Recruitment special – turn to the back pages

FCTRONI

R

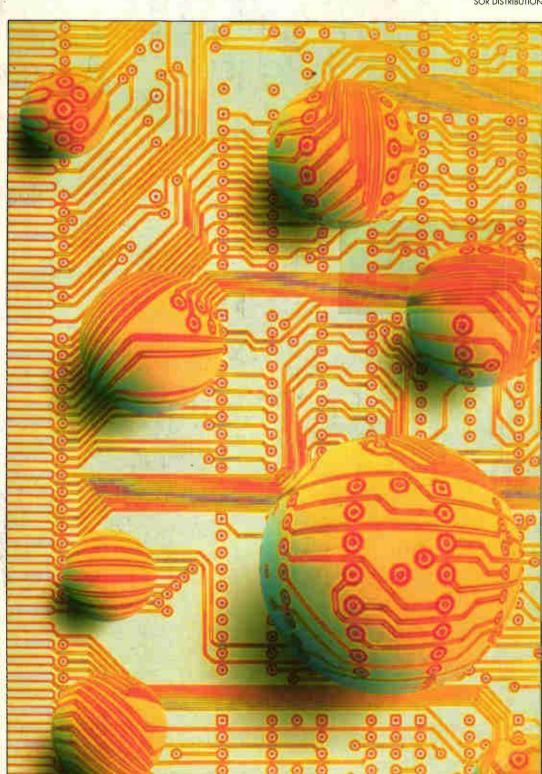
INCORPORATING WIRELESS WORLD

Greece Dra.1300.00 Holland Dfl. 12.50 Italy L. 9000.00 Malta Lm. 1.65 IR £3.30 Singapore \$\$7.50 Spain Pts. 900 USA \$6.50

Austria Asch. 68.00 Denmark DKr. 69.00

Germany DM 18.00

A REED BUSINESS PUBLICATION


APRIL 1998 £2.45

Audio power amplifier Versatile temperature controller Driving mosfets Ceramic capacitors Amp input stability

Fast, precise integrator

Six pages of circuit ideas

TECHNOLOGY

Try TINA plus for yourself. For free demo disk, contact:

TANDEM Tandem Technology Limited Breadbare Barns, Clay Lane, Chichester, West Sussex, PO18 8DJ Telephone: 01243 576121 Fax: 01243 576119

E-mail: 101626.3234@compuserve.com Visit our website: www.tina.com

CIRCLE NO. 101 ON REPLY CARD

Contents

274 CLASS B IN A **NEW CLASS**

In addition to bringing about a dramatic reduction in crossover distortion. Mike Renardson's advanced output stage removes the need for setting up.

280 HANDS-ON INTERNET

Available on the Web - free filter design software, Peltier cell information and pc upgrade advice. Cyril Bateman reports.

284 PRECISION TEMPERATURE CONTROL

A versatile temperature controller that can be used with thermocouples, platinum sensors or temperature-sensing ICs, designed by Richard Lines.

302 IS YOUR BATTERY DEAD?

Within a few years, your car battery could be thin and light enough to fit behind the liner in the roof. Lana Josifovska reports.

305 MOSFET ANALOGUE GATING

Using a mosfet as a transmission gate is significantly more difficult than using it as a logic switch, as Bryan Hart explains.

311 AMPLIFIER INSTABILITY

Erik Margan explains why an amplifier's input can be unstable - even when you follow the text-book design method.

315 FAST AND PRECISE INTEGRATOR

Chris Hancock's precision, high-speed integrator achieves a repeatability of 0.1% on successive ramps at very high speeds.

320 CHARGING THE UNCHARGEABLE

Our fears about charging zinc-carbon and alkaline cells are based on fifties battery technology and are no longer justifiable, argue Michael Slifkin and Yaakov Levy.

324 UNDERSTANDING CAPACITORS

Cyril takes an in-depth look at one of the most widely used capacitor technologies this month - ceramics.

336 BOOKS TO BUY

A new section of electronics and computing titles from Wiley.

339 SPEAKERS CORNER

How can two loudspeakers with almost identical frequency response curves sound so different? Its all to do with time response, explains John Watkinson.

Regulars

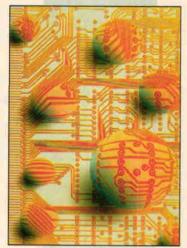
COMMENT 267

269 **NEWS**

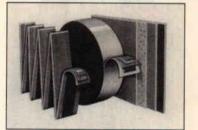
> US firm buys Marconi, 56k modem standard, Summer dtv launch, Small business tax. Is your Web site earning money? Digital video disk.

292 CIRCUIT IDEAS

- NiCd capacity meter wins ADC100
- Analogue pulse width measurement
- 50MHz amplifier using a mixer IC
- PC controlled video multiplex
- Cable core identifier
- VCO and fsk generator
- Better rejection in monostables
- Anti-bounce push-button
- Alternative 32kHz oscillators
- Binary psk generator

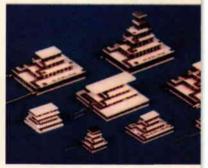

343 NEW PRODUCTS

Over four pages of densely packed product information, selected by Phil Darrington.


349 LETTERS

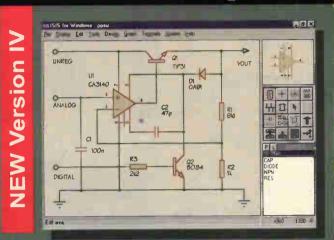
Direct conversion, Temperature control, Welding and emc, Silver plating, Assembly language, Room resonances.

> Looking for a new job? Turn to p. 354.

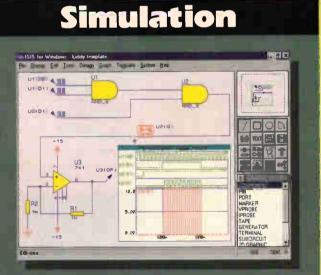

Photography Larry Keenan

Polymer cells like these could replace you car battery, fitting between the roof and the head liner: page 302.

A ceramic capacitor's multiple highfrequency resonances - find out more about them on page 324.


Piling Peltier coolers one on top of the other increase the hot-to-cold face difference. Cyril tells where to find more on this and other Internet topics: See page 274.

MAY ISSUE **ON SALE 2 APRIL**


Phone Bill.

PROTEUS

Schematic Capture

 Produces attractive schematics like you see in the magazines

●Non-Linear & Linear Analogue Simulation. ●Event driven Digital Simulation with modelling language.
Partitioned simulation of large designs with multiple analogue & digital sections.

> C S

The V eneration

New Features

Component Auto-Placer Pinswap/Gateswap Optimizer **Background Regeneration of Power Planes Enhanced Autorouting with Tidy Pass Full Control of Schematic Appearance** Extensive New Component Libraries

Available in 5 levels - prices from £295 to £1875 + VAT. Call now for further information & upgrade prices.

●Automatic Component Placement. ●Rip-Up & Retry Autorouter with tidy pass. ●Pinswap/Gateswap Optimizer & Backannotation. ●32 bit high resolution database. ●Full DRC and Connectivity Checking. Shape based gridless power planes. Gerber and DXF Import capability.

EWW January 1997

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756 753440. Fax: 01756 752857. 53-55 Main St, Grassington. BD23 5AA.

EMAIL: info@labcenter.co.uk WWW: http://www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

CIRCLE NO. 106 ON REPLY CARD

EDITOR

Martin Eccles 0181 652 3128

CONSULTANTS

lan Hickman Philip Darrington Frank Ogden

EDITORIAL ADMINISTRATION

Jackie Lowe 0181-652 3614

E-MAIL ORDERS jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier 0181-652 3620

DISPLAY SALES EXECUTIVE Joannah Cox

0181-652 3620

ADVERTISING PRODUCTION 0181-652 3620

PUBLISHER Mick Elliott

EDITORIAL FAX 0181-652 8111

CLASSIFIED FAX 0181-652 8938

NEWSTRADE ENQUIRIES

ISSN 0959-8332

SUBSCRIPTION HOTLINE 01622 778000

SUBSCRIPTION QUERIES

rbp.subscriptions@rbi.co.uk Tel 01444 445566 FAX 01444 445447

For a full listing of RBI magazines: http://www.reedbusiness.com

Phone Bill

There is more than a touch of a John Ford western in the latest move by Intel, Compaq and their chums. The PC firms are usually willing to present themselves as the cavalry saving the day in the nick of time.

The target now is the home PC user and their need to communicate with the rest of the globe over the World Wide Web. Or more particularly the technical means of transmitting the equivalent of between one and half to eight million bits of data a second down one of BT's telephone lines.

Not that BT is a specific target – unless of course you believe the rumours that Microsoft may have designs on the UK telephone operator. The aim is to kick into life a telecommunications market which could present attractive product opportunities for the PC manufacturers.

Oh, blatant commercial self-interest I hear you say. When was it otherwise? But this time Intel *et al* may have a point.

Surprise, surprise. None other than BT – "It's good to talk" – has swallowed its telephone technology pride and joined the telecoms initiative masterminded by PC technology firms like Microsoft, Compaq and Intel. Soon the Phone Shop will be selling PCs and you'll be able to pay your phone bill at PC World.

This is heady stuff. BT has joined the ADSL working group, made up almost entirely of US firms, which is working to create an international technical standard which will provide 1.5Mbit/s down phone lines to PCs and Internet users in the home.

BT is already planning the introduction of ADSL technology in some of its exchanges on a trial basis. It is keen to ensure compatibility of its network technology with anything being proposed by the PC firms who look set for the first time to dictate a high speed telecoms interface standard. What is being proposed is over 20 times faster than the ISDN digital telephone lines currently available over BT's network.

The means of transmitting 1.5Mbit/s of data down an analogue telephone line commonly known as ADSL, is nothing new. BT tested its first ADSL hardware as long a go as 1992. Semiconductor firms have been selling the necessary ADSL chipsets for almost as long and still we are yet to see the interactive TV service.

Video to the home over the telephone line has proved too expensive and technically troublesome to introduce in more than just a handful of prototype trials.

As one customer service engineer at BT said recently when asked how long it would take to obtain an ADSL line in Birmingham; "Three to five years, I should think."

The telecoms firms have flapped around with ADSL for long enough. The PC market is looking for broadband communications direct to the home user and so the PC firms have decided that the time is right to step in and make ADSL happen once and for all.

If the telephone companies can benefit from the results, then fine. If some of the telecoms hardware

Electronics World is published monthly. By post, current issue £2.35, back issues (if available £2.50, Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. TIx:892984 REED BP G. Cheques should be made payable to Reed Business Information Lid

Newstrade: Distributed by Markeforce (UK) Ltd, 247 Tottenham Court Road London W1P OAU 0171 261-5108. Subscriptions: Quadrant Subscription Services, Oakfield House

Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year UK £34.00 2 years £54.00 3 years £68.00. Europe/Eu 1 year £49.00 2 years £78.00 3 years £98.00 ROW 1 year £59.00 2 years £94.00 3 years £119

Bill Gates is a canny enough operator to realise that there may be some, perhaps as yet indefinable, business advantage to be gained from linking Microsoft's empire commercially with a phone company.

companies find themselves losing out to bigger and smarter PC firms, well tough. The telecoms guys have had five years and plenty of opportunity to make ADSL fly, they cannot start crying when Intel and its PC pals move in on their patch because they can do a better job.

And the PC boys are serious.

Take the throw away comment of Microsoft boss Bill Gates given quite literally while he was braving custard tarts in Brussels. Gates may have stated categorically that he had held no discussions about buying a phone company. However, such a comment conceals a little more than it says.

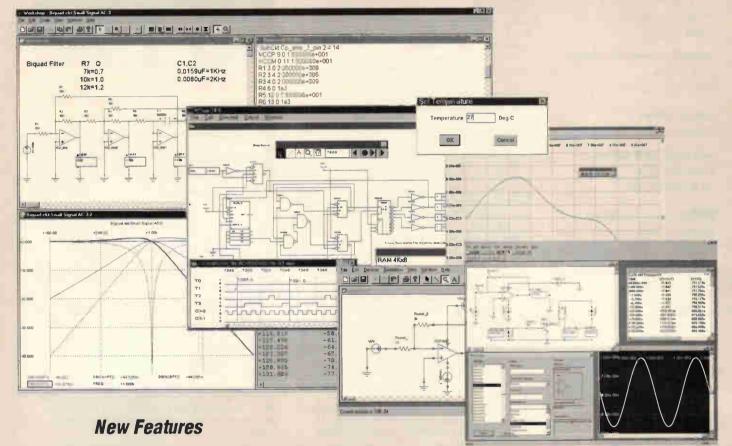
For one, why was someone even asking the question about Microsoft's interest in BT in the first place? Denying talks is one thing, but it is a very long way from denying any interest in said phone company.

Bill Gates is a canny enough operator to realise that there may be some, perhaps as yet indefinable, business advantage to be gained from linking Microsoft's empire commercially with a phone company.

It seems unlikely that the well-fed bosses of Europe's monopolistic telephone companies have resorted to throwing custard pies just yet. However, there can be little doubt now that what lies ahead in the battle for high speed data communications to PCs in the home and at work is a shoot-out of John Ford proportions between the PC world and BT with its fellow telephone companies.

The cavalry may have appeared on the horizon, but that battle, if already begun, has some way to go. But custard pie makers should be warned the fight could still get just a little rough. After all there are billions of pounds worth of our phone bills at stake.

Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fax; (212) 679 9455


USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. Periadicles Postage Paid at Rahway NJ Postmaster. Send address changes to above.

Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR

Typeset by Marlin Imaging 2-4 Powerscratt Road, Sidcup, Kent DAt 4 SDT ,

© Reed Business Information Ltd 1997 ISSN 0959 8332

B²Spice & New Features Dutstanding Performance

- Even more simulation options.
- Perform full temperature and parameter sweeps.
- New graphical functions.
- New libraries of parts including the entire Texas Instruments library.
- Nothing extra to pay for the libraries...they are all included in the price.

As always..

- Everything you would expect from a professional quality SPICE simulator.
- Fully integrated and interactive.
- No limit no maximum circuit size.
- Free technical support.
- 30 day money back guarantee.

B² Spice for analogue simulation £199
B² Logic for digital simulation £199
Special bundle price £295
B² Spice Lite (ideal for first time users) £42.75

Prices quoted exclude VAT Existing users. If you have purchased a copy within the last 12 months you are entitled to a free upgrade. Software for design engineers

 B^2 Spice & B^2 Logic will give you the accurate results you need quickly and easily.

This software is used by thousands of designers, research institutions and universities around the world. But the best way to be certain that it's right for you is to try it, which is what we're are giving you the opportunity to do, risk free for 30 days.

For more information & to order call:

01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

RDResearch

Now available direct from Maplin Electronics & Cirkit Distribution Ltd.

Research House, Norwich Road, Eastgate, Norwich. NR10 4HA Ltd. Postage & packing £4.50. All trademarks are acknowledged.

CIRCLE NO. 107 ON REPLY CARD

UP DATE

US firm buys Marconi Instruments

Arconi Instruments (MI) has been sold to IFR Systems of Kansas for £65m. The sale includes the MICAS test services business. The Marconi name will be dropped, but the management team will stay in place and managing director Peter Smith says there will be no redundancies.

"This transaction doubles our size," said IFR's founder, chairman and CEO, Alfred H Hunt III, "it's a once in a lifetime opportunity for IFR - it's quite remarkable that two companies like this have the opportunity to merge on this basis. It's exciting for both sides."

Last year, the 29 year-old company had revenues of \$103m for profits of \$6.7m. The combined company will have annual sales of \$230m making it one of the world's top eight test companies. Hunt said that MI had similar profit margins to IFR. He saw cost savings in advertising, trade show costs and from the combined group's increased purchasing power for components.

Asked by EW if the takeover would mean redundancies in the UK, Smith replied: "With two substantially growing businesses, the problem is recruiting people. We need more people." In the last five years IFR has grown from \$39m to \$103m.

IFR has two major divisions: the RF division and the fibre-optics division.

The fibre-optics division, based in

Here at last – a 56k modem standard

A single 56kbit/s modem technology standard has been finally ratified by the ITU effectively unifying the incompatible K56flex and X2 rival modem technologies.

The standard, called V.90, is being supported by all the major modem manufacturers and the first V.90 modems are expected on store shelves by March. Existing modem users will also be able to upgrade their modems to V.90 through a free software upgrade.

Modem companies are rushing to test their modems against each other to make sure that there are no compatibility problems.

"Lucent has been conducting some

of the earliest interoperability tests of these high speed modems, and we've made considerable progress toward ensuring that modems based on our chips can communicate with those based on other chips. This interoperability testing is key to guaranteeing that products are truly in compliance with any new standard," said Craig Garen, general manager of modem integrated circuits for Lucent's Microelectronics Group.

Modem chip companies and modem vendors hope that the V.90 standard will help boost modem sales which have slowed over the past few months as customers postponed purchases until the single standard was available.

Sony views MPEG as the way forward

jeans and cowboy boots.

Oregon with a UK operation at

component manufacturing, for

Romsey-based York Sensors.

for avionics, wireless

MI will be merged into the rf

communication systems and for general test applications.

division which had \$69m in sales

last year . It makes test instruments

MI staff will be relieved to hear

that, in 1995, IFR Systems won a

trophy from a local tv station for

being "the best place to work in

Kansas," but the Stevenage dress

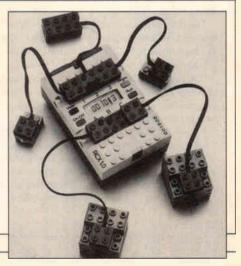
code may change. Hunt favours blue

telecommunications, and for r&d

Chandlers Ford in Hampshire, makes

test equipment for optical fibre and

purposes. IFR also recently acquired


Sony Broadcast & Professional Europe announced its commitment to MPEG, the internationally accepted standard, in response to growing market demand for nonproprietary environments. Sony's future product ranges will be in line with the MPEG standard, the first of which will be announced at NAB '98 in the US. Sony's SX product range is already MPEG based. "Vendors must break away from format-centric thinking and focus on what the customer is asking for - freedom of choice at competitive prices," said Miles Flint, president of Sony Broadcast & Professional Europe.

Processor in a brick

Toy manufacturer Lego has added processors to its bricks. Its Technic CyberMaster links a pc to a model using a radio-frequency carrier and allows the model to be controlled by cursor keys.

A cd rom carries on-screen construction information, conveyed to the user through animated characters as well as interactive games. The more advanced Lego Mindstorms Robotic Invention System uses a more powerful Lego block processor, the RCX, in autonomous Lego creations. Programming is done on the pc using a simple behavioural language; programmes are downloaded to constructions through an infra-red link.

Optical, pressure and other sensors are included to enable models to interact with their environment. Mindstorms' computer was developed in the US by MIT and in trials a nine-year old girl made a birdfeeder digitally linked to a camera which photographed birds as they landed. The products will be available in August.

Subsidised set-tops for summer DTV launch

B SkyB will subsidise the first batch of set-top boxes for its summer launch of digital satellite television, until British Interactive Broadcasting (BIB) receives clearance from the European Commission for its launch of complementary interactive services.

"Sky might provide some of the subsides until BIB launches its service in winter of 1998. BSkyB may retrieve the money back from BIB later," said a spokesperson.

BIB, the joint venture between BT, Matsushita and Midland Bank, was initially set up to provide the interactive digital satellite services such as home banking, home shopping, access to the Internet, E-mail and special community information services among others. It was also going to subsidise the set-top boxes to bring the prices to an affordable level and hence encourage the take up of the new type of television.

However, as BIB is currently being scrutinised for regulatory approval by the DG IV of the European Commission, it will initially miss BSkyB's service launch that is confirmed for June 1998.

As the summer service kicks off, the initial batch of set-top boxes will not offer all those services promised by BIB. The next generation boxes will have greater functionality.

"Boxes will always be upgraded as they go along. It's the same as with mobile phones," said the spokesperson. But the spokesperson did add that the first boxes will be ale to receive the future BIB interactive services in addition to their capability to offer video-on-demand.

Out of the four manufacturers that BSkyB appointed to supply the boxes - Matsushita, Grundig, Pace Micro Technology and Amstrad only Pace and Amstrad have confirmed that they will supply the initial quantities in time for the June launch. Last week Pace's shares dropped by 1.5p to 39p per share and Amstrad's shares stayed static at 32p per share.

BSkyB and BIB are both hoping to have a fully functional digital satellite service in time for Christmas 1998.

Scottish bodies making the most of product ideas

The industry body Scottish Electronics Forum (SEF) and Scottish Enterprise (SE) are jointly to support the Scottish electronics industry under the banner Realising the Potential.

The deal signed extends a five year-old venture that has seen industry and academia collaborating to take Scottish ideas out of the universities and into production.

"Quite a few developments, including a method of creating production masks and a heart monitor, are progressing well," said a Scottish Enterprise spokesman about the existing scheme.

Not all the achievements lead directly to products. "Among other things, the group has recognised a need for mechatronics training and the universities have altered their courses to suit," the spokesman said.

Shown are SEF chairman George Bennett of Motorola (left) and Ray Macfarlane, MD of operations at SE.

Bandwidth boost for Web access

Lucent Technologies has unveiled an optical networking system with sufficient capacity to handle the Internet's entire data traffic using a single optical fibre.

The company claims that its WaveStar TM OLS 400G system, with an optical fibre capacity of 400Gbit/s, offers five times the bandwidth of competing solutions. For a system combining up to eight optical fibres, 3.2 terabits of data per second is achieved.

"Lucent is driving down the ongoing cost of transmitting a bit of information close to zero while pushing capacity towards infinity," boasted Gerald Butters, president of Lucent's optical networking business.

The huge bandwidth is achieved using dense wavelength division multiplexing (DWDM) technology. Here, multiple light beams of different frequencies are carried within a single optical fibre. At the receiving end, DWDM acts like a prism, separating each wavelength, which carries its own channels of data communications.

Tax will hit small and medium firms

S mall-to-medium-sized businesses (SMEs) face increasing financial hardship if the government's proposed changes to corporation tax go ahead, the CBI has warned.

Douglas Godden, head of the CB1's economic policy group, told EW that although he welcomes the abolition of advanced corporation tax (ACT) a slice of the full tax taken by the Inland Revenue at the financial year's end - other changes could adversely affect SMEs. "On its own the abolition of ACT is quite good news," he said. "But at the same time, they've brought forward the rest of the corporation tax payments."

According to Godden, companies most seriously affected by the changes will be those classified as "medium-sized" with annual profits between £300,000 and £1.5m. Whereas small firms, with profits below £300,000 will not have to pay their tax until nine months after the end of the financial year, mediumsized ones will be required to pay in quarterly installments. "For SMEs, cash flow is very important," he said.

Cacheless Pentium II plans

ntel is preparing to introduce a cacheless version of its Pentium II microprocessor, representing a departure from its efforts to offer Pentium II microprocessors in Slot1 modules which also contain cache chips.

The Pentium II version, codenamed Covington, is expected in April and will enable Intel to compete against low priced Pentiumcompatible microprocessors from National Semiconductor, AMD and Centaur.

Covington represents Intel's first entry into the low priced PC market.

telephone 01702 554000 with your enquiry

with your needs

IN TOUCH WITH BUSINESS

22,000 product lines

Next day delivery

90,000 sq ft distribution centre

Competitive pricing

Quality service

NOW AVAILABLE ON CD ROM
 Includes over 400 Data Sheets
 Prepare your order online

Over 1,000 new products Additional Price Breaks

Maplin Electronics the CREDIBLE alternative.

onics and beyond

Hitachi takes lead with summer DVD-RAM launch

Panasonic is delaying the European launch of DVD-RAM drives until the summer, while competitor Hitachi is expected to launch its drive later this month. According to Sakon Nagasaki,

Insight

While equipment makers may boast about the 1.5 million DVD units sold worldwide, DVD technology as a whole has suffered because of a lack of co-ordination between the hardware and software developers, and problems with standards.

DVD Video players have been selling in the US and Japan since last year. However, only now are DVD-RAM drives beginning to appear. Panasonic/Matsushita's director of DVD business development, the DVD-RAM delay is linked to hardware compatibility issues and software testing.

"We are cautious in testing the software and compatibility with the existing hardware," said Nagasaki.

DVD-RAM drives from Panasonic were first expected last month. However, its launch in the US and Japan is now scheduled for the spring, followed by a European launch this summer. Meanwhile, Hitachi is believed to be launching its 2.6Gbyte per side DVD-RAM later this month.

Panasonic's drives will be able to read from and write data to DVD-

RAM discs with capacities of 2.6Gbytes per side. The read/write head arrangement was developed by Matsushita, Panasonic's parent company, along the drive's signal processor and 32-bit Risc processor. A 4.7Gbyte per side DVD disc version is expected a year later, says Matsushita.

According to Matsushita, up to 500,000 DVD-RAM drives will be shipped worldwide this year, rising to 5 million next year. This growth is based on DVD-RAM's increased usage in such applications as notebook PCs, DVD camcorders and still cameras, and in-car navigation to store downloaded information.

Is your Web site making money?

UK companies are failing to earn money from their Web sites, according to a new report.

The survey from Fletcher Research shows that fewer than 35 per cent of the 250 UK companies analysed are trying to generate revenue from their Web sites. Of these, the most popular method is through advertising, followed by on-line sales of consumer products and subscriptions.

Most UK Web sites display information only. There is little evidence of companies using their sites for business-to-business commerce.

Few of the companies surveyed are involved in electronics. "There simply aren't that many prominent business-to-business sites in electronics," said William Reeve, one of the report's authors.

One site highlighted was GEC's, described as a "professional glossy corporate brochure" for the company. In contrast, US firm General Electric uses its Web site as the sole way for companies to tender supplies

IN BRIEF

Fuel fraud in check

Fleet operators can now remotely check the amount of fuel going into their vehicles thanks to an rf technology developed by the UK-based firm New Tech.

"This is an electronic system that prevents fuel fraud." said a company spokesman. Each pump nozzle is equipped with an rf tag which communicates the amount of fuel requested to the petrol station attendant and the vehicles' on-board computer.

In turn, the on-board computer collects the information to be later processed by the fleet management. The Manchester firm plans to roll out its technology in the UK nationally twelve months after the tests have been completed.

New source of c-mos image sensors

Rockwell Semiconductor has announced its first c-mos imaging sensors aimed at digital cameras. The four device family ranges from 352 by 288 pixels up to 960 by 720 pixels. The former is aimed at pc cameras, toys and security, while the latter, from vga resolution and up, are for consumer stills cameras and video applications.

"We've been making our own c-mos

sensors for about 15 years," said Ian Olsen, vice-president of Rockwell's Personal Imaging division. "But within the last year, we decided to commercialise this technology."

Pace to cut costs – and maybe jobs

Pace Micro Technology has begun a consultation process with employee representatives on how to achieve cost savings of £5m in its 1998/99 financial year. The process may involve up to 150 redundancies across the group, with as many as 90 in the UK where Pace plans to cut overheads by £2m per annum.

Three-level quantiser announced by Japanese researchers

If the goals of IC design can be simply stated, it is to advance the speed performance of circuitry while minimising the resulting transistor count.

This is the aim of work at Japan's NTT System Electronics Laboratories. It has created a novel 10GHz, three-level logic quantiser based on extremely fast (1.5ps) resonant-tunnelling diodes (RTDs).

Using the circuit as a building block, the labs claims it can make a 10GHz, 4-bit flash a-to-d converter requiring only a quarter of the active components required for a conventional flash converter.

This multi-valued logic block will form the basis for the 4-bit flash a-to-d converter. Here NTT has used four-level quantisers as well as binary encoders, multiplexers and D-type bistables.

The resulting circuit requires only a quarter of the components needed for a conventional 4-bit flash a-to-d. The main reason for the savings is that five 4-level quantisers are needed rather than the 15 binary comparators employed in a standard converter. Using simulations, NTT believes that the 10GHz performance will be achieved with a power consumption comparable with conventional flash a-to-d converters.

Asian crisis may help d-ram market

Texas Instruments has told analysts that it expects the financial crisis in Asia to provide a silver lining for the troubled d-ram market which has been holding back growth in world-wide semiconductor markets. TI's chief economist Vladi Catto said that South Korean chip companies have "substantially" reduced their purchase of chip production equipment that will help reduce the current glut of memory chips. With Korean memory manufacturers unable to ramp up new fab lines, they won't be able to flood the market with cheap chips. About 20 per cent of TI's revenues come from d-ram sales.

SOFT **BY DESIGN** HARD **ON RFI**

FABTRACK®

Fabtrack is the latest development from Warth's Fabshield family of EMC gaskets utilising conductive fabric as a shielding medium. It outperforms all similar flame retardant environmental sealing gaskets by the use of multiple shielding planes which provide maximum shielding performance. Manufactured in the UK by Warth to IS09002, Fabtrack is qualified to UL and IP65 standards

Warth Commitment to innovation makes the difference

Warth International Ltd Birches Industrial Estate, East Grinstead, West Sussex RH19 1XH tel 01342 315044, fax 01342 312969, http://www.warth.co.uk CIRCLE NO. 109 ON REPLY CARD

New Circuit Design & SPICE Simulation Tools from intusoft

for Power Design, RF Design or for Analog Test Automation You can use OrCAD[®], Viewlogic[®], Protel[®] or Intusoft for schematic entry

ICAP/4Rx

Easy to learn and reduced in complexity, a complete, integrated, simulation system, which includes our 5th generation schematic entry tool, simulates unlimited size circuits (AC, DC Operating Point, Transient, Fourier, Temperature and Parametric "What-If" analyses, Mechatronic simulations, inferactive analyses, parameter sweeping) has comprehensive SPICE model libraries (over 3000 parts) and is powerful enough to tackle all of your system, board, and IC level circuit jobs (power, rf, mixed signal, mechanical, filters, ASICs, etc).

ICAP/4Windows, ICAP for OrCAD, ICAP for Viewlogic, **ICAP for Protel**

The Professional's Analog/ Mixed Mode tool with much more capability (e.g., biggest parts libraries available). Use Intusoft's own schematics or integrate intimately with your own OrCAD, Viewlogic or Protel schematic.

ICAP/4Power, ICAP/4RF For professional Power designers or RF designers, includes all the above plus specialised power or RF libraries

Node

n offse

coell

out ic

Code Mode

15 Paramete

0

de Mod	el Properties			Later and the second		
abel Tolerance/Sweep Failure Modes				Configuration	Included Layers:	
	olerance/sweep [n	aure modes		Production	Core Circuitry	
Sample code model for AUI			List Previe Components		Feedback	
			J1 9 15 LA	Cloned Loop Open Loop	OP:2 Test	
			IDDEL LA			
			num_cor	SafeToStart	Test3	
Properti	es					
Parame	ter	>>Value	_			
0	Rei Des	U1	•	Design Val	idator	
a	Part number	LAPLACE	Uses the IsSpice4 simulator to			
Ger	Model	LAPLACEA1				
2-	Type	and a second	auton	natically test and	record circuit	
4 60 0	Code Model	s xfer	hohavi	behavior, with easy to set limits and		
100.00	Unknown type	NODES	Denavi	benavior, with easy to set limits and		

alarms that monitor design progress.

2N2222

vq4e

R11

330

R10

R1

R1

Test Designer

31415 The analog ATE specialist's tool. The first and only comprehensive and structure approach to Analog & Mixed Signal Desig 2 31 & Test Automation. Produces acceptance test

designs and fault diagnostics. Includes interactive and automatic methods for test sequencing and test synthesis.

We offer regular Hands-On Tutorial SPICE seminars in Cambridge or (for sufficient numbers) at user sites, as part of our comprehensive customer support systems.

We offer FREE Test Designer DEMONSTRATION/ SEMINARS in Cambridge. CALL US TO BOOK IN.

Download your free IsSpice simulation kit, application notes and model libraries from our Web Site:

www.softsim.com

email: info@softsim.com Tel. 01223-516469, Fax 01223-729916

Technology Sources Ltd., 2 Signet Court, Swanns Rd, Cambridge CB5 8LA trading as

CIRCLE NO. 110 ON REPLY CARD

AUDIO DESIGN

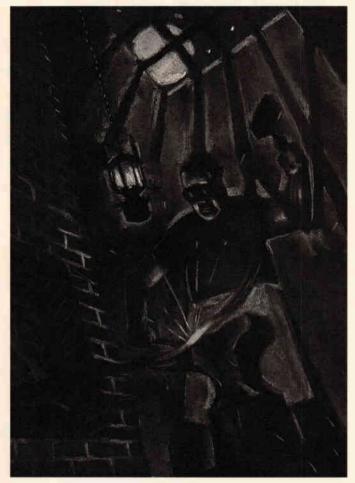


Fig. 1. This familiar circuit gives an output across its load equal to the 1k difference between 1111 its inputs. 1k 1k ٧, 1k∮ ≦1k 1R0 Vo 1**R**0 Load Fig. 2. The top half of this power output stage – the circuit of Fig. 1 subtracts output from the other half, V3.

Mike J. Renardson's simple enhancement of a standard class-B output stage dramatically reduces crossover distortion. It can also remove the need for accurate setting and thermal compensation of quiescent current – making the design desirable for volume production.

Class B in a new class

y new idea involves using one half of the class-B output stage as a feedforward error correction amplifier for the other half. It may seem surprising that this is possible, because in class-B each half is normally switched off for most of one half-cycle. The usual requirement for an error amplifier is that it should remain linear at all times.

In this circuit, however, one side can remain in class-A throughout the whole signal cycle. Consider first a widely used circuit giving an output across its load equal to the difference between its inputs, Fig. 1. This arrangement is used as the top half of the class-B circuit in Fig. 2. In this case op-amps are used to drive output power transistors, but the technique can also be applied using discrete transistors.

The top half of the output stage subtracts the output of the other half, V_3 , from the input voltage V_1 . It produces a voltage $V_2-V_0=V_1-V_3$ across its output resistor to compensate for the error from the bottom half.

Both halves are biased onto the linear parts of their characteristics in the quiescent state by V_{bias} , and so on negative half-cycles if the bottom half provides the entire output required with no error, i.e. $V_3=V_1-V_{\text{bias}}$, then the top half will not have any change in its output across the 1Ω output resistor, i.e. $V_2-V_0=V_{\text{bias}}$. It remains operating at a constant current determined by the bias voltage and will not be cut off as in a conventional class-B circuit. On positive half-cycles the bottom half will eventually cut off, at which point, the top half takes over to provide the whole output current.

A more convenient arrangement

There is another arrangement which is more convenient for a discrete component output stage, but again, for clarity, it is shown with op-amps in Fig. 3.

Operation of this configuration is perhaps more difficult to understand than in the previous example. One way to understand how it works is to observe that the top half functions as an inverting amplifier for the signal at the emitter of the lower, p-n-p power transistor.

The inverted signal is added to the original signal through the $I\Omega$

AUDIO DESIGN

resistors so that cancellation occurs. Output across the load is therefore independent of the output of the lower, class-B half, and is determined only by the top half of the stage which operates in class-A and can be made highly linear.

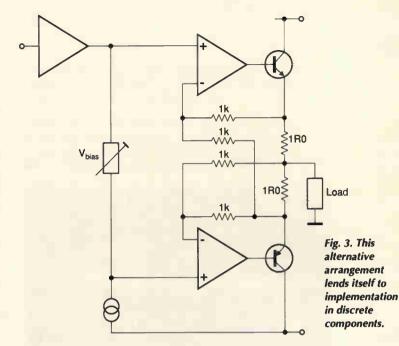
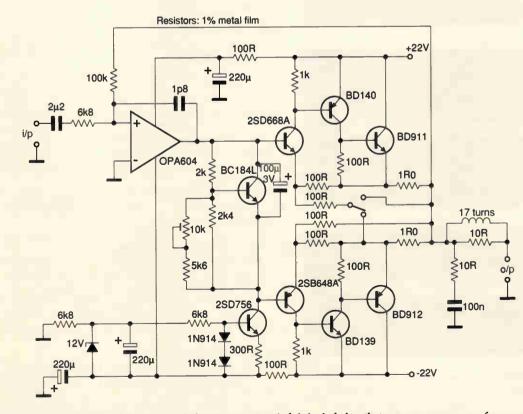

The lower half must of course still provide most of the output current on negative half-cycles, otherwise the top half will cut off in an attempt to correct the error. Figure 4 shows how the currents vary in the two halves of the output stage with a sine-wave signal. The peak output current is I_P and quiescent current I_Q .

Figure 5 shows a complete circuit which has been built and tested. A switch is included which in one position, as shown in the diagram, gives the improved circuit, while in the other position it gives something not too far removed from a standard class-B arrangement for comparison purposes.

Distortion measurements were initially carried out at lkHz, but in both configurations, with any quiescent current above about 10mA, the overall negative feedback was sufficient to reduce the distortion below the noise level of the test instrument used. This can easily be overcome by taking the feedback from the output of the op-amp so that the output stage is outside the feedback loop and open-loop distortion can be observed.

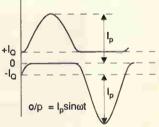
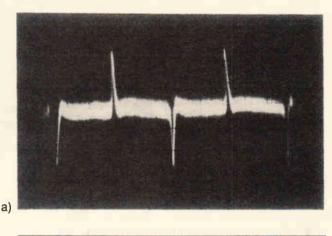
Doing this confirmed the successful reduction of crossover distortion in the improved circuit and the insensitivity to changes in quiescent current. The tests were repeated at 20kHz, and here the closed-loop distortion did become clearly visible giving the results shown in **Fig. 6**.


The tests were carried out with a 8Ω load, and a 20kHz, 100mV rms input signal. The distortion plus noise was extracted and displayed at various levels of output stage quiescent current for both circuit configurations. At 6mA both circuits produced similar crossover spikes shown in Fig. 6a. The standard circuit distortion reduced to a minimum at around 10mA, as in Fig. 6b, and increased at higher currents, and is shown in Fig. 6c at 60mA.

Adjusting for minimum distortion

The adjustment for minimum distortion was quite critical. Even a small variation from the optimum value gave an obvious increase. The improved circuit gave a similar result at 10mA, but at any quiescent current from 15mA upwards – a maximum of 120mA was used in the tests – the distortion fell out of sight below the noise level, as in Fig. 6d.

Reducing the input signal to zero gave no visible change in the 'distortion' observed, which appeared to be entirely noise with or without an input signal present. The contrast with the standard circuit was dramatic. Above the minimum

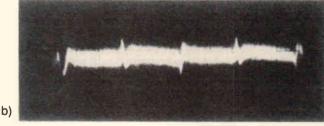

Fig. 4. How currents vary in the two halves of a class-B stage with a sine-wave signal.

Fig. 5. Complete circuit of the improved class-B stage. A switch is included so that you can compare performance of the improved configuration with traditional class-B.

level of quiescent current required by the improved circuit, flicking the switch between the two simply gave the impression of switching the crossover distortion on and off.

I am not claiming that the distortion is unmeasurable. Distortion components well below the noise level can still be measured using narrow bandwidth wave analysers, and in any case the noise levels in the test instruments used

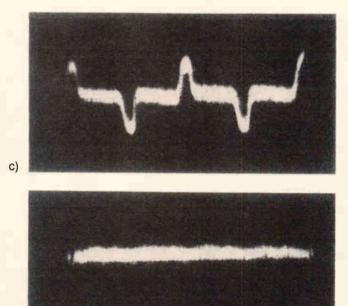


Fig. 6. At 6mA quiescent current, a), both the new and existing circuits showed similar crossover spikes. Distortion in the standard circuit was minimal at 10mA, as in b), but rose again as current increased, as is evident in c) at 60mA. For any quiescent current above 16mA, distortion with the new circuit remains below the noise level.

were far from ideal. My only intention was to demonstrate that crossover distortion really is significantly reduced, so more precise measurements or attempts to further improve or optimise the circuit were not made.

It may be worthwhile adjusting component values in the output stage to give accurate nulling of the distortion, but in the prototype low distortion was achieved using fixed 1% tolerance resistors. The component values shown are actually not theoretically correct for accurate nulling because the lower 1Ω resistor is in parallel with two 100Ω resistors in series and so more current is fed to the output via these resistors.

A 200 Ω resistor connected in parallel with the upper 1 Ω resistor would correct for this, but the error is less than the tolerance of the components used, so this is a fairly minor inaccuracy. The finite open-loop gain of the output triples adds further inaccuracy. The four 100 Ω feedback resistors in the output stage could be reduced to increase the loop gain, and in a higher power version this may be necessary because of the fall in current gain in the output power transistors at high currents.

The 1.8pF capacitor determines the level of overall negative feedback, giving 34dB at 20kHz and increasing at 6dB per octave at lower frequencies. Square wave ringing with a 2μ F capacitive load was considered just about adequate with this level of feedback.

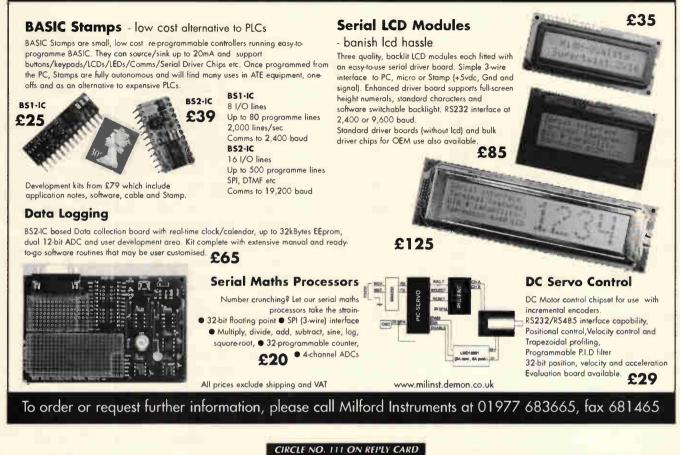
Driving the output stage

One aspect of this design, which is also important in other class-B amplifiers, is that the output stage has a non-linear input impedance. If the driver stage has a high output impedance, the loading effect of this non-linear impedance may add significant distortion at this point in the circuit.

The *OPA640* op-amp used in the present design has a specified open-loop output impedance of 25Ω , while the output triples will have an input impedance considerably higher than this. As a result, distortion from this source should be acceptably low.

Another source of distortion in conventional class-B amplifiers is known as 'dynamic crossover distortion'. The varying signal level causes changes in the output stage transistor temperatures which then cause a change in quiescent current. The thermal compensation circuits used inevitably involve some time delay and some inaccuracy, so that the quiescent current may differ significantly from its optimum value for much of the time, giving increased crossover distortion.

In the improved circuit the quiescent current is not critical, and even for wide variations crossover distortion should remain low.


The BC184L transistor in Fig. 5 was used to provide thermal compensation of the quiescent current in the normal way, and was glued to the 2SB648A. The quiescent current was set so that when switched on from cold it started at 80mA, and was then found to slowly drift up to a little over 100mA after a few minutes. Additional stabilisation of I_Q was not necessary in this example, even though the current stability is poorer than in the standard circuit.

Adding stabilisation

Assuming you want it, there is a fairly simple way to add stabilisation by detecting the minimum current through the upper, class-A side of the output stage, and controlling the quiescent current to keep this minimum value above a certain level. The use of such stabilisation circuitry can avoid the need for any setting up of quiescent current and make

d)

Control Essentials from Milford Instruments

The OneStop solution to process signal line protection

Din rail mounting radio frequency interference filter and transient voltage suppressor for voltage and current loop process signals

For all two wire twisted pair applications

Upgrading from light to full industrial EMC requirements Provides protection against the following:

*Directly coupled RFI from such sources as invertor switching, electric motors, radio paging and signalling systems, broadcast transmitters, and locally high levels of radio frequency energy radiating from near by equipment (e.g. medical) *Electrostatic discharge

- *Mains switching transients
- *Fast transient/burst requirements

Also professional units operating from battery/external DC: **The Balance Box** – Precision mic/line amplifier **Phantom Power Box** – 48 Volt mic powering **Headphone Amplifier Box** – Mic/line to headphone driver

Conford Electronics Conford Liphook Hants GU30 7QW Information line 01428 751469 Fax 751223 E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/catalogue/

TOROIDAL TRANSFORMERSHigh QualityLow Prices

PRICE LIST

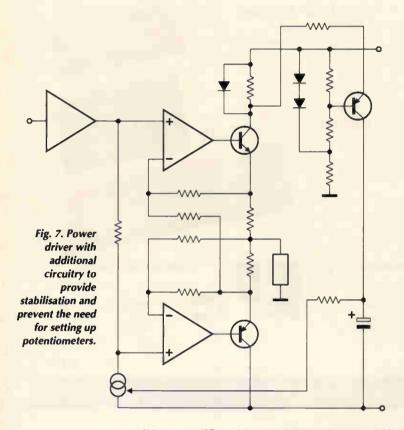
In addition to our standard range we will be pleased to quote

for your special requirements.

		Quantity Price Excluding VAT & Carriage				
VA	Mail Order	2+	10+	25+	50+	100+
15	14.59	10.21	7.69	5.69	5.52	5.35
30	16.04	11.23	8.45	6.25	6.06	5.89
50	17.83	12.48	9.40	9.95	6.74	6.53
60	18.02	12.61	9.49	7.02	6.82	6.61
80	17.98	12.60	9.49	7.02	6.81	6.60
100	21.07	14.74	11.11	8.21	7.96	7.72
120	21.54	15.08	11.35	8.39	8.15	7.89
150	25.98	18.19	13.70	10.12	9.82	9.53
160	23.83	16.68	12.56	9.28	9.00	8.73
225	30.10	21.07	15.87	11.73	11.39	11.04
300	34.32	24.02	18.09	13.38	12.98	12.58
400	46.19	32.32	24.35	17.99	17.47	16.94
500	50.48	35.34	26.61	19.67	19.09	18.51
625	53.09	41.36	31.14	23.02	21.24	20.57
750	58.39	44.23	33.30	24.62	23.89	23.17
1000	78.80	55.16	41.54	30.70	29.80	28.89
1200	82.45	57.72	43.46	32.12	31.17	30.23
1500	105.10	73.63	55.40	40.94	39.74	38.53
2000	114.45	96.13	72.39	53.51	51.93	50.36
2500	163.04	114,13	85.94	63.51	61.64	59.79

These prices are for 240volt primary and two equal secondaries with 8" colour coded fly leads.

Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt)


Mail order prices include vat and postage.

Please do not hesitate to telephone or write with your particular requirements.

Airlink Sales Co 16 Knight Street, Sawbridgeworth, Herts CM21 9AT Tel: 01279 600139 Fax: 01279 726379

CIRCLE NO. 113 ON REPLY CARD

CIRCLE NO. 112 ON REPLY CARD

possible an amplifier with no variable resistors requiring adjustment.

An example of the sort of stabilisation circuit possible is shown in Fig. 7. The controlled current source could be just a single npn transistor, but something a little more elaborate may be worthwhile so that the current is already set fairly accurately and the control circuit merely 'tweaks' it to keep it from drifting too far.

Although a quiescent current of 15mA was found to be adequate for low distortion in the prototype, a higher value is needed for two reasons. First, the observed drift from 80 to 100mA when the amplifier is warming up is not guaranteed to be the absolute maximum range of variation under all possible conditions, and some long term drift in component characteristics could add further to the range.

Secondly, even with 1% tolerance resistors in the output stage there could still be sufficient error on negative output currents to call for a little correction from the 'error amplifier', and the maximum correction current available in the negative direction is equal to the quiescent current.

A choice of 100mA seems a reasonable compromise. The maximum correction current required could be reduced by adjustment of the ratio of the two lower 100 Ω resistors, i.e. those connected to the emitter of the 2SB648A, but this is not a particularly simple adjustment to carry out and is unlikely be a great benefit to the performance.

Emitter resistor choice

The choice of 1Ω emitter resistors for the output power transistors is a compromise between quiescent current stability and power loss when feeding impedances below the nominal 8Ω . There are many loudspeakers available with highly inconvenient impedance characteristics, and general purpose audio amplifiers need to be able to cope with these without unacceptable deterioration in performance. For such general use the present design may be considered inadequate, but being fortunate enough to use speakers with an undemanding impedance I chose to use 1Ω resistors. Even so, the resulting reduction in available output voltage at 4Ω load compared to 8Ω is under 1dB, so the effect is hardly a major concern.

For use with speakers with impedance falling much below 4Ω the resistors could probably be reduced to 0.5Ω without having to resorting to the sort of quiescent current stabilisation circuit mentioned earlier. Resistors with a value of 1Ω or 0.5Ω , 1% tolerance and a power rating of 2W or more are not readily available. Those used in my prototype were actually parallel combinations of higher values, i.e. four 3.9Ω , 0.6W 1% metal film components in parallel. Exact values of these two output resistors are of no importance – only their equality.

The inductor in series with the output is to reduce the effect of capacitive loads on loop stability. The component used was 17 turns, 8mm in diameter and 15mm long.

I chose the Burr-Brown *OPA604* because it has a maximum voltage rating of $\pm 24V$ and I had a power supply available providing $\pm 22V$, giving maximum output power about 20W into 8Ω . I also find it a very good op-amp, designed for high-quality audio applications, with distortion rated at 0.0003% at 1kHz at unity gain. Its noise output is low, and it has a low open-loop output impedance as mentioned earlier. Gain bandwidth of the device is 20MHz.

In this application, output current is only taken from the op-amp in one direction, so the fact that it has a class-B output stage may not be a problem. No contribution to the distortion from this source was apparent in the tests.

The discrete option

A discrete input and driver stage might improve a little on the op-amp in some respects, but there seems little point in increasing circuit complexity to achieve even lower distortion if the distortion is of an innocuous variety which will have no audible effect. For higher output powers an op-amp input becomes less convenient and a discrete design more justifiable to achieve the required voltage swing.

The circuit presented here solves the most serious problems of class-B output stage design. I have only built a single prototype to demonstrate the operation of the output stage. Designing a commercial product would require more work, taking into account component tolerances to ensure repeatable results, and more detailed measurements.

One major advantage of the present design, which I hope any reader who knows otherwise will correct if I am mistaken, is that it is not the subject of any patent protection. It is therefore free to use by any amplifier manufacturer. As far as I am aware it was first published by myself in September 1996 in a low circulation magazine called 'Innovation and Speculation in Audio, Electronics and Physics', which regrettably is no longer available.

The fact that the design is so simple makes it hard to believe that it is a new idea, but at the very least it is not well known or in common use.

Why no listening tests?

Some of you may question the lack of listening tests. Well, the practical design was produced merely to demonstrate the success of the idea in reducing crossover distortion, rather than as a final commercial product. It is certain that if there is any audible difference between the two configurations tested it will be the improved version which will be the more correct.

Is this the end of wireless as we know it..?

Couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest

synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

The WR3000iDSP include AD hardware signal processing for total signal processing. **WiNRADiO[™]** provides a complete communications system on a full-length ISA PC Card, with software for Windows 3, NT or 95.

New optional Digital Suite software includes facilities for recording, audio spectrum, packet radio, oscilloscope display, HF fax, Squelch-controlled Audio Recorder and Playback, Signal Classifier, DTMF, ACARS, CTSS - use with SoundBlaster™ compatible audio cards.

Your choice of virtual front panel

VisiTune™ spectrum tuning display

Use WiNRADiO[™] scanning PC communications receiver systems for...

Broadcast • Media monitoring • Professional and amateur radio communications • Scanning Spot frequency and whole spectrum monitoring • Surveillance (and recording) • Instrumentation

Model No Construction Frequency range Modes Turning step size (F bandwidths	WR-1000i Full length IBA cand D.5-1300 MHz AM SSB/CW FM-N FM-W 100 Hz (5 Hz BFD) 6 kHz (AM/SSB), 17 kHz (FM-N) 270 kHz (FM-W)	100 Hz (10	ISA CBrd MHz SEICW, FLAIN FLAIN Hz for SSB articl CW FBUCW, S kHz TAMI KN) FMWW
Receiver type Scanning speed Audio output on card Max on one motherboard	PLL-based triple-conv. supe 10 ch/sec (AM), 50 ch/sec (200mW 8 cards	FM) 200mW 8 cards	The D3P speed provided with the WR3509 silices contribution control of each bandwidth and offlet special conditioning functions
Dynamic range (F shift (passband tuning) DSP in hardware (RQ required Spectrum Scope Visitune Published software API Task Manager/scheduler Audio Recording/Playback Signal Strength Recorder Logger	65.08 mo no yes yes no no no no no	85 dB ±2 kHz ves ves ves ves ves ves ves ves	 New! Digital Suite Software option- only £69+vat (requires a SoundBlaster 16 compatible sound card), and currently features facilities for: WEFAX / HF Fax Packet Radio for HF and VHF Aircraft Addressing and Reporting System (ACARS) Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors Squelch-controlled AF Recorder and Playback
Price (ex VAT) Digital Suite Softwar	£275 e £69	£995 £69	O DTMF, CTSS decode and analyse

For a free information pack and software emulation demo disk contact Broadercasting Communication Systems http://www.broadercasting.com FREEPHONE: 0800 0746 263 email: info@broadercasting.co.uk fax: 01245 287057 Widford Old Rectory, London Road, Chelmstord, Essex CM2 8TE

WINRADIO and Visiture inte trademarks of WINRADIO Communications pty

CIRCLE NO. 114 ON REPLY CARD

the Internet.

Advice on buying a Pentium, free CAD, filter design software and **Peltier** applications information. Cyril Bateman shows you how to find out about these topics and more on

Hands-on Internet

hile I was writing this piece, most Internet news columns were busy reviewing last year's highlights and making predictions for the coming year. Intel has already repeated what it did last year by releasing a new processor shortly after the Christmas holidays. The 'Slot 1' Deschutes 233MHz processor is scheduled for release on 26 January¹. Deschutes is to be a generic name for Intel's Pentium II range, fabricated using 0.25 micron technology.

This change to 0.25 micron fabrication means increased clock speeds of 400MHz and more. Smaller geometry also reduces processor heat dissipation. Portable computers using this Pentium II processor are expected to arrive this summer.

The 'Slot 2' version of Deschutes is due this summer too, together with the 450NX chipset, which incorporates support for multi-processor systems with up to four processors. This device is expected to result in the demise of the Pentium Pro, leaving Intel producing only processors for Slot1 and Slot2 based systems.

Initially pcs costing under \$1000 represented just 9% of retail sales. But during 1997, the sub \$1000 pc exceeded all expectations, ending the year with 30% share of the pc retail market². This result seriously affected plans to constantly upgrade processor speeds and Level 2 cache capacity. While the processor road-map must continue little changed, expect variations - even removal of the L2 cache - to cater for changing market demands.

A second driving force to emerge during 1997 was low total-cost of ownership, or tco3. The term total-cost of ownership refers to the real cost of pc ownership as distinct from its initial purchase cost. In the light of continuing pressure on Microsoft and Intel's near monopolies on software and hardware, total cost of ownership could well come down.

Confused about pc upgrades?

The Advanced Graphics Port, or AGP, was once restricted to Pentium II motherboards, but is now available for the traditional Pentium Socket7, as used for the Cyrix and AMD processors. This increases your options but also adds to the confusing range of choices available when you come to buy or upgrade your pc. If you are considering buying, or you are simply interested in being up to date, you will find information and speculation on the topic at two dedicated web sites.

Tom's Hardware Guide⁴ and Jason's Homepage⁵ provide regularly updated views of impending changes and their implications, together with details of Intel's stated processor plans. Both pages are worthy of a look, whether you are

Netscape - [TOM'S HARDWARE GUIDE] tscape - [Horthern Light Search: +Intel +Deschutes] 2 日 日 60 **Bookmarks** Links Directory Go Bookmarks Links Optim ns Directory we com/ Take the IBM SX86MX Persons +Intel +De chuter Narrow your search with MMX CPUs Mother Custom Search Folders** ABI ACpan 800 919 9297 ed 46 items which we have have a stand nd of 1997 Co Announcements What's New Socket 8 Motherboard Review Motherhoard Guide Semiconductor industry The Overclocker's Dream 0000 Press releases CPU Guide ne of Cool C Socket 7 PCI Motherboard Review A Test of 25 Sociut 7 PCI Motherboards Electronic News in Zitt-Davy Line Highlights Inc. hipset Guide aportant News for Overclockers RAM Gunde Into Linda D - The REAL Thing !!! Harddask Gauide an Corollery And Compas J dy Frehu Exchange Agreement For Evalu icles & General info; Comp mdex Fall 1997 News n (NYSE:CPQ) the K6 3D and new chipsets N/SE 138 read (at 498 bytes/sec

Fig. 1. Tom's Hardware - a collation of independent views and reviews on all computer hardware components.

Fig. 2. This search engine, far right, can access both Internet and hardcopy resources. The second hit for my search was from the Microprocessor Report - a hardcopy magazine. r/ seal 000

COMMUNICATIONS

considering upgrading an existing computer or a new purchase, Fig. 1.

Microsoft under pressure

After two months of duelling briefs, filings and press releases, the case against Microsoft continues apace. Microsoft and the Department of Justice have both submitted their arguments as to whether Microsoft is in contempt of a court ruling. This case has been fully covered and debated in the Internet news⁶ columns.

One possible side effect of this pressure, has caused concern with retail dealers. Will Windows 98 arrive late spring, as scheduled? Or as a result of this case, will the code have to be re-written, causing delays. These dealers⁷ fear that impending software upgrades are likely to be delayed until the final court conclusions are reached.

New search options

For many of you, Internet is about finding answers to questions and for downloading software. This is certainly what it is about for me, not forgetting the e-mail aspect for sending messages and relaying drawings and software files.

One new search engine, used exclusively to research for this article, is Northern Light.⁸ This engine provides access to information that has been digitised from many hardcopy publications, as well as from Internet resources. It returns your results tabulated and graded in the usual fashion, in addition to being sub-divided into folders by topic or source.

Should the information you seek be available only from its digitised hardcopy files, then a small charge for access is made, refundable if the data is subsequently unsuitable and rejected, **Fig. 2**.

Alternatively, the All-in-One⁹ search page may better suit your needs. It provides a single compilation of all the various forms based search tools found on Internet on one large page. In particular, All-in-One should be useful as a last ditch method of finding more elusive data.

Do you use zip files?

Having found your data, it will frequently have been compressed. For years I used the reliable DOS PK204G package with every success, saving files to disk to be unzipped when off-line. If you zip and unzip frequently, there are two more up-to-date packages that are worthwhile evaluating. One is WinZip,¹⁰ which unzips almost transparently and the other NetZip,¹¹ which is designed as a Netscape or Explorer browser plug in. Unfortunately, many interesting files are compressed using methods other than 'Zip'. Among the possibilities are 'Arc', 'Arj' and 'Lha' files. De-compression software for all these is available on Internet, from sources detailed on the WinZip pages¹⁰.

Some time ago, in response to a reader's question, I replied that files ending in 'Tar' or 'Gzip' were Unix files and could not be read on a pc. But I have recently found out that these files can be uncompressed on a pc.

The National Geodetic page¹² provides a download called gzip386.exe for dos, and also gives links for other systems. Similarly, NetHelp's page¹³ provides the 'tar.exe' utility for dos, together with links and much useful information regarding file compression and de-compression methods.

Avoiding junk mail – and worse

Regular Internet users often receive annoying 'junk' e-mails. Unlike mailed junk, which costs the recipient nothing – in UK at least – junk e-mails contribute to on-line costs and waste time. More often than not, my junk mail receipts far exceed genuine mailings.

In addition to the e-mail problem, ActiveX and cookie files can allow outsiders to interrogate your system, which is potentially more harmful.

Sponsored in part by the US Department of Defense, the Info-sec page¹⁴ provides information and solutions to these problems. One well reviewed software package for Win95 users – PC Secure Personal Firewall¹¹ – claims to provide solutions both for individual users and networks, resulting in an effective yet low-cost 'firewall' against hackers and nuisance e-mailers. For corporate users, the company firewall can be extended to mobile off-site users, **Fig. 3**.

Designing filters?

Continuing last month's theme, I spotted information on designing time-continuous active filters using Burr Brown

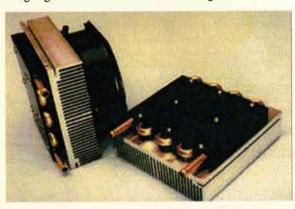
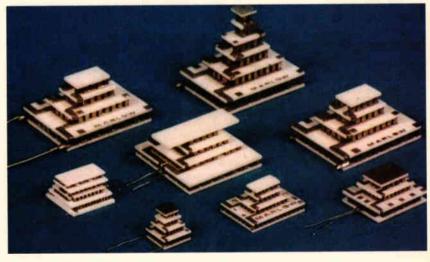
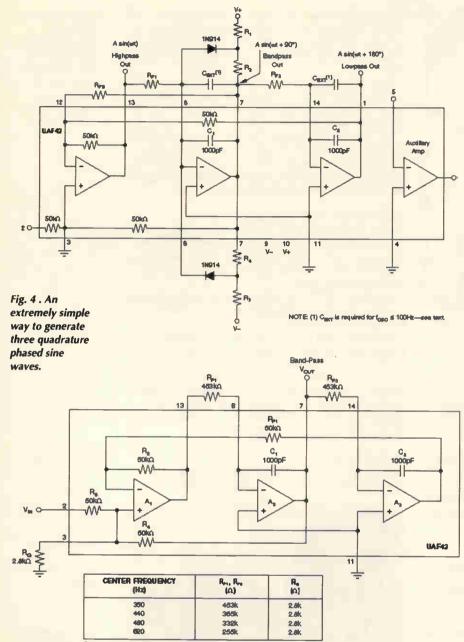




Fig. 3. Concerned about junk e-mail, Hackers, and in fact any Internet undesirables? Visit the Info-sec.com page for information and advice.

Photo A. Equipped with coolant pipes or as air-to-air, the thermoelectric module transfers heat to or from ambient air, via its heatsink and fan (detailed on page 277).

Photo B. Selection of very low temperature capable, multitiered modules from Marlow.

Component values for selected Q = 10 "tuned-circuit" bandpass filters.

Fig. 5. The quickest, easiest route from a square wave to a low distortion sine wave. *Uaf42*'s integrated circuit.¹⁵ Two downloadable application notes describe how to design a three-phase sine wave generator and a simple method to convert a square wave into a low distortion sine wave.

The three-phase quadrature oscillator, described in application note AB-096, is handy in that it provides outputs at 0, 90 and 180°. It does so using only a single integrated circuit, together with seven resistors and two diodes.

Frequencies up to 100kHz are possible, albeit with increased distortion. For frequencies below 100Hz, it is advisable to add two external capacitors, complementing those on-chip, to avoid using excessively large resistor values, **Fig. 4**.

A major problem when designing sine-wave generators is to provide a constant amplitude output without adding significant distortion. One method which completely eliminates the need to control output level is described in the *AB*-058 application note.¹⁶ Constant amplitude square waves and even multiple square waves with precise mutual phases can be easily generated. Using a Q of 10 or better band-pass filter tuned to the square-wave frequency reduces the third harmonic to 40dB below that of the fundamental. This level equals the distortion of many commercial variable frequency sweepers. Higher Q filters reduce this distortion level further.

The circuit as described in this application note has the supreme merit of needing only three resistors, and of course the integrated circuit, **Fig. 5**.

By adjusting the square wave frequency slightly and feeding the filter's output via an onoff switching *HEF4066* IC driven from the square wave, a simple and useful audio frequency 'tone burst' generator is easily built. Although simple, this generator has precise and adjustable zero cross switching.

Simulation

I am often asked about sources of software, and for information on Spice simulation packages. The Spice download page¹⁷ at the Technical University of Hamburg-Harburg is a useful source of information on simulation and is one of the university's most accessed pages.

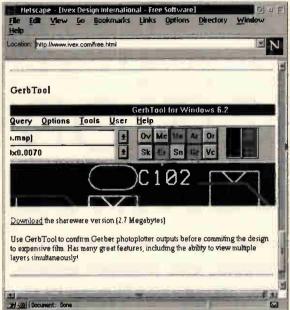
This page provides links to both European and German sites and lists software not generally found. This includes 'Al's Circuit Simulator' which claims to be the most suitable version of Spice available for distortion simulations.

Perhaps, like me, having completed a printed board design and output its Gerber file, you have felt uneasy at not being able to check this final output before committing it to a photo-plotter.

Claiming to be *the* Internet source for EDA, Ivex provides a free Gerber reader, easily downloaded from the company's page.¹⁸ It is also accessible via the SSS-Mag page¹⁹ previously mentioned, **Fig. 6**.

Ivex also offers two pieces of working software that are free of charge but restricted in capacity. One is *WinDraft*, which is for drawing schematics, and the other is *WinBoard* for producing pcb layouts. Both of these can be upgraded at modest cost to handle more than the 100-pin limit, or larger drawings.

Cool topics


One ever present design problem is removal of heat – either to ensure an acceptable service life for power devices, or simply to minimise circuit noise levels. As Richard Lines' article in the last issue explained, while conventional finned heatsinks can be very effective, the device being cooled will always remain at or above the local ambient temperature. But a thermoelectric cooler can attain lower temperatures.

When a thermocouple junction of two dissimilar metals is heated, the Peltier/Seebeck effect produces a small voltage. Being a reversible effect, current passed through this junction can either raise or lower temperature, depending on the direction of current flow. This forms the basis of a thermoelectric cooler module.

Practical coolers generally use doped 'N' and 'P' type pairs of Bismuth Telluride pellets, connected electrically in series but thermally in parallel, soldered between two electroded ceramic plates. When direct current passes from an N to a P junction, this junction becomes cooled, transferring heat to the P-to-N junction.

Thermoelectric coolers can cool or heat almost anything,

COMMUNICATIONS

tscape - [Thermoelectric Links by ZT Services, Inc.] View Location: http://www.zts.com/ P N Curront Supporters: Spo International Ir Patron. Bergount Thermoelectric Society Active ITTI TE Tuchu clogy, HI-Z. Supercool Welcome to ZT 10:20 Services, Inc.! 4:20 11:20 98-01-25 19:20 nformation, consulting and analytic services for the thermoelectric and energy conversion commu-Founded 1995 by <u>Crann R. Vin</u> Counting you neonle have visited ZT Services since September 6. 1997 nt to sime our mesti We offer the following Services

whether liquid, gas or solid. They can also generate DC from any source of waste heat.

As with a conventional refrigerator, heat absorbed by a Peltier device must be dissipated into surrounding air via a heat sink. Used to supply heat, the device must similarly be cooled by local air. When generating electricity from waste heat, one face of the device must be maintained at a cooler temperature by ambient air circulation, Photo A (p. 275).

Being able to either heat or cool, thermoelectric devices are used to maintain constant process temperatures in medical and laboratory equipment.²⁰ They can also form a reference 'black body' for use in thermal imaging, night vision, or infra-red thermometry. Used only to cool, they support portable refrigerators, cooled drinks, laser diodes and infrared or ccd imaging detectors. Interested reader can start with the International Thermoelectric Society home page,²¹ which provides links to many 'cooler' makers together with FAQ's, an FTP download site and a consultancy service, Fig. 7.

Due to thermal expansion and contraction of the hot and cold faces, a typical discrete cooler is 50mm square or less with a 30W capacity. For larger capacity, multiple modules can be used.

One demonstration vehicle had its alternator replaced with 76 small modules mounted into a truck silencer, generating 1kW of electricity and releasing engine horsepower.

To reduce the effects of diminishing efficiency with increased hot-to-cold face temperature differential, multitiered coolers²² can be used to provide the lowest cooling temperatures, Photo B.

Where to surf

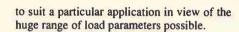
- 1. Next Pentium II due this month
- 2. Sub-\$1000 PCs: The future on a budget
- 3. 1997 Year in Review
- 4. Tom's Hardware Guide
- 5. Jasons Processor Update
- 6. Microsoft's \$1 million question
- 7. Case against Microsoft causes retail concern
- 8. Northern Light Search Engine
- 9. All-in-One Search Page
- 10. Niko Mak Computing Inc
- 11. Software Builders International
- 12. National Geodetic Survey
- 13. NetHelp PCTar for DOS
- 14. Information Security
- 15. Burr-Brown Corporation
- 16. Bateman, C.
- 17. Spice Download Page
- 18. Ivex International
- 19. Spread Spectrum Scene
- 20. TE Technology Inc
- 21. ZT Links
- 22. Marlow Industries Inc
- 23. Hi-Z Technology Inc
- 24. Supercool AB

http://www.news.com/News/Item/0,4,18208,00.html http://www.news.com/SpecialFeatures/0,161,17709,00.html http://www.zdnet.com/pcweek/sr/1222/22prod97.html http://www.tomshardware.com http://www.eisa.net.au/~bozmeg/update http://www.news.com/News/Item/0,4,18001,00.html http://techweb.cmp.com/crw/news98 http://www.nlsearch.com http://www.albany.net/allinone http://www.winzip.com http://www.softwarebuilders.com http://www.ngs.noaa.gov http://www.nethelp.com.au/software/tar http://www.info-sec.com/index.html-ssi http://www.burr-brown.com 'Fazed by phase', Electronics World, November 1997 http://www.tu-harburg.de/et1/emv/et1kb/download.html http://www.ivex.com http://sss-mag.com/swindex.html http://www.tetech.com http://www.zts.com http://www.marlow.com http://www.hi-z.com http://www.supercool.se

Fig. 6. Banish your 'Gerber' blues. Download this free utility, then read back your Gerber output files before committing photo plots.

Fig. 7. Meeting place for all interested in finding thermoelectric links and information.

Precision TEMPERATURE CONTROL


A versatile, high-performance temperature controller that can be used with thermocouples, platinum sensors or temperature-sensing ICs, designed by Richard Lines

y final article on temperature control describes a comprehensive analogue temperature controller. Outlined in Fig. 1, the system is modular, comprising the following units.

Sensor interface. This module is required needed when connecting thermocouples and platinum resistance sensors to bring up the output to $10mV/^{\circ}C$. For many semiconductor sensors, such as the *LM35*, *LM45* and *AD590*, no interface is required and the sensor can be connected directly to the controller module. Have a look at my article in the February issue for more details on applying these devices.

Controller module. This module generates the set point voltage and supplies a low-level output between 0 and +5V which corresponds to the range fully cold to fully hot. Various alarm signals are made available so you are always aware of the state of the system and the output can be cut off in the event of a sensor fail.

Power module. Low-level output is passed to the power stage which is scaled appropriately for the heater or thermoelectric cooler. Two representative designs are given for unipolar and bipolar outputs, but you will probably have to come up with your own arrangement

Circuit details

Figure 2 is the main circuit. The sensor signal scaled at $10mV/^{\circ}C$ is applied to the difference amplifier, IC_1 , via R_2 and R_3 . A termination network formed by R_2 and C_1 prevents *LM35* type sensors from oscillating if their connection cable is very long.

Resistor R_1 is a 10k Ω , 0.1% tolerance component that returns the sensor input to a precision -2.73V source; this does the scale conversion for a *AD590* sensor, changing 1µA/°C to 10mV/°C. It also provides the negative return for other sensors to operate below 0°C.

A low-pass filter formed by R_3 and C_2 removes rf pickup, preventing random temperature changes. The integrated instrumentation amplifier, IC_1 , compares the actual temperature with the set point. Gain is set by the switched resistors R_{19-22} according to,

$$gain = \frac{50\,000}{R_g} + 1$$

where R_g is the value of the selected gain resistor in ohms. This forms the error signal and it will be 2.5V for zero error since the reference input of IC_1 , on pin 5, is taken to the 2.5V line.

Depending on the details of the power stage,

it may be convenient to be able to reverse the phase of the circuit. Links between terminals A, B, C and D enable this to be done, swapping over the difference amplifier input terminals. As shown with links A-B and C-D made, there is an inversion over the circuit suitable for a non-inverting unipolar power stage operating a heater. Using the same power stage with a thermoelectric cooler would require links A-C and B-D to be joined.

Together with R_8 , diode D_1 clamps the output of IC_1 so that the linear range of error voltage is 0 to 5V. Assuming that gain resistor R_{19} is selected, the gain of IC_1 will be 500×; this means the linear range will be restricted to a sensor deviation of $\pm 0.5^\circ$ about the set point, over which the system will swing from full heat to full cool. Lower gains will obviously produce a larger linear range.

Monitoring the output from IC_1 gives a very sensitive measure of small temperature changes measured with respect to the set point. The error signal is then passed through a lead-lag filter consisting of R_{9-16} and $C_{6,7}$. The filter time constants can be adjusted to delay the onset of oscillation as the gain is increased thus improving the stabilisation achieved.

As far as the filter operation is concerned, $C_{6,7}$ are in parallel. If a direct parallel connection were used then the filter output would be held at low voltage while the $C_{6,7}$ charge up through the large series resistor. This can lead to problems with a bipolar power stage since the output will be held at fully hot or cold during the charging process. This can produce large overshoots when the controller is first switched on, or the temperature initially going the wrong way.

Taking one end of C_6 to a relatively low impedance 5V source means that the junction of $C_{6,7}$ will naturally and quickly go to 2.5V i.e. the centre of the control range – and not produce a false error signal while the initial charging up is in process. This does assume matched capacities and leakage currents. Both C_6 and C_7 must be low leakage tantalum types.

An output buffer, IC_5 , produces a low impedance drive for the power stage. Main

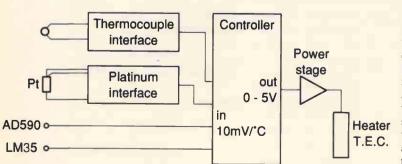
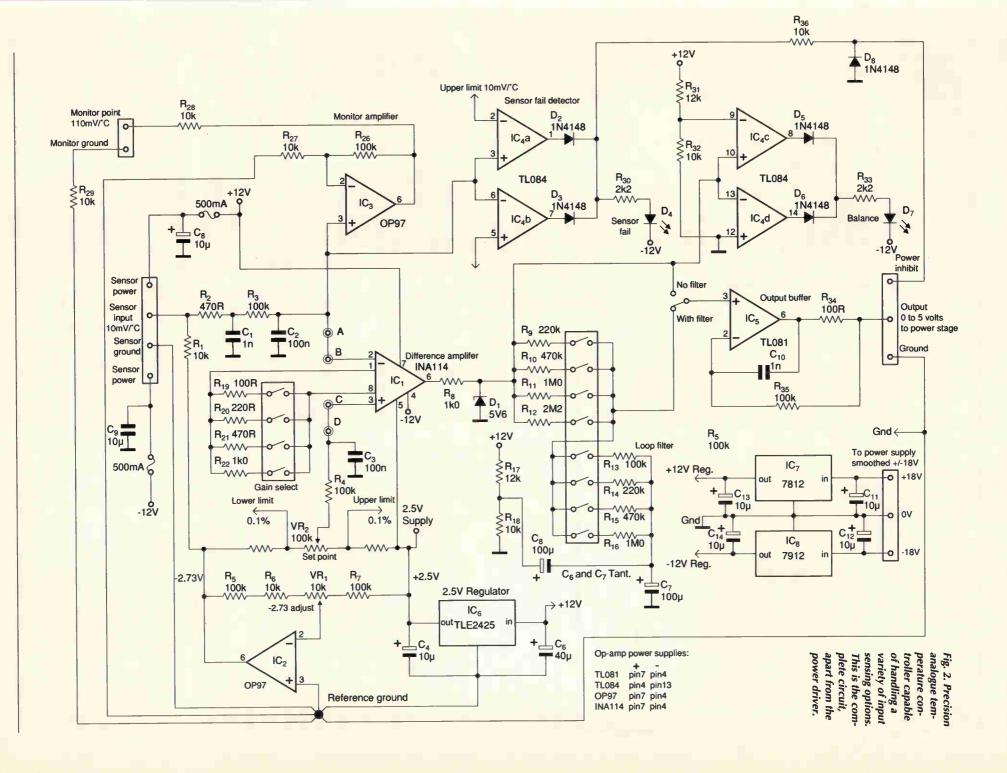



Fig. 1. Outline of the versatile temperature controller.

285

Need more information?

- 'Control Engineering' by W. Bolton, pub. Longman Scientific 1992. This is a very good text on theoretical aspects of control engineering in general explaining the maths clearly.
- National Semiconductor application notes: AN292 Applications of the LM3524 switch-mode controller. A useful single chip control system. AN225 Thermocouple cold junction compensation. AN256 Relative Humidity Measurement. This article contains more information on the stabilised logarithmic amplifier principle described in part 2. AN266 Sample and hold applications. A precision, high efficiency controller is described using a thermistor sensor driven by a high voltage, short duty cycle.
- Linear Temperature Gauge by H. Kuhne, *Elektor*, September 1993. An interface circuit allowing many small diodes/transistors to be used as sensors providing 10mV/°C.
- Marlow Industries Catalogue and application notes for thermoelectric coolers. Available on request to 7 Laura House, Jengers Rd, Billingshurst, West Sussex RH14 9NZ, tel. 01444 443404.
- Minco Catalogue and application notes. Applications for small foil heaters, some come with built in platinum sensors. Useful for ovens etc requiring small surface mounted heaters. Application note 21 especially useful for estimating heater power. Minco components are available from Carel Components, 24 Endeavour Way, London SW19 8UH, tel. 0181 946 9882.
- Eurotherm manufacture an excellent range of digital PID temperature and process controllers. 905 series very expensive but very good. Eurotherm Ltd, Unit 8 Sackville Trading Est, Sackville Rd, Hove, East Sussex BN3 7AN, 01273 206641
- Cal Controls manufacture temperature controllers, stocked by RS, tel. 01462 36161.
- Linear Technology Applications Handbook, 1990. Contains many circuit ideas for platinum and thermocouple sensors, compensation, linearisation.

monitor output is provided by IC_3 , which amplifies the sensor output with a gain of 11. This gain is suitable for operation between $\pm 100^{\circ}$ C, before op-amp saturation sets in; if the system is to be used over a wider range then the gain will have to be reduced.

Obtaining best results

For best accuracy, a true differential measurement is recommended with respect to the reference ground indicated on the circuit. The monitor ground is provided for this purpose, rather than the monitor circuit just relying on some gratuitous ground from the main power supply.

Op-amps IC_2 and IC_6 provide the close tolerance +2.5 and -2.73V sources necessary for generating the set point voltage and for the AD590 current-to-voltage conversion. The set point voltage is taken from a potential divider comprising R_{23} - VR_2 - R_{24} strung across the two rails; R_{23} and R_{24} are selected-on-application 0.1% resistors to set the extremes of the operating range on the basis of 10mV/°C from the wiper of VR_2 .

If operation above 0°C with sensors other than the AD590 is all you need, then the circuitry around IC_2 can be omitted.

Protection circuitry

System monitoring is provided by IC_4 . The four op-amp sections are wired as two window detectors. The first window detector $IC_{4a,b}$, looks at the sensor input voltage, comparing it against the upper and lower set-point extremes.

If the sensor input or ground wire goes opencircuit, the sensor-fail led illuminates and a signal is sent to the power stage to cut off the output. Since this is a very important part of the circuit from a safety aspect, there are a few extra points worth making.

The circuit will not detect shorts to ground if the set-point range includes 0°C. This is because 0V on the sensor wire will be a valid temperature. Unless your application really demands it, the set point range should not include 0°C.

There will be instances where, although there is no intention of using the controller at this temperature, it is convenient to make one end of the set-point calibration 0° C. If this is the case, it is possible to modify the threshold for the window detector to guarantee detection of a short to ground.

It is important not to choose too narrow a set point range in case the temperature at startup is outside this range and brings up a false sensor fail condition. In this case the circuit will never start until the ambient temperature comes in range. Operation at the extreme end of the set point range may cause temporary sensor-failure alarms due to overshoot and poor damping.

The second window detector checks the output from the difference amplifier IC_1 to check whether the circuit is operating within its linear range. If this is not so, it is impossible for the temperature to be controlled. This alarm is illuminated while the temperature is outside the range decided by the gain setting. As a result, expect it to come on when the unit is first switched on and go out as the set point is approached.

This feature is not essential and can be omitted, but I have found it very useful since it can indicate unexpected heat leaks due to missing insulation. It can also be used to inhibit some other process until the temperature is approximately correct.

Driving a heater or cooler

Two representative small output stages are shown, Figs 3a,b), for unipolar and bipolar operation respectively. They are included more for completeness than in the expectation of being widely useful since the possible range of applications and powers is too great to come up with a universal design.

Both circuits can be easily scaled up or down to suit. Each is shown with two inhibit controls. Input *INH1* connects to the power inhibit output on the main circuit cutting off the output under sensor fail conditions. Input *INH2* is spare and can be used as protection against some outside contingency.

In the unipolar circuit the op-amp IC_1 needs to have a common-mode range extending to the negative supply, and Tr_1 will need a heat sink of about 5°C/W. The circuit is a standard current source with Tr_2 providing the current cut-off. The optimum resistance if the heating element is given by,

$$R_{load} = \frac{V_{cc} - 3V}{I_{max}}$$

which is about 17Ω for a 20V supply.

The bipolar design is based on a Howland op-amp current source, using a small power L165V op-amp from SGS. These devices can be tricky to keep stable. Components C_4 , R_{10} , $C_{7,8}$ are essential for this purpose. Also note the two ferrite beads connected over the leads of R_{11} ; conveniently, these can be used to mount the wire-wound resistor clear of the circuit board.

Since the driving voltage is effectively bipolar centred on 2.5V, a special fet optoisolator is used as the current cut-off mechanism. This isolator is a Harris HIIFI. The fet is symmetrical and operates correctly regardless of polarity. Lamp D_2 provides a visual indication that the output is cut off.

In the context in which the original temperature controllers were used, it was essential not to introduce electrical noise into other parts of the system. Linear circuits tend to be the best bet on this score. The trade-off is low power efficiency.

For a more efficient unipolar switch-mode output stage, take a look at the article 'A simple pwm amplifier' in the September 1997 issue of *Electronics World*. This circuit is quite good at driving very low resistance loads from relatively high supply voltages and has been used to drive a *MI 3040* three-stage thermoelectric cooler requiring 7.3V at 4.5A from a 24V supply with 85% efficiency.

Implementing the controller

When aiming for extremely high temperature stability, it is essential that the controlling electronics is made as free from drifts as possible. Taking the input scale factor of 10mV/°C, this translates to only 1 microvolt per millikelvin. This determines the level of set-point drift that can be tolerated.

Presumably, the item whose temperature is being controlled will be wrapped up in thermal insulation, but the control electronics will be exposed to changes in ambient temperature.

Referring back to my first article in the January issue, the idea of nesting temperature controllers was described to achieve really good stability. Overall performance is the product of the individual servo gains for each layer of control.

In practice though, it can be difficult to realise the expected performance because drift in the set point becomes more important than lack of servo gain. The obvious answer – space permitting – is to put the control electronics inside the controlled enclosure. In cases where this is not possible, some assessment of the expected drifts must be made.

Starting with the voltage references, the primary source is IC_6 , a Texas *TLE2425*. This device has a quoted temperature coefficient of 20ppm/PC. This equates to 50μ V/PC at 2.5V and will be scaled down through the set point potential divider.

Reducing drift

For a set point of 50^{\circ}C the drift is 10 μ V/^eC corresponding to 1mK of set point drift per degree of ambient change. If you need very high stability, it may be worth searching out an improved reference.

Devices in the excellent Maxim MAX676/7/8 series have quoted drifts down to 1ppm/°C. Unfortunately, a 2.5V component is not available so some redesign would be necessary. Be sure to read the data sheet on the op-amp used here to avoid compromising the performance with layout errors.

The -2.73V source is generated with IC_2 , which has been selected for low offset drifts of $0.5\mu V$ and $12pA/^{\circ}C$. These numbers should not introduce problems with the circuit resistances used.

Resistors $R_{5.7}$ need to be 0.1% tolerance. The RS ones used in my prototype are quoted at ± 15 ppm/°C maximum. As these resistors are part of a potential divider, the drift would not matter if all resistors drifted the same way. However, the trimmer potentiometer VR_1 has a drift of 100ppm. This makes it important to keep the value of VR_1 small compared to the total chain resistance. Trimmer VR_1 needs to be a ten-turn device to facilitate accurate and consistent setting of the -2.73V level.

Similar comments apply to the set-point chain R_{23} , VR_2 , R_{24} . The set-point control VR_2 is ideally a precision ten or twenty-turn component, for which calibrated knobs are available. Devices in the three-watt 534 series, available from RS, have a temperature coefficient of only 20ppm/²C, which nearly matches the two fixed resistors.

Instrumentation amplifier IC_1 , a Burr-Brown INA114, has very good drift parameters of 0.25μ V and $15pA/^{2}$ C. Since this device is quite cheap at around £5, it is not recommended to substitute it with a device of lower performance.

Grounding the system

Board layout is not critical with the important exception of the input ground arrangements. All the ground connections important to accuracy are brought back to a common reference point as indicated on the circuit.

Poor grounding arrangements were found to be the largest source of error in the first prototype. It is vital not to pass power supply or load currents through any of the six wires going to this junction.

It is equally important to keep the input circuitry away from sources of heat. Any such sources will introduce unwanted thermocouples in the chip sockets and soldered joints.

The gain select and loop filter switches are conveniently implemented with DIL switch arrays.

Commissioning

On completion of the circuit, fit the links around the difference amplifier for the expected phase. Calculate and fit $R_{13,24}$ for the required set point range.

Leave the heater or thermoelectric cooler initially disconnected, but connect the sensor and interface circuit if appropriate. The sensor fail light should be out.

Check the +2.50V rail with a dvm measuring with respect to the reference ground, and adjust the -2.73V. It should be possible to see the correct set point voltage at pin D. Select the lowest gain setting, R_{22} , and the loop filter out of circuit.

Connect a voltmeter to the output of the main controller circuit. It should be possible to see this voltage swing between 0 and 5V as the set point knob is swung through the expected sensor temperature. This will probably be room temperature if this is included in your set point range.

Connect the voltmeter to the temperature monitor point. Connect up the heater or thermoelectric cooler and see if the system basically works correctly. The balance light should come on until the temperature comes inside the linear range.

After a few minutes the system should settle down to a final temperature. If all is well, this will be somewhere near to the expected set point. But there may be some overshoot in the process.

Leave the circuit a few minutes to check that there are no oscillations. If the system does oscillate on the lowest gain setting then it may be necessary to change the gain selection resistors $R_{19,R22}$. Alternatively, you can give some consideration to modifying the mechanical arrangements with the heater and sensor to improve their thermal coupling.

If the system is stable then note the set point error. Try selecting lower values of gain resistor so increasing the gain, and check the set point error decreases as expected. With the component values shown the gain roughly doubles for each lower resistor value.

The ringing gets worse as the gain is increased. Note the point at which the system oscillates, and obtain an approximate time for one period. This time is usually seconds to low minutes, depending on the heat capacity, heater power and sensor location.

If the thermal coupling is very good, it may be possible to use the highest gain setting without oscillation, in which case it is probably worth checking the overall performance without the loop filter connected. There are more details on this in the January issue.

Check the operation of the sensor fail circuit by simulating fault conditions. The heater current should fall to zero if the sensor is disconnected.

Adjusting the loop filter

The purpose of the loop filter is to allow the use of a higher gain setting without oscillation. This results in better thermal stability and lower set point error.

The bottom line is that the time constants have to be adjusted empirical basis to see whether more gain can be used without oscillation. However, it will be helpful to quickly outline the principles in the hope that you will have a better feel for which way to set the time constants.

Figure 4 shows the standard temperature control setup, but with the addition of a hypothetical thermoelectric cooler and very low frequency generator. The thermoelectric cooler is to perturb the system. It allows heat to be added or removed from the experiment so that the controller response can be examined as it tries to correct for the added heat.

In particular, you need to look at the amplitude and phase relationships between the heat supplied by the heater and the sensor response as the frequency is varied. There will be a delay between the heat added and the sensor seeing a change due to the thermal capacity and thermal conductivity of the block.

If the generator is set to a very long period – typically several minutes – the delay in the block will be short in comparison and the servo system will keep track. Thus the phase difference is small, and the servo gain will approach the steady state value.

Increasing the generator frequency introduces two effects. The delay time for the heat change to propagate through the block becomes a significant fraction of the cycle time. This introduces a phase shift. Secondly, the temperature changes seen by the sensor become attenuated since there is less heat added/subtracted per half cycle.

These effects reduce the servo gain. There will be a frequency where the heater will be adding heat on the current cycle while the sensor is still seeing a temperature decrease from the last cycle due to the propagation delay. Thus an extra unwanted 180° of phase lag is introduced by the block and the servo will oscillate. This assumes that the electronics can provide enough gain to make the overall loop gain greater than unity.

Low-pass filtering in the loop

.

To avoid this situation a low-pass function that rolls off the electronic gain as the phase shift inside the metal builds up with increasing frequency needs to be introduced into the loop. This low-pass function makes sure that the loop gain stays less than +1 at all frequencies.

There is the important extra qualification that the low-pass filter should not introduce any extra phase lag; this will simply reduce

INSTRUMENTATION & TEST

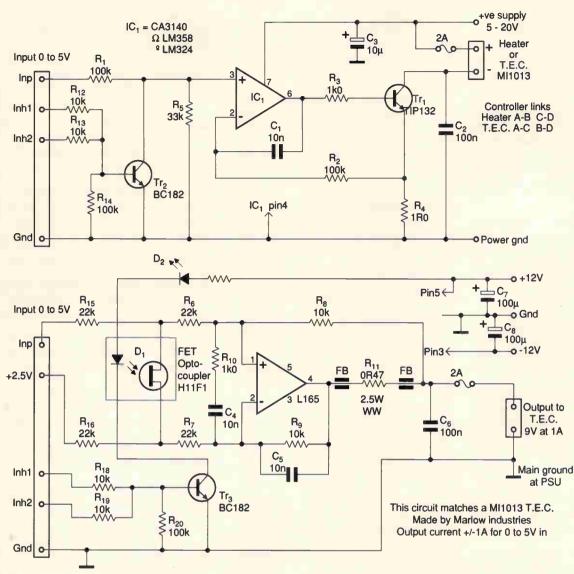


Fig. 3. Circuit a), at the top, is a linear unipolar output stage capable of driving a heater or thermoelectric cooler. The TIP132 is an 8A maximum Darlington capable of dissipating up to 70W. In b) is a bipolar driver for applications where a thermoelectric device is needed to heat or cool. The 165 is a power op-amp with a 3A output rating. It features safe operating area protection and thermal cut-out.

Fig. 4. Standard temperature control, to which is added the hypothetical thermoelectric cooler and very low frequency generator at the top of the diagram.

the frequency at which the loop gain becomes +1. At this lower frequency the metal block introduces less attenuation thus offsetting the extra losses put in by the low-pass filter. If the system still oscillates, nothing has been gained.

For this reason a simple *RC* filter may be no use since the phase lag tends to 90° at high frequencies. The lead-lag version shows more promise since the phase lag starts at almost zero at low frequencies, peaks at some value less than 90° , and then comes back towards zero at high frequencies.

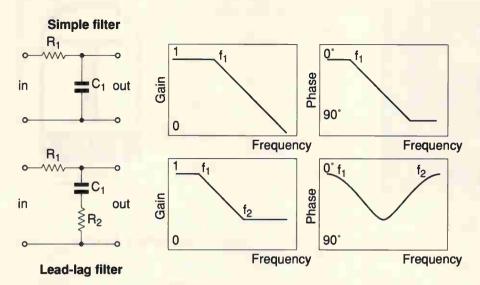
Gain and phase behaviour of the filter is outlined in Fig. 5. Frequency f_1 is the initial -3dB cut-off frequency and f_2 is the break frequency for the lead-lag filter, where the filter gain tends to $R_2/(R_1+R_2)$.

The ultimate attenuation with the lead-lag filter is fixed by the ratio of the two resistors. As a result, the extra steady-state gain that can be introduced can be a factor no more than the inverse of the filter loss. On the main circuit AC T.E.C. T.E.C. Experiment Sensor Heater Electronics including loop filter Set point

 R_1 is chosen from one of the switched resistors R_{9-12} and R_2 from R_{13} to R_{16} .

Choosing filter time constants

The trick is to choose the two filter time constants such that the maximum filter phase delay happens at a very low frequency, where the phase delay introduced through the metal is still small. Thus at higher frequencies, where the metal introduces a larger delay, the delay in the filter is past the maximum and coming back towards zero.

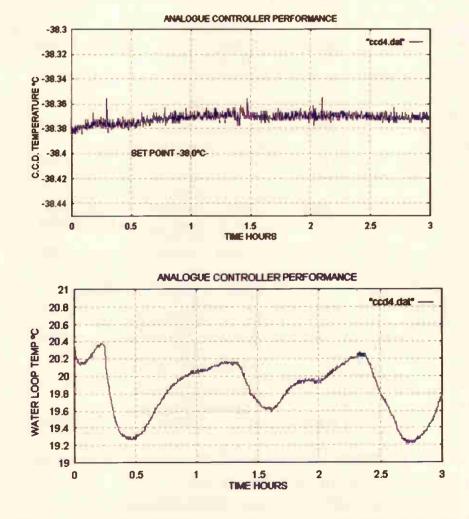

But now, the attenuation is sufficient to allow the amplifier gain to be increased while keeping the loop stable. Experts among you will recognise the similarity with loop filters for phase locked loops and amplifier compensation.

The options available on the circuit allow a time constant to set the f_1 break point between 40 and 400 seconds, and for f_2 , from 2 to 20 seconds. Higher values can give better results, but there is a practical problem realising this sort of time constant reliably, in that electrolytic capacitors must be used.

The leakage current flows through the selected resistor producing a volts drop. For this reason standard aluminium electrolytics are unsatisfactory and low-leakage tantalum components should be used.

A suggested setting up procedure is as follows; recalling the oscillation period when the gain is set too high (filter out), set the f_2 time constant to be of the same order as the oscilla-

INSTRUMENTATION & TEST


tion period using resistors R_{13} to R_{16} on the main circuit. Select a 1M Ω resistor for R_{11} , setting the f_1 time constant to 200 seconds. Switching in the filter will hopefully cause the oscillation to die out and the gain can be increased.

Settling time and overshoot

Having set the gain and the filter it is important to have a look at the settling time and overshoot. This is particularly true if a thermoelectric cooler is being used with an ambient environment that can go above and below the set point.

If the gain is optimised with the thermoelectric cooler cooling hard, there is a risk the system will oscillate when the thermoelectric cooler is required to heat. The best way to check the dynamic performance is to log the temperature every few seconds as appropriate using a pc equipped with a data logging card.

Figure 6 illustrates the stability obtained over a three-hour run cooling a ccd to a set point of -38° C. The system uses the analogue controller

Fig. 5. Comparing gain and phase behaviour of the two low-pass filter options illustrates the benefits of lead-lag option.

described here with a MI 3040 three-stage thermoelectric cooler driven by a unipolar output circuit capable of producing 0 to 5 amp for 0 to 5V from the controller.

Heat was removed from the thermoelectric cooler with a water loop running at 500cc/min, for a waste heat output of about 30W. Assuming good insulation around the rest of the assembly, the major source of temperature drift is actually the variations in tap water temperature.

The sensor was an AD590, and the switch settings selected were;

Gain resistor, R_{19} 100 Ω t_1 time const. resistor, R_{11} 1M Ω t_2 time const. resistor, R_{14} 220k Ω

You can see that the ccd sensor temperature varied by about 10mK over the run, for a change in water temperature of approximately 1°C. It is difficult to see much in the way of correlation between the two curves. The temperatures were sampled every ten seconds, and directly plotted without any averaging.

Final thoughts

If you need to monitor the temperature accurately on a pc then it is worth checking out the thermal stability of the a-to-d card. Some of the cheaper ones are less than wonderful. This can be a real problem as I have found out on occasions.

If there is any doubt, it is worth connecting up the 2.5V, -2.73V and the monitor ground to three spare channels and doing some differential checks with respect to the monitor ground. The two voltages should record the same potential with respect to the monitor ground, give or take one step on the a-to-d converter, all through the test.

The otherwise admirable BBC micro – still in service in many an undergraduate teaching lab – is particularly bad in this respect. It has a nice four-channel a-to-d converter spoilt by the use of three 1N4148 diodes as a 1.8V reference; that's a built-in drift of 6mV/°C! Replacement with a decent bandgap reference solves the problem.

Many items intended for running cold – such as integrating ccds and photodiodes – have a maximum rate of temperature change recommended by the manufacturer. This is easy to exceed, and risks destruction of the device through differential expansion or contraction.

When working with such devices, either turn down the set point knob in stages or it would be wise to engineer some limit to the maximum rate of cooling.

Fig. 6. These two plots illustrate the controller's performance over a three-hour run cooling a ccd to -38°C using a Peltier-effect device. CCD temperature is shown at the top, and cooling water temperature at the bottom. It is difficult to see any relationship between the two.

Please telephone for further details on: 01203 650702 Fax: 01203 650773 Mobile: 0860 400683

Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF

Link

Address http://www.tiepie.nl

View Go

Favorites

0

Stop

Help

Home

3

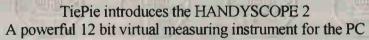
*

Search Favorites History Channels

¢,

Betresh

PLUG IN AND MEASURE 8-12 bit 200kHz-50MHz


X

>

V Auto

STORAGE OSCILLOSCOPE SPECTRUM ANALYZER VOLTMETER TRANSIENT RECORDER

100mVolt-1200Volt

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is: "PLUG IN AND MEASURE".

Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using: the speed button bar. Gives direct access to most settings.

- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.

- menus. All settings can be changed using the menus.

Some quick examples:

The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

HANDYSCOPE

Edit

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec, so it is easy to measure events that last up to aimost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements, also True RMS, Peak-Peak, Mean, Max and Min values of the measured signal are available

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a

spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 (50MHz-8bit), TP112 (1MHz-12bit), TP208 (20MHz-8bit) and TP508 (50MHz-8bit).

Convince yourself and download the demo software from our web page: http://www.tiepie.nl.

When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package

The HANDYSCOPE 2 is delivered with two 1:1/1:10 switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is £ 299.00 excl. VAT.

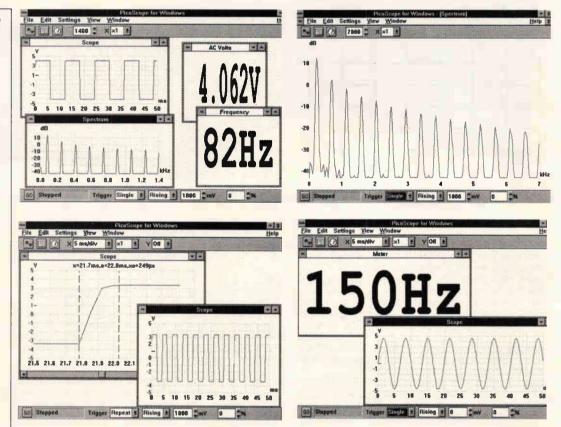
TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL) Koperslagersstraat 37 8601 WL SNEEK The Netherlands Tel: +31 515 415 416 Fax +31 515 418 819

Intrinet zone

CIRCUIT IDEAS

Over £600 for a circuit idea? New awards scheme for circuit ideas

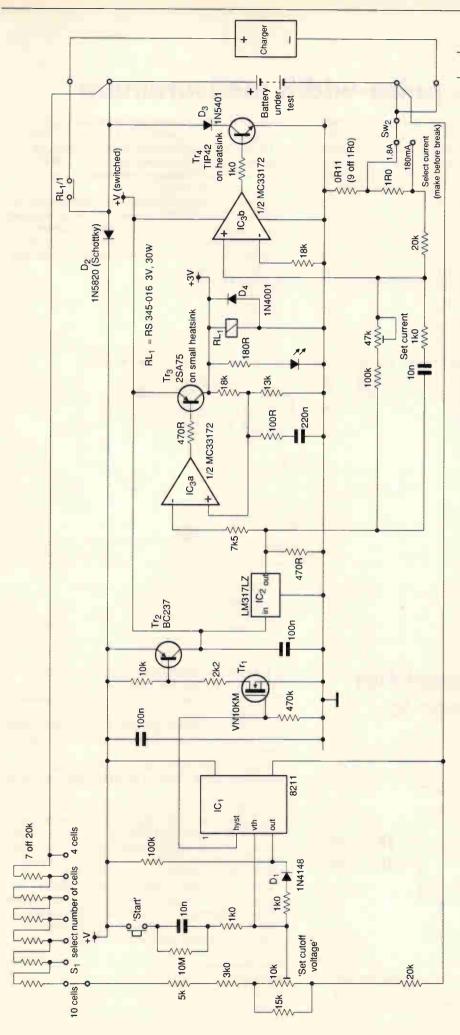

- Every circuit idea published in *Electronics World* receives £35.
- The pick of the month circuit idea receives a Pico Technology ADC42 worth over £90 in addition to £35.
- Once every six months, Pico Technology and *Electronics World* will select the best circuit idea published during the period and award the winner a Pico Technology ADC200-50 worth £586.

How to submit your ideas

The best ideas are the ones that save readers time or money, or that solve a problem in a better or more elegant way than existing circuits. We will also consider the odd solution looking for a problem – if it has a degree of ingenuity.

Your submission will be judged on its originality. This means that the idea should certainly not have been published before. Useful modifications to existing circuits will be considered though – provided that they are original.

Don't forget to say why you think your idea is worthy. We can accept anything from clear hand writing and hand-drawn circuits on the back of an envelope. Type written text is better. But it helps us if the idea is on disk in a popular pc or Mac format. Include an ascii file and hard-copy drawing as a safety net and please label the disk with as much information as you can.



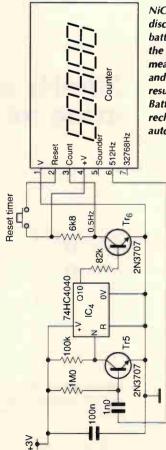
Turn your PC into a high-performance virtual instrument in return for a circuit idea.

The ADC200-50 is a dual-channel 50MHz digital storage oscilloscope, a 25MHz spectrum analyser and a multimeter. Interfacing to a pc via its parallel port, ADC200-50 also offers non-volatile storage and hard-copy facilities. Windows and DOS virtual instrument software is included.

ADC42 is a low-cost, high-resolution a-to-d converter sampling to 12 bits at 20ksample/s. This single-channel converter benefits from all the instrumentation features of the ADC200-50.

CIRCUIT IDEAS

Unisually, this capacity meter draws power from the NiCd battery under test. It discharges battery packs of from four to ten cells, a charger being connected after the test. As an example, a four-cell pack applies 3.5V to the circuit after allowing for current sensing and reverse polarity protection.


Latching comparator IC_1 starts the discharge when the start button is pressed, discharge ending when battery voltage falls to 1V/cell. In this case, the functions of output and hysteresis pins are reversed, since at low currents their threshold voltages differ by a few millivolts, the output being higher and preventing clean switching. Output current from the hysteresis pin is low and is amplified in Tr_1 and Tr_2 , the resulting switch being capable of supplying over 100mA.

The discharge circuit is formed by IC_{3b} and Tr_4 and is switchable to 180mA and 1.8A by S_2 . Very good power supply rejection in the *MC33172* (IC_{3b}) renders the discharge current largely immune to battery-voltage changes; the prototype's discharge current varies by less than 0.2% for a battery-voltage change of 4-25V.

To measure discharge time, the Maplin FS13P counter accepts its own 512Hz output, divided by the 4040 counter, to increment at two-second intervals while the battery is discharging. This is equivalent to 0.1 or 1mAh per count on the low and high current ranges. Power for the counter timer comes from IC_{3a} and Tr_3 , which form a low dropout regulator to supply the relay.

Lower discharge currents may be used; PP9 batteries at 18mA can be handled, but the relay must be omitted. Higher currents or more cells will necessitate a heat sink for Tr_4 . John R Hunt

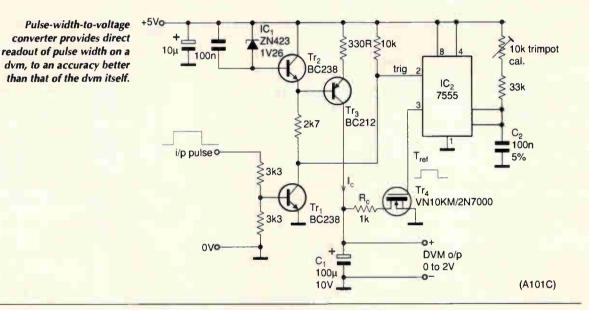
Middlesbrough

NiCd cell tester discharges batteries, timing the discharge to measure capacity and indicating the result digitally. Batteries are then recharged automatically.

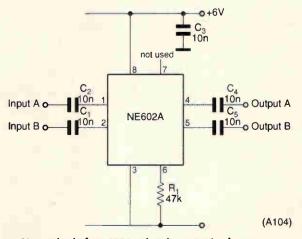
Analogue pulse-width measurement

Measuring the width of a pulse can be done digitally, but needs digital counters or complicated circuits of one kind or another. This analogue arrangement gives a direct reading of pulse width in real time without clocks or digital circuitry of any kind. It is optimised to measure the 1-2ms, low duty-cycle pulses used in model control and, used with a 3.5-digit dvm with a 10Ω impedance, gives a 1µs resolution on the 2V range.

Voltage reference IC_1 , a ZN423 or similar, forms a switched current source with $Tr_{2,3}$, I_c being about 4mA, to charge C_1 during the input pulse. Monostable IC_2 , a 555, turns Tr_4 on once per input cycle, connecting R_c across C_1 to discharge it for the 4ms (t_{ref}). Consequently, C_1 charges each time to,


 $V_{\rm out} = t_{\rm in} I_{\rm c} R_{\rm c} / t_{\rm ref}$

so that the charge gained in each input pulse equals that lost through R_c during every reference pulse from the 555.


The circuit is capable of precise conversion if highprecision components are used, particularly in the C_2 position; a 20-turn trimmer potentiometer to adjust t_{ref} allows adjustment to $\pm 1\mu s$.

Linearity and supply rejection is 0.1% and accuracy is limited by the dvm itself. The value of C_1 is uncritical and a 10V tantalum bead can be used, although dielectric absorption creates a settling time in addition to the *RC* constant. Both ends of R_c are at high impedance and long pcb tracks should be avoided.

Anthony New Bristol (A101c)

50MHz amplifier using mixer ic

Unusual role for a 602A mixer ic, operating here as a 10.7MHz amplifier, single-ended in this case. There is provision for a balanced mode of operation.

Unusually, this 50MHz amplifier uses the *NE602A* or *SE602A*, intended as a double-balanced mixer. Permanently unbalancing the mixer causes it to operate in linear mode, the advantages being that the circuit is inherently well balanced and matched and has internal bias circuits. It also takes only 2mA and uses six other components.

Inputs are taken to pins 1 and 2, normally used as mixer inputs, and may be connected as single-ended or balanced input.

Since there is no local oscillator, the lo input is biased with R_1 , which unbalances the top four transistors in the mixer, so that two are on and two off. The top transistors then act as buffers and the amplifier operates as a cascode type, which has very good reverse isolation and stability. Output comes from either output on pin 4 or 5.

Using transformers at input and output provides a balanced circuit with gain enhanced by 3dB and even-order harmonics suppressed – useful in a wideband amplifier.

My prototype is a 10.7MHz design, giving a gain of 22dB in single-ended mode with source and load resistances of $1.5k\Omega$.

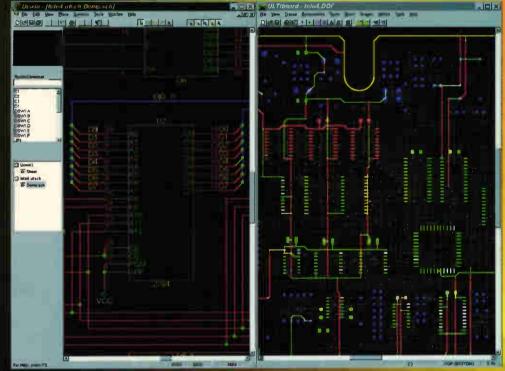
Peter Goodson Bracknell Berkshire (A104)

ULTIM ATE 25 VEARS TECHNOLOGY

In the 70's we were at the forefront of technology with microprocessors, custom chips and embedded software. Hundreds of PCB Designs were manufactured with tape and symbols. In the early 80's we were among the first to trade this tedious process for computer aided design. After many years of intensive R&D we introduced a PCB Design Tool for the Personal Computer in 1986 with the slogan:

for designers by designers

ULTIboard became known as the professional, affordable alternative for expensive Workstations and Minicomputers. 10 year after its introduction, ULTIboard became the PC-marketleader, according to independent market researcher Dataquest.


JUBILEE SPECIAL OFFER

See us at stand No: 2A28

Enter our free Draw to win

one of 6 Studio Lites or a Studio Unlimited system!!

MARCH 1998 NEC BIRMINGHAM

The Challenger 1400 consists of ULTIcap schematic capture, ULTIboard printed circuit board design and the ULTIroute GXR Ripup & Retry autorouter and includes a set of 5 manuals, both DOS and Windows 95/NT. This complete design system has a design capacity of 1400 pins. Additional cost for double capacity **£ 415** + **£ 62,25** per year. Extra for Specctra SP4 shape based autorouter (high-end SMD autorouting) **£ 620** + **£ 93** per year! All prices are excl. of delivery and VAT.

Unit 1, Lodges Barn, Coxbury Lane, St. Briavels, Lydney, Glos GL 15 6QJ • phone: 01594-810100 • fax 01594-810200 Until March 31, 1998 we are featuring *a really irresistable jubilee offer:*

Purchase our best seller ULTIboard Challenger 1400 for just 25% of the regular price: £ 195 only, and at the same time you take an update subscription with automatic renewal until 31/12/2002 for the reduced price of £ 189 per year. You not only receive updates and support, but also upgrades with new functionality. For instance our next upgrade features SpiceAge, a mixed-mode simulator integrated with ULTIcap for Windows 95/NT schematic entry system. Even a database with component specs is a free upgrade!

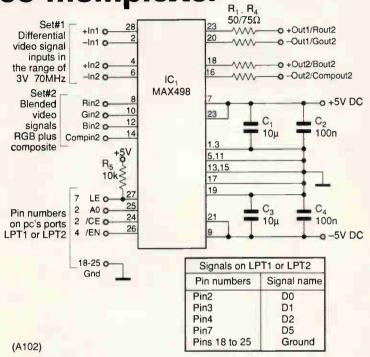
This way you keep working with state-of-the-art tools for a very friendly price and, should you need to stop working with the system, the update subscription will end as per the first renewal date - without a penalty -. Consequently, there are **no financial risks** involved! Take advantage of our 25'th anniversary and purchase this unique offer!

7 - 112 - 11 (Q) 11 (226) - 14144 - 142 (13345

Pc-controlled video multiplexer

Using a MAX498 quad, single-pole/doublethrow RGB video switch, which is provided with 250MHz video buffer amplifiers, we blended the RGB signals with composite video and used differential inputs to try to increase the distance we could send the signal over 50Ω cable.

The blending or the use of differential inputs covered most of the video signal types we use. Limitations were that, with differential inputs, we could only multiplex two sets of differential composite video instead of four single-ended signals; and in composite mode we could use three lines for RGB and a composite signal, which coped with half the transmission distance.


Operation is controlled by a pc, to whose LPT1 or LPT2 ports it is connected. A QBasic program controls the output and will put the output in a high-impedance state, so that further signals may be added at the output from, for example, a number of security cameras. Data lines D_0 , D_1 , D_2 and D_5 at the printer are used.

Power needed is $\pm 5V/100$ mA, well regulated and with the four capacitors shown to reduce noise. Use resistive matching on all cable terminations – in and out.

We have sent signals to 100m without much degradation up to 70MHz, with a 3Vpk-pk differential input; small signal bandwidth is over 259MHz.

Shyam Sunder Tiwari Kalpakkam India

	<pre>listing for the 70MHz blend multiplexer based on the MAX498. REM Base Address of LPT1 or LPT2 LET BaseAddress = &H278 REM Base address of the LPT2 port is set to 0278H REM Data bits on the LPT1/LP2 Parallel Port REM LPT port D7 D6 D5 D4 D3 D2 D1 D0 REM used as x x LE x x /EN /CE A0 REM x are don't care bits REM finitialize the Port Printer LPT1 or LPT2 to 026H. OUT BaseAddress, &H26: REM initialization completes. REM Condition after initialization: A0 (D0) = 0 points REM MAX498 chip is disabled i.e. /CE (D1) = 1.</pre>	LOUT2:	<pre>REM and must remain high. OUT BaseAddress, &H23 OUT BaseAddress, &H21 OUT BaseAddress, &H21 OUT BaseAddress, &H23 REM The outputs are from Set#2, RGBs and a composite. REM The control inputs A0 and /EN are latched. REM ************************************</pre>
LOUT1 :	REM the output is also disabled i.e. /EN (D2) = 1, REM the latch is active (high) which holds the status REM i.e. LE (D5) = 1, others data bits are don't care. REM Activate Set#1 differential signals at the outputs REM and use the LATCHED OUTPUT control mode. REM Latch enable active i.e. LE (D5) = 1. Inputs from REM Set#1, i.e. A0 (D0) = 0 which selects the Set#1 REM of the differential inputs. /EN (D2) is set to low. REM /CE is pulsed to low to strobe control signals REM and must remain high.	DIS1: ENB1:	<pre>REM the outputs or /EN = 1 disable the outputs. OUT BaseAddress, &H02 OUT BaseAddress, &H00 OUT BaseAddress, &H00 OUT BaseAddress, &H00 CUT BaseAddress, &H00 REM /EN now can enable or disable the analog outputs. OUT BaseAddress, &H06 : REM outputs disabled OUT BaseAddress, &H06 : REM outputs disabled OUT BaseAddress, &H02 : REM outputs enabled REM ************************************</pre>
	REM Activate Set#2 RGB plus composite signals at outputs REM and use the LATCHED OUTPUT control mode. REM Latch enable active i.e. LE (D5) = 1. Inputs from REM Set#2, i.e. A0 (D0) = 1 which selects the Set#2 REM of the differential inputs. /EN (D2) is set to low. REM /CE is pulsed to low to strobe control signals	TOUT2: DIS2: ENB2:	

Using a MAX498 to blend RGB signals with composite video or using differential inputs handles most types of video signal, signal being driven about 100m along $50/75\Omega$ cable.

Have you got the capacity to resist this inducement?

12 ISSUES **free**

Subscribe to **Electronics World** for 3 years but pay for just 2!

Please enter my subscription for:

(tick one of the following)

	UK	Europe	Rest of V	Vorld
I year	🗌 £34	🗌 £49	🗆 £59	
2 years	🗆 £54	🗆 £78	🗆 £94	SAVE 20%
3 years	🗆 £68	_ £98	🗆 £119	I year FREE!

In every monthly issue

- Detailed circuit diagrams
- New product reviews
- Informative design-oriented explanations
- CAE software
- and more!

Full money back guarantee

If you're not completely satisfied with **Electronics World** within the first 60 days we'll refund your money in full - no questions asked.

Please allow 28 days for delivery of your first issue.

Please tick here if you do not wish to receive direct marketing promotions from other relevant companies.

Three ways to pay

- I enclose a cheque for £ _____ made payable to Electronics World.
- 2 Please charge my Visa/Mastercard/American Express/Diners Club (please delete as appropriate) Card Number

Company

087

Card Number	
Expiry date /	
Signed	Date

3 Please invoice me/my company. Purchase Order No.

Name Job Title

Address

Tel. No.

Company VAT registration number

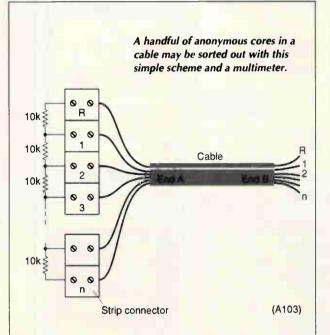
Return your completed form to: Electronics World Subscriptions, FREEPOST RCC 2619, PO Box 302, HAYWARDS HEATH, UK, RH16 3BR

Credit Card Orders

Tel: +44 (0) 1444 445566 (quoting code 087)

For all your Power Distribution Olson offer a varied choice

IRCLE NO. 118 ON REPLY CARD


OLSON

ELECTRONICS LIMITED

FOUNTAYNE HOUSE, FOUNTAYNE RD., LONDON N15 4QL TEL: 0181-885 2884 FAX: 0181-885 2496

ADC-42 WINNER Fig. 1. One voltage input controls a two-stage integrator to produce a variable sinusoid. С 11 +10 H R +10V R n n -10V -10V m +10V R 1 -10V

(A92)

Cable core identifier

very simple arrangement of resistors allows unmarked Acores in a multicore cable to be easily identified. Connect resistors of equal value to a strip connector at the A end, as shown, with the metallic shield or an external reference to R. At the B end of the cable, assuming the resistors are of $10k\Omega$ each, a multimeter between the shield and one of the cores will read $10k\Omega$, which shows that it is No 1. A reading of $20k\Omega$ shows No 2, and so on. An absence of any reading indicates an open circuit and if several readings are the same, there are shorts. Satish Kumar

Shuaiba Kuwait (A103)

Op-amp vco and binary fsk generator

"he circuit shown can be characterised by the differential equation,

 $d^2 y/dt^2 + n^2 y = 0$

with y(0)=1, the solution is cosnt, which is found by the circuit and results in a sinusoidal output e_0 at the frequen $cy f = n/(2\pi)$.

Frequency variation is obtained by varying the drain/source resistance of the two fets, thereby controlling the RC constant of each integrator, the resistive component of which is $1/(R_{eq}+R)$, \bar{R}_{eq} being the parallel combination of r and the drain/source resistance $R_{ds(on)}$.

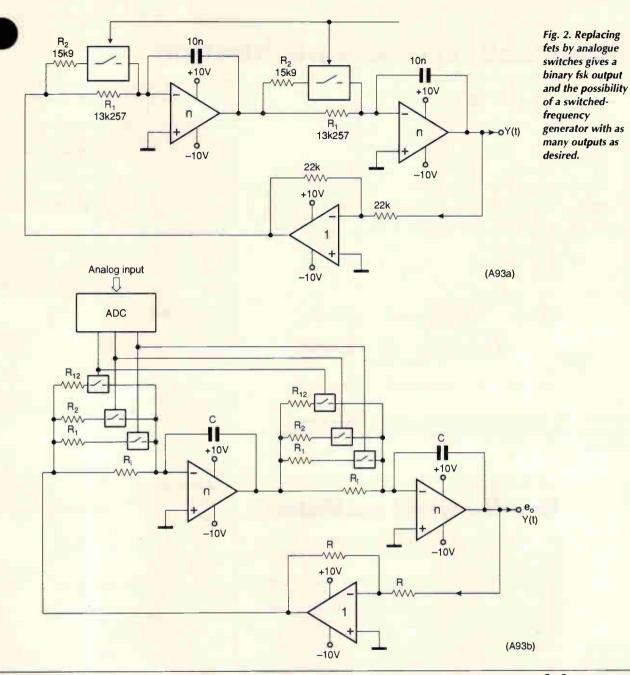
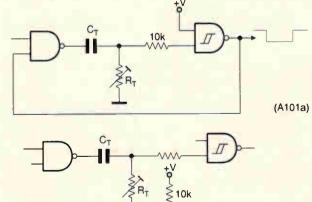

Available fets have a range of $R_{ds(on)}$ of 100Ω to $100k\Omega$, achieved by varying the control input V_i to each fet. Since each source is at virtual ground, the same voltage may be used with no cross loading effects.

Figure 2 shows a variation on this oscillator which performs binary frequency-shift keying. Here, the fets are replaced by analogue switches controlled by a voltage input. With the switch open, each resistive arm to the integrators is 13.257k Ω and, with the switch closed, 7.23k Ω , giving frequencies at the output of 1.2kHz and 2.2kHz. For start-up, arrange power-on switching to store 1V at C_1 and zero at C_2 .

One can envisage the use of more than one switch at each op-amp to give a range of switched frequencies three switches at each integrator would give a range of eight frequencies and twelve, perhaps controlled by a 12bit a-to-d converter, would give 4096 frequencies. K Balasubramanian

NSS College of Engineering Palakkad India (A92/93)

CIRCUIT IDEAS

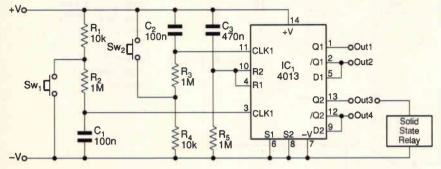

Improving supply rejection in cmos monostables

(A101b)

Using a Schmitt trigger as the output device in a cmos monostable, as in Fig. 1, in an effort to obtain clean transitions may cause problems with supply rejection, since threshold voltage in gates such as the *CD4093* do not scale correctly with supply voltage, so that pulse period can vary by up to 20%.

A small constant voltage in series with the timing resistor, shown in Fig. 2, compensates for the variation. Ideally, this would be variable to eliminate the period variation completely, but in practice, the forward voltage drop of a diode is about right; using a 4093, the variation was well-nigh perfect over the 4.5-7V range and only 3% out at 10V.

Anthony New Bristol (A101a/b)


1N4148

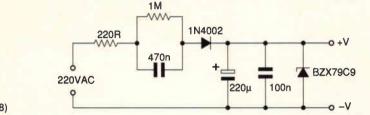

Fig. 1. Schmitt monostable may suffer poor supply voltage rejection

Fig. 2. A constant voltage, here obtained from a diode forward drop, almost completely eliminates the effect.

Antibounced, clickless pushbutton

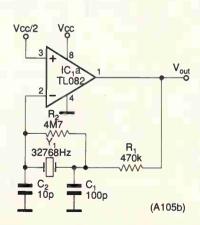
(A108)

Useful for remote-controlled, independent two-way switching or the switching of power without the clicks associated with ordinary relays, this debounced circuit takes minimal current.

Two If crystal oscillators

f you cannot lay your hands on the usual 4069 hex inverter, a pair of Schmitts from a 40406 or a 74HC14 make a simple and effective crystal oscillator.

The circuit in Fig. 1 is for a crystal with a required drive power of 1μ W; a watch crystal, for example. Resistors $R_{1,2}$ reduce the drive to this level; increasing R_3 would have the same effect, but would render the circuit sensitive to stray capacitance.

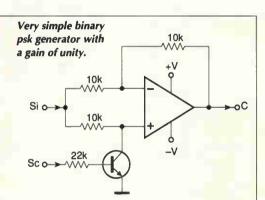

Two simple circuits for low-frequency crystal oscillators using low-power crystals. **Figure 2** shows an alternative to stray capacitance. **Figure 2** shows an alternative using a fast op-amp such as the *TL082*. Here, R_1 and C_1 set the drive power and R_2 the bias point. In the 40106 circuit, with a 12V supply, R_2 is 100k Ω ; for a 5V supply, use 220k Ω . **M Ferrari**

R₃ 1M IC_{1a} 40106 40106 1 220k V_{out} 220k K 100k (A105a)

Guastalla

Italy

(A105)



This double push-button power switch is, I believe, cheaper than some designs and uses fewer components.

Two switches, Sw_1 and Sw_2 , control a pair of Dtype flip-flops contained in a 4013, $R_{1,4}$ limiting the current and $R_{2,3} C_{1,2}$ forming debounce components. At switch-on, R_5 and C_3 ensure that reset is applied to the flip-flops such that Out1 and Out 3 are forced low. If switch Sw_1 is pressed and released, Out1 and Out 2 change state, while Sw_2 performs the same function for Out3 and Out4.

I have used the Sw_2 section of the circuit to drive the input transformer of an audio amplifier power supply, by way of a solid-state relay, without the audible noise from an electromechanical relay and with the facility of remote control. The circuit draws very little current.

Santo Camonita Catania Italy (A108)

Binary phase-shift keying generator

In response to a control signal S_c , the output of the circuit shown is either in-phase or out of phase with the input sinusoid, thereby providing a simple means of binary psk.

If S_c is high, the transistor conducts and grounds the non-inverting input, so that the amplifier has a gain of -1 and the output is 180° out of phase with the input. When S_c is taken low, the gain from the non-inverting input is 2 and that from the inverting input -1, so that the effective gain is 1 and the output is in phase with the input. *K* Balasubramanian

NSS College of Engineering Palakkad India (A94)

JW AVAILABLE GER 2 for Windows 95 The Complete, Integrated The Complete, Integrated Schematic & PCB Layout Package Schematic & PCB Layout Package Windows Ranger 2 Ranger 2 Outputs: For Windows 95 & NT Full Windows Outputs New Hierarchical Circuit Plus - HP-GL • Split Devices • Gate & Pin Swap Gerber • New Edit Devices in Circuit NC Drill Copper Fill Power Planes AutoCad DXF Autorouter Back Annotation Windows Ranger 2 with Specctra SP2 Ranger & Specctra Autorouter provide the most cost 500 TEE LO effective PCB Design system available. A powerful, intuitive system at an outstanding price! Windows Ranger 2 Upgrade Upgrade your existing PCB Package to Windows Ranger 2. Demo disc available £5.00 (Prices exc VAT/P&P)

Fax 01705 599036 Old Buriton Limeworks, Kiln Lane, Buriton, Petersfield, Hants. GU31 55J

CIRCLE NO. 119 ON REPLY CARD

CROWNHILL ASSOCIATES LIMITED The Old Bakery, New Barns Road, Ely Cambs CB4 7PW

Tel: +44 (0) 1353 666709 Fax: +44 (0) 1353 666710

sales@crownhill.co.uk www.towitoko.co.uk

www.crownhill.co.uk

CHIP DRIVE - PROFESSIONAL

Smart Card Programming System £79.95 + VAT

Intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure memory using I²C, 2-wire & 3-wire interfaces.

Supplied with software to read and write to most popular secure smart cards, inc GSM, PHONE and ACCESS CONTROL cards.

T=0 or T=1 @ 3.579MHz RS232 @ 9600-11500bps Internal Supply / Ni-MH Size: 100x70x80mm Weight 660 Gram

GSM SIM CARD EDITOR/PROGRAMMER

Complete system to read and write to all USER and SERVICE PROVIDER areas of GSM SIM CARDS. Available NOW. Detailed specification and overview available on request. £179.95 + VAT Package contains Software, Hardware and detailed notes on SIM card specifications, requires PC running Windows OS. Crownhill Associates Research & Development

Crownhill stock a full range of Smartcards, Smartcard Programmers and Accessories. From 256 bit memory cards through to RISC processor cards, from Towitoko professional CHIPDRIVE systems to OEM ISO interfaces. Crownhill offer the widest range of cards at some of Europe's lowest prices – full spec' ISO smartcard sockets from just £1.45 each and RISC processor based Smartcards from just £3.45 each. Crownhill offer design services for both Hardware and Software, from feasibility.

SMART CARD EVALUATION SYSTEM

- Smart Card Reader/Writer (Programming Interface)
- Smart Card Interrogation System, to identify the commands accepted by any valid Smart Card and log them to disk for evaluation.
- Allows the user to "re send" known commands and monitor the result.
- Passive interface to allow the user to monitor the data flow between Card and host system.
- 244 page Hard Back reference book, covering all aspects of Smart Card design and programming.
- Sample program to read memory type Phone Cards.
- Data on NEW Visa Smart Cards.
- Sample Smart Cards, Electronic Purse, Credit/Debit card, ID Card .
- £169.99 + VAT
- Other systems available for specific projects, Credit/Debit, access control, GSM etc etc

The car electronics market is being driven by convenience and safety as the vehicle manufacturers push for lower power, smaller and more integrated products to interface with the management system. Lana Josifovska reports.

ISYOUT integrated products to interface with the management system. Lana Josifovska reports.

he increasing complexity and sophistication of incar electronic systems inevitably means that the vehicle's electrical system requirements are reevaluated as never before. Convenience and safety are the main forces driving the research into new, and some might say revolutionary, electrical supply concepts such as two batteries instead of one, alternator, that supply more than one voltage, on-board electrical systems that are divided into a 12V and a 36V network, belt-less engines with electrically driven ancillary components and new forms of alternators and starters.

The requirement is for a system which provides not only an ever-increasing level of electrical output, but also a stable voltage supply for the growing list of electrical and electronic systems in the modern vehicle.

One way of achieving this is by deploying more than one battery.

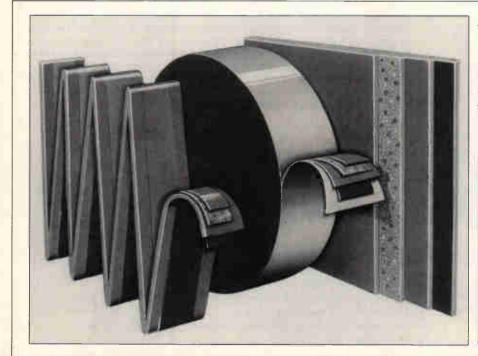
Bosch – a pioneer in the development of such systems – is currently working on a vehicle electrical system with two 12V batteries: one for starting the engine and the second to supply the on-board electrical system. This allows an increasing amount of power to be available for starting the engine while ensuring a reliable supply of electricity without voltage drops to the vehicle's electrical system.

However, the two batteries use different technologies

to best fulfil their respective tasks. Their separate power networks are linked to different systems in the vehicle allowing the starter battery, for example, to receive priority or other on-board systems to be supplied with a stable voltage. The use of new Lithium Polymer (LiPo) technology in the dual battery system can even reduce the car's weight compared to a vehicle with a single-battery system.

The drive toward higher voltage systems

There is also a drive for a dual 12V/36V network, to supply high-load consumers via a divided electrical system. A 42V alternator supplies those consumers in the car that have a high electrical power requirement and recharges the 36V battery. The 42V is also known as the 'charging voltage' whilst the 36V the 'starting voltage'. The remaining consumers on the second electrical circuit are supplied via a suitable voltage transformer. This solution presents no problems for the continued use of conventional 12V components.


Even though automotive manufacturers are trying to move towards higher voltages that are typically multiples of the standard 12V, such as 36V, some believe this transition will be slow and arduous. "The direction that we are being driven by vehicle

manufacturers globally is for lower power, smaller and

At the turn of the next century... vehicle batteries will no longer be bulky and cumbersome but light and pliable enough to fit in the smallest spaces in the car. A flat battery could fit in the car headliner (roof) for example. Here are shown the Delphi Freedom battery and the solid, flat and flexible LiPo battery of the future.

ELECTRONICS WORLD April 1998

more integrated products to interface with the management systems. With so many electrical and electronic components prevalent within vehicle systems - typically 20 per cent of the value of a car - battery power drain is a major problem. Unless there are specific requirements, such as very low temperature starting or heavy duty requirements, then a 12V system will prevail.

Problems with using 24V

A 24V system has heat dissipation issues and running dual voltage systems is cumbersome," said David McCallum, business manager at Panasonic Industrial Car Electronics group.

Panasonic is building sensors to specification for automotive manufacturers and OEM suppliers in the US, Japan and Europe. Panasonic produces switches and sensors amongst many other components and systems used in vehicles.

The spokesperson at Delphi, a major supplier of components to the automotive industry, agrees that the switch to dual-voltage systems may take some time: "A higher voltage system will allow different functions in the car such as electrically heated catalysts, drive-bywire, electric water pumps and others. The 12V system will be supplied via a DC/DC converter but the idea is to eliminate the 12V even though this may not happen in the foreseeable future, because of all the (negative) issues related to the higher voltage systems such as high heat dissipation and so on."

Delphi is working with a variety of component

suppliers and automotive makers to introduce a dualpower system by the year 2005. At present the company is trying to build a dual-voltage test system in Germany.

For dual-voltage systems, the LiPo technology may prove to be ideal. Battery makers such as Delphi and AEA Technology are adapting solid state lithium polymer batteries for use in vehicles.

"For a 36V starting voltage, which is three times the standard 12V battery, using lead-acid can be very sizeable and heavy. LiPo will match up to the requirement of the 36V battery with its energy density but it will also add flexibility and its considerably smaller size," said Gary Ballard, manager of the battery energy department at the Delphi technical centre in Luxembourg.

LiPo – three times the power density

The LiPo batteries that are now under development, offer three times the power/energy density currently available from conventional lead acid batteries.

Lithium ion chemistry with solid polymer electrolyte allows the new batteries to be smaller and lighter, to last the life of the vehicle and to be manufactured to any shape the automotive designer requires.

Polymer state batteries, being very pliable can be cut to shape to fit in the most crammed of spaces such as the rooftop headliner in the passenger cabin or underneath the seats.

"Vehicle manufacturers are looking for flexible packaging, decreased volume resistance to heat and the ability to place the battery in small spaces in the car," said Ballard.

Driving power... Battery technology is also paramount in the plans for the environmentally friendly allelectric vehicle. The US is committed to the issue of zeroemission cars and is trying to legislate the issue. As of the year 2002 every US car maker is expected to manufacture zeroemission vehicles to up to two per cent of its total output. Europe has not followed suit but expected to do so sometime in the future. At present there are plenty of European research projects and battery developments concerning electric vehicles. Amongst these are the work of Mercedes-Benz in conjunction with AEA Technology; the UK-based Bluebird Electric project and the University of Sheffield's Electric 3000 racing car, the electric equivalent to the Formula 3000. Pictured with the Electric 3000 racing car are Jordan driver, Damon Hill with Shahnaz Pakravan of BBC TV's Tomorrow's World at the wheel.

Radio Technology Direct

Top quality, top technology, top service. That's our commitment to you. We build both standard and custom modules and ship direct. We've been doing so for 20 years. No-one is better. Every product is made in England, with pride.

Here are some of our products. To order, just ring us direct (credit cards accepted).

If you want something you don't see here, ring us. We can almost certainly help.

Data Acquisition Virtual Instrumentation Environmental Monitoring

miem

pico

TC-08

'Pico's PC Converters monitor and record temperature and humidity'.

food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospitals - accurate monitoring of temperature sensitive items.

Pico Technology

- Monitors up to 30 channels of temperature over a 400 m. distance.
- ▼ -55 to 100^oC temperature range (typical accuracy ±0.2^oC).
- Data can be downloaded to PC.

Enviro Mon

Starter Kit from £393.00

3 temperature Sensors on 5m lead, 3 channel Converter, Enviromon Logger, cables & fittings. Expandable at any time for around \$50 / channel

TC-08

8 channel Thermocouple to PC Converter

Simple to use thermocouple to PC interface.

- Connects to serial port no power supply required.
- Supplied with PicoLog data logging software.
- ▼ Resolution 0.1^oC.

TC-08 £199.00

Supplied with serial cable and adaptor. Calibration certificate £25.00. Thermocouple probes available.

TH-03 3 channel

Connects to serial port -

- no power supply required. PicoLog data logging software.
- -55 to 105°C temperature range
- ▼ Resolution 0.01^oC.

TH-03

£79.00

Supplied with serial cable and adaptor. Thermistor sensors available.

Call for free demo disk or download our web site: http://www.picotech.com All prices exclusive of VAT.

Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@picotech.co.uk Bryan Hart explains the problems involved in designing mosfet transmission gates and shows how to get the best out of them.

Mosfet analogue gating

peration of a mosfet in a logic gate is relatively straightforward. It normally presents few problems – even to those who have only a sketchy knowledge of mosfet theory. This is because the device can be modelled as a simple, though imperfect, on/off switch.

In the case of a basic cmos inverter stage, a device that is off passes only a small drain-to-source 'leakage' current – typically less than a microamp: for a device that is on, the magnitude of the drain-source voltage does not exceed a few millivolts – typically, 5.

In contrast, the behaviour of a mosfet in a 'transmission gate' is more complex and can cause difficulties. This is because the device can no longer be regarded as a simple switch in this application. The problem is made worse by the superficial treatment given to the topic in the literature.

This review adopts an evolutionary approach and uses a recently proposed mosfet model to clarify the operation of a cmos transmission gate.

Transmission gate characteristics

A 'transmission', 'linear' or 'analogue' gate is one in which a signal at an input terminal appears – ideally – unchanged in shape, at an output terminal during a time interval selected by a gating, or 'strobe', pulse applied to a control terminal. A change in polarity is acceptable and there may be a change in scale through attenuation or amplification.

The transmission gate has been used in a wide miscellany of signal processing applications that includes: pulse radar echo selection; nuclear instrumentation; switch for amplifier gain and polarity control, integrator resetting, digital-analogue converters and active switched-capacitor filters.

Figure 1a) shows a transmission gate connected in series with a load resistor R. The instantaneous values of the input, output and control signals are v_{I} , v_{O} , v_{C} respectively.

Figure 1b) shows the ideal dc transfer characteristics for the two states of the control signal. Section i) of the illustration corresponds to the off state and ii) to the on state.

Characteristic ii) is shown, arbitrarily, as having a positive slope but it may be negative, indicating signal inversion. Also, the magnitude of the slope can be less than unity, in the case of attenuation, or greater than unity, in the case of amplification.

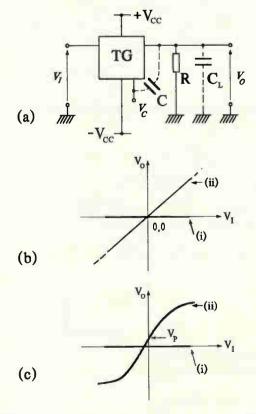

The general characteristics of a practical circuit are shown, similarly labelled, in Fig 1c). Characteristic ii) passes through a point $V_1=0$, $V_0=V_P$ offset from the origin: furthermore the line is no longer straight.

Figure 2 summarises the operation of the gate circuit, for both ideal and non-ideal characteristics when the input signal, Fig. 2a), is a train of pulses of arbitrary shape and a control or gating waveform, Fig. 2b), is applied. Figs 2c) and 2d) show the output waveforms for the characteristics of Figs 1b) and 1c) respectively.

In Fig. 2d), the output is distorted and sits on a 'platform' or 'pedestal'

of height V_P . Additionally, there are gating transients or 'spikes', S_1 , S_2 at the beginning and end of the gating pulse. There are two reasons why these appear. One is capacitive feedthrough from the gate terminal to the output, i.e., via the stray and inter-electrode capacitance C in Fig. 1a). The other is finite rise and fall times and non-coincidence of gating pulse edges in circuit schemes employing complementary gating pulses.

The transmission gate has been implemented using a variety of semiconductor devices. However, the cmos transmission gate is attractive in

Fig. 1.

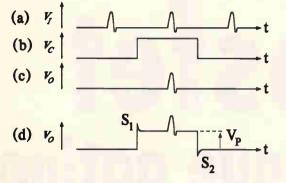
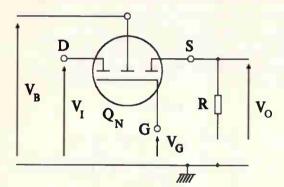
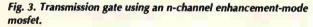
a) A series connected transmission gate.
b) Ideal transfer characteristics for a): i) when the transmission gate off, and ii), when the gate is on.
c) Practical counterpart of b).

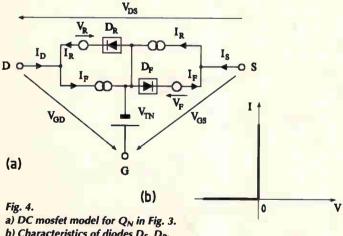
ANALOGUE DESIGN

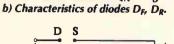
a wide range of applications because it is easy to drive and is free of pedestal. To understand its origin and operation it is necessary to examine first the operation and limitations of a transmission gate using a single mosfet.

Single mosfet transmission gate

Figure 3 shows a single n-channel enhancement-mode mosfet used in the circuit of Fig. 1a). The electrode potentials are shown as dc quantities for


Fig. 2. Transmission-gate operation:


- (a) Input pulse train.
- (b) Gating pulse.
- (c) Ideal output.

(d) Possible practical output. Note that Vp is exaggerated for clarity.

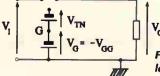


Fig. 5. Transmission-gate equivalent circuit for off state. the analysis that follows.

Substrate *B* is biased so that, under all conditions, V_B is less than V_I and V_O . In that case the source-substrate and drain-substrate junctions of the mosfet are reverse-biased and the mosfet can be represented by the recently proposed large-signal model¹ in **Fig. 4a**). This applies also for alternating signals if inter-electrode capacitances are added.

Battery V_{TN} models the threshold voltage. Diodes D_{F} and D_{R} are shown boxed² because they have the ideal I/V characteristics of Fig. 4b).

The device equations for $V_{\rm F}>0$ ($V_{\rm GS}>V_{\rm TN}$) and $V_{\rm R}>0$, ($V_{\rm GD}>0$	$>V_{\rm TN}$) are,
$I_{\rm F} = K_{\rm N} V_{\rm F}^2 = K_{\rm N} (V_{\rm GS} - V_{\rm TN})^2$	(1)

$$I_{\rm R} = K_{\rm N} V_{\rm R}^2 = K_{\rm N} (V_{\rm GD} - V_{\rm TN})^2$$
⁽²⁾

Since $I_{\rm G} = 0$,

$$I_{\rm D} = -I_{\rm S} = I_{\rm F} - I_{\rm R} = K_{\rm N} (V_{\rm F}^2 - V_{\rm R}^2) \tag{3}$$

Device design parameters K_N , V_{TN} can be found experimentally from a plot of $\sqrt{I_D}$ versus V_{GS} with V_{DG} at 0V. The slope of the straight line section gives $\sqrt{K_N}$ and the extrapolated intercept on the V_{GS} axis gives V_{TN} .

The model is attractive in showing clearly the device dc operating mode when arbitrary terminal voltages are applied. Once that mode has been established the model can be reduced to a simpler equivalent form, as will become apparent in what follows.

If, in Fig. 3, V_G is connected to a negative bias source $-V_{GG}$, and if V_I is greater than $-(V_{GG}+V_{TN})$ then D_F and D_R in the model of Fig. 4a) are cut off and $I_F=I_R=I_D=0$.

The transmission gate in Fig. 3 is cut off, its idealised equivalent circuit

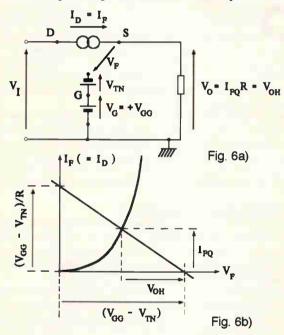


Fig. 6. a) Transmission-gate equivalent circuit for when the gate is on and $V_I > (V_{GG} - V_{TN})$.

b) Load line construction for operating current, IFQ.

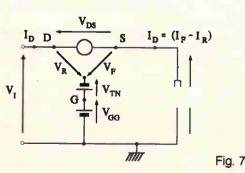


Fig. 7. Transmission-gate equivalent circuit for when the gate is on and $V_I < (V_{GG} - V_{TN})$

ANALOGUE DESIGN

being indicated in Fig. 5. In a refinement to the mosfet model under discussion, two diodes arranged in series-opposition can be connected between the terminals D and S to allow for the small cut-off leakage current that occur with real devices.

Consider next what happens in Fig. 3 when V_G is $+V_{GG}$. Using the model of Fig. 4a) it is clear that D_F conducts while V_{GG} is greater than V_{TN} . But there are two cases to consider for D_R . One is that D_R is off when V_I is greater than $V_{GG}-V_{TN}$ and the other is that it is on while V_I is less than $V_{GG}-V_{TN}$.

The equivalent transmission gate circuit for the first case is shown in Fig. 6a). The mosfet behaves as a voltage controlled current generator characterised by equation 1.

The gate-source loop gives,

$$V_{\rm O} = I_{\rm F} R = V_{\rm GG} - V_{\rm TN} - V_{\rm F} \tag{4}$$

Operating current I_{FQ} and V_{OH} , which is equivalent to $I_{FQ}R$, can be calculated using eqns 1 and 4, but the graphical construction of Fig. **6b**) is more instructive.

Equation 4 describes a load line on the plot of $I_{\rm F}$, which equals $I_{\rm D}$ versus $V_{\rm F}$. This passes through the points $I_{\rm F}=0$, $V_{\rm F}=V_{\rm GG}-V_{\rm TN}$) and $I_{\rm F}=(V_{\rm GG}-V_{\rm TN})/R$, $V_{\rm F}=0$. Its intersection with the transfer characteristic of the mosfet gives $I_{\rm FO}$ and $V_{\rm OH}$.

Voltage V_{OH} increases with R up to a maximum value os $V_{GG}-V_{TN}$. When V_{GG} is greater than V_{TN} and V_I is less than $V_{GG}-V_{TN}$, the equivalent circuit is as shown in Fig. 7: diodes D_F and D_R in the model of Fig. 4a) are both on, the device operates in the 'ohmic' (or 'triode') region and equation 3 applies.

Hence,

$$V_{\rm O} = I_{\rm D} R = (I_{\rm F} - I_{\rm R}) R \tag{5}$$

or,

$$V_{\rm O} = K_{\rm N} R (V_{\rm F}^2 - V_{\rm R}^2) = K_{\rm N} R (V_{\rm F} - V_{\rm R}) (V_{\rm F} + V_{\rm R})$$
(6)

But,

So.

$$V_{\rm F} - V_{\rm R} = V_{\rm DS} \tag{7}$$

 $V_{\rm O} = K_{\rm N} R V_{\rm DS} \left(2 V_{\rm F} - V_{\rm DS} \right) \tag{8}$

Substituting $V_{GG} - V_{TN} - V_O$ for V_F in equation 8 gives,

$$V_{DS}^{2} - 2V_{DS} \left(V_{GG} - V_{TN} - V_{O} \right) + \left(\frac{V_{O}}{K_{N}R} \right) = 0$$
⁽⁹⁾

For a chosen value of $V_{\rm O}$, you can calculate $V_{\rm DS}$ by solving this quadratic and selecting the root with the smaller magnitude. The other root does not satisfy the condition $V_{\rm R}$ >0. So for each value of $V_{\rm O}$, you can find a value of $V_{\rm L}$, since $V_{\rm I}$ = $V_{\rm O}$ + $V_{\rm DS}$. This procedure allows you to make a plot of the transfer characteristic of the circuit.

Even without specific numerical values for V_{GG} , V_{TN} , K_N you can still make two useful statements concerning equation 9. First, if V_O is 0 then V_{DS} is also 0, because the other root $V_{DS}=2(V_{GG}-i_{TN})$ is inadmissible. So $V_I=0$ and all the transfer characteristics pass through the origin – irrespective of the value of R.

Secondly, if R approaches infinity then V_{DS} approaches 0 because $V_{C}/K_NR \rightarrow 0$. This means the transfer characteristic approximates to a straight line. Figure 8 shows the characteristic for this condition and for a finite value of R.

Comparing the practical characteristics with the ideal ones in Fig. 1b) it is apparent that the circuit can handle bipolar input signals but there are deficiencies in two respects, range and linearity.

For a given mosfet type, the range can be extended by making V_{GG} larger but there are limits set by gate voltage breakdown and the magnitude of the supply rail voltage.

Linearity can be improved by having a large value of R but there is a limit set by dynamic considerations. When the transmission gate is switched off, the output terminal has associated with it a time constant $(C+C_L)R$, C_L being the load capacitance. If R is very large the circuit takes

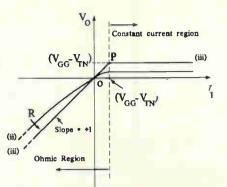


Fig. 8. Transfer characteristics for the circuit of Fig. 3. i) Gate off ii) Gate on and R finite iii) Gate on and R approaching infinity

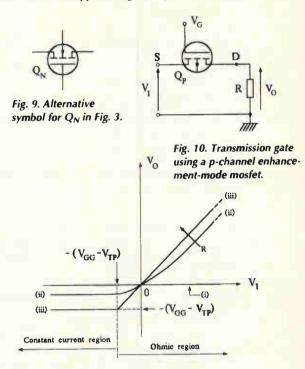


Fig. 11. Transfer characteristics for the circuit of Fig. 10. Compare with Fig. 8, to which the labelling of i), ii), iii) applies.

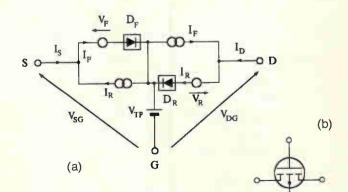


Fig. 12. a) DC mosfet model for Q_P in Fig. 10.

b) Alternative symbol for Q_P.

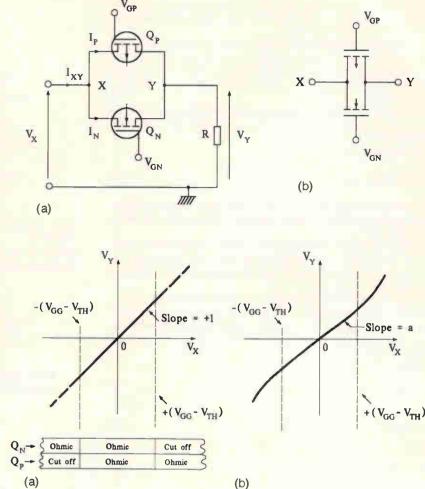


Fig. 13. a) A complementary mosfet transmission gate. b) Alternative representation of complementary connection.

a long time to reach the state where V_0 is 0.

I will now digress briefly to clarify a point purposely glossed over at the start of this section. It concerns the naming of parts and symbolic representation of the mosfet. The connection of the drain terminal to the input and the source to the output of the circuit in Fig. 3 was an *arbitrary* choice.

Reversing the connections produces exactly the same characteristics as those in Fig. 8. The reason for this is the symmetry in the electrical characteristics of a mosfet. The channel region is uniformly doped in the direction of current flow along it. Also, the device structure is geometrically symmetrical about the plane drawn perpendicular to the semiconductor surface at a point mid-way along the channel. The symmetry is emphasised in the form of the mosfet model.

It is helpful to distinguish between the name given to a terminal and the function performed at that terminal, because a terminal designated 'source' can also function as a 'drain' and viceversa. There is a loose analogy here, in mechan-

ics. What we might call the 'business' end of a double-ended symmetrical spanner is the one being used to tighten or loosen a nut.

Fig. 14.

When discussing standard circuit configurations, for example a common-source stage and a source-follower, it is preferable to use the symbol shown in Fig. 3. Here, the gate connection is located near what is regarded as the source end of the channel because that aids in the identification of the intended function of the circuit.

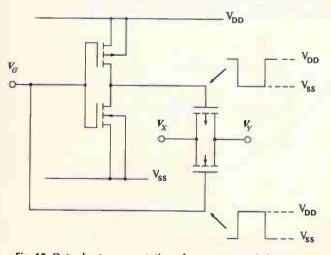


Fig. 15. Data sheet representation of a cmos transmission gate.

However, when neither of the mosfet terminals in the path of signal flow is at a fixed potential, and when there is no preferred direction of current flow through the device, the symmetrical nature of mosfet operation is indicated better by using the standard alternative symbol in Fig. 9. Here,

the gate terminal is located centrally. If a p-channel enhancement-mode mosfet, Q_P , is used instead of Q_N , as shown in Fig. 10, then the transmission gate is on for $V_G = -V_{GG}$ and off for $V_G = +V_{GG}$. The resulting transfer characteristics are given in Fig 11. These are obtained, by reasoning similar to that already given for a general mosfet. Q_N using the p-channel model of Fig. 12a). Since no new principle is involved, that analysis is not given here.

As with Q_N , the source and drain terminals of Q_P can be interchanged and to reflect this the alternative standard symbol is that in Fig 12b).

A complementary mosfet TG

a) On characteristic for Fig. 13(a) for R infinite, showing conduction states.

b) On characteristic for finite R. Non-linearity is exaggerated for clarity.

The shapes of the plots in Figs 8 and 11 suggest that the transfer characteristic of a mosfet transmission gate, when on, might be improved in range and linearity by using two complementary devices in parallel, as shown in Fig. 13a) or the alternative representation in Fig. 13b). The terminals in the signal path, arbitrarily labelled X and Y. refer to the circuit nodes rather than the device terminal designations.

The transmission gate is off for the conditions $V_{GN} = -V_{GG}$ with $V_{GP} = +V_{GG}$ and on for $V_{GN} = +V_{GG}$ with $V_{GP} = -V_{GG}$. The following discussion refers to the on state. Of special interest are the theoretical conditions $K_P = K_N = K$ and $V_{TP} = V_{TN} = V_{TH}$.

For a specified R. in order to plot a transfer characteristic for Fig. 13a), V_X can be calculated for assumed values of V_Y following the procedure

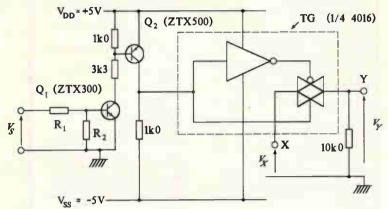


Fig. 16. Driving the cmos transmission gate from ttl-compatible circuitry.

described earlier for a single n-channel mosfet. The device equations give I_N and I_P as functions of V_X and V_Y . You can now use the relationship $I_{P+I_N}=I_{XY}=V_Y/R$.

For *R* infinite, the on characteristic is the straight line in Fig. 14a). The conduction states of Q_N and Q_P are determined by using the models of Figs 4 and 12 in the composite connection.

By inspection, Q_N and Q_P both operate in the ohmic region for,

 $(V_{GG}-V_{TH})\geq V_X\geq -(V_{GG}-V_{TH})$

a

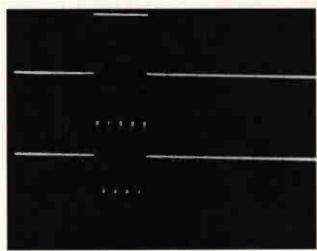
Mosfet Q_N is cut off and Q_P is ohmic while V_X is greater than $V_{GG}-V_{TH}$). Similarly, Q_P is cut off and Q_N is ohmic when V_X is less than $-(V_{GG}-V_{TH})$.

The theoretical characteristic for a finite value of R has the general shape shown in Fig. 14b). Referring to Fig. 13. it can be shown that for, $+(V_{GG}-V_{TH})\geq V_X\geq -(V_{GG}-V_{TH})$,

$$I_{XY} = 4KV_{XY}(V_{GG} - V_{TH})$$
(10)
or,

$$\frac{V_{XY}}{I_{XY}} = R_{ON} = \frac{1}{4} K \left(V_{GG} - V_{TH} \right)$$
(11)

Resistance R_{ON} is both the dc and the incremental resistance over the V_X range considered. The transfer characteristic of Fig 14b) is a straight line of slope 'a', where 'a' is a linear attenuation factor given by.


$$=\frac{R}{R+R_{oN}}$$
(12)

Outside the V_X range considered the transfer characteristic ceases to be linear because R_{ON} is a function of V_X . This is to be expected since one of the devices cuts off.

Whether the composite arrangement of Fig. 13 is implemented in practice using discrete devices or, as is usually the case. using a monolithic cmos structure, there are at least two reasons why the transfer characteristic is non-linear over the whole range of V_X .

One reason is the impossibility of meeting, precisely, the conditions $K_{\rm P}=K_{\rm N}$ and $V_{\rm TP}=V_{\rm TH}$. The other is the variation of $V_{\rm TP}$, $V_{\rm TN}$ with $V_{\rm X}$ via their dependencies on substrate bias – an effect so far ignored. In a cmos scheme, the second effect is usually minimised by using additional mosfets. These are not always shown on schematic diagrams.

Non-linearity in the transfer characteristic can be assessed from manu-

Fig. 17. Oscilloscope display for circuit of Fig. 16. The traces have common time and voltage scales.

Upper trace: v_{s} , with amplitude 5V and duration 100 μ s. Lower trace: v_{Y} , for a sinusoidal input.

facturers' data, which specifies the variation in R_{ON} over a given range of V_X for a given R.

If R is much greater than R_{ON} and R_{ON} changes by x%, where x is less than 10, then it follows from equation 12 that 'a' varies by x% also. To conclude this review I will present a practical gate.

. . .

The IC cmos gate in action

Figure 15 is a schematic circuit of an IC cmos transmission gate, as shown on a data sheet. The mosfet symbols in the inverter section, which supplies a complementary gating waveform, are different from those used in the signal-path section.

Figure 16 shows part of a circuit for generating 'flashing-ring' symbols for use in oscilloscope tests of human visual perception. The dotted box contains the circuitry of Fig 15: the parallel mosfets are now represented by a symbol comprising two interlocked oppositely directed arrowheads. This highlights the bilateral nature of this transmission gate. The input can be at X, as here, and the output at Y. or *vice-versa*.

Resistance R_{ON} is typically 250 Ω for a 4016 type cmos transmission gate operating between $V_{DD} = +5 \text{ V}$, $V_{SS} = -5 \text{ V}$. As a result, the choice 10k Ω for *R* meets the condition that *R* should be much greater than R_{ON} .

In this case, the input v_X is a sinusoidal signal. The ttl-compatible drive circuit, comprising Q_1 , Q_2 and associated resistors, supplies a gating waveform with the required dc levels. This can be modified for faster operation by connecting a Schottky diode between the collector and base of each transistor, to minimise carrier storage time, and by adding an active pulldown circuit to the collector of Q_2 .

Figure 17 shows an oscilloscope display of the time-selection pulse, v_{S} . applied to the base of Q_1 and the output waveform, v_{Y} , which is a selected portion of the input v_{X} .

References

1. Hart BL, 'First-order d.c. model of the mosfet', *LIEEE* Vol. 34, pp. 326-330, Oct 1997.

2. Hart BL, 'Introduction to Analogue Electronics', p. 7. pub Arnold 1997

Embedded Development for the 8051 family

ANSI C Compilers for Windows 95/NT4.0 or DOS

Our second generation C compiler for the 8051 family of microcontrollers has features found in no other 8051 C compiler. You'll find smart pointers, common code merging and full cross-module type checking. You can generate ANSI compatible reentrant code or fast and compact non-reentrant code. 64 bit floating point arithmetic comes as standard.

Embedded Development Studio

Your Windows 95/NT4.0 package will also have the Embedded Development Studio. This development environment lets you concentrate on the important task of software creation. The details of setting up a project and keeping it up-to-date are automatically taken care of and you need no longer be concerned with command line options and make files.

NewCTitSensor B Adcc D Display.c B Kaya.c	<pre>Pows ; for (nIndex = 0; nIndex < nTableSize; nIndex++)</pre>
H B Man c B Mathic B B REc B Selec B Selec	double fTop, fBottom; long nFirst;
	<pre>if (pCurrent->nSetting == pPrevious->nSetting) i</pre>
) clse
	nFirst = pCurrent->nReading; ResetWatchDog (); fTop = nFirst - nchannel; l = previous->nReading;
On-Line Books	A 63 67 899 12 78785
Embedded Developm C68020NT User Guide R C8051NT User Guide R Common Users	

Your Choice

At Crossware, we believe in giving you the greatest choice possible. That's why we have designed our products to suit your needs and your budget. Whether it is just one or two memory models you require or support for all 8051 variants, there is a package to match your objectives.

Try it NOW

You can download a fully functional try-before-you-buy compiler for Windows 95/NT4.0 now. Just point your browser at: http://www.crossware.com/evaluate and follow the on-screen instructions.

Crossware Products

St. John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS, UK Tel: + 44 (0) 1223 421263 Fax: + 44 (0) 1223 421006 E-mail: sales@crossware.com Web: http://www.crossware.com Bridge rectifier type WO8. 800v at 1.5A. £1 for 10

Diodes Type IN4007, 1kv at 1A, £1 for 50. Klockner Moeller FAZG DIN rail mounting circuit breakers, single pole. 4A, 6A, 16A. 20A. £2 each.

Seiko Epson Super Twist Graphics Blue Mode LCDs 320x240 Pixel Size, 132x103 Overal. £5 each. 3 for £10. No Driver or Details

Densitron Liquid Crystal Displays, 5 Digit. Type LSH5060RP, £1 each.

Proximity switches for doors and windows. surface mount. £1 each.

Panel Meters moving coil, 1mA/75mV, size 4% x 2%, scale marked 0-100, and 0-5. £5.00 each.

Crabtree Ceiling Switches, 6A, Red Cord, £2.00 each. £10 per box of 10.

Capacitors, 4.7mfd, 400v, radial electrolytic (Jamicom) 15x10mm £2 per 200.

Varistors, 275V 20J, 5mm pitch, Part NoJVR7N431K, £5 per 500. Automotive blade fuses, 5A and 15A. £1

per pack of 5 Resistors, CR25, %W, 4R7, 47R, 470K £5

per box of 5,000. Weir Bench Power Units Type 460, 0-60v

at 1 amp. £70.00. Flexible 'Goose Necks' used to mount in

car computers etc, 14" long, £3.00 each. Wiring Harnesses for car alarms, useful lengths of equipment wire etc, £1 per pack of 4.

Hera Foot Switches, 250vac, 3 amp. £4. Siemens Min Relays Type C1062A307, 12v single pole 10 amp. 3 for £1.

Advance Signal Generator Type E2, AM/CW, 100KHz to 100MHz. £75.00. BBC Computers, £25.00 each.

Sullivan Decade Resistance Boxes, 4 Way. £20.00 each

Tangential Fans, 240vac, 80mm. £4.00. DIP Switches, 6 Way. £1.00 each.

PED Relays, PCB Mount, 2 pole C/O, 5v Type 51SB05T, £1.00 each,

B. BAMBER ELECTRONICS 5 STATION ROAD, LITTLEPORT,

CAMBS. CB6 1OE. Phone: 01353 860185 Fax: 01353 863245

Tektronix Oscilloscope type TDS350, Dual channel, 200mhz, 1GS/s, £2200.

Laplace Spectrum Analyser Adaptor type SA450B, for use in a low frequency oscilloscope to display signals from 10KHz to 450MHz, £320.00.

Black Star Meteor 600MHz frequency counter, mains or battery, £95.00 Philips Oscilloscope Type PM3217, Dual

Channel, 50MHz. £350.00. Iwatsu Oscilloscope Type SS5121, Dual Channel, 100MHz, £450.00.

Time DC Voltage Calibrator Type 2003S. £250.00.

Time DC Curent Calibrator, 0-10mA £250.00

Marconi AF Oscillator Type TF2102M, 3Hz-30KHz. £75.00.

Kingshill Power Unit Type NM10300, 100vdc, 3amp. £95.00.

Avo AC/DC Breakdown leakage & lonisation tester Type RM215-L2. £400.00. Image Powersense mains analyser. £600. Avo Megohrnmeter Model RM290, £220. Zemco central locking interface kits type SA535 allows the Zemco SA530 vehic alarm to automatically lock and unlock the vehicle doors by use of the remote transmitter. £5 each.

Zemco vehicle alarm Biaxial Piezo Shock Sensor Type SA405. £5 each

Zemco add on quartz Ultrasonic Sensor Kits Type SA404. £5 each

Rolling Ball Fuel Flow Sensors suitable for Petrol and Diesel. £5 each. Pin Switches for Car Door/Boot/Bonnet etc.

£1 per pack of 4.

MAIL ORDER ONLY. DELIVERY FREE, MIN ORDER £10. NO VAT. WANTED SURPLUS STOCK

VISA

CIRCLE NO. 124 ON REPLY CARD

Field Electric Ltd.

Tel: 01837 83736 Fax: 01837 83936 E-mail: field12b@aol.com PO BOX 4, North Tawton EX20 2YJ

NEC 9" Colour Monitor VGA 800 x 600	£35.00
Sony 9" RGB Colour Monitor (Trinitron Tube)	£34.00
12" Colour VGA-SVGA 800x600 Monitors, from	£35.00
14" Colour VGA 640x480 Monitors, from	£45.00
17" Dell Ultrascan SVGA Monitors from	£165.00
Hewlett Packard 7475A Plotter Serial 6 Pen	£86.00
Hewlett Packard 7550A Plotter HPIB Serial 8 Pen	£199.00
Hewlett Packard 7470A Plotter Serial 6 Pen	£75.00
Roland DXY 980 8 Pen Plotter Serial Parallel	£120.00
Tseng Dual Port SVGA ISA 16 Bit Graphics Card 1Mb runs 2 VDU from 1 PC	£26.00
Adaptec 16 Bit ISA SCSI Cards from	£28.00
1Mb ISA 16 Bit Graphics Card SVGA	£18.00
3 Com Network Cards, various in stock, from	£15.00
ATI Mach 64 PCI 2mb SVGA Card	£26.00
Hauppauge Windows TV Celebrity, ISA 16 Bit Frame, Capture: TV Tuner etc	£39.00
Quad Pro Plus/Tseng etc. PC1 SVGA Graphics, from	£22.00
IBM 3-5" 160Mb SCSI Hard Drives	£27.00
80MB 3.5" IDE Hard Disc Drives (Guaranteed)	£19.95
1-44Mb 3-5" H.D. Disc Drives, from	£8.00
Exabyte Tape Drives 2Gb from	£60.00
Rose PC Switching Boxes, from new	£29.00
Marconi Digital Analyser 2829	£145.00
Marconi Multiplex Tester 2830	£130.00
Wallis Insulation Tester T30	£100.00
Sound Technology 1510A Tape Recorder & Audio Test Set with manual	£375.00
Krohn-Hite 3343 Filter	£85.00
Hewlett Packard 8470A 8412A	£375.00
Hewlett Packard 5345A	£500.00
Hughes Scan Conversion Memory 639	£100.00
Tektronix DAS9100	£175.00
Lambda LK344A FMV 0-60VDC 4AIX	£60.00
386 486 Laptops, please enquire, from	£85.00
Desktop 486 PCs, various specs from	£85.00
Sound Technology 1510A Tape Recorder & Audio Test Set with Manual	£375.00
OVERSEAS ENQ WELCOME. TELEPHONE ORDERS ACCEPT PAYMENT C/C, P.O., CHEQUE etc. C/P. DETAILS PLEASE RIN	

ALL PRICES INC. 17.5% VAT UNLESS STATED. WE STOCK A LARGE SELECTION OF EQUIPMENT, IF YOUR REQUIREMENT IS NOT LISTED PLEASE RING.

CIRCLE NO. 125 ON REPLY CARD

CIRCH NO, 123 ON REPLY CARD

Erik Margan explains why an amplifier's input can be unstable – even when you follow the text-book design method.

The question of instability of an amplifier with reactive source impedance at its input that arose last year triggered memories of some 25 years ago. I remember seeing a very respectable oscilloscope burst into oscillation due to having an inductor connected to its input. I was trying to examine stray magnetic fields from a power transformer at the time.

The effect is due to the amplifier input impedance being negative over a range of frequencies. Here is an example of how even a very simple system, such as a jfet source follower, can exhibit such unexpected behaviour. Figure1a) shows the schematic and 1b) the equivalent circuit. The impedance seen by the jfet source terminal is,

$$Z_S = \frac{1}{\frac{1}{R_S} + j\omega C_S} + \frac{1}{\frac{1}{R_L} + j\omega C_L}$$
(1)

Summing the currents into the source node gives,

$$\frac{V_S}{Z_S} = (V_G - V_S) j \omega C_{GS} + (V_G - V_S) g_m$$
(2)

From this, the small-signal transfer function at the source can be written,

$$F(\omega) = \frac{V_S}{V_G} = \frac{j\omega C_{GS} + g_m}{\frac{1}{Z_S} + j\omega C_{GS} + g_m}$$
(3)

and the actual output will be scaled down by the source to load impedance ratio,

$$\frac{V_{out}}{V_G} = F(\omega) \frac{1}{Z_S\left(\frac{1}{R_I + j\omega C_I}\right)}$$
(4)

The magnitude, phase and envelope-delay of $F(\omega)$ are shown in Fig. 2. Note the high crosstalk in the magnitude plot at high frequencies. A cautious designer will be worried by seeing the phase plot turning upwards and the envelopedelay going positive. But there is more. The input impedance at the jfet gate can be found by dividing the input voltage by the input current,

$$Z_G = \frac{V_G}{\left(V_G - V_S\right)j\omega C_{GS}} \tag{5}$$

which results in,

$$Z_G = \frac{V_G}{(1 - F(\omega))j\omega C_{GS}}$$
(6)

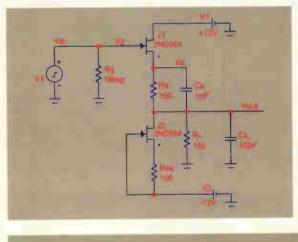
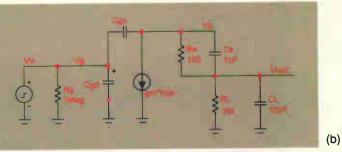



Fig. 1. Typical junction fet source follower, as might be used as an oscilloscope input stage.

(a)

ANALOGUE DESIGN

Fig. 2. Response curves of the follower in Fig. 1.

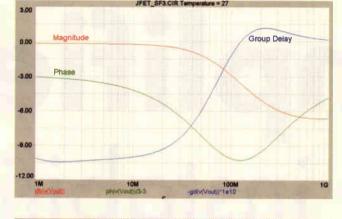


Fig. 3. Junction fet source follower input impedance for several values of input inductance.

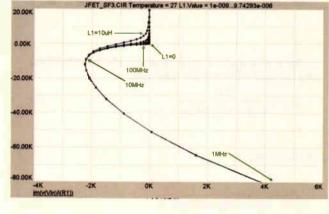


Fig. 4. Improved junction-fet source follower with negative input impedance compensation provided by R₁, R_x and C_x.

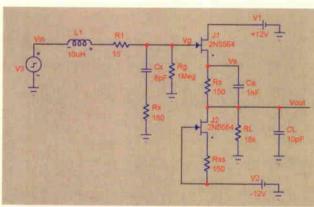
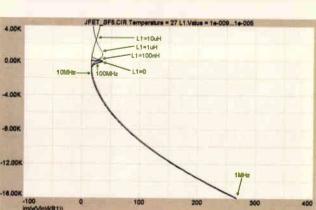



Fig. 5. Junction fet source follower input impedance for several values of L₁, compensated by R_x and C_x.

Note the negative sign, which indicates a potential source of trouble!

In parallel to Z_G there is the gate bias resistor and the gate-drain stray capacitance and any source inductance is added to the whole,

$$Z_{in} = \frac{1}{\frac{1}{Z_G} + \frac{1}{R_G} + j\omega C_{GD}} + j\omega L_1$$
(7)

The imaginary versus real part of Z_{in} is plotted in Fig. 3, showing that beyond 3MHz there is a negative real part, as predicted by the negative sign in the Z_G denominator. With an inductance at the input, even as low as that of a piece of wire, the circuit will oscillate at the frequency at which the Z_{in} plot crosses the negative part of the real axis.

But be warned that in too many text books Z_G is oversimplified to,

$$Z_G = Z_S + \frac{g_m Z_S + 1}{j \omega C_{GS}} \tag{8}$$

which - since all terms are positive - shows no cause for alarm.

How to cure it

There are four solutions to this instability problem.

a) As noted in previous correspondence, the simplest method is to insert a resistor of a large-enough value – about $3k\Omega$ – in series with the amplifier input, but this will lower the system bandwidth.

b) Choose such values of jfet source loading and transconductance, that Z_{in} remains positive, i.e. instead of using the 2N5564 one can insert the 2N5911 which has lower stray capacitances and higher source resistance, but this will also need some 300Ω in series.

c) If the input signal will come from a transducer of known inductance, it is possible to insert a small resistor in the drain of the upper jfet and thus allow some negative feedback through the gate-drain capacitance (Miller effect). This works for a limited range of inductances.

d) The best way is to add a series $C_x R_x$ network across the input, as in Fig. 4, to compensate for the negative input impedance. Fig. 5 shows the result for inductances up to 10µH. Now the series input resistance can be safely reduced to some 15 Ω , without influencing the bandwidth.

With bipolar transistors, the negative input impedance is greatly reduced by the base resistance. Even so, some circuit configurations can still become unstable with input inductance. The series $C_x R_x$ compensation can also be used here, as described for the fet.

CONNECT WITH THE UK'S NO. 1 READ FOR ELECTRONICS PROFESSIONALS ON THE INTERNET

ectronicsWEEKLY

Electronics Weekly HyperActive is more than just a magazine on the Web. Check out the site and you'll see why thousands of electronics professionals around the world regularly log onto www.electronicsweekly.co.uk/

For **NGWS** HyperActive's Daily News Service brings you the latest news in the industry - as it breaks. For **JODS** HyperActive has the largest and most varied collection of jobs available in the electronics market. Now we bring you the improved **JODS** and **Careers** service with a whole range of new and exciting features.

All this plus, the **latest technology**, market information, toolkit's, a searchable archive, and loads more....

Don't miss out.

SCOTTISH ENTERPRISE

Point your browser at http://www.electronicsweekly.co.uk/ register now (it's free)

SPONSORED BY

TOSHIBA

ADVERTISER INFORMATION:0181 652 3639 OR E-MAIL: richardnapier@rbi.co.uk

SIEMENS

Electronics World – reader offer

30V, 5A bench power supply with dual displays - 25% discount

For a limited period, Vann Draper is offering over 25% discount on the 305 LDD – a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at £186.82 including VAT but it is available to *Electronics World* readers filling in the adjacent coupon at the 25% discount price of £139 – fully inclusive of VAT and delivery.

Infinitely variable between 0 and 30V – with coarse and fine controls – and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10mV. Its load regulation is also excellent, at typically ±0.2%.

Accuracy of the supply's dual 3.5-digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at 5.5A \pm 0.5A. When the overload circuit is activated, it causes both audible and visual alarms, resettable via a push-button on the front panel.

Dimensions of the 305 LDD are 310 by 260 by 120mm and its weight is 5.5kg. Housed in a light-grey steel enclosure, the unit is built to comply with UL, CSA and TUV safety standards.

Please address orders and all correspondence relating to this offer to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE I 8 2PL, telephone on 0116 2771400, or fax 0116 2773945. Please send me..... 305 LDD(s) at the fully inclusive special offer price of £139

Name Company (if any) Address

Phone number/fax

Total amount

£....

Make cheques payable to Vann Draper Electronics Ltd, or, please debit my Master, Visa or Access card:

Card type (Access/Visa)

Card No Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 0116 2773945 or telephone on 0116 2771400. Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE I 8 2PL. *Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fox to Vann Draper Electronics Designed to reduce jitter in a digital video disk measurement system, Chris Hancock's precision integrator achieves a repeatability of 0.1% on successive ramps at very high speeds.

Fast and precise integrator

designed this precision analogue integrator to produce linear dV/dt voltage ramps clamped between +1.5V and -1.5V. The output ramps were produced from the edges of data pulses with a width of between three and fourteen multiples of a data clock running at 27MHz.

Rise and fall times of the data-pulse edges are symmetrical, with a typical value of 1.5ns. The linear slope of 3V, i.e. $\pm 1.5V$, is produced in a nominal time of 24ns. This is achieved using a novel feedback loop system, which makes use of state of the art 1.2GHz bandwidth operational amplifiers and 274MHz bandwidth clamp amplifiers.

Results show that the circuit can be used to produce linear precision clamped voltage ramps from the edges of the data pulses, whose widths are changing randomly over the entire range. Repeatability measurements indicate that it is possible to achieve a repeatability of 0.1% on successive ramps.

Background

The motivation designing this integrator came from the need to measure timing jitter between signal data and a synchronised data clock in a digital video disk measurement system. The data clock was running at 27MHz with a 1:1 mark-space ratio, and the width of the data pulses was between three and fourteen clock cycles, i.e. 111ns to 518ns. Voltage levels for both clock and data signals was ttl. The rise and fall times of the data pulses were symmetrical, with typical values of 1.5ns. For the purpose of this work, the data pulses can be considered as being generated continuously, with random width between three and fourteen clock cycles.

We needed to produce a precision dV/dT ramp from the edges of these data pulses, and from this, voltage levels were to be sampled to enable the timing jitter between the rising edge of the clock and the data signal to be calculated.

Voltage levels taken from the ramp were fed into a fast eight-bit Phillips *TDA8703* a-to-d converter and stored in an *IDT7201* first-in-first-out memory, ready for subsequent processing. This article concerns only the analogue integrator.

We wanted the measurement system to run continuously. so it was vital that no charge remained on the integration capacitor at the start of the next signal integration. In addition, the clamped levels needed to be identical for each data pulse width.

Because we needed identical clamped levels, a basic active integrator using a single operational amplifier with a feedback capacitor was not an option. We needed a solution whereby the output from the integrator would remain constant at either the positive or negative clamp amplitude level for a predetermined time after the ramp level has changed between clamping voltage rails, ready for the next data edge to arrive.

Dr Hancock is involved with research and development at Gyrus Medical Ltd in Cardiff.

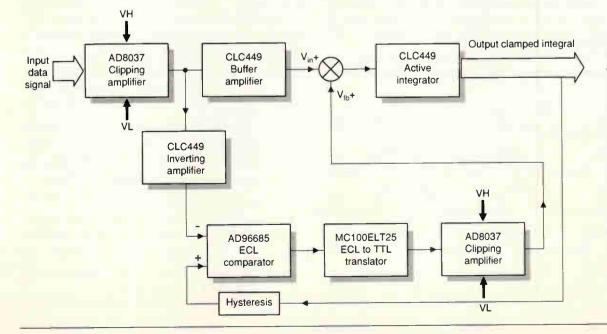


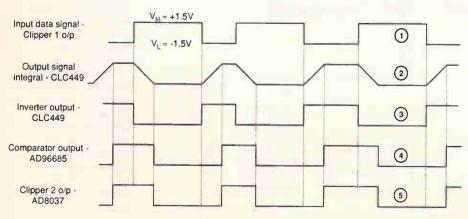
Fig. 1. Fast integrator in outline. Unlike other integrator designs, this one compares an inverted version of the clamped data pulse to a ramp level produced from a basic CR integrator. This CR integrator's forward input comprises the clamped version of the incoming data pulse. Comparator output is again clamped and then summed with the integrator's forward input.

When the integrator is used in the complete measurement system, the contents of the a-to-d converter can be interrogated at any time using an on-board digital signal processing system. After interrogation, the contents of the a-to-d converter, and hence the first-in-first-out memory, would be cleared, ready for the next level to be fed in. This means that the integrator should be running continuously, and since the width of the data could be between 111ns and 518ns, in 37ns increments, the integrator must be able to clip between +1.5V and -1.5V with a ramp time such that a timing jitter error can be accurately discerned from the ramp.

The ramp was designed to be 24ns long; this aspect of the design is detailed later. Since, theoretically, the maximum time that the level is to stay constant -i.e. 'held' - is 494ns, or 518ns–24ns, the level of voltage change during this time must be negligible. In other words, the level must be held constant at either the positive or negative clamp level.

Also, slope and measurement errors, due to temperature variations and delays through the active devices used in the feedback loop, had to be removed by carrying out a system calibration routine before each measurement run. Basically, this involved a fixed delay being introduced in the data clock signal, i.e. a clock skew, to compensate for the delays, together with an additional delay to ensure that the measurement is taken on a truly linear region of the ramp.

Circuit details


This integrator uses a novel method whereby the inverted version of the clamped data pulse is compared to a ramp level produced from a basic CR active integrator. This integrator's forward input consists of the clamped version of the incoming data pulse.

Comparator output is again clamped and then summed with the forward input of the integrator. From Fig. 1, you can see that the incoming data signal is first clamped using an Analogue Devices AD8037 low distortion, wide bandwidth voltage feedback clamp amplifier.¹ This device conditions the input data signal to provide precise ±1.5V drive levels by setting up a closed-loop gain of 2 and then multiplying this by precise input voltage reference clamp levels, $V_{\rm H}$ and $V_{\rm L}$.

These reference levels were derived from a National Semiconductor *LM368* precision 2.5V voltage reference, and a potential divider network, buffered using an National Semiconductor *LM358* quad operational amplifier.

At this point, the clamped data signal is split into two paths; one feeding a buffer amplifier, which consists of a Comlinear *CLC449* 1.2GHz ultra-wideband operational amplifier² configured to have a closed-loop gain of 6. Output from the buffer feeds one of the summing inputs to the active *RC* integrator, which again uses a *CLC449*.

In the other signal path, the clamped data signal is first inverted to provide a gain of -1 using a further *CLC449* and

then fed into the negative input of an Analogue Devices AD96685 ultra-fast comparator.³ The positive input to the comparator is taken from the output of the active integrator.

Some hysteresis is introduced in this path to prevent changeover uncertainties from occurring. Output from the comparator is then translated from its ecl level to ttl, using a Motorola *MC100ELT25* translator⁴. the resulting signal feeds a second *AD8037* clamp amplifier, which is configured identically to the first clamp amplifier.

Note that we used an ecl comparator because it is the fastest device available for comparing two signals and changing the output state – even with the translator stage included.

Input clamp levels $V_{\rm H}$ and $V_{\rm L}$ are derived from the same precision voltage reference circuit as that used for the first clamp amplifier. The signal from the second clamp amplifier is then summed with the clamped and buffered version of the initial data signal at the input of the active integrator; hence closing the feedback loop.

If you assume that the two summing resistors are balanced and the clamp voltages are identical, then the output from the active integrator, with the loop closed, will ramp up or down, depending on the input voltage polarity. When the two voltages are 180° out of phase – i.e. inverted – the output clamped voltage is held and remains constant.

Figure 2 illustrates the operation of the circuit in terms of timing sequences. The first waveform shows the input data after it has been precision clamped. The ramp output from the active integrator is shown in waveform 2, which is compared with the inverted version of the clamped data, waveform 3.

When the ramp's amplitude reaches the inverted data input level, the output from the comparator, waveform 4, changes state. This signal is then conditioned by the second clamping amplifier, waveform 5, and added to waveform 1 to hold the output level constant at either the positive or negative clamp voltage levels.

Putting it into practice

The whole circuit, Fig. 3, was laid out on a multilayer board. Layer 1 contains the signal tracks, layer 2 the ground plane and layer 3 the power supply tracks.

All signal tracks were kept less than 3cm long, i.e. less then the wavelength of the highest possible frequency component contained in a data pulse. Power supply decoupling capacitors were placed as close as possible to the power pins; tantalum capacitors were used for the polarised values since these offer the lowest series resistance.

Surface mount capacitors and resistors were used throughout the design to minimise lead inductance. We ensured that low impedance power tracks were kept as far away as possible from sensitive device inputs to prevent the formation of leakage resistors, which can result in leakage currents often of higher magnitude than the device bias currents.

The devices were mounted directly onto the circuit board, since the extra inductance introduced by IC sockets is significant when operating at such high frequencies.

Resistors of 100Ω were placed in series with the output of the *AD8037* and *CLC449* devices to prevent oscillation and overshoot from occurring. Also, 50 Ω termination resistors were used at the inputs to prevent pulse reflections and ringing.

The incoming ttl level data signals were ac coupled, using a 100nF ceramic capacitor, C_{60} . This enabled the signal to swing positive and negative around zero to enable it to reach the precision clamp levels. $V_{\rm H}$ and $V_{\rm L}$. Resistor R_9 provides a dc path for bias currents; this prevents C_{60} from charging up to a dc level and superimposing a dc offset on-top of the data signal.

The $V_{\rm H}$ and $V_{\rm L}$ clamp levels, obtained using pre-

output, waveform 2, is compared with the inverted version of the clamped date, 3, and when its amplitude reaches the inverted data input level, comparator output 4 changes state.

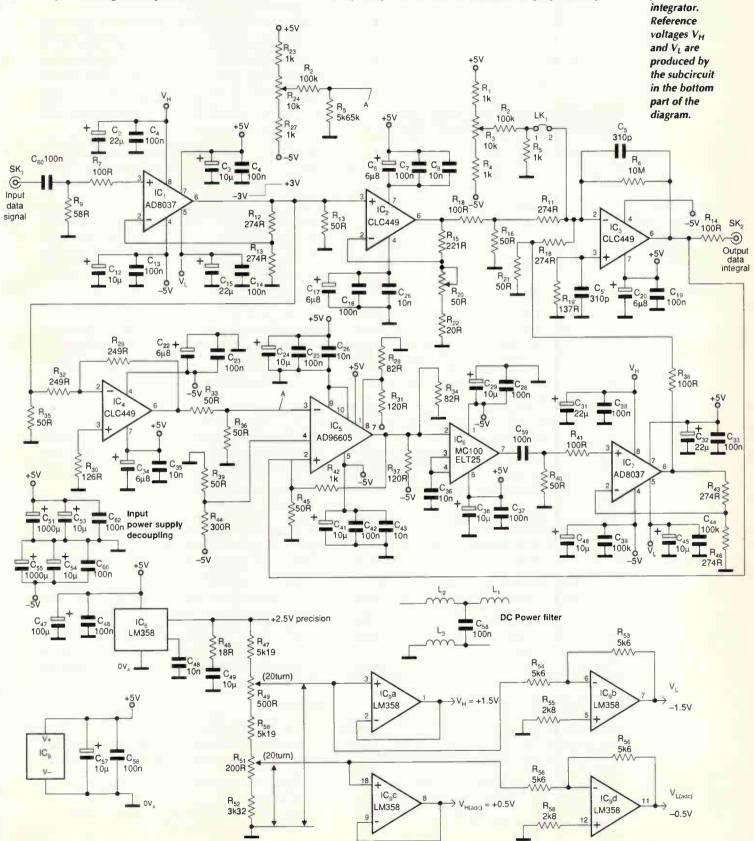
Fig. 2. Timing

waveforms. Ramp

Fig. 3. Full

for the

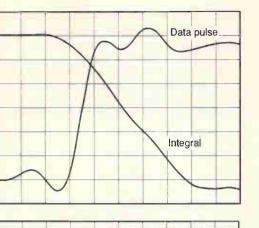
precision

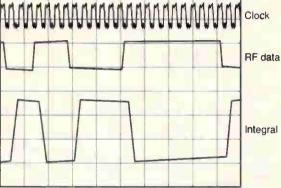

circuit diagram

cision reference IC_8 , were followed by a potential divider network and a quad operational amplifier, IC_9 , used to buffer and invert the voltage taps from the potential divider.

The precision voltage reference circuit was tested for stability using a Keithley 195 precision digital multimeter. We found that each of the four output voltages varied by less than 1 part in 10,000 - i.e. 0.01% – when monitored separately over an eight hour period.

Adjustable-gain buffer IC_2 was set to provide a gain of 6 to compensate for the attenuation due to the three 100 Ω output and 50 Ω input matching resistor networks. Each of these introduced a signal attenuation of a third.


The RC time-constant of the active integrator, IC_3 , is such that the output signal changed from one clamp level to the other in 24ns, whereby a positive or negative going linear ramp was produced when both the summing inputs change to



ANALOGUE DESIGN

Fig. 4. Rising edge of data pulse with corresponding clamped integral at 1ns/div. The integral is 200mV/div while the data pulse is

Fig. 5. Clock signal, input data signal and integrated-data signal at 100ns/div. Clock 5V/div, rf data 2V/div and integral 1V/div

a high or low state respectively, Fig. 2. It is most important to ensure that the summing resistors, R_{11} and R_{19} , are balanced. Final circuit values were tuned for optimal performance, from which the following values were obtained: 310pF for $C_{5 \text{ and }}C_{5^\circ}$, 274 Ω for $R_{11,19}$ and 137 Ω for R_{19° . The integration capacitors are silver-mica and the resistors were precision 0.1% tolerance metal film.

Resistor R_6 is included to limit the dc gain of the integrator. Some input offset voltage adjustment capability is provided via a network consisting of resistors R_{1-5} . The output from the active integrator is fed back to the positive input of comparator. IC_5 . Resistors R_{42} and R_{45} were included in this path to introduce approximately 38mV of hysteresis. This prevents indeterminate conditions from occurring at the output of the comparator.

The negative input to the comparator is fed with an inverted version of the clamped data signal, obtained using IC_4 , R_{29} , R_{32} and R_{33} . A dc offset adjustment is also provided at the input to the comparator via a network consisting of resistors R_{23-27} .

Output from comparator IC_5 is converted to til using IC_6 , an *MC100ELT25*, whose output is again converted into a positive and negative swing around zero via C_{59} . This provides the appropriate levels for clamping. The signal is then also precisely clamped to ± 1.5 V using IC_7 , which is configured in exactly the same way as IC_1 .

Finally, the feedback loop is closed by summing output from IC_7 with the buffered data signal at IC_3 's inverting input.

And how did it perform?

The operation of the circuit was evaluated using data signals. in the format described earlier. Output from the circuit was monitored using a Tektronix *TDS540A*, which is a 500MHz digitising oscilloscope capable of sampling at a rate of 1Gs/s.

Example test results are given in Figs 4 and 5. Figure 4 shows the rising edge of a data pulse and the corresponding integral after the delay through the system has been removed using a Dallas DS1020 programmable eight-bit delay line, which has a resolution of 0.15ns.

You can see that the slope of the output signal is linear, making it possible to discern the necessary data at various points on the slope using a fast a-to-d converter. It should be pointed out here that an extra delay needs to be introduced during the calibration routine to ensure that the measurement points are taken over the linear region of the ramp, i.e. only using the range 1/4 to 3/4. Here, the slope can be characterised by the equation for a straight line, from which the timing jitter can easily be calculated.

Note that the full detail of this procedure is out of the scope of this article. I should also point out that although the bandwidth limit of the oscilloscope is being approached, Fig. 4 shows that it is still possible to resolve the ripple and overshoot of the data signal. If ripple was present on the integral, then it would be shown superimposed on top of the output slope. This gives us confidence that the slope is in fact truly linear and the waveform shown is not a manifestation of an oscilloscope bandwidth limitation.

You can also see that the output voltage levels change from one clamp level to the other in around 24ns, as required. Figure 5 shows the 27MHz data clock, together with two data pulses of width I_3 and I_{10} , and the corresponding output from the integrator.

The diagram shows that there is a slight voltage drift from the negative clamp level during the 'hold' time. This slight drift is non-effectual in the overall results from the system. Although it shifts the negative clamp level to a level somewhat closer to zero than the desired -1.5V, we would sample at between the 1/4 and 3/4 amplitude points on the slope.

During recent calibration and test measurements on the circuit, we found that we were able to completely cancel the non-constant 'hold' level by carefully adjusting the input offset voltage at the inverting input to the active integrator, via adjustment of potentiometer R_3 . Also, the clamping levels may be changed by adjustment of the dc offset voltage at the inverting input to the comparator, which is controlled using potentiometer R24.

In summary

Our precision analogue integrator uses the fastest analogue integrated circuits currently available. We have shown that the feedback loop design effectively controls the precision clamping of the output levels. Recent measurements carried out on the circuit indicate that it is possible to achieve a repeatability of 0.1% on successive ramps.

We found it difficult to obtain long-term stability over a temperature range outside room temperature since this is determined by individual device voltage variation with temperature, which is outside our control. This variation is not detrimental to the overall operation of the system since the circuit will be calibrated prior to each measurement run to compensate for all device delays and circuit variations.

The calibration routine also ensures that the measurements are taken only on the truly linear region of the ramp.

I would like to thank Richard Amey and Dr Adam Hoare, of Aerosonic Ltd, for allowing me to carry out the work described in this paper. Thanks also to Jim Lusk, also of Aerosonic Ltd, for help in producing the circuit diagram and prototype pcbs.

References

- Analogue Devices AD8037 Low Distortion, Wide Bandwidth Voltage Feedback Clamp Amps – 1997 Data sheet.
- Comlinear CLC449 1.2 GHz Ultra-Wideband Monolithic Op-Amp – National Semiconductor Operational Amplifiers Data Book 1997.
- Analogue Devices AD96685 Ultrafast ECL Comparator 1997 Data sheet.
- Motorola MC100ELT25 ECL to TTL Translator High Performance ECL Data Book 1997.

Interfacing with C

Electronics World

Interfacing with C

Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing With C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on Z transforms, audio processing and standard programming structures, the new Interfacing with C will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines. Price £14.99.

> Listings on disk - over 50k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with C. Note that this is an upgraded disk containing the original Interfacing With C routines rewritten for Turbo C++ Ver. 3. Price £15, or £7.50 when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C Version 5.1, is still available at the special price of £7.50. Phone 0181 652 3614 for bulk purchase price.

Howard Hutchings

ELECTRONICS

Interfacing

NORLD

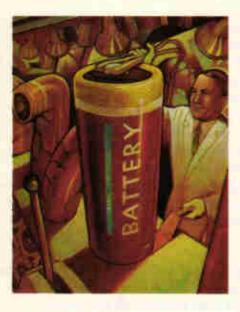
Use this coupon to order

Please send me:

Title	Price	Qty	Total
Enhanced Interfacing with C book @	£14.99	•••••	£
Enh. Interfacing with C book + disk @	£22.49		£
Interfacing with C disk @	£15		£
Original Interfacing with C book @	£7.50		£
Postage + packing per order UK	£3.50		£
Postage + packing per order Eur	£7		£
Postage + packing per order ROW	£12		£
Total			£

Name

Address


Phone number/fax

Make cheques payable to Reed Business Publishing Group Ltd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa) Expiry date

Card No

Mail this coupon to Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS, together with payment. Alternatively fax full credit card details with order on 0181 652 8956 or e-mail them to jackie.lowe@rbp.co.uk. Orders will be dispatched as quickly as possible, but please allow 28 days for delivery

Our fears about charging zinc-carbon and alkaline cells are based on fifties battery technology and are no longer justifiable, argue Michael Slifkin and Yaakov Levy. They also present a simple and cheap charger that works much faster than the traditional 'dirty-dc' solution.

Fig. 2. Charging characteristics of AA zinc-chloride batteries at different frequencies. Series 1 at 50Hz, series 2 at 1kHz.

Recharging the unchargeable

Ithough most people believe that recharging zinc-carbon and alkaline primary cells is both difficult and dangerous, our experiments have indicated that this is not the case. Older readers among you may remember wireless sets available in the UK in the fifties. While using ordinary throw away batteries, these sets also had a recharge switch for extending batterty life.

In recent years, a number of devices for 'recharging' primary cells and batteries has appeared on the market. But literature on this topic is hard to come by. Most present-day solutions appear to be based on a charger described by Alan Tong in *Everyday Electronics*.

However Alan stated in his article that to prevent batteries from leaking or exploding, it is necessary to charge using pulsed positive charges with the occasional negative going pulse -a technique known as pcr, or pulse charge reversal.

The rationale behind this, is that it is known from the electroplating industry that metals plated by pcr have a much denser plating layer. Plating using pure dc can produce spongy layers that occupy a much larger volume. If this should happen inside a battery, then the spongy layer's additional volume would cause a marked increase in internal pressure, leading to leaks or explosions.

Folk lore

Although there is little literature on the subject, there is a certain amount of folk lore. In earlier times, when the cost of batteries was rela-

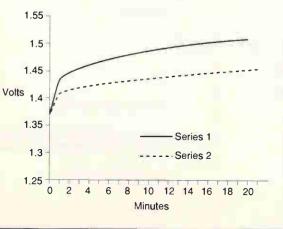
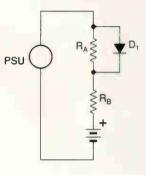
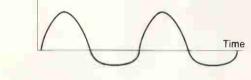
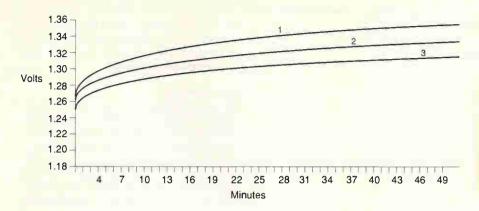




Fig. 1. 'Dirty dc' charger has a diode, which passes all of the positive half cycle, with a series resistor to let through a small portion of the negative half cycle.

Current


tively more expensive than nowadays, various methods were tried to increase their life.

A favoured method, which works to some extent, was to put the failing battery in a warm oven overnight. Other people would apply a dc voltage to their batteries hoping to revive them. But this only worked if the battery had not been completely exhausted, leading people to consider this method a failure.

It is possible to extend the life of a button battery used in watches and calculators by applying a 2.5V direct current until the battery gets warm. But again, this only works when the battery is not completely flat.

A very old article, in the October 1955 issue of *Wireless World*, refers to the use of "dirty dc" in recharging these batteries. The dirty dc charger consisted of a half wave rectified supply with a small amount of alternating current superimposed by using a 200Ω bypass resistor around the rectifying diode This is probably the simplest charger you can build.

After we completed our research work into chraging cells, a very detailed article by Rod Cooper appeared in the March 1997 of *Electronics World*. In this article, he described a fairly elaborate series of experiments and a charger based on this pcr principle. In addition Rod said that it is necessary to adjust the charging current to the voltage so that as the

battery's voltage rises, the current must be decreased.

Dirty dc chargers suffer from having low duty cycles of not more than 30 %. The intention of our work was to find the optimum conditions for recharging so that we could build an efficient fast charger – hopefully with a very high duty cycle and for a cheap price.

In this article we describe a number of experiments we carried out on extending the life of primary batteries. At the end, we present a description of a simple apparatus incorporating our results.

Our experiments were carried out over a period of about a year using in all about 100 batteries – mainly of the AA type. All our experiments involved 4.5V peak pulses. Negative pulses were fixed at 1.5V.

The important factor is the charging current. We used about 50mA for AA type batteries at a duty cycle of 50%. Higher duty cycles have proportionately higher currents.

It is interesting that Rod suggested that the maximum charging current for batteries should be about the total capacity divided by 30 or 40 – which would be about 50mA for the AA battery.

In our experiments, batteries were discharged in a controlled manner to about 1V before recharging. We considered a battery to be recharged when the final voltage showed no change for about five minutes.

For new batteries this steady charged state usually occured at between 1.5 and 1.6V. Older batteries never reached this voltage. In common with earlier authors, we found that very old batteries, or batteries that had been completely discharged, were impossible to revive.

Is frequency important?

Our first series of experiments involved a pulsed supply of variable frequency to see whether or not frequency was important. In the electro-plating industry, it is accepted that very low frequency pcr of about 10Hz gives much more compact layers than higher frequencies.

First we used a simple dirty dc charger, as in Fig. 1. Results obtained for zinc-chloride batteries are shown in Fig. 2. Clearly, much faster charging occurs at 50Hz than at 1kHz.

An interesting set of results are shown for a manganese alkaline battery that has been dis-

charged and recharged three times. The first and third cycle is at 50Hz and the middle cycle is at 1kHz. The superiority of 50Hz charging is amply demonstrated.

A similar experiment is shown for another manganese cell, but in this case, the cell has been subjected to a deeper discharge. Again the superiority of the 50Hz charging regime is demonstrated.

And duty cycle?

The next experiment compares the charging effect of square – i.e. 50% duty cycle – pulses as opposed to the sinusoidal pulses. Figure 3 shows that cells charged with square pulses reache a slightly higher voltage – even though they start from a much lower discharged voltage. In general, we found that higher duty cycle pulses are more efficient in charging batteries than lower duty cycle sinusoids.

Next we looked at increasing the duty cycle. A typical plot is shown in **Fig. 4**. It shows that the 95% duty cycle is superior to that of the 75% duty cycle, reaching a higher terminal voltage.

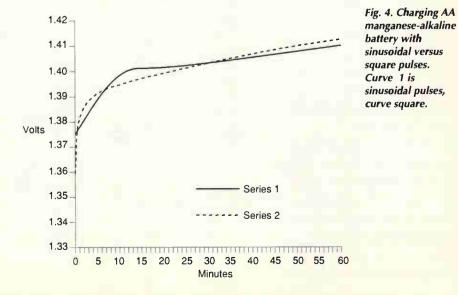
Is the discharge cycle needed?

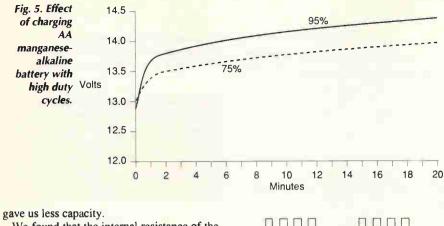
Next we looked at the effect of charging using only positive pulses. We compared the results of positive-pulse-only charging directly against a charging regime using alternate 1.5V negative pulses and 4.5V positive pulses, while Fig. 3. Successive charging characteristics of AA manganese-alkaline batteries. Curve 1 at 50Hz, curve at 2 at 1kHz, curve 3 at 50Hz.

Table 1. Resistors s battery sizes using				
Battery type R _A (Ω)	D 68	-	AA 560	AAA 1500
R _B (Ω)	6.8	18	47	120
Power supply (W)	5	2	1	1

maintaining the same duty cycle.

We found that the absence of a negative pulse had no effect on charging efficiency. Even more surprisingly, we also got a slightly higher end point voltage using only positive pulses and the same duty cycle.


After this finding we carried out many charge/discharge cycles on zinc-carbon and alkaline batteries, but found no signs of distress. It became clear to us that pcr is not a requirement for the revitalisation of these batteries.


So is 'dirty dc' really necessary? While our only case of a leaking battery was one that we charged using pure dc, the leak only occurred after many hours. We found that, provided the state of the battery being charged is monitored, and that the battery is taken off charge when its voltage does not change after a few minutes, other precautions were unnecessary.

Later, we present a charger with 85% duty cycle that is easily varied. We added this variable duty cycle feature because most other people in this field believe that pure dc should not be used – a fact we feel needs to be proven. Having a circuit with a variable duty cycle allows you to experiment for yourelves.

Useful - but not immortal

We should stress that during our experiments, we never managed to restore a battery to its original capacity. And each recharge cycle

We found that the internal resistance of the battery increases after each charging. After about ten cycles or so the internal resitance reaches a value that is too high to allow recharging. There was also considerable diffenence in recharging capacity between batteries of the same type.

The word recharge is a misnomer. The situation with these primary batteries is quite different from that with secondary batteries, such as nickel-cadmium types. With secondary cells, you get a complete recharge of the battery for perhaps hundreds of cycles, which suggests a complete reversal of the discharge process. This obviously does not happen with the zinc or alkaline batteries. Revitalise is a better description than recharging.

One point worth noting is that much of the folklore relating to the revitalising of primary cells originated very many years ago. Nowadays modern batteries from reputable firms are manufactured with much better quality control and have far better seals. Leakage from old batteries is far less likely now than it was 50 years ago.

Earlier batteries had a different structure from their modern counterparts. Warnings about attempting to recharge earlier batteries were no doubt valid at that time, although as we have already noted, in the fifties, wireless sets were available with a recharger for extending the life of zinc-carbon batteries.

A commercial charger

We mentioned earlier that commercial chargers are now available on the market. We were able to obtain and examine one called the 'Smart Charger'. This product allows four batteries ranging in size from AAA to D to be charged simultaneously.

The charger has a three-colour led for each cell. Red indicates that the battery is either in the holder the wrong way or is too depleted to be revitalised. Amber indicates that the battery is Raw DC being charged and green indicates that the battery is fully charged and no current is being applied to the battery.

With old batteries, it never proved possible to arrive at the green colour even though the battery still had useful

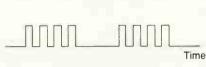
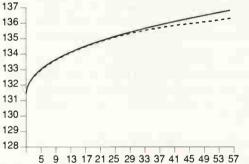



Fig. 6. Output waveform of the Kenwill Smart Charger switches between 4.8V and 1.5V at a 50Hz repetition frequency. Its peak current is about 60mA.

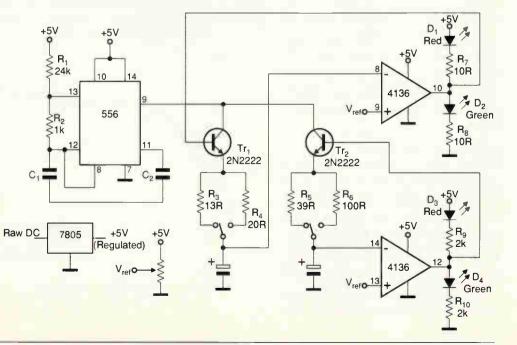
energy. It is clear from our experiments that older batteries do not reach the final voltage of a new battery after multiple recharging even though they still deliver a useful capacity.

The charging pattern of the charger is shown in Fig. 6. It is interesting that the designer of this charger uses only one half of a mains cycle and splits it into four equal rectangular pulses.

This gives an overall duty cycle of only 35%. Each pulse is 4.8V and the base line is 1.5V. This charging process should be much slower than ours with its 85% duty cycle. The designer has also realised that pcr is not a necessary requirement for this charger.

Is it worth it?

The main question is, is this process worth doing? Although it is possible to recharge up to about 40 times under controlled conditions, each cycle gives successively less capacity.


Overall, we estimate that you can only increases the life of the best of batteries by five times under optimal conditions. In general even under optimal condition - three times the life is more common.

As mains electricity is very cheap indeed compared to the price of electicity from a battery - by a factor of about 1:500 - and the cost of such a recharger is no more that about £25 then clearly a charger is worthwhile for any company using batteries regularly.

Even for domestic users, who are not going to measure the end voltage of their batteries, there are worth-while savings to be made. One of us used the charger on batteries at home, mainly from clocks, torches and radios, for around 18 months. The batteries were only recharged when the equipment concerned ceased to function properly, but they were replaced without delay.

Fig. 7. Comparison between charging with and without pulse charge reversal using the same duty cycle. Upper curve without pcr illsutrates that the negative discharge pulse is not necessary as far as efficient charging is concerned.

Fig. 8. Primary-cell charger is kept simple since it involves no negative cycle. Our prototype had two of these charging circuits, handling up to four cells.

The charger

The circuit of the charger giving a duty cycle of about 85% is shown here. Resistors R_5 and R_9 set the current for D type batteries, R_6 and R_{10} for C type, R_7 and R_{11} for AA type and R_8 and R_{12} for A-AA type. These can be varied if you want to experiment with the values of the charging current. Power for the charger is provided by an easily available regulated ac/dc adapter rated for 500mA dc and using the 9V output.

To the right hand side of the diagram is a circuit for operating two leds per cell, red and green, which switch on according to the voltage on the battery. This is not very useful though because, as we pointed out in the main text, the end voltages of the batteries vary considerably.

With component values prescribed, the red led comes on when power is applied to the circuit. When a battery is inserted in the holder with the correct polarity, the green led lights. This green light goes out when the preset level, of around 1.6V is reached with the components shown.

If an exhausted battery is inserted, the green light does not come on because the preset voltage is never reached. Such a depleted battery can be left in place for about eight hours. However we have frequently left depleted batteries for more than 24 hours without any problems.

Batteries showing signs of corrosion should not be used under any circumstances.

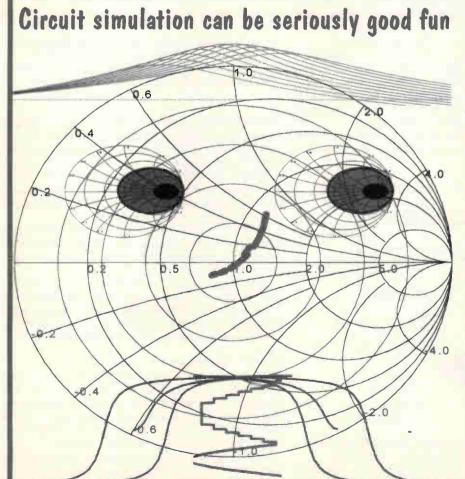
During the period of this study, not a single battery needed to be replaced. This equates to a saving certainly equal to the cost of such a charger, and a more effective use of environmentally-unfriendly materials.

The alternative to charging alkaline batteries is to use rechargeable nickel-cadmium batter-

ies. These are much more expensive than alkaline batteries and suffer from having a lower voltage, of 1.2V as opposed to 1.5V. Because of this, they are not always a replacement for alkaline or zinc batteries.

Further, the capacity of NiCd batteries is very much lower than that of alkaline batteries

- at about an eighth - so you have to recharge at much smaller intervals, which can be annoying.


In summary

It appears that the recharging of zinc carbon and alkaine batteries is perfectly feasible using quite simple charging methods, without resorting to pulse-charge reversal. We consider that the dangers of these techniques have been greatly exaggerated.

While the extension of the battery life is less than that claimed in the advertisements we have seen for commercial chargers of this kind, it is nevertheless useful.

Watch out

Do not let what the authors say here make you complacent. Primary cells will explode or leak under adverse conditions, so please take care. Use at least eye and skin protection while experimenting and don't risk building a primary cell charger into expensive equipment – Ed.

Those Engineers Ltd

When you have the engineering edge, enjoy your work and catch subtle circuit behaviour before it's too late, you can afford to be light hearted. Add to this technical support from practising engineers who take a genuine interest in your work and you are really laughing.

With a free evaluation kit, you can test SpiceAge on your own circuits. The kit comes with an introductory booklet to show you how.

To hear more about this and other nice touches in SpiceAge, please contact the friendly people at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 0181 906 0155 FAX 0181 906 0969 Email those_engineers@ compuserve.com Web http://www.spiceage.com

CIRCLE NO. 127 ON REPLY CARD

Ceramic capacitors – how they are made, how they perform and where you should use them - by Cyril Bateman.

Understanding CAPACITORS

eramic capacitors possess two significant features not present in any other capacitor type. These are the ability to control the dielectric's temperature coefficient and its dielectric constant, K.

Variation of the dielectric formulation used can provide either the widest possible range of dielectric constants - and hence capacitance-to-size ratio - or alternatively the widest possible range of controlled temperature coefficients.

As with domestic pottery, these dielectric formulations can be used to produce an unlimited variety of sizes and shapes. When valves dominated electronic design, many obtuselyshape, and sometimes very large, capacitors were produced by first casting a basic shape and then machining it to size, prior to firing. Such custom designs are now very rare.

This unique ability to tailor dielectric formulations provides almost any desired temperature coefficient of capacitance,

Outer electrode Inner electrode Termination 2 **Termination 1** Electrodes, Electrodes. termination 2 termination 1

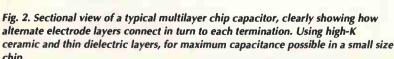


Fig. 3. Developed from the basic multilayer, this discoidal construction provides high capacitance in a small size. The lead-through centre hole and multiple grounded electrodes ensure electrical screening from top to bottom faces.

from minus 5600 to plus 100 parts per degree centigrade. Alternatively, dielectric tailoring can provide an extremely high K constant, up to 12000, giving increased capacitance. Both features resulted in the ceramic capacitors strategic importance in WWII valve operated equipments. Initially based on a tubular construction, the first ceramic capacitors were assembled using production techniques derived from established resistor manufacturing methods.

The Erie company implemented volume production of ceramics at its Pennsylvania plant shortly before WW2. Subsequently, production commenced at Erie Resistor Ltd, the company's UK subsidiary.

Using Type1 dielectric, capacitance as low as 0.5pF was possible, and with high-K dielectric up to 10nF. Both of these values could be produced with a 500V working rating. Uniquely, this tubular construction could be automatically 'silvered' to value, permitting very close tolerances, Fig. 1.

The disc alternative

This tubular capacitor format remained dominant until the pressed disc capacitor was developed some years later. Designed for increased volume and reduced costs, this construction resulted in a capacitor then costing little over one old pence. Capacitances from 0.5pF up to 10nF and 500V working in a 9mm diameter disc size were produced.

By pressing thicker discs, much higher voltages could be supported - even up to 30kV. Increased disc diameter up to 31mm, substantially increased the capacitance attained at any

Fig. 1. Cross section of an axial leaded tubular ceramic capacitor looks and behaves exactly like a coaxial transmission line. Depending on the physical dimensions and its dielectric constant K, it can have a very low characteristic impedance. Its electrical length may be 50 - 100 times greater than its physical length, when made with high 'K' ceramic.

voltage. The larger disc capacitor makers were able to select from as many as fifty production-proven dielectric formulations.

Increasing use of transistors for portable radios demanded lower-cost, higher-capacitance and lower voltage disc ceramics. To cater for these needs, the so-called *Transcap* or barrier-layer capacitor was developed. On a 15mm disc, this construction could provide 0.22µF at 10V.

The sixties saw the development of the first solid-state computer, the IBM 360, which was used for the MinuteMan missile. It required even larger capacitances in even smaller sizes – and high reliability. The recently invented multilayer¹ ceramic capacitor was seen as the ideal solution. Initially only produced in the USA, the multilayer capacitor soon became established in the UK. By 1964, volume production of UK manufactured multilayer capacitors, was established at the Erie UK factory.

Subsequent developments in the multilayer capacitor's construction and manufacturing process ensured its world-wide domination. Ii was initially produced as a leaded product, dipped in encapsulating resin for commercial use, or transfer moulded for more demanding environments.

Capacitors without leads

In 1969, the basic multilayer component 'chip' was marketed without lead wires or finish, for use in the production of the new thick-film hybrid assemblies. Developments in the termination metals to prevent solder leaching and in the construction to reduce the effects of thermal shock resulted in the first generally used surface mounting capacitor, Fig. 2.

The military missile and NASA Apollo programmes of the late sixties demanded smaller, lighter, very-high-frequency capable, emc filters. For both requirements, these filters had to survive extremely high 'G' forces and vibration conditions, as well as temperature extremes.

To suit these needs, a special multilayer device called the discoidal capacitor was developed. It comprised a circular multilayer chip with one termination at its central leadthrough hole and the other formed by the disc's periphery.

This discoidal construction provided three unique benefits. Electromagnetic signal currents presented at the 'hot' centre hole, rapidly dispersed into the 360° electrode system. Since connections extended all round the circumference, providing an almost zero inductance ground path, the discoidal provided high attenuation at the highest frequencies.

Soldered into a tubular metal casing, these grounded electrodes provided almost perfect high-frequency isolation between the 'dirty' input and the 'clean' output sides. Today this discoidal construction remains dominant for high-frequency lead-through emc filters and similar applications. It is used whenever screening between a dirty input and clean output is needed, Fig. 3.

Planar array ceramics

Developed from these early discoidal concepts, the latest mul-

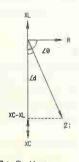
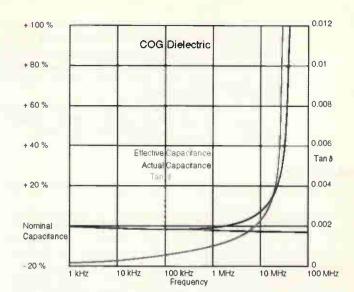
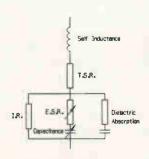



Fig. 5. This vector diagram shows the relationship between tan δ and $\cos \theta$. Both are essentially equal at small loss angles. The interaction between the capacitance X_c and self inductance X_l vectors, which causes series resonance, is also visible.

C.L.R. Vectors

tilayer capacitors include multiple-lead-through emc filter capacitors known as planar arrays. These are produced with mechanical dimensions compatible with commercial and military connectors, or as a custom ordered part having almost any desired shape or size.

While covering the main stream ceramic products, this brief overview deliberately skips over many styles that were important at their time but that are now redundant. These include the lead-less disc, the wedge capacitor, the very-thin singlelayer 'Weecon', the colour-television tripler/quadrupler capacitor, the very-large and thick extra high voltage cupped capacitor, and the wound or 'rolled' tubular multilayer ceramic. The wedge capacitor was common in early vhf amplifier and tuner assemblies while the wound tubular multilayer design was popular in the early sixties in USA for use in emc filters.


Shocking soldering

In the seventies, as more sophisticated or leadless ceramic capacitors became generally used, thermal shock during soldering was a major discussion topic and the cause of most early capacitor failures.

At that time, a second serious soldering problem using conventional methods was that the terminations of these nonleaded parts 'leached' away. Unless the soldering time and temperature were minimised, the precious metal termination would simply dissolve into the molten solder, resulting in a visible capacitor failure. Unfortunately, steps taken to minimise thermal shock often aggravated the leaching problem.

Following significant improvements in termination materials and electroplating, the amount of time that the solder can remain liquid has increased ten-fold. Electrode and termination leaching has been eliminated and most capacitor makers now publish clear soldering guidelines.

Thermal shock creates minute cracks within the ceramic

Capacitor Equivalent Circuit

Fig. 6. This equivalent circuit for a practical capacitor is valid for all frequencies up to self resonance and perhaps one octave higher. When mounted onto a microstrip line, an additional small capacitance, not shown, between the capacitor mounting points to earth will also be present. Fig. 4. Since the K of COG dielectric is almost constant with frequency, the sharp increase in measured or effective capacitance, also tan δ as resonance approaches, can be seen. This increase results from the combined reactances of the actual capacitance and the capacitor's self-inductance.

dielectric, generally close to its interface with the end termination materials. Initially these cracks might be small, and the capacitor will appear undamaged. But with time, operating temperature fluctuations and mechanical stress due to printed board flexure, these cracks grow. Ultimately the capacitor fails, usually as a short circuit.

You might question why ceramic capacitors are so prone to this damage. After all common household ceramics or pottery seem able to survive considerable temperature stress.

Self inductance

Some readers have queried my description⁹ that physical size equates to self inductance.

The self inductance of a single straight wire or a track on a printed circuit board can me measured and calculated. Similarly, self inductance for a ceramic chip capacitor can also be estimated, given the capacitor's electrode shape and size. However this self inductance can more easily be measured.

Measurements of the K value by frequency of a test block of dielectric in a dielectric test jig¹² confirms that COG types have a K value almost constant, reducing only slightly with frequency. But high-K materials exhibit a substantial reduction.

Consequently, using COG dielectric, the observed series resonance frequency together with the 1MHz capacitance value can be used to determine the capacitor's self inductance with acceptable accuracy, **Fig. 4**.

Conventional measurements of impedance magnitude – usually published in makers data in logarithmic format – show impedance reducing with frequency to a sharp minimum at resonance, then increasing with further frequency increase. Since most designers prefer to use capacitors below the series resonance, published plots usually stop soon after this resonance has been shown.

Measurement of the chip capacitor's impedance as a vector of resistance (esr) and reactance (jX) initially follow exactly this same pattern. But at this series resonance frequency, they clearly show reactance crossing the zero line – a change from negative to positive phase angles with increase of frequency, **Fig. 7**.

For these measurements to be valid, it is essential to eliminate all test jig parasitics, both capacitance and inductance, by applying open, short and load calibration of a vector network analyser. This must be done at each measurement frequency, and at the precise point in a transmission line where the test capacitor will be mounted. Next, 12-term, also called 'full 2 port' error corrections must be applied.⁸

When it is not feasible to apply the open, short load, calibration as above, calibrate at the ends of the test coax cables, which attach the test jig and apply 12 term correction. Characterise the test jig by measuring it with an open, short and known impedance, in place of the test capacitor, at each frequency of interest. These measured error values are then applied using established equations as a means of error reduction. Remember though that each of the measurement and error terms described by the correction equations are vectors or complex numbers and must be calculated accordingly.¹³ For open short and load,

$$Z_{dut} = \frac{Z_{standard.true}(Z_{jig.open} - Z_{standard.measured})(Z_{dut.measured} - Z_{jig.short})}{(Z_{standard.measured} - Z_{jig.short})(Z_{jig.open} - Z_{dut.measured})}$$

While I plan to detail to these capacitor measurement techniques in a later article, to demonstrate this self inductance, I took four capacitors, previously characterised up to 1MHz. Using an HP4815 vector impedance meter, I measured all four capacitors at frequencies from 1MHz to 100MHz. and applied the 'open/short/load' error-correction algorithm shown to the measured values, **Fig. 7-10**.

To simplify the calculation and plotting of these results – which involved many complex numbers – I stored the measured jig correction values by frequency in a database and used my custom written, dedicated 'open/short/load' error correction calculation and plotting software.

From this resonant frequency and the inductive reactance with increasing frequency, the capacitor's self inductance can be calculated.

The capacitor ceramic formulations used are quite different, comprising in most cases a mixture of many materials. While the high K formulations may be based on barium titanate, small quantities of many oxide or rare earth additives, together with 'frits' or glasses will be used.

During firing, or sintering, the dielectric is raised in a controlled manner to very high temperatures. Firing temperatures are deliberately chosen to avoid notable melting or alloying of these constituents, or any significant crystal growth.

A multilayer capacitor is essentially a multiliered sandwich of alternating layers of thin ceramic dielectric and precious metal electrodes. The whole laminate of metal and ceramic is co-fired together, the electrode metals must not oxidise or melt at the firing temperatures needed. As a result, precious metals are used.

Dielectric ceramic and the precious metals used have quite different expansion coefficients and thermal conductivity. Temperature differences within the capacitor can result in mechanical stress due to differential expansions, both within the basic ceramic materials and at the ceramic metal interfaces.

Development of sintering methods, dielectric formulations, electrode and termination materials, have produced dramatic improvements, resulting in today's ceramic chip capacitor found on almost every surface-mount circuit board.

But even with today's much improved products and production methods, a degree of thermal shock hazard remains. Since the capacitor ceramic is extremely hard, brittle and easily chipped, the most common problem results from mechanical cracking. This is induced by poorly adjusted assembly and board testing equipment. Each surface mounting ceramic chip capacitor maker provides handling, soldering and mounting recommendations that must be observed.

How is the dielectric made?

So just how are these ceramic dielectrics manufactured?

All ceramic and precious metal-electrode ink formulations are closely guarded, proprietary secrets. In addition, these formulations, and the capacitor processing methods used, are intimately interdependent and so I can only discuss them in broad outline.

With many dielectric formulations, minute percentages of additives and dopants are be used. Consequently, levels of impurities in each ingredient are important.

Having satisfied conventional chemical and physical analysis, each new delivery of a material is used to make a batch of test capacitors. Performance of these capacitors is verified against the test specifications, including microscope examination of capacitor sections.

Each ingredient is weighed out, added to a solvent and placed into a rotating 'ball' mill, together with the correct weight and sized balls of flint or borundum.. The mill is rotated for many hours, even days, to blend together all ingredients and achieve any needed ceramic particle size reduction.

Having removed the grinding balls, these ingredients, now finely dispersed and suspended in the solvent, are injected as a fine dry powder, needing only analysis to confirm correct particle size. The tower needed to dry a typical 50kg charge of powder may be as tall as 20ft.

Traditional ceramic capacitors

The powder can be used to make capacitor dielectric in several ways. For tubular capacitors it is mixed with solvent and plasticiser and machine kneaded to an air-free, stiff, doughlike consistency. This dough can be pressure extruded, like toothpaste, to the desired tubular dimensions. Dried and cut to length, it is ready for firing.

For disc capacitors, the powder is used dry, being fed into

Continued on page 328

The Low Cost Controller That's Easy to Use

eature

The K-307 Module provides the features required for most embedded applications

ι	indeduced applications
•	4 Channels in 1 Channel out
•	36 Digital in or out & Timers
•	RS-232 or RS-485 plus I2C
•	LCD both text and graphics
•	Upto 8 x 8 matrix keyboard
	> 2Mbytes available on board
•	Many modes to choose from
	•

The PC Starter Pack provides the quickest method to get your application up & running

- Operating System Real Time Multi Tasking
- Languages Expansion
- ' C ', Modula-2 and Assembler Easy to expand to a wide range of peripheral cards

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

Units 17 - 18 Zone 'D' Chelmsford Road Ind Est Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com

Phone 01 371 875 644

CIRCLE NO. 128 ON REPLY CARD

HULDSCOPES ## 122/CAU218 3 CH-42 CH unsers ## 122/CAU218 12 CH-42 CH unsers	TACHI W113 10 HHz incruze 200 BALL EFRATROM HRTH hubitum frequency standard 4000 SIEMENS W2108 200 KHz 30 HHz invel oxibitor DULD 402 00 HHz digtal storage 2 channel 4000 ANDRAID 3448-20 31 CHz 30 HHz invel oxibitor MARDAID 3448-20 31 CHz 30 HHz invel oxibitor DULD 402 00 HHz digtal storage 2 channel 4000 ANNETSU HS/SA 2 (barnel 41000 DULD 401 20 HHz digtal incruze 1 channel 4100 ANNETSU HS/SA 2 (barnel 4100 DULD 401 20 HHz digtal incruze 2 channel 4100 ANNETSU HS/SA 2 (barnel 4100 DULD 401 20 HHz digtal incruze 2 channel 4100 FEKTROHIX 511 A vector stope 4100 DULD 402 00 HHz digtal incruze 4100 FEKTROHIX 4042 (barnel 4100 CET RUM ANALYSERS FEKTROHIX 4042 (barnel 4100 FEKTROHIX 4042 (barnel 4100 KTROHIX 4042 10 HHz receiver 4100 FEKTROHIX 4042 (barnel 4100 FEKTROHIX 4042 (barnel 4100 KTROHIX 4042 10 HHz receiver 4100 FEKTROHIX 4042 (barnel 4100 FEKTROHIX 4042 (barnel 41000 FEKTROHIX 4042 (barnel 4100 HHz receiver KTROHIX 4042 10 HHz receiver 4100 FEKTROHIX 4042 (barnel 4100 HHz receiver 4100 HHz receiver 4100 HHz r	SCILLOSCOPES		LEADING USED TEST E			
 Selling Dig Christ, Summi degrad grad for any selling selling	TACH W13 10 MHz tronge C200 BALL EFRATROM METH Jubidum frequency standard 44000 SEMELS W210 200 KHz-10 MHz text and the second coupler method and the second coupler method. See Second coupler method and the second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. Second coupler method and the second coupler method and the second coupler method. Second coupler method and the second coupler method and the second coupler method. Second coupler method and the second	54111D 500 MHz digitizing scope (colour display)	12250	HP 8620C/86241A 3.2-6 5 GHz sweeper	£1000	HP 436A RF power meters	6
 Halle Löhn Strand, Li Canana age Like Regions ages in a large grant of the strange print of the stran	TACH W13 10 MHz tronge C200 BALL EFRATROM METH Jubidum frequency standard 44000 SEMELS W210 200 KHz-10 MHz text and the second coupler method and the second coupler method. See Second coupler method and the second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. See Second coupler method and the second coupler method. Second coupler method and the second coupler method and the second coupler method. Second coupler method and the second coupler method and the second coupler method. Second coupler method and the second	54112D 100 MHz 4 channel digitizing scope (colour display)	41750	MP 8620C/86242D 5.9-9 GHz sweeper MP 8620C sweeper mainframes (as new)		HP 5087A distribution amplifier (new)	2
VT CONTROL 100 Description 100	TACHI W114 (0 MHz tronge Cool BALL EPRATROM METHON Information provided and the final system method. Cool Sientens W2108 200 KHz-10 MHz treatment Cool DUED 4030 2M Hz digital storage 1 channel 4 clour hardcopy Clour Addoption (14) Cool Water EK 10 MHz digital storage 1 channel 4 clour hardcopy Sientens W2108 200 KHz-10 MHz treatment Sientens W2108 200 KHz-10 MHz treatment DUED 4030 2M Hz digital storage 2 channel Clour Addoption (14) Cool MARTESK 100 Hz treatment Sientens W2108 200 KHz-10 MHz treatment CETTRUM ANALYSERS Channel Clour Addoption (14) Cool MARTESK 100 Hz treatment Sientens W2108 200 KHz-10 MHz treatment CETTRUM ANALYSERS Channel Clour Addoption (14) Cool Martesk 10 MHz treatment Sientens W2108 200 KHz-10 MHz treatment CHTCOME (VFF 10 KHz-10 CH Clour Addoption (14) Cool Clour Addoption (14) Cool Sientens W2108 200 KHz-10 MHz treatment Sientens W2108 200 KHz-10 MHz treatment CHTCOME (VFF 10 KHz-10 CH Clour Addoption (14) Cool Clour Addoption (14) Cool Sientens W2108 200 KHz-10 MHz treatment Sientens W2108 200	54201D 300 MHz 2 channel digitizing (27 channels logic state unggering)	6395	HP 8640B 500 KHz-512 MHz signal generator	£600	HP 3581A 15 Hz-50 KHz selective voltmeters (as new)	
CTOORD 2019 6.0 PH; 1 channel digital torage [100 PH; 2 channel digital torage [100 PH; 2 channel digital torage [100 PH; 2 channel digital torage CTOORD 2014 5 (100 PH; 4 channel CPT digitar) [100 PH; 4	TACH IV 114 (0 PHrt increage 1200 BALL EFRATROM MICH Indulum fragulancy standard 44000 UDD 40 20 PHrt dignal storage 1 channel 6200 WATE TK 100H Status 17 Phrs 10 Phrs 10H Phrs 100H Status 17 Phrs 10	KTRONIX 2230 100 MHz 2 channel digital storage	£1750	HP 8654B 10 MHz-520 MHz RF generator		HP 333A distortion analyser	
1100/11 100/11	ACHIVITIA 10 PHr trooper 1250 BALL EFRATROM PRETN Linking regulary standard 4000 BALL EFRATROM PRETN LINKING REGULARY 4000 BALL EFRATROM PRET	TRONIX 2220 60 MHz 2 channel digital storage	£1500	HP 3334B IO Hz-21 MHz synthesizer/level meter		HP 59401A but system analyter	1
 TEGNIZ 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE PI DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE PI DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE PI DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE PI DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE PI DIA 244 10 rel; 4 counced OFT 01 (part PEC of) FE	ACHIVITIA 10 PHr trooper 1250 BALL EFRATROM PRETN Linking regulary standard 4000 BALL EFRATROM PRETN LINKING REGULARY 4000 BALL EFRATROM PRET	TRONIX 2445A 150 MHz 4 channel GP.IB	61250	HP 3320A frequency synthesizer 0.1 Hz-13 MHz		HP 400E 10 Hz-10 MHz AC voltmeter	
THORNE 2014. (D) PH: 4 channel and	TACH IV 114 (0 PHrt increage 1200 BALL EFRATROM MICH Indulum fragulancy standard 44000 UDD 40 20 PHrt dignal storage 1 channel 6200 WATE TK 100H Status 17 Phrs 10 Phrs 10H Phrs 100H Status 17 Phrs 10	KTRONIX 2445 150 MHz 4 channel OPT 05 (1 year TEK cal)	61750	HP 3312A 0.1 Hz-13 MHz function generator	1200	HP 3466A 4.5 digit autoranging multimeter	
CHOONE \$1007A24 a12880 200 FML 4 current 460 TERTONIX 60170 and 200 mining 1100 mining<	TACHI VII 10 MH1 troage Calo BALL EFRATROM METH Jubilium fraguency standard 4000 DUID 40 20 MH1 digital storage 1 channel Calo BALL EFRATROM METH Jubilium fraguency standard 4000 DUID 40 20 MH1 digital storage 1 channel Calo MATE T& NIGHA lug in Information discomments 4100 DUID 40 20 MH1 digital storage 1 channel Calo ANNTES NIGHA lug in Information discomments 4100 DUID 40 20 MH1 digital storage 1 channel Calo ANNTES NIGHA lug in Information discomments 4100 CETTRUM ANALYSERS Calo MATE TA SIGNA MARCHI NET TO MARCHI NET	KTRONIX 2246 100 MHz 4 channel autocal	£1000	HP 8005B 0 3 Hz-20 MHz pulse generator		HP 3455A 65 diet banch multimeter	
CTRONIX TODITA ISA 2 Adamsi C100 CALL CALL <t< td=""><td>ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros</td><td>CTRONIX 7903/7A26 x2/7B80 200 MHz 4 channel</td><td>450</td><td>TEKTRONIX 2901 time mark generator</td><td></td><td>HP 3468A 5.5 digit multimeter/auto cal (LCD)</td><td></td></t<>	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	CTRONIX 7903/7A26 x2/7B80 200 MHz 4 channel	450	TEKTRONIX 2901 time mark generator		HP 3468A 5.5 digit multimeter/auto cal (LCD)	
THOM 124 J. Dr. Heig J. Jamel two 2000 Heig J. Jamel Heig J. Jamel <td>ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros</td> <td>CTRONIX 7603/7A18A x2/7B53A 4 channel</td> <td>4350</td> <td>MARCONITE2022 10 KHz-1000 MHz simal renerator</td> <td>11800</td> <td>HP S004A signature analyser</td> <td></td>	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	CTRONIX 7603/7A18A x2/7B53A 4 channel	4350	MARCONITE2022 10 KHz-1000 MHz simal renerator	11800	HP S004A signature analyser	
CTHONIN 244 100 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD C Province Upton CHONIN 244 10 HHz 1 Standing 1400 Hit 2 AddAD H Hz 1 Standing 1100 CHONIN 244 10 Hz 1 Standing 1400 Hit 1 Standing 1100 Hit 1 Standing CHONIN 244 10 Hz 1 Standing 1400 Hit 1 Standing 1100 1100 1100 1100	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	CTRONIX 475A 250 MHz 2 channel	£400	MARCONI TF2017 10 KHz-1024 MHz signal generator		HP 5005A signature multimeter HP 6291A DC power supply 0-40v/0-5 amp	
CTRONIX 6458 (00) HHz (1 chown) opt 05	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	CTRONIX 466 100 MHz 2 channei	.400	MARCONITE2018 80 KHz-520 MHz signal generator	6450	HP 6448A DC power supply 0-600v/0-1.5 amp	
THORNE 33: 10 MPH 2 dames MACCON TT 2000 10 KHz 510 MHz M penatrons 4100 THORNE 23: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4100 THORNE 23: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4100 THORNE 23: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4100 THORNE 23: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4100 THORNE 23: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4100 THORNE 23: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4400 THORNE 24: 50 MHz 2 dames 4100 MACCON TT 2000 10 KHz 510 MHz M penatrons 4400 THORNE 24: 50 MHz 2 dames 4400 MACCON TT 2000 10 KHz 510 MHz M penatrons 4400 THORNE 24: 50 MHz 2 dames 4400 MACCON TT 2000 10 KHz 510 MHZ M penatrons 4400 THORNE 24: 50 MHz 2 dames 4400 MACCON TT 2000 10 KHz 510 MHZ M penatrons 4400 THORNE 24: 50 MHZ 24: 50 MHZ M penatrons 4400 MACCON TT 2000 10 KHz 510 MHZ M penatrons 4400 THORNE 24: 50 MHZ 24: 50 MHZ 24: 50 MHZ M PENATRON	ACHIVIT310 014/1: 1014/1: 1024 12:0014/1: 12	TRONIX 465B 100 MHz 2 channel opt 05	6500	MARCONITEZOIS IN MHZ-520 MHZ		HP 6263A DC power supply 0-20v/0-10 amp	
THORNE 2215 & OPH12 damel 425 PARLEDPT IT 2016 (0.11 AD1) 4150 HP 155C BT ups atomators 0.13 db C-1 CHt (NFW) THORNE 2215 X0 HHz damel 425 PARLEDPT IT 2016 (0.12 KHz) 4150 HP 155C BT ups atomators 0.13 db C-1 CHt (NFW) THORNE 2215 X0 HHz damel 425 FLUEE 601 (0.11 CHt, (NFW) 4150 HP 155C BT ups atomators 0.13 db C-1 CHt (NFW) THORNE 2215 X0 HHz damel 425 FLUEE 601 (0.11 CHt, (NFW) 4150 HP 155C BT ups atomators 0.13 db C-1 CHt (NFW) THORNE 2215 X0 HHz damel 425 FLUEE 601 (0.11 CHt, (NFW) 4150 HP 155C BT ups atomators 0.13 db C-1 CHt (NFW) THORNE 215 X0 HHz damel 4260 FLUEE 601 (0.11 CHt, (NFW) 4150 HT 150 (0.11 CHt, (NFW) 4150 THORNE 215 X0 HZ damel 4260 FLUEE 601 (0.11 CHt, (NFW) 4150 HT 150 (0.11 CHt, (NFW) 4150 THORNE 215 X0 HZ damel 4260 FLUEE 601 (0.11 CHt, (NFW) 4150 HT 150 (0.11 CHt, (NFW) 4150 THORNE 215 X0 HZ damel 4260 HT 150 (0.11 CHt, (NFW) 4150 HT 150 (0.11 CHt, (NFW) 4150 THORNE 215 X0 HZ damel 4260 HT 150 (0.11 CHt, (NFW) 4150 <	ACHIVIT310 014/1: 1014/1: 1024 12:0014/1: 12	TRONIX 465 100 MHz 2 channel	£300	MARCONI TF2008 10 KHz-510 MHz RF generator		HP 115658 150 PHtz-18 GHz modulator MP 11582A attenuator set DC-18 GHz	
TRONK 2225 50 MHz A band FLUE 8 01 / A 10 Hz L get (see) FLUE 8 01 / A 10 Hz L get (see) FLUE 8 01 / A 10 Hz L get (see) TRONK 715 50 MHz A Lign animam FLUE 8 01 / A 10 Hz L get (see) FLUE 8 01 / A 10 Hz L get (see) FLUE 8 01 / A 10 Hz L get (see) TRONK 715 50 MHz A Lign animam FLUE 8 01 / A 10 Hz L get (see) FLUE 8 01 / A 10 Hz I get (see) FLUE 8 01 / A 10 Hz I get (see) <td>ACHIVIT310 014/1: 1014/1: 1024 12:0014/1: 12</td> <td>TRONIX 2215 60 MHz 2 channel</td> <td>6325</td> <td>EARNELL SSC 1000 100 KHz-1000 MHz synthesized</td> <td>61500</td> <td>HP 355C RF step attenuators 0-12 dB DC-1 GHz (NEW)</td> <td></td>	ACHIVIT310 014/1: 1014/1: 1024 12:0014/1: 12	TRONIX 2215 60 MHz 2 channel	6325	EARNELL SSC 1000 100 KHz-1000 MHz synthesized	61500	HP 355C RF step attenuators 0-12 dB DC-1 GHz (NEW)	
LINONIX F471 all print factorizes Elife ROMES & SCHWARTZ APM20, 101 ± 20.0 FH 12 print (perc) Elife RED B123 10.0 compatibility (perc) RED B123 10.0 compatibility (perc) LIPS PM 3115 00 MHz 2 channel Clife FM 20115 00 Line (perc) FM 2000 High 2 maintained	ACHIVIT310 014/1: 1014/1: 1024 12:0014/1: 12	TRONIX 2225 50 MHz 2 channel	£450	FLUKE 6011A 10 Hz-11 MHz synthesized signal generator		HP 355D RF step attenuators 0-120 dB DC-1 GHz (NEW)	
Lief S PM 3015 Or Met 2 channel	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	CTRONIX 2235 100 MHz 2 channel	6150	ROHDES & SCHWARTZ APN62 0.1 Hz 260 KHz LF gen (new)		BIRD 8328 30 db coaxial attenuator 100VV	4
LLPS PM 1055 00 HHz 2 channel 4400 PHILLIPS PM 1055 00 HHz 2 channel 4400 LLPS PM 1055 00 HHz 2 channel 4400 PHILLIPS PM 1055 00 HHz 2 channel KERO QTI 14: LO R Hy and the second (rev) LLPS PM 1055 00 HHz 2 channel 4400 PHILLIPS PM 1055 00 HHz 2 channel KERO QTI 14: LO R Hy and the second person 4400 LLPS PM 1055 00 HHz 2 channel 4400 PMARE HZ 1030 AD ONE (FHZ 100 HHZ 100 Hz 2 HHZ 100 HZ 100 Hz 2 HHZ 100 HZ 100 HZ 100 Hz 2 HHZ 100 Hz 2 HHZ 100 HZ 1	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	LIPS PM 3217 50 MHz 2 channel	.6325	GIGA GRUDIA 12 GHz 18 GHz pulse experator	1600	BIRD 8922 S000W S0 ohm coaxial resistor	1
LIES PF 132.4 Units 4 channel 1200 ADUFT 2120.4 200 htt, IMHt press modulation prestor 1495 KENO DFL I Htt DR King phase meter (new)	ACHIVITIA 10 PHr trooper 1250 BALL EFRATROM PRETN Linking regulary standard 4000 BALL EFRATROM PRETN LINKING REGULARY 4000 BALL EFRATROM PRET	LIPS PM 3055 50 MHz 2 channel	.425	PHILIPS PM5326 100 KHz-125 MHz RF generator	£400	BRADLEY 192 oscilloscope calibrator	
Lips PP 1320 A 100 PHs deprivents 4600 WAVETER 18 20 Coll Hts deprivents 6400 TSU 55 5112 100 PHs f dama deprivents 4600 SATROSA RA 30 01 Hts 200 Hts Automation deprives 4600 SATROSA RA 30 01 Hts 200 Hts Automation deprives 4600 SATROSA RA 30 01 Hts 200 Hts Automation deprives 4600 SATROSA RA 30 01 Hts 200 Hts Automation deprives 4600 SATROSA RA 30 01 Hts 200 Hts 2 Mills Reviewer and 200 Ht	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	LIPS PM 3057 30 MHz 4 channel	4300	ADRET 2230A 200 Hz-I MHz synthesized source		KEMO DPI I Hz-100 KHz phase meter (new)	
LIPS PM 330 & 00 Mits dynal scorage 400 MAXETER 182 002 Hits 2000 Hits dynamits (uncorage) 400 SATROSA MAD (Mits dynamits (uncorage) 400 CALE 7 4044/532/F43 dynamits (uncorage) 400 CALE 7 4044/532/F43 dynamits (uncorage) 4000 CALE 7 404/532/F43 dynamits (uncorage) 4000 CALE 7 401/1200 dynamits (uncorage) 4000 <t< td=""><td>ACHIVITIA 10 PHr trooper 1250 BALL EFRATROM PRETN Linking regulary standard 4000 BALL EFRATROM PRETN LINKING REGULARY 4000 BALL EFRATROM PRET</td><td>LIPS PM 3263X 100 MHz delay/events</td><td>£400</td><td>WAVETEK 171 2 MHz sweep modulation generator</td><td>£450</td><td>AVO 215-L/2 AC/DC breakdown/ionstation tester</td><td></td></t<>	ACHIVITIA 10 PHr trooper 1250 BALL EFRATROM PRETN Linking regulary standard 4000 BALL EFRATROM PRETN LINKING REGULARY 4000 BALL EFRATROM PRET	LIPS PM 3263X 100 MHz delay/events	£400	WAVETEK 171 2 MHz sweep modulation generator	£450	AVO 215-L/2 AC/DC breakdown/ionstation tester	
N32 35 116 00 Htt; 4 Junnel 4400 N32 35 116 00 Htt; 4 Junnel 4 Junnel 4 Junnel CDET 400-44525F43 digram 4 Junnel 4 Junnel 5	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	ILIPS PM 3310 60 MHz digital storage	1800	WAVETEK 182 0.002 Hz-2 MHz function generator		FARNELL RB1030/35 electronic load	
OLET dolution Construction	ACHIVITIS ID PHY: Isogan 2200 BALL EFRATROM MIRTH Indiation frequency standard 44000 ULD 4320 PHY: dignal scorage 1 channel 4 color hardcopy 4200 WATETER IDIATION MIRTH Indiation frequency standard 44000 ULD 4320 PHY: dignal scorage 2 channel 4200 ANRITSU PHYSICAL Science 6100 ULD 4320 PHY: dignal scorage 2 channel 4100 FXTORIX 321A sctorage and scorage 1 Channel 6100 ULD 4320 PHY: dignal scorage 2 channel 4100 FXTORIX 321A sctorage and scorage 1 Channel 6100 ULD 4320 PHY: dignal scorage 2 channel 4100 FXTORIX 321A sctorage and scorage 1 Channel 6100 TRONIX 451F 10 KH: 21 GHY (1 year all & warranny) 6000 FXTORIX 454F 10 KH: 23 GHY in Scorage 6100 TRONIX 451F 10 KH: 23 GHY in Scorage 6100 FXTORIX 454F 10 KH: 23 GHY in Scorage 6100 TRONIX 451F 10 KH: 23 GHY in Scorage 6100 FXTORIX 451F 10 KH: 23 GHY in Scorage 6100 TRONIX 451F 10 KH: 23 GHY in Scorage 6100 FXTORIX 451F 10 KH: 23 GHY in Scorage 6100 TRONIX 451F 10 KH: 23 GHY in Scorage 6100 FXTORIX 451F 10 HY in Scorage 6100 TRONIX 451F 10 KHY in Scorage 6100 FXTORIX 451F 10 HY in Scorage 6100 TRONIX 451	TSU SS 5710 60 MHz 4 channel	£400	SAYROSA MA 30 10 Hz-100 KHz		FARNELL PDD3502 dual power supply 0-35v 2 amp	
ACH (1110) 100 MHz (toorge to the scheme) SileMens Write stores SileMens Write stores ACH (1120) 100 MHz (toorge to the scheme stores) SileMens Write stores SileMens Write stores ULD 40320 MHz (toorge to the scheme stores) 4000 ANNITSU MSSA 2MH 15 MHz (toorge to the scheme stores) SileMens Write stores SileMens Write scheme stores ULD 40320 MHz (toorge to the scheme stores) 4000 ANNITSU MSSA 2MH 15 MHz (toorge to the scheme stores) SileMens Write scheme stores SileMens Write scheme schem	ACH 1114 10 MHz trosze 2 channel 4 colour hardcopy (1250 KALL EFRATRICH MIRTH Individual frequency standard 4000 Kall 2 (110 MHz trosze 2 channel 4 colour hardcopy (1250 KHz 100 MHz troscients) (1250 KHz 100 MHz tros	OLET 4094/4562/F43 digital scope	. 6500	TEST EQUIPMENT	1 CH+ /985	SIEMENS 02108 200 KHz-30 MHz level meter	
DLD 40100 Mmr dgipti storage 1 channel 4 colour hardcopy [1250 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage 2 channel 4 colour hardcopy [1260 ULD 40152 DMr dgipti storage [1260	CTRONIX 412 P 10 RH: 1 GHT UM 10 Mit users and user of the second and the second	ACHIVI100 100 MHz 4 channel with cursors	(200	BALL EFRATROM MRT-H rubidium frequency standard	£4000	SIEMENS W2108 200 KHz-30 MHz level oscillator	
ULD 6013 20 MHz dignal stonge * remote kerpad 400 ANRTSU MS6A 2 (File runor detector 1930 SARTOSA AMPL 13 MPL 2 (FIL BURGHER MODULED MEETER) ULD 6013 20 MHz dignal stonge 2 channel 400 TEXTRONIX S11 A vice runor detector 4150 ULD 63100 20 MHz dignal stonge 2 channel 4100 TEXTRONIX S11 A vice runor detector 4150 ULD 63100 20 MHz dignal stonge 2 channel 4100 TEXTRONIX S11 A vice runor detector 4100 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 TEXTRONIX S11 A vice runor detector 4100 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 TEXTRONIX S11 A vice runor detector 4100 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 TEXTRONIX S11 A vice runor detector 4100 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 TEXTRONIX S11 A vice runor detector 4100 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 4100 MHz dignal stonge 4 channel 4000 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 4100 MHz dignal stonge 4 channel 4100 MHz dignal stonge 4 channel 4200 TRONIX 64P1 20 MHz dignal stonge 2 channel 4100 4110 MHz dignal stonge 4 channel 4200 4200 MHz dignal stonge 4 channel 4200 MHz dignal stonge 4 channel	CTRONIX 412 P 10 RH: 1 GHT UM 10 Mit users and user of the second and the second	ULD 420 20 MHz digital storage 2 channel 4 colour hardcopy	£1250	WAVETEK 1018A log lin RF peak power meter DC-26 GHz		NARDA 30448-20 3.7 GHz-8.3 GHz 20db directional coupler	
ULD 1001 (D) (Ht-1 digits isonge 2 channel 1157 TERTRONIX 145 all provide isonge 3 channel 1150 RACAL RAI72 J0 Htl; view receivers ULD 050000 (Ht-1 digits isonge 2 channel 1150 TERTRONIX S114 xctor scopes 1500 ECTRUM ANALYSERS 1150 TERTRONIX S114 xctor scopes 1500 FERDIX 6492 (Ht-1) CH-10 (Ht-1) xctor 11 xctor 11 xctor 11 xctor 11 xctor 12 xctor 11	CTRONIX 412 In OHE-12 CHE OFT NOTADODU 100000 100000 100000 100000 100000 100000 100000 1000000	ULD 4035 20 MHz digital storage + remote keypad		ANRITSU MS65A 2 GHz error detector	(1500	REDIFON RASO 100 Hz 30 MHz receivers	
ULD 05000 0 PHH appal storage 2 channel (1)0 TEXTRONIX 521A victor sopes (1)0 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-21 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-12 GH+ (1 year all & verranty) (9000 CTRONIX 494P 10 KH-120 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 CTRONIX 721 10 KH+1 and the maximum memory (2000 <	CTRONIX 412F 10 KH: 1.1 GHt DT Diff. 10 KH: 1.1 GHt DT All DAMA 9764 H 50 HHz useral counter dimer. CTRONIX 412F 10 KH: 1.1 GHt DT Control H 2 Stand DAMA 9764 H 50 HHz useral counter dimer. All DAMA 9764 H 50 HHz useral counter dimer. CTRONIX 71.5 * L3 GPT 35 tracking en * maintrame Control H 2 Stand DAMA 9764 H 50 HHz useral counter dimer. All DAMA 9764 H 50 HHz useral counter dimer. CTRONIX 71.5 * L3 GPT 35 tracking en * maintrame Control H 2 Stand DAMA 9764 H 10 HHz useral counter dimer. All DAMA 9764 H 10 HHz useral counter dimer. CTRONIX 81.6 * L3 GPt 30 tracking en * maintrame Control H 2 Stand DAMA 9764 H 10 HHz useral counter dimer. All DAMA 9764 H 10 HHz useral counter dimer. CALAN 50.0 HHz useral mathyser Control H 2 Stand DAMA 9764 H 10 HHz useral counter dimer. All DAMA 9764 H 10 HHz useral counter dimer. CALAN 50.0 HHz useral mathyser Control H 2 Stand DAMA 9764 H 10 HHz useral counter dimer. All DAMA 9764 H 10 HHz useral counter dimer. CALAN 50.0 HHz useral mathyser Control H 2 Stand 20 HHz useral mathyser Control H 2 Stand 20 HHz useral mathyser Control H 2 Stand 20 HHz useral mathyser CALAN 50.0 HHz useral mathyser Close H 2 Stand 20 HHz useral mathyser Close H 2 Stand 20 HHz useral mathyser Close H 2 Stand 20 HHz useral mathyser CALAN 50.0 HHz useral mathyser Close H 2 Stand 20 HHz useral mathyser Close H 2 Stand 20 Hz User HS User H 2 Stan	ULD 1401 20 MHz digital storage 2 channel	6195	TEKTRONIX 145 pal gen, lock test signal generator	£1500	RACAL RAITL 30 MHz valve receivers	
ECTRUM ANALYSERS Itel: NOS*12 Advision for the construction of the construction	KTRONIX 4921 ID KT: 20 OF UPT OWNOUTDOUTDUT Construction KTRONIX 491 ID KT: 20 OF UPT OWNOUTDUT Construction KTRONIX 715 * L3 OF UPT OWNOUTDUT Construction	OULD OS4000 10 MHz digital storage 2 channel	190	TEKTRONIX 521A vector scopes		RACAL RAIZIS 30 MHz receivers	• • •
KTRONIX 494P ID KH-21 GHt (1 yest cill & verrant?) CPM000 SCHLUMBERGER 77405 (org) goigal transmission analyser (new) CSO SYSTRONI DORINEE 832010 H::20 GHt increases counter KTRONIX 492 ID KH-21 GHt (1 yest cill & verrant?) CPM00003 CSCHLUMBERGER 77405 (org) goigal transmission analyser (new) CSO KTRONIX 492 ID KH-21 GHt (1 west cill & verrant?) CPM00003 CSCHLUMBERGER 77405 (org) goigal transmission analyser (150 RACAL DANA 9914 ID H::200 HHt (sequency counter KTRONIX 491 ID H::40 GHt with miser. CHID HERGER 77405 (org) goigal transmission analyser (110 RACAL DANA 9916 ID H::200 HHt (sequency counter KTRONIX 491 ID H::40 GHt with miser. CHID HERGER 77405 (org) goigal transmission analyser (2000 RACAL DANA 9916 ID H::200 HHt (sequency counter KTRONIX 491 ID H::40 GHt with miser. CHID HERGER 77405 (Org) goigal transmission analyser (2000 RACAL DANA 9916 ID H::200 HHt (sequency counter KTRONIX 491 ID H::120 GHt (1 west) goist miser. CHID HERGER 77405 (Org) GHt (1 Metric 200 HHt (sequency counter RACAL DANA 9916 ID H::200 HHt (sequency counter KTRONIX 491 ID H::120 GHt (1 west) goist ID H::120 GHt (1 Metric 200 HHt (sequency counter CHID H::1200 HHt (sequency counter RACAL DANA 9916 ID H::1200 HHt (sequency counter Style AD H::120 GHt (1 Metric 200 HHt (sequency counter CHID H::1200 HHt (sequency counter RACAL DANA 9916 ID H::1200 HHt (sequency counter RACAL DANA 9916 ID H::1200	CTRONIX 4929 (0 KH: 21 Loft U/T 001/002/003 Control U/102/003 Control U/102/003 CTRONIX 4121 (0 KH: 150 MH*	ECTRUM ANALYSERS		BOHDES & SCHWARTZ URE 10Hz-20 MHz RMS volumeter	£400	BACAL RAT772 30 MHz receivers BACAL 9008 15 MHz 2000 MHz automatic modulation meter	
CTRONIX 402P 10 kHz, 12 kHz D/T 001/kD2/003 CSCHLUMBERGER AF 403 Stone generator/medulater 4150 CTRONIX 71,10 kHz, 100 kHz,	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITERY SOTTEED WITH SO BIOSTIC AUTOM	KTRONIX 494P 10 KHz-21 GHz (1 year cal & warranty)	.£9000	SCHLUMBERGER 7702 digital transmission analyser (new)	£500	SYSTRON DONNER 652010 Hz-20 GHz microwave counter	
CTRONIX 71.1 10 KHts 100 FHt + maintaine (1000 EIF 387.1 (CL2.6 JCH immoveme counter (2350 CTRONIX 71.5 10 KHt + maintaine (1000 EIF 387.1 (CL2.6 JCH immoveme counter (2350 CTRONIX 491.6 0 HHt + maintaine (1000 EIF 387.1 (CL2.6 JCH immoveme counter (2350 CTRONIX 491.6 0 HHt + maintaine (1000 HITSU HARCONI 75205 more for the first own counter (2350 CTRONIX 491.6 0 HHt + maintaine (1000 Harconi 75205 more for the first own counter (1000 ARCCAL DANA 991.6 0 HL + spectrum/network analyser (1000 HARCONI 75205 more for the first own counter (1000 ARCONI 75205 more for the first own counter (1000 HARCONI 75206 more mater for the first own mater f	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITERY SOTTEED WITH SO BIOSTIC AUTOM	KTRONIX 492P 10 KHz-21 GHz OPT 001/002/003	13000	SCHLUMBERGER AF 405 3 tone generator/modulator	(2750	RACAL DANA 9904M 50 MHz universal counter timer	• •
CTRONIX 715 + 13 OFF13 tracking gen * mainframe [1000] FARCONI 25905 FARCONI 25906 FARCONI 25906 <td>ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITERY SOTTEED WITH SO BIOSTIC AUTOM</td> <td>KTRONIX 7L12 10 KHz-1800 MHz + mainframe</td> <td>.61000</td> <td>EIP 331 12.5GHz autohet microwave counter</td> <td>£350</td> <td>RACAL DANA 9914 10 Hz-200 MHz frequency counter</td> <td></td>	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITERY SOTTEED WITH SO BIOSTIC AUTOM	KTRONIX 7L12 10 KHz-1800 MHz + mainframe	.61000	EIP 331 12.5GHz autohet microwave counter	£350	RACAL DANA 9914 10 Hz-200 MHz frequency counter	
ALDA NIKES Y TALT2 400 Hzi 800 Hts sectorum/servort analyser FARCONI TE 200 mode solution: FARCONI TE 200 Hzi 800 Hts sectorum/servort analyser FARCONI TE 200 Hzi 800 Hts sectorum analyser FARCONI TE 200 Hzi 800 Hts sectorum analyser FARCONI TE 200 Hzi 800 Hts sectorum analyser FARCONI FE 200 Hzi 800 Hts sectorum analyser FARCONI FE 200 Hzi 800 Hts sectorum analyser FARCONI # 550 681 01 Hts 120 Hts number 200 Hzi 200 Hzi 700 Hz	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITERY SOTTEED WITH SO BIOSTIC AUTOM	KTRONIX 7L5 + L3 OPT 25 tracking gen + mainframe	6600	MARCONI 2690B communications test set		RACAL DANA 9916 10 Hz-520 MHz frequency counter	
NRTSU MS10A 10 KHz Grbt spectrum rankyser (2750 HARCONI 15260 millstream (4851 HARCONI 15270 millstream (4851 (4851) (4851) (4851) (4851) (4851) (4851) (4851) (4851) (4851) (4851) (4851) (4851) (4851) (485	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITEERT SOTTEED THTT SO BIOST AND CARRIAGE VIEW SILE	KEDA RIKEN TR4172 400 Hz-1800 MHz spectrum/network analyser	18000	MARCONI TF2305 mod meter 50 KH2-2.3 GH2	1900	RACAL DANA 9919 10 Hz-1100 MHz frequency counter	
CALLAN 2010R veeplingerst antiver	ALL PRICES PLOS VAL AND CARRIAGE VALE EQUITIENT SOT LEED THIT SO BIOSTICATION OF THE STREET	RITSU MS610A 10 KHz-2 GHz spectrum analyser	.42750	MARCONITF2610 true RMS voltmeter		BACAL DANA 1991 10 Hz 160 MHz unversa counter timer 9 det	
8 00 (A ALLE Manages) (1500 8 00 (A HLE) (1500<	ALL PRICES PLOS VAL AND CARRIAGE VALE EQUITIENT SOT LEED THIT SO BIOSTICATION OF THE STREET	CALAN 3010R sweep/ingress analyser	£400	MARCONI 6950/6910 10 MHz-20 GHz RF power meter	£800	RACAL DANA 1992 10 Hz-1300 MHz nanosecond counter	
8 \$\$00.10 MHr.13 GHt spectrum analyter (4250 9 \$\$00.10 MHr.13 GHt spectrum analyter (4250 9 \$\$00.10 MHr.13 GHt spectrum analyter (4100 10 MHr.13 GHt spectrum analyter (4100 11 MHr.13 GHt spectrum analyter (4100)	ALL PRICES PLUS VAL AND CARRIAGE VALE EQUITIENT SOT LIED THIT SO BIOST AND CARRIAGE VIEW SICE	8902A Audio analyser	£1500	MARCONI 6440/6421 10 MHz-124 GHz RF power meter	6250	RACAL DANA 9300 RMS volumeter	
83588/821 10.2112.11 CHR CHR <td>ALL PRICES PLOS VAL AND CARRIAGE VALE EQUITIENT SOT LEED THIT SO BIOSTICATION OF THE STREET</td> <td>8590A 10 MHz-1 5 GHz spectrum analyser</td> <td>(1500</td> <td>MARCONI TF2306 programmable interface unit</td> <td> £250</td> <td>RACAL DANA 9301A true RMS KP millivolumeter</td> <td></td>	ALL PRICES PLOS VAL AND CARRIAGE VALE EQUITIENT SOT LEED THIT SO BIOSTICATION OF THE STREET	8590A 10 MHz-1 5 GHz spectrum analyser	(1500	MARCONI TF2306 programmable interface unit	£250	RACAL DANA 9301A true RMS KP millivolumeter	
15252 Ad June 100 Not spranne uppal analyser 1250 CATRON 1065 succed detail multimeter 15252 Ad June 100 Not spranne uppal analyser 1250 CATRON 1065 succed detail multimeter 1417855218655810 (NHz-1250 MHz 450 HP 870A nacionalis figure meter 1250 1417855218655810 (NHz-1250 MHz 4100 HP 870A nacionalis figure meter 1250 14178521865510 (NHz-1250 MHz 4100 HP 870A nacionalis figure meter 1250 HOL CONTINUE 2000 (NHz-1250 MHz) 4100 HP 870A nacionalis HP 870A nacionalis RCONT TF2370 30 Hz-110 MHz 4100 HP 870A nacionalis HP 870A nacionalis RCONT TF2370 30 Hz-110 MHz 4100 HP 870A nacionalis HP 870A nacionalis RCONT TF2370 101 (MHz-40 GHz newsp generator Hz resolution HP 83243 NO Hz-16 GHz newsp generator HP 83243 NO Hz-16 GHz newsp generator HP 83243 NO Hz-16 GHz newsp generator 8044 ND 140 (Hz newsp generator HP 8324 Normarit system counter 1200 HP 83244 Normarit system counter 1200 8045 ND 140 (Hz newsp generator HP 83243 NO Hz-16 GHz newsp generator 1200 HP 83244 Normarit system counter 1200 8046 ND 140 (Hz newsp generator HT 830 (Hz newsp generator HE 8344 NL nemz newsp generator 1200	ALL PRICES PLOS VAL AND CARRIAGE VALE EQUITIENT SOT LEED THIT SO BIOSTICATION OF THE STREET	35598/1821 10 MHz-21 GHz 3582A 0.03 Hz-25 5 KHz dual channel simal analyser	1800	MARCONITF2432A 10 Hz-560 MHz frequency counter	(2000	BRUEL & KIAER 2971 phase meter	
1407/85328/8538 I0 KHz-10 MHz 4130 1407/85328/8538 I0 KHz-10 MHz 4130 1417/85328/8538 I0 KHz-10 MHz-18 GHz 4130 1417/8528/8538 I0 KHz-10 MHz-18 GHz 4130 1417/8528/8538/81 4100 MHz-18 GHz	ALL PRICES PLUS VAL AND CARRIAGE VALE EQUITIENT SOT LIED THIT SO BIOST AND CARRIAGE VIEW SICE	3562A 64 uHz-100 KHz dynamic signal analyser	€5000	HP 8508A vector volumeter	£3250	DATRON 1065 autocal digital multimeter	• •
1417/3332883534.00 MHz/8 GHz 1500 1417/333288354.00 MHz/8 GHz 1500 1417/333288354.00 MHz/8 GHz 1500 1417/333288354.00 MHz/8 GHz 1500 1417/332888354.00 MHz/8 GHz 1500 1417/33288354.00 MHz/8 GHz 1500 1417/33288354.00 MHz/8 GHz 1500 1417/33288354.00 MHz/8 GHz 1500 1417/33288354.00 MHz/8 GHz 1500 1500 1500	ALL PRICES PLUS VAL AND CARRIAGE VALE EQUITIENT SOT LIED THIT SO BIOST AND CARRIAGE VIEW SICE	140T/8552B/8553B 10 KHz-110 MHz	(1200	HP 8970A noise figure meter		FLUKE 8505A digital multimeter	
RCONTF2370 30 Hr.: 100 FHz digral storage (at new) 4750 HP \$150A storage formalizer 4300 RCONTF2370 30 Hr.: 100 FHz digral storage (at new) FLUKE \$100A AC alibrator FLUKE \$100A AC alibrator RTRONICS 7100 10 FHz-40 GHz weep generator Hz resolution F10000 HP \$130A surveitor resorder f500 StorA DC extrements F1000 FLUKE \$100A AC alibrator f500 StorA DC extrements f500 FLUKE \$100A Hz multiphoted precision power amp FLUKE \$100A Hz multiphoted precision power amp FLUKE \$100A AC alibrator f500 StorA DC extrements f500 HP \$134A numeral systems counter high tability OPT f500 StorA DC extrements f1500 HP \$135A numeral systems counter high tability OPT f500 StorA DC extrements f1500 HP \$1370B mineral time internal counter high tability OPT f500 StorA DC extrements f1500 HP \$1370B mineral time internal counter high tability OPT f5000 StorA DC extrements f1500 HP \$1370B mineral time internal counter high tability OPT f5000 StorA DC extrements f1500 HP \$1370B mineral time internal counter storage storage internal multimeters with manual & probes (at new) f1400 StorA DC extrements f1400	ALL PRICES PLUS VAL AND CARRIAGE ALL EQUITIENT SO FLEED WITH SO FLEED WI	141T/8552B/8555A 10 MHz-18 GHz	£1500	HP 37711A TI-datacom test set		FLUKE 3330B prog constant current/voltage calibrator	
INAL GENERATORS HP SIBOA waveform recorder 1/310 FLUKE SIOSA precision power and precision power and strending of the strength of th	ALL PRICES PLUS VAI AND CARRIAGE VALE EQUITIENT SO FILED WITH SO FILED W	RCONI TF2370 30 Hz-110 MHz digital storage (as new)	. £750	HP 8750A storage normalizer	£300	FLUKE \$200A AC calibrator	-
ATRONICS 7100 10 MH-40 GHz wweg generator 1 Hz resolution. £1000 HP 33424 300 MHz 10 generator 1 Hz resolution. £1000 HP 33424 300 MHz 10 generator 1 Hz resolution. £1000 HP 33424 300 MHz 10 generator 1 Hz resolution. £1000 33125 J MHz function generator 1 Hz resolution. £1000 HP 33340 mersi by steam counter 4 generator 1 Hz resolution. £1000 HP 33340 mersi by steam counter 4 generator 1 Hz resolution. £1000 33126 J MHz function generator 1 Hz resolution. £1000 HP 33340 mersi by steam counter 4 generator 1 Hz resolution. £1000 HP 33340 mersi by steam counter 4 generator 1 Hz resolution. £1000 33140 001 Hz 1097 MHz function/waveform monitor £1500 HP 33140 001 Hz 1097 MHz function/waveform monitor £100 31840 001 Hz 1097 MHz function/waveform monitor £1500 HP 31324 moversi by steam counter 100 Hz 100 Hz 10 GHz 10 GHz 10 GHz 100 Hz 10 GHz 10 GHz 100 Hz 10 GHz 10 GHz 100 Hz 10 GHz 10 GHz 10 GHz 100 Hz 10 GHz 10 GH	ALL PRICES PLUS VAL AND CARRIAGE VALE EQUITIENT SOT LIED THIT SO BIOST AND CARRIAGE VIEW SICE	SNAL GENERATORS		HP 5180A waveform recorder	from (900	FLUKE 5205A precision power amp	-
31314 10Hai. Infrastructure internation (1350 HP 53334. universal systems counter high stability OPT (4600 SPECIAL OFFERS 31314.001.Heise Internation (1350 HP 53308. universal systems counter high stability OPT (250 (270) 31340.001.Heise Internation (1300 HP 53308. universal systems counter high stability OPT (250) 31340.001.Heise Internation (1300 HP 53308. universal systems counter high stability OPT (250) 31340.001.Heise Internation (1300 HP 53028. universal systems counter high stability OPT (250) 31340.001.Heise Internation (1300 HP 53028. universal systems counter high stability OPT (250) 31340.001.Heise Internation (1300 HP 53028. universal systems counter high stability OPT (250) 8650.103.0Hit state generator (1300 HP 53028. Universal systems counter high stability OPT (1000) 8650.103.0Hit state generator (1200) HP 53028. Universal systems counter high stability OPT (1000) 8650.103.0Hit state generator (1200) HP 53028. Universal systems counter high stability OPT (1000) 8650.103.0Hit state generator (1200) HP 530. Hit State generator (1000) 8650.103.0Hit state generator	ALL PRICES PLUS VAL AND CARRIAGE VALE EQUITIENT SOT LIED THIT SO BIOST AND CARRIAGE VIEW SICE	ATRONICS 7100 10 MHz-40 GHz sweep generator 1 Hz resolution . I	(2500	HP 5342A 500 MHz-18 GHz microwave requency mede	£500	RF MICROSYSTEMS INC. AN/TRC-176 VHF/UHF KAL fitters	
3314A 0.001 Hz.1939 PHz functioned/vavidrom: monitor	ALL PRICES PLUS VAL AND CARRIAGE VALE EQUITIENT SOT LIED THIT SO BIOST AND CARRIAGE VIEW SICE	3325A MHz function generator	61350	HP 5335A universal systems counter high stability OPT		SPECIAL OFFERS	
35862 50 Hr.32.5 MHz is selective level meter 200 FM T195 37 dis alometers 868D 22.0 Hr.13.5 MHz is selective level meter 200 FM T195 37 dis alometers 865D 23.0 Hr.13.5 MHz is selective level meter 200 FM T195 37 dis alometers 865D 23.0 Hr.13.5 MHz is selective level meter 200 FM T195 18 Is alometers 865D 23.0 Hr.13.5 MHz is selective level meter 200 FM T195 18 Is alometers 865D 23.0 Hr.13.5 MHz is selective level meter 200 FM T195 18 Is alometers 865D 23.0 Hr.13.5 MHz is selective level meter 200 FM T195 18 Is alometers 865D 23.0 Hr.13.5 MHz is selective level meter 200 FM T195 18 Is alometers 865D 24.0 Hr.13.5 MHz is selective level meter 200 FM T195 18 Is alometers 860/216651 FM termine 200 FM T195 18 Is Alometers 200 9.0 FM T195 17 MHz is selective level meter 200 FM T195 18 Is Alometers 200 9.0 FM T195 17 MHz is selective level meter 200 FM T195 18 Is Alometers 200 9.0 FM T195 17 MHz is selective level meter 200 FM T195 18 Is Alometers 200 9.0 FM T195 17 MHz is selective level meter 200 FM T195 18 Is Alometers 200	ALL PRICES PLOS VAL AND CARRIAGE VALE EQUITIENT SOT LEED THIT SO BIOSTICATION OF THE STREET	3314A 0.001 Hz-19.99 MHz function/waveform monitor	£1400	HP 5370B universal time interval counter	62000	FLUKE 25 high spec digital multimeters with manual & probes (as new)	
C2500 HP 4358/1401/J86A0 I 0 MHz Ignal generator C2500 HP 4358/1401 AU8484A1 / 176AA I 0 MHz-18 GHz (F power meter C800 BIND 93 F Watameters with 6 inserts and case (as new) C2500 HP 4358/1481 A 10 MHz-18 GHz F power meter C800 BIND 93 F Watameters with 6 inserts and case (as new) C250	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITEERT SOTTEED THIT SO BIOSTICATION OF THE STREET	3586C 50 Hz-32.5 MHz selective level meter	12950	HP 5328A universal frequency counter + dvm	£300	SMITHS 3" dia altimeters	
8600C/266318/36603A	ALL PRICES PLOS VAL AND CARRIAGE ALL EQUITIENT SO FILED WITH SO BIOS WAR AND CARRIAGE ALL EQUITIENT SO FILED WITH SO BIOS WAR AND CARRIAGE ALL EQUITIENT SO FILED WITH SO BIOS WAR AND CARRIAGE ALL EQUITIENT SO FILED WITH SO FIL	8656A 100 KHz-990 MHz signal generator	.42500	HP 4358/8401A/8484A/11708A 10 MHz-18 GHz (new/HP case/mar	uais)£1000	BIRD 43 RF wattmeters with 6 inserts and case (as new)	
	ALL PRICES PLOS VAL AND CARRIAGE VALL EQUITEERT SOTTEED THIT SO BIOSTICATION OF THE STREET	8660C/86631B/86603A	£2000	HP 4358/8482AH 100 KHz-42 GHz RF power meter	1500	RACAL RAITL 30 MHz receivers	• •
	86 Bishonsgate Street Leeds LS 4BB http://www.mb-radio.co.uk						
ALL PRICES PLUS VAL AND CARRIAGE VALL EQUITERT SOTTEED THIT SO BIOST AND CARRIAGE VISIC OUT VVED SICE	e-mail info@mb-radio.co.uk	86 Bishonsgate	Str	eet, Leeds LS 4BB		http://www.mb-radio.co.uk	

CIRCLENO, 129 ON REPLY CARD

SEE OUR WEBSITE SEE JUN WEDDILE

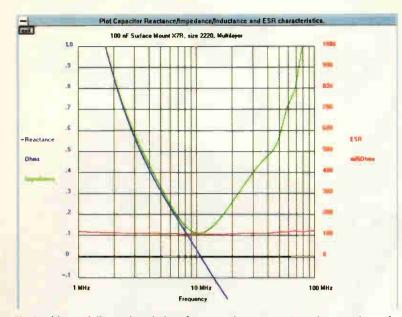


Fig. 7. This specially produced plot of measured reactance, impedance and esr of a typical 100nF X7R chip, shows reactance changing from negative to positive, at resonance. The impedance plot increases above resonance as expected, from a minimum value, equal to the measured equivalent series resistance. For clarity only, the reactance scale has been inverted, having negative values in the upper plot.

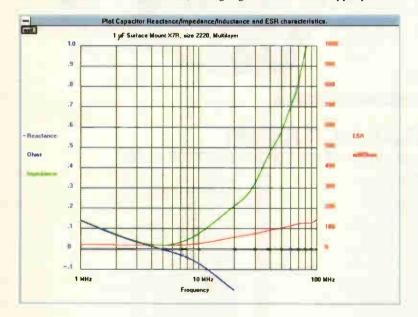


Fig. 8. Similar to Fig. 7 – same size chip and typical 1μ F X7R capacitor. As expected the resonance frequency has reduced, but otherwise all curves follow the same trends.

tungsten carbide press tools and subjected to very high pressure presses. High volume production discs can be pressed using multi-station. high speed, single action rotary turret presses, similar to those used to make medicinal pills. Larger discs and pressed tubes however need double-action presses, usually single station, equipped with both top and bottom acting press tools.

Multilayer ceramic capacitors

Early multilayer capacitors were made using the 'dry film' method.¹ The required thin dielectric film was produced by passing a plastic film carrier through a plasticised ceramic 'slip' at controlled speed, to emerge coated with ceramic.

After drying, this heavily plasticised ceramic could be stripped off as a thin, self supporting, flexible ceramic film.

To produce the alternating electrode patterns needed for a multi-layer device, the ceramic was screen printed with electrode ink. The dry electroded ceramic film was stacked, layer on layer, to produce a 'stick' of capacitors. Compacted under high pressure, these sticks were then diced into individual capacitor chips, ready for firing.

Later developments allowed similarly thin ceramic films to be continuously cast onto a moving polished stainless-steel belt. This eliminated the plastic carrier film and needed smaller amounts of plasticiser.

The reduction of plasticiser content is important. While, as with domestic pottery, all ceramic shrinks during firing, shrinkage increases with increased quantities of plasticiser and organic binders.

Introduced in the early eighties, the modern 'wet-film' method³ involves screen printing, in turn, unplasticised ceramic and a matrix of electrode ink patterns. These are precision printed on to a dimensionally stable carrier.

After hot-air drying, the carrier is returned to the printer head and further layers of ceramic or electrode patterns are added until the capacitor is complete. Following final drying, these sticks of capacitors are separated into individual capacitor chips, ready for firing.

With either assembly method, the electrode inks used depend on the ceramic formulations and their firing temperature. For lower firing temperatures, a combination of palladium with silver is often used. At higher firing temperatures, the silver would melt and globulate, so it must be replaced by more costly gold or platinum, depending on the temperature.

Firing the ceramic

Two main methods of firing the ceramics are used. Traditional ceramic capacitors produced in large volumes are often fired in long, temperature controlled multi-zone. continuously operated 'sagger push' kilns.

The pusher kiln is built using high-density refractory bricks and can take days to bring up to temperature and stabilise. More modern, smaller and lighter batch kilns are quite different. Built using extremely low density refractory linings, they allow firing cycles with pre-set individual time and temperature profiles.

As with conventional household pottery, the fired ceramic shrinks significantly from its unfired or 'green' size. While principally dependant on the amounts of organic binders and plasticisers used in the ceramic formulation, change of the firing profile also affects shrinkage.

Organic materials and plasticisers in the raw ceramic have to be removed by a slow pre-fire before the final firing. A complete firing cycle may take as long as two or three days.

The 'wet film' multilayer and the pressed disc processes use the least quantities of organic and plasticiser so shrink least of all. Shrinkage is especially important where a precise finished size ceramic is needed, as for the planar array, multi-hole, capacitor designs.

For both kiln types, very precise control of temperature and the time/temperature profile is essential, to standardise ceramic shrinkage and optimise capacitor yield.

Adding a means of connection

The fired multilayer ceramic capacitor needs only the application of external precious metal ink terminations, to contact the electrodes to produce a capacitor chip.

Disc or tubular ceramics first have to have their precious metal electrodes applied. This is usually silver ink. The external terminations and the silver electrodes are fired for a much shorter time and at lower temperatures than the ceramic.

Continued on page 330

ELECTRONICS

For more information about any of the products or services in this issue of ELECTRONICS WORLD, simply ring the relevant enquiry number. Enquiry numbers may be found at the bottom of each individual advertisement.

101	102	103	104	105	106	107	108	109	
110	111	112	113	114	115	116	117	118	
119	120	121	122	123	124	125	126	127	
128	129	130	131	132	133	134	135	136	
137	138	139	140	141	142	143	144	145	
146	147	148	149	150	151	152	153	154	
155	156	157	158	159	160	161	162	163	
164	165	166	167	168	169	170	171	172	
173	174	175	176	177	178	179	180	181	

Name	
Job title	
Company Address	
Telephone	APRIL 1998

Newsagent order form

Pass this order form to your newsagent to ensure you don't miss the next issue of *EW*.

To(name of Newsagent)

Please reserve me the May issue of *Electronics World* and continue to order every month's issue until further notice

Thank you

or the Isle of Man Do not affix postage stamps if posted in Gt. Britain, Channel Islands, N. Ireland

ELECTRONICS WORLD

SUBSCRIPTION CARD

SEE

OVER

Please enter my su to the value of £ Please charge my Mastercard/Visa/ Amex account										
With £			Exp	biry	Date					
Signature										
Name										
Job Title										_
Address										
			Po	stco	de _			 	 	_
Tel:			Со	untr	v					

£39

Тı		
18	-1	

SUBSCRIPTION RATES	TION RATES
--------------------	------------

SUBSCRIPTION RATES					
UK 1 year	£34				
UK 2 years	£54				
Student rate(proof required	d)£21.30				
Airmail					
Europe 1 year	£49				
Europe 2 years	£78				
Rest of the world 1 year	£59				
Rest of the world 2 years	£94				

Surface mail 1 year

Post to: **ELECTRONICS WORLD**

P.O. Box 302 Haywards Heath, West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE Tel: +44 01444 445566

Please tick here if you do not wish to

other companies

receive direct marketing-promotion from

Fax: +44 01444 445447

049

SUBSCRIPTION RATES

Student rate(proof required)£21.30

Haywards Heath Sussex RH16 3BR

Oakfield House Perrymount Road

Reader Information Service Reed Business Information

ELECTRONICS WORLD

Business Reply Service Licence No. CY711

SUB	S	С	R		Ρ.	Т	1	О	N	С	A	۱F	२	D
Please enter my subscription to ELECTRONICS WORLD. I enclose Cheque/Eurocheque to the value of £ made payable to Reed Business Information Please charge my														
Mastercard/Visa/ Amex account				Į										

Expiry Date

With £

Signature _

Name Job Title

Tel:

UK 1 year

UK 2 years

Europe 1 year

Europe 2 years

Rest of the world 1 year

Rest of the world 2 years

Surface mail 1 year

Airmail

Address

Postcode

£34

£54

£49

£78

£59

£94

£39

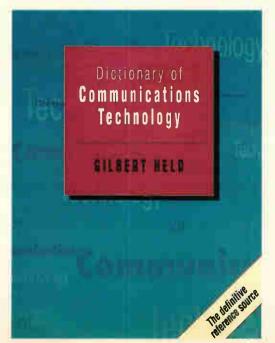
Country

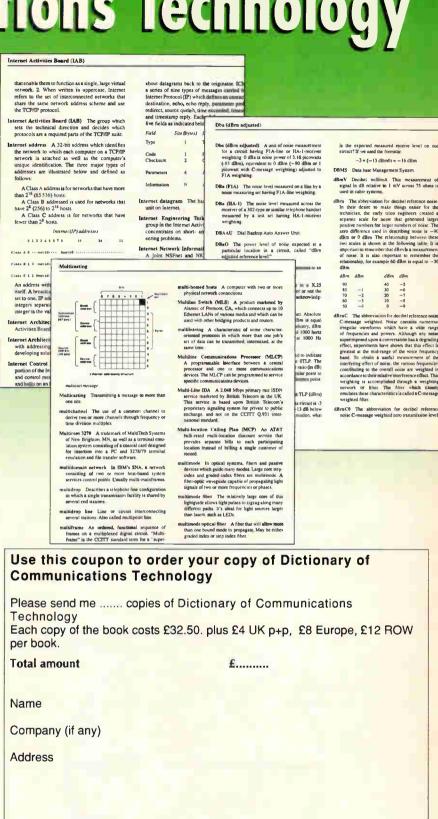
Post to: **ELECTRONICS WORLD**

P.O. Box 302 Haywards Heath. West Sussex RH16 3DH UK.

CREDIT CARD HOTLINE Tei: +44 01444 445566 Fax: +44 01444 445447

Please tick here if you do not wish to receive direct marketing-promotion from other companies 🗆

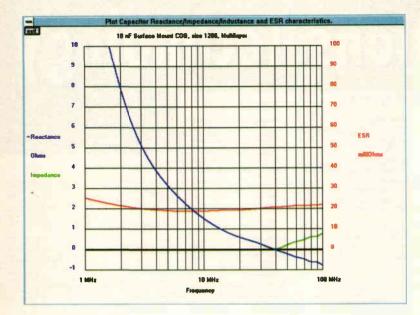

Dictionary of Communications Technology

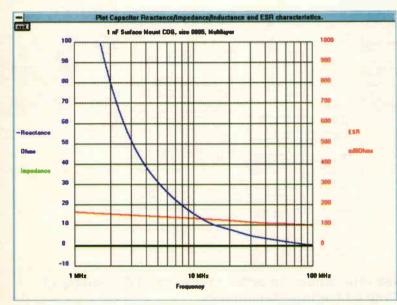

With over 9000 entries and 250 illustrations, this book is an invaluable reference work for anyone involved with electronics and communications. Dictionary of Communications Technology provides comprehensive coverage of data and communications and has entries on PC lans, the Internet, communications testing and client-server applications – in 500 pages.

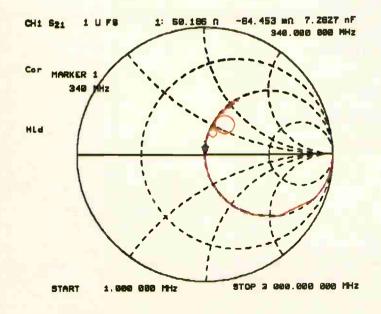
Over 20 major companies helped prepare the Dictionary of Communications Technology, including AT&T, IBM and Digital Equipment Corporation.

Gilbert Held, author of Dictionary of Communications Technology, is an internationally respected author who has used his enormous expertise to make this work one of the most comprehensive sources of telecommunications information.

Please mail this coupon to *Electronics World*, together with payment. Alternatively fax credit card details with order on **0181 652 8111**. You can also telephone your order on 0181 652 3614, but only Mondays, Tuesdays or on Friday mornings. Address orders and all correspondence relating to this order to, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.




Phone number/fax Make cheques payable to Reed Business Information Group. Or, please debit my Master, Visa or Access card.


Card type (Access/Visa)

Card No

Expiry date

Continued from page 328

Top: Fig. 9. This plot of a 1206 sized 10nF COG chip shows a much higher resonant frequency, resulting from its smaller physical size, hence less self inductance, and its reduced capacitance.

Middle: Fig. 10. A similar plot of a 1nF COG chip shows resonant frequency exceeds the 100MHz measured. This plot was deliberately taken to demonstrate the effectiveness of the error correction method. Maker's data suggests resonance should be 150MHz. Uncorrected resonance, due to jig parasitics, was measured at 56MHz.

Bottom: Fig. 11. This Smith chart S21 impedance plot of a 300pF chip mounted as 'shunt' to ground, on a 50Ω microstrip line jig, shows the trace changing sign at series resonance. Above this series resonance frequency, other resonances can be seen which remain in the upper inductive half of the chart. The low frequency straight sections result from values changing rapidly between measured frequency points. Courtesy Syfer Technology.

The barrier layer or Transcap capacitor differs in that the basic ceramic discs are fired twice. Following the conventional oxidising firing in air, these capacitors undergo a second firing in a reducing atmosphere. This renders the ceramic material conductive, with only a few ohms resistance.

Once the termination silver has been fired in air, two capacitors, one on each face, are formed about the conducting central core. Their dielectric is extremely thin. This reduces the working voltage, but increases the capacitance tenfold.

After termination or electrode firing, the capacitor is ready for any final assembly processes. Lead wires can be attached and the capacitor encapsulated. Surface-mount chip capacitors may have their end terminations hot solder coated, electrotinned, nickel plated or silver-palladium coated depending on the application they are intended for.

In manufacture, all heat process stages are strictly profiled and controlled. To ensure this, each stage of production may be subject to statistical process control analysis of yields.

All soldering operations use a controlled pre-heating stage. Terminations or electrodes incorporating fired silver-bearing inks are soldered using an alloy pre-saturated with silver to minimise leaching. One such alloy is LMP or SN62. This product is tin, lead and silver in the proportions of 62/36/2. It is a true eutectic, i.e turns immediately from solid to liquid, which minimises the possibility of dry joints.

Other metals can dissolve or leach into molten solder so the choice of solder alloy is important. If fine copper wires need tinning, for example, copper loaded solder is a good choice.

Dielectric characteristics

EIA Class I, ultra stable, COG. For almost all circuit needs, the conventional COG ceramic provides the nearest perfect capacitor, having better characteristics than mica or any film type, except perhaps for PTFE. It has a temperature coefficient of ± 30 ppm, negligible voltage coefficient, capacitance stable over time, negligible capacitance variation at high frequencies, minimal dielectric absorption and a 'Q' approaching 1000 at 1MHz, Fig. 4.

A capacitor's effective or measured capacitance rises sharply at series resonance. This is the effect of the positive and increasing reactance of its self inductance, approaching then exceeding that of the negative and reducing reactance of the actual or true capacitance at the resonant frequency.

Apart from the steady decline in K which most dielectrics exhibit with frequency increase, the K value of the dielectric is unchanged at resonance, **Fig. 5**. The panel on capacitor self inductance provides more on this topic.

COMPONENTS

Top: Fig. 12. This rectangular plot of Figure 11 clearly shows multiple high-frequency harmonic resonances occurring, having smaller amplitude nulls than that of the series resonance. These amplitudes reduce with frequency, as capacitor losses increase. Courtesy Syfer Technology.

Middle: Fig. 13 Schematic section of the Hewlett Packard 16091A, low cost coaxial test jig. Each capacitor chip being pre-soldered to two contact pins. The 1mm displacement between calibration and measurement planes can be mathematically corrected, eliminating all jig parasitics.

Bottom: Fig. 14. Plot of an actual measurement of a COG 600pF 1210 chip using the Hewlett Packard 16091A coaxial test jig. The capacitor is shown as an inductance of 1.8275nH while at a higher frequency resonance. Its series resonance is at 185MHz. For ease of calculating corrections, this admittance plot is preferred to the more common impedance presentation. Courtesy Syfer Technology.

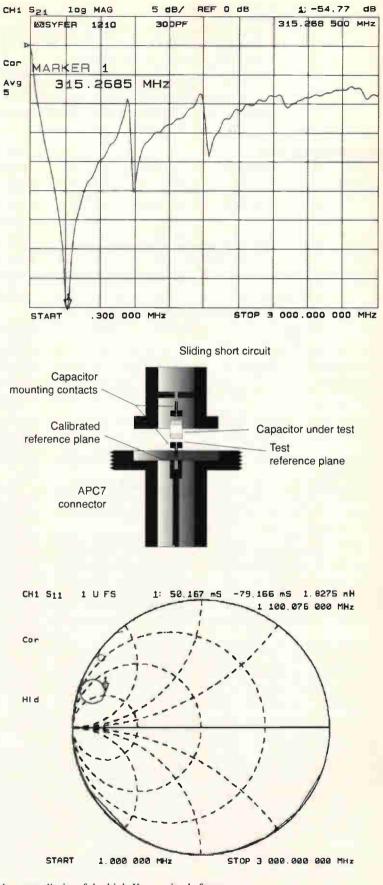
Since the surface-mounted ceramic multilayer COG chip provides a large capacitance in a small size, together with low self inductance at low cost, it is invaluable for high frequency circuits. At the high end of the rf spectrum, especially when stripline circuits are involved, an improved high-Q version^{3,4,5} is also available. For low capacitance values, this device can offer a Q of around 1000 at 100MHz.

There are two further types of capacitor that maintain these high Qs to even higher frequencies, albeit at higher cost. These are the ACCU-F⁶ – a thin-film capacitor made using silicon dioxide and silicon nitride – and the porcelain multi-layer chip⁷ capacitor.

Using the best available *LCR* meters at 1MHz, differences in Q between these styles cannot be measured with certainty. Such performance differences can only be measured at higher frequencies, using the best possible jig techniques, together with a 12 term error corrected vector network analyser.⁸

High-K dielectrics

Higher capacitance values are available using high-K X7R, Y5V and Z5U dielectrics. These materials provide the best capacitance, voltage and size combination of all, by trading off temperature coefficient, capacitance loss with frequency and voltage coefficient.


The stable X7R, EIA Class II and the general purpose Z5U/Y5V, EIA Class III grades, are controlled according to windows of temperature coefficient. While each maker's capacitors will comply with these windows, different makers' temperature coefficient curves may follow quite different contours. These high-K capacitors exhibit change of capacitance with voltage, frequency and temperature.

Based on barium-titanate, which is a polar material, high-K capacitors also exhibit a modest level of charge retention. This is called dielectric absorption, and I hope to explore this topic in a future article⁹.

The crystalline structure of ceramics based on bariumtitanate changes on being heated above the Curie point, which is notionally 125°C. On cooling, this domain structure relaxes with time, reducing the K value in a logarithmic manner. It effectively becomes stable after 1000 hours. As a result, capacitor made using these dielectrics are manufactured to age down to nominal capacitance, having rested or aged for 1000 hours following their last heat cycle.

Any subsequent soldering process that takes the dielectric over 125°C restarts this ageing cycle. Full details of the ageing factors to be applied will be found in makers' data sheets.

Capacitors based on high-K ceramics provide the best possible capacitance versus volume performance while maintaining stability within defined limits. The small physical lengths permitted ensure very low self inductance, extending

the upper limits of the high-K capacitor's frequency range.

You may wonder just why a low self inductance value matters. At some frequency, the reactance of this self inductance becomes equal in value to that of the capacitor's reactance. But since the two reactances are opposite in phase, a seriesresonance effect results.

At higher frequencies, while still blocking dc, the capacitor otherwise behaves as though it were an inductor, thus limiting its upper usable frequency for most circuits.

As the clock frequency of logic chips becomes ever higher, the decoupling of switching spikes becomes increasingly difficult. Any self inductance in the decoupling capacitor slows or impedes the rate at which the capacitor is able to charge or

Measurements at rf

While the 100MHz measurements suffice for general applications, for rf design they are little better than dc measurements. While specialist capacitor measuring equipment is available^{14,15} to measure up to 1 and 1.8GHz, it is very expensive and not available in many laboratories.

Two suitable instruments more commonly available are the *HP8510*, which measures from 45MHz to 110GHz, and the *HP8753* which measures from 300kHz to 6GHz. I have used each of these vector network analysers. Both have 12-term error correction.

The Smith-chart presentation provided by these analysers is particularly relevant when demonstrating the self inductance of a capacitor. It displays the measured impedances by frequency, in terms of R+–jX, where jX= $j(X_c$ – $X_l)$.

When jX has a negative net value, i.e. a capacitive reactance, it will be plotted below the horizontal centre line. When jX has a positive net value, or an inductive reactance, it is plotted above the centre line. When jX is zero, i.e. resistive, it is plotted along the central horizontal line.

On this impedance chart, the right-most limit of the central line represents infinity while the left most limit represents a short circuit. Consequently, when measuring a capacitor, the frequency at which the trace crosses the central line represents the capacitor's self resonant frequency.

In the example shown, this occurred slightly below 340MHz. The small circular loops, or whirls, represent a resonant behaviour, but since the trace remains above the centre line, the capacitor has continued to present an inductive reactance, **Fig. 11**.

Obviously, the highest frequencies pose considerable problems when it comes to designing and characterising test jigs. While commercial jigs are available from Wiltron¹⁶ and Hewlett Packard¹⁷, they are extremely expensive. However up to perhaps 3GHz, and ignoring phase, relatively simple jigging can be used to measure resonance, and hence self inductance of low value capacitors. The same jigging can be used to observe transmission line behaviour.

 S_{21} measurements. For magnitude parameters only, the easiest method is to measure the chip's insertion loss when mounted as a shunt to earth in a good 50 Ω microstrip line. While for a quick look-see FR4 board could be used, its characteristics change dramatically with frequency, making it impossible to produce a good wideband 50 Ω line.

For these measurements, I fabricated accurate lines using Rogers *Duroid 5880* PTFE board¹⁸, gold plated, with *APC3.5* surface launching connectors.

You may question why this insistence on using a good 50Ω line. Almost all modern measuring systems have a 50Ω input and output impedance, as does suitable quality connecting cables. Using a jig of impedance other than 50Ω produces a reflection of power at the point where the jig is connected to the 50Ω system. This reflected power reduces that incident on the test capacitor, giving misleading results.

For insertion loss, or S_{21} , measurements this jig mismatch also causes reflections, hence ripples in the receiver measurements. Unless the vector network analyser used has capability for 'Thru/Reflect/Line' jig calibration,¹⁹ these errors cannot be removed. As a result, they must be avoided when designing and characterising any test jig.

discharge in order to decouple these spikes.

An easy way to lower a capacitor's self inductance is to reduce its physical length or increase its width. But reducing the inductance further is only possible using specially designed capacitors. One company particularly active in reducing capacitor self inductance, AVX, offers several application notes via its Web page and on cd-rom.¹⁰

Allowing for all these variants, a capacitor's behaviour at

The rectangular plot of S_{21} insertion loss of a capacitor in a 50 Ω microstrip line, mounted from line to ground, clearly shows the capacitor self resonant at 315.2685MHz. A second, parallel resonance, resulting from stray capacitances with the chip self inductance might also be expected at a very much higher frequency.

Other resonances are clearly visible, but since the net reactance shown in the Smith plot remains inductive, these cannot result from either series or parallel circuits. These resonances exactly mimic those seen when measuring low impedance, high capacitance transmission lines that are grossly mismatched. As frequency increases, the chip's losses increase, reducing the amplitudes of the higher frequency resonances, **Fig. 12**.

 S_{11} measurements. While the above measurements can characterise all four possible S-parameter characteristics, S_{11} , S_{21} , S_{12} and S_{22} , of the capacitor in a two port system by frequency, an alternative single-port characterisation of S_{11} only is also possible. This measurement can determine resonant frequencies, capacitor self inductance, equivalent series resistance and capacitance by frequency.

One special benefit of measuring only S11 is that a commercial test jig is available for smaller chip capacitors, at a reasonable cost. The *HP16091A* jig requires the chip to be soldered to two contact header pins, which permit the capacitor to be inserted into the central conductor of either a 7mm or 10mm variable length coaxial airline.

The point of connection of this jig to the measuring system can be fully calibrated using *APC7* open, short and load impedance standards, **Fig. 13**.

The header pins displace the test capacitor by some 1mm from the calibrated reference plane and introduce parasitics of resistance, inductance and capacitance. In the measurement shown, this test jig was used, so the on-screen display as plotted, includes jig parasitics.

Similar looping but inductive resonances are clearly visible and the self inductance of the jig mounted capacitor, is shown as 1.8275nH. While the Smith chart default is to display impedance, the S₁₁ plot of admittance values shown, facilitates calculation of the error corrected results, **Fig. 14**.

Using suitable open and short-circuit dummy capacitors, these test jig strays can be separately quantified and used for error reductions using a computer. This results in an accurate measurement of S_{11} , for the capacitor being tested.²⁰

$$R_{x} = \frac{G_{m} - G_{o}}{((G_{m} - G_{o})^{2} + (B_{m} - B_{o})^{2})} - R_{o}$$
$$X_{x} = \frac{B_{o} - B_{m}}{((G_{m} - G_{o})^{2} + (B_{m} - B_{o})^{2})} - X_{o}$$

Where,

 $G_m + jB_m$ = measured admittance of DUT in siemens

 $\mathbf{R}_{o} + jX_{o}$ = measured jig 'shorted' in ohms.

 $G_{o} + jB_{o}$ = measured jig 'open' in siemens

This error corrected S_{11} measurement, can easily be converted into R+-jX, hence any other desired impedance parameter, exactly as described in the December 1997 article.⁹

frequencies below the series resonant point - and perhaps to one octave above it - is described exactly by the common equivalent circuit shown earlier.9

Simple measurement of impedance magnitude suffices to demonstrate this behaviour. All makers' data books include similar impedance frequency plots, permitting easy comparisons of resonant frequency and impedance minima between capacitor styles. Fig. 6.

However at higher frequencies, this simple circuit does not equate with the observed behaviour of practical capacitors.

With increasing frequency, the capacitor may exhibit either a single higher frequency parallel resonance or multiple resonances - exactly as are found with a mismatched transmission line.11 These characteristics will depend on the dielectric's behaviour and the electrode resistances.

This behaviour is clearly measurable with porcelain and high-Q ceramic multilayer chips. Consequently Dielectric Laboratories⁶ – a specialist maker of very high frequency capacitors - provides the transmission line simulation program CapCad for use with its products

References

- 1. International Conference on Components. Proc IEE 1961 p. 459. 2. UK Capacitor Market. Reed Electronics Research.
- 01816523112.
- 3. Multilayer Ceramic Capacitors. Syfer Technology Ltd.

Arminghall, Norwich NR14 8SO

4. Ceramic Multilayer Capacitor

http://www.passives.comp.philips.com

5. High-Q Chip Capacitors, Vitramon Inc. Connecticut 06468.

USA

6. ACCU-F/ACCU-P capacitors, AVX Digital Catalogue System on CD

7. Ultra Hi Q Porcelain Capacitors, Dielectric Laboratories Inc. Cazenovia. USA.

8. Fitzpatrick, J, 'Error models for systems measurement' Microwave Journal. May 1978

9. Bateman, C. 'Understanding capacitors'. Electronics World, December 1997.

10. So many electrons, so little time, AVX Digital Catalogue System CD.

11. International Conference on Components, Proc IEE 1961, p. 566. 12. HP16453A RF Dielectric test Fixture, Hewlett Packard Test and Measurement

13. Effective Impedance measurement Using Open/Short/Load Correction, Hewlett Packard, Application Note 346-3.

14. HP4286A LCR Meter 1MHz to 1GHz. Hewlett Packard Test and Measurement

15. HP4291A Impedance Meter 1 MHz to 1.8GHz. Hewlett Packard Test and Measurement.

16. Wiltron 3680 Universal Test Fixture, Wiltron Company. Morgan Hill CA. USA

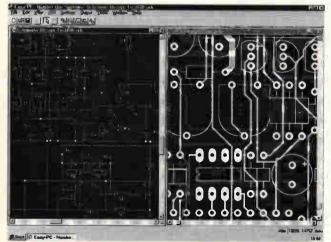
17. HP83040 Modular Test Fixture, Hewlett Packard Test and Measurement

18. PTFE laminate board Duroid 5880. Rogers Corporation. Chandler AZ85226

19. Applying the HP8510B TRL calibration. Hewlett Packard Product Note 8510-8.

20. Direct Radio Frequency Impedance Measurement. Hewlett Packard AN 302-1 and 302-2

COLOMOR (ELECTRONICS) LIMIT 170 Goldhawk Road, London W12 8HJ	ED
170 Goldhawk Road, London W12 8HJ	
Tel: 0181 743 0899 Fax: 0181 749 3934	
AS FROM 1st APRIL WE WILL BE AT:	
Unit 5, Huffwood Trading Estate, Bookers Road,	
Billingshurst, West Sussex RH14 9RZ	
Tel: +44 (0) 1403 786559 Fax +44 (0) 1403 7865	40
Email: sales@colomor.demon.co.uk	00
Visit our new web site at: http://www.colomor.demo	on co uk
OSCILLOSCOPES	511.CO.OK
TEKTRONIX 7633 with 7A18 7B53A NEW	£250.00
GOULD OS 250 Dual Trace 20 MHz	£100.00
GOULD OS 1100 Dual Trace 30 MHz.	
PHILIPS PM3217 Dual Trace 50 MHz	£300.00
Hp 180D with 1801A 1820 C IWATSU SS-5711 Dual Trace 100 MHz	£120.00
IWATSU SS-5711 Dual Trace 100 MHz	£300.00
Hp 5248L	£100.00
Hp 5328A UNIVERSAL COUNTER 7633 with 7A18 7B53A	£150.00
Hp 8616A SIGNAL GENERATOR	£250.00
Hp 5354A FREQUENCY COUNTER	£100.00
Hp 3310A FUNCTION GENERATOR.	
Hp 8375A DIGITAL MULTI-METER	
Hp 141T SPEC ANALYZER	£550.00
PRISM 7301 WIDE BAND AMP	
MARCONI TF 2171 SYNCRONIZER	£175.00
MARCONI TF 2173 SYNCRONIZER	£1/5.00
MARCONI TF 2015 Signal Generatar 10 MHz - 520 MHz	£175.00
MARCONI TF 2016 Signal Generator 10 KHz - 120 MHz	£190.00
MARCONI TF 2300 Modulation & Deviation Meter	
MARCONITE1152 A /1 MATTALETED SO OF 10 8 2514/	£25.00
MARCONI TF 2300B Modulation & Deviation Meter MARCONI TF1152 A/1 WATTMETER SO Umms 10 & 25W MARCONI TFT Microwave RF Power Meter 3MW or 3W 18 & 12 GHz	£125.00
RACAL DANA 9904 Universal Timer Counter 50 MHz	£45.00
RACAL DANA 9913 Frequency Counter 200 MHz	£50.00
RACAL DANA 9914 Frequency Counter 200 MHz	£60.00
RACAL DANA 9915 Frequency Counter 520 MHz	£80.00
RACAL DANA 9916 Frequency Counter 520 MHz	£100.00
RACAL DANA 9916 Frequency Counter 520 MHz VARTA Nicod Charger Type CC 306C 14 hr timer charge current 0-306c	£40.00
Hp 3.5mm 26.5 GHz ATTENUATOR. Hp 33321B Switchable Attenuator 0-70Db in 10dB steps	£35.00
Hp 33321B Switchable Attenuator 0-70Db in 10dB steps	£100.00
Hp 8761B SPDT RF SWITCH DC+18 GHz	£60.00
Hp 33311B COAXIAL SWITCH DC - 18 GHz	00.062
NARDA 768-20 DC-11 GHz 20W	00.063
OMNI SPECTRA SMA LEAD WITH CHARTS TO 18 GHz	£20.00
SUHNER SMA 50 Ohm Right Angle 4 Hale Fixing Socket	£1.50
ANDREWS FSJ 450 HELIAX	£3.00 per mtr.
ANDREWS LDF 250	£2.00 per mtr.


DISCOUNT FOR REELS Carriage : £10.00 + VAT @ 17.5% to be added to all UK orders.

Overseas customers please contact sales for carriage costs

CIRCLE NO. 130 ON REPLY CARD

Number One Systems

- 4th Generation Schematic Design and Printed Circuit Layout.
- By Engineers, for Engineers.
- Full links to our Analogue, Digital • and Electromagnetic simulators.
- NO pin, net or layer limits!
- **Fast, Intuitive Operation!**
- Track and Component editing - a dream!
- Superb User Interface!
- Competitive pricing!

Write, fax, phone or e-mail for full information.

UK/EEC: Ref: WW, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. e-mail: sales@numberone.com Telephone UK: 01480 461778 (7 lines) Fax: 01480 494042 International +44 1480 461778/494042 USA: Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (408) 395-0249

http://www.numberone.com

adhfmul

CIRCLE NO. 132 ON REPLY CARD

CD-ROM – free with this month's issue

Zilog Technical Library

Information representing one company's complete set of data and applications book, brought to you by leading UK Zilog distributor and design house, Gothic Crellon.

The CD ROM given away free with this issue* is the complete Zilog Technical Library CD-ROM from Gothic Crellon. It contains not only data on the company's microcontrollers, digital signal processors and communications controllers, but also a host of application notes relating to all three product areas. These notes includes a caller ID system complete with software listings, a discussion of how to use a

microcontroller as an I²C bus master and a highperformance PC COM port design. Development tools for the various product areas are also listed, together with a number of demonstrations.

Getting started

The files on this CD-ROM are presented in the familiar Adobe PDF format. You can view the files using one of the following options:

• If you already have Adobe Acrobat and the Adobe Type Manager installed on your system:

Open the 'StartCDR.pdf' file directly from the CD-ROM by double clicking on it. Alternatively, launch your installed Acrobat Reader application, open the 'StartCDR.pdf' using the OPEN command under the FILE menu

• If you don't have Acrobat Reader already installed on your system, please consult the appropriate 'Read_Me' file for your operating system for instructions on how to install Adobe Acrobat reader. The Read_Me files are located in the 'ACROREAD' directory of the Zilog 8_bit CD-ROM.

• For quick installation of the Adobe Acrobat reader, we have provided the file paths to reader installation applications below:

Windows 32-bit: d:\8BIT_MCU\ACROREAD\WIN\READER\32BIT\SET UP.EXE

Windows 16-bit: d:\8BIT_MCU\ACROREAD\WIN\READER\16BIT\SET UP.EXE

Macintosh: 8BIT_MCU\ACROREAD\MAC\Reader\Reader\Install Acrobat Reader 3.0

Unix: d:\8BIT_MCU\ACROREAD\UNIX\READER\INSTALL

*UK readers only

System requirements

Windows platforms:

- 386, 486 or Pentium-based personal computer
- Microsoft Windows 3.1, Windows 95 or Windows NT 3.5 or later
- 8MB Application RAM, 4MB hard disk space and CD-ROM drive

Macintosh platforms:

- 68020-68040 or Power Macintosh with Apple System 7.0 or later
- 8MB Application RAM, 4MB hard disk space and CD-ROM drive

UNIX versions:

- Sun OS, Solaris, HP-UX, IBM AIX
- X-Windows
- CD-ROM DRIVE

Software requirements

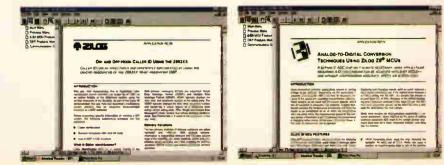
Windows:

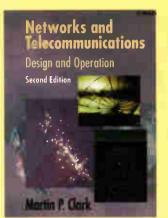
- Adobe Acrobat Reader 3.0
- Adobe Type Manager 3.x or later

Macintosh:

- Adobe Acrobat Reader 2.x or later
- Adobe Type Manager 3.6 or later

Unix:


Adobe Acrobat Reader 2.x or later


Need even more information?

If you are engineering innovative products that you believe could benefit from Zilog's dsp, comms or controller solutions, contact Gothic Crellon at 3 The Business Centre, Molly Millars Lane, Wokingham, Berkshire RG41 2EY, tel. 0118 978 8878, fax 0118 977 6095.

Being based on the widely used Adobe Acrobat file reader, Zilog's data and applications suite has been developed to run smoothely on a number of platforms, including Unix and the MAC.

Networks and Telecommunications Design and Operation

Second Edition Martin P. Clark, Telecommunications Consultant, Frankfurt, Germany

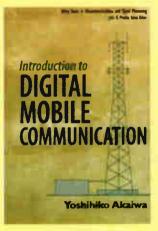
Telecommunications network design and operation is now widely regarded as an issue of business management as well as electrical engineering. In this updated edition, Martin Clark, a pioneer of this perspective, applies it to the increasing complex and diverse realm of voice, and data and multimedia networks.

Written in an accessible style and clearly illustrated throughout, this is a basic, practical and intuitive insight into modern network engineering and sections including:

- Technical accounts of modern voice, data and multimedia networks
- Coverage of ATM, B-ISDN, SDH, mobile radio and satellite networks, Internet and TCP/IP
- Practical aspects of running and setting-up networks
- Running a business based on telecommunications

A text specifically for readers new to the whole subject of telecommunications, and professional

telecommunications managers who need an introduction and reference work on all aspects of technology, operational techniques and regulation.


ISBN 0 471 973 46 7

UK £80.50 Europe £86 ROW £105

Introduction to Digital Mobile Communication Yoshihiko Akaiwa

A comprehensive treatment of the digital technologies that make personal mobile communication a reality

Although today's mobile communication engineers and designers can build upon the advances in digital telecommunications, specific technical requirements robustness against fast fading,

spectrum and power

efficiency, and the demand for low-priced equipment- post new technological challenges that demand creative solutions.

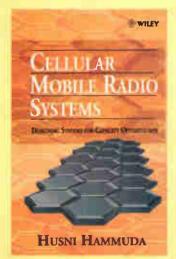
Introduction to Digital Mobile Communications is a comprehensive treatment of the digital technologies that are rapidly spawning new advances and applications. Written by a pioneer in the field, this book covers all the important concepts, from the fundamentals of signal analyses and digital communication to descriptions of the latest transmission systems. Rich in detail and broad in its coverage, this remarkable book:

- Describes equipment and circuit implementation methods and their
- performance characteristics
 Discusses elements of and methods for digital
- modulation and demodulation schemes
 Provides practical designs
- Provides practical designs and circuits for spectrumefficient modulations
 Covers mobile radio
- channels and digital mobile radio systems
- Includes extensive

mathematical treatments and mathematical models

 Presents the latest research results with detailed references

This valuable resource provides a solid introduction to mobile radio communication for the students or professional in related fields. Most important, for design engineers and equipment manufacturers, its up-to-date findings will stimulate new research and creative design and system development efforts.


Yoshihiko Akaiwa is a leading researcher in the digital mobile communication field. Currently a professor at Kyushu University, he worked as a researcher for over twenty years at the NEC Corporation ISBN 0 471 17545 5 UK £57.50 Europe £60.50 ROW £73

Cellular Mobile Radio Systems

Designing Systems for Capacity Optimization Husni Hammuda, Ericsson (UK) Ltd

Rapidly increasing demand for mobile radio frequency subscription is already pushing cellular networks to the point of overload. Of the various methods which are being explored to tackle this problem one of the most notable is the integration of advance modulation and multiple access techniques. In this book, Husni Hammuda, a pioneer of this hybrid, shows how it can be applied in practice to optimise the efficiency of mobile radio cells.

• Provides detailed criteria for

the evaluation of combinations of modulation and multiple access techniques

- Includes primary performance data as well as predictive models
- Theoretical material is explained using examples from first and second generation transmission systems
- Covers recent innovations in personal communications

For the practising cellular communications engineer this is a systematic set of solutions for improving traffic flow in cellular networks. It also includes complete theoretical and case material ideal for post-graduate network engineering researchers.

ISBN 0 471 95641 4 UK £37.50 Europe £39.95 ROW £46.95

Network-Based Images

A Practical Guide to Acquisition, Storage, Conversion, Compression and Transmission Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA

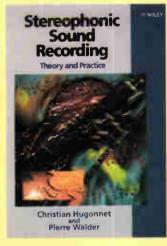
Network-Based Images offers a fresh approach to the acquisition and manipulation of visual images on computer by focusing on the network application side.

This practical Guide explains the methods used to store images electronically and discusses the popular image-based applications, such as storage, conversion and compression. Gilbert Held reviews the procedures used to minimize the effects of other image-based applications to increase efficiency.

This network oriented book provides detailed information on the transmission of images to other systems and includes an overview of the associated problems.

Features include:

- Use of images on LANs includes LAN-based World Wide Web Servers
- Use of HTML image related statements
- Techniques to avoid costly network upgrades
- How to segment LANs
- Network modifications to


counter the bandwidth effect of images upon LAN transmission

Essential reading for network managers and administrators as well as Web server administrators and personal computer users. This book will provide unique coverage of images oriented to efficient use on networks: storage, acquisition, and use in applications ISBN 0 471 97357 2 UK £37.50 Europe £39.95 ROW £46.95

Stereophonic Sound Recording

Theory and Practice Christian Hugonnet and Pierre Walder

Recent advances in digital audio have heralded substantial innovations in sound recording techniques and increased the importance of applying the latest microphone techniques. The authors of this book focus on these innovations, giving numerous examples of their use within the framework of an analysis-based recording

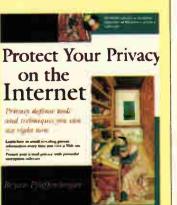
engineering theory.

The book provides a complete overview of wellknown sound recording procedures practised worldwide, whilst also presenting a methodology that will provide the reader with an efficient approach to sound recording of classical music, rock and pop music, drama and speech. The widely illustrated theoretical knowledge is presented in clear and simple language.

Building on their considerable experience of creating innovative recording techniques, the authors provide an authoritative analysis of the subject that offers valuable, practical guidance that will aid the development of new recording methods. Their inside knowledge of the requirements of the phonographic, broadcasting, film and other media industries ensures expert coverage of new products and approaches including:

- recording techniques for all types o microphones
- in-depth analysis of the principles and use of stereophonics
- influence and role of the venue acoustics on the sound recording
- guidelines for mastering and mixing different levels of sound from different sources

For professional audio engineers, this manual provides systematic advice for getting optimal performance from studio equipment. For students of audio engineering it will form a comprehensive introduction to the area of stereophonic recording, backed up by real-world case studies and a wealth of practical experience. ISBN 0 471 97487 0 UK £32.45 Europe £34.95 ROW £41.95


Protect Your Privacy on the Internet

Privacy defense tools and techniques you can use right now

Bryan Pfaffenberger

CD-ROM includes a complete collection of Windows privacy software. Is your complete life story available to anyone with Internet access? It's really not all that hard to snoop in

Continued over page

All prices are fully inclusive of packaging and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

Qty Title or ISBN	Price
Total_	
Name	
Address	
Postcode	
Telephone	
Method of payment (please circle)	
Access/Mastercard/Visa/Cheque/PO	
Cheques should be made payable to Reed Business Information	
Credit card no	
Card expirey	
Signed	

Please allow up to 28 days for delivery

cyberspace. As more and more business is conducted over the Internet, it has become increasingly difficult for both businesses and individual users to protect private information. Your reputation, Your finances, and your basic right to privacy are on the line every day. What can you do about it?

You can fight back. Protect Your Privacy on the Internet tells you everything you need to know to ensure your privacy and use the same technology that's being used against you to protect yourself. You'll get industrialstrength encryption tools to keep your affairs secret, the way they ought to be.

Bryan Pfaffenberger arms you with privacy defense strategies such as:

- Creating a bullet-proof password
- Getting your name out of the databases
- Cleaning up your browser's trails

Protect Your Privacy on the Internet gives you proven privacy defense strategies and techniques to help you make the Net a safer place to work and play. You'll get the names of Internet privacy organizations that are working to protect your privacy rights and find out what you can do to help. On the accompanying CD-ROM you'll find a collection of Windows Privacy freeware and shareware, including:

- Pronto96 an e-mail program that works in conjunction with encryption software to protect your e-mail
- Mutilate software that thoroughly erases files beyond recovery, even by expert snoopers
- Win-Secure-It® a utility preventing unauthorised access to files on your computer
- AMSD Ariadna[™] a fullfeatured browser that reads tables and Java but ignores "cookies", text files that transparently save where you've been
- Random Password Generator - a program enabling you to generate up to 1,000,000 passwords to protect you against unauthorized access to your Internet account Cyber Patrol[™] - parental

control software that prevents kids from uploading personal and demographic information to commercial sites ISBN 0 471 18143 9 UK £27.45 Europe £29.95 ROW £36.95

Internet Audio Sourcebook

The complete guide to Internet audio techniques and tools Lee Purcell and Jordan Hemphill

"The World Wide Web has spouted vocal cords, gained a voice, and begun to sing." – Lee Purcell and Jordan Hemphill

Internet Audio Sourcebook offers you a quick, easy way to acquire the knowledge, skills, and some of the tools you need to build cutting-edge audio capabilities into your Web pages, including:

- Music, narration, and sound effects
- Streaming audio for realtime broadcasts
- Automated, spoken-voice instruction
- Audio conferencing and Internet telephony
- MIDI techniques for musical training and analysis

Taking a step-by-step approach, the authors get you up to speed on the latest audio tools and techniques. First they school you in the basics of creating, processing, and storing audio data.

You learn the various methods of working with digital sound and how to use available tools to shape audio content for the Internet. Then they show you how to deliver your digital sound over the Web. They explain the HTML coding used to access audio files and teach you techniques for integrating Java applets, JavaScript code, and VBScript code into your HTML documents.

Finally, the authors show you how to get the most out of new audio technologies, including streaming audio, MIDI applications, voice synthesis and recognition, and Internet telephony, as well as covering hot new products like the Headspace Beatnik audio engine and Liquid Audio.

The CD-ROM

You get fully functional demos of top-of-the-line sound processing applications, including Sonic Foundry's Sound Forge and Hohner Midia's Samplitude Studio. Authoring tools such as Symantec's Visual Café, Aimtech's Jamba, and Acadia Software's Infuse JavaScript editor are also included. ISBN 0 471 19150 7 UK £28.45 Europe £31.95 ROW £39.95

Web Security Sourcebook

A Complete Guide to Web Security Threats and Solutions Aviel D. Rubin, Daniel Geer, and Marcus J. Ranum

The front door is unlocked and wide open. The alarm's not working and no one's home. All of your valuable, money, and intimate details of your life are just sitting inside, waiting to be taken. No, it's not your house, it's your computer.

The Web now penetrates every aspect of our lives, from the home PC to the Business office. But with each advance in convenience comes a geometric increase in vulnerability to the integrity of data and software as well as to the confidentiality of information. Although the flaws inherent in the Web are real, solutions are available. Let Aviel Rubin, Daniel Geer, and Marcus Ranum give you the answers.

Here's a book that's valuable today and indispensable for the future. It includes basic and advanced techniques for client-side and server-side security, browser security, writing secure CGI scripts, firewalls, and secure ecommerce. There's a special appendix that demystifies the complex world of cryptography. And the book comes with access to a dedicated Web site containing up-to-the minute information on the latest security threats and solutions.

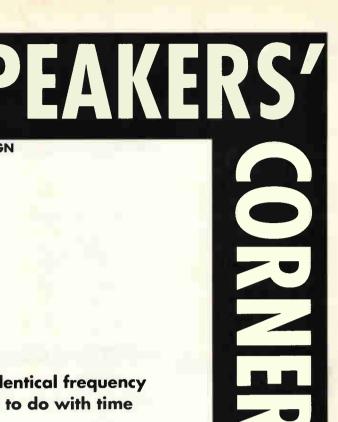
So whether you're a Webmaster trying to close the door on sites and applications, or an everyday user hoping to keep your desktop safe, this is your essential source of:

- Protecting and securing Web pages, search engines, servers, and browsers
- Writing impregnable applets and scripts, and avoiding the dangers inherent in every language
- Using (and abusing) firewalls and cryptographic controls
- Securing commerce and payment transactions
 ISBN 0 471 18148 X

UK £27.45 Europe £29.95 ROW £36.95

Encyclopaedia of Acoustics

Edited by Dr Malcolm J Crocker, Auburn University


Sound Information in 167 detailed Chapters. Now there's a new four-volume reference that covers every imaginable area of acoustics, sound and vibration - from the design of a concert hall to the intricacies of the human ear. It's the Encyclopaedia of Acoustics.

In this on-of-a-kind set, edited by well-known acoustical expert Dr Malcolm J. Crocker, you'll get:

- Extensive cross-referencing and indexing
- 2000- plus pages of insights from more than 200 international expert contributors
- An exhaustive examination of the fundamentals of acoustics and vibration in the first two volumes
- A revealing exploration of acoustic applications in Volumes Three and Four
- General Introductions at the start of every section

This up-to-date work is the definitive acoustics resource for students, engineers, scientists, and researchers in the field.

Casebound © 1997, fourvolume set approx. 2,000pp. (750pps,/volume) ISBN 0471 80465 7

How can two loudspeakers with almost identical frequency response curves sound so different? Its all to do with time response, explains John Watkinson.

AUDIO DESIGN

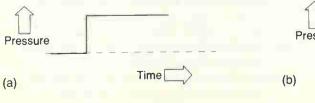
ne important way of making progress in audio system design is to test prototypes according to some objective measurement. The objective measurement criteria must be psychoacoustically based, otherwise the test will be either too stringent or not stringent enough.

Objective test results need to be carefully interpreted because they generally test only one aspect of performance. This is why good designers always combine objective tests with subjective tests. Subjective tests check everything unreliably, whereas objective tests check one thing precisely. Just because a loudspeaker – or any other device for that matter – passes a particular objective test with flying colours does not mean that it won't fail a subjective test spectacularly.

The subjective test failure indicates that a new objective test needs to be designed, to quantify the subjective problem. Unfortunately most loudspeaker designers appear to prefer a more exciting approach. While these are strong words, the supporting evidence is all around. I find it astonishing that the vast majority of today's loudspeakers sound so different from one another – and from real sounds. This can only be because the necessary test criteria are virtually unknown.

One of the ways that one musical instrument is distinguished from another is via the relative amplitude of the harmonics which determines timbre. An accurate – i.e. uniform – frequency response and low harmonic distortion are important in an audio system. Without them, the timbre would be changed. It is well accepted that a wide and flat frequency response is an essential characteristic of a loudspeaker. Naturally, such a response is worth striving for - but not in isolation.

The problem with so many loudspeakers is that in the struggle to achieve a wide and flat frequency response, techniques are used that do active harm to other aspects of the loudspeaker's performance. As these aspects are not tested, the designer is satisfied, but the listener hoping for realism is disappointed.


Identical response, different sound

How can two loudspeakers with an identical frequency response sound so different? Well, there may be many reasons, but often there will be a difference in time response and if this is impaired the realism is lost. Poor time response causes linear distortion of the waveform and is to a transient what harmonic distortion is to a sine wave.

Time response is linked through the Fourier transform to frequency response – but only if the phase response is known. The frequency response can be fanatically accurate, but it tells nothing about the time or phase response or what the speaker will sound like.

In the same way that a system which is free of harmonic distortion is said to be linear, one which is free of linear distortion is said to be phase linear. If a loudspeaker is to be transparent – i.e. add nothing of its own character to the sound – it must be phase linear. If it isn't, each transient will carry a description of the loudspeaker instead of a description of the sound source. This destroys realism and impairs localisation in stereo.

There is nothing new in this requirement. Peter Walker, founder of Quad, has been saying for a number of decades that loudspeakers should be aperiodic.

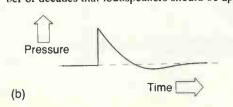


Fig. 1. Pressure-step testing. Input waveform a) should result in pressure waveform b). Most loudspeakers cannot achieve such a response.

	NEW STOCK	
PROFES	SIONAL 19" INSTRUMENT CABIN	ETS
F NOFES.	Manufactured by: KNURR BRAND NEW & PACKED	1213,
	H = 6U D = 480mm £65.00	
	H = 3U D = 480mm £55.00	
	H = 6U D = 280mm £60.00	
	H = 3U	- 1
Advantest TR413	D = 280mm £45.00 2 Spectrum Analyser 1-1GHz	£1 800 00
Aeritalia Type: TE307 Bind	Ellictric & Magnetic Field Sensor 4/01z-24/htz Co-axial Attenuator 30dB 50 2KW	£150.00 £300.00
General Radio 1265A General Radio	DC Power Supply 0-400V 0-5A	£475 00
1308A General Radio 1633A	Audio Oscillator + Power Amplifier	
HF Multicoupler HP2225A HP2225D	1 input 8/16 outputs 1-40MHz Thinkjet Printer HPI8 Thinkjet Printer RS323C	£300 00
HP3488A HP5342A HP8508A	Swrtich Control Unit 18GHz Microwave Frequency Counter Vector Voltmeter	2800.00
b d a se a		
Phi ps PM3305 Phi ps PM3352A	10MHz-520MHz with Synchronizer Portable Appliance Tester inc. CAL Digital Storage Oscilloscope 35MHz Digital Storage Oscilloscope 50 HHz Watch Anabesen 0.3 20Hz	£420 00 £600 00 £1,200 00
Rucal 9081 Rucal Dana 9478	5-520MHz Synthesized Signal Generator	
Racal Dana 9702 Racal RA1784 + MA1072	Spectrum Analytics 1-1GHz	£1,300 00
	MICROWAVE	
Continental Mic Digital Microwave	12GHz TX/RX (new)	£1,200 00
HP H 752A HP X 382A HP11691D HP11692D HP11720A	Directional Coupler 3d8 Variable Attenuator 0-50d8 8.2-12.4GHz Dual Directional Coupler	£150.00 £120.00
HP11692D HP11720A HP11722A	Pulse Nodulator 2-18GHz	£700 00 £720 00 £600 00
HP33304A HP33305A	Programmable Attenuator 18GHz 0-11d8 Programmable Attenuator 18GHz 0-110d8	£175 00 £175 00
HP33322A	Attenuator 21dB	£250 00 £250 00 £250 00
HP3350 HP5328 HP536A	VHF Attenuator 120dB DC-1GHz	£300 00
HP54111A HP8405A HP84106	Frequency Møter 3.7-12.4GHz 2GHz-5/S Test Set	£560 00 £250 00 £200 00
HP8414A		£175 00
	SELECTION OF 18-20 GHz COAXI TCHES IN STOCK: £65.00 EACH	AL
HP8502A	Transmission/Reflection Test Set 500KHz-1.3GHz	£750 00
HP8745A Marconi 6019/2 Marconi 6030/10 Marconi 6052/3	Reflection-Transmission Test Unit 2-12 4GH S-Parameter Test Set 0.1-2GHz, Calibrated Vanable Attenuator 12 4-18GHz Directional Coupler X Band Rotary Vane Attenuator 8.12-12.4GHz	£560 00 £200 00 .£200 00
Marconi 6960+6910 Maury Microwave	Power Meter 10MHz-20GHz Sliding Termination 8035H up to 20GHz	00 0002
NEC	Pasolink 50 50GHz TX/RX True RMS Level Meter Tracking Generator	£500 00 £800 00
Racal 9303 TEK TR502 Waveguide V/einschel Wilfron	Adaptor APC7-SMA (new)	£30 00
Wiltron	87A50 VSWR Bridge 2-18GHz 64NF50 VSWR Bridge 3-8GHz OSCILLOSCOPES	£400 00
Gould 4030	Director Storman 2018th Director	£350 00
Gould 05300 Hitachi Hitachi	V222 20XM2	£120 00 £300 00 £225 00
HP54111D HP54200A HP54501A	SOONIHz Droital SOMHz Droital 1000iHz Droital	£1,950 00 £750 00 £1,600 00
Iso-Tech Iso-Tech	ISR640 401 Mz	£300 00 £225 00
	Waveform Analyser DC-3.5GHz LBO 522 20MHz	£475.00 £1.500.00
Philips Philips Philips	PM3217 50WH2	£350 00 £3 000 00
Philips Philips Tek 2215	PM3325A 60MHz D.S.D 100MS/s PM3262 DC-100MHz	£1200 00 £250 00 £350 00
Tek 2225 Tek 2235	100MHz	£375 00 £600 00
Tek 2236 Tek 2245A Tek 2336 Tek 465	100MHz 100 Hz	£750 00 £950 00 £750 00
Tek 466	100 MHz	£350 00 £300 00 £425 00
Tek SC502 Tek TDS420	15MHz	£300 00 £2 950 00 £75 00
leicquip	SIGNAL GENERATORS	£75.00
Adret 7100B Adret 740A	300KHz-650MHz	£700 00 £750 00
Fameli DSG2 Fameli PSG1000	300KHz-650MHz 0.1-560MHz Two Tone Generator Synthesized 0.1MHz-110KHz 10KHz-1GHz	1,200.00
Famell DSG2 Famell PSG1000 Flann 4311A Fluke 6010A HP117108 HP2148	12-18GHz 10Hz-11MHz Synthesised Down Convertor (HP86408).	
HP3325A	Synthesizer Generator 1Hz-21MHz	E1 200 00 E1,500 00
HP654A HP80058	Test Oscullator 10MHz 0.3Hz-10MHz	£225 00 £300 00
HP8015A HP8165A	1Hz-50MHz Putse	£450 00
+HP8622C +HP862229 HP8642M	0 01-2.4 GHz Sweeper	1,500.00
HP8647A	250KHz-1000MHz	2,300.00
Marconi 2022 Marconi 6057 Marconi 6050	5 4-12 SUHz 5 SH SKH2-1040MHz 5 10KH2-1GHz 5 Signal Source 5.5-8.5GHz 5 Tvo Tone 001 201804	1,250.00 £200.00
Marconi 6059A Racal 9053 Racal 9084+9934A	Two Tone 0 01-104MHz .	£200 00 £120 00 £500 00
		_

Racal 9087 Systron Donner	10KHz-1 3GHz	£2 300 00	T
1702 Tek 504	Audio-1GHz 0.001-240MHz	£600 00 £350 00	
Tek FG501A	2MHz Function	£250 00	
Wavetek 1080 Wavetek 157	1-1000MHz Sweeper Programmable V/aveform	£800.00 £150.00	
Wavetek 159 Wavetek 171	Waveform Generator 1Hz-3MHz Synthesizer/Function	£300 00 £400 00	Ad Bo
Wavetek 185	Sweeper/Function 0-5MHz	£350.00	Fai
Wavetek 2001 Wavetek 907A	1+1400MHz 7-12,4GHz	. £600.00 . £900.00	Fai
Wiltron			Fe
6100+6223B	Sweeper 4 12 4HGz .	£500 00	FIL
	PLOTTERS/RECORDERS		Gi
HP	Draft Mester RX	£500 00	Gi
HP Colour Pro HP DraPt Pro-DXL	7575A	£45 00 £250 00	Ha
HP7475A HP7550A	Plotter RS232 Plotter	£150.00 £250.00	HP
Racal Recorders	4DS & 7DS	from £200 00	HP
Roland	X-Y Plotter DXY-1300	£120.00	HP
	RIAL FACILITIES EQUIPMENT Receiver Splitter Amplifier Type RSA-460-4M Price: 2250.00 Bandpass Duplexer, Type BPD-453-460-6N Price: £300.00 ransmitter Cavity Resonator, Type SC-450-2N	1	
	Price: £190.00		HP
4	ransmitter Cavity Resonator		HP
Тур	e SG-450-ZN c/w DT-453-2N Price: £190.00	v	HP
	Price: £190.00		HP
	DATA/TELECOMS		Ke
Anntsu	MS334A PCM Error Detector	£120.00	Ma
BT (Fulcrum)	T1020 Network Transmission Performal Analyzer	nce £500.00	Pol
Cushman Datalab OL1000	CE24 FX Selective Level Meter Programmable Transient Recorder		Ra
GN Elmi EPR31	PCM Signalling Recorder	£5,000.00	Ra
P1350A P16310	Graphics Translator Logić Analyzer	£200.00 £650.00	Ra
IP3336A IP3497A	Synthesizer/Level Generator Data Acquisition/Control Unit	£1.300 00 £400 00	Sci Sys
IP35868	Selective Meter	£400 00 From £850.00	Tei
IP3717A IP37201A	70MHz Nodulator/Demodulator HP-IB Extender	£90A £380.00	Tin
P37204	HP-IB Extender	. £380 00	W8 W8
IP3762A IP3763A	Data Generator Error Detector	£350 00 £800 00	W8
IP3764A IP37708	Digital Transmiction Analyser	£3 200.00	W8 W8
IP3780A	Telephone Line Analyzer Pattern Generator/Error Detector	£200 00 £1,100.00	W8 Adr
P3781A P3782A	Pattern Generator	£500.00 . £500.00	Adr
P4935A	Transmission Tester	.£1,100.00	Adv Ark
IP4984A	In-Service Transmission Impairment Reasuning Set	EPOA	AM
P50058 P5006A	Signature Tester . Signature Analyzer	£950.00 £50.00	Apl
P6942A	Multiprogrammer	£200 00	Cos
P8170A P8954A	Log c Pattern Generator Trancewer Interface	£600.00 £600.00	Cro Dar
watsu D342350 Marconi 2828A	0.grtal Memory 10 Bit/20ns Digital Simulator	£400.00 £200.00	Dat
larconi 2829	Digital Analyzer .	£200 00	Dat
lanconi 2831 lanconi 0A2805	Channel Access Switch PCM Regenerator Test Set	£200.00 £250.00	Fan
larconi TF2019C larconi TF2092C	Noise Generator - Many Filters Available Noise Receiver	£250 00 £250 00	Far
	Pattern Generator and SLMS (Brand		Fan
Aarcon TF2807A	New/Baxed) P.C.M. Multiplex Tester	£120 00 £200.00	Fee
larconi TF2830	Multiplex Tester	£200.00	Flui
hoenix	MK612A VTR Jitter Meter 5500A Telecommunications Analyzer	£75 00 £1,500.00	Flui
acal 202, 205	State Logic Analyzer	£150.00	Ger
chlumberger chlumberger lemens	7710 Mainframe Set 34/140 M B t/s . 02155 Level Meter/W3155 Tracking	£125 00	Gou
	Oscivator .	£150 00	HP
ek 834	Bit Error Measuring Set Programmable Date Comms Tester	£980.00 £150.00	HP
	LA4800 Logic Analyzer	£500.00	HP
18G	PS12 Level Generator	£300 00 £300 00	HP HP
/&G /&G	SPM12 Level Nuter PCM2-3 PCM Test Set	A093 00 00£2	HP
16G (8G	SBG-1 SSB Level Generator	£150.00	HP
&G	SPM19 Level Meter	£500 00 £2 500 00	HP
&G &G	MU3 Test Point Selector . PJM-1 PCM Jitter Meter	£POA £250.00	HP
	SIGNAL ANALYZERS	. 2250 00	HP
			HP
D 352 SK 2033	FFT Anaryzer Sional Anii yzer	£300 00 £2 000 00	HP
182T+HP8557A	Spectrum Analyzer 01-350MHz	6800.00	HP
~3.54A	Spectrum Analyzer 100KHz-1 5GHz Distortion Analyzer	£250 00	HP
P339A	Distortion Measuring Set Selective Volt Meter	£1,200.00 £600.00	HP
P3582A	0 02Hz-25 999KHz Spectrum Analyzer	£1,500 00	HP
arconi 2305	Audio Analyzer	£3 200 00 £2,000 00	HP
2382+2380	400MHz Spectrum Analyzer	£3 500 00	HP HP
arconi 2601	True RMS Voltmeter	£500 00	hvat
arconi TF2370	110MHz Spectrum Analyzer	£2,400 00 £600 00	Keit
LS	SMOU 21	£400.00 .£800.00	Kem
S CMS52	Comms. Service Monitor	£6,500.00	1
ectral DY. SD37		£350 00 £1,800.00	
k 7L12		2800 0083	
	SPECIAL OFFERS	100.00	
	STEDIAL OTTERS		
	FARNELL POWER SUPPLY		
Т	YPE: 60/25 0-60V 0-25A METERED – BRAND NEW £400.00		
Т	METERED - BRAND NEW		

£250.00

WATCH THIS SPACE FOR OUR WEB PAGE AD

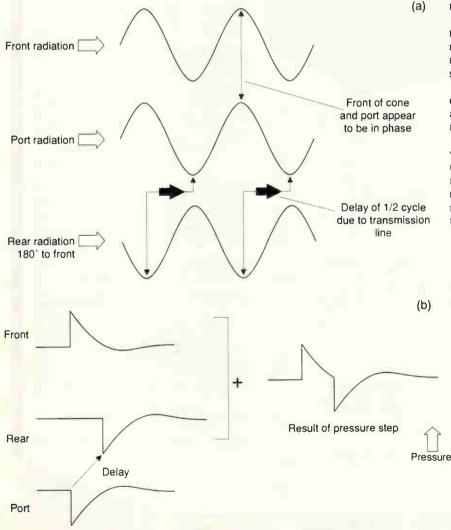
Polarad Racal Racal Racal Racal Racal Schlumb Systron

Tektronik Tinsley W&J W&J W&J W&J W&J W&J W&J W&J W&J Adret Advance Advance Advance Advance Coston H Brookdeal Cossor Crohn/Htte Dana Datron Datron Datron Parmell Farmell Farmell

	CLEARANCE (NOT TESTED)		Керсо
	CLEARANCE (NUT TESTED)		KSM
	5104 Drving Synthesizer 90-120MHz	£125 00	Level
	82AD # ndu idon Meter E350 Stabliced Voltage Supply	£200 00 £120 00	Lyons
	RB1030/35 Electronic Load 1kW 30A 35V	£300.00	Lyons
	TSV70 Mik2 Stabilised Power Supply	£180.00	Lyons
	RTS2 Recorder Test Set 8520A Digital Multi Meter	£200.00	Lyons
	8860A Ligital Multi Meter	£150 00	Lyons Malden
	GR1101A 12-18 GHz Microwave Signal Generator	0.000	Malden
	GU1328A 2-8GHz Microwave Signal	£150 00	Marconi
	Generator .	£150 00	Marcons
	RF/2305 Receiver/Exciter	£200 00	Marconi
	11713A Attenuator Switch Driver	£300 00 £300 00	Marcom
	1742A 100MHz Osci occope	£275 00	Marcon
	181A Main Frame C/w 1840A+1825A	£125 00 £120 00	Marconi
	3570A Network Analyser 50Hz-13MHz	£150 00	Marconi Marconi
	4333A Distribution Analyser	£300.00	Marconi
	435A Power Meter 4358 Power Neter	£175 00 £250 00	Marconi
	489A Microwave Amplifier 1-2GHz	£125.00	Marconi
	5315A Universal Counter 100MHz	£200.00	Marconi
	5328A Universal Counter 100MHz 5363A Time Interval Probes	£120.00	Marconi
	84128 Phase Magnitude Display	£175.00	Marconi Marconi
	84438 Tracking Generator/Counter .	£250 00	Marconi
	84458 Automatic Preselector	£250.00	Marconi
	85528 IF Section 85538 RF Section 0-100mHz 85534 RF Spectrum Analyset 0-110*Hz	£200.00	Marconi
	8553L RF Spectrum Analyser 0-110º IHz 8556A LF Spectrum Analyser		Marconi
	88801A RF Section 0 1-110 Hz	£300 00	Avarconi
	8730A Storage Normalizer	£200 00	Nontex
	4910 waterowave Ampliner 2-46Hz	£125.00	Philips
	SC/7103 Frequency Counter	£160 00	Philips Philips
	192 Programmable Digital Multimeter	£200 00	Philps Philps
	60568 Signal Source 2-4GHz	£150 00 £150 00	Philips
	1105E/FT 0 8-2 4GHz Signal Generator	£250.00	Philips
	9104 RF Power Meter	.£200.00	Philips
		£175 00 £180 00	Philips
	9921 UHF Frequency Counter	£275.00	Philips Philips
	MA1720 Drive Unit	£300.00	Philips
er Def	5000A Sweeper c/w Oscillator 5014/26	£150 00	r migas
	3 2+6 5GHz	£250 00	Philips
	464 Occ Cocceps 5761 Resistance Bridge	.2300 00	PSI
	5761 Resistance Bridge 3737A/10 HF Receiver	£120 00	PSI
	DMS107 Demodulator	£120 00	PSI
	565 Reprimer DM/112 Demodulator	£200 00	R&S Racal
	DM/112 Demodulator MTF/106A Microwave Tuning	£150 00	Racal
	MTF/106A Microwave Tuning WJ9518AE/9 FOM Demodulator	£250 00	Racal
	2230A Meguency Synthesizer 1MHz	£50 00 £75 00	Racal
	TC17 Timer/Counter	. £15.00	Racal
	SH/2400P 20-100MHz	£75 00	Racal
	7736 Digital Counter LVE30/2 Regulated Power Supply 0-30V 0-2A	£15.00	Raca
	411 Phase Sensitive Detector	£25 00	Racal
	333A Test Set 5300A Function Generator	£75 00	Racal
		£40 00 £20 00	Racal
	1030 RMS Volt Meter	£25 00	Racal
	1030A KMS IO Netter	£25 00	Racal
	2085 AF Power Meter	£40 00	Racal
	DM131 Duoital Wultimeter	£30 00	Racal
	FG1 Function Generator LFM2 Simu/Square Osciliator	£30 00	Racal Racal
	SGIB Signal Generator Interface	£30 00	Racal
	EW604 Electronic Watt Meter	. £50 00	Racal
	1953A Counter/Timer	£75.00	Racal
	8000A Digital Multimeter.	£50 00	Racal
	8010A Digital Multimeter. 1232/A Tuped Amolder & Not Detector	£25 00	Racal
	1232/A Tuned Amplifier & Null Detector	£50 00	Racal Schlum
	TC314 Timer/Counter	£20.00	Schlum SE Labs
	10254A Senal-Parallel Convertor	£25 00	Siemin
	Synchroniser	£75 00	Tek
	1600A Logic State Analyser	£40.00	Tek
	203A Vanable Phase Generator . 34658 Digital Multimoter	223 00	Tek
	3710A IF/88 Transmitter	£75 00	Tek
	37208 JF/88 Receive	£75 00	Tek Telequipment
	431C Power Meter 434A Calonmetric Power Meter	£50 00 £75 00	Telesumment
	461A Amplifier	660.003	Teleguapment
	5004A Signal Analyser 5150A Thermal Printer		
	52454 Plug In Unit & HP5245L Counter	£50.00	Thander
	5245L + 5255A Counter/Converter	£50.00	inunby
	5246L Electronic Counter	£30 00	Trio
	5302A 50MHz Universal Counter	C40.00	W&G
	59301A ASCII-Parallel Converter	130 00	W&J W&J
	29313A A/U COnverter	£30 00	W&J
	59501A HP/IB Isolated D/A/Power Supply 6111A DC Power Supply 0-20V 0-1A	240 00	W&J
	6130C Digitally Controlled Voltage Source		W&J
	8403A Modulator	£60 00	W&J
	8486A Frequency Combined Generator	£75 00	W&J
	8418A/H01 Auxiliary Display Holder	£90 00	4.8W L8W
	SS/5416A DC-40MHz Synchroscope	150.00	Wavetek
	177 Millivolt Digital Multimeter	£75 00	Wier
	DP1 1 OHz+-100KHz Phase Meter	£70 00	Writron
_			

D	RESS COMING NEXT IS	SUE
	E30/28 30V 2A Power Supply	£25 0
	T25 Pulse Generator . TG66A Transistor Decade Oscillator	£30 0 £50 0
	TM38 AC Microvolt Meter	£50 0
	PS22 Pulse Generator	
	PG73N Pulse Generator	£25.0
	PG750A Pulse Generator 1000F Mk II 10Hz-32NHz P.O. Frequency	£30.0
		£10.0
	2304A 80MHz Digital Frequency Meter	E30 0
	2437 100HHz Universal Timer Counter . 2833 A Dapital Line Monitor	£45 0 £25 0
	6050/3 Frequency Meter	
	6460 + /1 tft Power Meter	250 0
	65508 + /1 Programmable tit Power Meter 6587 Levelling Amp	£20 0
	TF2102M AF Oscillator 3Hz-30KHz	£30 0
	TF2162 MF Attenuator DC-1MHz	£30 D
	TF2163S UHF Attenuator DC-1GHz	
	TF2173 Digital Synchronizer	
	TF2331A Distortion Factor Meter.	
	TF2424 Frequency Counter	£60,0
	TF2430 80MHz Digital Frequency Meter TF2431 200MHz Digital Frequency Meter	£65.0
	TF26008 Video Voltmeter	£30 O
	TF2604 Electronic Voltmeter TF2700 Universal Bridge	
		£75 00 £30 00
	MS/500 Oscilioscope	£20 00
	6302 RCL Bridge	£75 00
		£50 00
	PE1510 Power Supply 0-35V 1A .	£20 00
	PE1511 Power Supply 0-30V 1A	£25 00
	PM2504 Electronic VA Meter PM2423 Digital Multimeter	£75 00
	PM288 Power Supply	£50 00
	PNI5108 Function Generator 1Hz-1MHz	£95 00
	PM5142 0-01Hz LF Synthesizer PM6509 Leakage Current Breakdown Voltage Meter	£60 00
	Voltage Meter	£75 00
	PM6613 250xHz Universal Counter	£50 00
		£50 00
	A102 Waveform Generator	£50 00
	Scud Radio Code Test Set	. £50 00
	1200 Series Universal Switch Controller . 4009 Digital Multi Weter	£25 00
	5001 Digital Multi Meter	
	9058 HF Selective Analyser	£40 00
	9059 Frequency Period Meter	£50.00
	9839 UHF Frequency Meter 9902A 50HHz Universal Counter.	£40.00
	9904 Universal Counter Timer	£75.00
	9904M Universal Counter Timer	£75 00
	9906 Universal Counter Timer	£50 00
	9911 Frequency Counter .	. £50 00
	9912 Frequency Counter	£50 00
	9913 Frequency Counter . 9914 UNF Frequency Counter	£50 00
	39 14M ZOUMINZ Frequency Counter	£ 50 UU
	9915 UHF Frequency Meter	. £90 00
	9916 UHF Frequency Meter	£70.00
	9960A 200MHz Universal Counter	£65.00
	GPIB Interface 110	£40 00
	9905 Universal Counter Timer	£50.00 £20.00
	A220 Digital Volt Meter	E25 00
	SM2058 Automatic Counter Timer	£20 00
	7KB4304 Watt Meter	£75 00 £75 00
	191 Constant Amplitude Signal Generator	
	453 Oscilloscope	£60 00
	Time Mark Generator 106 Squarewave Generator	£50.00 £30.00
	D83 Oscilloscope System	£40 00
	01011 Oscilloscope	£40 00
	D34 10MHz Oscilloscope.	£40 00
	DM64 Oscilloscope	£75.00
	OM358 Scope Multiplexer	.£45.00
	CS/1566A 20MHz Oscilloscope	. £60.00
	SMP/31 Level Meter 200Hz-620KHz	£80 00 . £30 00
	TDM/102/1 Telephone Demodulator	£15 00
	TFC103 Telephone Frequency	£30 00
	UH101 Tuning Head	£75 00 £40 00
		£40 00 £75 00
	521A Receiver	£75 00
		£30 00
	TDM/110 Basic Group Demodulator 147 HF Sweep Generator 0 0005Hz-10MHz	£10 00 £50.00
	460 Power Supply 0 3A 0 60V	£50.00
_	501 Logic Level Meter	£60 00
-		_

TELFORD ELECTRONICS


Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford, Shropshire TF6 6DJ, UK Phone: (00 44) 01952 605451 Fax: (00 44) 01952 677978 e-mail: telfordelectronics@telford2.demon.co.uk Carriage: £10+VAT @17.5% to be added to all UK orders Overseas orders welcome - Please call

ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE. (EXCEPT CLEARANCE ITEMS WHICH ARE SOLD AS-IS) And there is an increasing body of psychoacoustic research that supports the view.

Time response testing is remarkably easy, as Fig. 1 shows. Voltage step a) is fed into the speaker. An ideal speaker will reproduce the leading edge of the step, but the raised pressure caused by the step cannot be maintained in the surrounding air. The waveform due to the pressure equalisation can be calculated, and is shown in b). Any speaker that cannot reproduce something like b) is suffering from linear distortion.

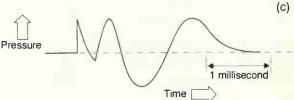
Damaging techniques

The most damaging techniques employed for bandwidth extension in loudspeakers are often found at the low frequency end. The transmission line speaker uses a long duct leading from the rear of the driver to a port. At the frequency where port augmentation is required, the duct causes a delay of half a cycle. Figure 2 shows that for a sinusoidal input, a delay of half a cycle is the equivalent of an inversion, and the port output is now in-phase with the radiation from the front of the driver.

Unfortunately the assumption that a time delay is the same thing as an inversion is fallacious. Figure 2b) shows that the step response is a double pulse, which describes the design of the speaker to the listener. Transmission lines speakers are not phase linear and cause linear distortion.

By definition, any loudspeaker employing in-band tuning or resonance cannot be phase linear. This includes reflex tuning, auxiliary bass radiators and band-pass enclosures. All of these techniques cause linear distortion and cannot reproduce a step. A generalisation, which is none the less true, is that any loudspeaker enclosure having a port will suffer from linear distortion.

This saves a lot of unnecessary testing because you can tell it's not going to work just by looking. Figure 2c) shows the result of a step test on a highly regarded reflex loudspeaker. It's basically out of control.


The only low-frequency transducer of practical size which can be made phase linear is the sealed box. The driver has a fundamental resonant frequency. But with a suitable damping factor there is no resonant behaviour and the speaker behaves like a high-pass filter.

With a suitably accurate signal processor, such as those described from time to time in this magazine, the response of the loudspeaker can be extended below the natural resonance, making large enclosures unnecessary.

Active loudspeaker techniques allow wide, flat frequency response without impaired time response. The audible result is so superior that alternatives are really not worth considering where accuracy is paramount.

Resonant techniques had a place in earlier times, when electronic signal processing was expensive and unreliable and amplifier power was limited. We should recognise and respect the achievements of those pioneers who made these technologies work within the restrictions of the time, but we must also recognise that those restrictions no longer apply.

Fig. 2. Transmission loudspeaker assumes that a delay is the same as an inversion, a). This is only true for a sine wave. The result is linear distortion of transients. Waveforms in b) show that the transmission line speaker fails the pressure step test. Waveforms c) represent a typical pressure step test on a reflex loudspeaker. Note repeated transients due to resonant low-frequency design and crossover.

The Home of *Hi-Finesse*. Its not what you do, its HOW you do it that counts!.

Hart Audio Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very best audiophile components, and our own engineering expertise, to give you unbeatable performance and unbellevable value for money. We have always led the field for easy home construction to professional standards, even in the sixtles we were using easily assembled printed circuits when Heathkil in America were still using tagboardsi. Many years of experience and innovation, going back to the early Dinsdale and Balley classics gives us incomparable design background in the needs of the home constructor. This simply means that building a Hart kit is a real pleasure, resulting in a piece of equipment that not only saves you money but you will be equipment that not only saves you money but you will be

equipment that not only saves you money but you will be proud to own. Why not buy the reprints and construction manual for the kit you are interested in to see how easy it is to build your own equipment the MART way. The FULL cost can be credited against your subsequent kit purchase.

'AUDIO DESIGN' 80 WATT POWER AMPLIFIER.

opeaner terrinitale and an are aloo available rabioly aboutbics.
K1100 Complete STANDARD Stereo Amplifier Kit, £415.21
K1100S Complete SLAVE Amplifier Kit,
K1100M Complete MONOBLOC Amplifier Kit, £271.20
RLH11 Reprints of latest Amplifier articles
K1100CM Construction Manual with full parts lists £5.50

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really Is incredible giving better tonal balance between channels and rock solid image stability. Motorised versions have 5v DC

MANUAL POTENTIOMETERS 2-Gapo 100K Lin

2-Gang 10K, 50K or 100K Log
2-Gang 10K Special Balance, zero crosstalk and zero centre
loss£17.48

C15.67

MOTORISED POTENTIOMETERS

2-Gang 20K Log Volume Control 2-Gang 10K RD Special Balance, zero crosstalk and less the loss in centre position £26 20 £26.98

TOROIDAL MAINS & OUTPUT TRANSFORMERS for EL34, 32W VALVE AMPLIFIER

Special set of toroidal transformers, 2 output & 1 mains for the "Hot Audio Power" valve amplifier design described in the Oct. 1995 Issue of "Wireless World". Total Wt 4.8Kg. Special price for the set. £99, Post £8 RJM1. Photocopies of the Article by Jeff Macaulay. £2

PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks the three most important tape parameters without test equipment. Ideal when fitting new heads. A professional quality, digitally mastered test tape at a

price anyone can afford. Test Cassette TC1D. Our price only

Send for Your FREE copy of our LISTS

SHUNT FEEDBACK PICKUP PREAMPLIFIER

If you want the very best sound out of vinyl discs then you need our high quality preamplifier with Shunt Feedback equalisation. The K1450 also has an advanced front end, specially optimised for low impedance moving coil cartridges as well as moving magnet types. Selected discrete components are used throughout for ultimate sound quality. The combination of John Linsley Hood design, high quality components and an advanced double sided printed circuit board layout make this a product at the leading edge of technology that you will be proud to own. A recent review in "Gramophone" magazine endorsing this view. Bought In kit form our step by step instructions it is very easy and satisfying to assemble, or you can buy a factory assembled version if you wish. This magnificent kit, comes complete with all parts ready to assemble inside the fully finished 228 x 134 x 63mm case. Comes with full, easy to follow, Instructions as well as the Hart Guide to PCB Construction, we even throw in enough Hart Audiograde Silver If you want the very best sound out of vinyl discs then you need our

PCB Construction, we even throw in enough Hart Audiograde Silver Solder to construct your kit!

K1450 Co	mplete Kit																		£116.58
K1450SA	Audiophile	Kit																	£138.94
A1450SA	Factory as	sen	nb	le	d	A	υ	dia	op	bh	ile	9 1	ur	nit					£188.94

"CHIARA" HEADPHONE AMPLIFIER.

Highest quality, purpose designed, 'single ended' class 'A' headphone amplifier for 'stand alone' use or to supplement those many power amplifiers that do not have a headphone facility. Easy installation with special signal link-through feature, the unit uses our 'Andante' Ultra High Quality power supply. Housed in the neat, black finished, Hart minibox it features the wide frequency response, low-distortion and 'musicality' that one associates with designs from the renowned John Linsley Hood. Volume and balance controls are Alps "Blue Velvet" components.

£115.46

A2100SA 'Series Audiophile', Factory Assembled . CM2100 Construction Manual £115.46 £2 50

Andante" Linear Technology AUDIOPHILE POWER SUPPLIES The HART "Andante" senes power supplies are specially designed for exacting audio use requiring absolute minimum noise, low hum field and total freedom from mechanical noise.

SPEAKER DESIGN SOFTWARE.

VISATON "Speaker Pro 6" is a complete speaker design program for use on IBM machines. Covers cabinet and crossover design and contains a full expandable database of drive units. Earning a "most reccommendable" accolade it tests this program is ideal for the professional speaker builder or serious audiophile. 0303 Speaker Pro 6. 3.5"Disk £45.51

SPEAKER DAMPING MATERIALS

Polyester Wool and Pure Lambs Wool both have optimal damping

WILMSLOW AUDIO Tel. 01455 286603

Fax. 01455 286605

All Prices include UK/EC VAT.

SPECIAL OFFERI. SOLENOID CONTROLLED FRONT LOAD CASSETTE DECK SFL800 High quality (0.08%/W&F) cassette mechanism with capability of using standard or downstream monitor R/P head. Offers all standard facilities under remote, logic or software control. The control requirements are so simple that for many applications not needing all functions manual switches will suffice. Power requirements are also simple with 12v solenoids and 12v speed controlled Motor, total power requirement being under 300mA. Logic control and wiring circuits are included free with each deck. SFL800 Deck with Standard stereo head <u>\$29.50</u> SFL800D Fitted with High Quality Downstream monitor head. £44.90 (The Head alone is normally over £60!)

HART TECHNICAL BOOKSHELF Try us for:- Bigger Range of Books, Better Prices, NO "28 Day Wait"

NO "28 Day Wait"
NO "28 Day Wait" New Titles. "A BEGINNER'S GUIDE TO TUBE AUDIO DESIGN" Bruce Rozenblit. A practical book that does exactly what its title says and takes a modern look at valve amplifer construction. 132pp. ISBN 1- 88280-13-3 "HIGH PERFORMANCE LOUDSPEAKERS" Edn.5. Martin Colloms. Latest edition, just out. A really in-depth coverage of the whole World of speakers and high quality sound reproduction, but entirely readable in style. Just reviewed in "HIFI World". 478pp. ISBN 0-4719-7089-1 E24.95' "AUDIO ELECTRONICS" John Linsley Hood
AUDIO" F.A.Wilson, BP111
AUDIO" F.A.Wilson. BP111
R.A.Penfold. BP267£3.50
"THE HART PRINTED CIRCUIT BOARD CONSTRUCTION
GUIDE." £2.50
"A SIMPLE CLASS A AMPLIFIER"
J.L.Linsley Hood M.I.E.E. 1969. RLH12 £2.75 "CLASS-A POWER" Single Ended 15W Amp.
J.L.Linsley Hood M.I.E.E. 1996. RLH13
LOUDSPEAKERS; THE WHY AND HOW OF GOOD
REPRODUCTION. G.Briggs. 1949. £8.95 "THE LOUDSPEAKER DESIGN COOKBOOK" Vance Dickason. (5th Edn.) £23.95"
Vance Dickason. (5th Edn.)
Vance Dickason. (Sth Edn.) £23.95* ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUCTION Ronald Wagner BKT6 £15.95
"THE ELECTROSTATIC LOUDSPEAKER DESIGN COOKBOOK" Roper P. Sanders, 1995 524 95
"BULLOCK ON BOXES" Bullock & White \$10.95 "AN INTRODUCTION TO LOUDSPEAKERS & ENCLOSURE
DESIGN® V Coool BP256 C2 05
"LOUDSPEAKERS FOR MUSICIANS" BP297 £3.95
"THEORY & DESIGN OF LOUDSPEAKER ENCLOSURES"
J.E.Benson £21.95 "QUICK & EASY TRANSMISSION LINE SPEAKER DESIGN"
Larry D.Sharp £8.95
"THE COUPLED CAVITY HANBOOK" David Purton £4.90
"VISATON, HOME HI FI CATALOGUE." Full Specifications and
Thiele Small Data on all Drive Units
"VISATON, CAR HI FI CATALOGUE." In car guide £3.50
"VISATON, CABINET PROPOSALS" Book 1. In GERMAN £6.50 "VISATON, CABINET PROPOSALS" Book 2. In GERMAN £6.50
"SPEAKER PRO 6." VISATON Cabinet Design Software £45.51
"SPEAKER PRO 6." Demo Version with drive unit database £9.28
"VALVE AMPLIFIERS" Morgan Jones. 1995/6
THE VTL BOOK David Manley 1994, BKVT1
£11.95
THE WILLIAMSON AMPLIFIER. 0.9624-1918-4
volumes covering the days when audio was young and valves were kingl. BKAA3/1 to 6. All £12.95 each "THE RADIOTRON DESIGNERS HANDBOOK" (CD) £49.00 "PRINCIPLES OF ELECTRON TUBES" H.D.Reich PH.D. £25.95
"POWER AMP PROJECTS" Anthology. 1970-1989. £15.50 "WORLD TUBE DIRECTORY" 1996-7 Sourcebook of valve related products £5.95
Fuller descriptions of the contents of all our books is given in our full catalogue, price

Postage on all books, unless starred, is only £2 per book, maximum £4.50 for any number, any sizel. Starred items are heavy books costing £3.50 to send.

Don't forget No waiting at HARTI. All listed books are normally In stockl. Just ring with your Credit Card Number for instant despatchi.

Fuller Details of ALL kits are given in our List, FREE on request. WILMSLOW AUDIO

LE9 6RD

CIRCLE NO. 134 ON REPLY CARD

Please quote "Electronics World" when seeking further information

ACTIVE

Linear integrated circuits

3V rf receivers. Two GaAs rf receiver ics by TriQuint, the TQ9225 and TQ9228, provide makers of CDMA PCS telephones with a means of meeting the IS-95/98 standards, both containing a multi-stage downconverter chain and having a local-oscillator buffer to drive the transmitter circuitry. Conversion gain is 28dB for the 9225 and 27dB in the 9228, noise figure 2.3dB (2.6dB) and input third-order intercept point at –9dBm. Local-oscillator frequency range in the 9225 is 1710-1790MHz (2015-2075) and if range 210-212MHz (84-86MHz). Pronto Electronic Systems Ltd. Tel., 0181 5545700; fax, 0181 5543222 Enquiry no 501

Charge-sensitive preamp. Using the newest j-fet techniques to obtain an open-loop gain of 85dB at 200MHz and low noise, the *IFPA-300* is intended to buffer high-impedance, low-level signals into 50W. The device consists of eight-channel, epitaxial, diffused-gate j-fets to form

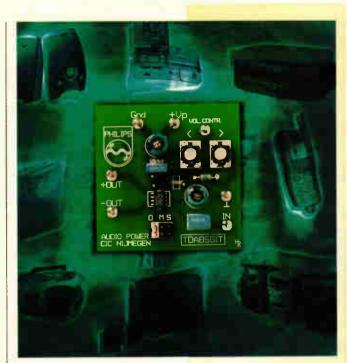
Discrete active devices

Rf power. Rf power transistor PTB20245 by Ericsson puts out 35W pep in the 2.1-2.2GHz frequency band. It is a Class AB type, meant for use as a final or driver stage in wideband CDMA or TDMA application. Minimum gain figure is 7.5dB (typical 8.2dB) at 10W output power and gain linearity 0.3dB. At 1dB compression, power output is 35W at a collector efficiency of 40%. *PTB20245* has an intermodulation distortion figure of -38dB at 28W pep and tolerates a load mismatch of 5:1. Ericsson Components AB Tel., 01793 488300; fax, 01793 488301 Enquiry no 505

an inverting transimpedance amplifier to handle detector capacitance input of 100-1000pF. Input referred noise figures are 3nV//Hz and 0.6nV//Hz at 10Hz and 10kHz respectively. *IFPA-300* is packaged in a 4.2mm high, 9mm diameter TO-99 and the 301, which is electrically the same, comes in an SOIC-8 package. MCP Electronics Ltd. Tel., 0181 5182000; fax, 0181 5183222. Enquiry no 502

Memory chips

3.3V srams. 32-bit wide, 3.3V asynchronous srams from IDT, the IDTMPV4060/4145 have standard pin arrangement and are pin-compatible with each other and with future devices with larger densities. The 4060 has four 128K by 8 srams in plastic small outline J-lead packages (SOJ), while the 4145 has eight 256K by 4 srams in SOJ, both being 72-pin simms taking up 1sq.in of board space. Integrated Device Technology. Tel., 01372 363339; fax, 01372 378851.


Enquiry no 503

Sram+flash. With an eye on the GSM market, Toshiba has introduced the *MCP*, a 1sq/cm ball-grid array device that combines Nor-flash memory and sram, so taking up around 70% less board space than separate components and reducing wiring. Current devices combine 1Mbyte or 2Mbyte sram with 4Mbyte or 8Mbyte Nor-flash memory, the sram being used for functional control and the flash for program storage. Toshiba Electronics UK Ltd. Tel., 01276 694600. Enquiry no 504

Microprocessors and controllers

Eight-bit microcontroller. NEC's 78K/0S series of low-cost, generalpurpose, 8-bit microcontrollers give improved performance over and many of the features of the established 78 series. These devices are not riscbased and provide good event capture, i/o manipulation and have extensive interrupt resources and timing. Instruction process time is 0.4ms with a 5MHz clock and supply needed is 1.8-5.5V. In some models in the range, prom and flash memory can be specified. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908 670290 Enquiry no 506

Inexpensive microcontroller. Canadian company Intec Inoventures has introduced the *Freedom 16* microcontroller, which is said to provide more power, versatility, memory and i/o than some others while costing less. The processor is a *68HC16* 16-bit type and there are 30 i/o ports, a-to-d ports, RS485 and

debug ports, expansion bus and lcd and keypad port; memory is up to 256K of ram and 256K of flash eprom. Programming is in C and an assembler, editor, communication and debug software is available. The board is available in two versions: the 16V 1.2 at £299 or £499 with C compiler and library; and the 16V 2 at £199 or £359 with the software. Electroustic Ltd. Tel., 01264 333664; fax, 01264 333665. Enquiry no 507

Mcu with USB facility. Mitsubishi's Slim 740 microprocessor pack includes development tools and an evaluation board. Two types are available with double-speed mode to give the option of a full Universal Serial Bus or a low-cost, non-USB type. Both use the company's 8-bit 740 controller with integrating serial i/o, 8-bit timers and a 10-bit a-to-d converter. There is 8K of rom and 256byte of ram; minimum instruction time is 0.34ms or 0.5ms in the lowcost devices. All types have 69 basic machine language instructions and 29 programmable i/o ports. IEC Micromark Electronics Ltd. Tel. 01628 676176; fax, 01628 783799. Enquiry no 509

28 controller with eeprom. *286144* from Zilog is an 8-bit type having a 16byte user-addressable eeprom, 1Kbyte of rom, 60byte ram, two analogue comparators, a pair of counter-timers and a watchdog timer. The eeprom may be used to hold encryption seeds, calibrations, ID numbers, data codes and the like that can be erased and written in circuit.

Linear integrated circuits

Audio power. Philips claims its TDA8551 audio power amplifier to be the first of this type to possess a digital 80dB volume control operated by push-button. From a 5V supply, the device puts out 1.4W into an 8Ω bridgetied load; immunity to rf interference from nearby sources is low. Its single volume-control pin may also be driven by a digital i/o port and another pin mutes the amplifier or puts it into standby. Thd is less than 0.15% at 0.5W, ripple rejection over 50dB and there is short-circuit, electrostatic discharge and thermal overload protection. Philips Semiconductors (Eindhoven). Tel., 00 31 40 2722091; fax, 00 31 40 2724825. Enquiry no 508

Zilog can provide a remote, keylessentry, rolling-code reference design using the eeprom to hold values for the encryption of signal between transmitter and receiver and includes resynchronisation. Zilog UK. Tel., 01628 639200; fax, 01628 781227. Enquiry no 553

Optical devices

Better ccds. Sony has a new generation of charge-coupled-device image sensors that use Super HAD (Hole Accumulating Diode) techniques to provide increased resolution and brightness and smaller

Please quote "Electronics World" when seeking further information

overall size. This is an improvement over the plain old HAD, in that Sony has improved the shape of the polymer microlens structure over each individual pixel in the new technique to give, in the *ICX206AK* 0.25in ccd with 250,000 pixels for example, a 30% increase in focussing efficiency and consequently a 4dB improvement in sensitivity over earlier units, with no s:n degradation. Saturation signal level at 900mV is 25% higher than before. Sony Semiconductor Europe. Tel., 01256 478771; fax, 01256 818194. *Enquiry No 510*

Laser diodes. A new serles of Sanyo aluminium gallium arsenide laser diodes are for free-air communications, cd-roms, bar-code scanners and many other uses. Output powers range from 20mW in the *DL-4034* to 150mW in the *DL-8032*, operating at wavelengths from 780nm to 830nm at –10°C to 50°C. There is also a 30mW device, the *DLLS52*, working at 655nm. Semicom UK Ltd. Tel., 01279 422224; fax, 01279 433339. Enguiry No 511

Three-level led bars. The *TRA T1* Series of three-level, right-angle leds by Wilbrecht includes versions with one three-level housing or up to 35 such housings in a bar assembly 152mm long. They are available with a variety of led types, including highefficiency red, green, yellow and orange types and ultra-bright types. Bicolour and low-current versions are also available, as are light shields to prevent light spillage. TW Electronics Ltd. Tel., 01635 278585; fax, 01635 278122.

Enquiry No 512

Oscillators

Clock oscillator. Model H-3298 clock oscillator by MF Electronics in New York offers low jitter at up to 170MHz by operation at a high overtone of the natural frequency, as opposed to frequency multiplication and meets the needs of ATM, SONET and SDH circuits, while contained in a package 0.52in square by 0.2in. Jitter is less than 10ps rms, the oscillator takes 10-55mA, depending on frequency and 5mA when a pin is grounded to stop oscillation. Stability is 20ppm over the 0-70°C range and drift ±3ppm or less in the first year. Output is compatible with cmos or ttl logic. MF Electronics Inc. Tel., 001 914 576 6570; fax, 001 914 576 6204. Enquiry No 513

Power semiconductors

Input rectifiers. International Rectifier has three new device types for input rectification: SAFEIR diodes and thyristors protect against surges and spikes; QUIETIR soft-recovery diodes that give reduced emitted and conducted noise with low forward drop; and SMALLIR moat-processed diodes and glass-passivated scrs rated at up to 25A, 1.6kV, in D-Pak and D²Pak sm packages. International Rectifier. Tel., 01883 732020; fax, 01883 733410. Enguiry No 514

Liquity NO 514

Power mosfets. Temic's newest Little Foot SO-8 power mosfets have 80V and 100V drain/source ratings. There are four new ones: the 80V, single *Si4480DY* handling up to 6A and with an on resistance of 35mW; the *Si4980DY* dual version; the 100V *Si4482DY* and its dual version *Si4982*. IEC Micromark Electronics Ltd. Tel., 01628 676176; fax, 01628 783799. *Enquiry No 515*

Cameras

Three-chip camera. Sony's MCC-1 3.3V three-chip set, with the addition of a colour ccd, forms a light, cheap NTSC camera for makers of multimedia equipment. The chipset performs all driving and signal processing and takes Sony ccds from 1/5in types giving 180k pixels to 1/4in units at 250k pixel resolution. The three chips consist of the CXD3123R signal processor with a/d and d/a converters to provide both analogue and digital output; the CXA2006Q (5V) or CXA2096N (3.3V) head amplifier; and the CXD1267AN ccd driver for NTSC systems. Sony says it has no plans for a PAL set. Sony Semiconductor Europe. Tel., 01256 478771; fax, 01256 818194. Enquiry No 516

Passive components

Ethernet transformers. Fast Ethernet transformer modules in surfacemounted packages are designed for use in 10/100 BaseT networks. The series consists of single and multi port devices, the singles (H1012, 1019, 1042) each containing the transformers and chokes for an integrated transmit and receive channel for single-port application. Also available are the two-channel H1026 and the four-channel H1044. These modules work with current transceivers needing a 1:1 turns ratio and there are pinout options to suit customers' needs. All work with unshielded, data-grade, twisted pair cable and have an insertion loss of 0.5dB from 100kHz to 100MHz and cmrr of 30dB from 100kHz to 60MHz. Pulse. Tel., 01483 428877; fax, 01483416011.

Enquiry No 517

Miniature solenoids. Densitron has a range of miniature latching solenoids to provide a holding force, in the smallest model, of 100g and in the largest, 400g. They need 1W pull-in

power and 10W to release. The smallest versions are of a size to fit into a camera to operate the shutter. Densitron Europe Ltd., 01959 700100; fax, 01959 700300. Enguiry No 519

S-m wire-wounds. WSM Series wirewound, surface-mounted resistors by Welwyn can be picked-and-placed by automated equipment at the same time as standard s-m components. They come in 1W and 3W ratings in E24 values from 0.05Ω - 900Ω for the 1W types and 0.01Ω - $10k\Omega$ for the 3W version and in tolerances of 1, 2, 5 and 10%. Welwyn Components Ltd. Tel., 01670 822181; fax, 01670 827434. Enguiry No 520

Thermistors. Cera-Mite ceramic positive-coefficient thermistors for overcurrent protection come in a range of hold currents from 5mA to 1.5A and in a size range of 4-22mm. The thermistors remain latched in the tripped state, resetting after the removal of voltage, with no hysteresis, so that the initial resistance value is retained. Acal Electronics Ltd. Tel., 01344 727272; fax, 01344 424262. Enquiry No 521

Connectors and cabling

Optical connectors. Deutsch has introduced the smallest member of its *MC5* range of multi-way optical fibre connectors. The fourway shell No 13 uses 1.25mm diameter zirconia ceramic ferrules and lightweight shells to MIL-C-38999. Spring-loaded optical contacts may be individually inserted or removed for easy assembly and the removable alignment insert allows simple cleaning. Insertion loss is 0.25dB and repeatability better than 0.1dB with 50/125mm fibre. Deutsch Ltd. Tel., 01342 410033; fax, 01342 410005.

Enquiry No 518

Chip electrolytics. Sanyo has announced a new range of 125C chip capacitors, the CV-PX family, which contains components in values from 33 μ F to 680 μ F and voltage ratings of 6.3-50V. These surface-mounted capacitors are solvent-proof. Inelco Ltd. Tel., 0118 9810799; fax, 0118 9810844. Enquiry No 522

Communications equipment

DECT line interface. Ericsson's PBL38571 is a universal speech circuit ic intended for use as a line interface in fully balanced DECT equipment or as a speech interface in electronic telephones. It is designed to be used with a low-impedance microphone and balance to ground is conferred by the differential microphone input; a balanced output is provided for DECT use. For flexibility, line balance, frequency response, side tone level and gain are set by external components, a total of five capacitors and ten resistors. A mute function is provided for use with a dtmf generator during dialling and the device starts up quickly, as there is a temperature-regulated voltage reference to settle the line voltage to its final value rapidly and with little overshoot. Ericsson Components AB. Tel., 01793 488300; fax, 01793 488301

Enquiry No 523

Dsp for comms. A digital signal processor for use with digital cordless telephones, answering machines and Internet appliances is announced by Lucent. It operates at 100Mips, which is three times as fast as others costing about the same – \$4.95 in large numbers. Devices using the DSP1609 are able to do several things at once, such as caller identification, speakerphone, digital cordless telephone, digital answering machine and modem. The device runs from both 5V and 3.3V and needs only 1mA/Mips; it has 2K of

Please quote "Electronics World" when seeking further information

ram and 24Kword of rom. Lucent Technologies. Tel., 0118 932 4299; fax, 0118 932 8148. Enguiry No 524

Connectors and cabling

Russian plug. Interpower's new mains plug is more or less the same as the European CEE 7/4 unit, but with 4mm pins. The *Schuko* rewirable plug has a 250V/16A ac rating and meets all the major European standards. Interpower Components Ltd. Tel., 01243 842323; fax, 01243 842066.

Enquiry No 525

Crystals

Thin crystals. Tele Quartz has a new range of slimline crystals in the HC-52/U SL leaded or surface-mounted package, which is 2.3mm in height. The crystals are AT cut and come in frequency ranges from 3.5MHz to 360MHz, with temperature stabilities of ± 1.5 to ± 50 ppm, temperature stabilities of ± 1.5 to ± 50 ppm, temperature ranges of 0.50° C and -55° C to 105° C. Ageing is less than 3ppm/year at 23° C, drive level 0.1mW and shunt *C* under 7pF. Webster Electronics Ltd. Tel., 01460 57166; fax, 01460 57777.

Enquiry No 526

Displays

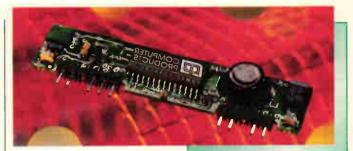
Multi-image monitor. SuperView VGAplus by RGB Spectrum is a video windowing system for the display of the images from several computers

Literature

Farnell. More than 1000 new products are described in Farnell's Semiconductor New Product Brochure, all of them being new to Farnell since October. The brochure is included with the newest 33-page Semiconductor Application Directory, which includes a "getting started with PIC microcontrollers" section, and they are also available in cd-rom form that holds more than 13500 data sheets. Unfortunately, the cd sent my computer to sleep, from which it refused to wake up without the application of Ctrl+Alt-Del. Farnell Components Ltd. Tei., 0113 2636311; fax, 0113 2633411 Enquiry No 527

simultaneously on one monitor, designed for use in operations centres, control rooms, presentation and training. It is compatible with pcs and workstations and takes up to six 1280 by 1024 inputs for display either as windows or in the background, Pal or NTSC and S-Video display being an option. Each image may be positioned independently and sized from icon size to full screen and can be panned and zoomed. The equipment is an external standalone computer peripheral and may be controlled from the front panel or by RS-232 port; software for control under Windows is available. Gothic Crellon Ltd. Tel., 01734 776161; fax, 01734 776095 Enquiry No 528

Hardware


S-m bobbins. A full range of surfacemounted bobbins for chokes and transformers is now available from BFI-IBEXSA. Specially designed types are available, as are samples. BFI IBEXSA Electronics Ltd. Tel., 01622 882467; fax, 01622 882469. Enquiry No 529

Silm fans. Papst's 405F/412F/424F range of 40mm square cooling fans are all 10mm thick and deliver a flow of eight cubic metres/h while running on 5/12/24V dc; a flow of 10m³ h can be provided by a further range of 20mm deep versions. Motors are electronically commutated, externalrotor types, protected against reverse polarity and with impedance protection against blocking and overload. Special bearings confer low noise. XP plc. Tel., 0118 9845515; fax, 0118 9843423. Enquiry No 530

Another slim fan. This one is not very big in any direction, being 45mm square, 10mm thick and intended to cool the processor in notebook computers. Sanyo Denki's miniature version of its *San Ace MC* range of coolers is only half the size and weight of its mightier cousins and has a thermal resistance of 3.2°C/W with an acoustic noise level of 28dBA. The unit is protected against reverse connection and locking of the rotor. EAO-Highland Electronics Ltd. Tel., 01444 236600; fax, 01444 236641. Enquiry No 531

Test and measurement Four-channel dso. Nicolet's new

Integra 60 four-channel digital oscilloscope and transient recorder has a colour display, a sampling rate of 100Msample/s and real-time data analysis. The instrument uses 8-bit digitisers to give the sampling rate and to provide 5Gsample/s equivalent real-time sampling at a bandwidth of 200MHz; optional expansion facilities provide for a memory capability of 200ksample/channel. Acquisition modes include multi-shot for rapid

storage and recall, autocycle for auto capture and storage to disk, averaging and persistence to simulate a long-persistence crt. Optional analysis includes FFTs, integration and differentiation, histograms, trends and filtering, all at high speed. There is an internal floppy disk drive and the options of a hard disk and thermal plotter. Nicolet Technologies Ltd. Tel., 01908 679903; fax, 01908 677331. Enquiry No 532

3-phase wattmeter for motors. From Yokogawa comes the

WT1030M, which is a three-phase digital wattmeter, designed to investigate the overall efficiency of electric motors, being used with a torque sensor to give data on torque and speed and to perform computation to show sync. speed, slippage, mechanical power, motor efficiency and overall efficiency. Accuracy of the power meter is 0.1% over a 300kHz bandwidth, accepting inputs of 15-1000V rms, current to 20A and shunt or transformer input for higher currents. The WT1030M integrates power readings to give long-term measurement of varying inputs and there is an analogue output for display of waveforms on an oscilloscope. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494 535002.

Enquiry No 533

Literature

Enclosures. West Hyde's catalogue of enclosures, showing more than 30 new products, is just published and is now available on cd-rom for Windows 3.x/95, AppleMac and Unix. The company also has its own website at http://www.westhyde.co.uk (e-mail boxes@westhyde.co.uk). West Hyde Enclosures. Tel., 01453 836789; fax, 01453 836444. Enquiry No 535

Materials

Hot adhesive. Newly introduced by Cotronics is the *E098* adhesive, which will withstand temperatures up to 1650°C continuously. It is based on ceramic epoxy, cures at room temperature and was developed for cementing, insulating and embedding coils, filament windings etc. and may be used on metals, glass, ceramics and plastics. Thermal conductivity is good, electrical resistance is high and the material is resistant to solvents

Power supplies

Dc-to-dc converters. *SIP20* non-isolated, 20W converters are single in-line devices to convert 5V to 3.3V dc and lower. Power density is 60W/cubic inch and efficiency up to 90%. Facilities include adjustable output voltage, fixed 500kHz frequency operation, undervoltage lockout and no minimum load. Computer Products, Power Conversion Ltd. Tel., 00353 24 25272; fax, 00353 24 93510. Enquiry No 534

and other chemicals. Symonds Adhesives Ltd. Tel., 01707 372564; fax, 01707 372573. *Enquiry No 536*

Wrapping. Barnier adhesive tapes for the wrapping of transformers, relays and other wound components are produced by Scapa Tapes. Core and interlayer insulation is provided by polyester film types rated at 130°C, which are resistant to solvents, freon and oils. Double-sided film and glass cloth or fabric are used for taping the ends of windings. For outer layer protection, adhesive acetate, which may be printed, is used. Scapa Tapes. Tel., 0161 3364433; fax, 0161 335 0104. Enquiry No 537

Power supplies

Bench supply. Power supplies in TTi's TSX range are said to give a high performance at a lower cost than others in the same class. There are models to provide outputs of 35V/10A and 18V/20A in standard and programmable versions, the standard type having ordinary panel controls and the programmable version keyboard control, RS-232 and IEEE-488 interfaces. The new series uses a new regulator design in which switchedmode pre-regulation is combined with linear post-regulation, the pre-regulator presenting a low input-to-output capacitance and therefore reducing switching noise. All units in the series work in both constant-V and constant-/ modes with automatic crossover and mode indication. Digital readout of V and I is provided. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480 450409. Enquiry No 538

Please quote "Electronics World" when seeking further information

Pwm controller. Cherry's *CS-5106* pulse-width modulation controller has two separate pwm drivers and many monitoring, protection and control facilities. There are a dual nfet driver as the main controller, driving two external nfets and a single nfet driver for an auxiliary supply, operating independently of each other after start-up, and switching in around 80ns for high efficiency. Clock frequency is 512kHz and input/output sync. pins allow master/slave working with other supplies. Clere Electronics Ltd. Tel., 01635 298574; fax, 01635 297717. Enquiry No 539

18A step-down voltage converter. The Voltec step-down dc-to-dc converter takes in 24V dc found in cars, boats and industrial work and puts out regulated 12V at 18A continuously, or 20A for five minutes when surges are to be expected. Efficiency is 90% and an idle circuit reduces standby current to 27mA; there is also provision to shut the unit down when the input falls to 20V dc. Full protection against all the usual

disasters is provided and there is a led display to indicate health or sickness. Merlin Equipment. Tel., 01491 824333; fax, 01491 824466. Enquiry No 540

Protection devices

Watchdog timer/monitor. BVM's BVME290 is a watchdog timer/system monitor to protect VMEbus systems. The unit monitors the software by demanding a wake-up command after a selected interval of 0.1-60s, and also watches eight external signals from sensors such as temperature switches and interlocks in the system, and from supply rails; SYSFAIL and ACFAIL lines are also monitored. If an alarm triggers the monitor, it either enables the SYSRESET driver, generates an IRQ7 interrupt or sounds an alarm. A front-panel switch allows the device to be disabled for maintenance. BVM Ltd. Tel., 01489 780144; fax, 01489 783589. *Enquiry No 541*

Thermal watchdog. An improved thermal watchdog for cpu protection is announced by Dallas. The DS75-2 two-wire device is a replacement for the National LM75 but with advantages. Instead of 9-bit resolution, the DS-75 may select 10, 11 or 12 bits instead of the default 9 by changing the sram configuration register; at 12-bit resolution, the smallest temperature change registered by the watchdog is 0.0625°C, resolution and accuracy being preserved over 2.7V-5.5V supply range. Dallas Semiconductor Corporation. Tel., 0121 782 2959; fax, 0121 782 2156. Enquiry No 542

Thermal cutout panel switches. Siemens *W28* thermal cutout switch is a single-pole, series trip, available for a range of cutout currents from 0.25A to 20A at up to 32V dc or 250V ac, an optional, switchable version having the reset function inside the switch. Time to reset is 180s maximum for models handling up to 2A and 10-60s for 3-20A versions. The switches snap in to a 15.9mm panel cutout and have quick-connect terminals. Easby Electronics Ltd. Tel., 01748 850555; fax, 01748 850556.

Video

Video scan converter. The *RGB*/Videolink 6U VME PAL/NTSC video scan converter transforms computer output to broadcast standard video in real time. It automatically synchronises to all computer signals up to 1600 by 1200 pixels and provides composite video, S-video (S-VHS/Hi-8) and component analogue video for Betacam/M11 outputs for recording. There is dsp circuitry to eliminate flicker so that even thin horizontal lines are stable, and zoom is present. Gothic Crellon Ltd. Tel., 01734 776161; fax, 01734 776095. Enquiry No 544

Transducers and sensors

Magnetoresistive sensor ics. Magnetoresistive integrated circuits by Honeywell are designed for use in navigation systems, proximity detection, virtual reality and medical monitoring. *HMC1020/2* are single and dual axis versions, both being wideband devices to sense magnetic fields up to ±6gauss, resolving to 85mgauss with low noise. Honeywell says that these devices have the edge over fluxgates by their smaller size, better reliability and overall toughness. The *1021* is in an 8-pin sip and the *1022* in a narrow-body SOIC; both use a 3/10V supply. Inertial Aerosystems Ltd. Tel., 01252 782442; fax, 01252 783749.

Enquiry No 545

Flying-lead optical encoder.

Grayhill's *Series 62A* rotary optical encoder is a compact unit having a flying lead for easy installation, which is also eased by the size: 12.7 by 13.72mm of board space, 13.34mm deep. The unit can be provided with a pushbutton and there is the choice of 16, 24 or 32 detent positions. Output is standard quadrature 2-bit, compatible with cros, ttl and Hcmos logic. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444 236641. Enquiry No 546

COMPUTER

Data acquisition

Daqs and a GPIB for USB. National has three data acquisition devices and a GPIB interface for Windows pcs using the universal serial bus.

DAQPad-4350 is a temperature and voltage measuring instrument; DAQPad-6020E a 100ksample/s, 12bit E Series-based multifunction data acquisition device with 16 analogue inputs, two analogue outputs, eight digital i/o and two counter/timers; and the DAQPad-6057 96-line digital i/o, all the above being for USB; and then there is the IEEE 488.2 controller. The usb data acquisition devices include the NIDAO driver software and the GPIB interface the NI-488.2M driver software. All these devices are compatible with National's virtual instrument software. National Instruments UK. Tel., 01635 572400; fax, 01635 524395. Enquiry No 547

Data communications

Single-chip V.22bis. TDK's 73K224BL modern ic combines analogue, switched-capacitor array functions, a risc dsp and hybrid drivers in one 32-lead PLCC pack. It will interface directly with any standard microprocessor to form a complete V.22bis-compatible modem to give full-duplex operation at 2400bit/s on dial-up lines. In addition to the 2400bit/s quam, 600/1200bit/s dspk and 300bit/s fsk mod/demod, it also provides sync and async converters, scramble/descramble, call progress tone detection, a dtmf tone generator and handshake pattern detectors. Pronto Electronic Systems Ltd. Tel., 0181 5545700; fax, 0181 5546222 Enquiry No 548

Computer peripherals

17-In flat crt. PanaSync/Pro P70 by Panasonic replaces the Pro 5G monitor, this one having a 16-in viewable diagonal, a 0.25mm dot pitch and a 95kHz scanning rate. Accuracy, particularly of vertical edges, is improved and power consumption reduced to 110W, or 4W standby. Resolution is 1600 by 1200 at 75kHz vertical refresh rate and full VESA plug-and-play is incorporated. Industry standards met include Energy Star, MPR II and TCO'95 and other features are Moire compensation, colour temperature adjustment and image rotation, all assisted by an on-screen menu – in five languages. Panasonic. Tel., 0500 404041. Web http://www.panasonic.co.uk. Enguiry No 549

Identification for plug/play

monitors. Rohm has the *BU9881* ID rom ic that stores the identification information to allow a pc to recognise monitor characteristics on connection to the pc. It contains a 128 by 8bit serial eeprom and takes 2mA, or 10mA in standby mode. The device offers transmit-only and bidirectional, two-wire serial I²Cbus working, operates at up to 400kHz and runs on 2.7-5.5V. There is auto-erase and auto-complete during write operation. Rohm Electronics UK Ltd. Tel., 01908 282666; fax, 01908 282528. Enquiry No 550

Software

Colour from greyscale hardware. *NI-IMAQ* driver software allows the acquisition of 24-bit colour images at up to 10frames/s while using 8-bit image acquisition hardware of the type normally used for greyscale image capture. This is achieved by the use of National's virtual instrument software. National Instruments UK. Tel., 01635 572400; fax, 01635 524395 **Enquiry No 551**.

Development and evaluation

PIC emulator. An entry-level emulator for the Microchip PIC16C5X and 12C5X ranges of microcontrollers is announced by RF Solutions, who say that it offers the best ever price/performance ratio. The non-real-time SIMICE i/o emulator provides a full hardware interface to Microchip's MPLAB/MPSIM software simulator, with the availability of the associated debugging features that eliminate the need to write i/o lines. RF Solutions Ltd. Tel., 01273 488880; fax, 01273 480661 Enquiry No 552

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK
 SIMALL SELECTION UNLY LISTED - EXPORT THAT

 HP New Colour Spectrum Analysers

 HP141T+ 8552B IF + 8553B RF-1KHz-110Mc/s - £700.

 HP141T+ 8552B IF + 8554B RF - 100KHz-1250Mc/s - £900.

 HP141T+ 8552B IF + 8554B RF - 20Hz-300KHz - £700.

 HP141T+ 8552B IF + 8555A 10MC/S - 186Hz - £120.

 HP4445B Tracking Generator Counter 100KHz-110Mc/s - £20.

 HP84445B Tracking Generator 0 to 18GHz - £250.

 HP8444A OPT 059 Tracking Generator • 5-1500Mc/s - £950.

 HP8444A OPT 059 Tracking Generator • 5-1500Mc/s - £950.

 HP845B Tracking Cenerator • 5-1500Mc/s - £950.
 HP432A - 435A or B - 436A - power meters + powerheads to 60GHz HP8614A signal generator 800Mc/s – 2.4GHz, new colour £400. HP8616A signal gen 1.8GHz-4.5GHz, new colour £400. HP 3336A or B syn level generator – £500-£600. HP 3586B or C selective level meter – £750-£1000. 5200 HP 8683D S/G microwave 2.3 - 13GHz - opt 001 - 003 - £2.5k. HP 8660 D syn S/G. AM + FM + 10Kc/s to 110Mc/s PI - 1Mc/s to 1300Mc/s 1Mc/s to 2600 - £3.5k HP 8640B S/G AM-FM 512Mc/s or 1024Mc/s. Opt 001 or 002 or 003 – £800-£1250. HP 8622BX Sweep PI – 01 – 2.4GHz + ATT – £1400 – £1750. HP 86290A Sweep PI – 2 – 18GHz – £1000 – HP 86290B £1250 HP 86 Series PI's in stock – splitband from 10Mc/s – 18.6GHz – £250 – £1k. HP35001A Spectrum Anz Internace – 1500. HP4953A Protocol Anz – £400. HP8970A Noise Figure Meter + 346B Noise Head – £3.5K. HP8755A Scalar Network Anz PI – £250 + MF 180C – £200 Heads 11664 Extra. HP8756A Scalar Network Anz – £1000 Heads 11664 Extra. HP8757A Scalar Network Anz – £2500 Heads 11664 Extra. HP 8620C Mainframe - £250. IEEE - £500. HP 8615A Programmable signal source - 1MHz - 50Mc/s - opt 002 - £1k. HP 8601A Sweep generator .1 – 110Mc/s – £300. HP 853A MF ANZ – £1k. HP8903A Audio Anz – £1500. HP8656A 100KHz – 900 Mc/s, S/G AM-FM – £1450. HP8158B Optical Attenuator OPT 002 + 001 1300-1550NM – £600. HP 8349A Microwave Amp 2 – 20GHz Solid state – £1500. HP 1980B Oscilloscope measurement system – £300. HP8158B Optical Attenuator OPT 002 + 001 1300-1550NM - £600. HP3709B Constellation ANZ £2k. HP11715A AM-FM Test Source - £750. INTELCO 220 Single Mode Optical Attenuator 1532NM - £300. FARNELL PSG 520 S/G 10Mc/s AM-FM - £150. FARNELL PSG 520 S/G 10Mc/s - £350. 475A 250Mc/s - £400. MARCONI 6500 Network Scaler Anz - £750. Heads available to 40GHz. HP3580A 5Hz-50KHz ANZ - £750-£1000. HP3582A .02Hz to 25.6KHz - £2K. HP 3455/3456A Digital voltmeter – £400, HP 5370A Universal time intervál counter - £1k HP 5335A Universal counter – 200Mc/s – £500. HP 5328A Universal counter – 500Mc/s – £250. HP 6034A System power supply - 0 - 60V - 0 - 10 amps - £500. HP 3717A 70Mc/s modulator - demodulator - £400. HP 3710A - 3715A - 3716A - 3702B - 3703B - 3705A - 3711A - 3791B - 3712A -3793B microwave link analyser – P.O.R. HP 3552A Transmission test set – £350. TEK 7L5 + L3 - Opt 25 Tracking Gen - £900. TEK 7L12 - 100KHz-1800Mc/s - £1000. TEK 7L18 - 1.5-60GHzs - £1500. TEK 7L12 - 100KHz-1800Mc/s⁻ £1000. TEK 7L18 - 1.5-60GHzs - £1500. Mixers are available for the above ANZ's to 60GHz HP8673D Signal Generator .05-26.5GHz _ £15K. Systron Donner 1618B Microwave AM FM Synthesizer 50Mc/s 2-18GHzs. R&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s - £1k. ADRET 3310A FX Synthesizer 300Hz-60Mc/s -£600. HP5316B Universal Counter A+B. HP461A-465A-467A Ampliers. HP81519A Optical Receiver DC-400Mc/s. 550-950NM £400. HP Piotters 7470A-7475A. Up to £250. HP3730A+3737A Down Convertor Oscillator 3.5-6.5GHz. HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - £250. HP105B Quartz Oscillator + HP5087A Dis Amp £500. HP6034A System Power Supply 0-60V 0-10A-200W - £500. HP6311C Digital Voltage Source + -100V ¼ Amp. HP3779A Primary Multiplex Analyser - £200. HP5316A Universal Counter A+B. HP5305A UNCANTARA ABACAA HP540A LEAAA HP540A LEAAAAAAAAAA HP 3763A Error detector – £500. HP 3764A Digital transmission analyser – £600. HP 3770A Amp delay distortion analyser – £400 – + 3770B – £400. HP 3780A Pattern generator detector – £400. HP 3781A Pattern generator – £400. HP 3782A Error detector – £400. Tektronix 577 Curve tracer + adaptors - £900. Tektronix 1502/1503 TDR cable test set - £400 Racal 1991-1992-1998 – 1300Mc/s counters – £400-£900. Fluke 80K-40 High voltage probe in case – BN – £50-£75. EIP 545 microwave 18GHz counter - £1200. Fluke 510A AC ref standard - 400Hz - £200. Fluke 355A DC voltage standard - £300. Huke 355A DC Voltage standard = 2.300.
 Wiltron 610D Sweep Generator + 6124C PI = 4 - 8GHz - £400.
 Wiltron 610D Sweep Generator + 61084D PI = 1Mc/s = 1500Mc/s = £500.
 HP 8699B Sweep PI YIG oscillator .01 - 4GHz - £300. 8690B MF - £250. Both £500.
 Dummy Loads & power att up to 2.5 kilowatts FX up to 18GHz - microwave parts new and ex equipt - relays - attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors. B&K Items in stock – ask for list. W&G Items in stock – ask for list. Power Supplies Heavy duty + bench in stock - Farnell - HP - Weir - Thurlby - Racal etc. Ask for list. Large quantity in stock, all types. Marconi 2955 Radio test set + calibration. £2000. Marconi 2955 + 2958 Tacs radio test set + calibration. £2250. Marconi TF2015 S/G 10Mc/s-520Mc/s AM.FM. £150. Racal/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards. Racal/Dana 9303 True RMS Levelmeter+Head - £450. IFFE - £500. TEKA6502A also A6902B Isolator - £300-£400. TEK FG5010 Programmable Function Generator 20Mc/s - £600. TEK2465A 350Mc/s Oscilloscope - £2.5k + probes - £150 each. TEK 275 High Current Transformer Probe - £250. TEK J16 Digital Photometer + J6523-2 Luminance Probe - £300. HP745A+746A AC Calibrator - £600. HP54200A Digitizing Oscilloscope - £500. Marconi TF2008 - AM-FM signal generator - also sweeper - 10Kc/s - 510Mc/s - from £250 - tested to £400 as new with manual - probe kit in wooden carrying box. HP Frequency comb generator type 8406 - £400. HP Sweep Oscillators type 8690 A & 8 + plug-ins from 20Mc/s to 18GHz also 18-40GHz HP Network Analyzer type 8407A + 8412A + 8501A -100Kc/s - 110Mc/s - £500 - £1000. HP Amplifier type 8447A - 1-400Mc/s £200 - HP8447A Dual - £300. HP Frequency Counter type 5340A - 18GHz 21000 - rear output £800. HP Amplifier type 5340A - 18GHz 21000 - rear output £800. HP At10 - A - B - C Network Analyzer 110MC/s to 12GHz or 18GHz - plus most other units and displays used in this set-up - 8411a - 8412 - 8413 - 8414 - 8418 - 8740 -8741 - 8742 - 8743 - 8746 - 8650. From £1000. Racal/Dana 3001A-9302 RF Millivoltmeter - 1.5-2GHz - £250-£400. Racal/Dana Modulation Meter type 9008 - 8Mc/s - 1.5GHz - £150/£250. Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6057A -6056 - £250-£350. 400Mc/s to 18GHz. Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6057A -6056 - £250-£350. 400Mc/s to 18GHz. Marconi TF2015 S/G 10M//s-520M//s AM.FM. £150. Marconi TF2016A S/G 10Kc/s-120Mc/s. AM.FM. £150. Marconi TF2171 or 2173 Digital syncronizer for 2015/2016. £100. Marconi TF2017 S/G .01-1024Mc/s.AM.FM. High grade. £1500. Marconi TF2018 S/G 80Kc/s-520Mc/s. AM. FM. £800. Marconi TF2018A S/G 80Kc/s-520Mc/s. AM. FM. £1000 Marconi TF2019 S/G 80Kc/s-1040Mc/s. AM. FM. £1250. Marconi TF2019A S/G 80Kc/s-1040Mc/s. AM. FM. £1500 Marconi TF2022E S/G 10Kc/s-1.01GHzs. AM. FM. £1500 Marconi TF2022E As above but as new + Cal cert. £1800. Marconi TF6311 Microwave Sweep S/G 10Mc/s-20GHz c/w TF6500 amplitude Anz Marconi Frost i microwave sweep Statistics 20042 of the second amplitude Aliz. plus heads 10Kc/s-40CHz. £4K-£5K. Farnell S/G ESG1000 10Hz-1000Mc/s. AM. FM. £1300. IFR 12005 Communications radio test set. £2500. TF2370 Spectrum Anz's 30Hz-110Mc/s. Large qty in stock to clear as received from Gov-all sold as is from pile complete or add £100 for testing. Callese prefered – Bick vour own from over sixty units Callers preferred - Pick your own from over sixty units. A. Early Model – Grey – Rear horizontal alloy cooling fins – £200.
 B. Late Model – Grey – Vertical alloy cooling fins – £300. $\label{eq:main_series} \begin{array}{l} \mbox{Marconi} RCL Bridge type TF2700 - $150. \\ \mbox{Marconi} Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 - $250. $230. 400 Mc/s to 18 GHz. \\ \mbox{Marconi} microwave 6600A sweep osc., mainframe with 6650 PI - 18-26.5 GHz or 6651 PI - 26.5 -40 GHz - $2750 or PI only $260. \\ \mbox{Marconi} X Piug-ins 7A13 - 7A14 - 7A18 - 7A24 - 7A26 - 7A11 - 7M11 - 7S11 - 7D10 - 7S12 - S1 - S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 - DC505 A - FG504 - 7B80 + 85 - 7B92A. \\ \mbox{Gould J3B test oscillator + manual - $150. \\ \mbox{Tektroni} X Piug-ins 7603 - 7623A - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7834 - 7623 - 7613 - 7704A - 7844 - 7904 - TM501 - TM503 - TM506 - 7904A - 7804 - 7250. \\ \mbox{Parconi} 6155A Signal Source - 1 to 2GHz - LED readout - $240. \\ \mbox{Bar & Stroud Variable filter EF3 0.1Hz - 100Kc/s + high pass + low pass - $150. \\ \mbox{Farnell power unit H60/50 - $400 tested, H60/25 - $250. \\ \mbox{Racal/Dana 9300 RMS voltmeter - $250. \\ \mbox{Parconi} mod meters type F2730 + $250. \\ \mbox{Systron Donner counter type 6054B - $20Mc/s - $240Hz - LED readout - $1k. \\ \mbox{Farnell electronic load type RB1030-35 - $350. \\ \mbox{Systron Donner counter type 6054B - $20Mc/s - $240Hz - LED readout - $1k. \\ \mbox{Farnell electronic load type RB1030-35 - $350. \\ \mbox{HP4815A RF vector impedance meter c/w probe - $500.^{600}. \\ \mbox{HP4815A RF vector impedance meter c/w probe - $500.^{600}. \\ \mbox{HP481$ C. Late Model – Brown – Vertical alloy cooling fins – £500. Marconi TK2373 Extender to 1.25GHz-£400. Brown colour - £500. H.P. 3325A Synthesized function generator – \pounds 1000- \pounds 1500. H.P. 3325B Synthesized function generator – \pounds 2500. H.P. 8505A Vector voltmeter – late colour – £400. H.P. 8508A Vector voltmeter – £2500. H.P. 8505A Network Anz 500KHz-1.3GHz – £1750. H.P. 8505A + 8502A or 8503A test sets – £2000/£2250 H.P. 8505A + 8502A or 8503A test 3ets - 12000/r2200. H.P. 8505A + 8502A or 8503A +8501A normalizer - £2500. H.P. 8557A .01Mc/s-350Mc/s-8558B 0.1-1500Mc/s - 8559A .01-21GHz + MF853A or 182T or 180C-D-T £500-£3000. Tektronix 492 Spectrum Anz-OPT 3-50Kc/s-21GHz - £3500. Tektronix - HP Oscilloscopes - 100Mc/s-465-465B-1740-1741 etc - £300. Phillips 3217 50Mc/s oscilloscopes – £250. Phillips 3296 350Mc/s IR remote control oscilloscope – £1400 Hitachi VC6041 Digital storage oscilloscope – 100Mc/s – £800. Tektronix 2430A Digital storage oscilloscope – 100Mc/s – £2000. Tektronix 2440 Digital storage oscilloscope – 400Mc/s – £2400. Tektronix 2245A Oscilloscope – 100Mc/s – £1000. Tektronix 2445 + DMM - 250Mc/s - £1750. Tektronix 2445A - 150Mc/s - 4 CH - £1500 Schaffner NSG 200E Mainframe – NSG203A low volt var simulator – NSG222A. Interface simulator – NSG223 Interface generator – NSG224 Interface simulator – NSG226 Data line simulator – all six items at £1500. Schaffner NSG200E Mainframe – NSG203E low volt var simulator – NSG222A Interface simulator - all three items - £1000.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. No: (01274) 684007. Fax: 651160

CIRCLE NO. 135 ON REPLY CARD

 Size. All are IBM-PC compatible (if 3½* supported on your PC).

 3½" Planasonic JU363/4 720K or equivalent RFE
 £24.95(B)

 3½" Mitsubishi MF355C-D. 1.4 Meg. Laptops only
 £25.95(B)

 3½" Mitsubishi MF355C-D. 1.4 Meg. Laptops only
 £18.95(B)

 5¼" Teac FD-55GFR 1.2 Meg (Non laptop
 £18.95(B)

 5¼" Teac FD-55GFR 1.2 Meg (Non BBC's etc) RFE
 £29.95(B)

 5¼" Teac FD-55GF 3-U 720K 40/80 (for BBC's etc) RFE
 £29.95(B)

 5%" BRAND NEW Mitsubishi MF3501B 360K
 £22.95(B)

 8" Shugart 800/801 B' SS refurbished & tested
 £195.00(E)

 8" Shugart 810 8' SS HH Brand New
 £195.00(E)

 8" Shugart 810 8' SS at double sided refurbished & tested
 £255.00(E)

 8" Shugart 810 8' SS at double sided refurbished & tested
 £255.00(E)

 Mitsubishi M2896-63-02U 8" DS similine NEW
 £275.00(E)

 Dual 8' cased drives with integral power supply 2 Mb
 £499.00(E)

HARD DISK DRIVES

End of line purchase scoop! Brand new NEC D2246 8* 85 Mbyte drive with industry standard SMD interface, replaces Fujitsu equivalent model. Full manual. Only £299.00 or 2 for £525.00 (E)

31/2" FUJI FK-309-26 20mb MFM I/F RFE	£59.95(C)
31/2" CONNER CP3024 20 mb IDE I/F (or equiv)RFE	£59.95(C)
31/2" CONNER CP3044 40mb IDE I/F (or equiv.)RFE	£69.00(C)
31/2" RODIME RO3057S 45mb SCSI I/F (Mac & Acorn)	£69.00(C)
31/2" WESTERN DIGITAL 850mb IDE I/F Brand New	£185.00(C)
5¼" MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE	£49.95(C)
5¼" SEAGATE ST-238R 30 mb RLL I/F Refurb	£69.95(C)
5¼* CDC 94205-51 40mb HH MFM I/F RFE tested	£69.95(C)
5¼" HP 9754B 850 Mb SCSI RFE tested	£89.00(C)
5¼" HP C3010 2 Gbyte SCSI differential RFE tested	£195.00(C)
8" FUJITSU M2322K 160Mb SMD I/F RFE tested	£195.00(E)
Hard disc controllers for MEM_IDE_SCSL_BLL etc_from	n £16.95

THE AMAZING TELEBOX

Converts your colour monitor into a QUALITY COLOUR TV!!

The TELEBOX is an altractive fully cased mains powered unit, con-taining all electronics ready to plug into a host of video monitors made by makers such as MCROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most televi-sion receivers' (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video utput is located on the rear panel for direct connection to most makes of monitor or desktop computer video systems. For complete compatibility - even for monitors with-out sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. TELEBOX STI for composite video input type monitors <u>C36.95</u> For overseas PAL versions state 5.5 or 6 mHz sound specification. For cable / hyperband reception Telebox MB should be connected to a cable type service. Shipping code on all Teleboxe's is (B) The TELEBOX is an attractive fully cased mains powered unit, con-

VISA

25

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen burns). In attrac-tive square black plastic case measuring W10* x H10* x 13%* D. 240 V AC mains powered. Only £79.00 (D)

KME 10" 15M10009 high definition colour monitors with 0.28" dot pitch. Superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13½" x 12" x 11". Good used condition. Only £125 (E)

Only £125 (E)

20" 22" and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & *optional* sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee.

Sold at LESS than a third of makers price !!

A superb buy at only £195.00 (G) Over 1000 racks - 19" 22" & 24" wide 3 to 44 U high. Available from stock !! Call with your requirements.

TOUCH SCREEN SYSTEM

The utimate in 'Touch Screen Technology' made by the experts -MicroTouch - but sold at a price below cost II System consists of a flat translucent glass laminated panel measuring 29.5 x 23.5 cm connected to an electronic controller PCB. The controller produces a standard serial R532 or TTL output which continuously gives simple serial data containing positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data instantly changes. The X & Y information is given at an incredible matrix resolution of 1024 x 1024 positions over the entire screen size !! A host of available translation software enables direct con-nection to a PC for a myriad of applications including: control pan-els, pointing devices, POS systems, controllers for the disabled or computer un-trained etc etc. Imagine using your finger with 'Windows', instead of a mouse !! (a driver is indeed available !) The applications for this amazing product are only limited by your ImaginationII Complete system including Controller, Power Supply and Data supplied at an incredible price of only: *Full MicRoTOUCH software support pack* and manuals for IBM compatible PC's £29.95 RFE-Tested

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor and above) memory. Full data and driver disks supplied. RFE. Fully tested and guaranteed. Windows compatible £59.95(A1) Half length 8 bit memory upgrade cards for PC AT XT expands memory either 256k or 512k in 64k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order as: XT RAM UG. 256k. £34.95 or 512k for 542k for 542

SIMM SPECIA	LS	
1 MB x 9 SIMM 9 chip 120ns	Only	£16.50 (A1)
1 MB x 9 SIMM 3 chip 80 ns £19.50	or 70ns	£22.95 (A1)
1 MB x 9 SIMM 9 chip 80 ns £21.50	or 70ns	£23.75 (A1)
4 MB 70 ns 72 pin SIMM -with parity-	Only	£95.00 (A1)
INTEL 486-DX33 CPU £55.00 INTEL 486	5-DX66 CPÚ	£69.00 (A1)
FULL RANGE OF CO-PROCESSOR'S EX	STOCK - C.	ALL FOR SEE

FANS & BLOWERS

 EPSON D0412
 40x40x20 mm 12v DC
 £7.95 10 / £65

 PAPST TYPE 612 60x60x25 mm 12v DC
 £8.95 10 / £75

 MITSUBISHI MMF-06D12DL 60x60x25 mm 12v DC
 £4.95 10 / £42

 MITSUBISHI MMF-06D12DL 92x80x25 mm 12v DC
 £5.25 10 / £49

 MITSUBISHI MMF-09B12DH 92x92x25 mm 12v DC
 £5.55 10 / £53

 PANCAKE 12-3.5 92x92x18 mm 12v DC
 £7.55 10 / £53

 PANCAKE 12-3.5 92x92x18 mm 12v DC
 £7.55 10 / £59

 EX-EQUIP AC fans. ALL TESTED 120 x 120 x 38 mm specify 110 or 240 v £5.95
 Shipping on all fans (Å). Blowers (B). 50,000 Fans Ex Stock CALL

All prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools Universities and Local Authorities - minimum account order £50. Cheques over £100 are subject to 10 working days clearance. Carriage charges (A)=£3.00, (A1)=£4.00 (B)=£5.50, (C)=£8.50, (D)=£12.00, (E)=£15.00, (F)=£18.00, (G)=CALL. Allow approx 6 days for shipping - faster CALL. Scotland surcharge CALL. All goods supplied to ou Standard Conditions of Sale and unless stated guaranteed for 90 days. All guarantees on a return to base basis. All rights reserved to charge prices / specifications without prio notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks etc acknowledged. © Display Electronics 1996. E & O E. 06/6

LETTERS

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Direct conversion

I read the article on the direct conversion receiver in the February issue with interest. Concerning the vfo. I have the following comments.

The phase noise can be improved by 3dB by replacing the IN4148 diode connected between the gate and ground of the fet used in the vfo, with a trimmer capacitor adjustable from 2 to 10pF.

By adjusting the trimmer capacitor, the gate to source conduction can be minimised. This enables you to make use of a higher value gate to ground resistor.

The drain dc voltage can be used to indicate whether the oscillator oscillates or not. I measured the phase noise of the modified vfo and it is 3dB better than the original.

My explanation for this result is that a forward biased diode is a current controlled capacitor causing am to fm conversion caused by the always present 1/f noise current.

By the way, the phase noise level of the vfo is very low. The requirements are high when operating on 28MHz. I measured the phase noise with valve equipment – a vacuum diode is

not a current controlled capacitor. This emphasises how important it is to isolate the load from the vfo. In Coetzee's design however, this point was very well addressed. Wim de Ruyter Oudkarspel

The Netherlands

Hannes comments:

Since my article was written, an article by Ulrich L Rhode h as been published in *Communications Quarterly*. In that article, Ulrich analysed the effect of the diode between the gate and ground of the fet on the phase noise of a vfo. I do not have access to the article, but if I remember correctly. Ulrich came to more or less the same conclusion as Wim.

Hot topic

I read Richard Lines' article on sensing temperatures in the March '98 issue with interest. He did not mention that some ranges of thermistors are made specifically for temperature measurement and that these may have 'matched' characteristics. If you add a carefully chosen fixed resistor R_1 in parallel with the thermistor shown in Fig. 9. you can obtain a very considerable degree of linearisation of the temperature/voltage characteristic of the thermistor T_h with a reciprocal function, $1/R_{tot}=1/T_h+1/R_1$.

There were a few errors in the description of diodes and transistors as temperature sensors. The upper temperature limit is determined by the reverse leakage current of the device. The voltage/temperature linearity falls off when the leakage current becomes a significant fraction of the forward bias current. The lower temperature limit may be determined by the case, but for a glass signal diode it is about -220° C.

Schottky diodes have a lower sensitivity, but a more linear characteristic. I have used both regularly in cryogenic applications down to -196° C without any problems. Thanks to the accuracy of current fabrication techniques, the difference between individual devices from the same manufacturer is usually quite small.

Transistors give the most linear characteristic, but usually have a bulky case and the gain falls off below about -50°C, leading to bias problems. Physical size, power dissipation, response and thermal capacity are also important

parameters when choosing a sensor. The sensitivity increases and the noise decreases as the junction bias current is reduced. The *BC182* graph should show different slopes as well as different intercepts for currents. Richard's formula for the "differential resistance" does depend on the particular junction -I is the current per unit area of the junction, not the absolute current.

Junction thermometers have an extremely high sensitivity to power dissipation ratio. What other device will give you 2.5mV/°C at 5µW? Silicon resistors with linear resistance/temperature characteristics are also available. *CJS Chapman Upwaltham*

Sussex Richard replies:

Thank you for your letter. You raise some worthwhile points that I will attempt to answer in the order you mention them.

All your complaints relate to the

sections on thermistors and diodes/transistors. It may help to explain the context in which this article was written. It forms part of a series which was originally written in three parts for publication, the whole of which was intended to be a fairly comprehensive review of the practical aspects of temperature control.

However, when I completed the first draught, it was obvious there was far too much material – running to some 45 pages. Something had to be cut down. There was a general background theme in that much of the material was designed to be compatible with an analogue controller which will be published in a later issue. You will find a reference to this in the opening paragraph on page 165 of the February issue.

Thus material that was directly relevant to this controller was given priority over that which was not. The hardware I built used thermocouples. platinum sensors and the various IC sensors described.

The interface circuits illustrated concentrate on producing a standard linear 10mV suitable for the controller input, which gives a common linear calibration on the

Welding and emc

FM transmitter please

Can any of your readers suggest a circuit for a modulator to produce a frequency modulated stereo signal in the 88-108 MHz band from left and right audio channel inputs? J K Carter

Maidstone Kent

controller. Hence they feature more prominently in this article at the expense of thermistors and diodes.

If you read the article in isolation as a general and comprehensive review then I agree I have failed in the areas you point out; the sections on thermistors and diodes are more superficial than I would usually like. Even the cut down script I submitted will run to four parts – it was intended to be published as three.

Now, to answer your remarks more specifically. You are of course perfectly correct in that there are some fairly simple circuits that will linearise thermistor response. However, the response will never be perfectly linear with the simple parallel arrangement, and the component values will always be

With reference to lan Johnson's letter in the February 1998 issue, flicker caused by arc-welding equipment used in private households is an increasing problem, and it is being addressed under emc control measures. The problem is that the whole business of disturbances on the supply mains is very complex – far more complex than was realised when the relevant standards EN61000-3-2 (harmonics) and EN61000-3-3 (voltage changes and flicker) were prepared.

Some remedial work is under way, but, according to the latest decisions, the standards do not come into force until 2001.

There are existing, current standards EN60555-2 and EN60555-3, but their scopes are restricted. It would be necessary to have arcwelders officially classified as 'domestic appliances' for these standards to be applicable, and then EN55014, for hf emissions, would also apply. None of them probably meets that, so they would all have to be taken off the market!

The problems with arc-welders are particularly dire. For example, welders exist with a 13A plug fitted that actually draw more than 13A from the mains. Can we reasonably write an emc standard for a product that appears to be capable of overloading its power supply?

Meanwhile. Mr Johnson should contact the technical department of his local electricity supplier. Apart from emc regulations, there are supply authority regulations and bye-laws that can apply in such cases as his.

John Woodgate Essex

LETTERS

specific to one type of thermistor. When I came up with the

controller system, there simply wasn't an immediate requirement for a thermistor sensor, since over the temperature range I was working, namely -50 to $+200^{\circ}$ C, one of the other sensors fitted the bill better.

It's not that it is impossible to design an interface for a given thermistor. I simply never needed to do it. This point is alluded to in the final few sentences on thermistors on page 169. The references to be published with the final article contain some thermistor ideas.

Moving on to diodes and transistors, you mention the properties of physical size, dissipation (self heating?) response time and thermal capacity. May I draw your attention to my opening paragraph on page 165. You will find all of these covered – albeit with different words in some cases – in the headings with bullets. I also bring in a few other important considerations like long term stability and calibration accuracy.

It is against all the engineering requirements that the suitability of a sensor for a given application must be judged, and, when considered in this light, some of your comments may be a little simplistic.

You state that the upper

Silver's not sterling

Regarding the letter from Doug Self, November 1997 issue of *Electronics World*, he is quite correct asserting that silver forms a silver sulphide surface. and that this surface is non-conductive. I disagree though about the atmosphere as a source of this pollutant. Tarnish has been around a lot longer than diesel engines.

Because of the sulphide layer, silver is not a panacea for improving conductivity of copper microwave and rf components. A little over 20 years ago, the microwave community phased out the coin-silver waveguide for the same reason. Initially, coin silver provided a lower loss circuit than unplated copper. But with time, and a bit of tarnish, the situation would reverse.

I recall when a manufacturer of military hardware began substituting copper waveguides for silver. His product was installed in a container that was pressurised with water-pumped dry nitrogen. Over the course of several years, this dew-point would slowly rise due to atmospheric penetration. I believe Dalton's gas law was the culprit here.

When the product was retuned for refurbishment, the loss through the waveguide pieces had usually increased. The problem was ameliorated when the waveguide was changed to unplated copper. Presumably atmospheric sulphur as well as water vapour entered the container.

On another occasion, I was advising a business that had several high-Q resonators in a coupler. More Q was required, so silver plating was in order. I believe they employed a rhodium flash coating to combat the sulphide corrosion problem.

Gold is often employed as a finish for microwave connectors. In my opinion, this is more for aesthetic purposes rather than improving performance. The conductivity of gold is lower than that of copper. Often, these connectors are attached to an aluminum chasis. which eventually forms an absolutely horrid connection in the presence of a salt-water atmosphere. Stainless finish connectors are preferred in this application.

Today, unprotected silver waveguides and waveguide components are only found at flea markets.

Jim Ussalis Florence USA temperature limit is decided by the increasing leakage current with respect to the bias current. This is fine as far as it goes - without numbers. But it may be that at that temperature, you already have problems with long-term calibration drift or high failure rates due to thermal cycling when the equipment is switched on and off. Or there may be a problem simply stopping the solder on the wires from melting. There is a solder available which melts at 221°C compared to the usual 183°C by the way.

As for the lower limit, I suspect you have more experience at -200° C than myself. However, a colleague of mine-uses diodes of the 1N4148 variety as sensors at this sort of temperature. They certainly work, but there have been failures due to differential expansion/contraction with thermal cycling – not often, but certainly often enough to be far above the expected failure rate for a diode and to pose a genuine problem.

Manufacturers making semiconductors intended to be run at this sort of temperature – an astronomical ccd at –100°C for example – generally specify a maximum rate of temperature change, typically 15°C a minute.

With the above considerations in mind I specified a range of -50 to

+150°C in the text because this is typical of the maximum storage temp range quoted by most manufacturers. For metal can devices maybe the range is a tad wider, at -60 to +200°C. Inside these limits it is unlikely people will run into problems with basic reliability. I concede I was probably a little too dogmatic: it is quite valid to experiment outside the manufacturer's parameters using components in ways they were never intended to be used. But there is an extra responsibility for making sure the equipment meets all aspects of the design specification reliably and in a reproducible manner.

This is especially true when the failure of a 5p diode can cause problems with other components costing hundreds or. in some cases, thousands of pounds.

I have not tried Schottky diodes, so will defer to your greater experience!

I would generally agree with your remarks concerning repeatability. Diodes or transistors from the same batch by the same manufacturer usually show excellent consistency, the calibration generally holding to I or 2°C over a wide range. However, between different manufacturers it is a different story. At this moment I have on my bench two batches of BC182 transistors. one by NS and the other by Motorola. The gain term on both is about -2.1mV/°C at 100µA bias but the offset term differs by about 30 mV - a calibration error of about 14°C.

Your final paragraph I find somewhat puzzling. You state the sensitivity of a diode/transistor increases with decreasing bias current. Over the years I have built several temperature controllers using transistors at various bias currents and the sensitivity has always been approximately the same.

I will do some practical checks when I get time to establish the exact relationship. Maybe I've never altered the current over sufficient orders of magnitude to notice the effect. I will reserve further comment until I have some real numbers from real devices. You are probably right in that there is some small slope change.

Your final comment concerning the low self-heating is a good one which deserved to be mentioned.

Assembler error

I'm writing to you in response to Malcolm J Bloor's letter 'Debug your assembler first, 'February 1998 issue, p. 157. I would like to point out that the error he believes to have discovered in various 80x86 assemblers is not an error at all.

Several 80x86 instructions can be

coded in alternative ways. A quick look at the instruction code table clarifies the situation. Take for example the CMP instruction depicted by Mr Bloor.

CMP BX, OFF80H.

The binary coding of the relevant CMP BBX. (immediate data) instruction is the following:

[1000 00sw] [1111 1011] [data] [data if s:w=01] where bits s.w have the following

meaning:

if s.w=01 then 16 bits of immediate data form the operand,

while if s:w=11 then an immediate data byte is sign extended to form the 16-bit operand.

The more straightforward way of coding the CMP BX. 0FF80H instruction is to choose s:w=01 and then use the 16-bit immediate data. This results in the byte sequence 81 FB FF 80, which is exactly what 'Small Assembler' produces.

There is, however, a more tricky way to achieve the same result – and save a byte. As 80₁₆ sign extended gives FF80₁₆, choosing s:w=11 and 80₁₆ as immediate data will have the same effect. The resulting byte sequence is now 83 FB 80, which is what Microsoft Macro Assembler and A86 will produce.

The two ways of coding the same instruction will have the same effect, but the second way is one byte shorter, which means that the resulting program will run faster. More sophisticated assemblers try to optimise the code and this is what causes the difference between the two object files. Mr Bloor can rest assured that nothing and nobody will be killed as long as that's the only 'error' in his programs.

Laszlo Gaspar Biggleswade Beds

• Malcolm Bloor in a letter in the February 1998 issue complained that two out of three X86 assemblers tested did not generate the expected code, quoting various examples of the instruction:

cmp bx, <immediate
data>.

Perhaps the majority of assembler results were correct, and Mr Bloor's expectations were misguided. I tried the source example using Borland's TASM V2.01 Assembler, and got similar results to the Microsoft .ASM listing shown.

It seems that these assemblers detect the most significant FF_{16} or 00 of a suitable two byte operand,

and generate an optimised instruction variant (opcode 83 FB) which uses just the least significant byte as immediate data, but signextends it to a two-byte operand. There should be no objection to saving one byte, and the instruction result should be identical to that produced by the normal form of the instruction (o pcode 81 FB).

More serious is the example shown for immediate data $0FF_{16}$, which is interpreted incorrectly by the Small Assembler as $0FFF_{16}$, and results in the optimised code 83 FB FF. The other assemblers all produce code 81 FB FF 00, corresponding to operand $00FF_{16}$. Erroneous instruction results would appear in the former case.

It is unfortunate that these assemblers do not offer an alternative convention to indicate hexadecimal notation, but insist on the leading decimal digit and trailing 'h'. This appears to be the main source of confusion.

A single non-numeric symbol equivalent to the 'S' prefix used in Pascal, would be much preferred. In the absence of this option, the best practice would seem to be always to write out immediate data to the full number of hexadecimal digits implied by the size of the destination, adding the leading zero prefix when required. **Tony Purser**

Portsmouth Hampshire

Room for

resonance

I have some practical experience in enhancing low-frequency room response, and am currently analysing servo subwoofer designs. In comment on the difficulties of Alan Frobisher re bass boom. February issue, I fear that of the electronic options he lists, dsp may be the only one to offer real benefit.

In my opinion, analogue filtering is of limited value. Even the elimination of a single resonance by analogue notch filtering will radically alter such system properties as transient response and phase behaviour. Neither will analogue phase-shifters alter 'room boom' unless it is the result of subwoofer interaction with the main speakers.

The problem primarily lies in trying to correct for complex timedomain interactions – dependent on the position of the subwoofer and the room boundaries, which are near-field at low frequencies – with the use of simple frequency-domain filtering. Since time and frequencydomain behaviours are inextricably linked in analogue systems, the appropriate corrections cannot be completed.

With dsp, such restrictions are shed, but the different complexities of design are, I guess, beyond the time commitment available to most readers.

Cable sonics

With reference to your article 'Cable sonics?' in the October 1997 issue, I would point out another interesting speaker cable configuration: the four-core one shown. This was suggested to readers a few years ago by the Italian hi-fi magazine Audio Review.

Using the geometric explanation of your Fig. 3, this configuration has null effective conductor spacing and consequent very low inductance. I think that there is some capacitance increase though.

I found an economical and flexible 4×2mm² type with orange external sheath. It was recommended for professional tools with 'threephase plus ground' supply. Marco Bandiera

Bologna Italy

Mr Frobisher's discussion shows that he is well aware of room dimension effects, and although I have not examined the dimensions beyond seeing that they include a hazardous 2:1 ratio, the calculation of all possible resonances is unlikely to be very informative. The way in which each of these resonant modes is driven is more important. Thus the 'suck it and see' approach is the best, and I am afraid that I am going to immediately suggest that the subwoofer must be moved from the corner!

To reiterate some old knowledge in my own terms, the corner is the position most strongly acousticallycoupled to the room, including coupling to all the room resonance modes. To describe it another way, the room corner is like the mouth of a very poorly shaped horn. Consequently this horn has a wild and varying impedance

characteristic – and hence efficiency – as the driving frequency is altered.

The introduction of a widebandwidth linear driving source of low distortion (the Breden subwoofer) has simply illuminated the non-linearity of this comer coupling. Note that low-frequency room resonances are very hard to damp mechanically without using very large acoustic absorbers in the

ADVERTISE FREE OF CHARGE

Subscribers* to *Electronics World* can advertise their electronic and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word. **You must include your latest mailing label with your form**. * This free offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only.

Trade advertisers – call Joannah Cox on 0181-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

12		

Please send your completed forms to:

Free Classified Offer: Electronics World, L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

LETTERS

room. But if you have to, start in the corners.

The use of notch filters or equalisers undoes many of the design advantages of Mr Breden's excellent work, as well as being unable to correctly compensate for these room effects.

Since the way in which a room resonance will be excited depends on where the driving source is located with respect to the nodes and antinodes of that resonance, that mode may be suppressed by choosing a suitable place for the subwoofer. To cut a long story short, a position is required to minimise the effect of all the possible room modes, which is typically out in the room and away from the walls.

As in the case of dipole speaker in a simply shaped room about a third of the way along room diagonals – including being raised, if possible – is often a very neutral starting position. There is minimal emphasis of particular modes, since this position removes the simple multiples of dimensions appropriate to reinforcement – avoid halves and quarters of room dimensions

Anyone wishing more complexity on this topic should examine the theory of quadratic residues, as applied to sound studio design, etc.

With the move out from the corner, you will also notice a drop in apparent efficiency, and will likely have to increase the subwoofer gain relative to the main speakers. Beware of the tendency to have the subwoofer volume set too high. Listen to the result, and then experiment further with positional tuning.

A little laterality in presentation will be required next to solve the 'out-of-sight' requirement. The subwoofer may perhaps be disguised as a coffee table or tv stand, or could be placed under the sofa - with the potential for other exciting effects. If the subwoofer looked like a Chippendale or a piece of sculpture, it might be given a place of honour. Unfortunately for Alan, and his wife, I do firmly believe that repositioning is the realistic solution to this dilemma, and unless you are a digital whiz, also the only reasonable solution. **Richard H Barton** Bramley Guildford

Rumblings

If you extend the frequency response* of Dominic Di Mario's electric-field sensor described in EW October 1997, you will access even more amazing signals –

 1 Sec
 2.Sec
 3 Sec
 4 Sec
 5 Sec
 -6 See
 7 Sec
 8 Sec
 9 Sec
 10 Sec

 +
 +
 +
 +
 +
 +
 +
 +
 +
 10 kH

 +
 +
 +
 +
 +
 +
 +
 +
 10 kH

 +
 +
 +
 +
 +
 +
 +
 +
 +
 10 kH

 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 5
 kHz
 +
 +
 4
 +
 +
 +
 4
 +
 +
 4
 +

These 'risers' were recorded during a minor magnetic storm. Short bursts of rising frequency-packages embedded in auroral noise are evident. Played through a loudspeaker, this signal resembles birdsong! A weak arc of Aurora was seen low in the north during this recording.

In Provinsion	in China	tele reserve		Constant of the		and a sub-	and the second discover			
1 S∈c	2 Sec	Sec -	4 Sec	5 Sec	6 Sec	7.11	8 Sec	9 Sec	10 S	ec
					1111	+				10 kHz
4		j∦ I					* 11			8 kHz
	5.4		14 n. 12		t i		+	+		6 kHz
A STATES OF	109	*	l ttore i	L SAL		Nog.				4 kHz
	+		-1-		t.	+		a,		2 kHz

Four huge – and noisy – whistlers shown in the frequency domain. Horizontal lines show the overtones of the mains. Vertical lines are individual lightning strokes. The top graph displays the signal amplitude.

especially in the range of the human ear. They originate in the ionosphere.

Known as very low frequency ionospheric emissions, or vlf-ie, these signals are created by two different processes. One is lightning, the other is associated with Aurora Borealis.

If you sense the electrical field, there is a good chance that you will hear a tone with a descending frequency; this is a whistler. The magnetic path in the ionosphere acts like a prism. The higher frequencies arrive first, followed by the lower frequencies.

The time-span of a whistler varies from parts of a second to several seconds. There are variants of the phenomenon. The frequency can ascend or divide in two – or more – branches. It can be more or less broadband noise.

While there is a great Aurora above, the ionosphere is choked with electrical currents. They are induced by plasma ejected from the Sun.

The impact of this effect of radio wave propagation is well known. Some of the effect has frequency components in the range of interest here.

Currents flow along the magnetic lines equivalent to the visible streaks of the Aurora proper. There are hisses of various frequencies and bandwidths. Singing tones like birds or whales may be heard, and/or sounds of any fashion, shape or form. Sometimes many echoes can occur.

Choice of listening site is important. Although it is possible to retain the notch for the fundamental frequency of the mains 50Hz, the power grid emits a huge number of overtones that are difficult to cope with. Unfortunately, they are most frequent in the range 20Hz-16kHz. The best solution is to find a

listening site well out of sight of all power lines. A clean spectrum of vlf-ie is not

A clean spectrum of vir-le is not conceivable within an urban area. But you can train your ears to distinguish interesting signals among trivia in a hum-filled environment – at the price of a few head-aches.

Another major consideration is the geographic latitude where this exercise is to take place. The farther north you are, the greater chance that you will hear something more than the lightning strokes. If you live near or farther north than the arctic circle. it is likely that vlf-ie will occur on a daily basis.

I live at 59° in Sweden. I hear whistler activity of some significance once a fortnight. on average. During 1997, Aurora generated sounds occurred once a month.

If you live at a latitude in the lower 40 to 50° range, you will probably have to wait a long time before you encounter even a whistler. But solar activity should pick-up in the coming few years. This will certainly increase the occurrences of sounds from both modes of vlf-ie by an order of magnitude.

If you want to keep track of Aurora activity, you can assemble your own magnetometer. See EW+WW March 1992, Letters.

Keywords to look for on the Internet are natural radio, whistler, Aurora Borealis and CME.

Two spectrograms of VLF-IE are shown here. *Göte Flodavist*

Farsta Sweden

* Or, tap the signal at the output of the front end amplifier at point 6, i.e. the OPA124P output. This signal should be sufficient to feed to the microphone input of a cassette recorder. The antenna in this case should be a vertical 2 to 5 meters long wire.

Hit the road jack

I recently spoke to a very concerned engineer who was worried because his employer had instructed him to make up a set of connecting cables for a customer's PA system. This involved fitting jack plugs to the end of loudspeaker leads. I explained my views on this dangerous practice to him.

I appreciate that a number of big

manufacturers use jack plug loudspeaker connections especially those in the guitar amplifier sector - and it is unlikely that this situation will ever change. My argument revolves around the application of EN60065; in particular, clause 9 "Shock hazards under normal operating conditions". Clause 9.1.1 is. I feel, quite specific in its definition of whether a contact terminal is live or not, and as such constitutes a potential hazard;

Clause 9.1.1

The part or terminal is not live if; b) from each other part or contact, the current measured through a non-inductive resistance of 50000Ω does not exceed 0.7mA (peak) or 2mA dc.

Essentially, if the terminal can provide in excess of 34V peak, then there is a real danger of electric shock. My own personal view of this is that for safety reasons, it must not be possible to touch the output terminals of any amplifier over about 50W

If we agree up to this point, why

does the musical-instrument industry continue to use jack and Cannon plugs as connectors for the loudspeakers? I suppose you could argue that Clause 4.2.6 (for the purposes of testing, the amplifier is set up to produce 0.125 of its rated output), could be invoked to establish the loudspeaker terminal voltage, but l cannot condone this. You could also argue that the equipment should be switched off while connections are being made, but this is simply hoping that an accident never occurs.

I have never had to have to have this point tested by an accredited test laboratory. All the amplifiers l have had tested have been under 40W output, and the only one with an accessible loudspeaker is a little 10W practice amplifier. I feel that as an industry, we should have a unified interpretation of this and I would be extremely grateful for your thoughts on this matter. Kindest regards. K Aston Leeds

Low voltage circuits

With reference to Ken Hawes' query in the December issue letters pages regarding circuits operating at 1.3V, Ken might benefit from reading 'The Art of Electronics' second edition. On page 917 there starts a chapter on the art of low and micro-power design. This explains in some detail how to go about designing very low voltage power devices. The book is packed with useful information for the electronics designer.

May I say with regard to the content of the letters page 1 and many others I am sure are fed up

with reading about the finer points of audio design. Why can't some other people be given space to air their point of view or to request technical help? Surely most people don't really care about whether there is 0.00001% or 0.0001% distortion from an amplifier at some frequency they can't hear any way? More on rf design instead please. Ian Johnson

I counted just two letters on audio in the January, February and March issues. I agree with your comments

about A of E though - Ed.

MICROWAVES, NEW WAVE Mike Hosking

Circuit Me

#1 Concepts, circuits & devices
April 1994, p276

#2 The Laws of Microstrip May 1994, p410

St. Albans Herts

Oops...

Fields, lines and tremors. On page 806 of the September issue, Fig. 4, both negative and shield should be connected to ground. In Fig. 8, the 6µ8 capacitor is actually 6µ8 and the rating of the instrument is $200\mu A$ and not 200µA as shown.

Frugal buzzer. This circuit, on page 767 of August issue, showed three loose wires. These should be connected together for proper operation. Apologies to readers. D. Di Mario

Nine year index — new update

Hard copies and floppy-disk databases both available

** Includes over 600 circuit idea references** Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 5.25in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Photo copies of *Flectronic* World articles Photo copies from back issues of Electronics World are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage

Hard Copy Flectronics World index Indexes on paper for volumes 100, 101 and 102 are available at £2 each, excluding postage.

. Design: RF Directional couplers, hybrid Gigahertz Systems on a Chip HF receiver performance HF receiving loop, inproved Hepa for RF pouer amplifier design High quality punch for radiocomms Hybrid in AF combiners Inpudance transformation Measuring Detectors Measuring

Microwaves [=1 Microwave Noise ou Polypha RF De ign RF Power M RF Tran i RF Tran i RF Tran i FF Tran i FF Tran i

Circuit
 Remote nutor control
 Remote nutor control
 Remote nutority in respective set of the set of the

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquiries about photocopies, etc. please send an sae to SoftCopy Ltd at the address helow.

STHULATOR, INSURTION & RETURN 1

"hardtagege in ertim and getarn 10. - Plat"


In plot " Bodelling a setura to beidge at the relevant part allow plot of incention in , and without further computation, related to plot inultaneous by

Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53, tel 01242 241455, or e-mail at softcopy@compuserve.com. Please make cheques payable to SoftCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

April 1998 ELECTRONICS WORLD

ELECTRONICSAPPOINTMENTS Tel: 0181 652 3620

Electronics World April 1998

To find out more about these opportunities, please telephone quoting reference number on 01273 820911 until 7.00pm this week or next. Alternatively, post / fax / Email your CV to:

Quest Recruitment Solutions Ltd 24-26 Meeting House Lane The Lanes **Brighton** East Sussex BN1 1HB Tel: 01273 820911 Fax: 01273 820922. E-mail: quest@pavilion.co.uk

Web: www.questsolutions.co.uk

GSM NETWORKS

Systems Specialists Technical expertise in cellular switching, signalling or radio systems and excellent communication skills will enable you to specify the future architecture and technical strategy of the most dynamic European mobile network/s. One of top 3 infrastructure companies heavily investing in people & technology to work directly alongside operators key specialists. Flexible base.

Ref: AW/10

RF IC DESIGN TELECOM APPS UK/Europe/USA Excellent Package

Major semiconductor manufacturers require talented RFIC design engineers with proven initial design experience of min. 2 years in analog (RF) design, biopolar or BICMOS technologies. Knowledge of design tools such as Cadence, Spice, Spectre RF and experience on GSM, DECT, DCS or Radiocom systems would be a plus. Full relocation for all positions.

Ref: ML/10

HARDWARE DESIGN Excellent Package

UK/Europe A background in digital design will enable you to join this dynamic organisation working on leading edge electronics hardware and software technology for embedded processor design. You will have between 1 to 10 years digital design experience using microcontrollers, FPGA design, ideally knowledge of high level system design tools and be educated to degree level.

Ref: EM/11

SOFTWARE

Get into GSM

>£35K Mobile comms company willing to provide training to R/T design engineers with a good understanding of embedded systems. Systems analysis and specification through to implementation of design with as much responsibility as you wish to take on. Project ownership /leadership available to experienced GSM engineers. Excellent salary + benefits + relocation.

Ref: AW/11

MICROCONTROLLER DESIGN

Europe/USA Excellent Package As a result of significant investment in Europe, a brand new design centre dedicated to microcontrollers has been opened by one of the world leaders in electronics. They now seek experienced design engineers to work on next generation microcontrollers. You will be able to contribute from the outset to the success of future products. Opportunities also exist within Europe/USA. Ref: ML/11

SOFTWARE TEAM LEADER **GSM RADIO PLANNING TOOL** South West **Excellent Package**

International, young rapidly expanding telecoms company needs experienced software developer to lead a team of software engineers to design network planning tool software. Opportunity to work with market leaders across the world. UNIX/C, X Windows, Embedded SQL essential, GSM and team management experience preferred.

Ref: AR/11

PRINCIPAL ENGINEER

Excellent Package M3/M4 Corridor

Lead a tactical design team of performance planning/analysis engineers to plan and build national carrier grade ATM data network. Help create a new age of communications infrastructure. Desired experience ATM/Frame Relay/Legacy data networks, Newbridge and Nortel platforms, network support/management. Excellent prospects in leading national telecoms player.

Ref: AR/10

RADIO PLANNING LEADER UK & International

World leader requires experienced radio planner with understanding of cellular systems implementation and optimisation to take a key role in a UK based international project leadership group. As much responsibility as you can handle on the latest licenses across Europe & MEA. Excellent Company, group, salary and benefits & relocation if required.

Ref: AW/12

VLSI/LSI DESIGN HK

to £45k

Rapid expansion within leading IC design houses involved in comms, consumer, automotive and computer markets has created the need for experienced engineers in ASIC and LSI design using Verilog or VHDL and synthesis tools such as Synopsis. We require engineers at all levels from junior through to Principal/Project Leader level.

Ref: EM/10

SYSTEMS ENGINEERS - SDH South UK **Excellent Salaries**

Join this world leading telecom multinational and work on exciting, state of the art systems projects on SDH. Ideally you will have experience in either telecoms transmission or datacoms protocols, together with a degree enabling you to contribute to new 10 Gbit/s (and above) system design. Excellent career prospects with real opportunities for ongoing training and travel.

Ref: EM/12

IC DESIGN / APPS

Europe / USA Full Reloc Excellent Salaries Key players in microelectronics require experienced design and applications engineers with at least 3 years experience in one of the following: full custom digital CMOS, full custom VLSI, semi custom CMOS and bipolar, ASICs with experience of leading EDA tools. Excellent career opportunities for talented and motivated engineers.

Ref: ML/12

R & D IN EUROPE

Full Relocation **Excellent Salaries** Top class engineers are required to join "state of the art" R& D centres involved in wireless developments for the next millennium.

- RADIO FREQUENCY bipolar/frequencies 1-2 Ghz.
- HARDWARE high speed baseband
- architectures for terminals, DSP, algorithms. • SOFTWARE C, C++, systems & protocols
- design for ATM, GSM, DECT, APIs, MMIs, Real Time OS, speech recognition & synthesis. Ref: [PR

ELECTRONICSAPPOINTMENTS

Electronics World April 1998

PR

Tel: 0181 652 3620

Calling all Radio Technicians

We have some excellent opportunities for systems professionals at all levels working in the fields of:

GSM

Fixed Access Radio Military CIS PMR DECT TETRA Satellite Communications x25 x400 Internet

We would be glad to focus our efforts on securing your next move. Please call Gareth Shaw, (ref. 1968H). Tel: 01727 841101 Fax: 01727 838272 Email: gareth@jprecruit.com

JPR, The Courtyard, Alban Park, Hatfield Rd, St Albans, Herts AL4 OLA.

ELECTRONICSAPPOINTMENTS

Electronics World April 1998

Tel: 0181 652 3620

DIGITAL SIGNAL PROCESSING ENGINEER

South East

To £37.000 + Bonus

Join Europe's largest mobile phone manufacturer. They are leading the field in GSM technology and breaking new ground in third generation systems. Last year their global sales exceeded £4 billion and they employ more than 30,000 people world-wide. Due to the success of their current product lines they require software and DSP specialists at all levels up to principal. You will be degree qualified with good C and assembler skills with implementation experience in a real-time embedded environment. Algorithm development experience and software integration skills would be beneficial in your application as would a sound understanding of hardware, RF, speech coding and mobile communications. This is an opportunity to work at the forefront of DSP development for cutting edge mobile communications applications. Contact Tony Walker for this and other DSP opportunities.

C & ASSEMBLER STRUCT. METHODS

West of England

£20,000 To £32,000 + Benefits + Relocation

My client is looking for a team of software and firmware engineers with good C / Assembler software development skills ideally with H8 or 68xxx development experience. The software will be developed using Yourdon methodology with full training being given to any engineer without a background in structured methods. There are a number of roles available from junior engineer to senior development. The company is the world leader in the field of computer peripherals and operates a very flexible policy of full flexi-time, casual dress and promotion from within. The company is based at a purpose built location designed to make life as easy as possible for developers on site. Contact Toby Walker for more information.

SOFTWARE ENGINEERS

West of England / M4

£20,000 to £33,000

My client is an international communications consultancy specialising in the provision of innovative software products and professional consulting services to network operators and equipment suppliers. My clients' products are renowned for their functionality. flexibility and scalability. Due to rapid expansion their requirements are many and spread across a range of disciplines centred around the mobile communications industry, including:

- * C, Unix. Motif
- * Mobile Comms / GSM
- * Network Management | IN / SNMP
- * Oracle Database
- * Signalling System No. 7 (C7)
- * Radio Network Planning / Frequency Planning Software
- * Fraud Management Systems

If you have software experience in some of these fields, are looking for a highly rewarding career and are able to learn quickly in a highly dynamic environment then you can join the cutting edge of mobile comms consultancy. Contact Toby Walker for more information.

MORE THAN JUST A PCB LAYOUT ENGINEER

Bedfordshire

£20.000 - £25.000

The multi-national company that designs the technology behind some of the biggest names in mobile communications is undergoing phenomenal growth and is looking for the most highly motivated, practical and methodical PCB layout engineer to help complete their new Systems Team. If you are from a background which has given you a broad, yet detailed knowledge of communications technology, maybe as a test engineer, or as an apprentice and are looking to broaden your horizons and stretch your skills, then you must send your CV to Max Pritchard now. Experience of PADS would be useful, but is not essential.

GET INTO MOBILE COMMUNICATIONS

M3, M4

OR ALL OUR

VACANCIES

To £37,000

Join the successful and expanding development arm of possibly the best known mobile communications company in Europe. They have over 75.000 employees world-wide and have activities in more than 100 countries. This site specialises in the development of cutting edge mobile communications products, which include Digital Cellular (GSM). Personal Communications (PCM), Personal Communications Systems (PCS), RLL and Satellite Communications. Due to continued investment in R&D they currently require software engineers at all levels up to Principal Engineer. Communications experience is not essential, but is highly desirable. Essential skills are C software development in a real-time environment and an understanding of structured methods. Desirable skills include the following:

* Mobile Communications

* Case Tools

- * GSM / UNITS / DECT / CT2
- * DSP

In return for this expertise you will receive excellent renumeration, ongoing training to maintain your skills at the cutting edge of the industry and the benefits of working in a development environment with a high degree of involvement, autonomy and support. **Contact Toby Walker**.

C / C++ SOFTWARE COMMS PROTOCOLS

Northern Home Counties To £

To £35,000 + Relocation & Training

You can join the cutting edge of datacomms development, located at the purpose built European development centre of this top five globally rated network development corporation, working on the next generation of products for the global market. Their software teams are expanding rapidly, generating opportunities at all levels for talented engineers with any of these skills:

- * C / C++ / Unix
- * Telecomms Protocols
- * Real Time Systems
- * ISDN / DASS / DPNSS
- * Real-time Systems
- * Switching Systems & Call Control
- * VxWorks

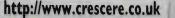
This role offers outstanding training, both on site and at other development sites world-wide. The working environment is friendly, enthusiastic and informal, aimed at giving you the most challenging and productive atmosphere possible. To make the move even easier they offer full relocation. an excellent benefits package and 25 days annual leave. Call me, Toby Walker, for more details.

DIGITAL HARDWARE LEADER

Cambridge

To £40,000

Leading consultancy specialising in test instrumentation for wireless telecoms and ditigal video is seeking a degree qualified team leader with 5 years' experience in micrprocessor design and FPGA design using VHDL. Preferably from a small company background, with experience in working alone, or as a part of a small elite teams, you should ideally have DVB. MPEG or Digital video experience and familiarity with Galileo or Xilinx tools. This company's turnover increased by 300% last year. If you want to be part of this dynamically successful team. **Call Max Pritchard now.**


SENIOR CONSULTANT COMMUNCATIONS SYSTEMS

Bristol

£40,000 + Benefits

This company is an international telecommunications company providing innovative software products and professional consulting services to network operators and equipment suppliers. They have offices in the UK and USA and are equipped to support customers worldwide. The teams consist of highly skilled and experienced telecommunications professionals with an unmatched record of success in designing and implementing wireless networks. A Senior Consultant is required to join the Communications Systems team. You will have 5 or more years experience in RF network design (GSM, CDMA, or TDMA) as well as experience with RF planning tools. Specifically your work may have included network optimisation and preparation of RFP's and RFQ's for Network Operators. This is an excellent career opportunity for an experience d telecommunications specialist to realise his potential within a recognised and successful company. **Call Nick Dixon**.

For further information please contact our consultants on **01280 821999** or write with CV to Crescere Resourcing, Stowe Castle Business Park, Buckingham, MK18 5AB Evenings/Weekends 01280 824735, Fax: 01280 821888 E-Mail: cv@crescere.co.uk

ELECTRONICSAPPOINTMENTS Tel: 0181 652 3620

Electronics World April 1998

STOP PRESS ****DIGITAL ASIC DESIGNERS****

Middlesex

£33,000 +

Multi-national company with more that twenty years of development experience in advanced telecoms products has an immediate requirement for an ASIC designer with 3-5 years' experience to join their rapidly growing hardware team. With skills in ASIC and FPGA design using VHDL and synthesis techniques, you can earn an excellent salary with a range of benefits. A background in telecoms with some knowledge of RF techniques and issues will be highly sought after. Contact Max Pritchard for more information.

HANDSET SPECIALIST

M4 Corridor

To £40,000 + Benefits

This widely acknowleged and recognised telecommunications specialist supports the global telecommunications industry with innovative products and services. A Handset Specialist is required. With an experience of over 5 years you will have a thorough knowledge of GSM / CDMA network design and have experience with either GSM / CDMA or handset manufacture in the area of GSM / CDMA handset testing for feature set functionality and performance testing. Although based in Bristol the position will require you to spend time in the field. You will therefore by required to be able to start quickly and work independently almost immediately. In return you will achieve an exciting career opportunity whilst receiving an excellent salary plus pension, annual bonus and share option, medical insurance and where appropriate relocation. Call Nick Dixon.

ELECTRO-MECHANICAL DEVELOPMENT ENGINEER

Berks

c£30.000

With at least five years experience including EMC shielding and LCD technologies. You will provide innovative solutions to design and manufacturing issues in diverse technical areas. You will have a working knowledge of high volume, manufacturing and assembly techniques, be self motivated and able to develop relationships with sub contractors and suppliers. In return, you will receive a competitive salary and excellent benefits package from this world leading electrical and communications company. Contact Alan Jupp.

MOBILE PHONE DESIGN/TEST ENGINEERS

M3 / M4 Corridor

To £40.000

£Negotiable

Join the company that made communications mobile. If you have experience in GSM, CDMA, PCN or satellite hand-portable projects, in any area, from test and verification, to handset hardware design. the European leader in the industry is now looking for you. Vigorous expansion and exciting new products require new teams to stamp their mark on the last product developments. Send your CV's to Max Pritchard now.

PRODUCTION ENGINEER (ELECTRONIC)

Herts

Highly successful manufacturer of electromechanical defence equipment require a production engineer. HNC / Degree qualified in Electronic Engineering, with an understanding of the latest PCB manufacturing techniques. You will be able to lead by example undertaking assembly/test work to solve problems, provide on line support to production and review and improve on the electrical and electronic aspects of the manufacturing process. Contact Alan Jupp.

RF TEST TECHNICIAN

Buckinghamshire

To £25,000

This company is a well respected RF products and systems manufacturer. They require an RF Test Technician to optimise and test the company's Mast Head Amplifiers. This will mean ensuring the receiving and transmitting frequencies conform to required customer specification (1 to 2 Ghz). You will need to be aware of the individual and team production targets as defined in the production plan and to consistency meet those targets. Part of your work will be to carry out the practical diagnosis following specific diagnostic practice in a logicial and competent manner to ensure swift resolution. To do this you will need to recognise the importance of consistent quality in all aspects of the job. You will work as a member of the production team ensuring sound communication within the department and flag up problems which might affect the team's overall performance. If you have the ability, experience (network analysers) and drive for this demanding role. call Nick Dixon.

ANALOG IC DESIGN ENGINEER

Southampton

This company is a fab-less semiconductor company and respected design consultancy. Due to expanding growth and opportunities within the semiconductor division, they are looking for an engineer with good experience of CMOS full custom IC design. You will have more than 3 years' experience in a variety of IC design, mature customer contact whilst maintaining good selfmotivation. BiCMOS skills would be useful, but not essential. You can grow with this company whilst benefiting for an excellent salary package. relocation, healthcare and a pleasant science park location in a flexible small company culture. Be part of an exciting future, call Nick Dixon today.

PROJECT ENGINEER

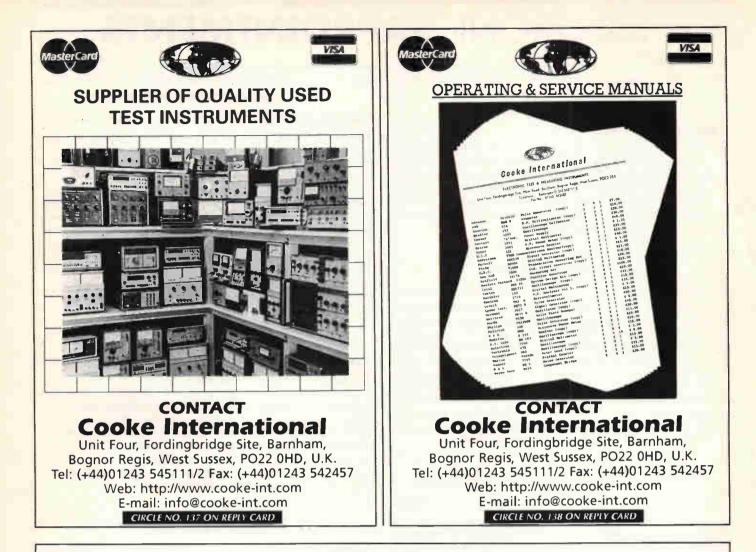
Middlesex

With a degree in mechanical or electronic engineering and five years minimum experience in aerospace or control engineering you will have good communications and management skills combined with a broad knowledge of engineering. By managing resources assigned to individual projects you will provide successful completion of programmes ensuring compliance with all technical and regulatory requirements. An excellent benefits package is on offer with this well respected multi-national company. Contact Alan Jupp.

HIGH SPEED DIGITAL DESIGN

M3 / M4

Join the UK company that is revolutionising the worldwide data warehousing market. Focused on providing massively parallel, high-speed relational database server systems to blue-chip organisations, this company provides a blend of hardware, software tackle the problems that many large organisations have with their data handling. They are now looking for a design engineer familiar with the problems associated with building very high density, high speed multi-processor boards for use in their systems. You need to be degree qualified with at least one year's industrial experience in high-speed digital design. CICS and RICS processor, PLD and FPGA devices and a knowledge of design for EMC compliance. Experience with Mentor Graphics tools would be advantageous for you to highlight in your application. If you are successful, a post with strong financial rewards and excellent bonuses can by yours. Contact Max Pritchard today for more information.



To £30.000

To £35,000

To £35,000

ADVERTISERS' INDEX

AIRLINK SALES	277
B. BAMBER ELECTRONICS	310
СМЅ	
COLORMOR ELECTRONICS	
CONFORD ELECTRONICS	
CROSSWARE PRODUCTS	
CROWNHILL	301
DATAMAN	.OBC
DISPLAY ELECTRONICS	
EQUINOX TECHNOLOGY	
FIELD ELECTRIC	310
HART ELECTRONICS	
JOHNS RADIO	347
JPG ELECTRONICS	
LABCENTER ELECTRONICS	266
LANGREX	360
M & B RADIO	327
MAPLIN ELECTRONICS	271

MILFORD INSTRUMENTS	.277
NUMBER ONE SYSTEMS	.327
OLSON ELECTRONICS	.2 <mark>97</mark>
PICO PS CONSULTANTS	
RD RESEARCH	.268
SEETRAX	.33 <mark>4</mark>
TANDEM TECHNOLOGY LTD TECHNOLOGY SOURCES TELFORD ELECTRONICS TELNET THOSE ENGINEERS TIE PIE	.273 .340 .290 .323
ULTIMATE TECHNOLOGY	
WARTH	

CLASSIFIED

Tel: 0181 652 3620

Fax 0181 652 8938

ARTICLES FOR SALE

32mm

Board size 3.5mm lens or

42mm

5.5mm pinhole

with audio/mic. lens or pinhole

Also colour board

s: camera d bodies: switchers and everything

Road / ondon W2 1ED

domestic and commercial CC RF modulatora £17 + VAT: To CH69 £34 • VA

Tel 0171 258 1831 Fax 0171 724 0322

web hills have benrys co uk

POWER SUPPLY DESIGN

Switched Mode PSU

Power Factor Correction

Linear PSU

Lomond Electronic Services

Tel/Fax: 01243 842520

eugen_kus@cix.co.uk

RF & Data/Comms Test

Equipment (Ex Govt).

Analysers, Sig Generators, and other

For Full Details call Victor on: Tel: 01189 626866 Mobile: 0802 884155

1

· HP, Tektronix, Philips, Gould, etc.

· Scopes (20MHz-20GHz DSO),

Items, Manuals, As New Cash Offers Invited for URGENT Sale

ales = henrys de

- The leading UK based business information publisher
- Over 60 award winning magazines
- Innovative force in electronic media
- Growing company with over 1,400 employees
- Established reputation for training and career development
- Competitive salary packages
- Sutton and Haywards Heath Part of a multinational organisation

Main bases in London.

APPOINTMENTS

ELECTRONICS JOURNALIST

How often do you read Electronics Weekly and think that is not the real issue behind the millennium timebomb or the sale of GEC Semiconductors?

If you are working in the electronics industry and would seize an opportunity to work as a journalist on the industry's leading weekly magazine get in touch with us at **Electronics Weekly.**

We are looking for another reporter, someone who can not only write about industry issues such as the Year 2000 problem or the sale of Britain's semiconductor heritage, but someone who will also being their own practical experiences of working in the industry.

Ambition to develop what is likely to be a new career is more important to us than any professional writing skills. Training will be available, but you will also need to be prepared to learn from colleagues who make up the sector's most technically competent and forthright editorial team.

If you are interested contact: Editor Richard Wilson by e-mail, fax, post or phone at Electronics Weekly, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: 0181-652 3650, fax: 0181-652 8956, e-mail: richard.wilson@rbi.co.uk

RBI is an equal opportunities employer

REED BUSINESS INFORMATION

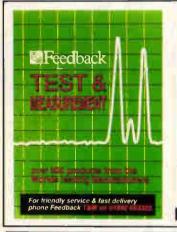
WANTED -- "SPY RADIO SETS", Cipher Gear, W.W.2 German Sets. W.H.Y.? OZBRO RA5 Otterstad, Hosterkobu 10, DK-3460 Birkerod, Denmark. Tel: +45-4281 5205 evenings.

Lindos Electronics Saddlemakers Lane Melton Woodbridge IP12 1PP e-mail: info@lindos. co.uk Tel: 01394 380307 Fax: 01394 385156

SWIRES RESEARCH SA87 spectrum analyser, portable, 5-910MHz, 'leather' case, charger. As new condition. £550. Tel: 01327 358008.

ELECTRONIC DESIGN - ANALOGUE AND DIGITAL. P & P ELECTRONIC'S. TEL: 01924 402931.

April 1998 ELECTRONICS WORLD


ELECTRONICUPDATE

A regular advertising feature enabling readers to abtain more information on companies products or services.

Contact Joannah Cox on 0181 652 3620

CIRCLE NO. 139 ON REPLY CARD

Professional Test & Measurement Equipment

Ralfe Electronics are suppliers of high end, professional T&M equipment on a second-user basis. We specialise in stocking, and sourcing, HP, Tektronix, Marcom etc all ISO9002 quality assured.

Call or fax us for our stock inventory or download it from: www.ralfe-electronics.co.uk Tel: +44 0181 422 3593 Fax: +44 0181 423 4009

NEW Feedback T&M Catalogue

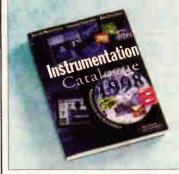
The latest edition of the Feedback Test & Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

CIRCLE NO. 141 ON REPLY CARD

Jugardini common anose we display (2mm, U.3.)
 GoA FET Une issues current \$8673. £12.95 each
 GAS FET Une issues current \$8673. £12.95 each
 GAS FET Une issues current \$8673. £12.95 each
 GAS FET Une issues current \$6750. £10.05 Statement for the set of the

Airpax A82903-C large stepping motor 14v 7.5 step 270ohm 68mm dia body 6.3mm shaft . £8.95 or £200.00 for a box of 30

We have a range of 0.25w, 0.5w, 1w and 2w solid carbon resistors -please send S.A.E. for list.

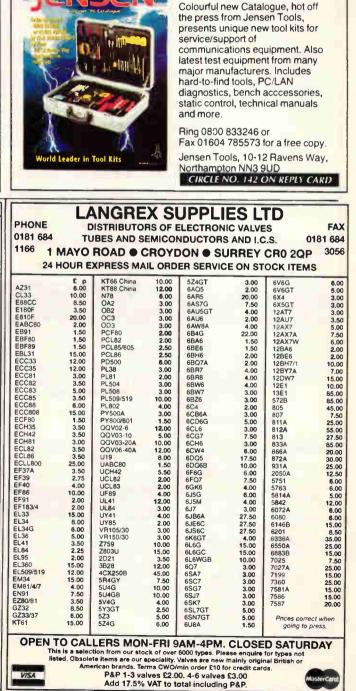

piezes send S.A.E. for list. P.C. 4000k PSU (Intel part 20135-001) with standard motherboard and 5 disk drive connectors, fan and mans inter/outler contectors on back and switch on the side (top for lower case) dims 212 x 149 x 149mm excluding switch 226.00 each, £138.00 (or 6

dims 212 x 137 x 122 k 00 cash, s 100 cash, s 124 k 137 x 128 c 12

2000m3 transistor Hile 99 and 15 v barrey test _____ [9 95 Hand held utransing remote control ______ [3,95 CV2346 gas relay 30 x 10 m dia with 3 uter terminals will also used as a neon light ______ 20 peech or 15 50 per 100 Verbains R300/RH Streament tape commonly used on nr machines and printing presses ret; It looks like a normal caserte with a uter cut out of the tops ______ E4 39 each (161 75 100-); Rateriot commond table.

Norten das compound tube. HV3-2405-E5 5-24v 50mA regulator te 18-264vaic imput 8 pin DIL E3 49 each (100- £2 25)

New 1998 Instrumentation Catalogue



Send for your free copy of the new 1998 Instrumentation Catalogue from National Instruments. Featuring more than 600 hardware and software products for virtual instrumentation including new solutions for data acquisition and visualisation, MMI/SCADA and computer based image capture and analysis. Not merely a catalogue, it includes many useful tutorials. product line overviews and helpful selection guides making it invaluable for any engineer or scientist. CIRCLE NO. 140

NEW JENSEN TOOLS

CATALOGUE

Call National Instruments for your FREE copy on: 01635 523545

m waveproof TV camera 40x40x15mm requires 9 to 13 who at 120mA with composite when output to feed time a steep or a TV with a SCART point has a high resolution of 450 TV lines Vertical and 380 TV lines borozontal, electronic auto firs for ment, dust 11 LIN to bright walful progration and as small lens with a 92 elegree field of view, it focuses down to a fee CM it is first diving a steep read (12 wing and o ideo out) lower also available with wall mount it and swite (case (a the same pixel) available with wall mount it and swite (case (a the same pixel) $= (33.57 \cdot with = 1009 + 32 \cdot 520 \cdot and (4.2 \cdot 300 - 200$

New Special Offers

 E50.00 e VAI = £50.75

 40MP size 39 x 38 x 23mm spy camera with a fixed locus pin hole lens for hiding behind a very small hole. £57.00 v VAI = £65.89 40MC ver 39 x 38 x 28mm camera for C' mount lens this gives a much clearer picture than with the small lenses 68.78 + VAI = £80.83 Standard 'C' mount lens F1.6 16mm for 40MC £26.43 + VAI = £31.06

High quality stepping motor kits (all including stepping motors)

	Comstep independent control of 2 stepping motors	
	(through the parallel port) with 2 motors and software	
		uit = £99.00
	Software support and 4 digital inputs kit.	£27 00
	Power interface 4A kit	£36 00
	Power interface 8A kit	£46 00
St	epper kit 4 (manual control) includes 200 step steppin	g motor and
	control circuit	£23 00
	DTA30 Hand held transistor analyser. It tells you whi	ch lead 15
	the base, the collector and emitter and if it is NPN or	PNP or
	faulty (NEW VERSION does not say FETs & SCRs are	transisions)
	DTA30 .	£38.34
	HMA20 hand held MOSFET analyser identifies gate d	ivan and
	source and if P or N channel HMA20	£38 34
S	seaker cabinets 2 way speaker systems with Motorola :	weeters
	Speaker dia 15 12	8

250WRMS 175WRMS 100WRMS 80hm 40hz-20khz 97dB 500x720x340 21.1kg 80hm 45hz-20khz 94dB 450x640x345 16.8kg 80hm 60hz-20khz 92dB 315x460x230 7 4kg quency range sutivity (1W/1M) Size in mm Weight Price each for black re each for black
whyl coating £139.95
ty felt coating £159.97**

not normally in stock allow 1 we £99.99 £119.97 £54 94 £64 99 wer amplifiers 19' rack mount with gain co STA300 2 x 190Wirms (40hm load) 11kg STA900 2 x 490Wirms (40hm load) 15kg. VU me £339 00 £585 00

Rechargeable barrenes AA (HP7) 500mAH 0.99 AA 500mAH with solder Lags £1.55 A (HP7) 500mAH 0.99 AA 500mAH with solder Lags £1.55 60 95 50 95

AA 950mAH £175. C (HP11) 1.2AH C 2AH with solder tags. 53.60 D. (HP2) 1.2AH D 4AH twith solder tags. 595. PP3 84 V110mAH 1.2AH with solder tags. 595. Sob C with solder tags. AAA (HP16) 180mAH £1.75. 113 AA with tags (philips CTV	£2 20 £2 60 £4 95 £2 50 £1 95	Heatamik compound tube 0.95 HV3-2405-55-24V 50mA regulator is 18-264-uae input 8 pim DIL package £3.49 each (106-£2.25) LV555 timer is				
All products advertised are new and unused unless otherwise stated Wide range of CMOS TTL 74HC 74F Linear Transistors kits, rechargeable batteries, capacitors, tools eic always in stock. Please add £1.95 towards P&P (orders from the Scottish Highlands, Northern Ireland, Isle of Man, Isle of Wight and overseas may be subject to higher P&P for heavy items). VAT included in all prices						

JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Mastercard/Visa Orders (01246) 211202 Fax: 550959 Callers welcome 9 30am to 5 30pm Monday to Saturday

CIRCUE NO. 143 ON REPLY CARD

CIRCLE NO. 144 ON REPLY CARD

The Ultimate 8051 Microcontroller Programmer

 Supports Atmel FLASH 89C +89S, Generic 87C51/52/FA/FB/FC microcontroller derivatives
 FLASH & E² libraries also available as chargeable update

▲ £125.00 Order Code: MPW-SYS

8051 2K Starter System

For C51 Project Development...in a FLASH Includ Programmer, Evaluation module and PK51-2K

£199.00 Order Code: AT-89C-2K-ST

In-System MIGRO-ISP Programming (ISP)

"Now you can program the 8051 of the AVR™ without removing the device from the tocket!"

£39.95 Order Code: UISP-V2-SYS

MIGRO-PRO

AVRM Professional Order Code: AVR-ST

EEXTUR-

- Supports Atmel 905 (AVR) RISC microcontroller family
- Supports Parallel Programming mode in ZIF socket
- Supports In-System Programming via ribbon cable (provided)
- Equinox FAST ISP Programming Algorithm
- All on-chip facilities supported e.g. RC Osc.

SYSTEM CONTENTS

- Professional Device Programmer
- Atmel AVR™ Assembler
- AVR[™] Basic Lite Compiler (NEW)
- Atmel Databook on CD ROM
- Power Supply
- ISP Ribbon Cable
- (to target)
- Serial Cable (to host PC)

Write in BASIC, Run in a FLASH AVR BASIC

- Compiled BASIC generates tight AVR™ machine code
 Not a Run-Time Interpreter; NO code overhead!
 Target speeds comparable with assembler
- Breaks the cost barrier for small projects
 Ideal for educational, hobbyist and professional use
- * AVR™ BASIC LITE only support the AT90S1200 (512 words cod * 8K version also available

 Image: Section of the section of t

▼ Programmer Interface Software for Windows™

200 8

- ▲ Keil 8051 C compiler, Assembler, Simulator (2K code), Windows™ IDE
- ▲ £99.00 Order Code: PK51-2K

895 Socket Stealer Module

Simply plug this into your existing 8051 or AVR™ socket for INSTANT In-System Programming

E49.00 Order Code: SS-89S-DIL40 🔺

The Embedded Solutions Company PROVIDING THE SOLUTIONS TO YOUR PROBLEMS!

For product information visit our web site at: www.equinox-tech.com E-mail: sales@equinox-tech.com

3 Atlas House, St Georges Square, Bolton, BL1 2HB UK

EQUINOX DISTRIBUTORS: AUSTRALIA Famel #41 2903 8066 A0STRIX Famel #45 0600 // 39 ECOM AUGINETICUTORS (% 25 22 / 39 F) Intelies (% 25 20 / 39 F) Inte

Surely not. Surely someone somewhere has developed a portable programmer that has even more features, even greater flexibility and is even better value for money.

Actually, no. But don't take our word for it. Use the feature summary below to see how other manufacturers' products compare.

Dataman-48LV

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 and 5V
- True no-adaptor programming up to 48 pin **DIL** devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU for go-anywhere programming
- Package adaptors available for TSOP. PSOP, OFP, SOIC and PLCC
- Optional EPROM emulator

FREE

R1A1

DA

CE

Dataman S4

INTELLIGENT UNIVERSAL PROGRAMMER

odraman DAVIANDAVA

£495

Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more

......

-

E**7**95

- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL module

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

Still as unbeatable as ever

promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman. Order via credit card hotline - phone today, use tomorrow. Alternatively, request more detailed

information on these and other marketleading programming solutions.

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Eng no 179

still sowerful, portable

upgrades +

technical support

GUARANTEE

ar

Support

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery always in stock
- Dedicated UK supplier, established 1978

Dataman Programmers Ltd, Station Road, Maiden Newton, Dorchester, Dorset, DT2 0AE, UK Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321095 (24hr) Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com

Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!

Beware of cheap imitations, Beware of false