QD RCO 74HC161 ; 4-bit counter X3 QD QDBAR 74HC04 ; inverter X4 QC QCBAR 74HC04 X5 QB QBBAR 74HC04 X6 QA QABAR 74HC04 .LIB c:\msim61\lib\74HC.lib; digital devices library .LIB c:\msim61\lib\dig_io.lib ; AtoD & DtoA subcircuits library .OPTIONS DIGINITSTATE=0 ; clear digital devices . U1 STIM (1,1) \$D_DPWR \$D_DGND CLK IO_STM TIMESTEP 0.5ms + 0c 0 + label=loop +1c1 + 2c 0+ 3c goto loop -1 times ; 1kHz clock .TRAN 0.02ms 30ms 0m 0.02m ; transient analysis range

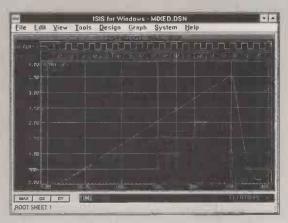
.PROBE ; graphic outputs

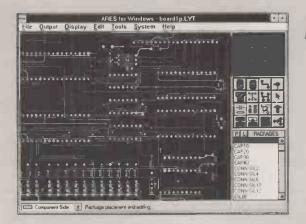
.END ; end of netlist

logue signals of the circuit. The digital signals are the clock and the counter outputs, while the analogue signal is the amplifier output voltage. Note that the digital signals are expressed in terms of logic values (0 and 1), while the analogue signal is described in terms of voltage levels.

A number of interface nodes in the circuit of Fig. 3 occur when the counter digital outputs QD QC... and the inverter outputs QDBAR QCBAR... drive the control inputs of the analogue switches S_1 , S_2 In this case *PSpice* automatically breaks these nodes into purely analogue nodes using digital/analogue inter-


face subcircuits as mentioned earlier. Figure 5 shows the waveforms of the counter outputs. Note how *PSpice* changes the output from digital states 0, 1 (top waveforms, Fig. 4) into analogue voltages 0, 5V.


References


 MicroSim Corporation, Pspice A/D, 20 Fairbanks, Irvine, California 92718.
 Al-Hashimi, B, The Art of Simulation Using Pspice: Analog and Digital, CRC Press, ISBN 0849378958.
 Horowitz, P, and Hill, W., The Art of Electronics, Cambridge University press, 1st edition, pp. 411, 1980.

The Complete Electronics Design System - New With RIP-UP & RETRY!

Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- Non-Linear & Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP & RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756 753440. Fax: 01756 752857. 53-55 Main St, Grassington. BD23 5AA.

Proteus runs as a 32 bit application under both DOS and Windows (3.1, 95 and NT). Prices start from £470 ex VAT; full system costs £1645 for DOS, £1875 for Windows. Call for upgrade pricing and/or information about our budget and educational products. All manufacturers' trademarks acknowledged.

Please guote "Electronics World" when seeking further information

A-to-D and D-to-A converters

High-speed a-to-d. SPT7730 and SPT7830 are two 3.3/5V 3Msample/s serial analogue-to-digital converters in 8-pin small-outline packages, recently introduced by Signal Processing Technology. The 7730 is an 8-bit, serial-output device, sampling at 3Msample/s, 7830 being a 10-bit type with a sample rate of 2.4Msample/s. Both are cmos devices with on-chip s/h and provide a reference settling time of 90ns. Signal Processing Technology. Tel., 01932 254904; fax, 01932 254903.

Discrete active devices

1GHz transistor. Motorola has the MRF5811LT1 rf n-p-n silicon transistor for low-power application at frequencies up to 1GHz. Dc gain on a 300µs pulse is 50-200 and fT typically 5GHz, collector/base capacitance at 10V and 1MHz being about 2pF. Noise figure at 50mA, 10V and 500MHz is 2dB. Motorola Semiconducteurs sa. Tel., 00 33 61 199981; fax, 00 33 61 199565.

Linear integrated circuits

Catv amplifier. For broadband, low-distortion application – and particularly for catv use - Motorola's MNN424B feedforward amplifier consists of two hybrid ampliers, couplers and delay lines in one package. It is a 750MHz maximum, 110-channel, 24dB power gain device, giving at least 20dB improvement over conventional catv amplifiers. Gain flatness is ±0.3dB up to 750MHz. Motorola Inc. Tel., 001 602 244-3831; fax, 001 602 244-6002.

Memory chips

Notebook dram. Mitsubishi's 3.3V or 5V dram MelCard comes in 4, 8, 16 and 32Mbyte form and is suitable for Toshiba, IBM, Compaq and some other notebook computers. The cards have 88-pin connectors and are compatible with JEIDA and JEDEC. Power consumption of the 3.3V type is 930mW. Gothic Crellon Ltd. Tel. 01734 788878; fax, 01734 776095.

Microprocessors and controllers

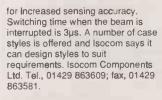
Very low-cost controller. Toshiba's new member of its TLCS-90 family of 8-bit microcontrollers is the TMP90CM38, which is much cheaper than Its TMP90CM36 pin-compatible stablemate, being a general-purpose device without specialised peripherals and timing. The TLCS core remains, providing a 163-instruction set, 16-bit arithmetic, minimum instruction time of 250ns at a 16MHz clock speed and dma functioning. Toshiba Electronics UK Ltd. Tel., 01276 694600; fax, 01276 694800.

Pentium replacement. Announced as a plug-in replacement for the Pentium, AMD's AMD5_K86 chips, in P75 and P90 form, give the performance of the relevant Pentium chips according to the Ziff-Davis Winstone 96 P-rating tests and have been licensed to carry the Windows 95 logo. Advanced Micro Devices (UK) Ltd. Tel., 01483 740440; fax, 01483 756196

Starter kit. Texas offers the TMS370 8-bit microcontroller starter kit, which includes eprom/eeprom programming board and all software and literature. The kit may be connected to COM1 or COM2 pc ports by way of a standard RS-232C lead. Power needed is 5V at 500mA, Farnell Components Ltd. Tel., 0113 2636311; fax, 0113 2633411.

Mixed-signal ICs

Quad codec. AKM's AK2304A combines four conventional voice codecs in one 44-pin package and complies with CCITT G711/2 and AT&T D3/4 requirements. It is a selectable A-law/µ-law device operating from one 5V supply and dissipating about one-third the power of four codecs. There are internal opamps for gain adjustment and antialiasing and a 2.048Mb/s pcm highway interface. The device can be used in ST-bus or GCI interface systems and muting is done by toggling mute control pins. DIP International Ltd. Tel., 01223 462244; fax, 01223 467316.


Motors and drivers

3hp servo amplifier. Copley Controls introduces the Model 5231 brushless servo amplifier which puts out ±30A -±15A continuous - to provide rapid acceleration and regenerative braking for motors up to 3.4hp. It operates at 25kHz, has a 3kHz bandwidth and copes with motors presenting a load of 0.2-40mH. Supply is 24-180Vdc, from which a four-quadrant supply is developed, and a current-sensing circuit gives an analogue output for monitoring. Two different boards are available to allow the amplifier to take brushless tachos, motor hall sensors or digital encoders to develop velocity feedback. Copley Controls. Tel., 001 617 329 8200; fax, 001 617 329 4055.

Optical devices

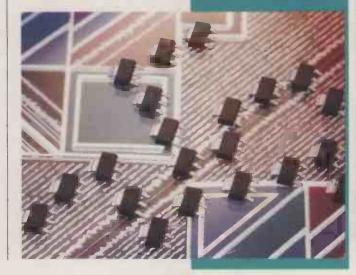
Photo-interrupter, Isocom's ISTS802 optical interrrupter switch has a 5mm slot and a 0.5mm aperture for the light

Surface-mount darlington. The Zetex FZT603 Darlington, an E-line device and SOT223 device, has a minimum h_{FE} figure of 5k at 500mA and 5V, V_{CBO} and V_{CE} of 100 and 80 and saturation voltage of 0.79V for 0.25A collector current and 0.25mA base current. Zetex plc. Tel., 0161-627 5105; fax, 0161-627 5467.

Lens holders. Melles Griot has a new range of bench lens holders for experimental work, which are fitted with easily distinguishable locking knobs and adjuster knobs. Not much more to say, really, except that the holders hold firmly and won't move until you move them. Melles Griot Ltd. Tel., 01223 420071; fax, 01223 425310

Lasers. A range of visible and infrared lasers is available from UV-Tec in wavelengths of 635, 650, 660 and 670nm at 5mW, near infrared wavelengths of 780, 830 at up to 30mW and 808nm at 5mW. There is also a self-contained lab, version with an emission indicator and power switch. UV-Tec Ltd. Tel., 01252 844880; fax, 01252 844885.

Passive components


Chip thermistors. Taiyo Yuden has ntc chip thermistors rated at 63mW in size 0603 and made in values from 220 Ω to 150k Ω , although lower values can be supplied to order. The multilayer technique in use provides much less change in resistance than conventional glass-coated types. Thermal time is under 5s and heat dissipation constant 1-2.5mV/°C. Taiyo Yuden UK. Tel., 01494 464642; fax, 01494 474743.

Surface-mounted electrolytics.

Panasonic's VS Series of aluminium, s-m electrolytic capacitors, which are all 5.5mm high, covers the range 22μ F-220 μ F, 4V to 0.1 μ F-10 μ F, 50V. The VA series 50V types go up to 47µF and the 6.3V series has values of 1000µF, maximum ripple of 700mA at 120Hz and operating temperature of 85°C. These are wave-solderable. Flint Distribution. Tel., 01530 510333; fax, 01530 510275.

Audio products

Multimedia audio recording. AKM's AK4531 is a mixer codec for pc-based recording applications, having a twochannel, 16-bit audio codec and a two-channel, 18-bit digital-toanalogue converter, both with an

Please quote "Electronics World" when seeking further information

86dB dynamic range. It has fivechannel stereo and three-channel mono playback mixers. Sampling rates are 4-50kHz for variable audio bandwidth and input can be down to -60dB. DIP International Ltd. Tel., 01223 462244; fax, 01223 467316.

Connectors and cabling

Miniature connectors. Amp Micro-MaTch connectors have a contact spacing of 1.27mm, the range including board and wire connectors to allow a variety of wire-to-board and interboard connections. Versions in the range are somewhat improbablesounding but, to quote, are "femaleon-board, top entry, side entry and surface-mount; male-on-board; maleon-wire; and paddle board connector". Contact springs are in the board connector rather than, as usual, In the cable connector. In the cable connector is a simple pin with

General-purpose dso range. Goulds's *600 Series* is a new range of digital storage oscilloscopes for general use. Three models have 100Msample/s sampling, 50,000 words of memory per channel, a colour display, built-In floppy drive, auto measurement and IEEE-488.2 and RS232 interfaces. Model *640* is a 150MHz bandwidth instrument which can acquire 'difficult' signals; *650* has a 400MHz bandwidth and is for showing fine detail-in wide band signals and *680* has 12-bit resolution and 150MHz bandwidth, with vertical zoom to give a 32 times expansion, or 62.5µV to 40V per division. *650* and *680* offer the option of a thermal plotter. Gould Instrument Systems Ltd. Tel., 0181-500 1000; fax, 0181-501 0116. either insulation-displacement section or a kinked solder leg, so separating and optimisIng the contact force generation and termination requirements. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734 776095.

Relay sockets. Inelco has a range of DIN sockets and bases for relays, mountable on DIN rails, printed boards and chassls and all having finger protection and low flammability material. Examples are a screw base for the two-pole 4.7/5mm blade plugin relays, which can be surface mounted or clipped to a 35mm DIN rall, rated at 240V ac, 10A; and a 14-pin base for 4-pco miniature relays, timers and controllers rated at 240V ac, 5A. Inelco Ltd. Tel., 01734 810799; fax, 01734 810844.

Chip sockets. Robinson Nugent's *TSOP* and *QFP* low-profile surfacemounted sockets are meant for ram, rom and other isi devices where replacement may be necessary. *TSOP* types have 28, 32 or 40 pins at lead spacings of 0.5, 0.55 and 1.27mm, *QFP* models are in 64 and 80-pin styles on a spacing of 0.8mm. Contacts are rated at 0.1A for the *TSOP* and 0.2A; breakdown 500V ac, insulation 1GΩ, contact resistance $60m\Omega$ for the *TSOP* and 50mΩ. Robinson Nugent (Europe) Ltd. Tel., 01256 842626; fax, 01256 842673.

Test points. Glass-beaded, boardmounted test points by William Hughes consist of a colour-coded bead and phosphor bronze, tinned tag, with 1.3-2.03mm diameter loops for probe connection or to take other components; so raising them above the board surface. The tags are so shaped to avoid damage to throughhole plating and to keep the test points in position when the board is being flow soldered. William Hughes Ltd. Tel., 01963 363377; fax, 01963 363640.

Displays

Lcd/tft panel driver. IMS has a new multi-display video controller card, the *PCA-6653*, which simultaneously controls SVGA crt displays and flatpanel tft, dstn, mono lcd or electroluminescent types. It is register and bios-compatible with the IBM VGA standard and has a Windows graphics accelerator. There is onboard memory and a 256K by 16 dram socket to take an optional frame buffer. Integrated Measurement Systems Ltd. Tel., 01703 771143; fax, 01703 704301.

Hardware

Collet knobs. Ritel collet knobs are available in diameters from 8mm to 45mm in polyamide materlal and all offer a choice of style, colour and matt or gloss finish. Collets are ready assembled and fit a range of shaft sizes without the use of special tools. Accessories include shaped or flat caps with a variety of markings, polnters and arrow dials. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734 776095.

Enclosure framework. Widney Dorlec would like to point out that the 20/30 Series enclosure framework system, introduced in 1951, is still around. In fact, the company is currently tooling for more components to add to the 79 corner castings and 47 extrusion profiles already available. For the benefit of anyone who has been on Saturn for some decades, it is a set of extruded aluminium sections and corner shapes which are screwed together with concealed bolts to make a smooth cabinet, having been cut to size with a hacksaw. Widney Enclosures Ltd. Tel., 0121-327 5500; fax, 0121-328 2466.

Test and measurement

Emc and flicker meter. From Seaward comes the *Orb* harmonics and flicker meter, to test single-phase equipment rated at up to 16A to EMC Directive standards. It carries out

Navigation systems

GPS starter pack. From TDC comes a global positioning system starter pack, which is based on the Rockwell Microtracker LP receiver and which also contains a TDC evaluation board, magnetic car antenna, mains power unit, cable, batteries, manual and software. The TDC board provides the power and serial level conversion for the Microtracker and conditioned power for the antenna, output being over an RS232 port to a pc. Accuracy is within 5m, 95% of the time. If Autoroute Express, now swallowed up by Microsoft, is also bought from TDC, a GPS driver is supplied. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Class A, B, C and D harmonic testing using Fourier analysis and flicker measurements are taken at up to 10min and 2h respectively. The instrument is pc-controlled and Is provided with a windows-based package to give features such as limit lines, pass/fail indication and many data display options. Test results are transferable to final report documents. Seaward Electronic Ltd. Tel., 0191-586 3511; fax, 0191-586 0227.

Infrared thermometer. Calex Instrumentation introduces the Convir Close Focus series of portable infra-red thermometers, which measure the temperature of objects down to 3mm diameter. Resolution is 1°C to within \pm 1%, with a response time of 350ms. The instrument is strong enough for factory floor use. Calex Electronics Ltd. Tel., 01525 853800; fax, 01525 851319.

Real-time/storage oscilloscope. VC-6555 by Hitachl is a 100Msample/s (two channels) and 100MHz bandwidth osclilscope, with 8Kword capacity for a single channel, delaying sweep and a counter. One-

Please quote "Electronics World" when seeking further information

shot and Intermittent events are easily captured and a pre-trigger function shows the leading edge of a triggering waveform. Averaging reduces noise and sweep rate is automatically adjusted for the input frequency Output is available for hard copy and, via the RS232 Interface, for a po Hitachi Denshi (UK) Ltd. Tel., 0181 202 4311; fax, 0181-202 2451

GPS station clock. Nothing to do with BR, the 8820A GPS Station Clock, available from Steatite, is a time generator whose outputs are synchronised to within 100ns of UTC. It automatically tracks up to six GPS satellites, disciplines its own crystal or rubidium low-noise oscillator and synchronises its outputs to universal time, automatically accounting for leap years and seconds. Several time and frequency outputs are provided, as are two RS232 ports and an optional IEEE-488 port. Steatite Insulations Ltd. Tel., 0121-643 6888; fax, 0121-643 2011

Measuring amplifier. HBM has a small digital amplifier, for the measurement of mechanical quantities, that is for use in laboratory and mobile application. Scout55 operates at 4.8kHz, being connected

Lout-proof keypad. Numeric keypads in the C & K 4800 Series are sealed and gasketed to IP66 and have a 2mm stainless steel faceplate bolted to the polycarbonate body that holds the membrane, so that the average grunt would have a hard time doing them much permanent damage. The keys have click feel and 0.05-50mA, 1.5-30V dc ratings. Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724 281650.

by the 6-wire technique to strain gauges, half and full bridge inductive transducers, plezoresistive and potentiometric transducers and linear variable differential transformers. It has a membrane keyboard, protected for hard use, and a ten-digit readout; its RS232C interface allows pc control. HBM United Kingdom Ltd. Tel., 0181-420 7170; fax, 0181-420 7336

Rso. Which Is to say, real-time and storage oscilloscope, Hitachi Denshl's family of which is now being completed by the introduction of the VC-6645. This Instrument is a 100Msample/s, 25msample/s (four-channel), 100MHz, 4Kword (single-channel) type with delayed sweep and a 100MHz frequency counter. A standard RS-232 Interface allows stored waveforms to be transferrred to a computer using Hitachl HIMES software and the memory contents are held for up to 10 days when power is switched off. Hitachl Denshi (UK) Ltd. Tel., 0181-202 4311; fax, 0181-202 2451.

Low-resistance measurement. Used in conjunction with one's own digital multimeter, the Sutronics Millo-Test 200 enables the measurement of resistance on a most sensitive range of 200mΩ. Inherent accuracy of the Millo-Test is typically 0.1%, but final accuracy depends on the dvm in use. A four-terminal bridge method is used, providing a guaranteed 0.2% accuracy at 20°C for the instrument itself, temperature coefficient being 0.02%/°C from 0°C to 40°C; best accuracy is at 20°C. Test current on all but the 20Ω range is 20mA. Sutronics. Tel./fax, 01929 426400.

Literature

Siemens semiconductors. Technical data on cd-rom from Siemens provides data sheets, s-parameters, curves and signal charts, together with the Microelectronic training centre, sales information, data for circuit simulation, technical articles and more. The disk is available for dos or Windows and can be installed In networks. There are also files for component comparison and a data retrieval system. BFI IBEXSA Electronics Ltd. Tel., 01622 882467; fax, 01622 882469.

Instrument hire. Livingston Rental, formerly Livingston Hire, has published its first catalogue under the new name. It contains much new equipment and a number of new services in the Instrumentation field The catalogue is free. Livingston Rental Ltd. Tel., 0181-943 5151; fax, 0181-977 6431

Data communications. Dataforth Corporation has issued a new catalogue of Industrial Data Communications Products which, in 50pp, provides full specifications, applications and installation data on modems, optical-fibre multiplexers and rack-mounted modems. Impulse Corporation Ltd. Tel., 01543 466552; fax, 01543 466553.

Thurlby Thandar. TTi has a new free catalogue of electronic test gear, which is all developed and made in the UK. New this time is the 1705 a 4.5-digit, dual-display multimeter with an RS-232 interface, true-rms ac measurement, frequency measurement and an optional GPIB interface. There is also a range of counters that handle up to 1.3GHz and a number of instruments for emc testing. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax. 01480 450409.

Power supplies. From Computer Products, the 1996-7 Power Supply Product Handbook fully describes the company's range of ac/dc supplies, dc-dc converters and dc/ac ring generators, over 1200 in all, 800 of them new this time. Also on offer are three free technical guides on thermal management, safety regulations and emc and principles of power conversion. E-mail on jackie.day@cpipce.cpi.sprint.com. Computer Products, Power Conversion Ltd. Tel., 01494 883113; fax, 01494 883419

Farnell Components. You can order Farnell's new catalogue and obtain data on the Internet

(http://www.farnell.co.uk) or, if you suffer from technofear, the 'phone from 8am to 8pm. The 50,000 products, 6000 of them new ones, should satisfy most people's needs, since it includes everything from ordinary passive and active components to network and datacom equipment and top-end instrumentation. Farnell Components Ltd. Tel., 0113 2636311; fax, 0113 2633411.

Printers and controllers

Small print heads. Mitsubishi's WH Series 24V dc thermal print heads take the form of a small, flexible printed circuit with a connector, and are intended for incorporation into low-cost mini-printers. They are based on a thick-film process, cmos chips providing shift register, latch and switching functions. The heads are 5mm high and are in the form of a hard ic moulding, requiring no other cover, since the drive ics are epoxy coated. Print widths are 48mm, 72mm and 96mm in the three types available, with resolution of 8dot/mm and selectable speed of 3 or 10ms/line. Mitsubishi Electric UK Ltd. Tel., 01707 276100; fax, 01707 278692

Production equipment Workstations. Robert Bosch's ESD

range of workplaces are

Power supplies

Dc-to-ac converters. PROwatt inverters, which are CE-approved, convert battery power to 230Vac to allow mains equipment to be run from 12-24Vdc, these,new versions conforming to interference standards. The 150kand 250i units are in an aluminium case and connect to a 2 cgar-lighter socket or a terminal strip. socket or a terminal strip, socket or a terminal strip, providing the 230Vac via an IEC 320 socket on the case. The units cope with difficult loads, such as low-energy light bulbs, and overheating and overload protection is provided. Low battery voltage gives rise to an audible alarm and switch-off. *PROwalt* prices start at f 249 95 *PROwatt* prices start at £49.95. Merlin Equipment. Tel., 01491 824333; fax, 01491 824466.

electrostatically discharged to reduce the number of ics blown by voltages in excess of 100V, which can easily be developed by a worker who shuffles about a bit too much. The workplaces are designed to suit customers requirements in width and height and are provided with chairs, component containers, trolleys, shelves and a number of other features to reduce not only the shuffle factor but also injuries such as RSI and tendonitis. Robert Bosch Ltd. Tel., 01895 834466; fax, 01895 838548.

Adhesive printing. Loctite Varidot is a new stencil system which prints different heights of surface-mounting adhesive to suit different components in one pass of the squeegee. This is brought about by the use of a flexible stencil providing off-contact printing, which also avoids contaminating the underside of the stencil and therefore cleaning, except when the stencil is changed. Printed dot diameters can be as small as 0.3mm or up to 1.6mm. varying in height from 50microns to 0.6mm. Loctite UK Ltd. Tel., 01707 821000; fax, 01707 821200.

Transformer kits. For those occasions when no available transformer known to man will do the job, Electrospeed can now offer kits to make your own. Kits consist of a double bobbin section, half of it

Please quote "Electronics World" when seeking further information

already wound with two independent 115V primaries, a pair of bobbin half shrouds, E and I laminations, end caps and all the other bits, including wire in 12 slzes from 0.2mm to 1.5mm diameter. Four kits cope with ratings of 20, 50, 100 and 200VA. There is a standard turns/V figure for each to give the wanted output voltage and the kits have full instructions and working examples. Electrospeed. Tel., 01703 644555; fax, 01703 610282.

Plug-in switchers. Relec's Mascot 9000 series of switched-mode power supplies are cased units plugging straight into a mains outlet and giving 10-40W outputs of 5-24Vdc. Line stabilisation is 0.1% and load regulation below 3% for all models. Output connection is a 2m cord with one of a selection of single or multiheaded jack plugs. Reflec Electronics Ltd. Tel., 01962 863141; fax, 01962 855987.

25W and 40W switching psus. XP announces the NAN 25 and NAN 40 low-cost, universal ac input switchers, which use a fixed switching frequency to allow them to meet EN55022 emi specifications. The range of modules provides outputs from 5V to 48V in

PCMCIA card. Amplicon Liveline's *PCM DAS08* and *DAS16* PCMCIA data acquisition cards fit type II and type III expansion slots in portable computers. Suppied with card-socket services and universal driver software, the cards have have a 12-bit analogue input and automatic configuration on insertion. *DAS 08* takes eight bipolar, 12-bit analogue. ±5V inputs, gives digital i/o and samples at 3.12, 6.25, 12.5 and 25kHz, selectable in software, while *DAS16* provides 16

analogue input and automatic configuration on insertion. DAS 08 takes eight bipolar, 12-bit analogue. ±5V inputs, gives digital i/o and samples at 3.12, 6.25, 12.5 and 25kHz, selectable in software, while DAS16 provides 16 bipolar/unipolar inputs from ±10V to ±1.25V and from 0-10V to 0-1.25V, with eight digital i/o and three 16-bit counters. It also has a high-speed driver for the Labtech Notebook Pro. Amplicon Liveline Ltd. Tel., 0800 525 335 (free); fax, 01273 570215. singles and various arrangements of 5V, 12V and 15V in duals and triples. Input is universal 90-264Vac, overvoltage and overcurrent protection is present and the units measure 5 by 3 by 1.2in. XP plc. Tel., 01734 845515; fax, 01734 843423.

Network ups. MaxiMiser from Galatrek is a range of single and three-phase uninterruptible power supplies covering the 5-15kVA output band and Intended for large lans, midrange systems, servers and data processing centres. Their non-volatile memories store up to 5000 parameters to give a history of ups and mains activity, the result being passed by RS232 or a front-panel lcd. Regular battery tests are run automatically or when a panel button Initiates a test and the units adjust their chargers to suit the battery temperature. Galatrek International Ltd. Tel., 01492 640311; fax, 01492 641828

Radio communications products

Satcom frequency converters. Anglia Announces the Zeta 6160 range of frequency converters to convert communications signals from and to the microwave bands used by satellites. Zeta 6163 converts 70, 140 or 700MHz ifs to an intermediate C-band signal tunable between 5850 and 6425MHz, with phase noise at 85dBc/Hz for 10Hz offset, and is therefore usable as a standalone Intelsat-C converter. This output will drive the 6161 band-selectable block up-converter for conversion to X-band or Ku-band for DSCIII and Intelsat. Reverse conversion is carried out by the 6160 and 6162 units. Anglia Microwaves Ltd. Tel., 01277 630000; fax, 01277 631111

Protection devices

SM transient suppressors. Semitron SMBJ series transient voltage suppressors are surface-mounted devices rated at 600W and providing picosecond turn-on and low on impedance. With ratings of 5V to 170V, in unidirectional and bidirectional form, peak transient current in avalanche mode is 2.2A to 62.5A for 170V and 5V devices

respectively, while In the forward direction, the devices withstand 100A for 8.3ms. Flint Distribution. Tel., 01530 510333; fax, 01530 510275.

Switches and relays

Time-delay relays. Matsushita offers the *TR/TS* ultraminiature time-delay relays, which will switch 10^{-10} to 1kVA on each of four separate contacts arranged in varlous forms of open and closed. Each *TS* contact will carry 5A at 250V, although the relays measure only 34 by 34 by 10.8mm. Both are available for conventional on/off delay timing and, for off delay, no extra power supply is needed. Using either an Internal trimmer or an external pot., timing is adjustable from 0.1 to 1000s. The relays are available in 5, 12 or 24Vdc operation. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908 231599.

Switch lens caps. EAO-Highland offers a range of lens caps to make its *EAO Series 96* tamily of illuminated, push-button switches look better. The lenses are rounded and come in black(?), red, green, grey, bright orange and blue. There are versions with recesses for one or two leds and for momentary or maintained operation. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641.

Sealed keyboard. Announced by Fairchild Is the *KBM Series* of metalcased keyboards sealed to IP65 standard and provided with a tracker ball. They come in a variety of forms, for both desk-top use and to mount vertically in a panel and are compatible with IBM AT or PS/2, the serial output from the tracker ball suiting Windows applications. Keys have a positive feel with 1.4mm movement and the front panel is chemical resistant. Fairchild Ltd. Tel., 01703 211789; fax, 01703 211678.

Automotive relays. Han-Kuk's *HR*-*AMR* series of board-mounted relays for cars provide 40-60A switching in a 26 by 22 by 22mm package, sealed or open, accepting 6-24Vdc. Life is said to be in excess of 10⁷ operations. Inelco Ltd. Tel., 01734 810799; fax, 01734 810844.

Transducers and sensors

Shaft encoder. Digipots are simple, self-contained shaft encoders,

PC radio receiver card. Rosetta Laboratories of Australia make the *WinRadio* radio receiver card and software for the pc. The card plugs into a slot in the motherboard and contains a processor-controlled wideband receiver with antenna, speaker and headphone connectors. It covers the 500kHz-1.3GHz range-in tuning steps-from 1kHz to 1MHz and handles am, fm-w, fm-n and ssb at 1µV sensitivity. Being Windowsbased, a 'front panel' is displayed on-screen to give full control in the normal way. A scanning facility is provided and there is a database of over 300,000 frequencies, which can be extended by the user. Screening has received much attention to allow the receiver to operate inside the pc. Lowe Electronics Ltd. Tel., 01629 580800; fax, 01629 580020.

designed for use in x/y detection, motor speed monitoring, pick-andplace of components and many other areas. They are non-contacting panelmounted types, producing a twochannel, quadrature digital output proportional to rotation at speeds up to 10,000rev/min. Power needed is under 40mA at 5V. Line counts on the internal disc are from 96 to 2048 per revolution, with an optional index. Accessories include line-driver cards and power supplies. Control Transducers. Tel., 01234 217704; fax, 01234 217083.

Vision systems

Graphics accelerator. Ark Logic offers the ARK2000MT 64-bit graphics and video acclerator, which supports the graphics functions such as BITBLT, line draw, pattern-BLT, colour expansion and raster-ops used by graphics user interfaces. Resolutions are from 640 by 480 to 1600 by 1200 and colour depths 4-24bits/pixel, depending on the amount of dram installed and the resolution. It will accept YUV video from a software decompression utility and perform colour space conversion and scaling of the video image to full screen size, interfacing with both PCI and VESA local bus motherboards. The board comes with a set of drivers. Amega Technology Ltd. Tel., 01256 330301; fax, 01256 330302.

COMPUTER

Computer board-level products

3U single-card pc. On a single 3U VME bus card, Ovation's VME 486 PC supports all standard pc i/o functions such as keyboard interface, two serial i/o ports, Centronics/parallel i/o interface, floppy and hard disk interfaces and a high-resolution VGA display. An optional module allows up to 16Mbyte of dram in simms, Ethernet connection and dual-port static ram expansion to 1Mbyte. Ovation Systems Ltd. Tel., 01844 279638.

Single-board computer. Apex II from Blue Chip is a single-board computer for industrial and embedded applications, having processor, video and peripherals on one 5V board. It takes 486SX up to P24T processors and provides a 16Mbyte maximum dram memory in 72-pin simm form. There is 1Mbyte of flash memory to give solid-state disk storage, and two further sockets for more of the same. Local bus SVGA video control has 512Kbyte of vram to give 640 by 480 colour lcd. Blue Chip Technology. Tel., 01244 520222; fax, 01244 531043.

Data acquisition

Modular, PC-compatible system. Yokogawa's DARWIN, a modular family of data acquisition instruments, will compose a complete data-logging system from a range of input measurement and scanning modules, output modules such as computer interfaces and alarms, and hard-copy recording. Each system may be specified as a stand-alone unit with up to 40 channels or as an expandable system with from 10 to 300 channels. The standard software handles data logging and configuration, while an enhanced package is available that provides trends, bar graphs, panel-meter-type display and alarms. Built-in maths functions allow for signal processing before measurements are passed to the pc. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494 535002.

Development and evaluation

Thermal development. Redpoint Thermalloy has a design kit containing a selection of active and passive heatsinks, materials and accessories, with data, to help with the thermal management of microprocessor-based designs. The kit includes the Thermalloy Cooling Module, which is a pin-fin type with a fan, in 5V and 12V versions. It all comes in a carrying case. Redpoint Thermalloy Ltd. Tel., 01793 537861; fax, 01793 615396.

Software

Emc measurement, ESxS-K1 from Rohde & Schwarz Is a Windowsbased package for emc measurement in small and mediumsized companies. It supports R & S emi test receivers and eases the user's task by providing dialogues and masks for entering data. Features Include single-keystroke measurement, graphic display of test results and scan data. comparison of limit lines with peak search function and average-value detection. Rohde & Schwarz UK Ltd. Tel., 01252 811377; fax, 01252 811447

High-level language debugger. Noral Micrologics offers the *Flex* universal, real-time embedded systems debugger for Windows, which incorporates an integrated macro language and editor for 8-bit, 16-bit and 32-bit applications. It operates independently of hardware providing the Information from the embedded system and can be used with in-circuit emulators and background debug mode hardware, rom monitors and simulators for use In the future. It is also independent of file formats. Noral Micrologics Ltd. Tel., 01254 682092; fax, 01254 680847.

Industrial control. From PC Soft International comes Wizcon 5, a Scada package in true 32-bit Windows 95 native code. (Scada is short for 'supervisory control and data acquisition'.) It is designed for use in both stand-alone applications and in systems for manufacturing and management information, including such applications as control and supervision of processing and manufacture, building automation and public utilities. New features In v.5 are online diagnosis and de-bugging and cluster libraries of animations for many processes. The company offers the package with no extras, all options being included. PC Soft International. Tel., 01233 503838; fax, 01233 513687.

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this **free** offer applies to private subscribers only. Your ad will be placed in the first available issue.

> This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call **Malcolm Wells on 0181-652 3620**

All adverts will be placed as soon as passible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to: Free Classified Offer: Electronics World 1329 Quadrant Hou

Free Classified Offer: Electronics World, L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

"Your low cost route to embedded 8051"

Complete PIC Development System

All you need including ICE & Programmers at a low, low cost Plus training package if required

Overseas Distributors Wanted! Please Call or Fax for Full Details

- **Fully Integrated Package of** Hardware and Software for the 16C5X series.
- Low cost upgrades for the 16C71,
- **Real In Circuit Emulation**
- Includes Everything Except the PC
- Supplied in Custom Case
- **Development Hardware Includes** In Circuit Emulator, Modules for other processors, programmers and Proto-Typing Boards
- Software Includes : Full Function Multi-Window Editor, Assembler, Simulator, ICE, Programmers, **Plus Other Features in One Program**
- Training Package available which **Covers Real World Applications,** with Case Studies

Kanda Systems, Innovation Centre, Pendre Hafod, Pontrhydygroes, Ystrad Meurig, SY25 6DX Tel : (+44) (0) 1974 282670 Fax : (+44) (0) 1974 282356 email : Info@Kanda.demon.co.uk

In the second extract from his book Simplified design of micropower and battery circuits, John Lenk shows how to apply the MAX712/713 and other ICs in a wide variety of charging circuits.

er back in

f you read Part I of this article in the March issue, you should have a good understanding of how the *MAX712* and *713* work. These are highly integrated charger ICs specifically designed for use with NiCd and NiMH cells.

Putting the

Here is a basic simplified design procedure for using these ICs – and others – in practical circuits. The following steps assume that the maximum power dissipation is not exceeded in your application, that the charge current does not exceed 600mA, and that the battery stack has 11 cells or fewer.

Check recommendations: Follow the battery manufacturer's recommendations for maximum charge currents, as well as charge-termination methods for the specific batteries in an application. **Table 1 provides** some general guidelines. When the charge rate is greater than 2C, use both temperature and voltage-slope/time. With charge rates below C/2, use the *MAX712* for NiMH batteries. Use the *MAX713* for all NiCd applications.

Decide on a charge rate: A charge **rate** of C/3 (where C is the battery capacity) charges the battery in about 3h. Current in milliamps required to charge at this rate is calculated as:

IFAST=(capacity of battery in mAh)/(charge time in hours)

Depending on the battery, charging efficiency can be as low as 80%, so a C/3 fast-charge could take 3h 45min. This has nothing to do with the efficiency of the IC, but reflects the efficiency with which electrical energy is converted to chemical energy within the battery.

Choose an external dc power source: An example of this is a wall-cube. Minimum output voltage, including ripple, must be greater than 6V and at least 1V higher than the maximum battery voltage.

Know the power dissipation: Calculate the worst-case power dissipation of the power p-n-p transistor Tr_1 and diode D_1 in Fig. 2, "Putting the power back in, Part I" *EW*, March, pp. 223-228) in watts, using:

PD=(max wall-cube voltage, loadedmin battery voltage)×(charge current in amps)

Make sense: If the calculated power dissipation exceeds the maximum; if the battery stack has more than 11 cells, or if the charge current exceeds 600mA, calculate R_1 and R_{SENSE} as described in Part I. Otherwise, calculate the values of R_1 (in

 $k\Omega$) and R_{SENSE} (in $k\Omega$) as follows:

 $R_1 = (minimum \ wall - cube \ voltage - 5V)/5mA$

then.

$R_{\text{SENSE}} = 0.25 \, \text{V} / (I_{\text{FAST}})$

Check pin-straps: Consult Tables 2 and 3 to determine the pin-strap settings. For example, with a battery of six cells, both PGM0 and PGM1 (pins 3, 4) should be left open. For a charge time of 90min with the charge-slope limit enabled, PGM2 and PGM3 (pins 9, 10) should be connected to REF (pin 16).

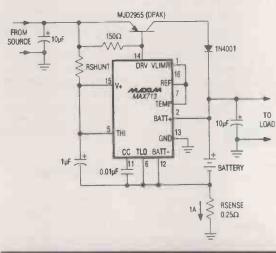


Fig. 1. NiCd/NiMH charger with step down regulator (Maxim Battery Management Circuit Collection, 1994, p. 2).

Table 1. End of charge. Termination methods for fast-charge controllers

(Maxim New Releases Data Book, 1994, p. 4-55).

Charge	NiMH cells	NiCd cells
>2C	DV/Dt and	DV/Dt and
	temperature	temperature
	Max712/3	MAX713
2C to C/2	DV/Dt and/or	DV/Dt and/or
	temperature	temperature
	Max712/3	MAX713
<c 2<="" td=""><td>DV/Dt and/or</td><td>DV/Dt and/or</td></c>	DV/Dt and/or	DV/Dt and/or
	temperature	temperature
	Max712	MAX713

Simple fast-charger with linear-regulator

Figure 1 shows the MAX713 connected to provide a fastcharge with linear regulation to both NiCd and NiMH batteries.

Note that Fig. 1 is similar to Fig. 2 in Part I. The major difference is that the external pass transistor in Fig. 1 is a MJD2955 and the resistor at pin 15 (V+) is called R_{SHUNT} instead of R_1 , as in Fig. 2, Part I.

The circuit of Fig. 1 solves two closely related problems found in powering small portable systems – firstly charging the battery and secondly switching over from battery power to ac power when an external ac-to-dc adaptor is plugged in. The *MAX713* supplies the system load current while the battery is being charged by sensing and dynamically regulating the battery current.

Using a linear regulator instead of a switch-mode circuit is a good approach for small systems: palm-top computers having low-voltage ac-to-dc adaptors and low-wattage battery packs with 5V, 9V, and 12V outputs are common examples. The linear regulator approach is also effective for battery back up in non-portable systems, such as large file servers.

The choice between linear and switch-mode is usually a matter of what is an acceptable power dissipation in the regulator pass transistor. For instance, fast-charging three 750mAh NiCd cells from 9Vdc at a 1C rate produces a worst-case dissipation of about 5W. This dissipation is too high for most hand-held applications.

The MAX713 must be programmed for the desired number of cells and charging time. Use the pin straps, as described above, with Tables 2 and 3. The circuit will charge up to 16 cells.

Operating area of the MAX713/MJD2955 circuit, Fig. 2, shows that if the input-output differential can be kept low, the operating current – i.e. charging current plus load current – can be 1A. Input voltage range is battery voltage plus 1V, up to 20V, with a 5V minimum. Supply current when not charging is 5μ A maximum. Charging current is limited only by maximum power dissipation PD, and efficiency is battery voltage divide by source voltage multiplied by 100%.

For example, if the supply voltage is 6V, used to charge a 3V battery, efficiency is $3/6 \times 100 = 50\%$.

Where heat-sinking is not practical, fast-charging large batteries in compact enclosures raises the problem of temperature rise. The battery-charger current source must have adequate efficiency to prevent temperature rise. This usually

> means some form of switch-mode current source, if the charging plus load currents – i.e. operating current – is greater than about 1A.

Table 2. Number of cells.

Programming the number of cells for fast-charge controllers (Maxim New Releases Data Book, 1994, p. 4-56).

No of cells	PGM1	PGMO
1	V+	V+
2	open	V+
3	REF	V+
4	BATT-	V+ 1
5	V+	open
6	open	open
7	REF	open
8	BATT-	open
9	V+	REF
10	open	REF
11	REF	REF
12	BATT-	REF
13	V+	BATT-
14	open	BATT-
15	REF	BATT-
16	BATT-	BATT-

Fast-charger with switch-mode current source

The MAX713 can be connected as a switchmode regulator to provide a fast-charge for both NiCd and NiMH batteries, Fig. 3. The operating area of the switch-mode circuit, Fig. 4, shows the input voltage range is battery voltage plus 1.5V, up to 20V, with a 7V minimum. Efficiency is 80% with an input of 12V and two cells being charged at 1A. Note that the circuit of Fig. 3 is programmed for two cells, with PGM0 strapped to V+; PGMI open, and for a timeout of 90min, i.e. PGM2 and PGM3 strapped to RET.

Control loop for the circuit is a variablefrequency type, which senses and regulates current through the battery. Battery current is measured by the 0.08Ω resistor (R_{SENSE}), and this sense signal is compared to an

Table 3. Maximum charge time.

Programming the maximum charge time for fastcharge controllers (Maxim New Releases Data Book, 1994, p. 4-56).

Timeout	A-to-d t _A	Slope	PGM3	PGM2
(min)	sampling (seconds)	charge limit	pin	pin
22	21s	Disabled	V+	open
22	21s	Enabled	V+	REF
33	21s	Disabled	V+	V+
33	21s	Enabled	V+	BATT-
45	42s	Disabled	open	open
45	42s	Enabled	open	REF
66	42s	Disabled	open	V+
66	42s	Enobled	open	BATT-
90	84s	Disabled	REF	open
90	84s	Enabled	REF	REF
132	84s	Disabled	REF	V+ ·
132	84s	Enabled	REF	BATT-
180	168s	Disabled	BATT-	open
180	168s	Enabled	BATT-	REF
264	168s	Disabled	BATT-	V+
264	168s	Enabled	BATT-	BATT-

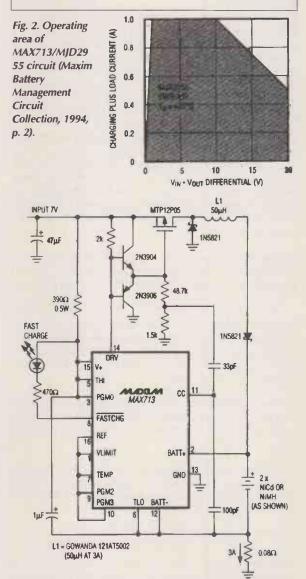
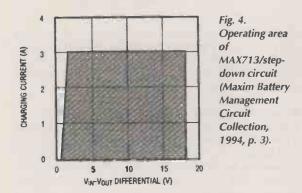
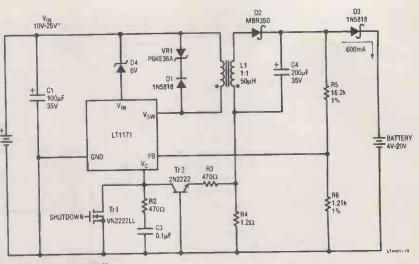


Fig. 3. NiCd/NiMH charger with step-down regulator (Maxim Battery Management Circuit Collection, 1994, p. 3).

ANALOGUE DESIGN

internally generated 250mV threshold. The difference is amplified by a gain of eight, and the resultant error signal appears at the current-sense amplifier output on the CC pin.


A second high-gain stage between CC and DRV compares the error signal to the MAX713 + 2V reference, switching the MTP12P05 p-channel fet on or off to regulate battery current.


The circuit operates in switch-mode rather than in the linear mode because of hysteresis introduced by the feedback divider and 33pF capacitor connected to CC. The capacitor injects charge into the CC node each time the p-channel fet turns on or off. This raises the error signal slightly above or below the +2V reference, and overdrives the second gain stage to ensure a fast-switching drive signal to the fet.

Current available for charging is 3A. This is determined by the value of R_{SENSE} connected at the BATT- pin (0.25/3A=0.08 Ω).

Lower currents allow smaller external components. For example, for a 1A charger, $R_{\text{SENSE}}=0.25/1\text{A}=0.25\Omega$. A 1A Schottky such as the *1N5818s* can be substituted for the *1N5821s*, and a Sumida *CD75470* surface-mount inductor can be substituted for the Gowanda part. The Sumida inductor has a value of 47µH and is capable of carrying 1A,

Also, higher input voltage can be accommodated by adding a level-shifter between DRV and the fet driver transistors (2N3904/2N3906) and changing the 390Ω shunt resistor value.

LOWER INPUT VOLTAGES MAY BE USED BY REDUCING D4 VOLTAGE.

Constant-current battery charger

A Linear Technology LT1171 can be connected for fly-back operation to provide a constant-current battery charger, Fig. 5. Note that this circuit can be used for either NiCd or NiMH technologies. It does not detect when full battery charge is reached. Nor does the circuit indicate a full charge. However, it does have an important advantage – battery voltage can be higher or lower than the input voltage. This is because of the fly-back configuration.

For example, a 16V battery stack may be charged from a 12V automobile battery. Charge current is sensed by R_4 and set at about 600mA. Resistors R_5 and R_6 limit the peak output voltage when no battery is connected.

Diode D_3 prevents the battery from discharging through the divider network when the charger is off. Transistor Tr_1 provides for electronic shutdown of the charger (if needed).

Dual-rate battery charger

The *1171* can also be connected to provide a dual rate battery charger, Fig. 6. Again, the circuit can be used for either NiCd or NiMH cells, but is it does not detect when full battery charge is reached. Also, the input voltage must be higher than

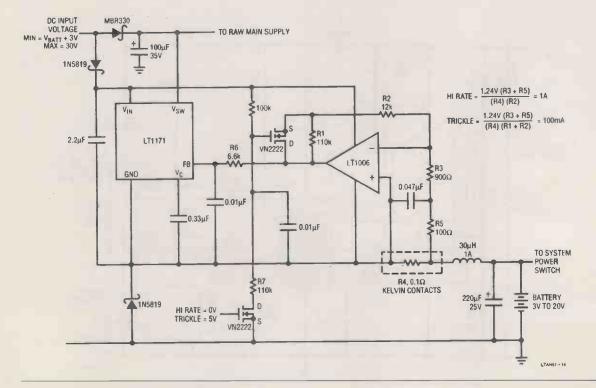
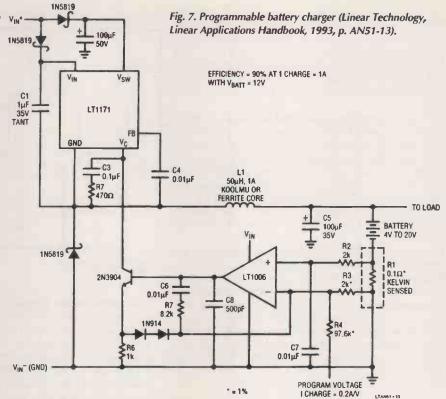



Fig. 6. Dual-rate battery charger (Linear Technology, Linear Applications Handbook, 1993, p. AN51-12).

Fig. 5. Constantcurrent battery charger (Linear Technology, Linear Applications Handbook, 1993, p. AN51-11). DC INPUT VOLTAGE MINIMUM TO START = V_{BATT} + 3V MINIMUM TO RUN = V_{BATT} + 2V MAXIMUM = 35V

the battery voltage for charging to occur. The primary advantage of this charger is efficiency – at around 90% when charging at maximum output current. Because of this efficiency, no heat sinks are needed on either the LT1171 or the diodes.

A logic signal causes toggling between a highcharge rate, up to 2A, or a trickle rate. An *LT1006* amplifier senses the current in the battery and drives the feedback pin of the *LT1171*. The entire control circuit is bootstrapped to the *1171* and floats at the switching frequency. This means that stray capacitances must be minimised in component layout.

A transistor sets the gain on the LT1006 by shorting or opening resistor R_1 . For the values shown, this changes the charge rate between 100mA and 1A.

Programmable battery charger

The *LT1171* can be connected to provide a programmable charger for use with either NiCd or NiMH batteries, Fig. 7. This circuit does not detect when full battery charge is reached, and the input voltage must be higher than the battery voltage.

But the charging current is directly proportional to the program voltage, which can be controlled digitally via d-to-a converters if desired. A small sense resistor between the bottom side of the battery and its ground senses battery charging current. This is compared with the program voltage. From this comparison, a feedback signal is developed to drive the LT1171 V_C pin, thus controlling the charge current. Typical efficiency during high charge is 90%, thus eliminating the need for heat sinks in most applications.

Four-cell regulator/charger for NiCd cells

It is possible to connect the LTC1155 dual power-mosfet as a four cell charger/regulator, Fig. 8. The 1155 has the ability to deliver 12V of gate drive to two n-channel power mosfets when powered from a 5V supply with no external components. This ability, coupled with micropower current demands, makes the LTC1155 well suited for high-side

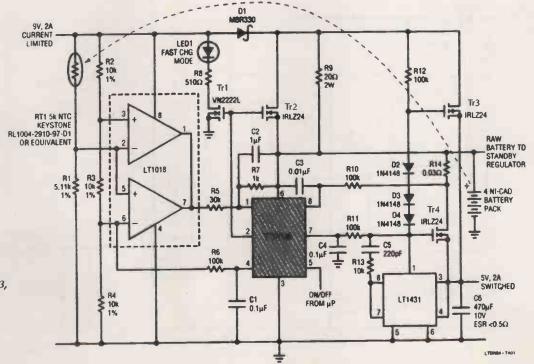


Fig. 8. Four-cell NiCd regulator/charger (Linear Technology, Linear Applications Handbook, 1993, p. DN51-1).

Fig. 10. Charge

Applications

AN37-2).

characteristics for

NiCd charger (Linear

Technology, Linear

Handbook, 1990, p.

Fig. 11. Low resistance

shunts for Kelvin

Technology, Linear

Handbook, 1990, p.

sensing (Linear

Applications

Fig. 12. NiCd

grounded batteries

(Linear Technology,

Linear Applications

Handbook, 1990, p.

charger for

AN37-2).

AN37-4).

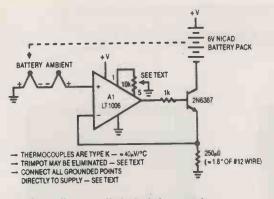


Fig. 9. Thermally-controlled NiCd charger (Linear

Technology, Linear Applications Handbook, 1990, p. AN51-11).

switching applications. These generally require more expensive p-channel mosfets.

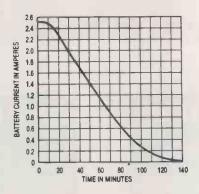
The circuit is well suited for a notebook-computer powersupply system powered by a four-cell nickel-cadmium battery pack. Such a charger consumes very little board space when the LTC1155 and three power mosfets are housed in SO packages. But Tr_3 and Tr_4 must be provided with proper heat sinks.

One-half of the LTC1155 is controls the battery-pack charging. The 9V, 2A current-limited wall unit is switched directly into the battery pack through an extremely low-resistance mosfet switch, Tr_2 . Gate-drive output pin 2 from the 1155 generates about 13V of drive to fully switch both Tr_1 and Tr_2 . Voltage drop across Tr_2 is about 170mV at 2A, so it can be surface mounted to save board space.

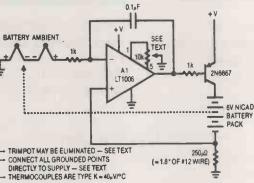
Inexpensive thermistor RT_1 measures the battery temperature and latches the LTC1155 off when the temperature rises to 40°C. This is done through operation of the LT1018 window comparator.

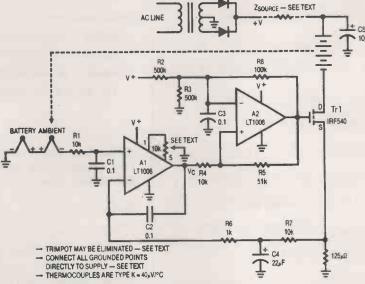
Input to the LT1018 is determined by the RT_1 resistance, which, in turn, is controlled by battery temperature. When the temperature rises to 40°C, drain-sense input of the 1155, pin 1, goes low. Use of a window comparator between the RT₁ thermistor and the 1155 also ensures that very cold battery packs below 10°C are not quick-charged.

Transistor Tr_1 drives an indicator lamp during quick-charge to let the computer user know that the battery pack is being charged. When the battery temperature rises to 40°C, the 1155 latches off, and the battery-charge current flowing through R_9 drops to 150mA.


A four-cell NiCd battery pack produces about 6V when fully charged, dropping to about 4.5V when the batteries are nearly discharged.

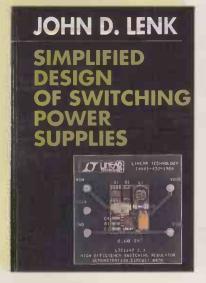
The second half of the 1155 provides gate-voltage drive, pin 7, for a low-voltage drop mosfet regulator. The LT1431 controls the gate of Tr_4 and provides a regulated 5V output when the battery is above 5V. When battery voltage drops below 5V, Tr_4 acts as a low-resistance switch between the battery and the regulator output.


A second power mosfet, Tr_3 , connected between the 9V supply and the regulator output, by-passes the main regulator when the 9V supply is connected. This means that the computer power is taken directly from the ac line while the charger wall unit is connected.


Regulation for both Tr_3 and Tr_4 is provided by LT1431 which also maintains a constant 5V at the regulator output. Diode string $D_{2.4}$ ensures that Tr_3 conducts all of the regulator current when the wall unit is plugged in by separating the two gate voltages by about 2V.

Resistor R_{14} acts as current sensor for the regulator. When voltage drop between the second drain-sense input, pin 8, and the supply, pin 6, rises above 100mV, the regulator latches off at 3A. Resistor R_{10} with C_3 provides a short delay, and

MAJOR CURRE FLOW CURRENT LOW RESISTANCE WIRE



the microprocessor can restart the regulator by turning the second input, pin 5, off and then back on.

When the battery voltage drops below 4.6V, the regulator is switched off by the microprocessor. Stand-by current for the 5V 2A regulator is less than 10µA, and the regulator is switched on again when the battery voltage rises during charging.

Fig. 13. Switch-mode thermal NiCd charger (Linear Technology, Linear Applications Handbook, 1990s, p. AN37-3).

All you need to know about power supplies

Simplified design of switching power supplies Author John D. Lenk, 224 pages hardback

Switching power supply basics Heat sinks for switching power supplies Inductors/transformers for switching power supplies Testing and troubleshooting Simplified design approaches

Part of the EDN series for design engineers, these three books cover every aspect of power supply circuit design from battery charging to inductor choice. They are available individually or as a set of three with a discount of 10% on the normal retail price.

John Lenk is an established writer of international best sellers in the electronics field and author of more than eighty books on electronics. Together, John's books have sold over 2 million copies in 9 languages.

522

JOHN D. LENK SIMPLIFIED DESIGN OF MICROPOWER AND BATTERY CIRCUITS

Simplified design of micropower and battery circuits Author John D. Lenk, 254 pages paperback Introduction to

micropower/battery design Battery basics Battery chargers Single-cell circuits Multicell circuits

JOHN D. LENK SIMPLIFIED ESIGN OF LINEAR OWER ςι ιρρι ιρς

Simplified design of linear power supplies Author John D. Lenk, 246 pages hardback

Linear power supply basics Heat sinks for linear power supplies Discrete feedback regulator basics IC linear regulator basics Linear supply testing and connections Linear supply design examples

Post Code

Please send me		
copies of Simplified design of switching pov	wer supplies at	£22.50 ea.
copies of Simplified design of linear power	supplies at	£22.50 ea.
copies of Simplified design of micropower an	d battery circuits at	£22.50 ea.
sets of all three books at the 10% discount	price of	£60.75 ea.
	Postage*	£
	Total	£
"UK postage is £2.50 for one book and £4.50 for two book		

Rest of world, courier is £7.50 for one book and £13.50 for two books or the set of three.

Name

Address

Method of payment (please circle): Access/Mastercard Visa Cheque PO Cheques made payable to Reed Business Publishing

Credit card No

Expiry Date

Send this coupon, or a clear photocopy of it to Electronics World editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS together with credit card type, number and expiry date, or postal order or cheque made payable to Reed Business Publishing. Alternatively you can fax your details on 0181 652 8956 or send an e-mail to jackie.lowe@rbp.co.uk with ordering details.

Signed

Power dissipation within the notebook computer is generally quite low. As a result of fast-charging the battery pack, the current-limited wall unit dissipates most of the power. Transistor Tr_2 dissipates less than 500mW, while resistor R_9 dissipates about 700mW.

Transistor Tr_4 dissipates about 2W for a very short period when the batteries are fully charged but dissipates less than 500mW as soon as the battery voltage drops to 5V. The three ICs dissipate little power, though Tr_3 can dissipate as much as 7W if the full 2A output current is required and the unit is powered from the wall unit.

Thermally-based NiCd-cell charger

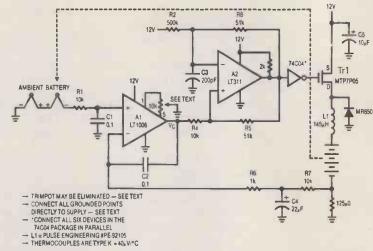
Thermocouples can be used to sense cell and ambient temperatures simultaneously. Figure 9, shows such an arrangement and Fig. 10 its charge characteristics. The LT1006 amplifier, A_1 , furnishes the amplification necessary for microvolt-level thermocouple signals.

To understand operation of the circuit, assume that the battery pack is discharged. The battery thermocouple is directly mounted on one of the cells in the pack, while the ambient thermocouple is thermally insulated and mounted on a mass. This mass may be a frame or other part of the equipment. Both thermocouples are at the same temperature, and both produce the same voltage.

Under these conditions, the thermocouples are phasematched, negative to negative, as shown. Their outputs cancel, and A₁ sees an input of OV.

The $10k\Omega$ offset-adjustment trimmer is set to introduce enough input-offset so that the A_1 output swings positive, turning on the transistor. Current flows from the supply, through the battery pack, and to ground via the $250\mu\Omega$ shunt. The low-impedance shunt minimises losses, cost, and complexity.

Voltage across the shunt rises to about 625µV, which is the amount of off-set set by the potentiometer. This voltage is fed back to inverting input minus of A_1 and forms a basic amplifier-servo loop. The loop controls about 2.5A through the battery pack.


INPUT

10V-25V

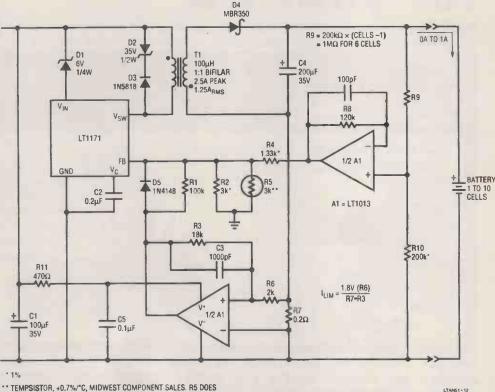
Low-resistance shunts can be constructed in a simple, inexpensive way using a small length of wire or a cir- VOLTAGE cuit-board trace, Fig. 11. The type and length of wire determines the shunt resistance, which can be altered to produce the desired charging characteristics. Figure 11 also shows the details for wire and circuit-board shunts. In both wire and pcb-track cases, the shunt should have separate Kelvin style connections for sensing so that the high current does not affect the readings.

The battery heats as it charges and this heat is picked up by the batterymounted thermocouple. Temperature difference between the two thermocouples determines the voltage, appearing at the A_1 non-inverting input. As battery temperature rises, this small negative voltage becomes larger. Note that a 1°C difference between the thermocouples equals 40μ V. Amplifier A_1 gradually reduces the current through the battery pack to maintain a balance between the inverting and non-inverting inputs.

The effect of this action over time, Fig. 10, is that the battery charges at a high rate until heating occurs, and then the circuit tapers or slopes the charge.

Circuit values given in Fig. 9 limit the battery surface-temperature rise over ambient to about 15°C.

In a thermally based NiCd charger for use with batteries committed to ground, Fig. 12, the transistor is connected as a common emitter, so the inputs to amplifier A_1 are reversed. However, operation is the same as for the thermally controlled NiCd charger circuit.


Note that in Figs 9 and 12, the trimmer may be eliminated by specifying an LT1006 set at manufacture to the desired offset value. The small shunt-sense voltage, of a few hundred microvolts at most, requires a high-quality ground for accurate results. This ensures that the large current flow through the transistor does not combine with ground-return impedances to create errors. The servo cannot tell the difference between voltages developed across a poor ground and those produced by the shunt.

In practice, all returns should be brought directly back to the supply common terminal.

Figures 9 and 12 both force the transistor to dissipate some power, particularly in the middle of the charge curve, and

Fig. 14. Switchmode thermal NiCd charger, lowimpedance source (Linear Technology, Linear Applications Handbook, 1990, p. AN37-4).

Fig. 15. Lead-acid battery charger (Linear Technology, Linear **Applications** Handbook, 1993, p. AN51-10).

** TEMPSISTOR, +0.7%/°C, MIDWEST COMPONENT SALES. R5 DOES A NEAR PERFECT TEMPERATURE COMPENSATION FOR LEAD ACID

heat may be a problem in very small enclosures. This is typical of many micropower circuits.

A circuit can be designed to eliminate this problem – though requiring a much more elaborate configuration, **Fig.** 13. This circuit is similar than the other circuits, except that an additional IC, A_2 , is placed between A_1 and the output transistor Tr_1 .

Op-amp A_2 functions as a duty-cycle modulator. Transistor Tr_1 – a power fet in this case – operates in the switched mode, delivering duty-cycle modulated-current pulses to the battery pack.

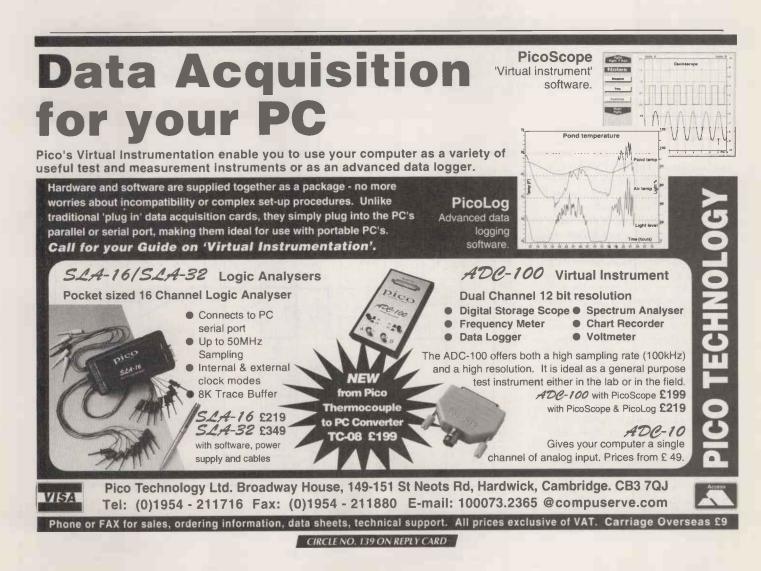
The *RC* network of R_7/C_4 filters the switching waveform to dc. Resistors R_6 and R_7 present a balanced source impedance to A_{11} and capacitor C_2 sets gain roll-off.

The circuit relies on the source impedance of the wall transformer to limit current through Tr_1 and the battery pack. This parameter may be set when specifying the transformer.

If the charging source has low impedance, a circuit can be used where the output is essentially a step-down switching regulator, **Fig. 14**. The 74C04s provide phase inversion, and drive, for Tr_1 , which is a p-channel mosfet.

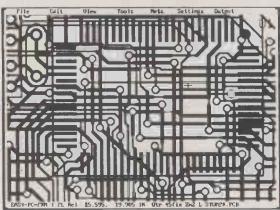
Lead-acid battery charging

Lead-acid rechargeable gel cells are attractive because of their high energy-density-per-unit volume. They have a long life expectancy when treated properly, but often suffer premature failure because of improper charging.


A charging circuit, **Fig. 15**, needs precise non-linear temperature compensation, constant-voltage charging with constant-current over-ride, and high efficiency over a wide range of input and battery voltage.

The basic charger is a fly-back design to allow operation with input voltages above or below battery voltage. Switching IC *LT1171* operates at 100kHz and can deliver up to 15W into the battery. A dual op-amp is used to control constant voltage and constant current modes.

Acting as a current limiter, A_1 turns on when charging-current through R_7 exceeds a present limit determined by R_3 , R_6 , and R_7 . This current limit is included to prevent excess charge current for heavily discharged batteries. Losses in R_7 are kept low because the voltage drop across R_7 is kept to several hundred millivolts.


Lead-acid batteries have a non-linear negative temperature coefficient, which must be accurately compensated to ensure long battery life and full charge capacity. Resistor R_5 is a linear positive-temperature-coefficient thermistor. This characteristic is converted to the required non-linear characteristic by parallel connection with R_2 . Combination R_2 , R_3 , and R_4 multiplies the 1.244V feedback level of the *LT1171* to the proper 2.35V level required by one cell at 25°C.

One-half of A_1 is used as a buffer to drive the resistor network. This allows large resistors, R_9 and R_{10} , to be used for the cell-multiplier string. Resistor R_9 is set at 200k Ω for each series cell over one. Current through R_9 is only 12µA, so R_9 can be left permanently connected to the battery. Resistor R_{10} is added to give the charger a finite output resistance of about 25m Ω per cell in a constant-voltage mode to prevent low-frequency hunting.

NEW -- MultiRouter

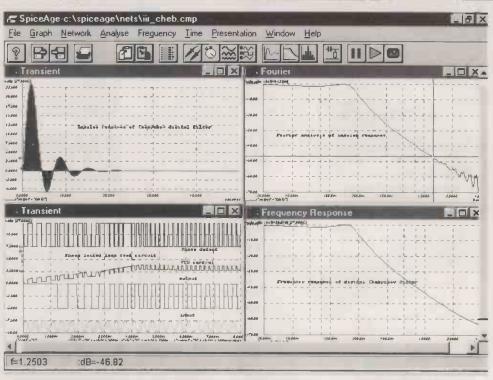
There are Autorouters and Autorouters....

"The Best Autorouter that I have seen costing less than £10,000!" R.H. - (Willingham, UK)

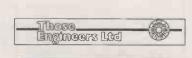
Number One Systems

- 32 bit, Multi-pass Technology
- User Controllable, User Configurable
- 100% Completion where other Autorouters fail
- Extremely Fast -Do in Minutes what would normally take Days
- Could Easily Pay For Itself On The First Job

UK/EEC: Ref: WW, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. Telephone UK: 01480 461778 (7 lines) Fax: 01480 494042 USA: Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (408) 395-0249 Email: sales@numberone.com International +44 1480_461778_


CIRCLE NO. 140 ON REPLY CARD

We are making progress with the new version 5 of SpiceAge


• Rapid digital filter modelling with links to SuperFILTER digital and analogue filter synthesizer (optional extra)

• Non-linear magnetic modelling including ferromagnetic hysteresis • Extended scope of Modelmaker (optional extra), the utility that synthesizes opamps, transformers, attenuators, bipolar, JFET and MOSFET transistor library models

• Other benefits from this mature product which enjoys dilligent maintenance and professional support include: a new

manual; new (rationalised) pin convention; faster calculating; larger circuits; tougher convergence; helpful customer base (for mutual problem solving and model sharing); widening third party support with links to schematic capture and synthesis programs (native schematic capture also available as an optional extra). Contact Those Engineers Ltd at 31 Birkbeck Road, LONDON NW7 4BP. Tel: 0181 906 0155 Fax: 0181 906 0969 Email 100550.2455@compuservee.com

CIRCLE NO. 141 ON REPLY CARD

CLASSIFIED

TEL 0181 652 3620

FAX 0181 652 8956

ARTICLES WANTED

WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS **INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH** MATERIALS AND WOULD **APPRECIATE A TELEPHONE** CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8.IG. 5 Mins, from Tally Ho Corner. **TELEPHONE** 0181-445-2713/0749 FAX 0181-445-5702

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting & RF Heating. Rare brands such as Mullard & GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian & Sovtek items.

Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) £80. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ. Tel: 01403 784961 Fax: 01403 783519 VISITORS STRICTLY BY APPOINTMENT. MINIMUM ORDER £50 plus VAT

! TEST EQUIPMENT WANTED !

SMALL OR LARGE QTY, WORKING OR NON WORKING WE PAY THE BEST PRICES FOR YOUR EXCESS INVENTORY! FAX YOUR INVENTORY LIST TODAY FOR AN INSTANT QUOTE PROMPT PAYMENT AND FAST SERVICE ARE OUR CORPORATE POLICY

LOTHAR BAIER ELECTRONIC TEST EQUIPMENT, MICROWAVE TECHNOLOGY BLUMENSTRASSE 8 D-95213 MUENCHBERG/GERMANY PHONE: +49 925192163 FAX: +49 9251 7846

WANTED: £500 offered for a Marconi valve 405-line sync pulse generator, rack type; four-figure sum for a complete and viable image orthicon camera. Other old studio items considered. Andrew Emmerson, 71 Falcuts Way, Northampton, NN2 8PH. 01604 844130.

WANTED: AVO model 8 Mk1 or Mk2 with broken movement. 01326 312901.

WANTED: Tektronix 7603/13/23 mainframe with plug-ins (non)working, manuals. Send your offer to M.S. Nielsen, Højkær 35 6.TV 2605 Brøndby, Denmark; or call/fax +45 36 4741 58.

WANTED by enthusiast: HP8405A Vector Voltmeter or HP4815A Impedance meter. Working/repairable. Must be Cheap. Richard 01746 718479. Shropshire. Will collect.

SURPLUS SALE

THIS MONTH'S SALE INCLUDES:--Batteries, Boxes, Cable, Capacitors, Computer Products, Connectors, Fans, Fasteners, Filters, Fuses, Optoelectronics, Panel Meters, Power Supplies, Relays, Resistors, Potentiometers, Semiconductors, Transducers, Transformers, Timers and Miscellaneous Stores etc.

ALL PRICES EXCLUDE V.A.T. NO MINIMUM ORDER. RING TODAY FOR THIS MONTH'S CATALOGUE

- WANTED ----

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT

We pay cash and will collect.

B. BAMBER ELECTRONICS 5 Station Road, Littleport, Cambs CB6 10E Phone: Ely (01353) 860185 Fax: Ely (01353) 863245

WANTED

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory & Warehouse Clearance. Confidentiality Assured.

TELFORD ELECTRONICS Phone: 01952 605451 Fax: 01952 677978

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CR0 2QP TEL: 0181-684 1166 FAX: 0181-684 3056

WANTED TOP PRICES PAID

For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.

HTB ELEKTRONIK Alter Apeler Weg 5 27619 Schiffdorf, Germany Tel: 0049 4706 7044 Fax: 0049 4706 7049

526

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. M & B RADIO 86 Bishopgate Street Leeds LS1 4BB Tel: 0113 2435649 Fax: 0113 2426881

ELECTRONICS VALVES & SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD 170 Goldhawk Road, London W12 8HJ England. Tel: 0181 743 0899 Fax: 0181 749 3934

Eight year EW index Hard copy or disk

Includes over 600 circuit idea references

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 - volumes 94 to 101 inclusive - and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 51/4in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Hard copy Electronics World index

Indexes on paper for volumes 100 and 101 are available at £2 each, excluding postage.

(D1 + - 3/4	Circuit	Ideas	R
enote motor control esistance multiplier		SIMULATOR, INSERTION & RE	TURN LOSS
SCR Inverter Sample and infinite h	old	May 1992, p422	
Schmitt trigger, prog Self-ID for plugs and Sensor, Linear Currem Servo, High torque po Servo, Simple Simulator, Insortion ingle pot Polarity & Soft-start filement & Speech compressor	sensors t sition â return loss Gain adjust river	"Simultaneous insertion a loss plots". Modelling a return-loss b the relevant port allow p insertion loss, and, with further computation, retu plot simultaneously.	ridge at lot of aut
Square wave generator Status detection over		0/1 Desi	gn: Ri ⁿ
Stepper Motor Control Stepper Motor Control Stepper Motor Driver	ler Gigaber	onal couplers, hybrid tz Systems on a Chip iver performance	MICROUNUES, NEW UNVE Mike Hosking
Stereo expander Switch, Low voltage	HF rece	iving loop, improved r RF power amplifier design	H1 Concepts, circuits A April 1994, p276
PARTICIPAL POLICIPALITY	High qu	ality punch for radiocomms in RF combiners	#2 The Laws of Microstri
Photo copies of	Impedan	e transformation	May 1994, p410
Electronics World articles Photo copies from back issues of	Heasur II	ng Detectors ng with TDR ves, New wave // ves, New wave //2	#3 Lumprd components # 4 June 1994, p472
Electronics World are available a	ta Notse se	ource. self-calibrating	84 Active devices for mi
flat rate of £3 per article or 50p p	Po lyphas	se SSB an Revalution	uaves. July 1994, p571
circuit idea, both excluding		r Measurements in milliwatts sistors, Using /1	
postage.	RF Trans RF Trans	sistors, Using /2 sistors, Using /3 er for electro explosíves	August 1994, p666

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquiries about photocopies, etc,

please send an sae to SoftCopy Ltd at the address below.

FS-Other

arch FE-Meno F4 Edit

Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserv.com. Please make cheques payable to SoftCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

LECTRON Contact Malcolm Wells on 0181-652 3620

New Flight Electronics International Catalogue Set

You now have access to the world's latest: + Electronics Training Equipment

- * Microprocessor Training Equipment
- * Test and Measurement Equipment * PC Cards
- via "Flight's" latest catalogue set.

We are specialists in the provision of Innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.

Our extensive range covers every need, call today for your free catalogue set.

CIRCLE NO. 1440N REPLY CARD

NEW Feedback T&M Catalogue

The latest edition of the Feedback Test & Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

CIRCLE NO. 146 ON REPLY CARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

NEW CATALOGUE

The new 1996 National Instruments Instrumentation Reference and Catalogue is available now. Discover how to develop integrated systems for test and measurement and industrial automation. Includes details of over 500 software and hardware products for PCs and workstations, Includes valuable tutorials on data acquisition and instrument control.

NATIONAL INSTRUMENTS Tel: 01635 523545

CIRCLE NO. 145 ON REPLY CARD

1995 MASTER PRODUCT CATALOGUE NOW OUT!

Test and instrument control solutions Test and instrument control solutions. 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems: IEEE488 (GPIB) * DIO * Timer/Counters * RS232 RS422/485 * A/D * D/A * plus Opto Isolated versions. New Parallel/Serial RS232. Opto Dual RS232. Motion Control, Converter and Repeater for 1995! ISO 9001 Ouality guarantee 4 ISO 9001 Quality guarantee ✓ UK design and manufacture ✓ 36 month no-quibble warranty ✓ Telephone hotline support I Competitive pricing on the page I Intelligent solutions 8 friendly service I **BRAIN BOXES** Unif 3f Wavertree Boulevard South Wavertree Technology Park Liverpool L7 9PF Tel: 0151 220 2500 Fax: 0151 252 0446 CIRCLE NO. 147 ON REPLY CARD

Feedback For friendly service & fast delivery

SPECTRUM ANALYSERS

HP8557A 350MHz (fitted in 182C mainframe) £1500

HP3580A 5Hz-50kHz audio frequency spectrum analyser £750 to £1250

HP3582A audio frequency ftt analyser dual-channel £2000 HP8566A high-specification 1.5GHz spectrum analyser £7500

MARCONI 2386 100Hz-26.5GHz (in 1Hz steps!) £15000 AVCOM-portable 2 in stock, 1GHz. No other details at this time.....

TEKTRONIX 492 21GHz portable spectrum analyser, with options 12&3, and complete with waveguide mixer set (& diplexer) to cover 18-40GHz £7000

MARCONI INSTRUMENTS

20918A synthesized AM/FM signal generator 80kH	Iz-
520MHz	£1250
2019A synthesized AM/FM signal gen 80kHz-1040)MHz
	£2000
2305 modulation analyser 50kHz-2.3GHz	£2500
2828A/2829 digital simulator/analyser	£500
2955B radio communications test sets - LATEST 'E	3'
MODEL	£4000
2926 TV generator & inserter (NTSC variant)	£500
6460/6421 power meter & sensor 10 MHz-12.4GH.	z £350
6514 waveguide detector for use with 6500-scalar	
analyser 26-40GHz	£350
6960 microwave power meter with 6910 power ser	isor
10MHz-20GHz	£900
OA2805A pcm regenerator test set	£750
TF2910/4 non-linear distortion (video) test set	£500
TF2910 TV interval timer	£250

			professional	1 davi S
• 36 East	cote Lane South	Harrow • Middx I	IA2 8DB • Eng	land •
TE	EL (+44) 0181-422 35	593 • FAX (+44) (0181-423 4009	_
			The second	
EST		and L Con-		-
45		- ERC		
YRS	5.			
	and makes	and the second		
DISTRIBUZIO	ONE E ASSISTENZA	ITALY: ILC RAD	IO HOMA (06) 8	71 90254

ralfe electronics

exclusively

TEST EQUIPMENT

ANRITSU MF76A 18Ghz microwave frequency cou	otor
ANNIE SO ME YOA TOOM2 THICFOWAVE REquency cou	£1500
BRUEL & KJAER 1023 sine generator	£1250
BRUEL & KJAER 1027 sine random generator	£1750
BRUEL & KJAER 2033 single channel audio spectri	
analyser	£2500
BRUEL & KJAER 2619 preamplifier	£250
BRUEL & KJAER 2511 vibration meter (field set will	th
1621 filter)	£1500
BRUEL & KJAER 2307 level recorder	£1000
BRUEL & KJAER 2317 portable level recorder	£1500
BRUEL & KJAER 2607 measuring amplifier	£600
BRUEL & KJAER 2609 measuring amplifier	£750
BRUEL & KJAER 2308 analogue X-Y pen recorder	
CHASE LFR 1000 interference measuring receiver	
150kHz	£1000
DATRON 1061 & 1061A - various, digital multimeter	
1065 - call from DATRON 1065 digital multimeter all ranges plus IEE	n £500
DATHON 1005 digital multimeter all ranges plus ice	£500
FARNELL 2081/100 100W RF power meter DC-500	
(1GHz)	£200
JJ INSTRUMENTS CR600 2-channel pen recorder	£250
FARNELL PSG2400A signal generator 100KHz-2,4GHz	£3500
0 0	
TEKTRONIX 2232 100MHz 100MS/2 digital storage oscilloscope	£2000
TEKTRONIX 2245A 100MHz oscilloscope	£1100
PHILIPS PM5167 1mHz-10MHz function generator	£275
PHILIPS PM8272 X-Y & Y-t dual-channel pen record	
DACAL DOOR outematic modulation mater	£850 £350
RACAL 9008 automatic modulation meter RACAL-DANA 9300 milli-voltmeter	£350 £400
RACAL-DANA 9301A true RMS RF milli-voltmeter	£350
SYSTRON DONNER 1300 synthesized signal gene	
100Hz-1GHz GPIB	£1350
TEKTRONIX AA501 / SG505 distortion analyser	
(complete with TM503)	£1250
TEKTRONIX P6303 o'scope probes NEW 250MHz	
X1/X10 with readout pin	£50ea
TEKTRONIX 2465 option CTS oscilloscope	£2000
TEKTRONIX P6201 FET PROBE	£350
WANDEL & GOLTERMANN WM30 level tracer	£500
WANDEL & GOLTERMANN PJM-4S jitter meter for	05500
SONET & SDH	£5500
WAVETEK 23 synthesized function generator 0.01H	
12MHz WAVETEK 1067 opt 522 1-500MHz sweep generate	£1250
WAYNE KERR 3220 20A bias unit (for 3245 inducta	JI 2300
analyser)	£1250
WAYNE KERR 3245 inductance analyser	£3000
TEKTRONIX 1502B/03/04 short-range metal-cable 1	
tester	£3500
TEKTRONIX 1503 tdr metallic-cable tester with opts	03/04
	£1000

HEWLETT PACKARD

90254		
	1640B serial data generator	£500
	3561A dynamics signal analyser (opt 01) £5500
3764A	digital transmission analyser	£2000
3335A	synthesizer/level generator	£2000
3400A	voltmeter, analogue 10Hz-10MHz	£250
3235A	switch/test unit	£1000
3324A	synthesized function generator	£2000
3456A	digital multimeter	£750
3580A	audio frequency spectrum analyser £750	to £1250
3581C	selective voltmeter	£1250
358 2A	dual-channel spectrum analyser 0.02Hz-2	5.5kHz
		£2000
3779D	primary multiplex analyser	£3000
	pA/meter, DC voltage source	£4000
4339A	high resistance meter c/w lead set 16117E	\$ £2000
4275A	multi-frequency lcr meter	£3500
435B n	nicrowave power meter, analogue	£400
5334B	frequency counter w option 010 high-stab	&
Chann	el C	£1500
5386A	3GHz frequency counter	£1500
	A 1GHz digitizing oscilloscope	£2250
	power supply 0-60V 0-50A 1000W	£650
	system power supply 0-20V 0-30A	£1000
	dual power supply 0-20V 0-1A twice	£250
	power supply 0-120V 0-2.5A	£400
6825A	bipolar power supply/amplifier -20V to +20	
		£350
	pulse generator 100MHz	£950
	serial date generator	£1000
	pulse generator 250MHz	£2000
	pulse generator 20MHz	£1250
816A s	lotted line 1.8-18GHz with 809C & 447B p	
		£500
	tracking generator with option 059	£1250
	spectrum analyser 100Hz-1.5GHz	£7500
	synthesized signal generator to 990MHz	£3000 £7500
	2-18GHz synthesized signal generator A gain-phase analyser 100kHz-300MHz	£7500 £6500
	modulation analyser with option 02/010	£3500
	audio analyser	£2000
	A FDDI portable multimode test set	£1500
	A 486-based, colour option main-frame	£1000
	VJ2171A 486-based colour screen option	
advisor		£4000
	A ethernet/token ring interface (for J2302A	
020007		£3000

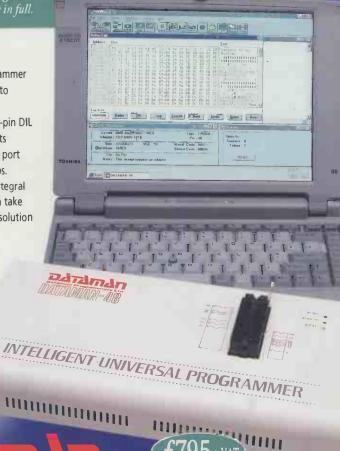
TOP OF THE RANGE EQUIPMENT ALWAYS WANTED FOR STOCK AND STANDING ORDER REQUIREMENTS. TOP OF THE RANGE PRICES PAID

The World's Most Powerful, Portable Programmers

S4 GAL module

Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.

THE DATAMAN CHALLENGE Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your money in full.


any Dataman-48

Our new Dataman-48 programmer adds PinSmart® technology to provide true no-adaptor programming right up to 48-pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with S4, you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming. The current device library contains over 1800 of the most popular logic and memory devices including GALs, PALs, CEPALs, RALs, 8 and 16bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Microcontrollers. We even include a 44pin universal PLCC adaptor:

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP and SDIP. The Dataman-48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorset DT2 0AE. UK Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321095 (24hr) Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com

Dataman S4

Compare the Dataman S4 with any other programmer and you'll see why it's the world's undisputed number one.

£495+VAT

S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard!

S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

C4 01300 320719

Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!