Basic op-amp square/triangle generator IC1, IC2: 741. Supplies: ± 6 to ± 15 V V_2 : ± 0.9 V V₁: 1 to 20V pk-pk Frequency: zero to 3kHz $R_1: 10k\Omega$; $R_2: 8.2k\Omega$ R_3 : $1M\Omega$; R_4 : $220k\Omega$ R_5 : 1.2k Ω : C: 0.1 μ F Circuit description When a positive voltage is applied to the input of the inverting integrator, consisting of R4, R5, C and IC2, the current flow causes C to charge, with its input end positive w.r.t. its output end. Negative feedback through C and the high gain of the amplifier jointly ensure that the inverting terminal retains a potential very close to that of the non-inverting terminal. The output must therefore go negative and provided the amplified input current is much less than the constant current in P and R₅ the output voltage rises linearly with time. At the value of V₁ the negative current fed back through R₂ will overcome the positive current in R₁ and R₃, and the resulting negative current in the non-inverting input of IC1 initiates a negative going transition in V_2 . This allows the negative current in the non-inverting input to further enhance the output swing by this positive feedback action. The integrator output then reserves its slope and eventually becomes positive and finally switches V_2 back to its original positive value. Hence V_2 is a square wave and V_1 a triangular wave. Resistor R4 gives independent frequency control and R3 varies the frequency and the magnitude of V_1 . Component changes - The low frequency of operation of this circuit is due mainly to the limited slew-rate of a 741 op-amp as the active element IC1. A 301 op-amp will permit frequencies of up to 10kHz to be achieved, the square wave degenerating visibly before the triangle. - R₁ and R₅ limit the current drawn from IC₁ when R₄ and R₃ are in their minimum positions and could possibly be omitted. - R₂ may be varied widely but must not be so low that IC₂ is heavily loaded and not so high that IC1 does not switch before IC2 reaches saturation. - C can also be changed, bearing in mind that the slope of the triangle is inversely proportional to $C(R_4 + R_5)$. # Wireless World Circard Series 3: Waveform Generators-2 ### Emitter-coupled triangular wave generator Circuit description The circuit is an emitter-coupled astable circuit normally fed from a voltage source. This results in sharp transistions in the voltages across R3 and R4 at the circuit switching points. These can be eliminated by driving from a constant-current source, so that only the direction of charging current in capacitor C is reversed, the magnitude varying little throughout the cycle. Consider Tr₁ fully conducting, Tr₂ off. The charging circuit is then as shown in the above diagram. Provided the conditions $v < v_3$ and $v < v_4$ are maintained, the capacitor charges linearly, but in any case for $R_3 = R_4$, any rise in v_4 must be accompanied by an identical fall in v_3 , to maintain a constant total current. Hence there are two outputs v₃ and v₄ which are of identical shape but anti-phase, and are Typical performance Tr₁, Tr₂, : BC125 Tr₃: BC126 VCC: +15V C: 0.1µF R_5 : $2.2k\Omega$ R₁, R₂: 330Ω R3, R4: 4.7kQ $R_0: 10k\Omega$ f: 5.3kHz 12.11C triangular 0.4V pk-pk on a d.c. level of 4V. As R5 is reduced, d.c. level rises towards 8V; frequency Va: Antiphase waveforms increases to 7kHz, as long as triangular wave- form is maintained. A ramp voltage at 2f is available at Y. also good approximations to triangular waveforms. The transition will occur in the above example when $v \approx -0.5V$ at which condition Tr2 begins to conduct, positive feedback rapidly completing the transition. Increasing the source current increases the charging rate, and hence frequency, with little change in amplitude. The output has an amplitude of ~ 1V pk-pk at a mean level of ~ 5V, depending on the controlled supply current. Supply current is defined by the constant-current source connected between X and Y, where R₅ determines the value of 1. Component changes Useful range of C: 1µF to 3.6 nF Frequency range: 0.5 to 130kHz A 20% reduction in V_{CC} varies frequency by about 5%. Circuit modifications • The triangular wave can be given a d.c. offset of either polarity by applying a bias signal V_6 as shown left in which $R_6 = 10$ kΩ. The bias can be increased to the point at which the integrator saturates without changing the state of IC₁. • A sawtooth waveform can be achieved by adding a d.c. signal V_3 to the integrator output, as shown middle. The magnitude of V_3 R_7 must be less than $[V_2/(R_5 + R_4)]$ otherwise the integrator output will not change direction as V_2 changes sign. Time t_1 is greater than $t_2/2$ if V_3 is positive and t_1 is less than $t_2/2$ if V_3 is negative. The ratio V_3/R_7 must be comparable to $V_2/(R_5 + R_4)$ if a large mark-space ratio is required. Independent frequency control through R_4 is lost when this is done but may be regained by varying C. A sawtooth waveform can also be produced by the circuit, right, which does not require an external signal. Any general purpose diode will do. With the diode as shown $t_1 < t_2$, but $t_1 = t_2$ if the diode is reversed. As shown, the integration rate on the negative-going side of the triangle is controlled with $R_4 + R_5$ and on the positive-going side by R_8 in parallel with $R_4 + R_5$. • The output of IC_1 may be clamped to a well-defined level by inserting a series resistor in the output lead and taking a pair of back-to-back zener diodes to ground. This produces a better defined integration rate and makes t_1 more nearly equal to $t_2/2$. Drive point for the circuits is taken as the junction of the resistor and zeners. Clamping on many i.es is possible at low signal levels by means of terminals on the i.es (cross ref. 2). Further reading Clayton, G. B. Triangular square wave generator Wireless World, vol. 75, 1969, pp.586/7. Tobey, G. E., Graeme, J. G. & Huelsman, L. P., Operational Amplifiers, McGraw Hill 1971, pp.373-81. Linear Applications Handbook, National Semiconductor application note AN31-6, 1972. Cross references - 1 Series 3 cards 2 & 11. - 2 Series 2 cards 1 & 3. © 1972 IPC Business Press Ltd. #### Circuit modifications • With $R_5 = 0$, $C = 0.1 \mu F$, a condition arises where the drive is not from a constant-current source, but the circuit is connected as an oscillator with d.c. supply $\approx 15 \text{V}$. The shape of the output waveform is then as shown left which has a d.c. level of 11V and a swing of 6V pk-pk. • Voltage spikes occur at the positive and negative peaks of the normal triangular waveforms, due to the change in p.d. across the oscillator causing sharp current spikes from stray capacitance existing across the oscillator: i.e. circuit is temporarily operated from a constant voltage rather than a constant-current source. These can be eliminated by connecting capacitor C_x in the range 3 to $10C_x$ as shown middle. Typically, for $C_x = 0.1 \mu F$, $R_x = 2.2 k\Omega$, $C_x = 1 \mu F$. The waveform across R_4 is doubled, the frequency change being $<1^{\circ}_{\circ}$. Resistors R_3 and R_4 replaced by a 10-k Ω potentiometer R_7 as shown right. As R_7 is varied, the output triangular wave peak amplitude remains unchanged, though the slopes alter assymetrically. Typically for $C = 1\mu F$, $R_5 = 2.2k\Omega$, f = 0.5kHz when R_7 is set at mid-point. For a setting of 2:1, frequency reduces by 10%. Further reading Hemingway, T. K. Electronic Designer's Handbook, Business Publications 1966, pp.191-4. Transistorized all-waveform generator, in Electronic Circuit Design Handbook, Tab 1971, p.252. Cross references Series 3 card 1. © 1972 IPC Business Press Ltd. ### Diode-pump staircase generator Typical performance 1C: 741 Tr: 2N2160 C₁: 3.3nF±10% C₂: 3.3nF±10% D₁, D₂: 1N914 V_{in}: +3.6V pulses repetition rate: IkH/pulse width: 200µs Output step ~ 0.28V Ramp height ~ 8V Ramp height ~ 8V No. of steps ~ 28 Circuit description The basic diode pump has diode D_2 feeding capacitor C_2 (grounded), and without the amplifier. On the first positive input pulse D_1 conducts and provided the pulse duration is long enough the pulse amplitude is shared between C_1 and C_2 —the same charge producing the larger portion of the p.d. across the smaller capacitance. On each succeeding pulse the p.c. stablished across C_2 opposes any fresh flow of charge, and the step in the output voltage diminishes progressively to zero when the p.d. across C_2 equals the input pulse amplitude. In the circuit shown, the amplifier virtual earth prevents the p.d. across C_2 from influencing the charge flow on successive cycles and the p.d. builds up in equal steps. In each case the charge acquired by C_1 during the pulse is lost to ground through, D_1 when the input returns to zero i.e. C_1 commences Supplies: $\pm 15V$ V': +4VStep size $\approx \frac{(V_{\text{in}} - 1) C_1}{C_2}$. V No. of steps height step size Ramp height dependent on unijunction but $\sim 2V'$ each cycle in an uncharged state. Departures from the ideal are: p.d. across each diode when conducting is $\sim 0.6V$ for silicon, reducing the effective input pulse amplitude by $\sim 1.2V$; amplifier input draws a small but finite current that adds a continually varying output due to integration via C_2 ; to make the circuit free-running a device such as a unijunction transistor must be added to provide periodic discharge of C_2 , and such devices contribute additional leakage currents. #### Component changes C₁: 100pF to 1μ F C₂: 100 pF to 1μ F D₁, D₂: general-purpose Si diodes IC: any general-purpose compensated op-amp e.g. 307. Vin: 1 to 20V pk # Wireless World Circard Series 3: Waveform Generators-4 ### Unijunction sawtooth generator Data Typical output waveforms obtained with R₁: $100\Omega \pm 5\%$ R₂: $10k\Omega \pm 5\%$ C: $1\mu F \pm 5\%$ V: +15V Tr: 2N2160 Supply range can be 4 to 20V at least. Circuit description Circuit is used as a sawtooth (V_2) or a trigger pulse generator (V_1) . Capacitor C charges through R_2 until the unijunction transistor V_p is reached and then discharges via R_1 until the transistor changes made at approximately $0.5 V_E$ (sat.); C then starts charging through R_2 again. Waveform frequency $\propto 1/R_2C$. With R_2 fixed at $10k\Omega$ and C varied, the waveform details (apart from the period) remain identical as C is reduced down to 220 nF. At 10nF, V_1 is reduced to half its previous value and the pulse width increases to approximately 1/10th of the period. At 1nF the pulse height is further reduced and V_2 becomes rounded. Emitter leakage current modifies the charging waveform and places an upper limit on the value of R₂ for guaranteed operation. The firing potential is temperature dependent because of the p-n junction p.d. at the emitter junction. This leads to temperature-induced frequency instability which can be compensated for by the insertion of a small series resistor in series with B_2 . The rise in the B_1 , B_2 path resistivity with temperature reduces the current and hence the p.d. across this resistor, leaving a larger part of the supply voltage at the junction. Component changes Reduction of R_1 to zero causes V_1 to become zero but has little effect on V_2 . Any standard unijunction transistor may be used. Motorola 2N2646 will produce a smaller lower limit on V_2 and consequently reduced frequency for the same C & R. Pulse rise time should not be too small a fraction of pulse width or excessive transient currents appear at amplifier input. Pulse width: $< 1 \mu s$ to > 1 sMark/space ratio: 1:100 to 100:1 Repetition rate: 1Hz to 100kHz. Circuit modifications • Use of bootstrap technique returns r.h. end of C1 to output through D2 at end of each positive pulse. This ensures that on next positive pulse D₁ begins to conduct at start of pulse even if p.d. across C2 and hence at output is greater than pulse height in. Ramp steps of constant size and ramp height limited only by amplifier. Again unijunction may be used to end ramp. An alternative range of transistor-pump circuits may be devised. On the positive edge, D1 conducts and C1 and C2 charge with p.d. shared between then in inverse ratio to capacitance. On negative edge, Tr, conducts clamping C1 to just below output while discharging C2 only by base current of Tri. An alternative form of bootstrap circuit comparable to first modification above with emitter follower replacing voltage follower. Further reading Hemingway, T. K., Electronic Designers Handbook, Business Publications 1966, pp.215-24. Staircase wave generator, in GE Transistor Manual, 7th edition, p.345. Clayton, G. B., Resistive feedback networks, Wireless World, Aug. 1972, pp.391-3. Cross references Series 3, cards 4 & 5. 7 1972 IPC Business Press Ltd. Charging resistor R₂ can be replaced by a defined current source e.g. a constant-current source will produce a linear ramp instead of an 'exponential'. (Circards, series 3, card 2). Circuit modifications Discharge time through R₁ may be greatly reduced by the modification, shown left, in which V2 is used to short the capacitor to ground. This makes the pulses of V_1 much narrower, makes V2 almost ramp like and also alters the frequency slightly. • The unijunction transistor may be replaced by the two transistor version, shown middle, with R₁ 100Ω, Tr₃ BC126, Tr₄ BC125 and the potentiometer 2.2kΩ. The lower value of V: in this case comes much closer to zero. The potentiometer is set to the maximum value of V_2 required plus V_{be} . Circuit shown right may be attached to any of the circuits to remove the error arising when the supply is switched on, at which point V_2 is at 0V rather than the minimum value it later achieves on the first discharge cycle. Resistors R5 and R_n are chosen so that the transistor conducts, connecting the capacitor directly to the supply, provided the capacitor voltage is less than the eventual minimum value of V_2 (ref. 2). Further reading 1 Ultra-linear ramp generator uses UJT to drive Darlington, in 400 Ideas for Design, Hayden, p.119. 2 Electronic Circuit Design Handbook, Tab 1971, p.173. Triac, UJT & FET give linear ramps, in 400 Ideas for Design, Hayden, p.128. Cross references Series 3, cards 2 & 8. ### Voltage-controlled square/triangle generator #### Typical performance IC1: 741 IC2: 301 IC3: 4 (CD4016) Supplies: ±1V Control voltage, VC: - IV Frequency: 660Hz Square wave: 8V pk-pk Triangular wave: 4V pk-pk C1: InF R1, R2: 100kΩ (mid- position) R₃: 10kΩ Circuit description The basic idea of an integrator feeding a schmitt trigger may be adapted to allow voltage control of oscillator frequency. The square wave output of IC2 controls on electronic switch (in this case a c.m.o.s. transmission gate) which operates directly on the integrator without need for an additional reversible gain amplifier. A fixed portion of the control voltage is applied to IC; non-inverting input through R₂, while the tap on R₁ is alternately open-circuited and connected to the input. With the switch closed, the inverting input receives a negative current as the full input is applied via part of R: to the inverting input, while the non-inverting input is held at some fraction of $V_{\rm C}$. For an open switch the inverting input is returned to ground via R1 while the inverting input is still maintained at a constant negative voltage. A convenient setting, if the switch is ideal, is for R₁ to be centre-tapped with the non-inverting input tapped onto R_2 at $\frac{2}{3}V_C$. Either can be replaced by corresponding fixed resistors with the other varied to obtain best symmetry i.e. compensating for finite on resistance. The Schmitt circuit is conventional while the particular switch may be replaced by any series or series-parallel switch that can make the potential of the inverting input resistor alternate between ground and V_C . # Wireless World Circard Series 3: Waveform Generators-6 ### Complementary transistor sawtooth generator #### Typical performance Vcc: +15V Tr₁: BC125, Tr₂: BC126 R_1 : 2.2k Ω , R_2 : 22k Ω R_3 : 15k Ω , R: 1M Ω (pot) C: 10nF Vont oscillates from 2.8V to 7V at 1kHz. Supply current: 0.5mA Circuit description This circuit is related to the corresponding trigger circuit described in Circards series 2. Consider the capacitor in an initially uncharged state. The base potential of Tr₁ is zero and no current flows in either Tr1 or Tr2. The p.d. across R is a large fraction of V_{CC} provided the current in it and in the potential divider are small enough to avoid a large drop across R₁. As the capacitor charges the p.d. across R falls and with it the rate of charge. When the potential at the base of Tr_1 exceeds that at the base of Tr_2 by $\sim 1V$ the transistors begin to conduct. This reduces the potential at Tr₂ collector and at the base of Tr2 through the potential divider. The increased p.d. between the bases that results completes the positive feedback action, ensuring a rapid switching, with the p.d. across the capacitor falling to a low value (determined by the saturation characteristics of Tr1). Similarly the potential at Tr₁ collector falls. After the switching transient, the recharging cycle begins. Returning R to the collector rather than $V_{\rm CC}$ provides negative feedback that reduces risk of circuit latching into permanently stable d.c. state. Component changes Minimum $V_{CC} = 4V$, oscillation ceases at 3.4V. With C InF, $R_{\rm min} \approx 47 {\rm k}\Omega$, $R_{\rm max} \approx 2.6 {\rm M}\Omega$. Useful range of C: 47pF to $32\mu F$ (tantalum bead). Maximum useful frequency \approx 70kHz. Changing the ratio R_3 , R_2 alters the voltage to which C charges. For switch open $$I = \frac{V_C - \lambda V_C}{(n+1)R}$$ For switch closed $I = \frac{-kV_C}{R}$ For equal slopes: (n+1)k = 1-k $$n=\frac{1}{k}-2$$ \therefore For $n = 1 + k = \frac{1}{2}$ Component changes - Frequency is linearly related to control voltage V_C up to - Useful range of Cl: 100 pF to 0.1μF. - Positive feedback via R₃ must be <75% to maintain triangular shape, because of saturation of the IC₄ for the low supply voltage used. - Adjustment of R₂ controls the mark space of the square wave and slopes of the triangular wave, without altering the amplitude. Typically, $C = 1 \text{nF} V_C = -4 \text{V}$, mark space can be 1:15 at f = 1250 Hz to 17:1 at f = 460 Hz. Circuit modifications In the circuit shown left, the basic form of the integrator and Schmitt circuit remains the same, but the electronic switch now operates in a shunt mode. A simple analysis to indicate appropriate potentiometer settings to ensure symmetrical triangles is shown above. Note that the control voltage is now positive with respect to ground. The linear relationship between V_C and f is indicated right for $C = \ln F$, n = 1, $k = \frac{1}{2}$ and a supply of $\pm 5V$. Triangular output is 4V pk-pk. Operation at 1Hz is easily achieved, but some readjustment of R₂ necessary to retain symmetry. Effect of supply voltage on frequency for the above components is also indicated. Further reading LM311 Voltage Comparator. National Semiconductor data 2 Tidley, R. J., Voltage-controlled triangle/square generator, Wireless World, May 1972, p.239. Cross references Series 3, card 11. © 1972 IPC Business Press Ltd. Circuit modifications - A resistor may be included in Tr_2 collector (R_4 in Fig. on left) to provide a train of narrow pulses typically of amplitude 0.6V when $R_4 = 100\Omega$. Anti-phase pulses, of amplitude $\approx 14V$ are available at Tr_1 collector. - Resistor R may be returned to the V_{CC} rail instead of ${\rm Tr}_1$ collector, as shown middle. To increase R above $2.6{\rm M}\Omega$, current gain of ${\rm Tr}_1$ could be increased by replacing it with a Darlington unit. - Speed-up capacitor C_1 may be added, as shown right, to increase the maximum repetition rate. - The complementary pair may be replaced by a BFR41-BFR81 pair and all resistors can be scaled down by a factor of about ten to give higher current operation, for example, larger output pulses at R4. A V_{CC} up to about 90V may then Further reading Electronic Circuit Design Handbook, Tab 1971, pp.172 Cairns, J. B. F., Linear ramp generator, Wireless World, vol. 77 1971, p.604. Cross references Series 2 card 12. Series 3 card 9. ### D/A convertor waveform generator Typical performance IC:: CD4024A Supply: + 5V R .: 94kQ R -: 47kΩ Jin: 12.8kHz $f_{\rm cut}$: 100Hz i.e. for waveform shown, T For a 7-bit counter. waveform comprises 128 steps. Minimum input level:1V Minimum input pulse Circuit description If the output of a binary counter is used via buffer stages to dramatic istor network, a stepped output voltage is obtained repeats for each cycle of the counter. If the counter is clocked at a definite frequency then the output frequency is fixed by the division ratio introduced by the counter. If the clock rate is variable so is the output voltage with no change in wave-shape, while mouifying the network changes the shape viction affecting the frequency. The circuit shown is one example where a seven-stage binary counter feeds a resistive ladder network. The buffer elements are contained within the IC package and provide a drive voltage which is accurately defined for light loading. Using identical resistors along the chain, the change from logical '0' to logical '1' at Q_1 causes a change at the input to the ladder which is progressively attenuated, halving for each succeeding stage in the counter provided R₁ $2R_2$. Thus the least significant bit from the counter contributes only half the output contributed by the next bit. The result is an output voltage that is an analogue representation of the total number of bits stored in the counter, and for constant repetition rate and n stages. staircase waveform results with 2" equal steps. # Wireless World Circard Series 3: Waveform Generators-8 ## Triggered ramp/trapezium generator Typical performance Supply (V): + 10V IC: LM305 R:: 220Ω $R_2 R_3$: $100k\Omega$ C₁: 47pF; C₂: 100nF C₃: 22μF; D₄: SD2 With transistor version (over, left), where Tr₁ is BFR41, R4 1kΩ, R5 47Ω, + IV. period is 66 ms, width is 30 ms, and source res. 50Ω; waveforms are typically as shown right. Circuit description A ramp with an accurately defined maximum value may be desirable for some applications. This can be provided simultaneously with good control of ramp slope, by using an i.c. voltage regulator having internal current limiting. At switch on, capacitor C3 is uncharged and the switch is open. The regulator remains in its constant-current mode, charging C3 until the p.d. across it produces a potential at the junction of R2 and R3 that matches the internal reference of the regulator. At this point the regulator reverts to its constantvoltage mode and the output voltage remains constant at a value that may be controlled by the ratio R_2/R_3 . During the ramp, the current drawn by the potential divider increases as the p.d. across it rises and this, combined with variation in the current-limiting action at different load p.ds, gives rise to some non-linearity. For this reason R2 and R3 are increased though this marginally reduces output voltage stability. Any convenient means may be used to discharge the capacitor to initiate a following cycle and Tr1 driver from a pulse source is one example. Component changes Maximum useful output frequency: 1kHz, demanding an input p.r.f. of 128kHz. Minimum pulse level at this rate is 2V, though this varies ± 50% with package substitution. An output repetition rate of 0.01Hz is easily achieved. Minimum pulse level is linearly related to supply voltage variations in the range 5 to 10V. Circuit modifications An up and down staircase waveform may be generated by inverting each alternate cycle. A suitable inverting amplifier is shown left. Resistor R_3 is $33k\Omega$; $1C_1$: 4 (CD4016) c.m.o.s. transmission gate. Resistors R_4 and R_5 are $100k\Omega$, R_4 : $84k\Omega$ and R_5 : $16k\Omega$. Diagram on right indicates the overall connection, where only six outputs from the counter are used to generate the staircase. The most significant bit-driving pulse is now used to switch both the c.m.o.s. gate and trigger the op-amp inverter. Resistor R_6 is $750 k\Omega$ for the above values of R_4 , R_5 . Further reading COS/MOS Digital Integrated Circuits, RCA, 1972, p.113. Naylor, J. R., Digital and analog signal applications of operational amplifiers, *IEEE Spectrum*. May 1971, pp.82-4. Staircase-wave generator uses integrated circuits, in 400 Ideas for Design, Hayden, 1971, p.111. COS/MOS Integrated Circuits RCA, 1971, pp.72-81. Cross references Series 3, cards 3, 11 & 12. © 1972 IPC Business Press Ltd. Component changes Maximum useful frequency ≈ 100kHz. With R_3 equal to $100k\Omega$, variation of R_2 over the useful range 22 to $150k\Omega$ varies V_{out_1} between 8.5 and 3V. Output voltage waveform becomes a ramp either when R_1 is increased to about 470Ω or C_3 increased to about 32μ F. With C_3 equal to $22\mu F$, max. useful R_1 is about $10k\Omega$ (ramp amplitude no longer defined by regulator feedback resistors R_2 and R_3) With R_1 equal to 1Ω , max. useful C_3 value is about $3000\mu F$. With R_1 set at 220Ω , V_{out} becomes a square wave with C_3 of Output voltage waveform can be made triangular by adjustment of time constants, e.g. triangle is 1.2V pk-pk, clamped at 3.6V with R_1 : 330 Ω , C_3 : 1000 μ F & R_5 : 100 Ω . Circuit modifications To give a higher output current rating and to provide a fold-back (negative resistance region) to the regulator, the circuit can be modified to the form shown in the middle diagram. The waveforms shown right are typical of those obtained with the following V: +10V, R₁: 5Ω , R₂: $3.9k\Omega$, R₄: $1k\Omega$, R₅: 15Ω R₆ + R₇: $1k\Omega$, C₁: 47pF, C₂: 100nF, C₃: $1000\mu F$, Tr₁: BFR41, Tr₂: BFR81, V_p : +3.6V. Period: 45ms, pulse width: 26ms, pulse source resistance: 50Ω . With R_6+R_7 equal to $1k\Omega$, R_6 should not be greater than about 200Ω to obviate excessive instability of the regulator due to the negative resistance characteristic. Lower level of $V_{\rm cut}$ is less well-defined than its upper level due to dependence on $V_{\rm CE}$ (sat) of Tr_1 and V_p amplitude. Further reading Elmgren, K., Journal of Physics E: Scientific Instruments (Letters), vol. 5 1972, p.296. Linear Integrated Circuits Data Book, National Semiconductor 1971, p.31. Cross reference Series 3, card 4. © 1972 IPC Business Press Ltd. ## Stable waveform generator using single i.c. Typical performance IC: NE555V (Signetics) V: +5V RA: 1 kΩ±5% R_B : 100 k $\Omega \pm 5^\circ$ C: 10nF±5% f: 710Hz Charge time ~ 0.69 × $(R_A + R_B)C$ Discharge time - 0.69 × Period $\sim 0.69(R_A + 2R_B)C$ Duty cycle: $R_B/(R_A + 2R_B)$ Circuit description The i.e. was designed as a versatile timer capable of operation in the astable mode. Frequency and amplitude of the waveform across the capacitor are very stable, and the waveshape can be modified by changing the charge/discharge circuit ider the flip-flop in the state that leaves Tr, non-conducting. The capacitor charges through RA + RB until the highlevel comparator reverses the flip-flop. Transistor Tr1 conducts, discharging C through RB until the low-level comparator returns the flip-flop to its initial state allowing the evele to re-start. For R_B < R_A the flyback time is very short, and sawtooth waveforms are possible. Conversely for $R_B \gg R_A$, the timeconstants for the two sections of the cycle become comparable. Comparator input currents are low and high values of RA and R_B may be used without deterioration of the waveform or loss of timing accuracy. Capacitor waveform is defined by the comparator levels to lie between V/3 and 2V/3. Unless the load resistance is >> RA and RB, buffering of the output from the capacitor is required. A square pulse output is available which can supply load currents of > 100mA with respect to either supply line and without disturbing frequency. A reset function is available that over-rides the charging action and a control voltage that changes the comparators' reference potentials i.e. allows modulation. # Wireless World Circard Series 3: Waveform Generators-10 ## Simple multi-waveform generator Typical performance Supply: +5V A1-A3: LM3900 R_1 : $1M\Omega$: R_2 : $100k\Omega$ R₃: 1.2mΩ: R₄: 470kΩ R₅, R₆, R₇: 1MΩ pot. Rs: 22kΩ; C1: C2: InF D1: PS101 With Rs. R: 1MO & 0 output waveforms are typically as shown right. Circuit description Operational amplifiers whose output depends on the difference between two input currents can be used as novel waveform generators. Thus A1 integrates the difference in current in R1 and R4. The former is constant and the latter switches between some positive value and substantially zero (the potentials at the inputs of all these amplifiers are about + 0.6V w.r.t. the common line, using a single-ended positive supply). If the on-current in R4 is double that sustained in R₁, the difference then changes polarity with equal magnitude for the two polarities. The output of A1 is a linear ramp that at some potential provides a current in the inverting input of A2 that initiates a switching action, reverses the output of A2 and causes the integration to proceed with opposite slope. Resistor R5 controls hysteresis on A2, amplitude of the triangular wave and also frequency. Control of frequency with a single resistor is more difficult than for circuits using conventional op-amp circuits as the ratio R_1/R_2 has to be maintained for symmetrical triangular waves. The output is fed to a second integrator A3 but at an amplitude sufficient to ensure eventual saturation. Slopes of the edges can be varied by R6 and R7. Component changes V: +4.5 to +16V R_A: $1k\Omega$ to $1M\Omega$ R_B: $1k\Omega$ to $1M\Omega$ C: 100 pF to 100 µF Control voltage (pin 5) varies on and off levels in same ratio, allows modulation of frequency, but also changes amplitude of capacitor waveform. Addition of silicon diode in parallel with R_B, conducting on forward stroke makes charge time dependent mainly on R_A. Discharge still depends on R_B i.e. Duty cycle adjustable ≥ i. Diode drop affects accuracy, particularly for low V. Output may be synchronized with external waveform fed to control input (pin 5) or triggered by input to trigger point (pin 2). Circuit modifications • For linear ramp generation, constant-current charging is required. Matched transistors (as in RCA CA3084) form current mirror in which collector current of Tr₂ (left) is set by current in Tr₁, with only small influence of collector- emitter p.d. Any alternative current generator with p.d. $< \frac{1}{3}V$ may be used such as that on card 2. • Capacitor cannot be loaded resistively without disturbance to waveform. Operational amplifier used as voltage follower, or f.e.t. as source follower, are suitable buffers for this (middle diagrams), and corresponding portions of cards 3, 4 & 6 may benefit from the same technique. For minimum flyback time the discharge current must be increased. If the flyback time is negligible compared to ramp time, then linear voltage control of the latter gives linear control of frequency. Diagram right shows the main output returned through D_1 to the capacitor i.e. using output current capability to reduce flyback time. Fall-time of $< 1\mu s$ for $C = 0.1\mu F$ is possible at V = +10V. Further reading Application report: 555 timer, Signetics. Cross references Series 3 cards 2, 4 & 6. 8 1972 IPC Business Press Ltd. Component changes Maximum useful frequency $\approx 20 \text{kHz}$. Useful C₁ range $\approx 10 \text{pF}$ to $22 \mu\text{F}$. $R_5 \min \approx 100 \text{k}\Omega \text{ (}V_{\text{out}}, \text{ switches to } +4.2 \text{V}\text{)}.$ With R₅ = 105kΩ, V_{outs} = 3.7V pk-pk, V_{outs} = 3.3V pk-pk, $t_1 = 28\mu s$, $t_2 = 1.26ms$, $t_3 = 800\mu s$. $R_{\rm c} \max \approx 770 \text{k}\Omega (V_{\rm out}, \text{ becomes}: +4.3 \text{V d.c.}).$ With $R_s = 105 \text{k}\Omega$, $R_o \approx 490 \text{k}\Omega$: V_{out} is triangular: $R_0 > 490 \text{k}\Omega$. V_{out} is a trapezium clamped at 4.3V: $R_{\odot} = 0$, $R_{\odot} = 433k\Omega$ to $1M\Omega$, V_{out_2} is a ramp; $R_0 = 0$. $R_0 = 11$ to $433k\Omega$, V_{out_3} is a trapezium; $R_0 = 0$, $R_2 = 5k\Omega$, V_{outs} is a square wave (anti-phase with V_{outz}) and may be made a trapezium or a ramp waveform by selecting C_2 between 10pF and 100nF. Circuit modifications Remaining amplifier in the LM3900 package may be used as an inverter (see left) fed from any one of the existing outputs to provide a pair of antiphase triangular, square, ramp or trapeziodal outputs. This amplifier may also be used as a summer for two or more, of the existing outputs (middle) to produce more complex waveshapes. • If dual polarity supplies are used then R_x above should be reduced to $1M\Omega$ and connected to 0V instead of the $\pm V$ rail. • For certain values of R_6 and R_7 , V_{out_8} will not be clamped to either a low or a high level. To remove this indefinite state, d.c. feedback can be added to A3 as shown right. Further reading LM3900 Quad Amplifier, data sheet and application note, National Semiconductor, 1972. Gledhill, B., Analogue module applications, *Electronic Engineering*, March 1970, pp.64/5. Cross reference Series 3, card 11. ### Op-amp/c.m.o.s. square/triangle generator Typical performance Supplies: +5V A₁: 741 c.m.o.s. inverters: $\frac{1}{2} \times CD4007AE$ c.m.o.s. switch: $\frac{1}{2} \times CD4007AE$ (R₁ + R₂): (R₃ + R₄): $47k\Omega$ R₅: $100k\Omega$, R₆: $\frac{1}{2}M\Omega$ pot. C₁: $\frac{1}{2}M\Gamma$ Variation of frequency as function of C_1 ($V_C = +1V$) and of V_C ($C_1 = 1$ nF) shown right, with $R_1 = 2R_2$, $R_3 = 2R_4$ and $R_6 = 1$ M Ω . At 10kHz, V_{out_1} is symmetrical triangular wave of 1.3V pk-pk and V_{out_2} is 1:1 square wave, 10V pk-pk. Circuit description One limitation to the basic triangle-square generator is that the output amplitude of the Schmitt depends on the saturation limits of the amplifier/comparator used-the hysteresis and the triangular wave amplitude and frequency are device-temperature variable. The circuit shown uses a c.m.o.s. Schmitt whose output swings almost exactly to the supply limits provided it is lightly loaded. Such a circuit can be provided by a single c.m.o.s. package while leaving at least one m.o.s. device free to act as a switch driven by the Schmitt output. The switch may be used to invert the current flow within the integrator, or to invert the gain of a preceding amplifier where the circuit is to be used as a voltage-controlled oscillator. The circuit makes very economical use of the lowest-cost c.m.o.s. package to provide triangular and square waves whose amplitudes are constant for constant supply voltage. A further advantage is that the Schmitt current is negligible except at the switching point. The main disadvantage is that the c.m.o.s. threshold voltage, while close to V/2, has some tolerance and the triangular wave will have a non-zero mean potential. # Wireless World Circard Series 3: Waveform Generators-12 ### Simple wave-shaping circuits f: 1kHz R₁: 22kΩ±5 $^{\circ}_{\circ}$ 0 R₂: 100kΩ±5 $^{\circ}_{\circ}$ 0 R₃: 27kΩ±5 $^{\circ}_{\circ}$ 0 Diodes 1N914 Adjust input triangular wave amplitude for minimum output distortion (~ 2V pk-pk) Distortion < -43dB using distortion factor meter. Visual adjustment possible to -35dB to 40dB. If a repetitive waveform is fed to an amplifier with a non-linear transfer function, the output waveform differs from that of the input. In the circuit shown the diodes across the feedback resistors are non-conducting for small signals and the output waveform is an inverted version of the input. As the amplitude increases, the diodes are progressively brought into conduction and the output increases more slowly than the input. With the values shown an input triangular wave produces a sinusoidal output with total harmonic distortion <1% on two conditions: that the input contains no significant d.c. component, and that the input resistor is adjusted for the particular value of input voltage. Component values were determined empirically with the diode non-linearities smoothing the transitions between the defined regions of the transistor function. 7: 1 kHzR₁: $1 \text{M}\Omega \pm 5\%$ R₂: $1 \text{M}\Omega \pm 5\%$ R₃: 470Ω \ matched R₄: 470Ω \ to $\pm 2\%$ Diodes 1 N914Adjust input triangular wave amplitude as for 1. Distortion < -40 dB. Select R₅ for desired output, typically 1 to $10 \text{k}\Omega$. Placing a non-linear element in the input path also modifies the output, and to convert a triangular wave into an approximate sinusoidal wave an f.e.t. may be used. The source and drain are interchangeable and the diodes ensure that for either polarity of input the f.e.t. is effectively separated with low $V_{\rm gs}$. At low input voltages, the f.e.t. has a low and relatively constant slope resistance, rising progressively as the input brings it towards pinch-off. If the input voltage has $V \approx V_{\rm p}$ for the f.e.t., the output peak is just flattened and distortion of less than <1% is again possible. The gate bias resistors should be large and the source and drain resistors equal. If the f.e.t. or diode networks are reversed, so is their action-the magnitude of the transfer function increases as the input amplitude rises. Any other devices with controlled non-linearities may replace the above. Component changes Maximum useful frequency: 50kHz ($C_1 = Inf$; $V_C = +1V$) $R_0 \min \approx 60 \text{ k}\Omega \text{ (loss of triangular wave)}.$ Increasing R_1/R_2 increases +ve slope of V_{out} , without changing its -ve slope, increases V_{out} , and increases mark- space ratio of Vouta (22:1 when R2 zero). Decreasing R_1/R_2 reduces +ve slopes of V_{out} , without affecting its -ve slope, reduced frequency ($f_{\text{min}} \approx 600\text{Hz}$), and reduces mark-space ratio of V_{out} (1:32 min at $f \approx 700\text{Hz}$). Increasing R_3/R_4 reduces +ve and increases -ve slopes of $V_{\rm out_2}$, reduces frequency ($f_{\rm min} \approx 300 {\rm Hz}$), and reduces mark-space ratio of $V_{\rm out_2}(1.60 {\rm min~at} f \approx 400 {\rm Hz})$. Reducing $R_3 R_4$ increases +ve and decreases -ve slopes of V_{outs} , reduces frequency ($f_{\text{min}} \approx 20 \text{Hz}$), and increases markspace ratio of V_{outs} (500: 1 max. at $f \approx 100 \text{ Hz}$). Circuit modifications • Variable voltage control input (V_C) may be derived from a potentiometer $(R_7 \approx 5 \text{k}\Omega, \text{left})$ connected between +V and 0V rails, which provides first-order compensation for supply voltage changes. Useful frequency range of the circuit may be extended to about 250kHz by using a fast integrator. Middle diagram shows an example where A_1 is an LM301A, C_2 10pF, C_3 150pF and R_8 5k Ω . • In place of a c.m.o.s. device, the switch may be realized by a discrete transistor e.g. BC125. Inclusion of R_9 , typically $10k\Omega$, as shown right allows the triangular output to swing symmetrically with respect to 0V. • A third output is available at pin 10 of the CD4007AE which provides a square wave in push-pull with V_{out_2} . Further reading Simple square-triangle waveform generator. Electronic Engineering, Oct 1972, p.29. Smith, J. L. Modern Operational Circuit Design, 1971, p.224/5. Cross references Series 3 cards 1, 2, 5, 7 & 10. © 1972 IPC Business Press Ltd. f: 1kHz $R_1: 15k\Omega \pm 5\%$ R_2 : $100k\Omega \pm 5$ ° R_3 : $100k\Omega \pm 5\%$ $C_2: 1\mu F \pm 10\%$ C1: 10nF±10% Output $\propto (1/fR_1C_1)$ Output amplitude \approx in- o put amplitude for above typical values and sinusoidal/triangular wave inputs. A third method of generating an approximate sine wave which is not strictly wave-shaping in the above sense is to apply a triangular wave to an integrator with overall decoupled d.c. negative feedback to define the mean output voltage. The integral of a linear ramp is parabolic in form, and the combination of two successive parabolas corresponding to the positive and negative slopes of the triangular waves gives a crude approximation to a sine wave with harmonic distortion of about 4%. The one advantage of this circuit over the previous is that the wave shape is frequency independent, though the amplitude is inversely to frequency. Using an ideal switch and $R_1 = R_3$, gain is exactly inverted. Switch may be driven by the squarewave of a square/triangle generator, and the circuit then inverts alternate ramps to give saw-tooth. R₁ to R₄: 100kΩ. An alternative to controlled non-linearity is to introduce an instantaneous change in gain at some precise point in a waveform. This can be conveniently done if a square wave is available simultaneously with the waveform to be modified, as in the triangle/square generators described earlier. If the triangular waveform is passed through an amplifier whose gain is inverted at each peak of the triangular wave, the result is a sawtooth wave at twice the frequency. The switching of the amplifier gain may be carried out using f.e.t. switches as described in previous cards. A further modification involves the superposition of a portion of the square wave on the sawtooth, producing a sawtooth at the original frequency but with a transient at the ramp mid-point. Further reading Tobey, G. E., Graeme, J. G. & Huelsman, L. P., Operational Amplifiers, McGraw Hill 1971, pp.236-81. Smith, J. Modern Operational Circuit Design, Wiley 1971, pp.229-31. Cross reference Series 3, card 7. © 1972 IPC Business Press Ltd.